Steiner, Adam P.; Redish, A. David
2014-01-01
Summary Disappointment entails the recognition that one did not get the value one expected. In contrast, regret entails the recognition that an alternate (counterfactual) action would have produced a more valued outcome. Thus, the key to identifying regret is the representation of that counterfactual option in situations in which a mistake has been made. In humans, the orbitofrontal cortex is active during expressions of regret, and humans with damage to the orbitofrontal cortex do not express regret. In rats and non-human primates, both the orbitofrontal cortex and the ventral striatum have been implicated in decision-making, particularly in representations of expectations of reward. In order to examine representations of regretful situations, we recorded neural ensembles from orbitofrontal cortex and ventral striatum in rats encountering a spatial sequence of wait/skip choices for delayed delivery of different food flavors. We were able to measure preferences using an economic framework. Rats occasionally skipped low-cost choices and then encountered a high-cost choice. This sequence economically defines a potential regret-inducing instance. In these situations, rats looked backwards towards the lost option, the cells within the orbitofrontal cortex and ventral striatum represented that missed action, rats were more likely to wait for the long delay, and rats rushed through eating the food after that delay. That these situations drove rats to modify their behavior suggests that regret-like processes modify decision-making in non-human mammals. PMID:24908102
5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.
Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E
2017-03-01
Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT 2A receptor activity is altered in autism, while recent work indicates that systemic 5HT 2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT 2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT 2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT 2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT 2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT 2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Differential Encoding of Time by Prefrontal and Striatal Network Dynamics.
Bakhurin, Konstantin I; Goudar, Vishwa; Shobe, Justin L; Claar, Leslie D; Buonomano, Dean V; Masmanidis, Sotiris C
2017-01-25
Telling time is fundamental to many forms of learning and behavior, including the anticipation of rewarding events. Although the neural mechanisms underlying timing remain unknown, computational models have proposed that the brain represents time in the dynamics of neural networks. Consistent with this hypothesis, changing patterns of neural activity dynamically in a number of brain areas-including the striatum and cortex-has been shown to encode elapsed time. To date, however, no studies have explicitly quantified and contrasted how well different areas encode time by recording large numbers of units simultaneously from more than one area. Here, we performed large-scale extracellular recordings in the striatum and orbitofrontal cortex of mice that learned the temporal relationship between a stimulus and a reward and reported their response with anticipatory licking. We used a machine-learning algorithm to quantify how well populations of neurons encoded elapsed time from stimulus onset. Both the striatal and cortical networks encoded time, but the striatal network outperformed the orbitofrontal cortex, a finding replicated both in simultaneously and nonsimultaneously recorded corticostriatal datasets. The striatal network was also more reliable in predicting when the animals would lick up to ∼1 s before the actual lick occurred. Our results are consistent with the hypothesis that temporal information is encoded in a widely distributed manner throughout multiple brain areas, but that the striatum may have a privileged role in timing because it has a more accurate "clock" as it integrates information across multiple cortical areas. The neural representation of time is thought to be distributed across multiple functionally specialized brain structures, including the striatum and cortex. However, until now, the neural code for time has not been compared quantitatively between these areas. Here, we performed large-scale recordings in the striatum and orbitofrontal cortex of mice trained on a stimulus-reward association task involving a delay period and used a machine-learning algorithm to quantify how well populations of simultaneously recorded neurons encoded elapsed time from stimulus onset. We found that, although both areas encoded time, the striatum consistently outperformed the orbitofrontal cortex. These results suggest that the striatum may refine the code for time by integrating information from multiple inputs. Copyright © 2017 the authors 0270-6474/17/370854-17$15.00/0.
Enhanced affective brain representations of chocolate in cravers vs. non-cravers.
Rolls, Edmund T; McCabe, Ciara
2007-08-01
To examine the neural circuitry involved in food craving, in making food particularly appetitive and thus in driving wanting and eating, we used fMRI to measure the response to the flavour of chocolate, the sight of chocolate and their combination in cravers vs. non-cravers. Statistical parametric mapping (SPM) analyses showed that the sight of chocolate produced more activation in chocolate cravers than non-cravers in the medial orbitofrontal cortex and ventral striatum. For cravers vs. non-cravers, a combination of a picture of chocolate with chocolate in the mouth produced a greater effect than the sum of the components (i.e. supralinearity) in the medial orbitofrontal cortex and pregenual cingulate cortex. Furthermore, the pleasantness ratings of the chocolate and chocolate-related stimuli had higher positive correlations with the fMRI blood oxygenation level-dependent signals in the pregenual cingulate cortex and medial orbitofrontal cortex in the cravers than in the non-cravers. To our knowledge, this is the first study to show that there are differences between cravers and non-cravers in their responses to the sensory components of a craved food in the orbitofrontal cortex, ventral striatum and pregenual cingulate cortex, and that in some of these regions the differences are related to the subjective pleasantness of the craved foods. Understanding individual differences in brain responses to very pleasant foods helps in the understanding of the mechanisms that drive the liking for specific foods and thus intake of those foods.
Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder.
Rothkirch, Marcus; Tonn, Jonas; Köhler, Stephan; Sterzer, Philipp
2017-04-01
According to current concepts, major depressive disorder is strongly related to dysfunctional neural processing of motivational information, entailing impairments in reinforcement learning. While computational modelling can reveal the precise nature of neural learning signals, it has not been used to study learning-related neural dysfunctions in unmedicated patients with major depressive disorder so far. We thus aimed at comparing the neural coding of reward and punishment prediction errors, representing indicators of neural learning-related processes, between unmedicated patients with major depressive disorder and healthy participants. To this end, a group of unmedicated patients with major depressive disorder (n = 28) and a group of age- and sex-matched healthy control participants (n = 30) completed an instrumental learning task involving monetary gains and losses during functional magnetic resonance imaging. The two groups did not differ in their learning performance. Patients and control participants showed the same level of prediction error-related activity in the ventral striatum and the anterior insula. In contrast, neural coding of reward prediction errors in the medial orbitofrontal cortex was reduced in patients. Moreover, neural reward prediction error signals in the medial orbitofrontal cortex and ventral striatum showed negative correlations with anhedonia severity. Using a standard instrumental learning paradigm we found no evidence for an overall impairment of reinforcement learning in medication-free patients with major depressive disorder. Importantly, however, the attenuated neural coding of reward in the medial orbitofrontal cortex and the relation between anhedonia and reduced reward prediction error-signalling in the medial orbitofrontal cortex and ventral striatum likely reflect an impairment in experiencing pleasure from rewarding events as a key mechanism of anhedonia in major depressive disorder. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Frank, G K W; Shott, M E; Riederer, J; Pryor, T L
2016-11-01
Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive-emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction.
Oxytocin enhances brain function in children with autism.
Gordon, Ilanit; Vander Wyk, Brent C; Bennett, Randi H; Cordeaux, Cara; Lucas, Molly V; Eilbott, Jeffrey A; Zagoory-Sharon, Orna; Leckman, James F; Feldman, Ruth; Pelphrey, Kevin A
2013-12-24
Following intranasal administration of oxytocin (OT), we measured, via functional MRI, changes in brain activity during judgments of socially (Eyes) and nonsocially (Vehicles) meaningful pictures in 17 children with high-functioning autism spectrum disorder (ASD). OT increased activity in the striatum, the middle frontal gyrus, the medial prefrontal cortex, the right orbitofrontal cortex, and the left superior temporal sulcus. In the striatum, nucleus accumbens, left posterior superior temporal sulcus, and left premotor cortex, OT increased activity during social judgments and decreased activity during nonsocial judgments. Changes in salivary OT concentrations from baseline to 30 min postadministration were positively associated with increased activity in the right amygdala and orbitofrontal cortex during social vs. nonsocial judgments. OT may thus selectively have an impact on salience and hedonic evaluations of socially meaningful stimuli in children with ASD, and thereby facilitate social attunement. These findings further the development of a neurophysiological systems-level understanding of mechanisms by which OT may enhance social functioning in children with ASD.
Rule Encoding in Orbitofrontal Cortex and Striatum Guides Selection
Castagno, Meghan D.; Hayden, Benjamin Y.
2016-01-01
Active maintenance of rules, like other executive functions, is often thought to be the domain of a discrete executive system. An alternative view is that rule maintenance is a broadly distributed function relying on widespread cortical and subcortical circuits. Tentative evidence supporting this view comes from research showing some rule selectivity in the orbitofrontal cortex and dorsal striatum. We recorded in these regions and in the ventral striatum, which has not been associated previously with rule representation, as macaques performed a Wisconsin Card Sorting Task. We found robust encoding of rule category (color vs shape) and rule identity (six possible rules) in all three regions. Rule identity modulated responses to potential choice targets, suggesting that rule information guides behavior by highlighting choice targets. The effects that we observed were not explained by differences in behavioral performance across rules and thus cannot be attributed to reward expectation. Our results suggest that rule maintenance and rule-guided selection of options are distributed processes and provide new insight into orbital and striatal contributions to executive control. SIGNIFICANCE STATEMENT Rule maintenance, an important executive function, is generally thought to rely on dorsolateral brain regions. In this study, we examined activity of single neurons in orbitofrontal cortex and in ventral and dorsal striatum of macaques in a Wisconsin Card Sorting Task. Neurons in all three areas encoded rules and rule categories robustly. Rule identity also affected neural responses to potential choice options, suggesting that stored information is used to influence decisions. These results endorse the hypothesis that rule maintenance is a broadly distributed mental operation. PMID:27807165
Cocaine cue-induced dopamine release in the human prefrontal cortex.
Milella, Michele S; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco
2016-08-01
Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms.
Frank, G K W; Shott, M E; Riederer, J; Pryor, T L
2016-01-01
Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive–emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction. PMID:27801897
Cocaine cue–induced dopamine release in the human prefrontal cortex
Milella, Michele S.; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F.; Larcher, Kevin; Verhaeghe, Jeroen A.J.; Cox, Sylvia M.L.; Reader, Andrew J.; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco
2016-01-01
Background Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. Methods We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Results Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. Conclusion In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms. PMID:26900792
Stott, Jeffrey J; Redish, A David
2014-11-05
Both orbitofrontal cortex (OFC) and ventral striatum (vStr) have been identified as key structures that represent information about value in decision-making tasks. However, the dynamics of how this information is processed are not yet understood. We recorded ensembles of cells from OFC and vStr in rats engaged in the spatial adjusting delay-discounting task, a decision-making task that involves a trade-off between delay to and magnitude of reward. Ventral striatal neural activity signalled information about reward before the rat's decision, whereas such reward-related signals were absent in OFC until after the animal had committed to its decision. These data support models in which vStr is directly involved in action selection, but OFC processes decision-related information afterwards that can be used to compare the predicted and actual consequences of behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Paralimbic system and striatum are involved in motivational behavior.
Nishimura, Masahiko; Yoshii, Yoshihiko; Watanabe, Jobu; Ishiuchi, Shogo
2009-10-28
Goal-directed rewarded behavior and goal-directed non-rewarded behavior are concerned with motivation. However, the neural substrates involved in goal-directed non-rewarded behaviors are unknown. Using functional magnetic resonance imaging, we investigated the brain activities of healthy individuals during a novel tool use (turning a screwdriver) to elucidate the relationship between the brain mechanism relevant to goal-directed non-rewarded behavior and motivation. We found that our designed behavioral task evoked activities in the orbitofrontal cortex, striatum, anterior insula, lateral prefrontal cortex, and anterior cingulate cortex compared with a meaningless task. These results suggest that activation in these cerebral regions play important roles in motivational behavior without tangible rewards.
Atlas, Lauren Y; Doll, Bradley B; Li, Jian; Daw, Nathaniel D; Phelps, Elizabeth A
2016-01-01
Socially-conveyed rules and instructions strongly shape expectations and emotions. Yet most neuroscientific studies of learning consider reinforcement history alone, irrespective of knowledge acquired through other means. We examined fear conditioning and reversal in humans to test whether instructed knowledge modulates the neural mechanisms of feedback-driven learning. One group was informed about contingencies and reversals. A second group learned only from reinforcement. We combined quantitative models with functional magnetic resonance imaging and found that instructions induced dissociations in the neural systems of aversive learning. Responses in striatum and orbitofrontal cortex updated with instructions and correlated with prefrontal responses to instructions. Amygdala responses were influenced by reinforcement similarly in both groups and did not update with instructions. Results extend work on instructed reward learning and reveal novel dissociations that have not been observed with punishments or rewards. Findings support theories of specialized threat-detection and may have implications for fear maintenance in anxiety. DOI: http://dx.doi.org/10.7554/eLife.15192.001 PMID:27171199
Koob, George F; Volkow, Nora D
2010-01-01
Drug addiction is a chronically relapsing disorder that has been characterized by (1) compulsion to seek and take the drug, (2) loss of control in limiting intake, and (3) emergence of a negative emotional state (eg, dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when access to the drug is prevented. Drug addiction has been conceptualized as a disorder that involves elements of both impulsivity and compulsivity that yield a composite addiction cycle composed of three stages: ‘binge/intoxication', ‘withdrawal/negative affect', and ‘preoccupation/anticipation' (craving). Animal and human imaging studies have revealed discrete circuits that mediate the three stages of the addiction cycle with key elements of the ventral tegmental area and ventral striatum as a focal point for the binge/intoxication stage, a key role for the extended amygdala in the withdrawal/negative affect stage, and a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex–dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control. The transition to addiction involves neuroplasticity in all of these structures that may begin with changes in the mesolimbic dopamine system and a cascade of neuroadaptations from the ventral striatum to dorsal striatum and orbitofrontal cortex and eventually dysregulation of the prefrontal cortex, cingulate gyrus, and extended amygdala. The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction. PMID:19710631
Perez, David L.; Vago, David R.; Pan, Hong; Root, James; Tuescher, Oliver; Fuchs, Benjamin H.; Leung, Lorene; Epstein, Jane; Cain, Nicole M.; Clarkin, John F.; Lenzenweger, Mark F.; Kernberg, Otto F.; Levy, Kenneth N.; Silbersweig, David A.; Stern, Emily
2015-01-01
Aim Borderline personality disorder (BPD) is characterized by self-regulation deficits, including impulsivity and affective lability. Transference-Focused Psychotherapy (TFP) is an evidence-based treatment proven to reduce symptoms across multiple cognitive-emotional domains in BPD. This pilot study aims to investigate neural activation associated with, and predictive of, clinical improvement in emotional and behavioral regulation in BPD following TFP. Methods BPD subjects (N=10) were scanned pre- and post-TFP treatment using a within-subjects design. A disorder-specific emotional-linguistic go/no-go fMRI paradigm was used to probe the interaction between negative emotional processing and inhibitory control. Results Analyses demonstrated significant treatment-related effects with relative increased dorsal prefrontal (dorsal anterior cingulate, dorsolateral prefrontal, and frontopolar cortices) activation, and relative decreased ventrolateral prefrontal cortex and hippocampal activation following treatment. Clinical improvement in constraint correlated positively with relative increased left dorsal anterior cingulate cortex activation. Clinical improvement in affective lability correlated positively with left posterior-medial orbitofrontal cortex/ventral striatum activation, and negatively with right amygdala/parahippocampal activation. Post-treatment improvements in constraint were predicted by pre-treatment right dorsal anterior cingulate cortex hypoactivation, and pre-treatment left posterior-medial orbitofrontal cortex/ventral striatum hypoactivation predicted improvements in affective lability. Conclusions These preliminary findings demonstrate potential TFP-associated alterations in frontolimbic circuitry and begin to identify neural mechanisms associated with a psychodynamically-oriented psychotherapy. PMID:26289141
In vivo dopaminergic and serotonergic dysfunction in DCTN1 gene mutation carriers
Felicio, Andre C.; Dinelle, Katherine; Agarwal, Pankaj A.; McKenzie, Jessamyn; Heffernan, Nicole; Road, Jeremy D.; Appel-Cresswell, Silke; Wszolek, Zbigniew K.; Farrer, Matthew J.; Schulzer, Michael; Sossi, Vesna; Stoessl, A. Jon
2014-01-01
Introduction We have used positron emission tomography (PET) to assess dopaminergic and serotonergic terminal density in three subjects carrying a mutation in the DCT1 gene, two clinically affected with Perry syndrome. Methods All subjects had brain imaging using 18F-6-fluoro-L-dopa (FDOPA, dopamine synthesis and storage), (+)-11C-dihydrotetrabenazine (DTBZ, vesicular monoamine transporter type 2), and 11C-raclopride (RAC, dopamine D2/D3 receptors). One subject also underwent PET with 11C-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile (DASB, serotonin transporter). Results FDOPA-PET and DTBZ-PET in the affected individuals showed a reduction of striatal tracer uptake. Also, RAC-PET showed higher uptake in these area. DASB-PET showed significant uptake changes in left orbitofrontal cortex, bilateral anterior insula, left dorsolateral prefrontal cortex, left orbitofrontal cortex, left posterior cingulate cortex, left caudate and left ventral striatum. Conclusions Our data showed evidence of both striatal dopaminergic and widespread cortical/subcortical serotonergic dysfunctions in individuals carrying a mutation in the DCTN1 gene. PMID:24797316
Eryilmaz, Hamdi; Van De Ville, Dimitri; Schwartz, Sophie; Vuilleumier, Patrik
2014-06-04
Obtaining lower gains than rejected alternatives during decision making evokes feelings of regret, whereas higher gains elicit gratification. Although decision-related emotions produce lingering effects on mental state, neuroscience research has generally focused on transient brain responses to positive or negative events, but ignored more sustained consequences of emotional episodes on subsequent brain states. We investigated how spontaneous brain activity and functional connectivity at rest are modulated by postdecision regret and gratification in 18 healthy human subjects using a gambling task in fMRI. Differences between obtained and unobtained outcomes were manipulated parametrically to evoke different levels of regret or gratification. We investigated how individual personality traits related to depression and rumination affected these responses. Medial and ventral prefrontal areas differentially responded to favorable and unfavorable outcomes during the gambling period. More critically, during subsequent rest, rostral anterior and posterior cingulate cortex, ventral striatum, and insula showed parametric response to the gratification level of preceding outcomes. Functional coupling of posterior cingulate with striatum and amygdala was also enhanced during rest after high gratification. Regret produced distinct changes in connectivity of subgenual cingulate with orbitofrontal cortex and thalamus. Interestingly, individual differences in depressive traits and ruminations correlated with activity of the striatum after gratification and orbitofrontal cortex after regret, respectively. By revealing lingering effects of decision-related emotions on key nodes of resting state networks, our findings illuminate how such emotions may influence self-reflective processing and subsequent behavioral adjustment, but also highlight the malleability of resting networks in emotional contexts. Copyright © 2014 the authors 0270-6474/14/347825-11$15.00/0.
Robust Encoding of Spatial Information in Orbitofrontal Cortex and Striatum.
Yoo, Seng Bum Michael; Sleezer, Brianna J; Hayden, Benjamin Y
2018-06-01
Knowing whether core reward regions carry information about the positions of relevant objects is crucial for adjudicating between choice models. One limitation of previous studies, including our own, is that spatial positions can be consistently differentially associated with rewards, and thus position can be confounded with attention, motor plans, or target identity. We circumvented these problems by using a task in which value-and thus choices-was determined solely by a frequently changing rule, which was randomized relative to spatial position on each trial. We presented offers asynchronously, which allowed us to control for reward expectation, spatial attention, and motor plans in our analyses. We find robust encoding of the spatial position of both offers and choices in two core reward regions, orbitofrontal Area 13 and ventral striatum, as well as in dorsal striatum of macaques. The trial-by-trial correlation in noise in encoding of position was associated with variation in choice, an effect known as choice probability correlation, suggesting that the spatial encoding is associated with choice and is not incidental to it. Spatial information and reward information are not carried by separate sets of neurons, although the two forms of information are temporally dissociable. These results highlight the ubiquity of multiplexed information in association cortex and argue against the idea that these ostensible reward regions serve as part of a pure value domain.
van Kerkhof, Linda WM; Damsteegt, Ruth; Trezza, Viviana; Voorn, Pieter; Vanderschuren, Louk JMJ
2013-01-01
Social play behavior is a characteristic, vigorous form of social interaction in young mammals. It is highly rewarding and thought to be of major importance for social and cognitive development. The neural substrates of social play are incompletely understood, but there is evidence to support a role for the prefrontal cortex (PFC) and striatum in this behavior. Using pharmacological inactivation methods, ie, infusions of GABA receptor agonists (baclofen and muscimol; B&M) or the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), we investigated the involvement of several subregions of the medial PFC and striatum in social play. Inactivation of the prelimbic cortex, infralimbic cortex, and medial/ventral orbitofrontal cortex using B&M markedly reduced frequency and duration of social play behavior. Local administration of DNQX into the dorsomedial striatum increased the frequency and duration of social play, whereas infusion of B&M tended to have the same effect. Inactivation of the nucleus accumbens (NAcc) core using B&M increased duration but not frequency of social play, whereas B&M infusion into the NAcc shell did not influence social play behavior. Thus, functional integrity of the medial PFC is important for the expression of social play behavior. Glutamatergic inputs into the dorsomedial striatum exert an inhibitory influence on social play, and functional activity in the NAcc core acts to limit the length of playful interactions. These results highlight the importance of prefrontal and striatal circuits implicated in cognitive control, decision making, behavioral inhibition, and reward-associated processes in social play behavior. PMID:23568326
Cerebral interactions of pain and reward and their relevance for chronic pain.
Becker, Susanne; Gandhi, Wiebke; Schweinhardt, Petra
2012-06-29
Pain and reward are opponent, interacting processes. Such interactions are enabled by neuroanatomical and neurochemical overlaps of brain systems that process pain and reward. Cerebral processing of hedonic ('liking') and motivational ('wanting') aspects of reward can be separated: the orbitofrontal cortex and opioids play an important role for the hedonic experience, and the ventral striatum and dopamine predominantly process motivation for reward. Supported by neuroimaging studies, we present here the hypothesis that the orbitofrontal cortex and opioids are responsible for pain modulation by hedonic experience, while the ventral striatum and dopamine mediate motivational effects on pain. A rewarding stimulus that appears to be particularly important in the context of pain is pain relief. Further, reward, including pain relief, leads to operant learning, which can affect pain sensitivity. Indirect evidence points at brain mechanisms that might underlie pain relief as a reward and related operant learning but studies are scarce. Investigating the cerebral systems underlying pain-reward interactions as well as related operant learning holds the potential of better understanding mechanisms that contribute to the development and maintenance of chronic pain, as detailed in the last section of this review. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger.
Nolan-Poupart, Sarah; Veldhuizen, Maria G; Geha, Paul; Small, Dana M
2013-01-01
There is now widespread agreement that individual variation in the neural circuits representing the reinforcing properties of foods may be associated with risk for overeating and obesity. What is currently unknown is how and whether brain response to a food is related to immediate subsequent intake of that food. Here we used functional magnetic resonance imaging (fMRI) to test whether response to a palatable milkshake is associated with subsequent ad libitum milkshake consumption. We predicted that enhanced responses in key reward regions (insula, striatum, midbrain, medial orbitofrontal cortex) and decreased responses in regions implicated in self-control (lateral prefrontal and lateral orbitofrontal cortex) would be associated with greater intake. We found a significant positive association between response to milkshake in the periaqueductal gray region of the midbrain and ad libitum milkshake intake. Although strong bilateral insular responses were observed during consumption of the milkshake this response did not correlate with subsequent intake. The associations observed in the midbrain and orbitofrontal cortex were uninfluenced by ratings of hunger, which were near neutral. We conclude that midbrain response to a palatable food is related to eating in the absence of hunger. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mapping aesthetic musical emotions in the brain.
Trost, Wiebke; Ethofer, Thomas; Zentner, Marcel; Vuilleumier, Patrik
2012-12-01
Music evokes complex emotions beyond pleasant/unpleasant or happy/sad dichotomies usually investigated in neuroscience. Here, we used functional neuroimaging with parametric analyses based on the intensity of felt emotions to explore a wider spectrum of affective responses reported during music listening. Positive emotions correlated with activation of left striatum and insula when high-arousing (Wonder, Joy) but right striatum and orbitofrontal cortex when low-arousing (Nostalgia, Tenderness). Irrespective of their positive/negative valence, high-arousal emotions (Tension, Power, and Joy) also correlated with activations in sensory and motor areas, whereas low-arousal categories (Peacefulness, Nostalgia, and Sadness) selectively engaged ventromedial prefrontal cortex and hippocampus. The right parahippocampal cortex activated in all but positive high-arousal conditions. Results also suggested some blends between activation patterns associated with different classes of emotions, particularly for feelings of Wonder or Transcendence. These data reveal a differentiated recruitment across emotions of networks involved in reward, memory, self-reflective, and sensorimotor processes, which may account for the unique richness of musical emotions.
Mapping Aesthetic Musical Emotions in the Brain
Ethofer, Thomas; Zentner, Marcel; Vuilleumier, Patrik
2012-01-01
Music evokes complex emotions beyond pleasant/unpleasant or happy/sad dichotomies usually investigated in neuroscience. Here, we used functional neuroimaging with parametric analyses based on the intensity of felt emotions to explore a wider spectrum of affective responses reported during music listening. Positive emotions correlated with activation of left striatum and insula when high-arousing (Wonder, Joy) but right striatum and orbitofrontal cortex when low-arousing (Nostalgia, Tenderness). Irrespective of their positive/negative valence, high-arousal emotions (Tension, Power, and Joy) also correlated with activations in sensory and motor areas, whereas low-arousal categories (Peacefulness, Nostalgia, and Sadness) selectively engaged ventromedial prefrontal cortex and hippocampus. The right parahippocampal cortex activated in all but positive high-arousal conditions. Results also suggested some blends between activation patterns associated with different classes of emotions, particularly for feelings of Wonder or Transcendence. These data reveal a differentiated recruitment across emotions of networks involved in reward, memory, self-reflective, and sensorimotor processes, which may account for the unique richness of musical emotions. PMID:22178712
Wetherill, Reagan R; Jagannathan, Kanchana; Hager, Nathan; Childress, Anna Rose; Franklin, Teresa R
2015-08-01
Preclinical and clinical research indicates that there are sex differences in how men and women initiate, progress, respond to, and withdraw from cannabis use; however, neurophysiological differences, such as neural responses to cannabis cues, are not well understood. Using functional MRI and an event-related blood oxygen level-dependent backward-masking task, we compared neural responses to backward-masked cannabis cues to neutral cues in treatment-seeking, cannabis-dependent adults (N = 44; 27 males) and examined whether sex differences exist. In addition, functional MRI findings were correlated with cannabis craving. Backward-masked cannabis cues elicited greater neural responses than neutral cues in reward-related brain regions, including the striatum, hippocampus/amygdala, insula, anterior cingulate cortex, and lateral orbitofrontal cortex, p < .01, k > 121 voxels. Although no significant sex differences in neural responses to cannabis cues emerged, women showed a positive correlation between neural responses to cannabis cues in the bilateral insula and cannabis craving and an inverse correlation between neural responses to cannabis cues in the left lateral orbitofrontal cortex and cannabis craving. Men, however, showed a positive correlation between neural responses to cannabis cues in the striatum and cannabis craving. Given that cues and craving are important triggers and the focus on many behavioral treatment approaches, these findings suggest that treatment-seeking, cannabis-dependent men and women may benefit from sex-specific and tailored cannabis use disorder treatments. (c) 2015 APA, all rights reserved).
Segarra, Nuria; Metastasio, Antonio; Ziauddeen, Hisham; Spencer, Jennifer; Reinders, Niels R; Dudas, Robert B; Arrondo, Gonzalo; Robbins, Trevor W; Clark, Luke; Fletcher, Paul C; Murray, Graham K
2016-07-01
Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states.
Segarra, Nuria; Metastasio, Antonio; Ziauddeen, Hisham; Spencer, Jennifer; Reinders, Niels R; Dudas, Robert B; Arrondo, Gonzalo; Robbins, Trevor W; Clark, Luke; Fletcher, Paul C; Murray, Graham K
2016-01-01
Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states. PMID:26708106
Vaquero, Lucía; Cámara, Estela; Sampedro, Frederic; Pérez de Los Cobos, José; Batlle, Francesca; Fabregas, Josep Maria; Sales, Joan Artur; Cervantes, Mercè; Ferrer, Xavier; Lazcano, Gerardo; Rodríguez-Fornells, Antoni; Riba, Jordi
2017-05-01
Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction. © 2016 Society for the Study of Addiction.
Meyer, Andrew C; Neugebauer, Nichole M; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P; Bardo, Michael T
2013-10-01
Vesicular monoamine transporter-2 (VMAT2) inhibitors reduce methamphetamine (METH) reward in rats. The current study determined the effects of VMAT2 inhibitors lobeline (LOB; 1 or 3 mg/kg) and N-(1,2R-dihydroxylpropyl)-2,6-cis-di(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A; 15 or 30 mg/kg) on METH-induced (0.5 mg/kg, SC) changes in extracellular dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) in the reward-relevant nucleus accumbens (NAc) shell using in vivo microdialysis. The effect of GZ-793A (15 mg/kg) on DA synthesis in tissue also was investigated in NAc, striatum, medial prefrontal cortex and orbitofrontal cortex. In NAc shell, METH produced a time-dependent increase in extracellular DA and decrease in DOPAC. Neither LOB nor GZ-793A alone altered extracellular DA; however, both drugs increased extracellular DOPAC. In combination with METH, LOB did not alter the effects of METH on DA; however, GZ-793A, which has greater selectivity than LOB for inhibiting VMAT2, reduced the duration of the METH-induced increase in extracellular DA. Both LOB and GZ-793A enhanced the duration of the METH-induced decrease in extracellular DOPAC. METH also increased tissue DA synthesis in NAc and striatum, whereas GZ-793A decreased synthesis; no effect of METH or GZ-793A on DA synthesis was found in medial prefrontal cortex or orbitofrontal cortex. These results suggest that selective inhibition of VMAT2 produces a time-dependent decrease in DA release in NAc shell as a result of alterations in tyrosine hydroxylase activity, which may play a role in the ability of GZ-793A to decrease METH reward. © 2013 International Society for Neurochemistry.
Cellular activation in limbic brain systems during social play behaviour in rats.
van Kerkhof, Linda W M; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J M J
2014-07-01
Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-Fos as a marker. After a session of social play behaviour, pronounced increases in c-Fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organized in this network, as indicated by play-specific correlations in c-Fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organized neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats.
London, Edythe D; Simon, Sara L; Berman, Steven M; Mandelkern, Mark A; Lichtman, Aaron M; Bramen, Jennifer; Shinn, Ann K; Miotto, Karen; Learn, Jennifer; Dong, Yun; Matochik, John A; Kurian, Varughese; Newton, Thomas; Woods, Roger; Rawson, Richard; Ling, Walter
2004-01-01
Mood disturbances in methamphetamine (MA) abusers likely influence drug use, but the neurobiological bases for these problems are poorly understood. To assess regional brain function and its possible relationships with negative affect in newly abstinent MA abusers. Two groups were compared by measures of mood and cerebral glucose metabolism ([18F]fluorodeoxyglucose positron emission tomography) during performance of a vigilance task. Participants were recruited from the general community to a research center. Seventeen abstaining (4-7 days) MA abusers (6 women) were compared with 18 control subjects (8 women). Self-reports of depressive symptoms and anxiety were measured, as were global and relative glucose metabolism in the orbitofrontal, cingulate, lateral prefrontal, and insular cortices and the amygdala, striatum, and cerebellum. Abusers of MA provided higher self-ratings of depression and anxiety than control subjects and differed significantly in relative regional glucose metabolism: lower in the anterior cingulate and insula and higher in the lateral orbitofrontal area, middle and posterior cingulate, amygdala, ventral striatum, and cerebellum. In MA abusers, self-reports of depressive symptoms covaried positively with relative glucose metabolism in limbic regions (eg, perigenual anterior cingulate gyrus and amygdala) and ratings of state and trait anxiety covaried negatively with relative activity in the anterior cingulate cortex and left insula. Trait anxiety also covaried negatively with relative activity in the orbitofrontal cortex and positively with amygdala activity. Abusers of MA have abnormalities in brain regions implicated in mood disorders. Relationships between relative glucose metabolism in limbic and paralimbic regions and self-reports of depression and anxiety in MA abusers suggest that these regions are involved in affective dysregulation and may be an important target of intervention for MA dependence.
Effect of satiety on brain activation during chocolate tasting in men and women.
Smeets, Paul A M; de Graaf, Cees; Stafleu, Annette; van Osch, Matthias J P; Nievelstein, Rutger A J; van der Grond, Jeroen
2006-06-01
The brain plays a crucial role in the decision to eat, integrating multiple hormonal and neural signals. A key factor controlling food intake is selective satiety, ie, the phenomenon that the motivation to eat more of a food decreases more than does the motivation to eat foods not eaten. We investigated the effect of satiation with chocolate on the brain activation associated with chocolate taste in men and women. Twelve men and 12 women participated. Subjects fasted overnight and were scanned by use of functional magnetic resonance imaging while tasting chocolate milk, before and after eating chocolate until they were satiated. In men, chocolate satiation was associated with increased taste activation in the ventral striatum, insula, and orbitofrontal and medial orbitofrontal cortex and with decreased taste activation in somatosensory areas. Women showed increased taste activation in the precentral gyrus, superior temporal gyrus, and putamen and decreased taste activation in the hypothalamus and amygdala. Sex differences in the effect of chocolate satiation were found in the hypothalamus, ventral striatum, and medial prefrontal cortex (all P < 0.005). Our results indicate that men and women differ in their response to satiation and suggest that the regulation of food intake by the brain may vary between the sexes. Therefore, sex differences are a covariate of interest in studies of the brain's responses to food.
Coding of level of ambiguity within neural systems mediating choice.
Lopez-Paniagua, Dan; Seger, Carol A
2013-01-01
Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common "fronto-parietal-striatal" network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum).
Coding of level of ambiguity within neural systems mediating choice
Lopez-Paniagua, Dan; Seger, Carol A.
2013-01-01
Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common “fronto—parietal—striatal” network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum). PMID:24367286
Orbitofrontal cortex function and structure in depression.
Drevets, Wayne C
2007-12-01
The orbitofrontal cortex (OFC) has been implicated in the pathophysiology of major depression by evidence obtained using neuroimaging, neuropathologic, and lesion analysis techniques. The abnormalities revealed by these techniques show a regional specificity, and suggest that some OFC regions which appear cytoarchitectonically distinct also are functionally distinct with respect to mood regulation. For example, the severity of depression correlates inversely with physiological activity in parts of the posterior lateral and medial OFC, consistent with evidence that dysfunction of the OFC associated with cerebrovascular lesions increases the vulnerability for developing the major depressive syndrome. The posterior lateral and medial OFC function may also be impaired in individuals who develop primary mood disorders, as these patients show grey-matter volumetric reductions, histopathologic abnormalities, and altered hemodynamic responses to emotionally valenced stimuli, probabilistic reversal learning, and reward processing. In contrast, physiological activity in the anteromedial OFC situated in the ventromedial frontal polar cortex increases during the depressed versus the remitted phases of major depressive disorder to an extent that is positively correlated with the severity of depression. Effective antidepressant treatment is associated with a reduction in activity in this region. Taken together these data are compatible with evidence from studies in experimental animals indicating that some orbitofrontal and medial prefrontal cortex regions function to inhibit, while others function to enhance, emotional expression. Alterations in the functional balance between these regions and the circuits they form with anatomically related areas of the temporal lobe, striatum, thalamus, and brain stem thus may underlie the pathophysiology of mood disorders, such as major depression.
Cellular activation in limbic brain systems during social play behaviour in rats
van Kerkhof, Linda W.M.; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J.M.J.
2013-01-01
Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-fos as a marker. After a session of social play behaviour, pronounced increases in c-fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organised in this network, as indicated by play-specific correlations in c-fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organised neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats. PMID:23670540
Ghahremani, Dara G; Faulkner, Paul; M Cox, Chelsea; London, Edythe D
2018-06-01
Cigarette craving contributes substantially to the maintenance of tobacco use disorder. Behavioral strategies to regulate craving may facilitate smoking cessation but remain underexplored. We adapted an emotion-regulation strategy, using proximal/distal self-positioning, to the context of cigarette craving to examine craving regulation in 42, daily smokers (18-25 years old). After overnight abstinence from smoking, before and after smoking their first cigarette of the day, participants viewed videos of natural scenes presenting young adults who were either smoking cigarettes ("smoke") or not ("non-smoke"). Before each video, participants were instructed to imagine themselves either immersed in the scene ("close") or distanced from it ("far"). They rated their craving after each video. Task-based fMRI data are presented for a subsample of participants (N = 21). We found main effects of smoking, instruction, and video type on craving-lower ratings after smoking than before, following the "far" vs. "close" instructions, and when viewing non-smoke vs. smoke videos. Before smoking, "smoke" vs. "non-smoke" videos elicited activation in, orbitofrontal cortex, anterior cingulate, lateral parietal cortex, mid-occipital cortex, ventral striatum, dorsal caudate, and midbrain. Smoking reduced activation in anterior cingulate, left inferior frontal gyrus, and bilateral temporal poles. Activation was reduced in the ventral striatum and medial prefrontal cortex after the "far" vs. the "close" instruction, suggesting less engagement with the stimuli during distancing. The results indicate that proximal/distal regulation strategies impact cue-elicited craving, potentially via downregulation of the ventral striatum and medial prefrontal cortex, and that smoking during abstinence may increase cognitive control capacity during craving regulation.
The orbitofrontal cortex and beyond: from affect to decision-making.
Rolls, Edmund T; Grabenhorst, Fabian
2008-11-01
The orbitofrontal cortex represents the reward or affective value of primary reinforcers including taste, touch, texture, and face expression. It learns to associate other stimuli with these to produce representations of the expected reward value for visual, auditory, and abstract stimuli including monetary reward value. The orbitofrontal cortex thus plays a key role in emotion, by representing the goals for action. The learning process is stimulus-reinforcer association learning. Negative reward prediction error neurons are related to this affective learning. Activations in the orbitofrontal cortex correlate with the subjective emotional experience of affective stimuli, and damage to the orbitofrontal cortex impairs emotion-related learning, emotional behaviour, and subjective affective state. With an origin from beyond the orbitofrontal cortex, top-down attention to affect modulates orbitofrontal cortex representations, and attention to intensity modulates representations in earlier cortical areas of the physical properties of stimuli. Top-down word-level cognitive inputs can bias affective representations in the orbitofrontal cortex, providing a mechanism for cognition to influence emotion. Whereas the orbitofrontal cortex provides a representation of reward or affective value on a continuous scale, areas beyond the orbitofrontal cortex such as the medial prefrontal cortex area 10 are involved in binary decision-making when a choice must be made. For this decision-making, the orbitofrontal cortex provides a representation of each specific reward in a common currency.
Lucantonio, Federica; Caprioli, Daniele; Schoenbaum, Geoffrey
2014-01-01
Cocaine addiction is a complex and multidimensional process involving a number of behavioral and neural forms of plasticity. The behavioral transition from voluntary drug use to compulsive drug taking may be explained at the neural level by drug-induced changes in function or interaction between a flexible planning system, associated with prefrontal cortical regions, and a rigid habit system, associated with the striatum. The dichotomy between these two systems is operationalized in computational theory by positing model-based and model-free learning mechanisms, the former relying on an "internal model" of the environment and the latter on pre-computed or cached values to control behavior. In this review, we will suggest that model-free and model-based learning mechanisms appear to be differentially affected, at least in the case of psychostimulants such as cocaine, with the former being enhanced while the latter are disrupted. As a result, the behavior of long-term drug users becomes less flexible and responsive to the desirability of expected outcomes and more habitual, based on the long history of reinforcement. To support our specific proposal, we will review recent neural and behavioral evidence on the effect of psychostimulant exposure on orbitofrontal and dorsolateral striatum structure and function. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Published by Elsevier Ltd.
Clarke, Hannah F.; Robbins, Trevor W.; Roberts, Angela C.
2014-01-01
The ability to switch responding between two visual stimuli based on their changing relationship with reward is dependent on the orbitofrontal cortex (OFC). OFC lesions in humans, monkeys, and rats disrupt performance on a common test of this ability, the visual serial discrimination reversal task. This finding is of particular significance to our understanding of psychiatric disorders such as obsessive–compulsive disorder (OCD) and schizophrenia, in which behavioral inflexibility is a prominent symptom. Although OFC dysfunction can occur in these disorders, there is considerable evidence for more widespread dysfunction within frontostriatal and frontoamygdalar circuitry. Because the contribution of these subcortical structures to behavioral flexibility is poorly understood, the present study compared the effects of excitotoxic lesions of the medial striatum (MS), amygdala, and OFC in the marmoset monkey on performance of the serial reversal task. All monkeys were able to learn a novel stimulus–reward association but, compared with both control and amygdala-lesioned monkeys, those with MS or OFC lesions showed a perseverative impairment in their ability to reverse this association. However, whereas both MS and OFC groups showed insensitivity to negative feedback, only OFC-lesioned monkeys showed insensitivity to positive feedback. These findings suggest that, for different reasons, both the MS and OFC support behavioral flexibility after changes in reward contingencies, and are consistent with the hypothesis that striatal and OFC dysfunction can contribute to pathological perseveration. PMID:18945905
Frank, Guido K.; Shott, Megan E.; Hagman, Jennifer O.; Mittal, Vijay A.
2013-01-01
Objective The pathophysiology of the eating disorder anorexia nervosa remains obscure, but structural brain alterations could be functionally important biomarkers. Here we assessed taste pleasantness and reward sensitivity in relation to brain structure, which might be related to food avoidance commonly seen in eating disorders. Method We used structural magnetic resonance brain imaging to study gray and white matter volumes in individuals with restricting type currently ill (n = 19) or recovered-anorexia nervosa (n = 24), bulimia nervosa (n= 19) and healthy control women (n=24). Results All eating disorder groups showed increased gray matter volume of the medial orbitofrontal cortex (gyrus rectus). Manually tracing confirmed larger gyrus rectus volume, and predicted taste pleasantness across all groups. The analyses also indicated other morphological differences between diagnostic categories: Ill and recovered-anorexia nervosa had increased right, while bulimia nervosa had increased left antero-ventral insula gray matter volumes compared to controls. Furthermore, dorsal striatum volumes were reduced in recovered-anorexia and bulimia nervosa, and predicted sensitivity to reward in the eating disorder groups. The eating disorder groups also showed reduced white matter in right temporal and parietal areas when compared to healthy controls. Notably, the results held when controlling for a range of covariates (e.g., age, depression, anxiety, medications). Conclusion Brain structure in medial orbitofrontal cortex, insula and striatum is altered in eating disorders and suggests altered brain circuitry that has been associated with taste pleasantness and reward value. PMID:23680873
The neural substrates of in-group bias: a functional magnetic resonance imaging investigation.
Van Bavel, Jay J; Packer, Dominic J; Cunningham, William A
2008-11-01
Classic minimal-group studies found that people arbitrarily assigned to a novel group quickly display a range of perceptual, affective, and behavioral in-group biases. We randomly assigned participants to a mixed-race team and used functional magnetic resonance imaging to identify brain regions involved in processing novel in-group and out-group members independently of preexisting attitudes, stereotypes, or familiarity. Whereas previous research on intergroup perception found amygdala activity--typically interpreted as negativity--in response to stigmatized social groups, we found greater activity in the amygdala, fusiform gyri, orbitofrontal cortex, and dorsal striatum when participants viewed novel in-group faces than when they viewed novel out-group faces. Moreover, activity in orbitofrontal cortex mediated the in-group bias in self-reported liking for the faces. These in-group biases in neural activity were not moderated by race or by whether participants explicitly attended to team membership or race, a finding suggesting that they may occur automatically. This study helps clarify the role of neural substrates involved in perceptual and affective in-group biases.
Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio
2013-12-01
Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.
Neuroscientific Model of Motivational Process
Kim, Sung-il
2013-01-01
Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment. PMID:23459598
Neuroscientific model of motivational process.
Kim, Sung-Il
2013-01-01
Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment.
Opposing Amygdala and Ventral Striatum Connectivity During Emotion Identification
Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James
2011-01-01
Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed a well-characterized emotion identification task. As expected, the amygdala responded to THREAT (angry or fearful) faces more than NON-THREAT (sad or happy) faces. A functional connectivity analysis of the time series from an anatomically defined amygdala seed revealed a strong anti-correlation between the amygdala and the ventral striatum /ventral pallidum, consistent with an opposing role for these regions in during emotion identification. A second functional connectivity analysis (psychophysiological interaction) investigating relative connectivity on THREAT vs. NON-THREAT trials demonstrated that the amygdala had increased connectivity with the orbitofrontal cortex during THREAT trials, whereas the ventral striatum demonstrated increased connectivity with the posterior hippocampus on NON-THREAT trials. These results indicate that activity in the amygdala and ventral striatum may be inversely related, and that both regions may provide opposing affective bias signals during emotion identification. PMID:21600684
Lam, Bess Y. H.; Yang, Yaling; Schug, Robert A.; Han, Chenbo; Liu, Jianghong; Lee, Tatia M. C.
2017-01-01
Brain structural abnormalities in the orbitofrontal cortex (OFC) and striatum (caudate and putamen) have been observed in violent individuals. However, a uni-modal neuroimaging perspective has been used and prior findings have been mixed. The present study takes the multimodal structural brain imaging approaches to investigate the differential gray matter volumes (GMV) and cortical thickness (CTh) in the OFC and striatum between violent (accused of homicide) and non-violent (not accused of any violent crimes) individuals with different levels of psychopathic traits (interpersonal and unemotional qualities, factor 1 psychopathy and the expressions of antisocial disposition and impulsivity, factor 2 psychopathy). Structural Magnetic Resonance Imaging data, psychopathy and demographic information were assessed in sixty seven non-violent or violent adults. The results showed that the relationship between violence and the GMV in the right lateral OFC varied across different levels of the factor 1 psychopathy. At the subcortical level, the psychopathy level (the factor 1 psychopathy) moderated the positive relationship of violence with both left and right putamen GMV as well as left caudate GMV. Although the CTh findings were not significant, overall findings suggested that psychopathic traits moderated the relationship between violence and the brain structural morphology in the OFC and striatum. In conclusion, psychopathy takes upon a significant role in moderating violent behavior which gives insight to design and implement prevention measures targeting violent acts, thereby possibly mitigating their occurrence within the society. PMID:29249948
[The role of the striatum in addiction].
Toda, Shigenobu
2012-08-01
Addiction is a notorious treatment-resistant psychiatric disorder characterized by the impairment of self-monitoring, loss of interest in other targets of pleasure, and uncorrectable impulsive/compulsive drug-seeking behaviors. The striatum, particularly the ventral striatum (= the nucleus accumbens) is deeply involved in the acquisition and expression of addiction. Although only few pharmacotherapeutic approaches against addiction are available, the currently used animal models of addiction are sophisticated enough to mimic most of the representative phenotypes observed in human addicts. In addition, recent advances in neuroimaging techniques, such as positron emission tomography or functional magnetic resonance imaging, as well as computational neuroscience approaches have promoted our understanding of addiction, particularly at the circuitry level. In this review, I introduce some pivotal topics regarding addiction for discussion. First, I outline the updated concept regarding how dopamine is involved in addiction by focusing on 2 seemingly uncompromising hypotheses, prediction-error theory and incentive salience theory. Second, after providing a brief introduction to unmanageable maladaptive behaviors in addiction that may be attributable to the impairments of the medial prefrontal cortex, anterior cingulate cortex, and orbitofrontal cortex, I emphasize the roles of glutamatergic inputs projecting from these frontal areas to the nucleus accumbens in cue-primed reinstatement of drug-seeking and impaired neuronal plasticity. Third, on the basis of the complementary or counterbalancing relationship between goal-directed behaviors and habits, I discuss the foresights and pitfalls of the current concept of "addiction as a pathological habit." Lastly, I conclude my discussion with an integrated (but a rough) circuitry model of addiction.
Sex differences in neural responses to stress and alcohol context cues.
Seo, Dongju; Jia, Zhiru; Lacadie, Cheryl M; Tsou, Kristen A; Bergquist, Keri; Sinha, Rajita
2011-11-01
Stress and alcohol context cues are each associated with alcohol-related behaviors, yet neural responses underlying these processes remain unclear. This study investigated the neural correlates of stress and alcohol context cue experiences and examined sex differences in these responses. Using functional magnetic resonance imaging, brain responses were examined while 43 right-handed, socially drinking, healthy individuals (23 females) engaged in brief guided imagery of personalized stress, alcohol-cue, and neutral-relaxing scenarios. Stress and alcohol-cue exposure increased activity in the cortico-limbic-striatal circuit (P < 0.01, corrected), encompassing the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), left anterior insula, striatum, and visuomotor regions (parietal and occipital lobe, and cerebellum). Activity in the left dorsal striatum increased during stress, while bilateral ventral striatum activity was evident during alcohol-cue exposure. Men displayed greater stress-related activations in the mPFC, rostral ACC, posterior insula, amygdala, and hippocampus than women, whereas women showed greater alcohol-cue-related activity in the superior and middle frontal gyrus (SFG/MFG) than men. Stress-induced anxiety was positively associated with activity in emotion-modulation regions, including the medial OFC, ventromedial PFC, left superior-mPFC, and rostral ACC in men, but in women with activation in the SFG/MFG, regions involved in cognitive processing. Alcohol craving was significantly associated with the striatum (encompassing dorsal, and ventral) in men, supporting its involvement in alcohol "urge" in healthy men. These results indicate sex differences in neural processing of stress and alcohol-cue experiences and have implications for sex-specific vulnerabilities to stress- and alcohol-related psychiatric disorders. Copyright © 2010 Wiley-Liss, Inc.
Chang, Chun-Hui
2017-07-01
The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Wang, Gene-Jack; Yang, Julia; Volkow, Nora D; Telang, Frank; Ma, Yeming; Zhu, Wei; Wong, Christopher T; Tomasi, Dardo; Thanos, Panayotis K; Fowler, Joanna S
2006-10-17
The neurobiological mechanisms underlying overeating in obesity are not understood. Here, we assessed the neurobiological responses to an Implantable Gastric Stimulator (IGS), which induces stomach expansion via electrical stimulation of the vagus nerve to identify the brain circuits responsible for its effects in decreasing food intake. Brain metabolism was measured with positron emission tomography and 2-deoxy-2[18F]fluoro-D-glucose in seven obese subjects who had the IGS implanted for 1-2 years. Brain metabolism was evaluated twice during activation (on) and during deactivation (off) of the IGS. The Three-Factor Eating Questionnaire was obtained to measure the behavioral components of eating (cognitive restraint, uncontrolled eating, and emotional eating). The largest difference was in the right hippocampus, where metabolism was 18% higher (P < 0.01) during the "on" than "off" condition, and these changes were associated with scores on "emotional eating," which was lower during the on than off condition and with "uncontrolled eating," which did not differ between conditions. Metabolism also was significantly higher in right anterior cerebellum, orbitofrontal cortex, and striatum during the on condition. These findings corroborate the role of the vagus nerve in regulating hippocampal activity and the importance of the hippocampus in modulating eating behaviors linked to emotional eating and lack of control. IGS-induced activation of regions previously shown to be involved in drug craving in addicted subjects (orbitofrontal cortex, hippocampus, cerebellum, and striatum) suggests that similar brain circuits underlie the enhanced motivational drive for food and drugs seen in obese and drug-addicted subjects, respectively.
Bellebaum, C; Jokisch, D; Gizewski, E R; Forsting, M; Daum, I
2012-02-01
Successful adaptation to the environment requires the learning of stimulus-response-outcome associations. Such associations can be learned actively by trial and error or by observing the behaviour and accompanying outcomes in other persons. The present study investigated similarities and differences in the neural mechanisms of active and observational learning from monetary feedback using functional magnetic resonance imaging. Two groups of 15 subjects each - active and observational learners - participated in the experiment. On every trial, active learners chose between two stimuli and received monetary feedback. Each observational learner observed the choices and outcomes of one active learner. Learning performance as assessed via active test trials without feedback was comparable between groups. Different activation patterns were observed for the processing of unexpected vs. expected monetary feedback in active and observational learners, particularly for positive outcomes. Activity for unexpected vs. expected reward was stronger in the right striatum in active learning, while activity in the hippocampus was bilaterally enhanced in observational and reduced in active learning. Modulation of activity by prediction error (PE) magnitude was observed in the right putamen in both types of learning, whereas PE related activations in the right anterior caudate nucleus and in the medial orbitofrontal cortex were stronger for active learning. The striatum and orbitofrontal cortex thus appear to link reward stimuli to own behavioural reactions and are less strongly involved when the behavioural outcome refers to another person's action. Alternative explanations such as differences in reward value between active and observational learning are also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Harrison, Ben J; Pujol, Jesus; Cardoner, Narcis; Deus, Joan; Alonso, Pino; López-Solà, Marina; Contreras-Rodríguez, Oren; Real, Eva; Segalàs, Cinto; Blanco-Hinojo, Laura; Menchon, José M; Soriano-Mas, Carles
2013-02-15
Functional neuroimaging studies have provided consistent support for the idea that obsessive-compulsive disorder (OCD) is associated with disturbances of brain corticostriatal systems. However, in general, these studies have not sought to account for the disorder's prominent clinical heterogeneity. To address these concerns, we investigated the influence of major OCD symptom dimensions on brain corticostriatal functional systems in a large sample of OCD patients (n = 74) and control participants (n = 74) examined with resting-state functional magnetic resonance imaging. We employed a valid method for mapping ventral and dorsal striatal functional connectivity, which supported both standard group comparisons and linear regression analyses with patients' scores on the Dimensional Yale-Brown Obsessive-Compulsive Scale. Consistent with past findings, patients demonstrated a common connectivity alteration involving the ventral striatum and orbitofrontal cortex that predicted overall illness severity levels. This common alteration was independent of the effect of particular symptom dimensions. Instead, we observed distinct anatomical relationships between the severity of symptom dimensions and striatal functional connectivity. Aggression symptoms modulated connectivity between the ventral striatum, amygdala, and ventromedial frontal cortex, while sexual/religious symptoms had a specific influence on ventral striatal-insular connectivity. Hoarding modulated the strength of ventral and dorsal striatal connectivity with distributed frontal regions. Taken together, these results suggest that pathophysiological changes among orbitofrontal-striatal regions may be common to all forms of OCD. They suggest that a further examination of certain dimensional relationships will also be relevant for advancing current neurobiological models of the disorder. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Liljeholm, Mimi; Tricomi, Elizabeth; O’Doherty, John P.; Balleine, Bernard W.
2011-01-01
Contingency theories of goal-directed action propose that experienced disjunctions between an action and its specific consequences, as well as conjunctions between these events, contribute to encoding the action-outcome association. Although considerable behavioral research in rats and humans has provided evidence for this proposal, relatively little is known about the neural processes that contribute to the two components of the contingency calculation. Specifically, while recent findings suggest that the influence of action-outcome conjunctions on goal-directed learning is mediated by a circuit involving ventromedial prefrontal, medial orbitofrontal cortex and dorsomedial striatum, the neural processes that mediate the influence of experienced disjunctions between these events are unknown. Here we show differential responses to probabilities of conjunctive and disjunctive reward deliveries in the ventromedial prefrontal cortex, the dorsomedial striatum, and the inferior frontal gyrus. Importantly, activity in the inferior parietal lobule and the left middle frontal gyrus varied with a formal integration of the two reward probabilities, ΔP, as did response rates and explicit judgments of the causal efficacy of the action. PMID:21325514
Sonuga-Barke, Edmund J S; Fairchild, Graeme
2012-07-15
Psychiatric neuroeconomics offers an alternative approach to understanding mental disorders by studying the way disorder-related neurobiological alterations constrain economic agency, as revealed through decisions about choices between future goods. In this article, we apply this perspective to understand suboptimal decision making in attention-deficit/hyperactivity disorder (ADHD) by integrating recent advances in the neuroscience of decision making and studies of the pathophysiology of ADHD. We identify three brain networks as candidates for further study and develop specific hypotheses about how these could be implicated in ADHD. First, we postulate that altered patterns of connectivity within a network linking medial prefrontal cortex and posterior cingulate cortex (i.e., the default mode network) disrupts ordering of utilities, prospection about desired future states, setting of future goals, and implementation of aims. Second, we hypothesize that deficits in dorsal frontostriatal networks, including the dorsolateral prefrontal cortex and dorsal striatum, produce executive dysfunction-mediated impairments in the ability to compare outcome options and make choices. Third, we propose that dopaminergic dysregulation in a ventral frontostriatal network encompassing the orbitofrontal cortex, ventral striatum, and amygdala disrupts processing of cues of future utility, evaluation of experienced outcomes (feedback), and learning of associations between cues and outcomes. Finally, we extend this perspective to consider three contemporary themes in ADHD research. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Motivating forces of human actions. Neuroimaging reward and social interaction.
Walter, Henrik; Abler, Birgit; Ciaramidaro, Angela; Erk, Susanne
2005-11-15
In neuroeconomics, reward and social interaction are central concepts to understand what motivates human behaviour. Both concepts are investigated in humans using neuroimaging methods. In this paper, we provide an overview about these results and discuss their relevance for economic behaviour. For reward it has been shown that a system exists in humans that is involved in predicting rewards and thus guides behaviour, involving a circuit including the striatum, the orbitofrontal cortex and the amygdala. Recent studies on social interaction revealed a mentalizing system representing the mental states of others. A central part of this system is the medial prefrontal cortex, in particular the anterior paracingulate cortex. The reward as well as the mentalizing system is engaged in economic decision-making. We will discuss implications of this study for neuromarketing as well as general implications of these results that may help to provide deeper insights into the motivating forces of human behaviour.
Schultz, Wolfram
2004-04-01
Neurons in a small number of brain structures detect rewards and reward-predicting stimuli and are active during the expectation of predictable food and liquid rewards. These neurons code the reward information according to basic terms of various behavioural theories that seek to explain reward-directed learning, approach behaviour and decision-making. The involved brain structures include groups of dopamine neurons, the striatum including the nucleus accumbens, the orbitofrontal cortex and the amygdala. The reward information is fed to brain structures involved in decision-making and organisation of behaviour, such as the dorsolateral prefrontal cortex and possibly the parietal cortex. The neural coding of basic reward terms derived from formal theories puts the neurophysiological investigation of reward mechanisms on firm conceptual grounds and provides neural correlates for the function of rewards in learning, approach behaviour and decision-making.
Dalwani, Manish S; McMahon, Mary Agnes; Mikulich-Gilbertson, Susan K; Young, Susan E; Regner, Michael F; Raymond, Kristen M; McWilliams, Shannon K; Banich, Marie T; Tanabe, Jody L; Crowley, Thomas J; Sakai, Joseph T
2015-01-01
Structural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages. Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex), conflict processing (i.e., anterior cingulate), valuation of expected outcomes (i.e., medial orbitofrontal cortex) and the dopamine reward system (i.e. striatum). We conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years) with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM) and voxel-based morphometric (VBM8) toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold. Female adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls. Female adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in inhibition, conflict processing, valuation of outcomes, decision-making, reward, risk-taking, and rule-breaking antisocial behavior.
Model-based learning and the contribution of the orbitofrontal cortex to the model-free world
McDannald, Michael A.; Takahashi, Yuji K.; Lopatina, Nina; Pietras, Brad W.; Jones, Josh L.; Schoenbaum, Geoffrey
2012-01-01
Learning is proposed to occur when there is a discrepancy between reward prediction and reward receipt. At least two separate systems are thought to exist: one in which predictions are proposed to be based on model-free or cached values; and another in which predictions are model-based. A basic neural circuit for model-free reinforcement learning has already been described. In the model-free circuit the ventral striatum (VS) is thought to supply a common-currency reward prediction to midbrain dopamine neurons that compute prediction errors and drive learning. In a model-based system, predictions can include more information about an expected reward, such as its sensory attributes or current, unique value. This detailed prediction allows for both behavioral flexibility and learning driven by changes in sensory features of rewards alone. Recent evidence from animal learning and human imaging suggests that, in addition to model-free information, the VS also signals model-based information. Further, there is evidence that the orbitofrontal cortex (OFC) signals model-based information. Here we review these data and suggest that the OFC provides model-based information to this traditional model-free circuitry and offer possibilities as to how this interaction might occur. PMID:22487030
The prefrontal cortex and hybrid learning during iterative competitive games.
Abe, Hiroshi; Seo, Hyojung; Lee, Daeyeol
2011-12-01
Behavioral changes driven by reinforcement and punishment are referred to as simple or model-free reinforcement learning. Animals can also change their behaviors by observing events that are neither appetitive nor aversive when these events provide new information about payoffs available from alternative actions. This is an example of model-based reinforcement learning and can be accomplished by incorporating hypothetical reward signals into the value functions for specific actions. Recent neuroimaging and single-neuron recording studies showed that the prefrontal cortex and the striatum are involved not only in reinforcement and punishment, but also in model-based reinforcement learning. We found evidence for both types of learning, and hence hybrid learning, in monkeys during simulated competitive games. In addition, in both the dorsolateral prefrontal cortex and orbitofrontal cortex, individual neurons heterogeneously encoded signals related to actual and hypothetical outcomes from specific actions, suggesting that both areas might contribute to hybrid learning. © 2011 New York Academy of Sciences.
The Functions of the Orbitofrontal Cortex
ERIC Educational Resources Information Center
Rolls, Edmund T.
2004-01-01
The orbitofrontal cortex contains the secondary taste cortex, in which the reward value of taste is represented. It also contains the secondary and tertiary olfactory cortical areas, in which information about the identity and also about the reward value of odours is represented. The orbitofrontal cortex also receives information about the sight…
Kareken, David A.; Dzemidzic, Mario; Oberlin, Brandon G.; Eiler, William J.A.
2014-01-01
Background A preference for sweet tastes has been repeatedly shown to be associated with alcohol preference in both animals and humans. In this study, we tested the extent to which recent drinking is related to blood oxygen dependent (BOLD) activation from an intensely sweet solution in orbitofrontal areas known to respond to primary rewards. Methods Sixteen right-handed, non-treatment seeking, healthy volunteers (mean age 26 years; 75% male) were recruited from the community. All underwent a taste test using a range of sucrose concentrations, as well as functional magnetic resonance imaging (fMRI) during pseudorandom, event-driven stimulation with water and a 0.83M concentration of sucrose in water. Results [Sucrose > Water] provoked significant BOLD activation in primary gustatory cortex and amygdala, as well as in the right ventral striatum and in bilateral orbitofrontal cortex. Drinks/drinking day correlated significantly with the activation as extracted from the left orbital area (r = 0.52, p = 0.04 after correcting for a bilateral comparison). Using stepwise multiple regression, the addition of rated sucrose-liking accounted for significantly more variance in drinks/drinking day than did left orbital activation alone (multiple R= 0.79, p = 0.002). Conclusions Both the orbitofrontal response to an intensely sweet taste, as well as rated liking of that taste, accounted for significant variance in drinking behavior. The brain response to sweet tastes may be an important phenotype of alcoholism risk. PMID:23841808
David, Sean P.; Munafò, Marcus R.; Johansen-Berg, Heidi; Smith, Stephen M.; Rogers, Robert D.; Matthews, Paul M.; Walton, Robert T.
2015-01-01
Background Converging evidence from several theories of the development of incentive-sensitization to smoking-related environmental stimuli suggests that the ventral striatum plays an important role in the processing of smoking-related cue reactivity. Methods Twenty-six healthy right-handed volunteers (14 smokers and 12 nonsmoking controls) underwent functional magnetic resonance imaging (fMRI) during which neutral and smoking-related images were presented. Region of interest analyses were performed within the ventral striatum/nucleus accumbens (VS/NAc) for the contrast between smoking-related (SR) and nonsmoking related neutral (N) cues. Results Group activation for SR versus N cues was observed in smokers but not in nonsmokers in medial orbitofrontal cortex, superior frontal gyrus, anterior cingulate cortex, and posterior fusiform gyrus using whole-brain corrected Z thresholds and in the ventral VS/NAc using uncorrected Z-statistics (smokers Z = 3.2). Region of interest analysis of signal change within ventral VS/NAc demonstrated significantly greater activation to SR versus N cues in smokers than controls. Conclusions This is the first demonstration of greater VS/NAc activation in addicted smokers than nonsmokers presented with smoking-related cues using fMRI. Smokers, but not controls, demonstrated activation to SR versus N cues in a distributed reward signaling network consistent with cue reactivity studies of other drugs of abuse. PMID:16023086
Fera, Francesco; Passamonti, Luca; Herzallah, Mohammad M; Myers, Catherine E; Veltri, Pierangelo; Morganti, Giuseppina; Quattrone, Aldo; Gluck, Mark A
2014-07-01
To test a prediction of our previous computational model of cortico-hippocampal interaction (Gluck and Myers [1993, 2001]) for characterizing individual differences in category learning, we studied young healthy subjects using an fMRI-adapted category-learning task that has two phases, an initial phase in which associations are learned through trial-and-error feedback followed by a generalization phase in which previously learned rules can be applied to novel associations (Myers et al. [2003]). As expected by our model, we found a negative correlation between learning-related hippocampal responses and accuracy during transfer, demonstrating that hippocampal adaptation during learning is associated with better behavioral scores during transfer generalization. In addition, we found an inverse relationship between Blood Oxygenation Level Dependent (BOLD) activity in the striatum and that in the hippocampal formation and the orbitofrontal cortex during the initial learning phase. Conversely, activity in the dorsolateral prefrontal cortex, orbitofrontal cortex and parietal lobes dominated over that of the hippocampal formation during the generalization phase. These findings provide evidence in support of theories of the neural substrates of category learning which argue that the hippocampal region plays a critical role during learning for appropriately encoding and representing newly learned information so that that this learning can be successfully applied and generalized to subsequent novel task demands. Copyright © 2013 Wiley Periodicals, Inc.
Goldman, Marina; Szucs-Reed, Regina P; Jagannathan, Kanchana; Ehrman, Ronald N; Wang, Ze; Li, Yin; Suh, Jesse J; Kampman, Kyle; O'Brien, Charles P; Childress, Anna Rose; Franklin, Teresa R
2013-01-01
: Determining the brain substrates underlying the motivation to abuse addictive drugs is critical for understanding and treating addictive disorders. Laboratory neuroimaging studies have demonstrated differential activation of limbic and motivational circuitry (eg, amygdala, hippocampus, ventral striatum, insula, and orbitofrontal cortex) triggered by cocaine, heroin, nicotine, and alcohol cues. The literature on neural responses to marijuana cues is sparse. Thus, the goals of this study were to characterize the brain's response to marijuana cues, a major motivator underlying drug use and relapse, and determine whether these responses are linked to self-reported craving in a clinically relevant population of treatment-seeking marijuana-dependent subjects. : Marijuana craving was assessed in 12 marijuana-dependent subjects using the Marijuana Craving Questionnaire-Short Form. Subsequently, blood oxygen level dependent functional magnetic resonance imaging data were acquired during exposure to alternating 20-second blocks of marijuana-related versus matched nondrug visual cues. : Brain activation during marijuana cue exposure was significantly greater in the bilateral amygdala and the hippocampus. Significant positive correlations between craving scores and brain activation were found in the ventral striatum and the medial and lateral orbitofrontal cortex (P < 0.0001). : This study presents direct evidence for a link between reward-relevant brain responses to marijuana cues and craving and extends the current literature on marijuana cue reactivity. Furthermore, the correlative relationship between craving and brain activity in reward-related regions was observed in a clinically relevant sample (treatment-seeking marijuana-dependent subjects). Results are consistent with prior findings in cocaine, heroin, nicotine, and alcohol cue studies, indicating that the brain substrates of cue-triggered drug motivation are shared across abused substances.
Individual differences in striatum activity to food commercials predict weight gain in adolescents.
Yokum, Sonja; Gearhardt, Ashley N; Harris, Jennifer L; Brownell, Kelly D; Stice, Eric
2014-12-01
Adolescents view thousands of food commercials annually, but little is known about how individual differences in neural response to food commercials relate to weight gain. To add to our understanding of individual risk factors for unhealthy weight gain and environmental contributions to the obesity epidemic, we tested the associations between reward region (striatum and orbitofrontal cortex [OFC]) responsivity to food commercials and future change in body mass index (BMI). Adolescents (N = 30) underwent a scan session at baseline while watching a television show edited to include 20 food commercials and 20 nonfood commercials. BMI was measured at baseline and 1-year follow-up. Activation in the striatum, but not OFC, in response to food commercials relative to nonfood commercials and in response to food commercials relative to the television show was positively associated with change in BMI over 1-year follow-up. Baseline BMI did not moderate these effects. The results suggest that there are individual differences in neural susceptibility to food advertising. These findings highlight a potential mechanism for the impact of food marketing on adolescent obesity. © 2014 The Obesity Society.
Possin, Katherine L; Chester, Serana K; Laluz, Victor; Bostrom, Alan; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H
2012-09-01
On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1-11).
Gremel, Christina M.; Costa, Rui M.
2014-01-01
Shifting between goal-directed and habitual actions allows for efficient and flexible decision-making. Here we demonstrate a novel, within-subject instrumental lever-pressing paradigm where mice shift between goal-directed and habitual actions. We identify a role for orbitofrontal cortex (OFC) in actions following outcome-revaluation, and confirm that dorsal medial (DMS) and lateral striatum (DLS) mediate different action strategies. In-vivo simultaneous recordings of OFC, DMS, and DLS neuronal ensembles during shifting reveal that the same neurons display different activity depending on whether presses are goal-directed or habitual, with DMS and OFC becoming more—and DLS less-engaged during goal-directed actions. Importantly, the magnitude of neural activity changes in OFC following changes in outcome value positively correlates with the level of goal-directed behavior. Chemogenetic inhibition of OFC disruptsgoal-directed actions, while optogenetic activation of OFC specifically increases goal-directed pressing. They also reveal a role for OFC in action revaluation, which has implications for understanding compulsive behavior. PMID:23921250
Sekine, Yoshimoto; Minabe, Yoshio; Ouchi, Yasuomi; Takei, Nori; Iyo, Masaomi; Nakamura, Kazuhiko; Suzuki, Katsuaki; Tsukada, Hideo; Okada, Hiroyuki; Yoshikawa, Etsuji; Futatsubashi, Masami; Mori, Norio
2003-09-01
The authors examined dopamine transporter density in the orbitofrontal cortex, dorsolateral prefrontal cortex, and amygdala in methamphetamine users and assessed the relationship of these measures to the subjects' clinical characteristics. Positron emission tomography with [(11)C]WIN 35,428 was used to examine the regions of interest in 11 methamphetamine users and nine healthy comparison subjects. Psychiatric symptoms were evaluated with the Brief Psychiatric Rating Scale. Dopamine transporter density in the three regions studied was significantly lower in the methamphetamine users than in the comparison subjects. The lower dopamine transporter density in the orbitofrontal and dorsolateral prefrontal cortex was significantly correlated with the duration of methamphetamine use and the severity of psychiatric symptoms. Chronic methamphetamine use may cause dopamine transporter reduction in the orbitofrontal cortex, dorsolateral prefrontal cortex, and amygdala in the brain. Psychiatric symptoms in methamphetamine users may be attributable to the decrease in dopamine transporter density in the orbitofrontal cortex and the dorsolateral prefrontal cortex.
Distinct roles of three frontal cortical areas in reward-guided behavior
Noonan, M.P.; Mars, R.B.; Rushworth, M.F.S
2011-01-01
Functional magnetic resonance imaging (fMRI) was used to measure activity in three frontal cortical areas, lateral orbitofrontal cortex (lOFC), medial orbitofrontal cortex/ventromedial frontal cortex (mOFC/vmPFC), and anterior cingulate cortex (ACC) when expectations about type of reward, and not just reward presence or absence, could be learned. Two groups of human subjects learned twelve stimulus-response pairings. In one group (Consistent), correct performances of a given pairing were always reinforced with a specific reward outcome whereas in the other group (Inconsistent), correct performances were reinforced with randomly selected rewards. MOFC/vmPFC and lOFC were not distinguished by simple differences in relative preference for positive and negative outcomes. Instead lOFC activity reflected updating of reward-related associations specific to reward type; lOFC was active whenever informative outcomes allowed updating of reward-related associations regardless of whether the outcomes were positive or negative and the effects were greater when consistent stimulus-outcome and response-outcome mappings were present. A psycho-physiological interaction (PPI) analysis demonstrated changed coupling between lOFC and brain areas for visual object representation, such as perirhinal cortex, and reward-guided learning, such as amygdala, ventral striatum, and habenula /mediodorsal thalamus. By contrast mOFC/vmPFC activity reflected expected values of outcomes and occurrence of positive outcomes, irrespective of consistency of outcome mappings. The third frontal cortical region, ACC, reflected the use of reward type information to guide response selection. ACC activity reflected the probability of selecting the correct response, was greater when consistent outcome mappings were present, and was related to individual differences in propensity to select the correct response. PMID:21976525
Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan
2015-01-01
In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. PMID:25680989
The Iowa Gambling Task in fMRI Images
Li, Xiangrui; Lu, Zhong-Lin; D'Argembeau, Arnaud; Ng, Marie; Bechara, Antoine
2009-01-01
The Iowa Gambling Task (IGT) is a sensitive test for the detection of decision-making impairments in several neurologic and psychiatric populations. Very few studies have employed the IGT in fMRI investigations, in part, because the task is cognitively complex. Here we report a method for exploring brain activity using fMRI during performance of the IGT. Decision-making during the IGT was associated with activity in several brain regions in a group of healthy individuals. The activated regions were consistent with the neural circuitry hypothesized to underlie somatic marker activation and decision-making. Specifically, a neural circuitry involving the dorsolateral prefrontal cortex (for working memory), the insula and posterior cingulate cortex (for representations of emotional states), the mesial orbitofrontal and ventromedial prefrontal cortex (for coupling the two previous processes), the ventral striatum and anterior cingulate/SMA (supplementary motor area) for implementing behavioral decisions was engaged. These results have implications for using the IGT to study abnormal mechanisms of decision making in a variety of clinical populations. PMID:19777556
Reward System Activation in Response to Alcohol Advertisements Predicts College Drinking.
Courtney, Andrea L; Rapuano, Kristina M; Sargent, James D; Heatherton, Todd F; Kelley, William M
2018-01-01
In this study, we assess whether activation of the brain's reward system in response to alcohol advertisements is associated with college drinking. Previous research has established a relationship between exposure to alcohol marketing and underage drinking. Within other appetitive domains, the relationship between cue exposure and behavioral enactment is known to rely on activation of the brain's reward system. However, the relationship between neural activation to alcohol advertisements and alcohol consumption has not been studied in a nondisordered population. In this cross-sectional study, 53 college students (32 women) completed a functional magnetic resonance imaging scan while viewing alcohol, food, and control (car and technology) advertisements. Afterward, they completed a survey about their alcohol consumption (including frequency of drinking, typical number of drinks consumed, and frequency of binge drinking) over the previous month. In 43 participants (24 women) meeting inclusion criteria, viewing alcohol advertisements elicited activation in the left orbitofrontal cortex and bilateral ventral striatum-regions of the reward system that typically activate to other appetitive rewards and relate to consumption behaviors. Moreover, the level of self-reported drinking correlated with the magnitude of activation in the left orbitofrontal cortex. Results suggest that alcohol cues are processed within the reward system in a way that may motivate drinking behavior.
Some neuroanatomical insights to impulsive aggression in schizophrenia.
Leclerc, Marcel P; Regenbogen, Christina; Hamilton, Roy H; Habel, Ute
2018-06-13
Patients with schizophrenia are at increased risk of engaging in violence towards others, compared to both the general population and most other patient groups. We have here explored the role of cortico-limbic impairments in schizophrenia, and have considered these brain regions specifically within the framework of a popular neuroanatomical model of impulsive aggression. In line with this model, evidence in patients with aggressive schizophrenia implicated structural deficits associated with impaired decision-making, emotional control and evaluation, and social information processing, especially in the orbitofrontal and ventrolateral prefrontal cortex. Given the pivotal role of the orbitofrontal and ventrolateral cortex in emotion control and evaluation, structural deficits may result in inappropriate use of socially relevant information and improper recognition of impulses that are in need for regulation. Furthermore, we have extended the original model and incorporated the striatum, important for the generation of aggressive impulses, as well as the hippocampus, a region critical for decision-making, into the model. Lastly, we discuss the question whether structural impairments are specific to aggressive schizophrenia. Our results suggest, that similar findings can be observed in other aggressive patient populations, making the observed impairments non-specific to aggressive schizophrenia. This points towards a shared condition, across pathologies, a potential common denominator being impulsive aggression. Copyright © 2018. Published by Elsevier B.V.
Ekman, Carl Johan; Klahr, Johanna; Tigerström, Lars; Rydén, Göran; Johansson, Anette G. M.; Sellgren, Carl; Golkar, Armita; Olsson, Andreas; Öhman, Arne; Ingvar, Martin; Landén, Mikael
2016-01-01
The traditional concept of ‘categorical’ psychiatric disorders has been challenged as many of the symptoms display a continuous distribution in the general population. We suggest that this is the case for emotional dysregulation, a key component in several categorical psychiatric disorder constructs. We used voxel-based magnetic resonance imaging morphometry in healthy human subjects (n = 87) to study how self-reported subclinical symptoms associated with emotional dysregulation relate to brain regions assumed to be critical for emotion regulation. To measure a pure emotional dysregulation, we also corrected for subclinical symptoms of non-emotional attentional dysregulation. We show that such subclinical emotional symptoms correlate negatively with the grey matter volume of lateral orbitofrontal cortex bilaterally—a region assumed to be critical for emotion regulation and dysfunctional in psychiatric disorders involving emotional dysregulation. Importantly, this effect is mediated both by a decrease in volume associated with emotional dysregulation and an increase in volume due to non-emotional attentional dysregulation. Exploratory analysis suggests that other regions involved in emotional processing such as insula and ventral striatum also show a similar reduction in grey matter volume mirroring clinical disorders associated with emotional dysregulation. Our findings support the concept of continuous properties in psychiatric symptomatology. PMID:26078386
Inducing Negative Affect Increases the Reward Value of Appetizing Foods in Dieters
Wagner, Dylan D.; Boswell, Rebecca G.; Kelley, William M.; Heatherton, Todd F.
2013-01-01
Experiencing negative affect frequently precedes lapses in self-control for dieters, smokers, and drug addicts. Laboratory research has similarly shown that inducing negative emotional distress increases the consumption of food or drugs. One hypothesis for this finding is that emotional distress sensitizes the brain’s reward system to appetitive stimuli. Using functional neuroimaging, we demonstrate that inducing negative affect in chronic dieters increases activity in brain regions representing the reward value of appetitive stimuli when viewing appetizing food cues. Thirty female chronic dieters were randomly assigned to receive either a negative (n = 15) or neutral mood induction (n = 15) immediately followed by exposure to images of appetizing foods and natural scenes during functional magnetic resonance imaging (fMRI). Compared to chronic dieters in a neutral mood, those receiving a negative mood induction showed increased activity in the orbitofrontal cortex to appetizing food images. In addition, activity to food images in the orbitofrontal cortex and ventral striatum was correlated with individual differences in the degree to which the negative mood induction decreased participants’ self-esteem. These findings suggest that distress sensitizes the brain’s reward system to appetitive cues thereby offering a mechanism for the oft-observed relationship between negative affect and disinhibited eating. PMID:22524295
Effort-based cost-benefit valuation and the human brain
Croxson, Paula L; Walton, Mark E; O'Reilly, Jill X; Behrens, Timothy EJ; Rushworth, Matthew FS
2010-01-01
In both the wild and the laboratory, animals' preferences for one course of action over another reflect not just reward expectations but also the cost in terms of effort that must be invested in pursuing the course of action. The ventral striatum and dorsal anterior cingulate cortex (ACCd) are implicated in the making of cost-benefit decisions in the rat but there is little information about how effort costs are processed and influence calculations of expected net value in other mammals including the human. We carried out a functional magnetic resonance imaging (fMRI) study to determine whether and where activity in the human brain was available to guide effort-based cost-benefit valuation. Subjects were scanned while they performed a series of effortful actions to obtain secondary reinforcers. At the beginning of each trial, subjects were presented with one of eight different visual cues which they had learned indicated how much effort the course of action would entail and how much reward could be expected at its completion. Cue-locked activity in the ventral striatum and midbrain reflected the net value of the course of action, signaling the expected amount of reward discounted by the amount of effort to be invested. Activity in ACCd also reflected the interaction of both expected reward and effort costs. Posterior orbitofrontal and insular activity, however, only reflected the expected reward magnitude. The ventral striatum and anterior cingulate cortex may be the substrate of effort-based cost-benefit valuation in primates as well as in rats. PMID:19357278
Posner, Jonathan; Marsh, Rachel; Maia, Tiago V; Peterson, Bradley S; Gruber, Allison; Simpson, H Blair
2014-06-01
Cortico-striato-thalamo-cortical (CSTC) loops project from the cortex to the striatum, then from the striatum to the thalamus via the globus pallidus, and finally from the thalamus back to the cortex again. These loops have been implicated in Obsessive-Compulsive Disorder (OCD) with particular focus on the limbic CSTC loop, which encompasses the orbitofrontal and anterior cingulate cortices, as well as the ventral striatum. Resting state functional-connectivity MRI (rs-fcMRI) studies, which examine temporal correlations in neural activity across brain regions at rest, have examined CSTC loop connectivity in patients with OCD and suggest hyperconnectivity within these loops in medicated adults with OCD. We used rs-fcMRI to examine functional connectivity within CSTC loops in unmedicated adults with OCD (n = 23) versus healthy controls (HCs) (n = 20). Contrary to prior rs-fcMRI studies in OCD patients on medications that report hyperconnectivity in the limbic CSTC loop, we found that compared with HCs, unmedicated OCD participants had reduced connectivity within the limbic CSTC loop. Exploratory analyses revealed that reduced connectivity within the limbic CSTC loop correlated with OCD symptom severity in the OCD group. Our finding of limbic loop hypoconnectivity in unmedicted OCD patients highlights the potential confounding effects of antidepressants on connectivity measures and the value of future examinations of the effects of pharmacological and/or behavioral treatments on limbic CSTC loop connectivity. Copyright © 2013 Wiley Periodicals, Inc.
Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex.
Takahashi, Yuji K; Roesch, Matthew R; Wilson, Robert C; Toreson, Kathy; O'Donnell, Patricio; Niv, Yael; Schoenbaum, Geoffrey
2011-10-30
The orbitofrontal cortex has been hypothesized to carry information regarding the value of expected rewards. Such information is essential for associative learning, which relies on comparisons between expected and obtained reward for generating instructive error signals. These error signals are thought to be conveyed by dopamine neurons. To test whether orbitofrontal cortex contributes to these error signals, we recorded from dopamine neurons in orbitofrontal-lesioned rats performing a reward learning task. Lesions caused marked changes in dopaminergic error signaling. However, the effect of lesions was not consistent with a simple loss of information regarding expected value. Instead, without orbitofrontal input, dopaminergic error signals failed to reflect internal information about the impending response that distinguished externally similar states leading to differently valued future rewards. These results are consistent with current conceptualizations of orbitofrontal cortex as supporting model-based behavior and suggest an unexpected role for this information in dopaminergic error signaling.
Neural Basis of Anhedonia and Amotivation in Patients with Schizophrenia: The role of Reward System
Lee, Jung Suk; Jung, Suwon; Park, Il Ho; Kim, Jae-Jin
2015-01-01
Anhedonia, the inability to feel pleasure, and amotivation, the lack of motivation, are two prominent negative symptoms of schizophrenia, which contribute to the poor social and occupational behaviors in the patients. Recently growing evidence shows that anhedonia and amotivation are tied together, but have distinct neural correlates. It is important to note that both of these symptoms may derive from deficient functioning of the reward network. A further analysis into the neuroimaging findings of schizophrenia shows that the neural correlates overlap in the reward network including the ventral striatum, anterior cingulate cortex and orbitofrontal cortex. Other neuroimaging studies have demonstrated the involvement of the default mode network in anhedonia. The identification of a specific deficit in hedonic and motivational capacity may help to elucidate the mechanisms behind social functioning deficits in schizophrenia, and may also lead to more targeted treatment of negative symptoms. PMID:26630955
Neural Basis of Anhedonia and Amotivation in Patients with Schizophrenia: The Role of Reward System.
Lee, Jung Suk; Jung, Suwon; Park, Il Ho; Kim, Jae-Jin
2015-01-01
Anhedonia, the inability to feel pleasure, and amotivation, the lack of motivation, are two prominent negative symptoms of schizophrenia, which contribute to the poor social and occupational behaviors in the patients. Recently growing evidence shows that anhedonia and amotivation are tied together, but have distinct neural correlates. It is important to note that both of these symptoms may derive from deficient functioning of the reward network. A further analysis into the neuroimaging findings of schizophrenia shows that the neural correlates overlap in the reward network including the ventral striatum, anterior cingulate cortex and orbitofrontal cortex. Other neuroimaging studies have demonstrated the involvement of the default mode network in anhedonia. The identification of aspecific deficit in hedonic and motivational capacity may help to elucidate the mechanisms behind social functioning deficits in schizophrenia, and may also lead to more targeted treatment of negative symptoms.
Bissonette, Gregory B; Roesch, Matthew R
2016-01-01
Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum.
Roesch, Matthew R.
2017-01-01
Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum. PMID:26276036
Kim, Sang Hee; Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan
2015-09-01
In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Belin, David; Jonkman, Sietse; Dickinson, Anthony; Robbins, Trevor W; Everitt, Barry J
2009-04-12
In this review we discuss the evidence that drug addiction, defined as a maladaptive compulsive habit, results from the progressive subversion by addictive drugs of striatum-dependent operant and Pavlovian learning mechanisms that are usually involved in the control over behaviour by stimuli associated with natural reinforcement. Although mainly organized through segregated parallel cortico-striato-pallido-thalamo-cortical loops involved in motor or emotional functions, the basal ganglia, and especially the striatum, are key mediators of the modulation of behavioural responses, under the control of both action-outcome and stimulus-response mechanisms, by incentive motivational processes and Pavlovian associations. Here we suggest that protracted exposure to addictive drugs recruits serial and dopamine-dependent, striato-nigro-striatal ascending spirals from the nucleus accumbens to more dorsal regions of the striatum that underlie a shift from action-outcome to stimulus-response mechanisms in the control over drug seeking. When this progressive ventral to dorsal striatum shift is combined with drug-associated Pavlovian influences from limbic structures such as the amygdala and the orbitofrontal cortex, drug seeking behaviour becomes established as an incentive habit. This instantiation of implicit sub-cortical processing of drug-associated stimuli and instrumental responding might be a key mechanism underlying the development of compulsive drug seeking and the high vulnerability to relapse which are hallmarks of drug addiction.
Levitt, James J; Nestor, Paul G; Levin, Laura; Pelavin, Paula; Lin, Pan; Kubicki, Marek; McCarley, Robert W; Shenton, Martha E; Rathi, Yogesh
2017-11-01
The striatum receives segregated and integrative white matter tracts from the cortex facilitating information processing in the cortico-basal ganglia network. The authors examined both types of input tracts in the striatal associative loop in chronic schizophrenia patients and healthy control subjects. Structural and diffusion MRI scans were acquired on a 3-T system from 26 chronic schizophrenia patients and 26 matched healthy control subjects. Using FreeSurfer, the associative cortex was parcellated into ventrolateral prefrontal cortex and dorsolateral prefrontal cortex subregions. The striatum was manually parcellated into its associative and sensorimotor functional subregions. Fractional anisotropy and normalized streamlines, an estimate of fiber counts, were assessed in four frontostriatal tracts (dorsolateral prefrontal cortex-associative striatum, dorsolateral prefrontal cortex-sensorimotor striatum, ventrolateral prefrontal cortex-associative striatum, and ventrolateral prefrontal cortex-sensorimotor striatum). Furthermore, these measures were correlated with a measure of cognitive control, the Trail-Making Test, Part B. Results showed reduced fractional anisotropy and fewer streamlines in chronic schizophrenia patients for all four tracts, both segregated and integrative. Post hoc t tests showed reduced fractional anisotropy in the left ventrolateral prefrontal cortex-associative striatum and left ventrolateral prefrontal cortex-sensorimotor striatum and fewer normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum and in the left and right ventrolateral prefrontal cortex-sensorimotor striatum in chronic schizophrenia patients. Furthermore, normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum negatively correlated with Trail-Making Test, Part B, time spent in healthy control subjects but not in chronic schizophrenia patients. These findings demonstrated that structural connectivity is reduced in both segregated and integrative tracts in the striatal associative loop in chronic schizophrenia and that reduced normalized streamlines in the right-hemisphere dorsolateral prefrontal cortex-sensorimotor striatum predicted worse cognitive control in healthy control subjects but not in chronic schizophrenia patients, suggesting a loss of a "normal" brain-behavior correlation in chronic schizophrenia.
Model-based learning and the contribution of the orbitofrontal cortex to the model-free world.
McDannald, Michael A; Takahashi, Yuji K; Lopatina, Nina; Pietras, Brad W; Jones, Josh L; Schoenbaum, Geoffrey
2012-04-01
Learning is proposed to occur when there is a discrepancy between reward prediction and reward receipt. At least two separate systems are thought to exist: one in which predictions are proposed to be based on model-free or cached values; and another in which predictions are model-based. A basic neural circuit for model-free reinforcement learning has already been described. In the model-free circuit the ventral striatum (VS) is thought to supply a common-currency reward prediction to midbrain dopamine neurons that compute prediction errors and drive learning. In a model-based system, predictions can include more information about an expected reward, such as its sensory attributes or current, unique value. This detailed prediction allows for both behavioral flexibility and learning driven by changes in sensory features of rewards alone. Recent evidence from animal learning and human imaging suggests that, in addition to model-free information, the VS also signals model-based information. Further, there is evidence that the orbitofrontal cortex (OFC) signals model-based information. Here we review these data and suggest that the OFC provides model-based information to this traditional model-free circuitry and offer possibilities as to how this interaction might occur. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers.
Culbertson, Christopher S; Bramen, Jennifer; Cohen, Mark S; London, Edythe D; Olmstead, Richard E; Gan, Joanna J; Costello, Matthew R; Shulenberger, Stephanie; Mandelkern, Mark A; Brody, Arthur L
2011-05-01
Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Randomized, double-blind, before-after controlled trial. Academic brain imaging center. Thirty nicotine-dependent smokers (paid volunteers). Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions.
Elliott, R; Agnew, Z; Deakin, J F W
2008-05-01
Functional imaging studies in recent years have confirmed the involvement of orbitofrontal cortex (OFC) in human reward processing and have suggested that OFC responses are context-dependent. A seminal electrophysiological experiment in primates taught animals to associate abstract visual stimuli with differently valuable food rewards. Subsequently, pairs of these learned abstract stimuli were presented and firing of OFC neurons to the medium-value stimulus was measured. OFC firing was shown to depend on the relative value context. In this study, we developed a human analogue of this paradigm and scanned subjects using functional magnetic resonance imaging. The analysis compared neuronal responses to two superficially identical events, which differed only in terms of the preceding context. Medial OFC response to the same perceptual stimulus was greater when the stimulus predicted the more valuable of two rewards than when it predicted the less valuable. Additional responses were observed in other components of reward circuitry, the amygdala and ventral striatum. The central finding is consistent with the primate results and suggests that OFC neurons code relative rather than absolute reward value. Amygdala and striatal involvement in coding reward value is also consistent with recent functional imaging data. By using a simpler and less confounded paradigm than many functional imaging studies, we are able to demonstrate that relative financial reward value per se is coded in distinct subregions of an extended reward and decision-making network.
Cheng, Wei; Rolls, Edmund T; Qiu, Jiang; Liu, Wei; Tang, Yanqing; Huang, Chu-Chung; Wang, XinFa; Zhang, Jie; Lin, Wei; Zheng, Lirong; Pu, JunCai; Tsai, Shih-Jen; Yang, Albert C; Lin, Ching-Po; Wang, Fei; Xie, Peng; Feng, Jianfeng
2016-12-01
The first brain-wide voxel-level resting state functional connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 control subjects. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression. One major circuit with altered functional connectivity involved the medial orbitofrontal cortex Brodmann area 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex Brodmann area 36 and entorhinal cortex Brodmann area 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex Brodmann area 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex Brodmann area 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems. Second, the lateral orbitofrontal cortex Brodmann area 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex Brodmann area 21. This enhanced functional connectivity of the non-reward/punishment system (Brodmann area 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex Brodmann area 47/12 with these three brain areas was lower in the medicated than the unmedicated patients. This is consistent with the hypothesis that the increased functional connectivity of the lateral orbitofrontal cortex Brodmann area 47/12 is related to depression. Relating the changes in cortical connectivity to our understanding of the functions of different parts of the orbitofrontal cortex in emotion helps to provide new insight into the brain changes related to depression. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Evans, David W.; Lewis, Marc D.; Iobst, Emily
2004-01-01
Mounting evidence concerning obsessive-compulsive disorders points to abnormal functioning of the orbitofrontal cortices. First, patients with obsessive-compulsive disorder (OCD) perform poorly on tasks that rely on response suppression/motor inhibition functions mediated by the orbitofrontal cortex relative to both normal and clinical controls.…
Schultheiss, Oliver C; Wirth, Michelle M; Waugh, Christian E; Stanton, Steven J; Meier, Elizabeth A; Reuter-Lorenz, Patricia
2008-12-01
This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.
Neural processing of reward in adolescent rodents.
Simon, Nicholas W; Moghaddam, Bita
2015-02-01
Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
von Rhein, Daniel; Cools, Roshan; Zwiers, Marcel P; van der Schaaf, Marieke; Franke, Barbara; Luman, Marjolein; Oosterlaan, Jaap; Heslenfeld, Dirk J; Hoekstra, Pieter J; Hartman, Catharina A; Faraone, Stephen V; van Rooij, Daan; van Dongen, Eelco V; Lojowska, Maria; Mennes, Maarten; Buitelaar, Jan
2015-05-01
Attention-deficit/hyperactivity disorder (ADHD) is a heritable neuropsychiatric disorder associated with abnormal reward processing. Limited and inconsistent data exist about the neural mechanisms underlying this abnormality. Furthermore, it is not known whether reward processing is abnormal in unaffected siblings of participants with ADHD. We used event-related functional magnetic resonance imaging (fMRI) to investigate brain responses during reward anticipation and receipt with an adapted monetary incentive delay task in a large sample of adolescents and young adults with ADHD (n = 150), their unaffected siblings (n = 92), and control participants (n = 108), all of the same age. Participants with ADHD showed, relative to control participants, increased responses in the anterior cingulate, anterior frontal cortex, and cerebellum during reward anticipation, and in the orbitofrontal, occipital cortex and ventral striatum. Responses of unaffected siblings were increased in these regions as well, except for the cerebellum during anticipation and ventral striatum during receipt. ADHD in adolescents and young adults is associated with enhanced neural responses in frontostriatal circuitry to anticipation and receipt of reward. The findings support models emphasizing aberrant reward processing in ADHD, and suggest that processing of reward is subject to familial influences. Future studies using standard monetary incentive delay task parameters are needed to replicate our findings. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Wall, Matthew B; Mentink, Alexander; Lyons, Georgina; Kowalczyk, Oliwia S; Demetriou, Lysia; Newbould, Rexford D
2017-09-12
Cigarette addiction is driven partly by the physiological effects of nicotine, but also by the distinctive sensory and behavioural aspects of smoking, and understanding the neural effects of such processes is vital. There are many practical difficulties associated with subjects smoking in the modern neuroscientific laboratory environment, however electronic cigarettes obviate many of these issues, and provide a close simulation of smoking tobacco cigarettes. We have examined the neural effects of 'smoking' electronic cigarettes with concurrent functional Magnetic Resonance Imaging (fMRI). The results demonstrate the feasibility of using these devices in the MRI environment, and show brain activation in a network of cortical (motor cortex, insula, cingulate, amygdala) and sub-cortical (putamen, thalamus, globus pallidus, cerebellum) regions. Concomitant relative deactivations were seen in the ventral striatum and orbitofrontal cortex. These results reveal the brain processes involved in (simulated) smoking for the first time, and validate a novel approach to the study of smoking, and addiction more generally.
Beef assessments using functional magnetic resonance imaging and sensory evaluation.
Tapp, W N; Davis, T H; Paniukov, D; Brooks, J C; Brashears, M M; Miller, M F
2017-04-01
Functional magnetic resonance imaging (fMRI) has been used to unveil how some foods and basic rewards are processed in the human brain. This study evaluated how resting state functional connectivity in regions of the human brain changed after differing qualities of beef steaks were consumed. Functional images of participants (n=8) were collected after eating high or low quality beef steaks on separate days, after consumption a sensory ballot was administered to evaluate consumers' perceptions of tenderness, juiciness, flavor, and overall liking. Imaging data showed that high quality steak samples resulted in greater functional connectivity to the striatum, medial orbitofrontal cortex, and insular cortex at various stages after consumption (P≤0.05). Furthermore, high quality steaks elicited higher sensory ballot scores for each palatability trait (P≤0.01). Together, these results suggest that resting state fMRI may be a useful tool for evaluating the neural process that follows positive sensory experiences such as the enjoyment of high quality beef steaks. Published by Elsevier Ltd.
Siep, Nicolette; Roefs, Anne; Roebroeck, Alard; Havermans, Remco; Bonte, Milene; Jansen, Anita
2012-03-01
The premise of cognitive therapy is that one can overcome the irresistible temptation of highly palatable foods by actively restructuring the way one thinks about food. Testing this idea, participants in the present study were instructed to passively view foods, up-regulate food palatability thoughts, apply cognitive reappraisal (e.g., thinking about health consequences), or suppress food palatability thoughts and cravings. We examined whether these strategies affect self-reported food craving and mesocorticolimbic activity as assessed by functional magnetic resonance imaging. It was hypothesized that cognitive reappraisal would most effectively inhibit the mesocorticolimbic activity and associated food craving as compared to suppression. In addition, it was hypothesized that suppression would lead to more prefrontal cortex activity, reflecting the use of more control resources, as compared to cognitive reappraisal. Self-report results indicated that up-regulation increased food craving compared to the other two conditions, but that there was no difference in craving between the suppression and cognitive reappraisal strategy. Corroborating self-report results, the neuroimaging results showed that up-regulation increased activity in important regions of the mesocorticolimbic circuitry, including the ventral tegmental area, ventral striatum, operculum, posterior insular gyrus, medial orbitofrontal cortex and ventromedial prefrontal cortex. Contrary to our hypothesis, suppression more effectively decreased activity in the core of the mesocorticolimbic circuitry (i.e., ventral tegmental area and ventral striatum) compared to cognitive reappraisal. Overall, the results support the contention that appetitive motivation can be modulated by the application of short-term cognitive control strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Impairment in judgement of the moral emotion guilt following orbitofrontal cortex damage.
Funayama, Michitaka; Koreki, Akihiro; Muramatsu, Taro; Mimura, Masaru; Kato, Motoichiro; Abe, Takayuki
2018-04-19
Although neuroimaging studies have provided evidence for an association between moral emotions and the orbitofrontal cortex, studies on patients with focal lesions using experimental probes of moral emotions are scarce. Here, we addressed this topic by presenting a moral emotion judgement task to patients with focal brain damage. Four judgement tasks in a simple pairwise choice paradigm were given to 72 patients with cerebrovascular disease. These tasks consisted of a perceptual line judgement task as a control task; the objects' preference task as a basic preference judgement task; and two types of moral emotion judgement task, an anger task and a guilt task. A multiple linear regression analysis was performed on each set of task performance scores to take into account potential confounders. Performance on the guilt emotion judgement task negatively correlated with the orbitofrontal cortex damage, but not with the other variables. Results for the other judgement tasks did not reach statistical significance. The close association between orbitofrontal cortex damage and a decrease in guilt emotion judgement consistency might suggest that the orbitofrontal cortex plays a key role in the sense of guilt, a hallmark of morality. © 2018 The British Psychological Society.
Cropley, Vanessa L; Innis, Robert B; Nathan, Pradeep J; Brown, Amira K; Sangare, Janet L; Lerner, Alicja; Ryu, Yong Hoon; Sprague, Kelly E; Pike, Victor W; Fujita, Masahiro
2008-06-01
Molecular imaging has been used to estimate both drug-induced and tonic dopamine release in the striatum and most recently extrastriatal areas of healthy humans. However, to date, studies of drug-induced and tonic dopamine release have not been performed in the same subjects. This study performed positron emission tomography (PET) with [18F]fallypride in healthy subjects to assess (1) the reproducibility of [18F]fallypride and (2) both D-amphetamine-induced and alpha-methyl-p-tyrosine (AMPT)-induced changes in dopamin release on [(18)F]fallypride binding in striatal and extrastriatal areas. Subjects underwent [18F]fallypride PET studies at baseline and following oral D-amphetamine administration (0.5 mg/kg) and oral AMPT administration (3 g/70 kg/day over 44 h). Binding potential (BP) (BP(ND)) of [18F]fallypride was calculated in striatal and extrastriatal areas using a reference region method. Percent change in regional BP(ND) was computed and correlated with change in cognition and mood. Test-retest variability of [18F]fallypride was low in both striatal and extrastriatal regions. D-Amphetamine significantly decreased BP(ND) by 8-14% in striatal subdivisions, caudate, putamen, substantia nigra, medial orbitofrontal cortex, and medial temporal cortex. Correlation between change in BP(ND) and verbal fluency was seen in the thalamus and substantia nigra. In contrast, depletion of endogenous dopamine with AMPT did not effect [18F]fallypride BP(ND) in both striatum and extrastriatal regions. These findings indicate that [18F]fallypride is useful for measuring amphetamine-induced dopamine release, but may be unreliable for estimating tonic dopamine levels, in striatum and extrastriatal regions of healthy humans.
Norman, Luke J; Carlisi, Christina O; Christakou, Anastasia; Murphy, Clodagh M; Chantiluke, Kaylita; Giampietro, Vincent; Simmons, Andrew; Brammer, Michael; Mataix-Cols, David; Rubia, Katya
2018-03-24
The aim of the current paper is to provide the first comparison of computational mechanisms and neurofunctional substrates in adolescents with attention-deficit/hyperactivity disorder (ADHD) and adolescents with obsessive-compulsive disorder (OCD) during decision making under ambiguity. Sixteen boys with ADHD, 20 boys with OCD, and 20 matched control subjects (12-18 years of age) completed a functional magnetic resonance imaging version of the Iowa Gambling Task. Brain activation was compared between groups using three-way analysis of covariance. Hierarchical Bayesian analysis was used to compare computational modeling parameters between groups. Patient groups shared reduced choice consistency and relied less on reinforcement learning during decision making relative to control subjects, while adolescents with ADHD alone demonstrated increased reward sensitivity. During advantageous choices, both disorders shared underactivation in ventral striatum, while OCD patients showed disorder-specific underactivation in the ventromedial orbitofrontal cortex. During outcome evaluation, shared underactivation to losses in patients relative to control subjects was found in the medial prefrontal cortex and shared underactivation to wins was found in the left putamen/caudate. ADHD boys showed disorder-specific dysfunction in the right putamen/caudate, which was activated more to losses in patients with ADHD but more to wins in control subjects. The findings suggest shared deficits in using learned reward expectancies to guide decision making, as well as shared dysfunction in medio-fronto-striato-limbic brain regions. However, findings of unique dysfunction in the ventromedial orbitofrontal cortex in OCD and in the right putamen in ADHD indicate additional, disorder-specific abnormalities and extend similar findings from inhibitory control tasks in the disorders to the domain of decision making under ambiguity. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Atmaca, Murad; Yildirim, Hanefi; Yilmaz, Seda; Caglar, Neslihan; Mermi, Osman; Korkmaz, Sevda; Akaslan, Unsal; Gurok, M Gurkan; Kekilli, Yasemin; Turkcapar, Hakan
2018-07-01
Background The effect of a variety of treatment modalities including psychopharmacological and cognitive behavioral therapy on the brain volumes and neurochemicals have not been investigated enough in the patients with obsessive-compulsive disorder. Therefore, in the present study, we aimed to investigate the effect of cognitive behavioral therapy on the volumes of the orbito-frontal cortex and thalamus regions which seem to be abnormal in the patients with obsessive-compulsive disorder. We hypothesized that there would be change in the volumes of the orbito-frontal cortex and thalamus. Methods Twelve patients with obsessive-compulsive disorder and same number of healthy controls were included into the study. At the beginning of the study, the volumes of the orbito-frontal cortex and thalamus were compared by using magnetic resonance imaging. In addition, volumes of these regions were measured before and after the cognitive behavioral therapy treatment in the patient group. Results The patients with obsessive-compulsive disorder had greater left and right thalamus volumes and smaller left and right orbito-frontal cortex volumes compared to those of healthy control subjects at the beginning of the study. When we compared baseline volumes of the patients with posttreatment ones, we detected that thalamus volumes significantly decreased throughout the period for both sides and that the orbito-frontal cortex volumes significantly increased throughout the period for only left side. Conclusions In summary, we found that cognitive behavioral therapy might volumetrically affect the key brain regions involved in the neuroanatomy of obsessive-compulsive disorder. However, future studies with larger sample are required.
Effect of Bupropion Treatment on Brain Activation Induced by Cigarette-Related Cues in Smokers
Culbertson, Christopher S.; Bramen, Jennifer; Cohen, Mark S.; London, Edythe D.; Olmstead, Richard E.; Gan, Joanna J.; Costello, Matthew R.; Shulenberger, Stephanie; Mandelkern, Mark A.; Brody, Arthur L.
2011-01-01
Context Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. Objective To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Design Randomized, double-blind, before-after controlled trial. Setting Academic brain imaging center. Participants Thirty nicotine-dependent smokers (paid volunteers). Interventions Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Main Outcome Measures Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Results Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Conclusions Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions. PMID:21199957
Kumar, Poornima; Eickhoff, Simon B.; Dombrovski, Alexandre Y.
2015-01-01
Reinforcement learning describes motivated behavior in terms of two abstract signals. The representation of discrepancies between expected and actual rewards/punishments – prediction error – is thought to update the expected value of actions and predictive stimuli. Electrophysiological and lesion studies suggest that mesostriatal prediction error signals control behavior through synaptic modification of cortico-striato-thalamic networks. Signals in the ventromedial prefrontal and orbitofrontal cortex are implicated in representing expected value. To obtain unbiased maps of these representations in the human brain, we performed a meta-analysis of functional magnetic resonance imaging studies that employed algorithmic reinforcement learning models, across a variety of experimental paradigms. We found that the ventral striatum (medial and lateral) and midbrain/thalamus represented reward prediction errors, consistent with animal studies. Prediction error signals were also seen in the frontal operculum/insula, particularly for social rewards. In Pavlovian studies, striatal prediction error signals extended into the amygdala, while instrumental tasks engaged the caudate. Prediction error maps were sensitive to the model-fitting procedure (fixed or individually-estimated) and to the extent of spatial smoothing. A correlate of expected value was found in a posterior region of the ventromedial prefrontal cortex, caudal and medial to the orbitofrontal regions identified in animal studies. These findings highlight a reproducible motif of reinforcement learning in the cortico-striatal loops and identify methodological dimensions that may influence the reproducibility of activation patterns across studies. PMID:25665667
Holsen, Laura M.; Lawson, Elizabeth A.; Christensen, Kara; Klibanski, Anne; Goldstein, Jill M.
2014-01-01
Evidence contributing to the understanding of neurobiological mechanisms underlying appetite dysregulation in anorexia nervosa draws heavily on separate lines of research into neuroendocrine and neural circuitry functioning. In particular, studies consistently cite elevated ghrelin and abnormal activation patterns in homeostatic (hypothalamus) and hedonic (striatum, amygdala, insula) regions governing appetite. The current preliminary study examined the interaction of these systems, based on research demonstrating associations between circulating ghrelin levels and activity in these regions in healthy individuals. In a cross-sectional design, we studied 13 women with active anorexia nervosa (AN), 9 women weight-recovered from AN (AN-WR), and 12 healthy-weight control women using a food cue functional magnetic resonance imaging paradigm, with assessment of fasting levels of acylated ghrelin. Healthy-weight control women exhibited significant positive associations between fasting acylated ghrelin and activity in the right amygdala, hippocampus, insula, and orbitofrontal cortex in response to high-calorie foods, associations which were absent in the AN and AN-WR groups. Women with AN-WR demonstrated a negative relationship between ghrelin and activity in the left hippocampus in response to high-calorie foods, while women with AN showed a positive association between ghrelin and activity in the right orbitofrontal cortex in response to low-calorie foods. Findings suggest a breakdown in the interaction between ghrelin signaling and neural activity in relation to reward responsivity in AN, a phenomenon that may be further characterized using pharmacogenetic studies. PMID:24862390
Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter
2015-01-01
This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.
Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten
2018-03-01
According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Beck, Anne; Wüstenberg, Torsten; Genauck, Alexander; Wrase, Jana; Schlagenhauf, Florian; Smolka, Michael N; Mann, Karl; Heinz, Andreas
2012-08-01
In alcohol-dependent patients, brain atrophy and functional brain activation elicited by alcohol-associated stimuli may predict relapse. However, to date, the interaction between both factors has not been studied. To determine whether results from structural and functional magnetic resonance imaging are associated with relapse in detoxified alcohol-dependent patients. A cue-reactivity functional magnetic resonance experiment with alcohol-associated and neutral stimuli. After a follow-up period of 3 months, the group of 46 detoxified alcohol-dependent patients was subdivided into 16 abstainers and 30 relapsers. Faculty for Clinical Medicine Mannheim at the University of Heidelberg, Germany. A total of 46 detoxified alcohol-dependent patients and 46 age- and sex-matched healthy control subjects Local gray matter volume, local stimulus-related functional magnetic resonance imaging activation, joint analyses of structural and functional data with Biological Parametric Mapping, and connectivity analyses adopting the psychophysiological interaction approach. Subsequent relapsers showed pronounced atrophy in the bilateral orbitofrontal cortex and in the right medial prefrontal and anterior cingulate cortex, compared with healthy controls and patients who remained abstinent. The local gray matter volume-corrected brain response elicited by alcohol-associated vs neutral stimuli in the left medial prefrontal cortex was enhanced for subsequent relapsers, whereas abstainers displayed an increased neural response in the midbrain (the ventral tegmental area extending into the subthalamic nucleus) and ventral striatum. For alcohol-associated vs neutral stimuli in abstainers compared with relapsers, the analyses of the psychophysiological interaction showed a stronger functional connectivity between the midbrain and the left amygdala and between the midbrain and the left orbitofrontal cortex. Subsequent relapsers displayed increased brain atrophy in brain areas associated with error monitoring and behavioral control. Correcting for gray matter reductions, we found that, in these patients, alcohol-related cues elicited increased activation in brain areas associated with attentional bias toward these cues and that, in patients who remained abstinent, increased activation and connectivity were observed in brain areas associated with processing of salient or aversive stimuli.
Fronto-Limbic Functioning in Children and Adolescents with and without Autism
ERIC Educational Resources Information Center
Loveland, Katherine A.; Bachevalier, Jocelyne; Pearson, Deborah A.; Lane, David M.
2008-01-01
We used neuropsychological tasks to investigate integrity of brain circuits linking orbitofrontal cortex and amygdala (orbitofrontal-amygdala), and dorsolateral prefrontal cortex and hippocampus (dorsolateral prefrontal-hippocampus), in 138 individuals aged 7-18 years, with and without autism. We predicted that performance on…
de Leeuw, Max; Kahn, René S.; Vink, Matthijs
2015-01-01
Schizophrenia is a psychiatric disorder that is associated with impaired functioning of the fronto-striatal network, in particular during reward processing. However, it is unclear whether this dysfunction is related to the illness itself or whether it reflects a genetic vulnerability to develop schizophrenia. Here, we examined reward processing in unaffected siblings of schizophrenia patients using functional magnetic resonance imaging. Brain activity was measured during reward anticipation and reward outcome in 27 unaffected siblings of schizophrenia patients and 29 healthy volunteers using a modified monetary incentive delay task. Task performance was manipulated online so that all subjects won the same amount of money. Despite equal performance, siblings showed reduced activation in the ventral striatum, insula, and supplementary motor area (SMA) during reward anticipation compared to controls. Decreased ventral striatal activation in siblings was correlated with sub-clinical negative symptoms. During the outcome of reward, siblings showed increased activation in the ventral striatum and orbitofrontal cortex compared to controls. Our finding of decreased activity in the ventral striatum during reward anticipation and increased activity in this region during receiving reward may indicate impaired cue processing in siblings. This is consistent with the notion of dopamine dysfunction typically associated with schizophrenia. Since unaffected siblings share on average 50% of their genes with their ill relatives, these deficits may be related to the genetic vulnerability for schizophrenia. PMID:25368371
Decision-making performance in Parkinson's disease correlates with lateral orbitofrontal volume.
Kobayakawa, Mutsutaka; Tsuruya, Natsuko; Kawamura, Mitsuru
2017-01-15
Patients with Parkinson's disease (PD) exhibit poor decision-making, and the underlying neural correlates are unclear. We used voxel-based morphometry with Diffeomorphic Anatomical Registration through Exponentiated Lie algebra to examine this issue. The decision-making abilities of 20 patients with PD and 37 healthy controls (HCs) were measured with a computerized Iowa Gambling Task (IGT). We assessed the local gray matter volumes of the patients and HCs and their correlations with decision-making performance, disease duration, disease severity, and anti-Parkinsonism medication dose. Compared with the HCs, the patients with PD exhibited poor IGT performances. The gray matter volumes in the medial orbitofrontal cortex, left inferior temporal cortex, and right middle frontal gyrus were decreased in the patients. Results in the regression analysis showed that lateral orbitofrontal volume correlated with performance in the IGT in PD. Regions that correlated with disease duration, severity, and medication dose did not overlap with orbitofrontal regions. Our results indicate that the lateral and medial orbitofrontal cortex are related to decision-making in PD patients. Since the medial orbitofrontal cortex is shown to be involved in monitoring reward, reward monitoring seems to be impaired as a whole in PD patients. Meanwhile, the lateral region is related to evaluation of punishment, which is considered to have an influence on individual differences in decision-making performance in PD patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Marsh, Abigail A.; Finger, Elizabeth C.; Fowler, Katherine A.; Jurkowitz, Ilana T.N.; Schechter, Julia C.; Yu, Henry H.; Pine, Daniel S.; Blair, R. J. R.
2011-01-01
We used functional magnetic resonance imaging (fMRI) to investigate dysfunction in the amygdala and orbitofrontal cortex in adolescents with disruptive behavior disorders and psychopathic traits during a moral judgment task. Fourteen adolescents with psychopathic traits and 14 healthy controls were assessed using fMRI while they categorized illegal and legal behaviors in a moral judgment implicit association task. fMRI data were then analyzed using random-effects analysis of variance and functional connectivity. Youths with psychopathic traits showed reduced amygdala activity when making judgments about legal actions and reduced functional connectivity between the amygdala and orbitofrontal cortex during task performance. These results suggest that psychopathic traits are associated with amygdala and orbitofrontal cortex dysfunction. This dysfunction may relate to previous findings of disrupted moral judgment in this population. PMID:22047730
Schur, E A; Kleinhans, N M; Goldberg, J; Buchwald, D; Schwartz, M W; Maravilla, K
2009-06-01
To develop a non-invasive method of studying brain mechanisms involved in energy homeostasis and appetite regulation in humans by using visual food cues that are relevant to individuals attempting weight loss. Functional magnetic resonance imaging (fMRI) was used to compare brain activation in regions of interest between groups of food photographs. Ten healthy, non-obese women who were not dieting for weight loss. Independent raters viewed food photographs and evaluated whether the foods depicted should be eaten by individuals attempting a calorically-restricted diet. Based on their responses, we categorized photographs into 'non-fattening' and 'fattening' food groups, the latter characterized by high-caloric content and usually also high-fat or high-sugar content. Blood oxygen level-dependent (BOLD) response was measured by fMRI while participants viewed photographs of 'fattening' food, 'non-fattening' food, and non-food objects. Viewing photographs of fattening food compared with non-food objects resulted in significantly greater activation in the brainstem; hypothalamus; left amygdala; left dorsolateral prefrontal cortex; left orbitofrontal cortex; right insular cortex; bilateral striatum, including the nucleus accumbens, caudate nucleus, and putamen; bilateral thalamus; and occipital lobe. By comparison, only the occipital region had greater activation by non-fattening food than by object photographs. Combining responses to all food types resulted in attenuation of activation in the brainstem, hypothalamus, and striatum. These findings suggest that, in non-obese women, neural circuits engaged in energy homeostasis and reward processing are selectively attuned to representations of high-calorie foods that are perceived as fattening. Studies to investigate hormonal action or manipulation of energy balance may benefit from fMRI protocols that contrast energy-rich food stimuli with non-food or low-calorie food stimuli.
The implication of frontostriatal circuits in young smokers: A resting-state study.
Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Li, Yangding; Guan, Yanyan; Liu, Jixin; Zhang, Yi; Qin, Wei; Lu, Xiaoqi; Tian, Jie
2016-06-01
The critical roles of frontostriatal circuits had been revealed in addiction. With regard to young smokers, the implication of frontostriatal circuits resting-state functional connectivity (RSFC) in smoking behaviors and cognitive control deficits remains unclear. In this study, the volume of striatum subsets, i.e., caudate, putamen, and nucleus accumbens, and corresponding RSFC differences were investigated between young smokers (n1 = 60) and nonsmokers (n2 = 60), which were then correlated with cigarette smoking measures, such as pack_years-cumulative effect of smoking, Fagerström Test for Nicotine Dependence (FTND)-severity of nicotine addiction, Questionnaire on Smoking Urges (QSU)-craving state, and Stroop task performances. Additionally, mediation analysis was carried out to test whether the frontostriatal RSFC mediates the relationship between striatum morphometry and cognitive control behaviors in young smokers when applicable. We revealed increased volume of right caudate and reduced RSFC between caudate and dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex in young smokers. Significant positive correlation between right caudate volume and QSU as well as negative correlation between anterior cingulate cortex-right caudate RSFC and FTND were detected in young smokers. More importantly, DLPFC-caudate RSFC strength mediated the relationship between caudate volume and incongruent errors during Stroop task in young smokers. Our results demonstrated that young smokers showed abnormal interactions within frontostriatal circuits, which were associated with smoking behaviors and cognitive control impairments. It is hoped that our study focusing on frontostriatal circuits could provide new insights into the neural correlates and potential novel therapeutic targets for treatment of young smokers. Hum Brain Mapp 37:2013-2026, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasi, Dardo; Wang, Gene -Jack; Wang, Ruiliang
Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [ 11C]raclopride and PET in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal and premotor cortices and insula and disengaged cuneus and defaultmore » mode network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. In conclusion, these findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues.« less
Tomasi, Dardo; Wang, Gene -Jack; Wang, Ruiliang; ...
2014-08-20
Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [ 11C]raclopride and PET in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal and premotor cortices and insula and disengaged cuneus and defaultmore » mode network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. In conclusion, these findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues.« less
Finger, Elizabeth C; Marsh, Abigail A; Blair, Karina S; Reid, Marguerite E; Sims, Courtney; Ng, Pamela; Pine, Daniel S; Blair, R James R
2011-02-01
Dysfunction in the amygdala and orbitofrontal cortex has been reported in youths and adults with psychopathic traits. The specific nature of the functional irregularities within these structures remains poorly understood. The authors used a passive avoidance task to examine the responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. While performing the passive avoidance learning task, 15 youths with conduct disorder or oppositional defiant disorder plus a high level of psychopathic traits and 15 healthy subjects completed a 3.0-T fMRI scan. Relative to the comparison youths, the youths with a disruptive behavior disorder plus psychopathic traits showed less orbitofrontal responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as less caudate response to early stimulus-reinforcement exposure. There were no group differences in amygdala responsiveness to these two task measures, but amygdala responsiveness throughout the task was lower in the youths with psychopathic traits. Compromised sensitivity to early reinforcement information in the orbitofrontal cortex and caudate and to reward outcome information in the orbitofrontal cortex of youths with conduct disorder or oppositional defiant disorder plus psychopathic traits suggests that the integrated functioning of the amygdala, caudate, and orbitofrontal cortex may be disrupted. This provides a functional neural basis for why such youths are more likely to repeat disadvantageous decisions. New treatment possibilities are raised, as pharmacologic modulations of serotonin and dopamine can affect this form of learning.
Scarlet, Janina; Delamater, Andrew R; Campese, Vincent; Fein, Matthew; Wheeler, Daniel S
2012-06-01
Four experiments examined the roles of the basolateral amygdala and orbitofrontal cortex in the formation of sensory-specific associations in conditioned flavor preference and conditioned magazine approach paradigms using unconditioned stimulus (US) devaluation and selective Pavlovian-instrumental transfer procedures in Long Evans rats. Experiment 1 found that pre-training amygdala and orbitofrontal cortex lesions had no detectable effect on the formation or flexible use of sensory-specific flavor-nutrient associations in a US devaluation task, where flavor cues were paired either simultaneously or sequentially with nutrient rewards in water-deprived subjects. In Experiment 2, pre-training amygdala and orbitofrontal cortex lesions both attenuated outcome-specific Pavlovian-instrumental transfer. Experiment 3 indicated that amygdala lesions have no effect on the formation of sensory-specific flavor-nutrient associations in a US devaluation task in food-deprived subjects. Finally, Experiment 4 demonstrated that the outcomes used in Experiment 3 were sufficiently motivationally significant to support conditioned flavor preference. These findings suggest that, although both orbitofrontal cortex and amygdala lesions attenuate the acquisition of sensory-specific associations in magazine approach conditioning, neither lesion reduces the ability to appropriately respond to a flavor cue that was paired with a devalued outcome. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Rodriguez-Romaguera, Jose; Greenberg, Benjamin D; Rasmussen, Steven A; Quirk, Gregory J
2016-10-01
Obsessive-compulsive disorder is treated with exposure with response prevention (ERP) therapy, in which patients are repeatedly exposed to compulsive triggers but prevented from expressing their compulsions. Many compulsions are an attempt to avoid perceived dangers, and the intent of ERP is to extinguish compulsions. Patients failing ERP therapy are candidates for deep brain stimulation (DBS) of the ventral capsule/ventral striatum, which facilitates patients' response to ERP therapy. An animal model of ERP would be useful for understanding the neural mechanisms of extinction in obsessive-compulsive disorder. Using a platform-mediated signaled avoidance task, we developed a rodent model of ERP called extinction with response prevention (Ext-RP), in which avoidance-conditioned rats are given extinction trials while blocking access to the avoidance platform. Following 3 days of Ext-RP, rats were tested with the platform unblocked to evaluate persistent avoidance. We then assessed if pharmacologic inactivation of lateral orbitofrontal cortex (lOFC) or DBS of the ventral striatum reduced persistent avoidance. Following Ext-RP training, most rats showed reduced avoidance at test (Ext-RP success), but a subset persisted in their avoidance (Ext-RP failure). Pharmacologic inactivation of lOFC eliminated persistent avoidance, as did DBS applied to the ventral striatum during Ext-RP. DBS of ventral striatum has been previously shown to inhibit lOFC activity. Thus, activity in lOFC, which is known to be hyperactive in obsessive-compulsive disorder, may be responsible for impairing patients' response to ERP therapy. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.
Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas
2018-01-01
The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.
Lagranha, Valeska Lizzi; Matte, Ursula; de Carvalho, Talita Giacomet; Seminotti, Bianca; Pereira, Carolina Coffi; Koeller, David M.; Woontner, Michael; Goodman, Stephen I.; de Souza, Diogo Onofre Gomes; Wajner, Moacir
2014-01-01
We determined mRNA expression of the ionotropic glutamate receptors NMDA (NR1, NR2A and NR2B subunits), AMPA (GluR2 subunit) and kainate (GluR6 subunit), as well as of the glutamate transporters GLAST and GLT1 in cerebral cortex and striatum of wild type (WT) and glutaryl-CoA dehydrogenase deficient (Gchh -/-) mice aged 7, 30 and 60 days. The protein expression levels of some of these membrane proteins were also measured. Overexpression of NR2A and NR2B in striatum and of GluR2 and GluR6 in cerebral cortex was observed in 7-day-old Gcdh -/-. There was also an increase of mRNA expression of all NMDA subunits in cerebral cortex and of NR2A and NR2B in striatum of 30-day-old Gcdh -/- mice. At 60 days of life, all ionotropic receptors were overexpressed in cerebral cortex and striatum of Gcdh -/- mice. Higher expression of GLAST and GLT1 transporters was also verified in cerebral cortex and striatum of Gcdh -/- mice aged 30 and 60 days, whereas at 7 days of life GLAST was overexpressed only in striatum from this mutant mice. Furthermore, high lysine intake induced mRNA overexpression of NR2A, NR2B and GLAST transcripts in striatum, as well as of GluR2 and GluR6 in both striatum and cerebral cortex of Gcdh -/- mice. Finally, we found that the protein expression of NR2A, NR2B, GLT1 and GLAST were significantly greater in cerebral cortex of Gcdh -/- mice, whereas NR2B and GLT1 was similarly enhanced in striatum, implying that these transcripts were translated into their products. These results provide evidence that glutamate receptor and transporter expression is higher in Gcdh -/- mice and that these alterations may be involved in the pathophysiology of GA I and possibly explain, at least in part, the vulnerability of striatum and cerebral cortex to injury in patients affected by GA I. PMID:24594605
Lagranha, Valeska Lizzi; Matte, Ursula; de Carvalho, Talita Giacomet; Seminotti, Bianca; Pereira, Carolina Coffi; Koeller, David M; Woontner, Michael; Goodman, Stephen I; de Souza, Diogo Onofre Gomes; Wajner, Moacir
2014-01-01
We determined mRNA expression of the ionotropic glutamate receptors NMDA (NR1, NR2A and NR2B subunits), AMPA (GluR2 subunit) and kainate (GluR6 subunit), as well as of the glutamate transporters GLAST and GLT1 in cerebral cortex and striatum of wild type (WT) and glutaryl-CoA dehydrogenase deficient (Gchh-/-) mice aged 7, 30 and 60 days. The protein expression levels of some of these membrane proteins were also measured. Overexpression of NR2A and NR2B in striatum and of GluR2 and GluR6 in cerebral cortex was observed in 7-day-old Gcdh-/-. There was also an increase of mRNA expression of all NMDA subunits in cerebral cortex and of NR2A and NR2B in striatum of 30-day-old Gcdh-/- mice. At 60 days of life, all ionotropic receptors were overexpressed in cerebral cortex and striatum of Gcdh-/- mice. Higher expression of GLAST and GLT1 transporters was also verified in cerebral cortex and striatum of Gcdh-/- mice aged 30 and 60 days, whereas at 7 days of life GLAST was overexpressed only in striatum from this mutant mice. Furthermore, high lysine intake induced mRNA overexpression of NR2A, NR2B and GLAST transcripts in striatum, as well as of GluR2 and GluR6 in both striatum and cerebral cortex of Gcdh-/- mice. Finally, we found that the protein expression of NR2A, NR2B, GLT1 and GLAST were significantly greater in cerebral cortex of Gcdh-/- mice, whereas NR2B and GLT1 was similarly enhanced in striatum, implying that these transcripts were translated into their products. These results provide evidence that glutamate receptor and transporter expression is higher in Gcdh-/- mice and that these alterations may be involved in the pathophysiology of GA I and possibly explain, at least in part, the vulnerability of striatum and cerebral cortex to injury in patients affected by GA I.
Disentangling neural representations of value and salience in the human brain
Kahnt, Thorsten; Park, Soyoung Q; Haynes, John-Dylan; Tobler, Philippe N.
2014-01-01
A large body of evidence has implicated the posterior parietal and orbitofrontal cortex in the processing of value. However, value correlates perfectly with salience when appetitive stimuli are investigated in isolation. Accordingly, considerable uncertainty has remained about the precise nature of the previously identified signals. In particular, recent evidence suggests that neurons in the primate parietal cortex signal salience instead of value. To investigate neural signatures of value and salience, here we apply multivariate (pattern-based) analyses to human functional MRI data acquired during a noninstrumental outcome-prediction task involving appetitive and aversive outcomes. Reaction time data indicated additive and independent effects of value and salience. Critically, we show that multivoxel ensemble activity in the posterior parietal cortex encodes predicted value and salience in superior and inferior compartments, respectively. These findings reinforce the earlier reports of parietal value signals and reconcile them with the recent salience report. Moreover, we find that multivoxel patterns in the orbitofrontal cortex correlate with value. Importantly, the patterns coding for the predicted value of appetitive and aversive outcomes are similar, indicating a common neural scale for appetite and aversive values in the orbitofrontal cortex. Thus orbitofrontal activity patterns satisfy a basic requirement for a neural value signal. PMID:24639493
Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear
Rodriguez-Romaguera, Jose; Do Monte, Fabricio H. M.; Quirk, Gregory J.
2012-01-01
Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) reduces symptoms of intractable obsessive-compulsive disorder (OCD), but the mechanism of action is unknown. OCD is characterized by avoidance behaviors that fail to extinguish, and DBS could act, in part, by facilitating extinction of fear. We investigated this possibility by using auditory fear conditioning in rats, for which the circuits of fear extinction are well characterized. We found that DBS of the VS (the VC/VS homolog in rats) during extinction training reduced fear expression and strengthened extinction memory. Facilitation of extinction was observed for a specific zone of dorsomedial VS, just above the anterior commissure; stimulation of more ventrolateral sites in VS impaired extinction. DBS effects could not be obtained with pharmacological inactivation of either dorsomedial VS or ventrolateral VS, suggesting an extrastriatal mechanism. Accordingly, DBS of dorsomedial VS (but not ventrolateral VS) increased expression of a plasticity marker in the prelimbic and infralimbic prefrontal cortices, the orbitofrontal cortex, the amygdala central nucleus (lateral division), and intercalated cells, areas known to learn and express extinction. Facilitation of fear extinction suggests that, in accord with clinical observations, DBS could augment the effectiveness of cognitive behavioral therapies for OCD. PMID:22586125
Marsh, Abigail A; Finger, Elizabeth C; Fowler, Katherine A; Jurkowitz, Ilana T N; Schechter, Julia C; Yu, Henry H; Pine, Daniel S; Blair, R J R
2011-12-30
We used functional magnetic resonance imaging (fMRI) to investigate dysfunction in the amygdala and orbitofrontal cortex in adolescents with disruptive behavior disorders and psychopathic traits during a moral judgment task. Fourteen adolescents with psychopathic traits and 14 healthy controls were assessed using fMRI while they categorized illegal and legal behaviors in a moral judgment implicit association task. fMRI data were then analyzed using random-effects analysis of variance and functional connectivity. Youths with psychopathic traits showed reduced amygdala activity when making judgments about legal actions and reduced functional connectivity between the amygdala and orbitofrontal cortex during task performance. These results suggest that psychopathic traits are associated with amygdala and orbitofrontal cortex dysfunction. This dysfunction may relate to previous findings of disrupted moral judgment in this population. 2011 Elsevier Ireland Ltd. All rights reserved.
Holsen, Laura M; Lawson, Elizabeth A; Christensen, Kara; Klibanski, Anne; Goldstein, Jill M
2014-08-30
Evidence contributing to the understanding of neurobiological mechanisms underlying appetite dysregulation in anorexia nervosa draws heavily on separate lines of research into neuroendocrine and neural circuitry functioning. In particular, studies consistently cite elevated ghrelin and abnormal activation patterns in homeostatic (hypothalamus) and hedonic (striatum, amygdala, insula) regions governing appetite. The current preliminary study examined the interaction of these systems, based on research demonstrating associations between circulating ghrelin levels and activity in these regions in healthy individuals. In a cross-sectional design, we studied 13 women with active anorexia nervosa (AN), 9 women weight-recovered from AN (AN-WR), and 12 healthy-weight control women using a food cue functional magnetic resonance imaging paradigm, with assessment of fasting levels of acylated ghrelin. Healthy-weight control women exhibited significant positive associations between fasting acylated ghrelin and activity in the right amygdala, hippocampus, insula, and orbitofrontal cortex in response to high-calorie foods, associations which were absent in the AN and AN-WR groups. Women with AN-WR demonstrated a negative relationship between ghrelin and activity in the left hippocampus in response to high-calorie foods, while women with AN showed a positive association between ghrelin and activity in the right orbitofrontal cortex in response to low-calorie foods. Findings suggest a breakdown in the interaction between ghrelin signaling and neural activity in relation to reward responsivity in AN, a phenomenon that may be further characterized using pharmacogenetic studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Candy and the Brain: Neural Response to Candy Gains and Losses
Luking, Katherine R; Barch, Deanna M
2013-01-01
Incentive processing is a critical component of a host of cognitive processes including attention, motivation, and learning. Neuroimaging studies have clarified the neural systems underlying processing of primary and secondary rewards in adults. However, current reward paradigms have hindered comparison across these reward types as well as between age groups. To address methodological issues regarding timing of incentive delivery (during versus post-scan) and the age-appropriateness of the incentive type we utilized fMRI and a modified version of a card guessing game (CGG), where candy pieces delivered post-scan served as the reinforcer, to investigate neural responses to incentives. Healthy young adults aged 22–26 years won and lost large and small amounts of candy based on their ability to guess the number on a mystery card. BOLD activity was compared following candy gain (large/small), loss (large/small) and neutral feedback. During candy gains, adults recruited regions typically involved in response to monetary and other rewards such as the caudate, putamen, and orbitofrontal cortex. During losses, adults displayed greater deactivation in the hippocampus compared to neutral and gain feedback. Additionally, individual difference analyses suggested a negative relationship between reward sensitivity (assessed by behavioral inhibition/behavioral activation scales) and the difference between high and low magnitude losses in the caudate and lateral orbitofrontal cortex. Also within the striatum greater punishment sensitivity was positively related to the difference in activity following high compared to low gains. Overall these results show strong overlap with those from previous monetary versions of the CGG and provide a baseline for future work with developmental populations. PMID:23519971
Neurocognitive Elements of Antisocial Behavior: Relevance of an Orbitofrontal Cortex Account
ERIC Educational Resources Information Center
Seguin, Jean R.
2004-01-01
This paper reviews the role of orbitofrontal cortex (OFC) lesions in antisocial behaviors and the adequacy of a strict OFC account of antisocial disorders where there is no evidence of lesion. Neurocognitive accounts of antisocial behaviors are extended beyond the OFC. Several methodological shortcomings specific to this neuroscience approach to…
Orbito-Frontal Cortex Is Necessary for Temporal Context Memory
ERIC Educational Resources Information Center
Duarte, Audrey; Henson, Richard N.; Knight, Robert T.; Emery, Tina; Graham, Kim S.
2010-01-01
Lesion and neuroimaging studies suggest that orbito-frontal cortex (OFC) supports temporal aspects of episodic memory. However, it is unclear whether OFC contributes to the encoding and/or retrieval of temporal context and whether it is selective for temporal relative to nontemporal (spatial) context memory. We addressed this issue with two…
Baker, Phillip M.
2014-01-01
Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for conditional discrimination performance in which a switch in reward-predictive cues occurs every three to six trials. The GABA agonists baclofen and muscimol infused into the prelimbic cortex significantly impaired performance leading rats to adopt an inappropriate turn strategy. The NMDA receptor antagonist D-AP5 infused into the dorsomedial striatum or prelimbic cortex and dorsomedial striatum contralateral disconnection impaired performance due to a rat failing to switch a response choice for an entire trial block in about two out of 13 test blocks. In an additional study, contralateral disconnection did not affect nonswitch discrimination performance. The results suggest that the prelimbic cortex and dorsomedial striatum are necessary to support cue-guided behavioral switching. The prelimbic cortex may be critical for generating alternative response patterns while the dorsomedial striatum supports the selection of an appropriate response when cue information must be used to flexibly switch response patterns. PMID:25028395
Changes in the brain biogenic monoamines of rats, induced by piracetam and aniracetam.
Petkov, V D; Grahovska, T; Petkov, V V; Konstantinova, E; Stancheva, S
1984-01-01
Single oral dose of 600 mg/kg weight piracetam, respectively 50 mg/kg aniracetam, causes essential changes in the level and turnover of dopamine (DA) and serotonin (5-HT) in some rat cerebral structures. When the animals were killed one hour after the administration of the drugs, piracetam significantly increased the DA level in the cerebral cortex and in the striatum, as well as the 5-HT level in the cortex, reducing the 5-HT level in the striatum, brain stem and hypothalamus. At the same time, under the effect of piracetam the DA turnover was accelerated in the cortex and hypothalamus and delayed in the striatum, the noradrenaline turnover was accelerated in the brain stem, the 5-HT turnover was accelerated in the cortex and delayed in the striatum, stem and hypothalamus. Under the effect of aniracetam the DA level was reduced in the striatum and hypothalamus; the 5-HT level was also decreased in the hypothalamus and increased in the cortex and striatum. Aniracetam delayed the DA turnover in the striatum and the 5-HT turnover in the hypothalamus, accelerating the 5-HT turnover in the cortex, striatum and stem. The results obtained show that the changes induced in the cerebral biogenic monoamines participate in the mechanism of action of piracetam and aniracetam, whereby it seems that the analogies and differences in their effects on the cerebral biogenic monoamines play a definite role for the observed analogies and differences in the behavioural effects of these two "nootropic" compounds.
Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai
2016-09-01
Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.
Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H; Leung, Hoi-Chung; Li, Chiang-Shan R
2015-02-15
The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.
How demanding is the brain on a reversal task under day and night conditions?
Arias, N; Fidalgo, C; Méndez, M; Arias, J L
2015-07-23
Reversal learning has been studied as the process of learning to inhibit previously rewarded actions. These behavioral studies are usually performed during the day, when animals are in their daily period rest. However, how day or night affects spatial reversal learning and the brain regions involved in the learning process are still unknown. We conducted two experiments using the Morris Water Maze under different light-conditions: naïve group (CN, n=8), day group (DY, n=8), control DY group (CDY, n=8) night group (NG, n=8), and control NG group (CNG, n=7). Distance covered, velocity and latencies to reach the platform were examined. After completing these tasks, cytochrome c-oxidase activity (CO) in several brain limbic system structures was compared between groups. There were no behavioral differences in the time of day when the animals were trained. However, the metabolic brain consumption was higher in rats trained in the day condition. This CO increase was supported by the prefrontal cortex, thalamus, dorsal and ventral striatum, hippocampus and entorhinal cortex, revealing their role in the performance of the spatial reversal learning task. Finally, the orbitofrontal cortex has been revealed as a key structure in reversal learning execution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Neural responses to unfairness and fairness depend on self-contribution to the income
Guo, Xiuyan; Zheng, Li; Cheng, Xuemei; Chen, Menghe; Li, Jianqi; Chen, Luguang; Yang, Zhiliang
2014-01-01
Self-contribution to the income (individual achievement) was an important factor which needs to be taken into individual’s fairness considerations. This study aimed at elucidating the modulation of self-contribution to the income, on recipient’s responses to unfairness in the Ultimatum Game. Eighteen participants were scanned while they were playing an adapted version of the Ultimatum Game as responders. Before splitting money, the proposer and the participant (responder) played the ball-guessing game. The responder’s contribution to the income was manipulated by both the participant’s and the proposer’s accuracy in the ball-guessing game. It turned out that the participants more often rejected unfair offers and gave lower fairness ratings when they played a more important part in the earnings. At the neural level, anterior insula, anterior cingulate cortex, dorsolateral prefrontal cortex and temporoparietal junction showed greater activities to unfairness when self-contribution increased, whereas ventral striatum and medial orbitofrontal gyrus showed higher activations to fair (vs unfair) offers in the other-contributed condition relative to the other two. Besides, the activations of right dorsolateral prefrontal cortex during unfair offers showed positive correlation with rejection rates in the self-contributed condition. These findings shed light on the significance of self-contribution in fairness-related social decision-making processes. PMID:23946001
Can Decision Making Research Provide a Better Understanding of Chemical and Behavioral Addictions?
Engel, Anzhelika; Cáceda, Ricardo
2015-01-01
We reviewed the cognitive and neurobiological commonalities between chemical and behavioral addictions. Poor impulse control, limited executive function and abnormalities in reward processing are seen in both group of entities. Brain imaging shows consistent abnormalities in frontoparietal regions and the limbic system. In drug addiction, exaggerated risk taking behavior and temporal discounting may reflect an imbalance between a hyperactive mesolimbic and hypoactive executive systems. Several cognitive distortions are found in pathological gambling that seems to harness the brain reward system that has evolved to face situations related to skill, not random chance. Abnormalities in risk assessment and impulsivity are found in variety of eating disorders, in particularly related to eating behavior. Corresponding findings in eating disorder patients include abnormalities in the limbic system, i.e. orbitofrontal cortex (OFC), striatum and insula. Similarly, internet addiction disorder is associated with risky decision making and increased choice impulsivity with corresponding discrepant activation in the dorsolateral prefrontal cortex, OFC, anterior cingulate cortex, caudate and insula. Sexual addictions are in turn associated with exaggerated impulsive choice and suggestive evidence of abnormalities in reward processing. In sum, exploration of executive function and decision making abnormalities in chemical and behavioral addictions may increase understanding in their psychopathology and yield valuable targets for therapeutic interventions.
Brosch, Tobias; Coppin, Géraldine; Schwartz, Sophie; Sander, David
2012-06-01
Neuroeconomic research has delineated neural regions involved in the computation of value, referring to a currency for concrete choices and decisions ('economic value'). Research in psychology and sociology, on the other hand, uses the term 'value' to describe motivational constructs that guide choices and behaviors across situations ('core value'). As a first step towards an integration of these literatures, we compared the neural regions computing economic value and core value. Replicating previous work, economic value computations activated a network centered on medial orbitofrontal cortex. Core value computations activated medial prefrontal cortex, a region involved in the processing of self-relevant information and dorsal striatum, involved in action selection. Core value ratings correlated with activity in precuneus and anterior prefrontal cortex, potentially reflecting the degree to which a core value is perceived as internalized part of one's self-concept. Distributed activation pattern in insula and ACC allowed differentiating individual core value types. These patterns may represent evaluation profiles reflecting prototypical fundamental concerns expressed in the core value types. Our findings suggest mechanisms by which core values, as motivationally important long-term goals anchored in the self-schema, may have the behavioral power to drive decisions and behaviors in the absence of immediately rewarding behavioral options.
Oscillations in human orbitofrontal cortex during even chance gambling.
Kahn, Kevin; Kerr, Matthew S D; Park, Hyun-Joo; Thompson, Susan; Bulacio, Juan; Gonzalez-Martinez, Jorge; Sarma, Sridevi V; Gale, John
2014-01-01
Evaluating value and risk as well as comparing expected and actual outcomes is the crux of decision making and reinforcement based learning. In this study, we record from stereotactic electroencephalograph depth electrodes in a human subject in numerous areas in the brain. We focus on the lateral and medial orbitofrontal cortex while they perform a gambling task involving betting on a high card. Preliminary time-frequency analysis shows modulations in the 5-15 Hz band that is well synced to the different events of the task. These oscillations increase in both high betting scenarios as well as in losing scenarios though their effects cannot be decoupled. However, the activity between lateral and medial orbitofrontal cortex is a lot more homogenous than previously seen. Additionally, the timing of some of these oscillations occurs before even a response in the visual cortex. This evidence hints that these areas encode priors that influence our decision in future statistically ambiguous scenarios.
Addiction: beyond dopamine reward circuitry.
Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Tomasi, Dardo; Telang, Frank
2011-09-13
Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.
Art for reward's sake: visual art recruits the ventral striatum.
Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R; Reddy, Srinivas; Sathian, K
2011-03-01
A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non-art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. Copyright © 2010 Elsevier Inc. All rights reserved.
ART FOR REWARD’S SAKE: VISUAL ART RECRUITS THE VENTRAL STRIATUM
Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M.; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R.; Reddy, Srinivas; Sathian, K.
2010-01-01
A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non -art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. PMID:21111833
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditionedmore » cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.« less
Dandash, Orwa; Yücel, Murat; Daglas, Rothanthi; Pantelis, Christos; McGorry, Patrick; Berk, Michael; Fornito, Alex
2018-03-06
Mood disturbances seen in first-episode mania (FEM) are linked to disturbed functional connectivity of the striatum. Lithium and quetiapine are effective treatments for mania but their neurobiological effects remain largely unknown. We conducted a single-blinded randomized controlled maintenance trial in 61 FEM patients and 30 healthy controls. Patients were stabilized for a minimum of 2 weeks on lithium plus quetiapine then randomly assigned to either lithium (serum level 0.6 mmol/L) or quetiapine (dosed up to 800 mg/day) treatment for 12 months. Resting-state fMRI was acquired at baseline, 3 months (patient only) and 12 months. The effects of treatment group, time and their interaction, on striatal functional connectivity were assessed using voxel-wise general linear modelling. At baseline, FEM patients showed reduced connectivity in the dorsal (p = 0.05) and caudal (p = 0.008) cortico-striatal systems when compared to healthy controls at baseline. FEM patients also showed increased connectivity in a circuit linking the ventral striatum with the medial orbitofrontal cortex, cerebellum and thalamus (p = 0.02). Longitudinally, we found a significant interaction between time and treatment group, such that lithium was more rapid, compared to quetiapine, in normalizing abnormally increased functional connectivity, as assessed at 3-month and 12-month follow-ups. The results suggest that FEM is associated with reduced connectivity in dorsal and caudal corticostriatal systems, as well as increased functional connectivity of ventral striatal systems. Lithium appears to act more rapidly than quetiapine in normalizing hyperconnectivity of the ventral striatum with the cerebellum. The study was registered on the Australian and New Zealand Clinical Trials Registry (ACTRN12607000639426). http://www.anzctr.org.au.
Ross, Robert S.; LoPresti, Matthew L.; Schon, Karin; Stern, Chantal E.
2013-01-01
Human social interactions are complex behaviors requiring the concerted effort of multiple neural systems to track and monitor the individuals around us. Cognitively, adjusting our behavior based on changing social cues such as facial expressions relies on working memory and the ability to disambiguate, or separate, representations of overlapping stimuli resulting from viewing the same individual with different facial expressions. We conducted an fMRI experiment examining brain regions contributing to the encoding, maintenance and retrieval of overlapping identity information during working memory using a delayed match-to-sample (DMS) task. In the overlapping condition, two faces from the same individual with different facial expressions were presented at sample. In the non-overlapping condition, the two sample faces were from two different individuals with different expressions. fMRI activity was assessed by contrasting the overlapping and non-overlapping condition at sample, delay, and test. The lateral orbitofrontal cortex showed increased fMRI signal in the overlapping condition in all three phases of the DMS task and increased functional connectivity with the hippocampus when encoding overlapping stimuli. The hippocampus showed increased fMRI signal at test. These data suggest lateral orbitofrontal cortex helps encode and maintain representations of overlapping stimuli in working memory while the orbitofrontal cortex and hippocampus contribute to the successful retrieval of overlapping stimuli. We suggest the lateral orbitofrontal cortex and hippocampus play a role in encoding, maintaining, and retrieving social cues, especially when multiple interactions with an individual need to be disambiguated in a rapidly changing social context in order to make appropriate social responses. PMID:23640112
Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review
Fineberg, Naomi A; Potenza, Marc N; Chamberlain, Samuel R; Berlin, Heather A; Menzies, Lara; Bechara, Antoine; Sahakian, Barbara J; Robbins, Trevor W; Bullmore, Edward T; Hollander, Eric
2010-01-01
Failures in cortical control of fronto-striatal neural circuits may underpin impulsive and compulsive acts. In this narrative review, we explore these behaviors from the perspective of neural processes and consider how these behaviors and neural processes contribute to mental disorders such as obsessive–compulsive disorder (OCD), obsessive–compulsive personality disorder, and impulse-control disorders such as trichotillomania and pathological gambling. We present findings from a broad range of data, comprising translational and human endophenotypes research and clinical treatment trials, focussing on the parallel, functionally segregated, cortico-striatal neural projections, from orbitofrontal cortex (OFC) to medial striatum (caudate nucleus), proposed to drive compulsive activity, and from the anterior cingulate/ventromedial prefrontal cortex to the ventral striatum (nucleus accumbens shell), proposed to drive impulsive activity, and the interaction between them. We suggest that impulsivity and compulsivity each seem to be multidimensional. Impulsive or compulsive behaviors are mediated by overlapping as well as distinct neural substrates. Trichotillomania may stand apart as a disorder of motor-impulse control, whereas pathological gambling involves abnormal ventral reward circuitry that identifies it more closely with substance addiction. OCD shows motor impulsivity and compulsivity, probably mediated through disruption of OFC-caudate circuitry, as well as other frontal, cingulate, and parietal connections. Serotonin and dopamine interact across these circuits to modulate aspects of both impulsive and compulsive responding and as yet unidentified brain-based systems may also have important functions. Targeted application of neurocognitive tasks, receptor-specific neurochemical probes, and brain systems neuroimaging techniques have potential for future research in this field. PMID:19940844
Brain mediators of predictive cue effects on perceived pain
Atlas, Lauren Y.; Bolger, Niall; Lindquist, Martin A.; Wager, Tor D.
2010-01-01
Information about upcoming pain strongly influences pain experience in experimental and clinical settings, but little is known about the brain mechanisms that link expectation and experience. To identify the pathways by which informational cues influence perception, analyses must jointly consider both the effects of cues on brain responses and the relationship between brain responses and changes in reported experience. Our task and analysis strategy were designed to test these relationships. Auditory cues elicited expectations for low or high painful thermal stimulation, and we assessed how cues influenced human subjects’ pain reports and BOLD fMRI responses to matched levels of noxious heat. We used multi-level mediation analysis to identify brain regions that 1) are modulated by predictive cues, 2) predict trial-to-trial variations in pain reports, and 3) formally mediate the relationship between cues and reported pain. Cues influenced heat-evoked responses in most canonical pain-processing regions, including both medial and lateral pain pathways. Effects on several regions correlated with pre-task expectations, suggesting that expectancy plays a prominent role. A subset of pain-processing regions, including anterior cingulate cortex, anterior insula, and thalamus, formally mediated cue effects on pain. Effects on these regions were in turn mediated by cue-evoked anticipatory activity in the medial orbitofrontal cortex (OFC) and ventral striatum, areas not previously directly implicated in nociception. These results suggest that activity in pain-processing regions reflects a combination of nociceptive input and top-down information related to expectations, and that anticipatory processes in OFC and striatum may play a key role in modulating pain processing. PMID:20881115
Multispectral brain morphometry in Tourette syndrome persisting into adulthood
Martino, Davide; Cavanna, Andrea E.; Hutton, Chloe; Orth, Michael; Robertson, Mary M.; Critchley, Hugo D.; Frackowiak, Richard S.
2010-01-01
Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural change. PMID:21071387
ERIC Educational Resources Information Center
van Duuren, Esther; Nieto Escamez, Francisco A.; Joosten, Ruud N. J. M. A.; Visser, Rein; Mulder, Antonius B.; Pennartz, Cyriel M. A.
2007-01-01
The orbitofrontal cortex (OBFc) has been suggested to code the motivational value of environmental stimuli and to use this information for the flexible guidance of goal-directed behavior. To examine whether information regarding reward prediction is quantitatively represented in the rat OBFc, neural activity was recorded during an olfactory…
ERIC Educational Resources Information Center
Ross, Robert S.; McGaughy, Jill; Eichenbaum, Howard
2005-01-01
The social transmission of food preference task (STFP) has been used to examine the involvement of the hippocampus in learning and memory for a natural odor-odor association. However, cortical involvement in STFP has not been extensively studied. The orbitofrontal cortex (OFC) is important in odor-guided learning, and cholinergic depletion of the…
Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect.
Welborn, B Locke; Papademetris, Xenophon; Reis, Deidre L; Rajeevan, Nallakkandi; Bloise, Suzanne M; Gray, Jeremy R
2009-12-01
Sex differences in brain structure have been examined extensively but are not completely understood, especially in relation to possible functional correlates. Our two aims in this study were to investigate sex differences in brain structure, and to investigate a possible relation between orbitofrontal cortex subregions and affective individual differences. We used tensor-based morphometry to estimate local brain volume from MPRAGE images in 117 healthy right-handed adults (58 female), age 18-40 years. We entered estimates of local brain volume as the dependent variable in a GLM, controlling for age, intelligence and whole-brain volume. Men had larger left planum temporale. Women had larger ventromedial prefrontal cortex (vmPFC), right lateral orbitofrontal (rlOFC), cerebellum, and bilateral basal ganglia and nearby white matter. vmPFC but not rlOFC volume covaried with self-reported emotion regulation strategies (reappraisal, suppression), expressivity of positive emotions (but not of negative), strength of emotional impulses, and cognitive but not somatic anxiety. vmPFC volume statistically mediated sex differences in emotion suppression. The results confirm prior reports of sex differences in orbitofrontal cortex structure, and are the first to show that normal variation in vmPFC volume is systematically related to emotion regulation and affective individual differences.
Mitchell, D G V; Fine, C; Richell, R A; Newman, C; Lumsden, J; Blair, K S; Blair, R J R
2006-05-01
Previous work has shown that individuals with psychopathy are impaired on some forms of associative learning, particularly stimulus-reinforcement learning (Blair et al., 2004; Newman & Kosson, 1986). Animal work suggests that the acquisition of stimulus-reinforcement associations requires the amygdala (Baxter & Murray, 2002). Individuals with psychopathy also show impoverished reversal learning (Mitchell, Colledge, Leonard, & Blair, 2002). Reversal learning is supported by the ventrolateral and orbitofrontal cortex (Rolls, 2004). In this paper we present experiments investigating stimulus-reinforcement learning and relearning in patients with lesions of the orbitofrontal cortex or amygdala, and individuals with developmental psychopathy without known trauma. The results are interpreted with reference to current neurocognitive models of stimulus-reinforcement learning, relearning, and developmental psychopathy. Copyright (c) 2006 APA, all rights reserved.
Júnior, Hélio Vitoriano Nobre; de França Fonteles, Marta Maria
2009-01-01
Previous experiments have shown that the generation of free radicals in rat brain homogenates is increased following pilocarpine-induced seizures and status epilepticus (SE). This study was aimed at investigating the changes in neurochemical mechanisms such as lipid peroxidation levels, nitrite content, glutathione reduced (GSH) concentration, superoxide dismutase and catalase activities in the frontal cortex and the striatum of Wistar adult rats after seizures and SE induced by pilocarpine. The control group was treated with 0.9% saline and another group of rats received pilocarpine (400 mg/kg, i.p.). Both groups were sacrificed 24 h after the treatments. Lipid peroxidation level, nitrite content, GSH concentration and enzymatic activities were measured by using spectrophotometric methods. Our findings showed that pilocarpine administration and its resulting seizures and SE produced a significant increase of lipid peroxidation level in the striatum (47%) and frontal cortex (59%). Nitrite contents increased 49% and 73% in striatum and frontal cortex in pilocarpine group, respectively. In GSH concentrations were decreases of 54% and 58% in the striatum and frontal cortex in pilocarpine group, respectively. The catalase activity increased 39% and 49% in the striatum and frontal cortex, respectively. The superoxide dismutase activity was not altered in the striatum, but it was present at a 24% increase in frontal cortex. These results suggest that there is a direct relationship between the lipid peroxidation and nitrite contents during epileptic activity that can be responsible for the superoxide dismutase and catalase enzymatic activity changes observed during the establishment of seizures and SE induced by pilocarpine. PMID:20592767
Barlow, Rebecca L; Alsiö, Johan; Jupp, Bianca; Rabinovich, Rebecca; Shrestha, Saurav; Roberts, Angela C; Robbins, Trevor W; Dalley, Jeffrey W
2015-06-01
Dysfunction of the orbitofrontal cortex (OFC) impairs the ability of individuals to flexibly adapt behavior to changing stimulus-reward (S-R) contingencies. Impaired flexibility also results from interventions that alter serotonin (5-HT) and dopamine (DA) transmission in the OFC and dorsomedial striatum (DMS). However, it is unclear whether similar mechanisms underpin naturally occurring variations in behavioral flexibility. In the present study, we used a spatial-discrimination serial reversal procedure to investigate interindividual variability in behavioral flexibility in rats. We show that flexibility on this task is improved following systemic administration of the 5-HT reuptake inhibitor citalopram and by low doses of the DA reuptake inhibitor GBR12909. Rats in the upper quintile of the distribution of perseverative responses during repeated S-R reversals showed significantly reduced levels of the 5-HT metabolite, 5-hydroxy-indoleacetic acid, in the OFC. Additionally, 5-HT2A receptor binding in the OFC of mid- and high-quintile rats was significantly reduced compared with rats in the low-quintile group. These perturbations were accompanied by an increase in the expression of monoamine oxidase-A (MAO-A) and MAO-B in the lateral OFC and by a decrease in the expression of MAO-A, MAO-B, and tryptophan hydroxylase in the dorsal raphé nucleus of highly perseverative rats. We found no evidence of significant differences in markers of DA and 5-HT function in the DMS or MAO expression in the ventral tegmental area of low- vs high-perseverative rats. These findings indicate that diminished serotonergic tone in the OFC may be an endophenotype that predisposes to behavioral inflexibility and other forms of compulsive behavior.
Altered intrinsic functional brain architecture in female patients with bulimia nervosa
Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun’Ai; Correll, Christoph U.; Mitchell, Philip B.; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei
2017-01-01
Background Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. Methods We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. Results We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. Limitations We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Conclusion Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa. PMID:28949286
Altered intrinsic functional brain architecture in female patients with bulimia nervosa.
Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei
2017-11-01
Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa.
Candy and the brain: neural response to candy gains and losses.
Luking, Katherine R; Barch, Deanna M
2013-09-01
Incentive processing is a critical component of a host of cognitive processes, including attention, motivation, and learning. Neuroimaging studies have clarified the neural systems underlying processing of primary and secondary rewards in adults. However, current reward paradigms have hindered comparisons across these reward types as well as between age groups. To address methodological issues regarding the timing of incentive delivery (during scan vs. postscan) and the age-appropriateness of the incentive type, we utilized fMRI and a modified version of a card-guessing game (CGG), in which candy pieces delivered postscan served as the reinforcer, to investigate neural responses to incentives. Healthy young adults 22-26 years of age won and lost large and small amounts of candy on the basis of their ability to guess the number on a mystery card. BOLD activity was compared following candy gain (large/small), loss (large/small), and neutral feedback. During candy gains, adults recruited regions typically involved in response to monetary and other rewards, such as the caudate, putamen, and orbitofrontal cortex. During losses, they displayed greater deactivation in the hippocampus than in response to neutral and gain feedback. Additionally, individual-difference analyses suggested a negative relationship between reward sensitivity (assessed by the Behavioral Inhibition/Behavioral Activation Scales) and the difference between high- and low-magnitude losses in the caudate and lateral orbitofrontal cortex. Also within the striatum, greater punishment sensitivity was positively related to the difference in activity following high as compared to low gains. Overall, these results show strong overlap with those from previous monetary versions of the CGG and provide a baseline for future work with developmental populations.
Barlow, Rebecca L; Alsiö, Johan; Jupp, Bianca; Rabinovich, Rebecca; Shrestha, Saurav; Roberts, Angela C; Robbins, Trevor W; Dalley, Jeffrey W
2015-01-01
Dysfunction of the orbitofrontal cortex (OFC) impairs the ability of individuals to flexibly adapt behavior to changing stimulus-reward (S-R) contingencies. Impaired flexibility also results from interventions that alter serotonin (5-HT) and dopamine (DA) transmission in the OFC and dorsomedial striatum (DMS). However, it is unclear whether similar mechanisms underpin naturally occurring variations in behavioral flexibility. In the present study, we used a spatial-discrimination serial reversal procedure to investigate interindividual variability in behavioral flexibility in rats. We show that flexibility on this task is improved following systemic administration of the 5-HT reuptake inhibitor citalopram and by low doses of the DA reuptake inhibitor GBR12909. Rats in the upper quintile of the distribution of perseverative responses during repeated S-R reversals showed significantly reduced levels of the 5-HT metabolite, 5-hydroxy-indoleacetic acid, in the OFC. Additionally, 5-HT2A receptor binding in the OFC of mid- and high-quintile rats was significantly reduced compared with rats in the low-quintile group. These perturbations were accompanied by an increase in the expression of monoamine oxidase-A (MAO-A) and MAO-B in the lateral OFC and by a decrease in the expression of MAO-A, MAO-B, and tryptophan hydroxylase in the dorsal raphé nucleus of highly perseverative rats. We found no evidence of significant differences in markers of DA and 5-HT function in the DMS or MAO expression in the ventral tegmental area of low- vs high-perseverative rats. These findings indicate that diminished serotonergic tone in the OFC may be an endophenotype that predisposes to behavioral inflexibility and other forms of compulsive behavior. PMID:25567428
Tailored unilobar and multilobar resections for orbitofrontal-plus epilepsy.
Serletis, Demitre; Bulacio, Juan; Alexopoulos, Andreas; Najm, Imad; Bingaman, William; González-Martínez, Jorge
2014-10-01
Surgery for frontal lobe epilepsy often has poor results, likely because of incomplete resection of the epileptogenic zone. To present our experience with a series of patients manifesting 2 different anatomo-electro-clinical patterns of refractory orbitofrontal epilepsy, necessitating different surgical approaches for resection in each group. Eleven patients with refractory epilepsy involving the orbitofrontal region were consecutively identified over 3 years in whom stereoelectroencephalography identified the epileptogenic zone. All patients underwent preoperative evaluation, stereoelectroencephalography, and postoperative magnetic resonance imaging. Demographic features, seizure semiology, imaging characteristics, location of the epileptogenic zone, surgical resection site, and pathological diagnosis were analyzed. Surgical outcome was correlated with type of resection. Five patients exhibited orbitofrontal plus frontal epilepsy with the epileptogenic zone consistently residing in the frontal lobe; after surgery, 4 patients were free of disabling seizures (Engel I) and 1 patient improved (Engel II). The remaining 6 patients had multilobar epilepsy with the epileptogenic zone located in the orbitofrontal cortex associated with the temporal polar region (orbitofrontal plus temporal polar epilepsy). After surgery, all 6 patients were free of disabling seizures (Engel I). Pathology confirmed focal cortical dysplasia in all patients. We report no complications or mortalities in this series. Our findings highlight the importance of differentiating between orbitofrontal plus frontal and orbitofrontal plus temporal polar epilepsy in patients afflicted with seizures involving the orbitofrontal cortex. For identified cases of orbitofrontal plus temporal polar epilepsy, a multilobar resection including the temporal pole may lead to improved postoperative outcomes with minimal morbidity or mortality.
Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder.
Schäfer, Axel; Vaitl, Dieter; Schienle, Anne
2010-04-01
This study investigated whether bulimia nervosa (BN) and binge-eating disorder (BED) are associated with structural brain abnormalities. Both disorders share the main symptom binge-eating, but are considered differential diagnoses. We attempted to identify alterations in grey matter volume (GMV) that are present in both psychopathologies as well as disorder-specific GMV characteristics. Such information can help to improve neurobiological models of eating disorders and their classification. A total of 50 participants (patients suffering from BN (purge type), BED, and normal-weight controls) underwent structural MRI scanning. GMV for specific brain regions involved in food/reinforcement processing was analyzed by means of voxel-based morphometry. Both patient groups were characterized by greater volumes of the medial orbitofrontal cortex (OFC) compared to healthy controls. In BN patients, who had increased ventral striatum volumes, body mass index and purging severity were correlated with striatal grey matter volume. Altogether, our data implicate a crucial role of the medial OFC in the studied eating disorders. The structural abnormality might be associated with dysfunctions in food reward processing and/or self-regulation. The bulimia-specific volume enlargement of the ventral striatum is discussed in the framework of negative reinforcement through purging and associated weight regulation. Copyright 2009 Elsevier Inc. All rights reserved.
The Neurobiology of Reference-Dependent Value Computation
De Martino, Benedetto; Kumaran, Dharshan; Holt, Beatrice; Dolan, Raymond J.
2009-01-01
A key focus of current research in neuroeconomics concerns how the human brain computes value. Although, value has generally been viewed as an absolute measure (e.g., expected value, reward magnitude), much evidence suggests that value is more often computed with respect to a changing reference point, rather than in isolation. Here, we present the results of a study aimed to dissociate brain regions involved in reference-independent (i.e., “absolute”) value computations, from those involved in value computations relative to a reference point. During functional magnetic resonance imaging, subjects acted as buyers and sellers during a market exchange of lottery tickets. At a behavioral level, we demonstrate that subjects systematically accorded a higher value to objects they owned relative to those they did not, an effect that results from a shift in reference point (i.e., status quo bias or endowment effect). Our results show that activity in orbitofrontal cortex and dorsal striatum track parameters such as the expected value of lottery tickets indicating the computation of reference-independent value. In contrast, activity in ventral striatum indexed the degree to which stated prices, at a within-subjects and between-subjects level, were distorted with respect to a reference point. The findings speak to the neurobiological underpinnings of reference dependency during real market value computations. PMID:19321780
Encoding changes in orbitofrontal cortex in reversal-impaired aged rats.
Schoenbaum, Geoffrey; Setlow, Barry; Saddoris, Michael P; Gallagher, Michela
2006-03-01
Previous work in rats and primates has shown that normal aging can be associated with a decline in cognitive flexibility mediated by prefrontal circuits. For example, aged rats are impaired in rapid reversal learning, which in young rats depends critically on the orbitofrontal cortex. To assess whether aging-related reversal impairments reflect orbitofrontal dysfunction, we identified aged rats with reversal learning deficits and then recorded single units as these rats, along with unimpaired aged cohorts and young control rats, learned and reversed a series of odor discrimination problems. We found that the flexibility of neural correlates in orbitofrontal cortex was markedly diminished in aged rats characterized as reversal-impaired in initial training. In particular, although many cue-selective neurons in young and aged-unimpaired rats reversed odor preference when the odor-outcome associations were reversed, cue-selective neurons in reversal-impaired aged rats did not. In addition, outcome-expectant neurons in aged-impaired rats failed to become active during cue sampling after learning. These altered features of neural encoding could provide a basis for cognitive inflexibility associated with normal aging.
Abdel-Salam, Omar M E; Khadrawy, Yasser A; Salem, Neveen A; Sleem, Amany A
2011-06-01
We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.
Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C R; Janardhan Reddy, Y C
2015-01-01
Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions - the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children's Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe - especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD.
Face-selective and auditory neurons in the primate orbitofrontal cortex.
Rolls, Edmund T; Critchley, Hugo D; Browning, Andrew S; Inoue, Kazuo
2006-03-01
Neurons with responses selective for faces are described in the macaque orbitofrontal cortex. The neurons typically respond 2-13 times more to the best face than to the best non-face stimulus, and have response latencies which are typically in the range of 130-220 ms. Some of these face-selective neurons respond to identity, and others to facial expression. Some of the neurons do not have different responses to different views of a face, which is a useful property of neurons responding to face identity. Other neurons have view-dependent responses, and some respond to moving but not still heads. The neurons with face expression, face movement, or face view-dependent responses would all be useful as part of a system decoding and representing signals important in social interactions. The representation of face identity is also important in social interactions, for it provides some of the information needed in order to make different responses to different individuals. In addition, some orbitofrontal cortex neurons were shown to be tuned to auditory stimuli, including for some neurons, the sound of vocalizations. The findings are relevant to understanding the functions of the primate including human orbitofrontal cortex in normal behaviour, and to understanding the effects of damage to this region in humans.
Cooperative interactions between hippocampal and striatal systems support flexible navigation
Brown, Thackery I; Ross, Robert S; Tobyne, Sean M; Stern, Chantal E
2012-01-01
Research in animals and humans has demonstrated that the hippocampus is critical for retrieving distinct representations of overlapping sequences of information. There is recent evidence that the caudate nucleus and orbitofrontal cortex are also involved in disambiguation of overlapping spatial representations. The hippocampus and caudate are functionally distinct regions, but both have anatomical links with the orbitofrontal cortex. The present study used an fMRI-based functional connectivity analysis in humans to examine the functional relationship between the hippocampus, caudate, and orbitofrontal cortex when participants use contextual information to navigate well-learned spatial routes which share common elements. Participants were trained outside the scanner to navigate virtual mazes from a first-person perspective. Overlapping condition mazes began and ended at distinct locations, but converged in the middle to share some hallways with another maze. Non-overlapping condition mazes did not share any hallways with any other maze. Successful navigation through the overlapping hallways required contextual information identifying the current navigational route to guide the appropriate response for a given trial. Results revealed greater functional connectivity between the hippocampus, caudate, and orbitofrontal cortex for overlapping mazes compared to non-overlapping mazes. The current findings suggest that the hippocampus and caudate interact with prefrontal structures cooperatively for successful contextually-dependent navigation. PMID:22266411
Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F
2010-08-01
Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.
Bhanji, Jamil P; Beer, Jennifer S
2013-05-29
Unattractive job candidates face a disadvantage when interviewing for a job. Employers' evaluations are colored by the candidate's physical attractiveness even when they take job interview performance into account. This example illustrates unexplored questions about the neural basis of social evaluation in humans. What neural regions support the lasting effects of initial impressions (even after getting to know someone)? How does the brain process information that changes our minds about someone? Job candidates' competence was evaluated from photographs and again after seeing snippets of job interviews. Left lateral orbitofrontal cortex modulation serves as a warning signal for initial reactions that ultimately undermine evaluations even when additional information is taken into account. The neural basis of changing one's mind about a candidate is not a simple matter of computing the amount of competence-affirming information in their job interview. Instead, seeing a candidate for the better is somewhat distinguishable at the neural level from seeing a candidate for the worse. Whereas amygdala modulation marks the extremity of evaluation change, favorable impression change additionally draws on parametric modulation of lateral prefrontal cortex and unfavorable impression change additionally draws on parametric modulation of medial prefrontal cortex, temporal cortex, and striatum. Investigating social evaluation as a dynamic process (rather than a one-time impression) paints a new picture of its neural basis and highlights the partially dissociable processes that contribute to changing your mind about someone for the better or the worse.
A decade of decoding reward-related fMRI signals and where we go from here.
Kahnt, Thorsten
2017-06-04
Information about potential rewards in the environment is essential for guiding adaptive behavior, and understanding neural reward processes may provide insights into neuropsychiatric dysfunctions. Over the past 10 years, multivoxel pattern analysis (MVPA) techniques have been used to study brain areas encoding information about expected and experienced outcomes. These studies have identified reward signals throughout the brain, including the striatum, medial prefrontal cortex, orbitofrontal cortex, dorsolateral prefrontal cortex, and parietal cortex. This review article discusses some of the assumptions and models that are used to interpret results from these studies, and how they relate to findings from animal electrophysiology. The article reviews and summarizes some of the key findings from MVPA studies on reward. In particular, it first focuses on studies that, in addition to mapping out the brain areas that process rewards, have provided novel insights into the coding mechanisms of value and reward. Then, it discusses examples of how multivariate imaging approaches are being used more recently to decode features of expected rewards that go beyond value, such as the identity of an expected outcome or the action required to obtain it. The study of such complex and multifaceted reward representations highlights the key advantage of using representational methods, which are uniquely able to reveal these signals and may narrow the gap between animal and human research. Applied in a clinical context, MVPA may advance our understanding of neuropsychiatric disorders and the development of novel treatment strategies. Copyright © 2017 Elsevier Inc. All rights reserved.
Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder.
Wilbertz, Gregor; van Elst, Ludger Tebartz; Delgado, Mauricio R; Maier, Simon; Feige, Bernd; Philipsen, Alexandra; Blechert, Jens
2012-03-01
Impulsivity symptoms of adult attention deficit hyperactivity disorder (ADHD) such as increased risk taking have been linked with impaired reward processing. Previous studies have focused on reward anticipation or on rewarded executive functioning tasks and have described a striatal hyporesponsiveness and orbitofrontal alterations in adult and adolescent ADHD. Passive reward delivery and its link to behavioral impulsivity are less well understood. To study this crucial aspect of reward processing we used functional magnetic resonance imaging (fMRI) combined with electrodermal assessment in male and female adult ADHD patients (N=28) and matched healthy control participants (N=28) during delivery of monetary and non-monetary rewards. Further, two behavioral tasks assessed risky decision making (game of dice task) and delay discounting. Results indicated that both groups activated ventral and dorsal striatum and the medial orbitofrontal cortex (mOFC) in response to high-incentive (i.e. monetary) rewards. A similar, albeit less strong activation pattern was found for low-incentive (i.e. non-monetary) rewards. Group differences emerged when comparing high and low incentive rewards directly: activation in the mOFC coded for the motivational change in reward delivery in healthy controls, but not ADHD patients. Additionally, this dysfunctional mOFC activity in patients correlated with risky decision making and delay discounting and was paralleled by physiological arousal. Together, these results suggest that the mOFC codes reward value and type in healthy individuals whereas this function is deficient in ADHD. The brain-behavior correlations suggest that this deficit might be related to behavioral impulsivity. Reward value processing difficulties in ADHD should be considered when assessing reward anticipation and emotional learning in research and applied settings. Copyright © 2011 Elsevier Inc. All rights reserved.
White, Stuart F; Fowler, Katherine A; Sinclair, Stephen; Schechter, Julia C; Majestic, Catherine M; Pine, Daniel S; Blair, R James
2014-05-01
Youth with disruptive behavior disorders (DBD), including conduct disorder (CD) and oppositional defiant disorder (ODD), have difficulties in reinforcement-based decision making, the neural basis of which is poorly understood. Studies examining decision making in youth with DBD have revealed reduced reward responses within the ventromedial prefrontal cortex/orbitofrontal cortex (vmPFC/OFC), increased responses to unexpected punishment within the vmPFC and striatum, and reduced use of expected value information in the anterior insula cortex and dorsal anterior cingulate cortex during the avoidance of suboptimal choices. Previous work has used only monetary reinforcement. The current study examined whether dysfunction in youth with DBD during decision making extended to environmental reinforcers. A total of 30 youth (15 healthy youth and 15 youth with DBD) completed a novel reinforcement-learning paradigm using environmental reinforcers (physical threat images, e.g., striking snake image; contamination threat images, e.g., rotting food; appetitive images, e.g., puppies) while undergoing functional magnetic resonance imaging (fMRI). Behaviorally, healthy youth were significantly more likely to avoid physical threat, but not contamination threat, stimuli than youth with DBD. Imaging results revealed that youth with DBD showed significantly reduced use of expected value information in the bilateral caudate, thalamus, and posterior cingulate cortex during the avoidance of suboptimal responses. The current data suggest that youth with DBD show deficits to environmental reinforcers similar to the deficits seen to monetary reinforcers. Importantly, this deficit was unrelated to callous-unemotional (CU) traits, suggesting that caudate impairment may be a common deficit across youth with DBD. Published by Elsevier Inc.
Saund, Jasjot; Dautan, Daniel; Rostron, Claire; Urcelay, Gonzalo P; Gerdjikov, Todor V
2017-08-01
Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues. Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats. The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 μl bilateral; 3 μM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively. We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field. These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control.
Regional brain changes in bipolar I depression: a functional magnetic resonance imaging study
Altshuler, Lori; Bookheimer, Susan; Townsend, Jennifer; Proenza, Manuel A; Sabb, Fred; Mintz, Jim; Cohen, Mark S
2011-01-01
Objective To investigate neural activity in prefrontal cortex and amygdala during bipolar depression. Methods Eleven bipolar I depressed and 17 normal subjects underwent functional magnetic resonance imaging (fMRI) while performing a task known to activate prefrontal cortex and amygdala. Whole brain activation patterns were determined using statistical parametric mapping (SPM) when subjects matched faces displaying neutral or negative affect (match condition) or matched a geometric form (control condition). Contrasts for each group for the match versus control conditions were used in a second-level random effects analysis. Results Random effects between-group analysis revealed significant attenuation in right and left orbitofrontal cortex (BA47) and right dorsolateral prefrontal cortex (DLPFC) (BA9) in bipolar depressed subjects. Additionally, random effects analysis showed a significantly increased activation in left lateral orbitofrontal cortex (BA10) in the bipolar depressed versus control subjects. Within-group contrasts demonstrated significant amygdala activation in the controls and no significant amygdala activation in the bipolar depressed subjects. The amygdala between-group difference, however, was not significant. Conclusions Bipolar depression is associated with attenuated bilateral orbitofrontal (BA47) activation, attenuated right DLPFC (BA9) activation and heightened left orbitofrontal (BA10) activation. BA47 attenuation has also been reported in mania and may thus represent a trait feature of the disorder. Increased left prefrontal (BA10) activation may be a state marker to bipolar depression. Our findings suggest dissociation between mood-dependent and disease-dependent functional brain abnormalities in bipolar disorder. PMID:18837865
Effective connectivity of a reward network in obese women
Stoeckel, Luke E.; Kim, Jieun; Weller, Rosalyn E.; Cox, James E.; Cook, Edwin W.; Horwitz, Barry
2012-01-01
Exaggerated reactivity to food cues in obese women appears to be mediated in part by a hyperactive reward system that includes the nucleus accumbens, amygdala, and orbitofrontal cortex. The present study used fMRI to investigate whether differences between 12 obese and 12 normal-weight women in reward-related brain activation in response to food images can be explained by changes in the functional interactions between key reward network regions. A two-step path analysis/General Linear Model approach was used to test whether there were group differences in network connections between nucleus accumbens, amygdala, and orbitofrontal cortex in response to high- and low-calorie food images. There was abnormal connectivity in the obese group in response to both high- and low-calorie food cues compared to normal-weight controls. Compared to controls, the obese group had a relative deficiency in the amygdala’s modulation of activation in both orbitofrontal cortex and nucleus accumbens, but excessive influence of orbitofrontal cortex’s modulation of activation in nucleus accumbens. The deficient projections from the amygdala might relate to suboptimal modulation of the affective/emotional aspects of a food’s reward value or an associated cue’s motivational salience, whereas increased orbitofrontal cortex to nucleus accumbens connectivity might contribute to a heightened drive to eat in response to a food cue. Thus, it is possible that not only greater activation of the reward system, but also differences in the interaction of regions in this network may contribute to the relatively increased motivational value of foods in obese individuals. PMID:19467298
Modulation of value representation by social context in the primate orbitofrontal cortex.
Azzi, João C B; Sirigu, Angela; Duhamel, Jean-René
2012-02-07
Primates depend for their survival on their ability to understand their social environment, and their behavior is often shaped by social circumstances. We report that the orbitofrontal cortex, a brain region involved in motivation and reward, is tuned to social information. Macaque monkeys worked to collect rewards for themselves and two monkey partners. Behaviorally, monkeys discriminated between cues signaling large and small [corrected] rewards, and between cues signaling rewards to self only and reward to both self and another monkey, with a preference for the former over the latter in both instances. Single neurons recorded during this task encoded the meaning of visual cues that predicted the magnitude of future rewards, as well as the motivational value of rewards obtained in a social context. Furthermore, neuronal activity was found to track momentary social preferences and partner's identity and social rank. The orbitofrontal cortex thus contains key neuronal mechanisms for the evaluation of social information.
Regret and its avoidance: a neuroimaging study of choice behavior.
Coricelli, Giorgio; Critchley, Hugo D; Joffily, Mateus; O'Doherty, John P; Sirigu, Angela; Dolan, Raymond J
2005-09-01
Human decisions can be shaped by predictions of emotions that ensue after choosing advantageously or disadvantageously. Indeed, anticipating regret is a powerful predictor of future choices. We measured brain activity using functional magnetic resonance imaging (fMRI) while subjects selected between two gambles wherein regret was induced by providing information about the outcome of the unchosen gamble. Increasing regret enhanced activity in the medial orbitofrontal region, the anterior cingulate cortex and the hippocampus. Notably, across the experiment, subjects became increasingly regret-aversive, a cumulative effect reflected in enhanced activity within medial orbitofrontal cortex and amygdala. This pattern of activity reoccurred just before making a choice, suggesting that the same neural circuitry mediates direct experience of regret and its anticipation. These results demonstrate that medial orbitofrontal cortex modulates the gain of adaptive emotions in a manner that may provide a substrate for the influence of high-level emotions on decision making.
Emotion, Decision-Making and Substance Dependence: A Somatic-Marker Model of Addiction
Verdejo-García, A; Pérez-García, M; Bechara, A
2006-01-01
Similar to patients with orbitofrontal cortex lesions, substance dependent individuals (SDI) show signs of impairments in decision-making, characterised by a tendency to choose the immediate reward at the expense of severe negative future consequences. The somatic-marker hypothesis proposes that decision-making depends in many important ways on neural substrates that regulate homeostasis, emotion and feeling. According to this model, there should be a link between abnormalities in experiencing emotions in SDI, and their severe impairments in decision-making in real-life. Growing evidence from neuroscientific studies suggests that core aspects of substance addiction may be explained in terms of abnormal emotional guidance of decision-making. Behavioural studies have revealed emotional processing and decision-making deficits in SDI. Combined neuropsychological and physiological assessment has demonstrated that the poorer decision-making of SDI is associated with altered reactions to reward and punishing events. Imaging studies have shown that impaired decision-making in addiction is associated with abnormal functioning of a distributed neural network critical for the processing of emotional information, including the ventromedial cortex, the amygdala, the striatum, the anterior cingulate cortex, and the insular/somato-sensory cortices, as well as non-specific neurotransmitter systems that modulate activities of neural processes involved in decision-making. The aim of this paper is to review this growing evidence, and to examine the extent of which these studies support a somatic-marker model of addiction. PMID:18615136
Neural responses to unfairness and fairness depend on self-contribution to the income.
Guo, Xiuyan; Zheng, Li; Cheng, Xuemei; Chen, Menghe; Zhu, Lei; Li, Jianqi; Chen, Luguang; Yang, Zhiliang
2014-10-01
Self-contribution to the income (individual achievement) was an important factor which needs to be taken into individual's fairness considerations. This study aimed at elucidating the modulation of self-contribution to the income, on recipient's responses to unfairness in the Ultimatum Game. Eighteen participants were scanned while they were playing an adapted version of the Ultimatum Game as responders. Before splitting money, the proposer and the participant (responder) played the ball-guessing game. The responder's contribution to the income was manipulated by both the participant's and the proposer's accuracy in the ball-guessing game. It turned out that the participants more often rejected unfair offers and gave lower fairness ratings when they played a more important part in the earnings. At the neural level, anterior insula, anterior cingulate cortex, dorsolateral prefrontal cortex and temporoparietal junction showed greater activities to unfairness when self-contribution increased, whereas ventral striatum and medial orbitofrontal gyrus showed higher activations to fair (vs unfair) offers in the other-contributed condition relative to the other two. Besides, the activations of right dorsolateral prefrontal cortex during unfair offers showed positive correlation with rejection rates in the self-contributed condition. These findings shed light on the significance of self-contribution in fairness-related social decision-making processes. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Ehrlich, Stefan; Geisler, Daniel; Ritschel, Franziska; King, Joseph A; Seidel, Maria; Boehm, Ilka; Breier, Marion; Clas, Sabine; Weiss, Jessika; Marxen, Michael; Smolka, Michael N; Roessner, Veit; Kroemer, Nils B
2015-09-01
Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives. This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related feedback. In order to avoid confounding effects of undernutrition, we studied female participants recovered from anorexia nervosa and closely matched healthy female controls. The fMRI analysis (including node-to-node functional connectivity) followed a region of interest approach based on models of the brain reward system and cognitive control regions implicated in anorexia nervosa: the ventral striatum, medial orbitofrontal cortex (mOFC) and dorsolateral prefrontal cortex (DLPFC). We included 30 recovered patients and 30 controls in our study. There were no behavioural differences and no differences in hemodynamic responses of the ventral striatum and the mOFC in the 2 phases of the task. However, relative to controls, recovered patients showed elevated DLPFC activity during the anticipation phase, failed to deactivate this region during the feedback phase and displayed greater functional coupling between the DLPFC and mOFC. Recovered patients also had stronger associations than controls between anticipation-related DLPFC responses and instrumental responding. The results we obtained using monetary stimuli might not generalize to other forms of reward. Unaltered neural responses in ventral limbic reward networks but increased recruitment of and connectivity with lateral-frontal brain circuitry in recovered patients suggests an elevated degree of selfregulatory processes in response to rewarding stimuli. An imbalance between brain systems subserving bottom-up and top-down processes may be a trait marker of the disorder.
Effects of motivation on reward and attentional networks: an fMRI study.
Ivanov, Iliyan; Liu, Xun; Clerkin, Suzanne; Schulz, Kurt; Friston, Karl; Newcorn, Jeffrey H; Fan, Jin
2012-11-01
Existing evidence suggests that reward and attentional networks function in concert and that activation in one system influences the other in a reciprocal fashion; however, the nature of these influences remains poorly understood. We therefore developed a three-component task to assess the interaction effects of reward anticipation and conflict resolution on the behavioral performance and the activation of brain reward and attentional systems. Sixteen healthy adult volunteers aged 21-45 years were scanned with functional magnetic resonance imaging (fMRI) while performing the task. A two-way repeated measures analysis of variance (ANOVA) with cue (reward vs. non-reward) and target (congruent vs. incongruent) as within-subjects factors was used to test for main and interaction effects. Neural responses to anticipation, conflict, and reward outcomes were tested. Behaviorally there were main effects of both reward cue and target congruency on reaction time. Neuroimaging results showed that reward anticipation and expected reward outcomes activated components of the attentional networks, including the inferior parietal and occipital cortices, whereas surprising non-rewards activated the frontoinsular cortex bilaterally and deactivated the ventral striatum. In turn, conflict activated a broad network associated with cognitive control and motor functions. Interaction effects showed decreased activity in the thalamus, anterior cingulated gyrus, and middle frontal gyrus bilaterally when difficult conflict trials (e.g., incongruent targets) were preceded by reward cues; in contrast, the ventral striatum and orbitofrontal cortex showed greater activation during congruent targets preceded by reward cues. These results suggest that reward anticipation is associated with lower activation in attentional networks, possibly due to increased processing efficiency, whereas more difficult, conflict trials are associated with lower activity in regions of the reward system, possibly because such trials are experienced as less rewarding.
The human brain representation of odor identification.
Kjelvik, Grete; Evensmoen, Hallvard R; Brezova, Veronika; Håberg, Asta K
2012-07-01
Odor identification (OI) tests are increasingly used clinically as biomarkers for Alzheimer's disease and schizophrenia. The aim of this study was to directly compare the neuronal correlates to identified odors vs. nonidentified odors. Seventeen females with normal olfactory function underwent a functional magnetic resonance imaging (fMRI) experiment with postscanning assessment of spontaneous uncued OI. An event-related analysis was performed to compare within-subject activity to spontaneously identified vs. nonidentified odors at the whole brain level, and in anatomic and functional regions of interest (ROIs) in the medial temporal lobe (MTL). Parameter estimate values and blood oxygenated level-dependent (BOLD) signal curves for correctly identified and nonidentified odors were derived from functional ROIs in hippocampus, entorhinal, piriform, and orbitofrontal cortices. Number of activated voxels and max parameter estimate values were obtained from anatomic ROIs in the hippocampus and the entorhinal cortex. At the whole brain level the correct OI gave rise to increased activity in the left entorhinal cortex and secondary olfactory structures, including the orbitofrontal cortex. Increased activation was also observed in fusiform, primary visual, and auditory cortices, inferior frontal plus inferior temporal gyri. The anatomic MTL ROI analysis showed increased activation in the left entorhinal cortex, right hippocampus, and posterior parahippocampal gyri in correct OI. In the entorhinal cortex and hippocampus the BOLD signal increased specifically in response to identified odors and decreased for nonidentified odors. In orbitofrontal and piriform cortices both identified and nonidentified odors gave rise to an increased BOLD signal, but the response to identified odors was significantly greater than that for nonidentified odors. These results support a specific role for entorhinal cortex and hippocampus in OI, whereas piriform and orbitofrontal cortices are active in both smelling and OI. Moreover, episodic as well as semantic memory systems appeared to support OI.
Pąchalska, Maria; Ledwoch, Beata; Moskała, Marek; Zieniewicz, Katarzyna; Mańko, Grzegorz; Polak, Jarosław
2012-01-01
Summary Background The aim of present article is to compare patients with damage to the orbitofrontal cortex and prison inmates in terms of social intelligence and social intelligence monitoring. In addition, personal principles and emotional regulation of behavior will be assessed in both groups. Material/Methods 20 patients with orbitofrontal cortical injury, 20 prisoners and 20 controls answered questions from the Social Interactions Assessment Questionnaire. Then they evaluated their self-disclosure, reported their emotions related to self-disclosure and declared their personal principles concerning conversations with strangers. Results The patients with damage to the orbitofrontal cortex disclosed themselves to a stranger less appropriately than did other subjects, and did not assess it critically. They also violated their own declared principles, but did not feel embarrassed because of that. The prison inmates spoke out less forthrightly on many topics and felt confused during the whole examination. Conclusions Damage to the the orbital part of frontal lobes may result in a disorder of self-disclosure monitoring and impairment of social intelligence in conversations with unknown persons. Prison inmates give information about themselves unwillingly, which may result from their specific experiences during criminal and judicatory procedures and confinement. PMID:22648252
Abe, Hiroshi; Lee, Daeyeol
2011-01-01
SUMMARY Knowledge about hypothetical outcomes from unchosen actions is beneficial only when such outcomes can be correctly attributed to specific actions. Here, we show that during a simulated rock-paper-scissors game, rhesus monkeys can adjust their choice behaviors according to both actual and hypothetical outcomes from their chosen and unchosen actions, respectively. In addition, neurons in both dorsolateral prefrontal cortex and orbitofrontal cortex encoded the signals related to actual and hypothetical outcomes immediately after they were revealed to the animal. Moreover, compared to the neurons in the orbitofrontal cortex, those in the dorsolateral prefrontal cortex were more likely to change their activity according to the hypothetical outcomes from specific actions. Conjunctive and parallel coding of multiple actions and their outcomes in the prefrontal cortex might enhance the efficiency of reinforcement learning and also contribute to their context-dependent memory. PMID:21609828
Aversive aftertaste changes visual food cue reactivity: An fMRI study on cross-modal perception.
Wabnegger, Albert; Schwab, Daniela; Schienle, Anne
2018-04-23
In western cultures, we are surrounded by appealing visual food cues that stimulate our desire to eat, overeating and subsequent weight gain. Cognitive control of appetite (reappraisal) requires substantial attentional resources and effort in order to work. Therefore, we tested an alternative approach for appetite regulation via functional magnetic resonance imaging. Healthy, normal-weight women were presented with images depicting food (high-/low-caloric), once in combination with a bitter aftertaste (a gustatory stop signal) and once with a neutral taste (water), in a retest design. The aversive aftertaste elicited increased activation in the orbitofrontal/dorsolateral prefrontal cortex (OFC, DLPFC), striatum and frontal operculum during the viewing of high-caloric food (vs. low-caloric food). In addition, the increase in DLPFC activity to high-caloric food in the bitter condition was correlated with reported appetite reduction. The findings indicate that this aftertaste procedure was able to reduce the appetitive value of visual food cues. Copyright © 2018 Elsevier B.V. All rights reserved.
Reward sensitivity is associated with brain activity during erotic stimulus processing.
Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César
2013-01-01
The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.
Reward Sensitivity Is Associated with Brain Activity during Erotic Stimulus Processing
Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César
2013-01-01
The behavioral approach system (BAS) from Gray’s reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray’s theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food. PMID:23840558
Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.
Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C
2007-11-01
Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders.
Weinstein, A; Greif, J; Yemini, Z; Lerman, H; Weizman, A; Even-Sapir, E
2010-06-01
Twenty-two regular smokers (15+ cigarettes per day) were treated with bupropion and group therapy for 2 months. Subjects underwent positron emission tomography (PET) studies using measures of brain global and regional glucose metabolism (regional cerebral metabolic rates of glucose [rCMRglc]) with [18F]-Fluorodeoxyglucose (FDG) twice, after watching a videotape showing smoking scenes and after watching a control movie in counter-balanced order. A questionnaire of smoking urges (QSU) was filled in before and after watching both the movies. Changes in brain metabolic rates of FDG were analysed using Statistical Parametric Maps (SPM 2) in 11 smokers who abstained from smoking in comparison with 11 smokers who continued to smoke during the second month of treatment. Still-smokers had higher craving scores after watching the videotape showing smoking scenes compared with non-smokers. Second, watching the videotape showing smoking scenes compared with the control videotape in still-smokers resulted in increased metabolic rates in the striatum, thalamus and midbrain. Third, the ratings of the urge to smoke cigarettes while watching the videotape showing smoking scenes in still-smokers were associated with brain metabolic activity in the ventral striatum, anterior cingulate, orbitofrontal cortex, middle temporal lobe, hippocampus, insula, midbrain and thalamus. In conclusion, successfully treated smokers showed attenuated craving and reduced activity in the mesolimbic reward circuit.
Computational substrates of norms and their violations during social exchange.
Xiang, Ting; Lohrenz, Terry; Montague, P Read
2013-01-16
Social norms in humans constrain individual behaviors to establish shared expectations within a social group. Previous work has probed social norm violations and the feelings that such violations engender; however, a computational rendering of the underlying neural and emotional responses has been lacking. We probed norm violations using a two-party, repeated fairness game (ultimatum game) where proposers offer a split of a monetary resource to a responder who either accepts or rejects the offer. Using a norm-training paradigm where subject groups are preadapted to either high or low offers, we demonstrate that unpredictable shifts in expected offers creates a difference in rejection rates exhibited by the two responder groups for otherwise identical offers. We constructed an ideal observer model that identified neural correlates of norm prediction errors in the ventral striatum and anterior insula, regions that also showed strong responses to variance-prediction errors generated by the same model. Subjective feelings about offers correlated with these norm prediction errors, and the two signals displayed overlapping, but not identical, neural correlates in striatum, insula, and medial orbitofrontal cortex. These results provide evidence for the hypothesis that responses in anterior insula can encode information about social norm violations that correlate with changes in overt behavior (changes in rejection rates). Together, these results demonstrate that the brain regions involved in reward prediction and risk prediction are also recruited in signaling social norm violations.
Computational Substrates of Norms and Their Violations during Social Exchange
Xiang, Ting; Lohrenz, Terry; Montague, P. Read
2013-01-01
Social norms in humans constrain individual behaviors to establish shared expectations within a social group. Previous work has probed social norm violations and the feelings that such violations engender; however, a computational rendering of the underlying neural and emotional responses has been lacking. We probed norm violations using a two-party, repeated fairness game (ultimatum game) where proposers offer a split of a monetary resource to a responder who either accepts or rejects the offer. Using a norm-training paradigm where subject groups are preadapted to either high or low offers, we demonstrate that unpredictable shifts in expected offers creates a difference in rejection rates exhibited by the two responder groups for otherwise identical offers. We constructed an ideal observer model that identified neural correlates of norm prediction errors in the ventral striatum and anterior insula, regions that also showed strong responses to variance-prediction errors generated by the same model. Subjective feelings about offers correlated with these norm prediction errors, and the two signals displayed overlapping, but not identical, neural correlates in striatum, insula, and medial orbitofrontal cortex. These results provide evidence for the hypothesis that responses in anterior insula can encode information about social norm violations that correlate with changes in overt behavior (changes in rejection rates). Together, these results demonstrate that the brain regions involved in reward prediction and risk prediction are also recruited in signaling social norm violations. PMID:23325247
Wood, Jesse; Ahmari, Susanne E.
2015-01-01
Significant interest in the mechanistic underpinnings of obsessive-compulsive disorder (OCD) has fueled research on the neural origins of compulsive behaviors. Converging clinical and preclinical evidence suggests that abnormal repetitive behaviors are driven by dysfunction in cortico-striatal-thalamic-cortical (CSTC) circuits. These findings suggest that compulsive behaviors arise, in part, from aberrant communication between lateral orbitofrontal cortex (OFC) and dorsal striatum. An important body of work focused on the role of this network in OCD has been instrumental to progress in the field. Disease models focused primarily on these regions, however, fail to capture an important aspect of the disorder: affective dysregulation. High levels of anxiety are extremely prevalent in OCD, as is comorbidity with major depressive disorder. Furthermore, deficits in processing rewards and abnormalities in processing emotional stimuli are suggestive of aberrant encoding of affective information. Accordingly, OCD can be partially characterized as a disease in which behavioral selection is corrupted by exaggerated or dysregulated emotional states. This suggests that the networks producing OCD symptoms likely expand beyond traditional lateral OFC and dorsal striatum circuit models, and highlights the need to cast a wider net in our investigation of the circuits involved in generating and sustaining OCD symptoms. Here, we address the emerging role of medial OFC, amygdala, and ventral tegmental area projections to the ventral striatum (VS) in OCD pathophysiology. The VS receives strong innervation from these affect and reward processing regions, and is therefore poised to integrate information crucial to the generation of compulsive behaviors. Though it complements functions of dorsal striatum and lateral OFC, this corticolimbic-VS network is less commonly explored as a potential source of the pathology underlying OCD. In this review, we discuss this network’s potential role as a locus of OCD pathology and effective treatment. PMID:26733823
What Do I Want and When Do I Want It: Brain Correlates of Decisions Made for Self and Other
Albrecht, Konstanze; Volz, Kirsten G.; Sutter, Matthias; von Cramon, D. Yves
2013-01-01
A number of recent functional Magnetic Resonance Imaging (fMRI) studies on intertemporal choice behavior have demonstrated that so-called emotion- and reward-related brain areas are preferentially activated by decisions involving immediately available (but smaller) rewards as compared to (larger) delayed rewards. This pattern of activation was not seen, however, when intertemporal choices were made for another (unknown) individual, which speaks to that activation having been triggered by self-relatedness. In the present fMRI study, we investigated the brain correlates of individuals who passively observed intertemporal choices being made either for themselves or for an unknown person. We found higher activation within the ventral striatum, medial prefrontal and orbitofrontal cortex, pregenual anterior cingulate cortex, and posterior cingulate cortex when an immediate reward was possible for the observer herself, which is in line with findings from studies in which individuals actively chose immediately available rewards. Additionally, activation in the dorsal anterior cingulate cortex, posterior cingulate cortex, and precuneus was higher for choices that included immediate options than for choices that offered only delayed options, irrespective of who was to be the beneficiary. These results indicate that (1) the activations found in active intertemporal decision making are also present when the same decisions are merely observed, thus supporting the assumption that a robust brain network is engaged in immediate gratification; and (2) with immediate rewards, certain brain areas are activated irrespective of whether the observer or another person is the beneficiary of a decision, suggesting that immediacy plays a more general role for neural activation. An explorative analysis of participants’ brain activation corresponding to chosen rewards, further indicates that activation in the aforementioned brain areas depends on the mere presence, availability, or actual reception of immediate rewards. PMID:23991196
Szabó, István; Hormay, Edina; Csetényi, Bettina; Nagy, Bernadett; Karádi, Zoltán
2017-05-01
The medial orbitofrontal cortex is involved in the regulation of feeding and metabolism. Little is known, however, about the role of local glucose-monitoring neurons in these processes, and our knowledge is also poor about characteristics of these cells. The functional significance of these chemosensory neurons was to be elucidated. Electrophysiology, by the multibarreled microelectrophoretic technique, and metabolic investigations, after streptozotocin induced selective destruction of the chemosensory neurons, were employed. Fifteen percent of the neurons responded to glucose, and these chemosensory cells displayed differential neurotransmitter and taste sensitivities. In acute glucose tolerance test, at the 30th and 60th minutes, blood glucose level in the streptozotocin-treated rats was significantly higher than that in the controls. The plasma triglyceride concentrations were also higher in the streptozotocin-treated group. Glucose-monitoring neurons of the medial orbitofrontal cortex integrate internal and external environmental signals, and monitor metabolic processes, thus, are indispensable to maintain the healthy homeostasis. Orv Hetil. 2017; 158(18): 692-700.
Lateral orbitofrontal cortex anticipates choices and integrates prior with current information
Nogueira, Ramon; Abolafia, Juan M.; Drugowitsch, Jan; Balaguer-Ballester, Emili; Sanchez-Vives, Maria V.; Moreno-Bote, Rubén
2017-01-01
Adaptive behavior requires integrating prior with current information to anticipate upcoming events. Brain structures related to this computation should bring relevant signals from the recent past into the present. Here we report that rats can integrate the most recent prior information with sensory information, thereby improving behavior on a perceptual decision-making task with outcome-dependent past trial history. We find that anticipatory signals in the orbitofrontal cortex about upcoming choice increase over time and are even present before stimulus onset. These neuronal signals also represent the stimulus and relevant second-order combinations of past state variables. The encoding of choice, stimulus and second-order past state variables resides, up to movement onset, in overlapping populations. The neuronal representation of choice before stimulus onset and its build-up once the stimulus is presented suggest that orbitofrontal cortex plays a role in transforming immediate prior and stimulus information into choices using a compact state-space representation. PMID:28337990
Effects of pramipexole on the processing of rewarding and aversive taste stimuli.
McCabe, Ciara; Harwood, James; Brouwer, Sietske; Harmer, Catherine J; Cowen, Philip J
2013-07-01
Pramipexole, a D2/D3 dopamine receptor agonist, has been implicated in the development of impulse control disorders in patients with Parkinson's disease. Investigation of single doses of pramipexole in healthy participants in reward-based learning tasks has shown inhibition of the neural processing of reward, presumptively through stimulation of dopamine autoreceptors. This study aims to examine the effects of pramipexole on the neural response to the passive receipt of rewarding and aversive sight and taste stimuli. We used functional magnetic resonance imaging to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 16 healthy volunteers who received a single dose of pramipexole (0.25 mg) and placebo in a double-blind, within-subject, design. Relative to placebo, pramipexole treatment reduced blood oxygen level-dependent activation to the chocolate stimuli in the areas known to play a key role in reward, including the ventromedial prefrontal cortex, the orbitofrontal cortex, striatum, thalamus and dorsal anterior cingulate cortex. Pramipexole also reduced activation to the aversive condition in the dorsal anterior cingulate cortex. There were no effects of pramipexole on the subjective ratings of the stimuli. Our results are consistent with an ability of acute, low-dose pramipexole to diminish dopamine-mediated responses to both rewarding and aversive taste stimuli, perhaps through an inhibitory action of D2/3 autoreceptors on phasic burst activity of midbrain dopamine neurones. The ability of pramipexole to inhibit aversive processing might potentiate its adverse behavioural effects and could also play a role in its proposed efficacy in treatment-resistant depression.
Verdejo-Garcia, Antonio; Verdejo-Román, Juan; Albein-Urios, Natalia; Martínez-González, José M; Soriano-Mas, Carles
2017-03-01
Cocaine dependence frequently co-occurs with personality disorders, leading to increased interpersonal problems and greater burden of disease. Personality disorders are characterised by patterns of thinking and feeling that divert from social expectations. However, the comorbidity between cocaine dependence and personality disorders has not been substantiated by measures of brain activation during social decision-making. We applied functional magnetic resonance imaging to compare brain activations evoked by a social decision-making task-the Ultimatum Game-in 24 cocaine dependents with personality disorders (CDPD), 19 cocaine dependents without comorbidities and 19 healthy controls. In the Ultimatum Game participants had to accept or reject bids made by another player to split monetary stakes. Offers varied in fairness (in fair offers the proposer shares ~50 percent of the money; in unfair offers the proposer shares <30 percent of the money), and participants were told that if they accept both players get the money, and if they reject both players lose it. We contrasted brain activations during unfair versus fair offers and accept versus reject choices. During evaluation of unfair offers CDPD displayed lower activation in the insula and the anterior cingulate cortex and higher activation in the lateral orbitofrontal cortex and superior frontal and temporal gyri. Frontal activations negatively correlated with emotion recognition. During rejection of offers CDPD displayed lower activation in the anterior cingulate cortex, striatum and midbrain. Dual diagnosis is linked to hypo-activation of the insula and anterior cingulate cortex and hyper-activation of frontal-temporal regions during social decision-making, which associates with poorer emotion recognition. © 2015 Society for the Study of Addiction.
Face processing in different brain areas, and critical band masking.
Rolls, Edmund T
2008-09-01
Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size, view, and spatial frequency of faces and objects, and that these neurons show rapid processing and rapid learning. Critical band spatial frequency masking is shown to be a property of these face-selective neurons and of the human visual perception of faces. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximizing the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalization, and graceful degradation. These invariant representations are ideally suited to provide the inputs to brain regions such as the orbitofrontal cortex and amygdala that learn the reinforcement associations of an individual's face, for then the learning, and the appropriate social and emotional responses generalize to other views of the same face. A theory is described of how such invariant representations may be produced by self-organizing learning in a hierarchically organized set of visual cortical areas with convergent connectivity. The theory utilizes either temporal or spatial continuity with an associative synaptic modification rule. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye-gaze, face view, and whether the head is moving. These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behaviour should change; and damage to the human orbitofrontal and pregenual cingulate cortex can impair face and voice expression identification, and also the reversal of emotional behaviour that normally occurs when reinforcers are reversed.
The representation of information about faces in the temporal and frontal lobes.
Rolls, Edmund T
2007-01-07
Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size and view of faces and objects, and that these neurons show rapid processing and rapid learning. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximising the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalisation and graceful degradation. These invariant representations are ideally suited to provide the inputs to brain regions such as the orbitofrontal cortex and amygdala that learn the reinforcement associations of an individual's face, for then the learning, and the appropriate social and emotional responses, generalise to other views of the same face. A theory is described of how such invariant representations may be produced in a hierarchically organised set of visual cortical areas with convergent connectivity. The theory proposes that neurons in these visual areas use a modified Hebb synaptic modification rule with a short-term memory trace to capture whatever can be captured at each stage that is invariant about objects as the objects change in retinal view, position, size and rotation. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye gaze, face view and whether the head is moving. These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behaviour should change; and damage to the orbitofrontal cortex can impair face and voice expression identification, and also the reversal of emotional behaviour that normally occurs when reinforcers are reversed.
Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai
2016-03-01
It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P < 0.05). The changes in glucose, lactate, and glycerol in the perfusate and α-spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P < 0.05). Glutamate showed no difference between cortex and striatum in all groups (all P > 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Riederer, Franz; Marti, Marvin; Luechinger, Roger; Lanzenberger, Rupert; von Meyenburg, Jan; Gantenbein, Andreas R; Pirrotta, Roberto; Gaul, Charly; Kollias, Spyridon; Sándor, Peter S
2012-10-01
Medication-overuse headache (MOH) is associated with psychiatric comorbidities. Neurobiological similarities to substance dependence have been suggested. This study investigated grey matter changes, focussing on pain and reward systems. Using voxel-based morphometry, structural MRIs were compared between 29 patients with both, MOH and migraine, according to International Headache Society criteria, and healthy controls. The Migraine Disability Assessment (MIDAS) score was used. Anxiety and depression were screened for with the Hospital Anxiety and Depression Scale (HADS) and confirmed by a psychiatrist, using the Mini International Neuropsychiatric Interview. Nineteen patients (66%) had a present or past psychiatric disorder, mainly affective (N = 11) and anxiety disorders (N = 8). In all patients a significant increase of grey matter volume (GMV) was found in the periaqueductal grey matter of the midbrain, which correlated positively with the MIDAS and the HADS-anxiety subscale. A GMV increase was found bilaterally in the thalamus, and the ventral striatum. A significant GMV decrease was detected in frontal regions including orbitofrontal cortex, anterior cingulate cortex, the left and right insula, and the precuneus. These findings are consistent with dysfunction of antinociceptive systems in MOH, which is influenced by anxiety. Dysfunction of the reward system may be a neurobiological basis for dependence in a subgroup of MOH patients.
Neuroimaging and obesity: current knowledge and future directions
Carnell, S.; Gibson, C.; Benson, L.; Ochner, C. N.; Geliebter, A.
2011-01-01
Summary Neuroimaging is becoming increasingly common in obesity research as investigators try to understand the neurological underpinnings of appetite and body weight in humans. Positron emission tomography (PET), functional magnetic resonance imaging (fMRI) and magnetic resonance imaging (MRI) studies examining responses to food intake and food cues, dopamine function and brain volume in lean vs. obese individuals are now beginning to coalesce in identifying irregularities in a range of regions implicated in reward (e.g. striatum, orbitofrontal cortex, insula), emotion and memory (e.g. amygdala, hippocampus), homeostatic regulation of intake (e.g. hypothalamus), sensory and motor processing (e.g. insula, precentral gyrus), and cognitive control and attention (e.g. prefrontal cortex, cingulate). Studies of weight change in children and adolescents, and those at high genetic risk for obesity, promise to illuminate causal processes. Studies examining specific eating behaviours (e.g. external eating, emotional eating, dietary restraint) are teaching us about the distinct neural networks that drive components of appetite, and contribute to the phenotype of body weight. Finally, innovative investigations of appetite-related hormones, including studies of abnormalities (e.g. leptin deficiency) and interventions (e.g. leptin replacement, bariatric surgery), are shedding light on the interactive relationship between gut and brain. The dynamic distributed vulnerability model of eating behaviour in obesity that we propose has scientific and practical implications. PMID:21902800
Cognitive Inflexibility in Gamblers is Primarily Present in Reward-Related Decision Making
Boog, Michiel; Höppener, Paul; v. d. Wetering, Ben J. M.; Goudriaan, Anna E.; Boog, Matthijs C.; Franken, Ingmar H. A.
2014-01-01
One hallmark of gambling disorder (GD) is the observation that gamblers have problems stopping their gambling behavior once it is initiated. On a neuropsychological level, it has been hypothesized that this is the result of a cognitive inflexibility. The present study investigated cognitive inflexibility in patients with GD using a task involving cognitive inflexibility with a reward element (i.e., reversal learning) and a task measuring general cognitive inflexibility without such a component (i.e., response perseveration). For this purpose, scores of a reward-based reversal learning task (probabilistic reversal learning task) and the Wisconsin card sorting task were compared between a group of treatment seeking patients with GD and a gender and age matched control group. The results show that pathological gamblers have impaired performance on the neurocognitive task measuring reward-based cognitive inflexibility. However, no difference between the groups is observed regarding non-reward-based cognitive inflexibility. This suggests that cognitive inflexibility in GD is the result of an aberrant reward-based learning, and not based on a more general problem with cognitive flexibility. The pattern of observed problems is suggestive of a dysfunction of the orbitofrontal cortex, the ventrolateral prefrontal cortex, and the ventral regions of the striatum in gamblers. Relevance for the neurocognition of problematic gambling is discussed. PMID:25165438
Volumetric cerebral characteristics of children exposed to opiates and other substances in utero
Walhovd, K. B.; Moe, V.; Slinning, K.; Due-Tønnessen, P.; Bjørnerud, A.; Dale, A. M.; van der Kouwe, A.; Quinn, B. T.; Kosofsky, B.; Greve, D.; Fischl, B.
2007-01-01
Morphometric cerebral characteristics were studied in children with prenatal poly-substance exposure (n =14) compared to controls (n = 14) without such exposure. Ten of the substance exposed children were born to mothers who used opiates (heroin) throughout the pregnancy. Groups were compared across 16 brain measures: cortical gray matter, cerebral white matter, hippocampus, amygdala, thalamus, accumbens area, caudate, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, lateral ventricles, inferior lateral ventricles, and the 3rd and 4th ventricles. In addition, continuous measurement of thickness across the entire cortical mantle was performed. Volumetric characteristics were correlated with ability and questionnaire assessments 2 years prior to scan. Compared to controls, the substance-exposed children had smaller intracranial and brain volumes, including smaller cerebral cortex, amygdala, accumbens area, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, and inferior lateral ventricles, and thinner cortex of the right anterior cingulate and lateral orbitofrontal cortex. Pallidum and putamen appeared especially reduced in the subgroup exposed to opiates. Only volumes of the right anterior cingulate, the right lateral orbitofrontal cortex and the accumbens area, showed some association with ability and questionnaire measures. The sample studied is rare, and hence small, so conclusions cannot be drawn with certainty. Morphometric group differences were observed, but associations with previous behavioral assessment were generally weak. Some of the volumetric differences, particularly thinner cortex in part of the right lateral orbitofrontal cortex, may be moderately involved in cognitive and behavioral difficulties more frequently experienced by opiate and poly-substance exposed children. PMID:17513131
Roffman, J L; Lipska, B K; Bertolino, A; Van Gelderen, P; Olson, A W; Khaing, Z Z; Weinberger, D R
2000-04-01
The rat medial prefrontal cortex (mPFC) regulates subcortical dopamine transmission via projections to the striatum and ventral tegmental area. We used in vivo proton magnetic resonance spectroscopy (1H-MRS) at 4.7 T to determine whether excitotoxic lesions of the mPFC result in alterations of N-acetylaspartate (NAA), a marker of neuronal integrity, both locally and downstream in the striatum. Lesioned rats exhibited persistent reductions of NAA and other metabolites within the prefrontal cortex; selective reductions of NAA were seen in the striatum, but not in the parietal cortex. Consistent with earlier reports, lesioned rats exhibited a transient enhancement in amphetamine-induced hyperlocomotion. Prefrontal NAA losses correlated with lesion extent. In the striatum, while there was no change in tissue volume, expression of striatal glutamic acid decarboxylase-67 mRNA was significantly reduced. In vivo NAA levels thus appear sensitive to both local and downstream alterations in neuronal integrity, and may signal meaningful effects at cellular and behavioral levels.
Fuentes, Paola; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Rosell, Patricia; Costumero, Víctor; Ávila, César
2012-09-01
The Behavioral Inhibition System (BIS) is described in Gray's Reinforcement Sensitivity Theory as a hypothetical construct that mediates anxiety in animals and humans. The neuroanatomical correlates of this system are not fully clear, although they are known to involve the amygdala, the septohippocampal system, and the prefrontal cortex. Previous neuroimaging research has related individual differences in BIS with regional volume and functional variations in the prefrontal cortex, amygdala, and hippocampal formation. The aim of the present work was to study BIS-related individual differences and their relationship with brain regional volume. BIS sensitivity was assessed through the BIS/BAS questionnaire in a sample of male participants (N = 114), and the scores were correlated with brain regional volume in a voxel-based morphometry analysis. The results show a negative correlation between the BIS and the volume of the right and medial orbitofrontal cortices and the precuneus. Our results and previous findings suggest that individual differences in anxiety-related personality traits and their related psychopathology may be associated with reduced brain volume in certain structures relating to emotional control (i.e., the orbitofrontal cortex) and self-consciousness (i.e., the precuneus), as shown by our results.
Cheetham, Ali; Allen, Nicholas B; Whittle, Sarah; Simmons, Julian G; Yücel, Murat; Lubman, Dan I
2012-04-15
There is growing evidence that long-term, heavy cannabis use is associated with alterations in regional brain volumes. Although these changes are frequently attributed to the neurotoxic effects of cannabis, it is possible that some abnormalities might predate use and represent markers of vulnerability. To date, no studies have examined whether structural brain abnormalities are present before the onset of cannabis use. This study aims to determine whether adolescents who have initiated cannabis use early (i.e., before age 17 years) show premorbid structural abnormalities in the amygdala, hippocampus, orbitofrontal cortex, and anterior cingulate cortex. Participants (n = 121) were recruited from primary schools in Melbourne, Australia, as part of a larger study examining adolescent emotional development. Participants underwent structural magnetic resonance imaging at age 12 years and were assessed for cannabis use 4 years later, at age 16 years. At the follow-up assessment, 28 participants had commenced using cannabis (16 female subjects [57%]), and 93 had not (43 female subjects [46%]). Smaller orbitofrontal cortex volumes at age 12 years predicted initiation of cannabis use by age 16 years. The volumes of other regions (amygdala, hippocampus, and anterior cingulate cortex) did not predict later cannabis use. These findings suggest that structural abnormalities in the orbitofrontal cortex might contribute to risk for cannabis exposure. Although the results have important implications for understanding neurobiological predictors of cannabis use, further research is needed to understand their relationship with heavier patterns of use in adulthood as well as later abuse of other substances. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Gene x Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia-Klein, N.; Alia-Klein, N.; Parvaz, M.A.
Long-term cocaine use has been associated with structural deficits in brain regions having dopamine-receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. The objective is to examine variations in gray matter volume (GMV) as a function of lifetime drug use and the genotype of the monoamine oxidase A gene, MAOA, in men with cocaine use disorders (CUD) and healthy male controls. Forty individuals with CUD and 42 controls who underwent magnetic resonance imaging to assess GMV and were genotyped for the MAOA polymorphism (categorized as high- and low-repeat alleles).more » The impact of cocaine addiction on GMV, tested by (1) comparing the CUD group with controls, (2) testing diagnosis x MAOA interactions, and (3) correlating GMV with lifetime cocaine, alcohol, and cigarette smoking, and testing their unique contribution to GMV beyond other factors. The results are: (1) Individuals with CUD had reductions in GMV in the orbitofrontal, dorsolateral prefrontal, and temporal cortex and the hippocampus compared with controls; (2) The orbitofrontal cortex reductions were uniquely driven by CUD with low- MAOA genotype and by lifetime cocaine use; and (3) The GMV in the dorsolateral prefrontal cortex and hippocampus was driven by lifetime alcohol use beyond the genotype and other pertinent variables. Long-term cocaine users with the low-repeat MAOA allele have enhanced sensitivity to gray matter loss, specifically in the orbitofrontal cortex, indicating that this genotype may exacerbate the deleterious effects of cocaine in the brain. In addition, long-term alcohol use is a major contributor to gray matter loss in the dorsolateral prefrontal cortex and hippocampus, and is likely to further impair executive function and learning in cocaine addiction.« less
[Effects of the removal of the orbito-frontal cortex on the development of reflex analgesia].
Reshetniak, V K; Kukushkin, M L
1989-07-01
The authors studied the effect of electric acupuncture stimulation (EAP) on the changes in pain thresholds prior to and after removal of the orbito-frontal cortex (OFC) of the brain in behavioral experiments on adult cats. Removal of OFC increased the thresholds of pain response at the 4th and the 5th levels of the conventional scale, reflecting emotionally-affective manifestations of pain, and intensified the effect of antinociceptive EAP. The results obtained are analysed in relation to the inhibitory tonic effect of OFC on antinociceptive structures of the brain. Different effects of OFC and somatosensory cortex on the antinociceptive structures of the brain are discussed.
Orbitofrontal Function and Educational Attainment
ERIC Educational Resources Information Center
Spinella, Marcello; Miley, William M.
2004-01-01
Orbitofrontal cortex (OFC) plays important roles in processes of reward and self-regulation. Lesions of OFC induce changes in personality and social conduct characterized by behavioral disinhibition, impulsivity, reduced autonomy, lack of concern with negative consequences, and mood lability. Many of these processes relate to aspects of education,…
Cholinergic Interneurons Use Orbitofrontal Input to Track Beliefs about Current State.
Stalnaker, Thomas A; Berg, Ben; Aujla, Navkiran; Schoenbaum, Geoffrey
2016-06-08
When conditions change, organisms need to learn about the changed conditions without interfering with what they already know. To do so, they can assign the new learning to a new "state" and the old learning to a previous state. This state assignment is fundamental to behavioral flexibility. Cholinergic interneurons (CINs) in the dorsomedial striatum (DMS) are necessary for associative information to be compartmentalized in this way, but the mechanism by which they do so is unknown. Here we addressed this question by recording putative CINs from the DMS in rats performing a task consisting of a series of trial blocks, or states, that required the recall and application of contradictory associative information. We found that individual CINs in the DMS represented the current state throughout each trial. These state correlates were not observed in dorsolateral striatal CINs recorded in the same rats. Notably, DMS CIN ensembles tracked rats' beliefs about the current state such that, when states were miscoded, rats tended to make suboptimal choices reflecting the miscoding. State information held by the DMS CINs also depended completely on the orbitofrontal cortex, an area that has been proposed to signal environmental states. These results suggest that CINs set the stage for recalling associative information relevant to the current environment by maintaining a real-time representation of the current state. Such a role has novel implications for understanding the neural basis of a variety of psychiatric diseases, such as addiction or anxiety disorders, in which patients generalize inappropriately (or fail to generalize) between different environments. Striatal cholinergic interneurons (CINs) are thought to be identical to tonically active neurons. These neurons have long been thought to have an important influence on striatal processing during reward-related learning. Recently, a more specific function for striatal CINs has been suggested, which is that they are necessary for striatal learning to be compartmentalized into different states as the state of the environment changes. Here we report that putative CINs appear to track rats' beliefs about which environmental state is current. We further show that this property of CINs depends on orbitofrontal cortex input and is correlated with choices made by rats. These findings could provide new insight into neuropsychiatric diseases that involve improper generalization between different contexts. Copyright © 2016 the authors 0270-6474/16/366242-16$15.00/0.
Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M; López, Juan Carlos
2017-01-01
Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex.
Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M.
2017-01-01
Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex. PMID:29240804
Reduced Orbitofrontal and Temporal Grey Matter in a Community Sample of Maltreated Children
ERIC Educational Resources Information Center
De Brito, Stephane A.; Viding, Essi; Sebastian, Catherine L.; Kelly, Philip A.; Mechelli, Andrea; Maris, Helen; McCrory, Eamon J.
2013-01-01
Background: Childhood maltreatment is strongly associated with increased risk of psychiatric disorder. Previous neuroimaging studies have reported atypical neural structure in the orbitofrontal cortex, temporal lobe, amygdala, hippocampus and cerebellum in maltreated samples. It has been hypothesised that these structural differences may relate to…
Arana, F Sergio; Parkinson, John A; Hinton, Elanor; Holland, Anthony J; Owen, Adrian M; Roberts, Angela C
2003-10-22
Theories of incentive motivation attempt to capture the way in which objects and events in the world can acquire high motivational value and drive behavior, even in the absence of a clear biological need. In addition, for an individual to select the most appropriate goal, the incentive values of competing desirable objects need to be defined and compared. The present study examined the neural substrates by which appetitive incentive value influences prospective goal selection, using positron emission tomographic neuroimaging in humans. Sated subjects were shown a series of restaurant menus that varied in incentive value, specifically tailored for each individual, and in half the trials, were asked to make a selection from the menu. The amygdala was activated by high-incentive menus regardless of whether a choice was required. Indeed, activity in this region varied as a function of individual subjective ratings of incentive value. In contrast, distinct regions of the orbitofrontal cortex were recruited both during incentive judgments and goal selection. Activity in the medial orbital cortex showed a greater response to high-incentive menus and when making a choice, with the latter activity also correlating with subjective ratings of difficulty. Lateral orbitofrontal activity was observed selectively when participants had to suppress responses to alternative desirable items to select their most preferred. Taken together, these data highlight the differential contribution of the amygdala and regions within the orbitofrontal cortex in a neural system underlying the selection of goals based on the prospective incentive value of stimuli, over and above homeostatic influences.
Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku
2017-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.
Onisawa, Naomi; Mori, Kensaku
2016-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591
Ascending connections to the forebrain in the Tegu lizard.
Lohman, A H; van Woerden-Verkley, I
1978-12-01
The ascending connections to the striatum and the cortex of the Tegu lizard, Tupinambis nigropunctatus, were studied by means of anterograde fiber degeneration and retrograde axonal transport. The striatum receives projections by way of the dorsal peduncle of the lateral forebrain bundle from four dorsal thalamic nuclei: nucleus rotundus, nucleus reuniens, the posterior part of the dorsal lateral geniculate nucleus and nucleus dorsomedialis. The former three nuclei project to circumscribed areas of the dorsal striatum, whereas nucleus dorsomedialis has a distribution to the whole dorsal striatum. Other sources of origin to the striatum are the mesencephalic reticular formation, substantia nigra and nucleus cerebelli lateralis. With the exception of the latter afferentation all these projections are ipsilateral. The ascending connections to the pallium originate for the major part from nucleus dorsolateralis anterior of the dorsal thalamus. The fibers course in both the medial forebrain bundle and the dorsal peduncle of the lateral forebrain bundle and terminate ipsilaterally in the middle of the molecular layer of the small-celled part of the mediodorsal cortex and bilaterally above the intermediate region of the dorsal cortex. The latter area is reached also by fibers from the septal area. The large-celled part of the mediodorsal cortex receives projections from nucleus raphes superior and the corpus mammillare.
Tekes, Kornélia; Gyenge, Melinda; Sótonyi, Péter; Csaba, György
2009-04-01
Noradrenaline (NA), dopamine (DA), homovanillic acid (HA), serotonin (5HT) and 5-hydroxyindole acetic acid (5HIAA) content of five brain regions (hypothalamus, hippocampus, brainstem, striatum and frontal cortex) and the cerebrospinal fluid (CSF) was measured in adult (three months old) male and female rats treated neonatally with a single dose of 10 microg nociceptin (NC) or 10 microg nocistatin (NS) for hormonal imprinting. The biogenic amine and metabolite content of cerebrospinal fluid was also determined. In NC treated animals the serotonergic, dopaminergic as well as noradrenergic systems were influenced by the imprinting. The 5HT level increased in hypothalamus, the 5HIAA tissue levels were found increased in hypothalamus. Hippocampus and striatum and the HVA levels increased highly significantly in brainstem. Dopamine level decreased significantly in striatum, however in frontal cortex both noradrenalin and 5HIAA level decreased. Nevertheless, in NS-treated rats decreased NA tissue levels were found in hypothalamus, brainstem and frontal cortex. Decreased DA levels were found in the hypothalamus, brainstem and striatum. NS imprinting resulted in decreased HVA level, but increased one in the brainstem. The 5HT levels decreased in the hypothalamus, brainstem, striatum and frontal cortex, while 5HIAA content of CSF, and frontal cortex decreased, and that of hypothalamus, hippocampus and striatum increased. There was no significant difference between genders except in the 5HT tissue levels of NC treated rats. Data presented show that neonatal imprinting both by NC and NS have long-lasting and brain area specific effects. In earlier experiments endorphin imprinting also influenced the serotonergic system suggesting that during labour release of pain-related substances may durably affect the serotonergic (dopaminergic, adrenergic) system which can impress the animals' later behavior.
Tsukiura, Takashi; Cabeza, Roberto
2011-01-01
Behavioral data have shown that attractive faces are better remembered but the neural mechanisms of this effect are largely unknown. To investigate this issue, female participants were scanned with event-related functional MRI (fMRI) while rating the attractiveness of male faces. Memory for the faces was tested after fMRI scanning and was used to identify successful encoding activity (subsequent memory paradigm). As expected, attractive faces were remembered better than other faces. The study yielded three main fMRI findings. First, activity in the right orbitofrontal cortex increased linearly as a function of attractiveness ratings. Second, activity in the left hippocampus increased as a function of subsequent memory (subsequent misses
Tsukiura, Takashi; Cabeza, Roberto
2010-01-01
Behavioral data have shown that attractive faces are better remembered but the neural mechanisms of this effect are largely unknown. To investigate this issue, female participants were scanned with event-related functional MRI (fMRI) while rating the attractiveness of male faces. Memory for the faces was tested after fMRI scanning and was used to identify successful encoding activity (subsequent memory paradigm). As expected, attractive faces were remembered better than other faces. The study yielded three main fMRI findings. First, activity in the right orbitofrontal cortex increased linearly as a function of attractiveness ratings. Second, activity in the left hippocampus increased as a function of subsequent memory (subsequent misses
Darki, Fahimeh; Klingberg, Torkel
2018-06-01
Most cortical areas send projections to the striatum. In some parts of the striatum, the connections converge from several cortical areas. It is unknown whether the convergence and non-convergence zones of the striatum differ functionally. Here, we used diffusion-weighted magnetic resonance imaging and probabilistic fiber tracking to parcellate the striatum based on its connections to dorsolateral prefrontal, parietal and orbitofrontal cortices in two different datasets (children aged 6-7 years and adults). In both samples, quantitative susceptibility mapping (QSM) values were significantly correlated with working memory (WM) in convergence zones, but not in non-convergence zones. In children, this was also true for mean diffusivity, MD. The association of MD to WM specifically in the convergent zone was replicated in the Pediatric Imaging, Neurocognition, and Genetics (PING) dataset for 135 children aged 6-9 years. QSM data was not available in the PING dataset, and the association to QSM still needs to be replicated. These results suggest that connectivity-based segments of the striatum exhibit functionally different characteristics. The association between convergence zones and WM performance might relate to a role in integrating and coordinating activity in different cortical areas. Copyright © 2018 Elsevier Inc. All rights reserved.
Schulz, Kurt P.; Bédard, Anne-Claude V.; Fan, Jin; Clerkin, Suzanne M.; Dima, Danai; Newcorn, Jeffrey H.; Halperin, Jeffrey M.
2014-01-01
Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD) across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD. PMID:24918067
Schulz, Kurt P; Bédard, Anne-Claude V; Fan, Jin; Clerkin, Suzanne M; Dima, Danai; Newcorn, Jeffrey H; Halperin, Jeffrey M
2014-01-01
Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD) across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD.
Ability to Maintain Internal Arousal and Motivation Modulates Brain Responses to Emotions
Sterpenich, Virginie; Schwartz, Sophie; Maquet, Pierre; Desseilles, Martin
2014-01-01
Persistence (PS) is defined as the ability to generate and maintain arousal and motivation internally in the absence of immediate external reward. Low PS individuals tend to become discouraged when expectations are not rapidly fulfilled. The goal of this study was to investigate whether individual differences in PS influence the recruitment of brain regions involved in emotional processing and regulation. In a functional MRI study, 35 subjects judged the emotional intensity of displayed pictures. When processing negative pictures, low PS (vs. high PS) subjects showed higher amygdala and right orbito-frontal cortex (OFC) activity but lower left OFC activity. This dissociation in OFC activity suggests greater prefrontal cortical asymmetry for approach/avoidance motivation, suggesting an avoidance response to aversive stimuli in low PS. For positive or neutral stimuli, low PS subjects showed lower activity in the amygdala, striatum, and hippocampus. These results suggest that low PS may involve an imbalance in processing distinct emotional inputs, with greater reactivity to aversive information in regions involved in avoidance behaviour (amygdala, OFC) and dampened response to positive and neutral stimuli across circuits subserving motivated behaviour (striatum, hippocampus, amygdala). Low PS affective style was associated with depression vulnerability. These findings in non-depressed subjects point to a neural mechanism whereby some individuals are more likely to show systematic negative emotional biases, as frequently observed in depression. The assessment of these individual differences, including those that may cause vulnerability to depressive disorders, would therefore constitute a promising approach to risk assessment for depression. PMID:25438046
Ability to maintain internal arousal and motivation modulates brain responses to emotions.
Sterpenich, Virginie; Schwartz, Sophie; Maquet, Pierre; Desseilles, Martin
2014-01-01
Persistence (PS) is defined as the ability to generate and maintain arousal and motivation internally in the absence of immediate external reward. Low PS individuals tend to become discouraged when expectations are not rapidly fulfilled. The goal of this study was to investigate whether individual differences in PS influence the recruitment of brain regions involved in emotional processing and regulation. In a functional MRI study, 35 subjects judged the emotional intensity of displayed pictures. When processing negative pictures, low PS (vs. high PS) subjects showed higher amygdala and right orbito-frontal cortex (OFC) activity but lower left OFC activity. This dissociation in OFC activity suggests greater prefrontal cortical asymmetry for approach/avoidance motivation, suggesting an avoidance response to aversive stimuli in low PS. For positive or neutral stimuli, low PS subjects showed lower activity in the amygdala, striatum, and hippocampus. These results suggest that low PS may involve an imbalance in processing distinct emotional inputs, with greater reactivity to aversive information in regions involved in avoidance behaviour (amygdala, OFC) and dampened response to positive and neutral stimuli across circuits subserving motivated behaviour (striatum, hippocampus, amygdala). Low PS affective style was associated with depression vulnerability. These findings in non-depressed subjects point to a neural mechanism whereby some individuals are more likely to show systematic negative emotional biases, as frequently observed in depression. The assessment of these individual differences, including those that may cause vulnerability to depressive disorders, would therefore constitute a promising approach to risk assessment for depression.
Neural signature of the Food Craving Questionnaire (FCQ)-Trait.
Ulrich, Martin; Steigleder, Leon; Grön, Georg
2016-12-01
The Trait and State versions of the Food Craving Questionnaire (FCQ) have been used in numerous behavioral and physiological eating studies. However, the neurobiological signature of the FCQ has not been reported yet. In the present study, 20 healthy male participants performed a food/non-food discrimination task during functional magnetic resonance imaging (fMRI). We investigated where in the brain greater activation upon high-caloric minus low-caloric food cues correlated with participants' scores on the German version of the FCQ-Trait, with the FCQ-State total scores included as a covariate, and vice versa. It was also tested whether individual subscales would map onto distinguishable neural correlates. Significant positive correlations with total scores on the FCQ-Trait were evident in several bilateral loci of the striatum, and in the right middle/lateral orbitofrontal cortex (OFC). Correlations with scores on the FCQ-Trait subscales Reinforcement and Hunger were found for subsets of voxels within the ventral striatum, whereas the FCQ-Trait subscales Intentions/Lack of control and Thoughts/Guilt mapped onto right OFC. There were no significant correlations between calorie-sensitive brain activation and scores on the FCQ-State when including the total scores on the FCQ-Trait as a covariate. Present findings show that the trait version of the FCQ associates with neural correlates known to be involved in coding motivational salience, detecting and estimating reward value, and representing information of expected outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2013-01-01
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488
Attention to Automatic Movements in Parkinson's Disease: Modified Automatic Mode in the Striatum
Wu, Tao; Liu, Jun; Zhang, Hejia; Hallett, Mark; Zheng, Zheng; Chan, Piu
2015-01-01
We investigated neural correlates when attending to a movement that could be made automatically in healthy subjects and Parkinson's disease (PD) patients. Subjects practiced a visuomotor association task until they could perform it automatically, and then directed their attention back to the automated task. Functional MRI was obtained during the early-learning, automatic stage, and when re-attending. In controls, attention to automatic movement induced more activation in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex, and rostral supplementary motor area. The motor cortex received more influence from the cortical motor association regions. In contrast, the pattern of the activity and connectivity of the striatum remained at the level of the automatic stage. In PD patients, attention enhanced activity in the DLPFC, premotor cortex, and cerebellum, but the connectivity from the putamen to the motor cortex decreased. Our findings demonstrate that, in controls, when a movement achieves the automatic stage, attention can influence the attentional networks and cortical motor association areas, but has no apparent effect on the striatum. In PD patients, attention induces a shift from the automatic mode back to the controlled pattern within the striatum. The shifting between controlled and automatic behaviors relies in part on striatal function. PMID:24925772
Characterization of Two (3H) Ketanserin Recognition Sites in Rat Striatum
1987-01-01
autoradiography to be localized to The 5-HT, sites are proposed to activate adenylate layer IV of the cortex and striatum ( Pazos et al., cyclase (Barbaccia et al...Chuang (1987). assumption has not been completely tested. Since its introduction as a selective radioligand for Pazos et al. (1985) recently confirmed...cniorophenylalanine. 1833 B S-3 1834 B. L. ROT!! ET AL. enriched in striatum and cortex. Pazos et al. (1985) mAt Tris-Cl, pH 7.40 at 25°C) at 4C. A crude membrane
ERIC Educational Resources Information Center
Baker, Phillip M.; Ragozzino, Michael E.
2014-01-01
Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…
Petersen, Kalen; Van Wouwe, Nelleke; Stark, Adam; Lin, Ya-Chen; Kang, Hakmook; Trujillo-Diaz, Paula; Kessler, Robert; Zald, David; Donahue, Manus J; Claassen, Daniel O
2018-01-01
A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward-driven behaviors, which can result in life-altering morbidity. The mesocorticolimbic dopamine network guides reward-motivated behavior; however, its role in this treatment-related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward-learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD-fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex-matched PD patients with (n = 19) or without (n = 18) ICB. An incentive-based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole-brain voxelwise analyses and region-of-interest-based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P < 0.01), and thalamus (P < 0.01) was observed in patients with ICB. A strong trend for elevated amygdala-to-midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum-to-subgenual cingulate connectivity correlated with reward learning (P < 0.01), but not with punishment-avoidance learning. These data indicate that PD-ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward-based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509-521, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children.
Ameis, Stephanie H; Ducharme, Simon; Albaugh, Matthew D; Hudziak, James J; Botteron, Kelly N; Lepage, Claude; Zhao, Lu; Khundrakpam, Budhachandra; Collins, D Louis; Lerch, Jason P; Wheeler, Anne; Schachar, Russell; Evans, Alan C; Karama, Sherif
2014-01-01
Fronto-amygdalar networks are implicated in childhood psychiatric disorders characterized by high rates of externalizing (aggressive, noncompliant, oppositional) behavior. Although externalizing behaviors are distributed continuously across clinical and nonclinical samples, little is known about how brain variations may confer risk for problematic behavior. Here, we studied cortical thickness, amygdala volume, and cortico-amygdalar network correlates of externalizing behavior in a large sample of healthy children. Two hundred ninety-seven healthy children (6-18 years; mean = 12 ± 3 years), with 517 magnetic resonance imaging scans, from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development, were studied. Relationships between externalizing behaviors (measured with the Child Behavior Checklist) and cortical thickness, amygdala volume, and cortico-amygdalar structural networks were examined using first-order linear mixed-effects models, after controlling for age, sex, scanner, and total brain volume. Results significant at p ≤ .05, following multiple comparison correction, are reported. Left orbitofrontal, right retrosplenial cingulate, and medial temporal cortex thickness were negatively correlated with externalizing behaviors. Although amygdala volume alone was not correlated with externalizing behaviors, an orbitofrontal cortex-amygdala network predicted rates of externalizing behavior. Children with lower levels of externalizing behaviors exhibited positive correlations between orbitofrontal cortex and amygdala structure, while these regions were not correlated in children with higher levels of externalizing behavior. Our findings identify key cortical nodes in frontal, cingulate, and temporal cortex associated with externalizing behaviors in children; and indicate that orbitofrontal-amygdala network properties may influence externalizing behaviors, along a continuum and across healthy and clinical samples. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Common and distinct neural targets of treatment: changing brain function in substance addiction.
Konova, Anna B; Moeller, Scott J; Goldstein, Rita Z
2013-12-01
Neuroimaging offers an opportunity to examine the neurobiological effects of therapeutic interventions for human drug addiction. Using activation likelihood estimation, the aim of the current meta-analysis was to quantitatively summarize functional neuroimaging studies of pharmacological and cognitive-based interventions for drug addiction, with an emphasis on their common and distinct neural targets. More exploratory analyses also contrasted subgroups of studies based on specific study and sample characteristics. The ventral striatum, a region implicated in reward, motivation, and craving, and the inferior frontal gyrus and orbitofrontal cortex, regions involved in inhibitory control and goal-directed behavior, were identified as common targets of pharmacological and cognitive-based interventions; these regions were observed when the analysis was limited to only studies that used established or efficacious interventions, and across imaging paradigms and types of addictions. Consistent with theoretical models, cognitive-based interventions were additionally more likely to activate the anterior cingulate cortex, middle frontal gyrus, and precuneus, implicated in self-referential processing, cognitive control, and attention. These results suggest that therapeutic interventions for addiction may target the brain structures that are altered across addictions and identify potential neurobiological mechanisms by which the tandem use of pharmacological and cognitive-based interventions may yield synergistic or complementary effects. These findings could inform the selection of novel functional targets in future treatment development for this difficult-to-treat disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.
Common and distinct neural targets of treatment: changing brain function in substance addiction
Konova, Anna B.; Moeller, Scott J.; Goldstein, Rita Z.
2013-01-01
Neuroimaging offers an opportunity to examine the neurobiological effects of therapeutic interventions for human drug addiction. Using activation likelihood estimation, the aim of the current meta-analysis was to quantitatively summarize functional neuroimaging studies of pharmacological and cognitive-based interventions for drug addiction, with an emphasis on their common and distinct neural targets. More exploratory analyses also contrasted subgroups of studies based on specific study and sample characteristics. The ventral striatum, a region implicated in reward, motivation, and craving, and the inferior frontal gyrus and orbitofrontal cortex, regions involved in inhibitory control goal-directed behavior, were identified as common targets of pharmacological and cognitive-based interventions; these regions were observed when the analysis was limited to only studies that used established or efficacious interventions, and across imaging paradigms and types of addictions. Consistent with theoretical models, cognitive-based interventions were additionally more likely to activate the anterior cingulate cortex, middle frontal gyrus, and precuneus, implicated in self-referential processing, cognitive control, and attention. These results suggest that therapeutic interventions for addiction may target the brain structures that are altered across addictions and identify potential neurobiological mechanisms by which the tandem use of pharmacological and cognitive-based interventions may yield synergistic or complementary effects. These findings could inform the selection of novel functional targets in future treatment development for this difficult-to-treat disorder. PMID:24140399
Approach–Avoidance Processes Contribute to Dissociable Impacts of Risk and Loss on Choice
Wright, Nicholas D.; Symmonds, Mkael; Hodgson, Karen; Fitzgerald, Thomas H. B.; Crawford, Bonni; Dolan, Raymond J.
2013-01-01
Value-based choices are influenced both by risk in potential outcomes and by whether outcomes reflect potential gains or losses. These variables are held to be related in a specific fashion, manifest in risk aversion for gains and risk seeking for losses. Instead, we hypothesized that there are independent impacts of risk and loss on choice such that, depending on context, subjects can show either risk aversion for gains and risk seeking for losses or the exact opposite. We demonstrate this independence in a gambling task, by selectively reversing a loss-induced effect (causing more gambling for gains than losses and the reverse) while leaving risk aversion unaffected. Consistent with these dissociable behavioral impacts of risk and loss, fMRI data revealed dissociable neural correlates of these variables, with parietal cortex tracking risk and orbitofrontal cortex and striatum tracking loss. Based on our neural data, we hypothesized that risk and loss influence action selection through approach–avoidance mechanisms, a hypothesis supported in an experiment in which we show valence and risk-dependent reaction time effects in line with this putative mechanism. We suggest that in the choice process risk and loss can independently engage approach–avoidance mechanisms. This can provide a novel explanation for how risk influences action selection and explains both classically described choice behavior as well as behavioral patterns not predicted by existing theory. PMID:22593069
Votinov, Mikhail; Pripfl, Juergen; Windischberger, Christian; Kalcher, Klaudius; Zimprich, Alexander; Zimprich, Fritz; Moser, Ewald
2014-01-01
The dynorphin/κ-opioid receptor (KOP-R) system has been shown to play a role in different types of behavior regulation, including reward-related behavior and drug craving. It has been shown that alleles with 3 or 4 repeats (HH genotype) of the variable nucleotide tandem repeat (68-bp VNTR) functional polymorphism of the prodynorphin (PDYN) gene are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype). We used fMRI on N = 71 prescreened healthy participants to investigate the effect of this polymorphism on cerebral activation in the limbic-corticostriatal loop during reward anticipation. Individuals with the HH genotype showed higher activation than those with the LL genotype in the medial orbitofrontal cortex (mOFC) when anticipating a possible monetary reward. In addition, the HH genotype showed stronger functional coupling (as assessed by effective connectivity analyses) of mOFC with VMPFC, subgenual anterior cingulate cortex, and ventral striatum during reward anticipation. This hints at a larger sensitivity for upcoming rewards in individuals with the HH genotype, resulting in a higher motivation to attain these rewards. These findings provide first evidence in humans that the PDYN polymorphism modulates neural processes associated with the anticipation of rewards, which ultimately may help to explain differences between genotypes with respect to addiction and drug abuse. PMID:24587148
Neural correlates of metacognitive ability and of feeling confident: a large-scale fMRI study.
Molenberghs, Pascal; Trautwein, Fynn-Mathis; Böckler, Anne; Singer, Tania; Kanske, Philipp
2016-12-01
One important aspect of metacognition is the ability to accurately evaluate one's performance. People vary widely in their metacognitive ability and in general are too confident when evaluating their performance. This often leads to poor decision making with potentially disastrous consequences. To further our understanding of the neural underpinnings of these processes, this fMRI study investigated inter-individual differences in metacognitive ability and effects of trial-by-trial variation in subjective feelings of confidence when making metacognitive assessments. Participants (N = 308) evaluated their performance in a high-level social and cognitive reasoning task. The results showed that higher metacognitive accuracy was associated with a decrease in activation in the anterior medial prefrontal cortex, an area previously linked to metacognition on perception and memory. Moreover, the feeling of confidence about one's choices was associated with an increase of activation in reward, memory and motor related areas including bilateral striatum and hippocampus, while less confidence was associated with activation in areas linked with negative affect and uncertainty, including dorsomedial prefrontal and bilateral orbitofrontal cortex. This might indicate that positive affect is related to higher confidence thereby biasing metacognitive decisions towards overconfidence. In support, behavioural analyses revealed that increased confidence was associated with lower metacognitive accuracy. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Simon, Joe J; Skunde, Mandy; Wu, Mudan; Schnell, Knut; Herpertz, Sabine C; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph
2015-08-01
Food is an innate reward stimulus related to energy homeostasis and survival, whereas money is considered a more general reward stimulus that gains a rewarding value through learning experiences. Although the underlying neural processing for both modalities of reward has been investigated independently from one another, a more detailed investigation of neural similarities and/or differences between food and monetary reward is still missing. Here, we investigated the neural processing of food compared with monetary-related rewards in 27 healthy, normal-weight women using functional magnetic resonance imaging. We developed a task distinguishing between the anticipation and the receipt of either abstract food or monetary reward. Both tasks activated the ventral striatum during the expectation of a reward. Compared with money, greater food-related activations were observed in prefrontal, parietal and central midline structures during the anticipation and lateral orbitofrontal cortex (lOFC) during the receipt of food reward. Furthermore, during the receipt of food reward, brain activation in the secondary taste cortex was positively related to the body mass index. These results indicate that food-dependent activations encompass to a greater extent brain regions involved in self-control and self-reflection during the anticipation and phylogenetically older parts of the lOFC during the receipt of reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Votinov, Mikhail; Pripfl, Juergen; Windischberger, Christian; Kalcher, Klaudius; Zimprich, Alexander; Zimprich, Fritz; Moser, Ewald; Lamm, Claus; Sailer, Uta
2014-01-01
The dynorphin/κ-opioid receptor (KOP-R) system has been shown to play a role in different types of behavior regulation, including reward-related behavior and drug craving. It has been shown that alleles with 3 or 4 repeats (HH genotype) of the variable nucleotide tandem repeat (68-bp VNTR) functional polymorphism of the prodynorphin (PDYN) gene are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype). We used fMRI on N = 71 prescreened healthy participants to investigate the effect of this polymorphism on cerebral activation in the limbic-corticostriatal loop during reward anticipation. Individuals with the HH genotype showed higher activation than those with the LL genotype in the medial orbitofrontal cortex (mOFC) when anticipating a possible monetary reward. In addition, the HH genotype showed stronger functional coupling (as assessed by effective connectivity analyses) of mOFC with VMPFC, subgenual anterior cingulate cortex, and ventral striatum during reward anticipation. This hints at a larger sensitivity for upcoming rewards in individuals with the HH genotype, resulting in a higher motivation to attain these rewards. These findings provide first evidence in humans that the PDYN polymorphism modulates neural processes associated with the anticipation of rewards, which ultimately may help to explain differences between genotypes with respect to addiction and drug abuse.
Structural and functional neural correlates of music perception.
Limb, Charles J
2006-04-01
This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.
Differences in functional connectivity between alcohol dependence and internet gaming disorder
Han, Ji Won; Han, Doug Hyun; Bolo, Nicolas; Kim, BoAh; Kim, Boong Nyun; Renshaw, Perry F.
2017-01-01
Introduction Internet gaming disorder (IGD) and alcohol dependence (AD) have been reported to share clinical characteristics including craving and over-engagement despite negative consequences. However, there are also clinical factors that differ between individuals with IGD and those with AD in terms of chemical intoxication, prevalence age, and visual and auditory stimulation. Methods We assessed brain functional connectivity within the prefrontal, striatum, and temporal lobe in 15 patients with IGD and in 16 patients with AD. Symptoms of depression, anxiety, and the attention deficit hyperactivity disorder were assessed in patients with IGD and in patients with AD. Results Both AD and IGD subjects have positive functional connectivity between the dorsolateral prefrontal cortex (DLPFC), cingulate, and cerebellum. In addition, both groups have negative functional connectivity between the DLPFC and the orbitofrontal cortex. However, the AD subjects have positive functional connectivity between the DLPFC, temporal lobe and striatal areas while IGD subjects have negative functional connectivity between the DLPFC, temporal lobe and striatal areas. Conclusions AD and IGD subjects may share deficits in executive function, including problems with self-control and adaptive responding. However, the negative connectivity between the DLPFC and the striatal areas in IGD subjects, different from the connectivity observed in AD subjects, may be due to the earlier prevalence age, different comorbid diseases as well as visual and auditory stimulation. PMID:25282597
Dopaminergic Modulation of Risky Decision-Making
Simon, Nicholas W.; Montgomery, Karienn S.; Beas, Blanca S.; Mitchell, Marci R.; LaSarge, Candi L.; Mendez, Ian A.; Bañuelos, Cristina; Vokes, Colin M.; Taylor, Aaron B.; Haberman, Rebecca P.; Bizon, Jennifer L.; Setlow, Barry
2012-01-01
Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a “Risky Decision-making Task” that involves choices between small “safe” rewards and large “risky” rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity. Systemic activation of D2-like receptors robustly attenuated risk-taking, whereas drugs acting on D1-like receptors had no effect. Systemic amphetamine also reduced risk-taking, an effect which was attenuated by D2-like (but not D1-like) receptor blockade. Dopamine receptor mRNA expression was evaluated in a separate cohort of drug-naive rats characterized in the task. D1 mRNA expression in both nucleus accumbens shell and insular cortex was positively associated with risk-taking, while D2 mRNA expression in orbitofrontal and medial prefrontal cortex predicted risk preference in opposing nonlinear patterns. Additionally, lower levels of D2 mRNA in dorsal striatum were associated with greater risk-taking. These data strongly implicate dopamine signaling in prefrontal corticalstriatal circuitry in modulating decision-making processes involving integration of reward information with risks of adverse consequences. PMID:22131407
Differences in functional connectivity between alcohol dependence and internet gaming disorder.
Han, Ji Won; Han, Doug Hyun; Bolo, Nicolas; Kim, BoAh; Kim, Boong Nyun; Renshaw, Perry F
2015-02-01
Internet gaming disorder (IGD) and alcohol dependence (AD) have been reported to share clinical characteristics including craving and over-engagement despite negative consequences. However, there are also clinical factors that differ between individuals with IGD and those with AD in terms of chemical intoxication, prevalence age, and visual and auditory stimulation. We assessed brain functional connectivity within the prefrontal, striatum, and temporal lobe in 15 patients with IGD and in 16 patients with AD. Symptoms of depression, anxiety, and the attention deficit hyperactivity disorder were assessed in patients with IGD and in patients with AD. Both AD and IGD subjects have positive functional connectivity between the dorsolateral prefrontal cortex (DLPFC), cingulate, and cerebellum. In addition, both groups have negative functional connectivity between the DLPFC and the orbitofrontal cortex. However, the AD subjects have positive functional connectivity between the DLPFC, temporal lobe and striatal areas while IGD subjects have negative functional connectivity between the DLPFC, temporal lobe and striatal areas. AD and IGD subjects may share deficits in executive function, including problems with self-control and adaptive responding. However, the negative connectivity between the DLPFC and the striatal areas in IGD subjects, different from the connectivity observed in AD subjects, may be due to the earlier prevalence age, different comorbid diseases as well as visual and auditory stimulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Menstrual cycle phase modulates reward-related neural function in women.
Dreher, Jean-Claude; Schmidt, Peter J; Kohn, Philip; Furman, Daniella; Rubinow, David; Berman, Karen Faith
2007-02-13
There is considerable evidence from animal studies that the mesolimbic and mesocortical dopamine systems are sensitive to circulating gonadal steroid hormones. Less is known about the influence of estrogen and progesterone on the human reward system. To investigate this directly, we used functional MRI and an event-related monetary reward paradigm to study women with a repeated-measures, counterbalanced design across the menstrual cycle. Here we show that during the midfollicular phase (days 4-8 after onset of menses) women anticipating uncertain rewards activated the orbitofrontal cortex and amygdala more than during the luteal phase (6-10 days after luteinizing hormone surge). At the time of reward delivery, women in the follicular phase activated the midbrain, striatum, and left fronto-polar cortex more than during the luteal phase. These data demonstrate augmented reactivity of the reward system in women during the midfollicular phase when estrogen is unopposed by progesterone. Moreover, investigation of between-sex differences revealed that men activated ventral putamen more than women during anticipation of uncertain rewards, whereas women more strongly activated the anterior medial prefrontal cortex at the time of reward delivery. Correlation between brain activity and gonadal steroid levels also revealed that the amygdalo-hippocampal complex was positively correlated with estradiol level, regardless of menstrual cycle phase. Together, our findings provide evidence of neurofunctional modulation of the reward system by gonadal steroid hormones in humans and establish a neurobiological foundation for understanding their impact on vulnerability to drug abuse, neuropsychiatric diseases with differential expression across males and females, and hormonally mediated mood disorders.
Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D.; Evans, Alan C; Karama, Sherif
2011-01-01
Background The anterior cingulate cortex (ACC), orbito-frontal cortex (OFC) and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Methods Data from 193 representative 6–18 year-old healthy children were obtained from the NIH MRI Study of Normal Brain Development after a blinded quality control (1). Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist (CBCL). AGG scores were regressed against cortical thickness and basal ganglia volumes using first and second-order linear models while controlling for age, gender, scanner site and total brain volume. ‘Gender by AGG’ interactions were analyzed. Results There were positive associations between bilateral striatal volumes and AGG scores (right: r=0.238, p=0.001; left: r=0.188, p=0.01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p<0.05, corrected). High AGG scores were associated with a relatively thin right ACC cortex. An ‘AGG by gender’ interaction trend was found in bilateral OFC and ACC associations with AGG scores. Conclusion This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender specific patterns of association in OFC/ACC grey matter. These results may guide research on oppositional-defiant and conduct disorders. PMID:21531391
Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D; Evans, Alan C; Karama, Sherif
2011-08-01
The anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Data from 193 representative 6- to 18-year-old healthy children were obtained from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development after a blinded quality control. Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist. AGG scores were regressed against cortical thickness and basal ganglia volumes using first- and second-order linear models while controlling for age, gender, scanner site, and total brain volume. Gender by AGG interactions were analyzed. There were positive associations between bilateral striatal volumes and AGG scores (right: r = .238, p = .001; left: r = .188, p = .01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p < .05, corrected). High AGG scores were associated with a relatively thin right ACC cortex. An AGG by gender interaction trend was found in bilateral OFC and ACC associations with AGG scores. This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender-specific patterns of association in OFC/ACC gray matter. These results may guide research on oppositional-defiant and conduct disorders. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
PET staging of amyloidosis using striatum.
Hanseeuw, Bernard J; Betensky, Rebecca A; Mormino, Elizabeth C; Schultz, Aaron P; Sepulcre, Jorge; Becker, John A; Jacobs, Heidi I L; Buckley, Rachel F; LaPoint, Molly R; Vanini, Patrizia; Donovan, Nancy J; Chhatwal, Jasmeer P; Marshall, Gad A; Papp, Kathryn V; Amariglio, Rebecca E; Rentz, Dorene M; Sperling, Reisa A; Johnson, Keith A
2018-05-21
Amyloid PET data are commonly expressed as binary measures of cortical deposition. However, not all individuals with high cortical amyloid will experience rapid cognitive decline. Motivated by postmortem data, we evaluated a three-stage PET classification: low cortical; high cortical, low striatal; and high cortical, high striatal amyloid; hypothesizing this model could better reflect Alzheimer's dementia progression than a model based only on cortical measures. We classified PET data from 1433 participants (646 normal, 574 mild cognitive impairment, and 213 AD), explored the successive involvement of cortex and striatum using 3-year follow-up PET data, and evaluated the associations between PET stages, hippocampal volumes, and cognition. Follow-up data indicated that PET detects amyloid first in cortex and then in striatum. Our three-category staging including striatum better predicted hippocampal volumes and subsequent cognition than a three-category staging including only cortical amyloid. PET can evaluate amyloid expansion from cortex to subcortex. Using striatal signal as a marker of advanced amyloidosis may increase predictive power in Alzheimer's dementia research. Copyright © 2018. Published by Elsevier Inc.
Kim, Jae-Jin; Kim, Dae-Jin; Kim, Tae-Gyun; Seok, Jeong-Ho; Chun, Ji Won; Oh, Maeng-Keun; Park, Hae-Jeong
2007-12-01
The thalamus, which consists of multiple subnuclei, has been of particular interest in the study of schizophrenia. This study aimed to identify abnormalities in the connectivity-based subregions of the thalamus in patients with schizophrenia. Thalamic volume was measured by a manual tracing on superimposed images of T1-weighted and diffusion tensor images in 30 patients with schizophrenia and 22 normal volunteers. Cortical regional volumes automatically measured by a surface-based approach and thalamic subregional volumes measured by a connectivity-based technique were compared between the two groups and their correlations between the connected regions were calculated in each group. Volume reduction was observed in the bilateral orbitofrontal cortices and the left cingulate gyrus on the cortical side, whereas in subregions connected to the right orbitofrontal cortex and bilateral parietal cortices on the thalamic side. Significant volumetric correlations were identified between the right dorsal prefrontal cortex and its related thalamic subregion and between the left parietal cortex and its related thalamic subregion only in the normal group. Our results suggest that patients with schizophrenia have a structural deficit in the corticothalamic systems, especially in the orbitofrontal-thalamic system. Our findings may present evidence of corticothalamic connection problems in schizophrenia.
Hu, Yuzheng; Salmeron, Betty Jo; Gu, Hong; Stein, Elliot A; Yang, Yihong
2015-06-01
Converging evidence has long identified both impulsivity and compulsivity as key psychological constructs in drug addiction. Although dysregulated striatal-cortical network interactions have been identified in cocaine addiction, the association between these brain networks and addiction is poorly understood. To test the hypothesis that cocaine addiction is associated with disturbances in striatal-cortical communication as captured by resting-state functional connectivity (rsFC), measured from coherent spontaneous fluctuations in the blood oxygenation level-dependent functional magnetic resonance imaging signal, and to explore the relationships between striatal rsFC, trait impulsivity, and uncontrolled drug use in cocaine addiction. A case-control, cross-sectional study was conducted at the National Institute on Drug Abuse Intramural Research Program outpatient magnetic resonance imaging facility. Data used in the present study were collected between December 8, 2005, and September 30, 2011. Participants included 56 non-treatment-seeking cocaine users (CUs) (52 with cocaine dependence and 3 with cocaine abuse) and 56 healthy individuals serving as controls (HCs) matched on age, sex, years of education, race, estimated intelligence, and smoking status. Voxelwise statistical parametric analysis testing the rsFC strength differences between CUs and HCs in brain regions functionally connected to 6 striatal subregions defined a priori. Increased rsFC strength was observed predominantly in striatal-frontal circuits; decreased rsFC was found between the striatum and cingulate, striatal, temporal, hippocampal/amygdalar, and insular regions in the CU group compared with the HCs. Increased striatal-dorsal lateral prefrontal cortex connectivity strength was positively correlated with the amount of recent cocaine use (uncorrected P < .046) and elevated trait impulsivity in the CUs (uncorrected P < .012), and an index reflecting the balance between striatal-dorsal anterior cingulate cortex and striatal-anterior prefrontal/orbitofrontal cortex circuits was significantly associated with loss of control over cocaine use (corrected P < .012). Cocaine addiction is associated with disturbed rsFC in several specific striatal-cortical circuits. Specifically, compulsive cocaine use, a defining characteristic of dependence, was associated with a balance of increased striatal-anterior prefrontal/orbitofrontal and decreased striatal-dorsal anterior cingulate connectivity; trait impulsivity, both a risk factor for and a consequence of cocaine use, was associated with increased dorsal striatal-dorsal lateral prefrontal cortex connectivity uniquely in CUs. These findings provide new insights toward the neurobiological mechanisms of addiction and suggest potential novel therapeutic targets for treatment.
Common and distinct networks for self-referential and social stimulus processing in the human brain.
Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix
2016-09-01
Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.
Sumiya, Motofumi; Koike, Takahiko; Okazaki, Shuntaro; Kitada, Ryo; Sadato, Norihiro
2017-10-01
Social interactions can be facilitated by action-outcome contingency, in which self-actions result in relevant responses from others. Research has indicated that the striatal reward system plays a role in generating action-outcome contingency signals. However, the neural mechanisms wherein signals regarding self-action and others' responses are integrated to generate the contingency signal remain poorly understood. We conducted a functional MRI study to test the hypothesis that brain activity representing the self modulates connectivity between the striatal reward system and sensory regions involved in the processing of others' responses. We employed a contingency task in which participants made the listener laugh by telling jokes. Participants reported more pleasure when greater laughter followed their own jokes than those of another. Self-relevant listener's responses produced stronger activation in the medial prefrontal cortex (mPFC). Laughter was associated with activity in the auditory cortex. The ventral striatum exhibited stronger activation when participants made listeners laugh than when another did. In physio-physiological interaction analyses, the ventral striatum showed interaction effects for signals extracted from the mPFC and auditory cortex. These results support the hypothesis that the mPFC, which is implicated in self-related processing, gates sensory input associated with others' responses during value processing in the ventral striatum. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Pierozan, Paula; Gonçalves Fernandes, Carolina; Ferreira, Fernanda; Pessoa-Pureur, Regina
2014-08-19
Quinolinic acid (QUIN) is a neuroactive metabolite of the kinurenine pathway, considered to be involved in aging and some neurodegenerative disorders, including Huntington׳s disease. In the present work we have studied the long-lasting effect of acute intrastriatal injection of QUIN (150 nmol/0.5 µL) in 30 day-old rats on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits (NFL, NFM and NFH) respectively, until 21 days after injection. The acute administration of QUIN altered the homeostasis of IF phosphorylation in a selective manner, progressing from striatum to cerebral cortex and hippocampus. Twenty four hours after QUIN injection, the IFs were hyperphosphorylated in the striatum. This effect progressed to cerebral cortex causing hypophosphorylation at day 14 and appeared in the hippocampus as hyperphosphorylation at day 21 after QUIN infusion. PKA and PKCaMII have been activated in striatum and hippocampus, since Ser55 and Ser57 in NFL head domain were hyperphosphorylated. However, MAPKs (Erk1/2, JNK and p38MAPK) were hyperphosphorylated/activated only in the hippocampus, suggesting different signaling mechanisms in these two brain structures during the first weeks after QUIN infusion. Also, protein phosphatase 1 (PP1) and 2B (PP2B)-mediated hypophosphorylation of the IF proteins in the cerebral cortex 14 after QUIN injection reinforce the selective signaling mechanisms in different brain structures. Increased GFAP immunocontent in the striatum and cerebral cortex 24h and 14 days after QUIN injection respectively, suggests reactive astrocytes in these brain regions. We propose that disruption of cytoskeletal homeostasis in neural cells takes part of the long-lasting molecular mechanisms of QUIN toxicity in adolescent rats, showing selective and progressive misregulation of the signaling mechanisms targeting the IF proteins in the striatum, cerebral cortex and hippocampus with important implications for brain function. Copyright © 2014 Elsevier B.V. All rights reserved.
Cholinergic mechanisms of analgesia produced by physostigmine, morphine and cold water swimming.
Romano, J A; Shih, T M
1983-07-01
This study concerns the cholinergic involvement in three experimental procedures which produce analgesia. Rats were given one of seven treatments: saline (1.0 ml/kg, i.p.); morphine sulfate (3.5, 6.0 or 9.0 mg/kg, i.p.); physostigmine salicylate (0.65 mg/kg, i.p.); warm water swim (3.5 min at 28 degrees C); and cold water swim (3.5 min at 2 degrees C). Each rat was tested on a hot plate (59.1 degrees C) once prior to and 30 min after treatment. Immediately after the last test the rats were killed with focussed microwave radiation. Levels of acetylcholine (ACh) and choline (Ch) in six brain areas (brain stem, cerebral cortex, hippocampus, midbrain, cerebellum and striatum) were analyzed by gas chromatograph-mass spectrometer. Morphine (9.0 mg/kg), physostigmine and cold water swimming caused significant analgesia. Morphine elevated the levels of ACh in the cerebellum and striatum, cold water swimming--in the cerebellum, striatum and cortex, and physostigmine--in the striatum and hippocampus. Levels of choline were elevated by morphine in the cerebellum, cortex and hippocampus, while cold water swimming elevated levels of choline in the cerebellum, cortex, striatum and hippocampus. Physostigmine did not change levels of choline in any of the brain areas studied. These data suggest that the analgetic effects of morphine or cold water swimming may be mediated by components of the cholinergic system that differ from those involved in the analgetic effects of physostigmine.
Hou, Huagang; Li, Hongbin; Dong, Ruhong; Mupparaju, Sriram; Khan, Nadeem; Swartz, Harold
2013-01-01
Multi-site electron paramagnetic resonance (EPR) oximetry, using multi-probe implantable resonators, was used to measure the partial pressure of oxygen (pO2) in the brains of rats following normobaric hyperoxia and mild hypoxia. The cerebral tissue pO2 was measured simultaneously in the cerebral cortex and striatum in the same rats before, during, and after normobaric hyperoxia and mild hypoxia challenges. The baseline mean tissue pO2 values (±SE) were not significantly different between the cortex and striatum. During 30 min of 100% O2 inhalation, a statistically significant increase in tissue pO2 of all four sites was observed, however, the tissue pO2 of the striatum area was significantly higher than in the forelimb area of the cortex. Brain pO2 significantly decreased from the baseline value during 15 min of 15% O2 challenge. No differences in the recovery of the cerebral cortex and striatum pO2 were observed when the rats were allowed to breathe 30% O2. It appears that EPR oximetry using implantable resonators can provide information on pO2 under the experimental conditions needed for such a study. The levels of pO2 that occurred in these experiments are readily resolvable by multi-site EPR oximetry with multi-probe resonators. In addition, the ability to simultaneously measure the pO2 in several areas of the brain provides important information that could potentially help differentiate the pO2 changes that can occur due to global or local mechanisms. PMID:21445770
Carvalho-Silva, Milena; Gomes, Lara M; Scaini, Giselli; Rebelo, Joyce; Damiani, Adriani P; Pereira, Maiara; Andrade, Vanessa M; Gava, Fernanda F; Valvassori, Samira S; Schuck, Patricia F; Ferreira, Gustavo C; Streck, Emilio L
2017-08-01
Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.
Increased Cortical Thickness in Male-to-Female Transsexualism.
Luders, Eileen; Sánchez, Francisco J; Tosun, Duygu; Shattuck, David W; Gaser, Christian; Vilain, Eric; Toga, Arthur W
2012-08-01
The degree to which one identifies as male or female has a profound impact on one's life. Yet, there is a limited understanding of what contributes to this important characteristic termed gender identity . In order to reveal factors influencing gender identity, studies have focused on people who report strong feelings of being the opposite sex, such as male-to-female (MTF) transsexuals. To investigate potential neuroanatomical variations associated with transsexualism, we compared the regional thickness of the cerebral cortex between 24 MTF transsexuals who had not yet been treated with cross-sex hormones and 24 age-matched control males. Results revealed thicker cortices in MTF transsexuals, both within regions of the left hemisphere (i.e., frontal and orbito-frontal cortex, central sulcus, perisylvian regions, paracentral gyrus) and right hemisphere (i.e., pre-/post-central gyrus, parietal cortex, temporal cortex, precuneus, fusiform, lingual, and orbito-frontal gyrus). These findings provide further evidence that brain anatomy is associated with gender identity, where measures in MTF transsexuals appear to be shifted away from gender-congruent men.
Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula
Castro, Daniel C.; Berridge, Kent C.
2017-01-01
Hedonic hotspots are brain sites where particular neurochemical stimulations causally amplify the hedonic impact of sensory rewards, such as “liking” for sweetness. Here, we report the mapping of two hedonic hotspots in cortex, where mu opioid or orexin stimulations enhance the hedonic impact of sucrose taste. One hedonic hotspot was found in anterior orbitofrontal cortex (OFC), and another was found in posterior insula. A suppressive hedonic coldspot was also found in the form of an intervening strip stretching from the posterior OFC through the anterior and middle insula, bracketed by the two cortical hotspots. Opioid/orexin stimulations in either cortical hotspot activated Fos throughout a distributed “hedonic circuit” involving cortical and subcortical structures. Conversely, cortical coldspot stimulation activated circuitry for “hedonic suppression.” Finally, food intake was increased by stimulations at several prefrontal cortical sites, indicating that the anatomical substrates in cortex for enhancing the motivation to eat are discriminable from those for hedonic impact. PMID:29073109
Unpacking the neural associations of emotion and judgment in emotion-congruent judgment
Beer, Jennifer S.
2012-01-01
The current study takes a new approach to understand the neural systems that support emotion-congruent judgment. The bulk of previous neural research has inferred emotional influences on judgment from disadvantageous judgments or non-random individual differences. The current study manipulated the influence of emotional information on judgments of stimuli that were equivocally composed of positive and negative attributes. Emotion-congruent processing was operationalized in two ways: neural activation significantly associated with primes that lead to emotionally congruent judgments and neural activation significantly associated with judgments that were preceded by emotionally congruent primes. Distinct regions of medial orbitofrontal cortex were associated with these patterns of emotion-congruent processing. Judgments that were incongruent with preceding primes were associated with dorsomedial prefrontal cortex, ventrolateral prefrontal cortex and lateral orbitofrontal cortex activity. The current study demonstrates a new approach to investigate the neural systems associated with emotion-congruent judgment. The findings suggest that medial OFC may support attentional processes that underlie emotion-congruent judgment. PMID:21511825
Reward Systems in the Brain and Nutrition.
Rolls, Edmund T
2016-07-17
The taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are combined by associative learning with olfactory and visual inputs for some neurons, and these neurons encode food reward value in that they respond to food only when hunger is present and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions and selective attention to affective value, modulate the representation of the reward value of taste, olfactory, and flavor stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex. These food reward representations are important in the control of appetite and food intake. Individual differences in reward representations may contribute to obesity, and there are age-related differences in these reward representations. Implications of how reward systems in the brain operate for understanding, preventing, and treating obesity are described.
Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L
2010-05-31
Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs. Copyright (c) 2010 Elsevier Inc. All rights reserved.
[Orbitofrontal cortex and morality].
Funayama, Michitaka; Mimura, Masaru
2012-10-01
Research on the neural substrates of morality is a recently emerging field in neuroscience. The anatomical structures implicated to play a role in morality include the frontal lobe, temporal lobe, cingulate gyrus, amygdala, hippocampus, and basal ganglia. In particular, the orbitofrontal or ventromedial prefrontal areas are thought to be involved in decision-making, and damage to these areas is likely to cause decision-making deficits and/or problems in impulsive control, which may lead to antisocial and less moral behaviors. In this article, we focus on case presentation and theory development with regard to moral judgment. First, we discuss notable cases and syndromes developing after orbitofrontal/ventromedial prefrontal damage, such as the famous cases of Gage and EVR, cases of childhood orbitofrontal damage, forced collectionism, squalor syndrome, and hypermoral syndrome. We then review the proposed theories and neuropsychological mechanisms underlying decision-making deficits following orbitofrontal/ventromedial prefrontal damage, including the somatic-marker hypothesis, reversal learning, preference judgment, theory of mind, and moral dilemma.
ERIC Educational Resources Information Center
Frank, Michael J.; Claus, Eric D.
2006-01-01
The authors explore the division of labor between the basal ganglia-dopamine (BG-DA) system and the orbitofrontal cortex (OFC) in decision making. They show that a primitive neural network model of the BG-DA system slowly learns to make decisions on the basis of the relative probability of rewards but is not as sensitive to (a) recency or (b) the…
Coughlan, Christina; Walker, Douglas I.; Lohr, Kelly M.; Richardson, Jason R.; Saba, Laura M.; Caudle, W. Michael; Fritz, Kristofer S.; Roede, James R.
2015-01-01
Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinson's disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration. PMID:26345149
Tsukiura, Takashi; Cabeza, Roberto
2008-01-01
Memory processes can be enhanced by reward, and social signals such a smiling face can be rewarding to humans. Using event-related functional MRI (fMRI), we investigated the rewarding effect of a simple smile during the encoding and retrieval of face-name associations. During encoding, participants viewed smiling or neutral faces, each paired with a name, and during retrieval, only names were presented, and participants retrieved the associated facial expressions. Successful memory activity of face-name associations was identified by comparing remembered vs. forgotten trials during both encoding and retrieval, and the effect of a smile was identified by comparing successful memory trials for smiling vs. neutral faces. The study yielded three main findings. First, behavioral results showed that the retrieval of face-name associations was more accurate and faster for smiling than neutral faces. Second, the orbitofrontal cortex and the hippocampus showed successful encoding and retrieval activations, which were greater for smiling than neutral faces. Third, functional connectivity between the orbitofrontal cortex and the hippocampus during successful encoding and retrieval was stronger for smiling than neutral faces. As a part of the reward system, the orbitofrontal cortex may modulate memory processes of face-name associations mediated by the hippocampus. Interestingly, the effect of a smile during retrieval was found even though only names were presented as retrieval cues, suggesting that the effect was mediated by face imagery. Taken together, the results demonstrate how rewarding social signals from a smiling face can enhance relational memory for face-name associations.
Kohno, Milky; Okita, Kyoji; Morales, Angelica M.; Robertson, Chelsea; Dean, Andy C.; Ghahremani, Dara G.; Sabb, Fred; Mandelkern, Mark A.; Bilder, Robert M.; London, Edythe D.
2015-01-01
Stimulant use disorders are associated with deficits in striatal dopamine receptor availability, abnormalities in mesocorticolimbic resting-state functional connectivity (RSFC), and impulsivity. In methamphetamine-dependent research participants, impulsivity is correlated negatively with striatal D2-type receptor availability, and mesocorticolimbic RSFC is stronger than in controls. The extent to which these features of methamphetamine dependence are interrelated, however, is unknown. This question was addressed in two studies. In Study 1, 19 methamphetamine-dependent and 26 healthy control subjects underwent [18F]fallypride positron emission tomography to measure ventral striatal dopamine D2-type receptor availability, indexed by binding potential (BPND), and functional magnetic resonance imaging (fMRI) to assess mesocorticolimbic RSFC, using a midbrain seed. In Study 2, an independent sample of 20 methamphetamine-dependent and 18 control subjects completed the Barratt Impulsiveness Scale in addition to fMRI. Study 1 showed a significant group by ventral striatal BPND interaction effect on RSFC, reflecting a negative relationship between ventral striatal BPND and RSFC between midbrain and striatum, orbitofrontal cortex, and insula in methamphetamine-dependent participants but a positive relationship in the control group. In Study 2, an interaction of group with RSFC on impulsivity was observed. Methamphetamine-dependent participants users exhibited a positive relationship of midbrain RSFC to the left ventral striatum with cognitive impulsivity, whereas a negative relationship was observed in healthy controls. The results indicate that ventral striatal D2-type receptor signaling may affect system-level activity within the mesocorticolimbic system, providing a functional link that may help explain high impulsivity in methamphetamine-dependent individuals. PMID:26830141
The development of the ventral prefrontal cortex and social flexibility.
Nelson, Eric E; Guyer, Amanda E
2011-07-01
Over the last several years a number of studies in both humans and animals have suggested that the orbitofrontal and ventrolateral prefrontal cortices play an important role in generating flexible behavior. We suggest that input from these brain regions contribute to three functions involved in generating flexible behavior within social contexts: valuation, inhibition, and rule use. Recent studies have also demonstrated that the prefrontal cortex undergoes a prolonged course of maturation that extends well after puberty. Here, we review evidence that the prolonged development of these prefrontal regions parallels a slowly emerging ability for flexible social behavior. We also speculate on the possibility that sensitive periods for organizing social behavior may be embedded within this developmental time-fame. Finally, we discuss the role of prefrontal cortex in adolescent mood and anxiety disorders, particularly as orbitofrontal and ventrolateral prefrontal cortices are engaged in a social context.
Double dissociation of value computations in orbitofrontal and anterior cingulate neurons
Kennerley, Steven W.; Behrens, Timothy E. J.; Wallis, Jonathan D.
2011-01-01
Damage to prefrontal cortex (PFC) impairs decision-making, but the underlying value computations that might cause such impairments remain unclear. Here we report that value computations are doubly dissociable within PFC neurons. While many PFC neurons encoded chosen value, they used opponent encoding schemes such that averaging the neuronal population eliminated value coding. However, a special population of neurons in anterior cingulate cortex (ACC) - but not orbitofrontal cortex (OFC) - multiplex chosen value across decision parameters using a unified encoding scheme, and encoded reward prediction errors. In contrast, neurons in OFC - but not ACC - encoded chosen value relative to the recent history of choice values. Together, these results suggest complementary valuation processes across PFC areas: OFC neurons dynamically evaluate current choices relative to recent choice values, while ACC neurons encode choice predictions and prediction errors using a common valuation currency reflecting the integration of multiple decision parameters. PMID:22037498
Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication.
Volkow, N D; Gillespie, H; Mullani, N; Tancredi, L; Grant, C; Valentine, A; Hollister, L
1996-05-31
Despite the widespread abuse of marijuana, knowledge about its effects in the human brain is limited. Brain glucose metabolism with and without delta 9 tetrahydrocannabinol (THC) (main psychoactive component of marijuana) was evaluated in eight normal subjects and eight chronic marijuana abusers with positron emission tomography. At baseline, marijuana abusers showed lower relative cerebellar metabolism than normal subjects. THC increased relative cerebellar metabolism in all subjects, but only abusers showed increases in orbitofrontal cortex, prefrontal cortex, and basal ganglia. Cerebellar metabolism during THC intoxication was significantly correlated with the subjective sense of intoxication. The decreased cerebellar metabolism in marijuana abusers at baseline could account for the motor deficits previously reported in these subjects. The activation of orbitofrontal cortex and basal ganglia by THC in the abusers but not in the normal subjects could underlie one of the mechanisms leading to the drive and the compulsion to self-administer the drug observed in addicted individuals.
The Development of the Ventral Prefrontal Cortex and Social Flexibility
Nelson, Eric E.; Guyer, Amanda E.
2011-01-01
Over the last several years a number of studies in both humans and animals have suggested that the orbitofrontal and ventrolateral prefrontal cortices play an important role in generating flexible behavior. We suggest that input from these brain regions contribute to three functions involved in generating flexible behavior within social contexts: valuation, inhibition, and rule use. Recent studies have also demonstrated that the prefrontal cortex undergoes a prolonged course of maturation that extends well after puberty. Here, we review evidence that the prolonged development of these prefrontal regions parallels a slowly emerging ability for flexible social behavior. We also speculate on the possibility that sensitive periods for organizing social behavior may be embedded within this developmental time-fame. Finally, we discuss the role of prefrontal cortex in adolescent mood and anxiety disorders, particularly as orbitofrontal and ventrolateral prefrontal cortices are engaged in a social context. PMID:21804907
Changes in cue-induced, prefrontal cortex activity with video-game play.
Han, Doug Hyun; Kim, Yang Soo; Lee, Yong Sik; Min, Kyung Joon; Renshaw, Perry F
2010-12-01
Brain responses, particularly within the orbitofrontal and cingulate cortices, to Internet video-game cues in college students are similar to those observed in patients with substance dependence in response to the substance-related cues. In this study, we report changes in brain activity between baseline and following 6 weeks of Internet video-game play. We hypothesized that subjects with high levels of self-reported craving for Internet video-game play would be associated with increased activity in the prefrontal cortex, particularly the orbitofrontal and anterior cingulate cortex. Twenty-one healthy university students were recruited. At baseline and after a 6-week period of Internet video-game play, brain activity during presentation of video-game cues was assessed using 3T blood oxygen level dependent functional magnetic resonance imaging. Craving for Internet video-game play was assessed by self-report on a 7-point visual analogue scale following cue presentation. During a standardized 6-week video-game play period, brain activity in the anterior cingulate and orbitofrontal cortex of the excessive Internet game-playing group (EIGP) increased in response to Internet video-game cues. In contrast, activity observed in the general player group (GP) was not changed or decreased. In addition, the change of craving for Internet video games was positively correlated with the change in activity of the anterior cingulate in all subjects. These changes in frontal-lobe activity with extended video-game play may be similar to those observed during the early stages of addiction.
Liu, Yansong; Zhao, Xudong; Cheng, Zaohuo; Zhang, Fuquan; Chang, Jun; Wang, Haosen; Xie, Rukui; Wang, Zhiqiang; Cao, Leiming; Wang, Guoqiang
2017-02-01
Overgeneral autobiographical memory (OGM) is involved in the onset and maintenance of depression. Recent studies have shown correlations between OGM and alterations of some brain regions by using task-state functional magnetic resonance imaging (fMRI). However, the correlation between OGM and spontaneous brain activity in depression remains unclear. The purpose of this study was to determine whether patients with major depressive disorder (MDD) show abnormal regional homogeneity (ReHo) and, if so, whether the brain areas with abnormal ReHo are associated with OGM. Twenty five patients with MDD and 25 age-matched, sex-matched, and education-matched healthy controls underwent resting-state fMRI. All participants were also assessed by 17-item Hamilton Depression Rating Scale and autobiographical memory test. The ReHo method was used to analyze regional synchronization of spontaneous neuronal activity. Patients with MDD, compared to healthy controls, exhibited extensive ReHo abnormalities in some brain regions, including the frontal, temporal, and occipital cortex. Moreover, ReHo value of the orbitofrontal cortex was negatively correlated with OGM scores in patients with MDD. The sample size of this study was relatively small, and the influence of physiological noise was not completely excluded. These results suggest that abnormal ReHo of spontaneous brain activity in the orbitofrontal cortex may be involved in the pathophysiology of OGM in patients with MDD. Copyright © 2016 Elsevier B.V. All rights reserved.
Lewis, G.J.; Panizzon, M.S.; Eyler, L.; Fennema-Notestine, C.; Chen, C.-H.; Neale, M.C.; Jernigan, T.L.; Lyons, M.J.; Dale, A.M.; Kremen, W.S.; Franz, C.E.
2015-01-01
While many studies have reported that individual differences in personality traits are genetically influenced, the neurobiological bases mediating these influences have not yet been well characterized. To advance understanding concerning the pathway from genetic variation to personality, here we examined whether measures of heritable variation in neuroanatomical size in candidate regions (amygdala and medial orbitofrontal cortex) were associated with heritable effects on personality. A sample of 486 middle-aged (mean = 55 years) male twins (complete MZ pairs = 120; complete DZ pairs = 84) underwent structural brain scans and also completed measures of two core domains of personality: positive and negative emotionality. After adjusting for estimated intracranial volume, significant phenotypic (rp) and genetic (rg) correlations were observed between left amygdala volume and positive emotionality (rp = .16, p < .01; rg = .23, p < .05, respectively). In addition, after adjusting for mean cortical thickness, genetic and nonshared-environmental correlations (re) between left medial orbitofrontal cortex thickness and negative emotionality were also observed (rg = .34, p < .01; re = −.19, p < .05, respectively). These findings support a model positing that heritable bases of personality are, at least in part, mediated through individual differences in the size of brain structures, although further work is still required to confirm this causal interpretation. PMID:25263286
Szabó, István; Hormay, Edina; Csetényi, Bettina; Nagy, Bernadett; Lénárd, László; Karádi, Zoltán
2018-02-01
Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex. NEUROSCI BIOBEHAV REV 73(1) XXX-XXX, 2017.- Special chemosensory cells, the glucose-monitoring (GM) neurons, reportedly involved in the central feeding control, exist in the medial orbitofrontal (ventrolateral prefrontal) cortex (mVLPFC). Electrophysiological, metabolic and behavioral studies reveal complex functional attributes of these cells and raise their homeostatic significance. Single neuron recordings, by means of the multibarreled microelectrophoretic technique, elucidate differential sensitivities of limbic forebrain neurons in the rat and the rhesus monkey to glucose and other chemicals, whereas gustatory stimulations demonstrate their distinct taste responsiveness. Metabolic examinations provide evidence for alteration of blood glucose level in glucose tolerance test and elevation of plasma triglyceride concentration after destruction of the local GM cells by streptozotocin (STZ). In behavioral studies, STZ microinjection into the mVLPFC fails to interfere with the acquisition of saccharin conditioned taste avoidance, does cause, however, taste perception deficit in taste reactivity tests. Multiple functional attributes of GM neurons in the mVLPFC, within the frame of the hierarchically organized central GM neuronal network, appear to play important role in the maintenance of the homeostatic balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dere, E; Zheng-Fischhöfer, Q; Viggiano, D; Gironi Carnevale, U A; Ruocco, L A; Zlomuzica, A; Schnichels, M; Willecke, K; Huston, J P; Sadile, A G
2008-05-02
Neuronal gap junctions in the brain, providing intercellular electrotonic signal transfer, have been implicated in physiological and behavioral correlates of learning and memory. In connexin31.1 (Cx31.1) knockout (KO) mice the coding region of the Cx31.1 gene was replaced by a LacZ reporter gene. We investigated the impact of Cx31.1 deficiency on open-field exploration, the behavioral response to an odor, non-selective attention, learning and memory performance, and the levels of memory-related proteins in the hippocampus, striatum and the piriform cortex. In terms of behavior, the deletion of the Cx31.1 coding DNA in the mouse led to increased exploratory behaviors in a novel environment, and impaired one-trial object recognition at all delays tested. Despite strong Cx31.1 expression in the peripheral and central olfactory system, Cx31.1 KO mice exhibited normal behavioral responses to an odor. We found increased levels of acetylcholine esterase (AChE) and cAMP response element-binding protein (CREB) in the striatum of Cx31.1 KO mice. In the piriform cortex the Cx31.1 KO mice had an increased heterogeneity of CREB expression among neurons. In conclusion, gap-junctions featuring the Cx31.1 protein might be involved in open-field exploration as well as object memory and modulate levels of AChE and CREB in the striatum and piriform cortex.
Balleine, Bernard W; O'Doherty, John P
2010-01-01
Recent behavioral studies in both humans and rodents have found evidence that performance in decision-making tasks depends on two different learning processes; one encoding the relationship between actions and their consequences and a second involving the formation of stimulus–response associations. These learning processes are thought to govern goal-directed and habitual actions, respectively, and have been found to depend on homologous corticostriatal networks in these species. Thus, recent research using comparable behavioral tasks in both humans and rats has implicated homologous regions of cortex (medial prefrontal cortex/medial orbital cortex in humans and prelimbic cortex in rats) and of dorsal striatum (anterior caudate in humans and dorsomedial striatum in rats) in goal-directed action and in the control of habitual actions (posterior lateral putamen in humans and dorsolateral striatum in rats). These learning processes have been argued to be antagonistic or competing because their control over performance appears to be all or none. Nevertheless, evidence has started to accumulate suggesting that they may at times compete and at others cooperate in the selection and subsequent evaluation of actions necessary for normal choice performance. It appears likely that cooperation or competition between these sources of action control depends not only on local interactions in dorsal striatum but also on the cortico-basal ganglia network within which the striatum is embedded and that mediates the integration of learning with basic motivational and emotional processes. The neural basis of the integration of learning and motivation in choice and decision-making is still controversial and we review some recent hypotheses relating to this issue. PMID:19776734
Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo
2015-06-30
Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sturm, Virginia E.; Yokoyama, Jennifer S.; Eckart, Janet A.; Zakrzewski, Jessica; Rosen, Howard J.; Miller, Bruce L.; Seeley, William W.; Levenson, Robert W.
2015-01-01
Positive emotions foster social relationships and motivate thought and action. Dysregulation of positive emotion may give rise to debilitating clinical symptomatology such as mania, risk-taking, and disinhibition. Neuroanatomically, there is extensive evidence that the left hemisphere of the brain, and the left frontal lobe in particular, plays an important role in positive emotion generation. Although prior studies have found that left frontal injury decreases positive emotion, it is not clear whether selective damage to left frontal emotion regulatory systems can actually increase positive emotion. We measured happiness reactivity in 96 patients with frontotemporal dementia, a neurodegenerative disease that targets emotion-relevant neural systems and causes alterations in positive emotion (i.e., euphoria and jocularity), and in 34 healthy controls. Participants watched a film clip designed to elicit happiness and a comparison film clip designed to elicit sadness while their facial behavior, physiological reactivity, and self-reported emotional experience were monitored. Whole-brain voxel-based morphometry analyses revealed that atrophy in predominantly left hemisphere fronto-striatal emotion regulation systems including left ventrolateral prefrontal cortex, orbitofrontal cortex, anterior insula, and striatum (pFWE < .05) was associated with greater happiness facial behavior during the film. Atrophy in left anterior insula and bilateral frontopolar cortex was also associated with higher cardiovascular reactivity (i.e., heart rate and blood pressure) but not self-reported positive emotional experience during the happy film (p< .005, uncorrected). No regions emerged as being associated with greater sadness reactivity, which suggests that left-lateralized fronto-striatal atrophy is selectively associated with happiness dysregulation. Whereas previous models have proposed that left frontal injury decreases positive emotional responding, we argue that selective disruption of left hemisphere emotion regulating systems can impair the ability to suppress positive emotions such as happiness. PMID:25461707
Three Ways in Which Midline Regions Contribute to Self-Evaluation
Flagan, Taru; Beer, Jennifer S.
2013-01-01
An integration of existing research and newly conducted psychophysiological interaction (PPI) connectivity analyses suggest a new framework for understanding the contribution of midline regions to social cognition. Recent meta-analyses suggest that there are no midline regions that are exclusively associated with self-processing. Whereas medial prefrontal cortex (MPFC) is broadly modulated by self-processing, subdivisions within MPFC are differentially modulated by the evaluation of close others (ventral MPFC: BA 10/32) and the evaluation of other social targets (dorsal MPFC: BA 9/32). The role of DMPFC in social cognition may also be less uniquely social than previously thought; it may be better characterized as a region that indexes certainty about evaluation rather than previously considered social mechanisms (i.e., correction of self-projection). VMPFC, a region often described as an important mediator of socioemotional significance, may instead perform a more cognitive role by reflecting the type of information brought to bear on evaluations of people we know well. Furthermore, the new framework moves beyond MPFC and hypothesizes that two other midline regions, ventral anterior cingulate cortex (VACC: BA 25) and medial orbitofrontal cortex (MOFC: BA 11), aid motivational influences on social cognition. Despite the central role of motivation in psychological models of self-perception, neural models have largely ignored the topic. Positive connectivity between VACC and MOFC may mediate bottom-up sensitivity to information based on its potential for helping us evaluate ourselves or others the way we want. As connectivity becomes more positive with striatum and less positive with middle frontal gyrus (BA 9/44), MOFC mediates top-down motivational influences by adjusting the standards we bring to bear on evaluations of ourselves and other people. PMID:23935580
Early life stress-induced alterations in rat brain structures measured with high resolution MRI.
Sarabdjitsingh, R Angela; Loi, Manila; Joëls, Marian; Dijkhuizen, Rick M; van der Toorn, Annette
2017-01-01
Adverse experiences early in life impair cognitive function both in rodents and humans. In humans this increases the vulnerability to develop mental illnesses while in the rodent brain early life stress (ELS) abnormalities are associated with changes in synaptic plasticity, excitability and microstructure. Detailed information on the effects of ELS on rodent brain structural integrity at large and connectivity within the brain is currently lacking; this information is highly relevant for understanding the mechanism by which early life stress predisposes to mental illnesses. Here, we exposed rats to 24 hours of maternal deprivation (MD) at postnatal day 3, a paradigm known to increase corticosterone levels and thereby activate glucocorticoid receptors in the brain. Using structural magnetic resonance imaging we examined: i) volumetric changes and white/grey matter properties of the whole cerebrum and of specific brain areas; and ii) whether potential alterations could be normalized by blocking glucocorticoid receptors with mifepristone during the critical developmental window of early adolescence, i.e. between postnatal days 26 and 28. The results show that MD caused a volumetric reduction of the prefrontal cortex, particularly the ventromedial part, and the orbitofrontal cortex. Within the whole cerebrum, white (relative to grey) matter volume was decreased and region-specifically in prefrontal cortex and dorsomedial striatum following MD. A trend was found for the hippocampus. Grey matter fractions were not affected. Treatment with mifepristone did not normalize these changes. This study indicates that early life stress in rodents has long lasting consequences for the volume and structural integrity of the brain. However, changes were relatively modest and-unlike behavior- not mitigated by blockade of glucocorticoid receptors during a critical developmental period.
Summerfield, Christopher; Tsetsos, Konstantinos
2012-01-01
Investigation into the neural and computational bases of decision-making has proceeded in two parallel but distinct streams. Perceptual decision-making (PDM) is concerned with how observers detect, discriminate, and categorize noisy sensory information. Economic decision-making (EDM) explores how options are selected on the basis of their reinforcement history. Traditionally, the sub-fields of PDM and EDM have employed different paradigms, proposed different mechanistic models, explored different brain regions, disagreed about whether decisions approach optimality. Nevertheless, we argue that there is a common framework for understanding decisions made in both tasks, under which an agent has to combine sensory information (what is the stimulus) with value information (what is it worth). We review computational models of the decision process typically used in PDM, based around the idea that decisions involve a serial integration of evidence, and assess their applicability to decisions between good and gambles. Subsequently, we consider the contribution of three key brain regions - the parietal cortex, the basal ganglia, and the orbitofrontal cortex (OFC) - to perceptual and EDM, with a focus on the mechanisms by which sensory and reward information are integrated during choice. We find that although the parietal cortex is often implicated in the integration of sensory evidence, there is evidence for its role in encoding the expected value of a decision. Similarly, although much research has emphasized the role of the striatum and OFC in value-guided choices, they may play an important role in categorization of perceptual information. In conclusion, we consider how findings from the two fields might be brought together, in order to move toward a general framework for understanding decision-making in humans and other primates.
Kolla, Nathan J; Matthews, Brittany; Wilson, Alan A; Houle, Sylvain; Michael Bagby, R; Links, Paul; Simpson, Alexander I; Hussain, Amina; Meyer, Jeffrey H
2015-01-01
Antisocial personality disorder (ASPD) often presents with highly impulsive, violent behavior, and pathological changes in the orbitofrontal cortex (OFC) and ventral striatum (VS) are implicated. Several compelling reasons support a relationship between low monoamine oxidase-A (MAO-A), an enzyme that regulates neurotransmitters, and ASPD. These include MAO-A knockout models in rodents evidencing impulsive aggression and positron emission tomography (PET) studies of healthy subjects reporting associations between low brain MAO-A levels and greater impulsivity or aggression. However, a fundamental gap in the literature is that it is unknown whether brain MAO-A levels are low in more severe, clinical disorders of impulsivity, such as ASPD. To address this issue, we applied [11C] harmine PET to measure MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in 18 male ASPD participants and 18 age- and sex-matched controls. OFC and VS MAO-A VT were lower in ASPD compared with controls (multivariate analysis of variance (MANOVA): F2,33=6.8, P=0.003; OFC and VS MAO-A VT each lower by 19%). Similar effects were observed in other brain regions: prefrontal cortex, anterior cingulate cortex, dorsal putamen, thalamus, hippocampus, and midbrain (MANOVA: F7,28=2.7, P=0.029). In ASPD, VS MAO-A VT was consistently negatively correlated with self-report and behavioral measures of impulsivity (r=−0.50 to −0.52, all P-values<0.05). This study is the first to demonstrate lower brain MAO-A levels in ASPD. Our results support an important extension of preclinical models of impulsive aggression into a human disorder marked by pathological aggression and impulsivity. PMID:26081301
Kolla, Nathan J; Matthews, Brittany; Wilson, Alan A; Houle, Sylvain; Bagby, R Michael; Links, Paul; Simpson, Alexander I; Hussain, Amina; Meyer, Jeffrey H
2015-10-01
Antisocial personality disorder (ASPD) often presents with highly impulsive, violent behavior, and pathological changes in the orbitofrontal cortex (OFC) and ventral striatum (VS) are implicated. Several compelling reasons support a relationship between low monoamine oxidase-A (MAO-A), an enzyme that regulates neurotransmitters, and ASPD. These include MAO-A knockout models in rodents evidencing impulsive aggression and positron emission tomography (PET) studies of healthy subjects reporting associations between low brain MAO-A levels and greater impulsivity or aggression. However, a fundamental gap in the literature is that it is unknown whether brain MAO-A levels are low in more severe, clinical disorders of impulsivity, such as ASPD. To address this issue, we applied [(11)C] harmine PET to measure MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in 18 male ASPD participants and 18 age- and sex-matched controls. OFC and VS MAO-A VT were lower in ASPD compared with controls (multivariate analysis of variance (MANOVA): F2,33=6.8, P=0.003; OFC and VS MAO-A VT each lower by 19%). Similar effects were observed in other brain regions: prefrontal cortex, anterior cingulate cortex, dorsal putamen, thalamus, hippocampus, and midbrain (MANOVA: F7,28=2.7, P=0.029). In ASPD, VS MAO-A VT was consistently negatively correlated with self-report and behavioral measures of impulsivity (r=-0.50 to -0.52, all P-values<0.05). This study is the first to demonstrate lower brain MAO-A levels in ASPD. Our results support an important extension of preclinical models of impulsive aggression into a human disorder marked by pathological aggression and impulsivity.
Summerfield, Christopher; Tsetsos, Konstantinos
2012-01-01
Investigation into the neural and computational bases of decision-making has proceeded in two parallel but distinct streams. Perceptual decision-making (PDM) is concerned with how observers detect, discriminate, and categorize noisy sensory information. Economic decision-making (EDM) explores how options are selected on the basis of their reinforcement history. Traditionally, the sub-fields of PDM and EDM have employed different paradigms, proposed different mechanistic models, explored different brain regions, disagreed about whether decisions approach optimality. Nevertheless, we argue that there is a common framework for understanding decisions made in both tasks, under which an agent has to combine sensory information (what is the stimulus) with value information (what is it worth). We review computational models of the decision process typically used in PDM, based around the idea that decisions involve a serial integration of evidence, and assess their applicability to decisions between good and gambles. Subsequently, we consider the contribution of three key brain regions – the parietal cortex, the basal ganglia, and the orbitofrontal cortex (OFC) – to perceptual and EDM, with a focus on the mechanisms by which sensory and reward information are integrated during choice. We find that although the parietal cortex is often implicated in the integration of sensory evidence, there is evidence for its role in encoding the expected value of a decision. Similarly, although much research has emphasized the role of the striatum and OFC in value-guided choices, they may play an important role in categorization of perceptual information. In conclusion, we consider how findings from the two fields might be brought together, in order to move toward a general framework for understanding decision-making in humans and other primates. PMID:22654730
Extrastriatal dopamine D2-receptor availability in social anxiety disorder.
Plavén-Sigray, Pontus; Hedman, Erik; Victorsson, Pauliina; Matheson, Granville J; Forsberg, Anton; Djurfeldt, Diana R; Rück, Christian; Halldin, Christer; Lindefors, Nils; Cervenka, Simon
2017-05-01
Alterations in the dopamine system are hypothesized to influence the expression of social anxiety disorder (SAD) symptoms. However, molecular imaging studies comparing dopamine function between patients and control subjects have yielded conflicting results. Importantly, while all previous investigations focused on the striatum, findings from activation and blood flow studies indicate that prefrontal and limbic brain regions have a central role in the pathophysiology. The objective of this study was to investigate extrastriatal dopamine D2-receptor (D2-R) availability in SAD. We examined 12 SAD patients and 16 healthy controls using positron emission tomography and the high-affinity D2-R radioligand [ 11 C]FLB457. Parametric images of D2-R binding potential were derived using the Logan graphical method with cerebellum as reference region. Two-tailed one-way independent ANCOVAs, with age as covariate, were used to examine differences in D2-R availability between groups using both region-based and voxel-wise analyses. The region-based analysis showed a medium effect size of higher D2-R levels in the orbitofrontal cortex (OFC) in patients, although this result did not remain significant after correction for multiple comparisons. The voxel-wise comparison revealed elevated D2-R availability in patients within OFC and right dorsolateral prefrontal cortex after correction for multiple comparisons. These preliminary results suggest that an aberrant extrastriatal dopamine system may be part of the disease mechanism in SAD. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Cumulative Adversity Sensitizes Neural Response to Acute Stress: Association with Health Symptoms
Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita
2014-01-01
Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic–striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences. PMID:24051900
Cumulative adversity sensitizes neural response to acute stress: association with health symptoms.
Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita
2014-02-01
Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic-striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences.
Richter, Anja; Gruber, Oliver
2018-02-01
It is argued that the mesolimbic system has a more general function in processing all salient events, including and extending beyond rewards. Saliency was defined as an event that is unexpected due to its frequency of occurrence and elicits an attentional-behavioral switch. Using functional magnetic resonance imaging (fMRI), signals were measured in response to the modulation of salience of rewarding and nonrewarding events during a reward-based decision making task, the so called desire-reason dilemma paradigm (DRD). Replicating previous findings, both frequent and infrequent, and therefore salient, reward stimuli elicited reliable activation of the ventral tegmental area (VTA) and ventral striatum (vStr). When immediate reward desiring contradicted the superordinate task-goal, we found an increased activation of the VTA and vStr when the salient reward stimuli were presented compared to the nonsalient reward stimuli, indicating a boosting of activation in these brain regions. Furthermore, we found a significantly increased functional connectivity between the VTA and vStr, confirming the boosting of vStr activation via VTA input. Moreover, saliency per se without a reward association led to an increased activation of brain regions in the mesolimbic reward system as well as the orbitofrontal cortex (OFC), inferior frontal gyrus (IFG), and anterior cingulate cortex (ACC). Finally, findings uncovered multiple increased functional interactions between cortical saliency-processing brain areas and the VTA and vStr underlying detection and processing of salient events and adaptive decision making. © 2017 Wiley Periodicals, Inc.
Abnormal brain white matter network in young smokers: a graph theory analysis study.
Zhang, Yajuan; Li, Min; Wang, Ruonan; Bi, Yanzhi; Li, Yangding; Yi, Zhang; Liu, Jixin; Yu, Dahua; Yuan, Kai
2018-04-01
Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.
Li, Qi; Qin, Shaozheng; Rao, Li-Lin; Zhang, Wencai; Ying, Xiaoping; Guo, Xiuyan; Guo, Chunyan; Ding, Jinghong; Li, Shu; Luo, Jing
2011-01-01
The vast majority of decision-making research is performed under the assumption of the value maximizing principle. This principle implies that when making decisions, individuals try to optimize outcomes on the basis of cold mathematical equations. However, decisions are emotion-laden rather than cool and analytic when they tap into life-threatening considerations. Using functional magnetic resonance imaging (fMRI), this study investigated the neural mechanisms underlying vital loss decisions. Participants were asked to make a forced choice between two losses across three conditions: both losses are trivial (trivial-trivial), both losses are vital (vital-vital), or one loss is trivial and the other is vital (vital-trivial). Our results revealed that the amygdala was more active and correlated positively with self-reported negative emotion associated with choice during vital-vital loss decisions, when compared to trivial-trivial loss decisions. The rostral anterior cingulate cortex was also more active and correlated positively with self-reported difficulty of choice during vital-vital loss decisions. Compared to the activity observed during trivial-trivial loss decisions, the orbitofrontal cortex and ventral striatum were more active and correlated positively with self-reported positive emotion of choice during vital-trivial loss decisions. Our findings suggest that vital loss decisions involve emotions and cannot be adequately captured by cold computation of minimizing losses. This research will shed light on how people make vital loss decisions. PMID:21412428
Li, Min; Wang, Ke; Su, Wen-Ting; Jia, Jun; Wang, Xiao-Min
2017-10-06
To explore the possible underlying mechanism by investigating the effect of electroacupuncture (EA) treatment on the primary motor cortex and striatum in a unilateral 6-hydroxydopamine (6-OHDA) induced rat Parkinson's disease (PD) model. Male Sprague-Dawley rats were randomly divided into sham group (n=16), model group (n=14), and EA group (n=14). EA stimulation at Dazhui (GV 14) and Baihui (GV20) was applied to PD rats in the EA group for 4 weeks. Behavioral tests were conducted to evaluate the effectiveness of EA treatment. Metabolites were detected by 7.0 T proton nuclear magnetic resonance. Following 4 weeks of EA treatment in PD model rats, the abnormal behavioral impairment induced by 6-OHDA was alleviated. In monitoring changes in metabolic activity, ratios of myoinositol/creatine (Cr) and N-acetyl aspartate (NAA)/Cr in the primary motor cortex were significantly lower at the injected side than the non-injected side in PD rats (P=0.024 and 0.020). The ratios of glutamate + glutamine (Glx)/Cr and NAA/Cr in the striatum were higher and lower, respectively, at the injected side than the non-injected side (P=0.046 and 0.008). EA treatment restored the balance of metabolic activity in the primary motor cortex and striatum. In addition, the taurine/Cr ratio and Glx/Cr ratio were elevated in the striatum of PD model rats compared to sham-lesioned rats (P=0.026 and 0.000). EA treatment alleviated the excessive glutamatergic transmission by down-regulating the striatal Glx/Cr ratio (P=0.001). The Glx/Cr ratio was negatively correlated with floor plane spontaneous locomotion in PD rats (P=0.027 and P=0.0007). EA treatment is able to normalize the metabolic balance in the primary motor cortex and striatum of PD rats, which may contribute to its therapeutic effect on motor deficits. The striatal Glx/Cr ratio may serve as a potential indicator of PD and a therapeutic target of EA treatment.
Linking dynamic patterns of neural activity in orbitofrontal cortex with decision making.
Rich, Erin L; Stoll, Frederic M; Rudebeck, Peter H
2018-04-01
Humans and animals demonstrate extraordinary flexibility in choice behavior, particularly when deciding based on subjective preferences. We evaluate options on different scales, deliberate, and often change our minds. Little is known about the neural mechanisms that underlie these dynamic aspects of decision-making, although neural activity in orbitofrontal cortex (OFC) likely plays a central role. Recent evidence from studies in macaques shows that attention modulates value responses in OFC, and that ensembles of OFC neurons dynamically signal different options during choices. When contexts change, these ensembles flexibly remap to encode the new task. Determining how these dynamic patterns emerge and relate to choices will inform models of decision-making and OFC function. Copyright © 2017 Elsevier Ltd. All rights reserved.
MDMA administration decreases serotonin but not N-acetylaspartate in the rat brain
Perrine, Shane A.; Ghoddoussi, Farhad; Michaels, Mark S.; Hyde, Elisabeth M.; Kuhn, Donald M.; Galloway, Matthew P.
2010-01-01
In animals, repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) reduces markers of serotonergic activity and studies show similar serotonergic deficits in human MDMA users. Using proton magnetic resonance spectroscopy (1H-MRS) at 11.7 Tesla, we measured the metabolic neurochemical profile in intact, discrete tissue punches taken from prefrontal cortex, anterior striatum, and hippocampus of rats administered MDMA (5 mg/kg IP, 4× q 2 h) or saline and euthanized 7 days after the last injection. Monoamine content was measured with HPLC in contralateral punches from striatum and hippocampus to compare the MDMA-induced loss of 5HT innervation with constituents in the 1H-MRS profile. When assessed 7 days after the last MDMA injection, levels of hippocampal and striatal serotonin (5HT) were significantly reduced, consistent with published animal studies. N-acetylaspartate (NAA) levels were significantly increased in prefrontal cortex and not affected in anterior striatum or hippocampus; myo-inositol (INS) levels were increased in prefrontal cortex and hippocampus but not anterior striatum. Glutamate levels were increased in prefrontal cortex and decreased in hippocampus, while GABA levels were decreased only in hippocampus. The data suggest that NAA may not reliably reflect MDMA-induced 5HT neurotoxicity. However, the collective pattern of changes in 5HT, INS, glutamate and GABA is consistent with persistent hippocampal neuroadaptations caused by MDMA. PMID:20800616
MDMA administration decreases serotonin but not N-acetylaspartate in the rat brain.
Perrine, Shane A; Ghoddoussi, Farhad; Michaels, Mark S; Hyde, Elisabeth M; Kuhn, Donald M; Galloway, Matthew P
2010-12-01
In animals, repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) reduces markers of serotonergic activity and studies show similar serotonergic deficits in human MDMA users. Using proton-magnetic resonance spectroscopy ((1)H-MRS) at 11.7Tesla, we measured the metabolic neurochemical profile in intact, discrete tissue punches taken from prefrontal cortex, anterior striatum, and hippocampus of rats administered MDMA (5mg/kg IP, 4× q 2h) or saline and euthanized 7 days after the last injection. Monoamine content was measured with HPLC in contralateral punches from striatum and hippocampus to compare the MDMA-induced loss of 5HT innervation with constituents in the (1)H-MRS profile. When assessed 7 days after the last MDMA injection, levels of hippocampal and striatal serotonin (5HT) were significantly reduced, consistent with published animal studies. N-Acetylaspartate (NAA) levels were significantly increased in prefrontal cortex and not affected in anterior striatum or hippocampus; myo-inositol (INS) levels were increased in prefrontal cortex and hippocampus but not anterior striatum. Glutamate levels were increased in prefrontal cortex and decreased in hippocampus, while GABA levels were decreased only in hippocampus. The data suggest that NAA may not reliably reflect MDMA-induced 5HT neurotoxicity. However, the collective pattern of changes in 5HT, INS, glutamate and GABA is consistent with persistent hippocampal neuroadaptations caused by MDMA. Copyright © 2010 Elsevier Inc. All rights reserved.
Shape abnormalities of the striatum in Alzheimer's disease.
de Jong, Laura W; Ferrarini, Luca; van der Grond, Jeroen; Milles, Julien R; Reiber, Johan H C; Westendorp, Rudi G J; Bollen, Edward L E M; Middelkoop, Huub A M; van Buchem, Mark A
2011-01-01
Postmortem studies show pathological changes in the striatum in Alzheimer's disease (AD). Here, we examine the surface of the striatum in AD and assess whether changes of the surface are associated with impaired cognitive functioning. The shape of the striatum (n. accumbens, caudate nucleus, and putamen) was compared between 35 AD patients and 35 individuals without cognitive impairment. The striatum was automatically segmented from 3D T1 magnetic resonance images and automatic shape modeling tools (Growing Adaptive Meshes) were applied for morphometrical analysis. Repeated permutation tests were used to identify locations of consistent shape deformities of the striatal surface in AD. Linear regression models, corrected for age, gender, educational level, head size, and total brain parenchymal volume were used to assess the relation between cognitive performance and local surface deformities. In AD patients, differences of shape were observed on the medial head of the caudate nucleus and on the ventral lateral putamen, but not on the accumbens. The head of the caudate nucleus and ventral lateral putamen are characterized by extensive connections with the orbitofrontal and medial temporal cortices. Severity of cognitive impairment was associated with the degree of deformity of the surfaces of the accumbens, rostral medial caudate nucleus, and ventral lateral putamen. These findings provide evidence for the hypothesis that in AD primarily associative and limbic cerebral networks are affected.
Emotion disrupts neural activity during selective attention in psychopathy
Spielberg, Jeffrey M.; Heller, Wendy; Herrington, John D.; Engels, Anna S.; Warren, Stacie L.; Crocker, Laura D.; Sutton, Bradley P.; Miller, Gregory A.
2013-01-01
Dimensions of psychopathy are theorized to be associated with distinct cognitive and emotional abnormalities that may represent unique neurobiological risk factors for the disorder. This hypothesis was investigated by examining whether the psychopathic personality dimensions of fearless-dominance and impulsive-antisociality moderated neural activity and behavioral responses associated with selective attention and emotional processing during an emotion-word Stroop task in 49 adults. As predicted, the dimensions evidenced divergent selective-attention deficits and sensitivity to emotional distraction. Fearless-dominance was associated with disrupted attentional control to positive words, and activation in right superior frontal gyrus mediated the relationship between fearless-dominance and errors to positive words. In contrast, impulsive-antisociality evidenced increased behavioral interference to both positive and negative words and correlated positively with recruitment of regions associated with motivational salience (amygdala, orbitofrontal cortex, insula), emotion regulation (temporal cortex, superior frontal gyrus) and attentional control (dorsal anterior cingulate cortex). Individuals high on both dimensions had increased recruitment of regions related to attentional control (temporal cortex, rostral anterior cingulate cortex), response preparation (pre-/post-central gyri) and motivational value (orbitofrontal cortex) in response to negative words. These findings provide evidence that the psychopathy dimensions represent dual sets of risk factors characterized by divergent dysfunction in cognitive and affective processes. PMID:22210673
Emotion disrupts neural activity during selective attention in psychopathy.
Sadeh, Naomi; Spielberg, Jeffrey M; Heller, Wendy; Herrington, John D; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A
2013-03-01
Dimensions of psychopathy are theorized to be associated with distinct cognitive and emotional abnormalities that may represent unique neurobiological risk factors for the disorder. This hypothesis was investigated by examining whether the psychopathic personality dimensions of fearless-dominance and impulsive-antisociality moderated neural activity and behavioral responses associated with selective attention and emotional processing during an emotion-word Stroop task in 49 adults. As predicted, the dimensions evidenced divergent selective-attention deficits and sensitivity to emotional distraction. Fearless-dominance was associated with disrupted attentional control to positive words, and activation in right superior frontal gyrus mediated the relationship between fearless-dominance and errors to positive words. In contrast, impulsive-antisociality evidenced increased behavioral interference to both positive and negative words and correlated positively with recruitment of regions associated with motivational salience (amygdala, orbitofrontal cortex, insula), emotion regulation (temporal cortex, superior frontal gyrus) and attentional control (dorsal anterior cingulate cortex). Individuals high on both dimensions had increased recruitment of regions related to attentional control (temporal cortex, rostral anterior cingulate cortex), response preparation (pre-/post-central gyri) and motivational value (orbitofrontal cortex) in response to negative words. These findings provide evidence that the psychopathy dimensions represent dual sets of risk factors characterized by divergent dysfunction in cognitive and affective processes.
Lateral, Not Medial, Prefrontal Cortex Contributes to Punishment and Aversive Instrumental Learning
ERIC Educational Resources Information Center
Jean-Richard-dit-Bressel , Philip; McNally, Gavan P.
2016-01-01
Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral…
Increased Cortical Thickness in Male-to-Female Transsexualism
Luders, Eileen; Sánchez, Francisco J.; Tosun, Duygu; Shattuck, David W.; Gaser, Christian; Vilain, Eric; Toga, Arthur W.
2013-01-01
Background The degree to which one identifies as male or female has a profound impact on one’s life. Yet, there is a limited understanding of what contributes to this important characteristic termed gender identity. In order to reveal factors influencing gender identity, studies have focused on people who report strong feelings of being the opposite sex, such as male-to-female (MTF) transsexuals. Method To investigate potential neuroanatomical variations associated with transsexualism, we compared the regional thickness of the cerebral cortex between 24 MTF transsexuals who had not yet been treated with cross-sex hormones and 24 age-matched control males. Results Results revealed thicker cortices in MTF transsexuals, both within regions of the left hemisphere (i.e., frontal and orbito-frontal cortex, central sulcus, perisylvian regions, paracentral gyrus) and right hemisphere (i.e., pre-/post-central gyrus, parietal cortex, temporal cortex, precuneus, fusiform, lingual, and orbito-frontal gyrus). Conclusion These findings provide further evidence that brain anatomy is associated with gender identity, where measures in MTF transsexuals appear to be shifted away from gender-congruent men. PMID:23724358
Jackson, Stacey A. W.; Horst, Nicole K.; Pears, Andrew; Robbins, Trevor W.; Roberts, Angela C.
2016-01-01
Two learning mechanisms contribute to decision-making: goal-directed actions and the “habit” system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. PMID:27130662
Kessler, Robert M; Woodward, Neil D; Riccardi, Patrizia; Li, Rui; Ansari, M Sib; Anderson, Sharlett; Dawant, Benoit; Zald, David; Meltzer, Herbert Y
2009-06-15
Studies in schizophrenic patients have reported dopaminergic abnormalities in striatum, substantia nigra, thalamus, anterior cingulate, hippocampus, and cortex that have been related to positive symptoms and cognitive impairments. [(18)F]fallypride positron emission tomography studies were performed in off-medication or never-medicated schizophrenic subjects (n = 11, 6 men, 5 women; mean age of 30.5 +/- 8.0 [SD] years; 4 drug-naive) and age-matched healthy subjects (n = 11, 5 men, 6 women, mean age of 31.6 +/- 9.2 [SD]) to examine dopamine D(2) receptor (DA D(2)r) levels in the caudate, putamen, ventral striatum, medial thalamus, posterior thalamus, substantia nigra, amygdala, temporal cortex, anterior cingulate, and hippocampus. In schizophrenic subjects, increased DA D(2)r levels were seen in the substantia nigra bilaterally; decreased levels were seen in the left medial thalamus. Correlations of symptoms with ROI data demonstrated a significant correlation of disorganized thinking/nonparanoid delusions with the right temporal cortex ROI (r = .94, p = .0001), which remained significant after correction for multiple comparisons (p < .03). Correlations of symptoms with parametric images of DA D(2)r levels revealed no significant clusters of correlations with negative symptoms but significant clusters of positive correlations of total positive symptoms, delusions and bizarre behavior with the lateral and anterior temporal cortex, and hallucinations with the left ventral striatum. The results of this study demonstrate abnormal DA D(2)r-mediated neurotransmission in the substantia nigra consistent with nigral dysfunction in schizophrenia and suggest that both temporal cortical and ventral striatal DA D(2)r mediate positive symptoms.
Own-gender imitation activates the brain's reward circuitry
Iacoboni, Macro; Martin, Alia; Dapretto, Mirella
2012-01-01
Imitation is an important component of human social learning throughout life. Theoretical models and empirical data from anthropology and psychology suggest that people tend to imitate self-similar individuals, and that such imitation biases increase the adaptive value (e.g., self-relevance) of learned information. It is unclear, however, what neural mechanisms underlie people's tendency to imitate those similar to themselves. We focused on the own-gender imitation bias, a pervasive bias thought to be important for gender identity development. While undergoing fMRI, participants imitated own- and other-gender actors performing novel, meaningless hand signs; as control conditions, they also simply observed such actions and viewed still portraits of the same actors. Only the ventral and dorsal striatum, orbitofrontal cortex and amygdala were more active when imitating own- compared to other-gender individuals. A Bayesian analysis of the BrainMap neuroimaging database demonstrated that the striatal region preferentially activated by own-gender imitation is selectively activated by classical reward tasks in the literature. Taken together, these findings reveal a neurobiological mechanism associated with the own-gender imitation bias and demonstrate a novel role of reward-processing neural structures in social behavior. PMID:22383803
Arvin, B; Lekieffre, D; Graham, J L; Moncada, C; Chapman, A G; Meldrum, B S
1994-04-01
The effect of the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466) on ischaemia-induced changes in the microdialysate and tissue concentrations of glutamate, aspartate, and gamma-aminobutyric acid (GABA) was studied in rats. Twenty minutes of four-vessel occlusion resulted in a transient increase in microdialysate levels of glutamate, aspartate, and GABA in striatum, cortex, and hippocampus. Administration of GYKI 52466 (10 mg/kg bolus + 10 mg/kg/60 min intravenously starting 20 min before onset of ischaemia) inhibited ischaemia-induced increases in microdialysate glutamate and GABA in striatum without affecting the increases in hippocampus or cortex. Twenty minutes of four-vessel occlusion resulted in immediate small decreases and larger delayed (72 h) decreases in tissue levels of glutamate and aspartate. Transient increases in tissue levels of GABA were shown in all three structures at the end of the ischaemic period. At 72 h, after the ischaemic period, significantly reduced GABA levels were observed in striatum and hippocampus. GYKI 52466, given under identical conditions as above, augmented the ischaemia-induced decrease in striatal tissue levels of glutamate and aspartate, without significantly affecting the decreases in hippocampus and cortex. Twenty minutes of ischaemia resulted in a large increase in microdialysate dopamine in striatum. GYKI 52466 failed to inhibit this increase. Kainic acid (500 microM infused through the probe for 20 min) caused increases in microdialysate glutamate and aspartate in the striatum. GYKI 52466 (10 mg/kg bolus + 10 mg/kg/60 min) completely inhibited the kainic acid-induced glutamate release. In conclusion, the action of the non-NMDA antagonist, GYKI 52466, in the striatum is different from that in the cortex and hippocampus. The inhibition by GYKI 52466 of ischaemia-induced and kainate-induced increases in microdialysate glutamate concentration in the striatum may be related to the neuroprotection provided by GYKI 52466 in this region.
Piyabhan, Pritsana; Wannasiri, Supaporn; Naowaboot, Jarinyaporn
2016-12-01
Reduced vesicular glutamate transporter 1 (VGLUT1) and 2 (VGLUT2) indicate glutamatergic hypofunction leading to cognitive impairment in schizophrenia. However, VGLUT3 involvement in cognitive dysfunction has not been reported in schizophrenia. Brahmi (Bacopa monnieri) might be a new treatment and prevention for cognitive deficits in schizophrenia by acting on cerebral VGLUT3 density. We aimed to study cognitive enhancement- and neuroprotective-effects of Brahmi on novel object recognition and cerebral VGLUT3 immunodensity in sub-chronic (2 mg/kg, Bid, ip) phencyclidine (PCP) rat model of schizophrenia. Rats were assigned to three groups for cognitive enhancement effect study: Group 1, Control; Group 2, PCP administration; Group 3, PCP+Brahmi. A neuroprotective-effect study was also carried out. Rats were again assigned to three groups: Group 1, Control; Group 2, PCP administration; Group 3, Brahmi+PCP. Discrimination ratio (DR) representing cognitive ability was obtained from a novel object recognition task. VGLUT3 immunodensity was measured in the prefrontal cortex, striatum and cornu ammonis fields 1-3 (CA1-3) using immunohistochemistry. We found reduced DR in the PCP group, which occurred alongside VGLUT3 reduction in all brain areas. PCP+Brahmi showed higher DR score with increased VGLUT3 immunodensity in the prefrontal cortex and striatum. Brahmi+PCP group showed a higher DR score with increased VGLUT3 immunodensity in the prefrontal cortex, striatum and CA1-3. We concluded that reduced cerebral VGLUT3 was involved in cognitive deficit in PCP-administrated rats. Receiving Brahmi after PCP restored cognitive deficit by increasing VGLUT3 in the prefrontal cortex and striatum. Receiving Brahmi before PCP prevented cognitive impairment by elevating VGLUT3 in prefrontal cortex, striatum and CA1-3. Therefore, Brahmi could be a new frontier of restoration and prevention of cognitive deficit in schizophrenia. © 2016 John Wiley & Sons Australia, Ltd.
Further studies on the cortical connections of the Tegu lizard.
Lohman, A H; Van Woerden-Verkley, I
1976-02-13
The efferent fiber connections of the caudal half of the cerebral cortex, the lateral cortex and the pallial thickening were studied using the Nauta-Gygax and Fink-Heimer techniques. The following observations were made, (1) In the caudal half of the hemisphere corticoseptal and corticohypothalamic fibers originate from the small-celled part of the mediodorsal cortex and the thickened caudal part of the dorsal cortex in its whole mediolateral extent. (2) The dorsal cortex in the middle of the hemisphere projects by way of both the pre- and postcommissural fornices. Its rostral pole distributes its fibers solely to the postcommissural fornix, whereas its caudal part projects via the precommissural fornix. (3) The posterior pallial commissure carries fibers that arise caudally in the small-celled part of the mediodorsal cortex and terminate in the contralateral ventral cortex. (4) Projections to the dorsal striatum originate from the lateral cortex, the dorsal cortex and the superficial portion of the pallial thickening. In addition, the latter two zones project to the nucleus accumbens. (5) The deep portion of the pallial thickening projects to the ventral striatum.
Na, Kyoung-Sae; Ham, Byung-Joo; Lee, Min-Soo; Kim, Leen; Kim, Yong-Ku; Lee, Heon-Jeong; Yoon, Ho-Kyoung
2013-08-01
Patients with panic disorder with agoraphobia (PDA) have clinical symptoms such as the fear of being outside or of open spaces from which escape would be difficult. Although recent neurobiological studies have suggested that fear conditioning and extinction are associated with PDA, no study has examined the possible structural abnormalities in patients with PDA. This preliminary study compares the gray matter volume among patients with PDA, those with panic disorder without agoraphobia (PDW), and healthy controls (HC) using high-resolution 3.0 T magnetic resonance imaging (MRI) with voxel-based morphometry (VBM). Compared with HC, patients with PDA showed decreased gray matter volume in their left medial orbitofrontal gyrus. However, differences were not found in the gray matter volumes of patients with PDW and whole panic disorder compared with HC. These findings suggest that the phobic avoidance found in patients with PDA arise from abnormalities in the medial orbitofrontal cortex, which plays an important role in fear extinction. Future studies should investigate the neuroanatomical substrates of PDA and distinguish them from those of PDW. Copyright © 2013 Elsevier Inc. All rights reserved.
Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C.
2014-01-01
This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents’ risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17–18, and young adults: 21–22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others’ perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes. PMID:24592227
Ageing diminishes the modulation of human brain responses to visual food cues by meal ingestion.
Cheah, Y S; Lee, S; Ashoor, G; Nathan, Y; Reed, L J; Zelaya, F O; Brammer, M J; Amiel, S A
2014-09-01
Rates of obesity are greatest in middle age. Obesity is associated with altered activity of brain networks sensing food-related stimuli and internal signals of energy balance, which modulate eating behaviour. The impact of healthy mid-life ageing on these processes has not been characterised. We therefore aimed to investigate changes in brain responses to food cues, and the modulatory effect of meal ingestion on such evoked neural activity, from young adulthood to middle age. Twenty-four healthy, right-handed subjects, aged 19.5-52.6 years, were studied on separate days after an overnight fast, randomly receiving 50 ml water or 554 kcal mixed meal before functional brain magnetic resonance imaging while viewing visual food cues. Across the group, meal ingestion reduced food cue-evoked activity of amygdala, putamen, insula and thalamus, and increased activity in precuneus and bilateral parietal cortex. Corrected for body mass index, ageing was associated with decreasing food cue-evoked activation of right dorsolateral prefrontal cortex (DLPFC) and precuneus, and increasing activation of left ventrolateral prefrontal cortex (VLPFC), bilateral temporal lobe and posterior cingulate in the fasted state. Ageing was also positively associated with the difference in food cue-evoked activation between fed and fasted states in the right DLPFC, bilateral amygdala and striatum, and negatively associated with that of the left orbitofrontal cortex and VLPFC, superior frontal gyrus, left middle and temporal gyri, posterior cingulate and precuneus. There was an overall tendency towards decreasing modulatory effects of prior meal ingestion on food cue-evoked regional brain activity with increasing age. Healthy ageing to middle age is associated with diminishing sensitivity to meal ingestion of visual food cue-evoked activity in brain regions that represent the salience of food and direct food-associated behaviour. Reduced satiety sensing may have a role in the greater risk of obesity in middle age.
Hummer, Tom A; Phan, K Luan; Kern, David W; McClintock, Martha K
2017-01-01
Evidence suggests the putative human pheromone Δ4,16-androstadien-3-one (androstadienone), a natural component of human sweat, increases attention to emotional information when passively inhaled, even in minute amounts. However, the neural mechanisms underlying androstadienone's impact on the perception of emotional stimuli have not been clarified. To characterize how the compound modifies neural circuitry while attending to emotional information, 22 subjects (11 women) underwent two fMRI scanning sessions, one with an androstadienone solution and one with a carrier control solution alone on their upper lip. During each session, participants viewed blocks of emotionally positive, negative, or neutral images. The BOLD response to emotional images (relative to neutral images) was greater during exposure to androstadienone in right orbitofrontal and lateral prefrontal cortex, particularly during positive image blocks. Androstadienone did not impact the response to social images, compared to nonsocial images, and results were not related to participant sex or olfactory sensitivity. To examine how androstadienone influences effective connectivity of this network, a dynamic causal model was employed with primary visual cortex (V1), amygdala, prefrontal cortex, and orbitofrontal cortex on each side. These models indicated that emotional images increased the drive from V1 to the amygdala during the control session. With androstadienone present, this drive to amygdala was decreased specifically for positive images, which drove downstream increases in orbitofrontal and prefrontal activity. This evidence suggests that androstadienone may act as a chemical signal to increase attention to positively valenced information via modifications to amygdala connectivity. Copyright © 2016. Published by Elsevier Ltd.
Verbal Memory in Parkinson’s Disease: A Combined DTI and fMRI Study
Lucas-Jiménez, Olaia; Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Ibarretxe-Bilbao, Naroa
2015-01-01
Background: While significant progress has been made to determine the functional role of specific gray matter areas underlying verbal memory in Parkinson’s disease (PD), very little is known about the relationship between these regions and their underlying white matter structures. Objective: The objectives of this study were (1) to investigate verbal memory, fractional anisotropy and brain activation differences between PD patients and healthy controls (HC), (2) to explore the neuroanatomical and neurofunctional correlates of verbal memory in PD, and (3) to investigate the relationship between these neuroanatomical and neurofunctional verbal memory correlates in PD. Methods: Functional magnetic resonance imaging (fMRI) while performing a verbal memory paradigm and diffusion tensor imaging data (DTI), were acquired in 37 PD patients and 15 age-, sex-, and education-matched HC. Results: PD patients showed verbal recognition memory impairment, lower fractional anisotropy in the anterior cingulate tract, and lower brain activation in the inferior orbitofrontal cortex compared to HC. Brain activation in the inferior orbitofrontal cortex correlated significantly with verbal recognition memory impairment in PD patients. In addition, a relationship between brain activation in the inferior orbitofrontal cortex and fractional anisotropy of the uncinate fasciculus was found in PD. Conclusions: These results reveal that deficits in verbal memory in PD are accompanied by functional brain activation changes, but also have specific structural correlates related to white matter microstructural integrity. PMID:27070003
Meng, Chun; Brandl, Felix; Tahmasian, Masoud; Shao, Junming; Manoliu, Andrei; Scherr, Martin; Schwerthöffer, Dirk; Bäuml, Josef; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian
2014-02-01
In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter volume, medication, and total disease duration. This finding provides first evidence that in major depressive disorder aberrant topology of the right putamen's intrinsic connectivity pattern is associated with the course of depressive episodes, independently of current symptoms, medication status and disease duration. Data suggest that the reorganization of striatal connectivity may interact with the course of episodes in depression thereby contributing to depressive relapse risk.
The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function.
Lodge, Daniel J
2011-05-01
The prefrontal cortex (PFC) is essential for top-down control over higher-order executive function. In this study we demonstrate that the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) differentially regulate VTA dopamine neuron activity, and furthermore, the pattern of activity in the PFC drastically alters the dopamine neuron response. Thus, although single-pulse activation of the mPFC either excites or inhibits equivalent numbers of dopamine neurons, activation of the OFC induces a primarily inhibitory response. Moreover, activation of the PFC with a pattern that mimics spontaneous burst firing of pyramidal neurons produces a strikingly different response. Specifically, burst-like activation of the mPFC induces a massive increase in dopamine neuron firing, whereas a similar pattern of OFC activation largely inhibits dopamine activity. Taken together, these data demonstrate that the mPFC and OFC differentially regulate dopamine neuron activity, and that the pattern of cortical activation is critical for determining dopamine system output.
Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.
Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin
2018-04-01
Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.
Clarke, Hannah F; Horst, Nicole K; Roberts, Angela C
2015-03-31
Dysregulation of the orbitofrontal and ventrolateral prefrontal cortices is implicated in anxiety and mood disorders, but the specific contributions of each region are unknown, including how they gate the impact of threat on decision making. To address this, the effects of GABAergic inactivation of these regions were studied in marmoset monkeys performing an instrumental approach-avoidance decision-making task that is sensitive to changes in anxiety. Inactivation of either region induced a negative bias away from punishment that could be ameliorated with anxiolytic treatment. However, whereas the effects of ventrolateral prefrontal cortex inactivation on punishment avoidance were seen immediately, those of orbitofrontal cortex inactivation were delayed and their expression was dependent upon an amygdala-anterior hippocampal circuit. We propose that these negative biases result from deficits in attentional control and punishment prediction, respectively, and that they provide the basis for understanding how distinct regional prefrontal dysregulation contributes to the heterogeneity of anxiety disorders with implications for cognitive-behavioral treatment strategies.
Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso
2015-01-01
Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.
Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso
2015-01-01
Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640
Brain, emotion and decision making: the paradigmatic example of regret.
Coricelli, Giorgio; Dolan, Raymond J; Sirigu, Angela
2007-06-01
Human decisions cannot be explained solely by rational imperatives but are strongly influenced by emotion. Theoretical and behavioral studies provide a sound empirical basis to the impact of the emotion of regret in guiding choice behavior. Recent neuropsychological and neuroimaging data have stressed the fundamental role of the orbitofrontal cortex in mediating the experience of regret. Functional magnetic resonance imaging data indicate that reactivation of activity within the orbitofrontal cortex and amygdala occurring during the phase of choice, when the brain is anticipating possible future consequences of decisions, characterizes the anticipation of regret. In turn, these patterns reflect learning based on cumulative emotional experience. Moreover, affective consequences can induce specific mechanisms of cognitive control of the choice processes, involving reinforcement or avoidance of the experienced behavior.
Pagliaccio, David; Barch, Deanna M.; Bogdan, Ryan; Wood, Phillip K.; Lynskey, Michael T.; Heath, Andrew C.; Agrawal, Arpana
2015-01-01
Importance Prior neuroimaging studies have suggested that alterations in brain structure may be a consequence of cannabis use. Siblings discordant for cannabis use offer an opportunity to use cross-sectional data to disentangle such causal hypotheses from shared effects of genetics and familial environment on brain structure and cannabis use. Objective To determine whether cannabis use is associated with differences in brain structure in a large sample of twins/siblings and to examine sibling pairs discordant for cannabis use to separate potential causal and predispositional factors linking lifetime cannabis exposure to volumetric alterations. Design Cross-sectional diagnostic interview, behavioral, and neuroimaging data. Setting Community sampling and established family registries. Participants Data from 483 participants (22-35 years old), enrolled in the on-going Human Connectome Project; 262 participants reported cannabis exposure, i.e. ever using cannabis in their lifetime. Main Outcome Measures Whole brain, hippocampus, amygdala, ventral striatum, and orbitofrontal cortex volumes were related to lifetime cannabis use (ever use, age of onset, and frequency of use) using linear regressions. Genetic (ρg) and environmental (ρe) correlations between cannabis use and brain volumes were estimated. Linear mixed-models were used to examine volume differences in sex-matched, concordant unexposed (Npairs=71), exposed (Npairs=81), or exposure discordant (Npairs=89) sibling pairs. Results Cannabis exposure was related to smaller left amygdala (~2.3%) and right ventral striatum volumes (~3.5%). These volumetric differences were within the range of normal variation. The relationship between left amygdala volume and cannabis use was largely due to shared genetic factors (ρg=−0.43, p=0.004), while the origin of the association with right ventral striatum volumes was unclear. Importantly, brain volumes did not differ between sex-matched siblings discordant for use. Both the exposed and unexposed siblings in pairs discordant for cannabis exposure showed reduced amygdala volumes relative to members of concordant unexposed pairs. Conclusions and Relevance Differences in amygdala volume in cannabis users are attributable to common predispositional factors, genetic or environmental in origin, with little support for causal influences. Causal influences, in isolation or in conjunction with predispositional factors, may exist for other brain regions (e.g. ventral striatum) or at more severe levels of cannabis involvement and deserve further study. PMID:26308883
Taubner, Svenja; Wiswede, Daniel; Kessler, Henrik
2013-01-01
Objective: The heterogeneity between patients with depression cannot be captured adequately with existing descriptive systems of diagnosis and neurobiological models of depression. Furthermore, considering the highly individual nature of depression, the application of general stimuli in past research efforts may not capture the essence of the disorder. This study aims to identify subtypes of depression by using empirically derived personality syndromes, and to explore neural correlates of the derived personality syndromes. Materials and Methods: In the present exploratory study, an individually tailored and psychodynamically based functional magnetic resonance imaging paradigm using dysfunctional relationship patterns was presented to 20 chronically depressed patients. Results from the Shedler–Westen Assessment Procedure (SWAP-200) were analyzed by Q-factor analysis to identify clinically relevant subgroups of depression and related brain activation. Results: The principle component analysis of SWAP-200 items from all 20 patients lead to a two-factor solution: “Depressive Personality” and “Emotional-Hostile-Externalizing Personality.” Both factors were used in a whole-brain correlational analysis but only the second factor yielded significant positive correlations in four regions: a large cluster in the right orbitofrontal cortex (OFC), the left ventral striatum, a small cluster in the left temporal pole, and another small cluster in the right middle frontal gyrus. Discussion: The degree to which patients with depression score high on the factor “Emotional-Hostile-Externalizing Personality” correlated with relatively higher activity in three key areas involved in emotion processing, evaluation of reward/punishment, negative cognitions, depressive pathology, and social knowledge (OFC, ventral striatum, temporal pole). Results may contribute to an alternative description of neural correlates of depression showing differential brain activation dependent on the extent of specific personality syndromes in depression. PMID:24363644
Kessler, Robert M; Woodward, Neil D; Riccardi, Patrizia; Li, Rui; Ansari, M Sib; Anderson, Sharlett; Dawant, Benoit; Zald, David; Meltzer, Herbert Y
2009-01-01
Background Studies in schizophrenics have reported dopaminergic abnormalities in striatum, substantia nigra, thalamus, anterior cingulate, hippocampus and cortex which have been related to positive symptoms and cognitive impairments. Methods [18F]fallypride PET studies were performed in off medication or never medicated schizophrenic subjects [N = 11, 6 M, 5 F; mean age of 30.5 ± 8.0 (S.D.); 4 drug naive] and age matched healthy subjects [N = 11, 5M, 6F, mean age of 31.6 ± 9.2 (S.D.)] to examine dopamine D2 receptor (DA D2r) levels in the caudate, putamen, ventral striatum, medial thalamus, posterior thalamus, substantia nigra, amygdala, temporal cortex, anterior cingulate, and hippocampus. Results In schizophrenic subjects increased DA D2r levels were seen in the substantia nigra bilaterally; decreased levels were seen in the left medial thalamus. Correlations of symptoms with region of interest data demonstrated a significant correlation of disorganized thinking/nonparanoid delusions with the right temporal cortex region of interest (r = 0.94, P = 0.0001) which remained significant after correction for multiple comparisons (P<0.03). Correlations of symptoms with parametric images of DA D2r levels revealed no significant clusters of correlations with negative symptoms, but significant clusters of positive correlations of total positive symptoms, delusions and bizarre behavior with the lateral and anterior temporal cortex, and hallucinations with the left ventral striatum. Conclusions The results of this study demonstrate abnormal DA D2r mediated neurotransmission in the substantia nigra consistent with nigral dysfunction in schizophrenia and suggest that both temporal cortical and ventral striatal DA D2r mediate positive symptoms. PMID:19251247
Changes in oxidative metabolism and memory and learning in an cerebral hypoperfusion model in rats.
Castaño Guerrero, Y; González Fraguela, M E; Fernández Verdecia, I; Horruitiner Gutiérrez, I; Piedras Carpio, S
2013-01-01
Chronic hypoperfusion in rats produces memory and learning impairments due to permanent occlusion of commun carotid arteries (POCCA). Molecular mechanisms leading to behavioural disorders have been poorly studied. For this reason, the aim of the present study was to characterise oxidative metabolism disorders and their implications in memory and learning impairments. Superoxide dismutase (SOD) and catalase (CAT) activities were determined in cortex, hippocampus and striatum homogenates at 24 hours and at 22 days after the lesion. Haematoxylin-eosin staining and glial fibrillary acidic protein (GFAP) immunoreactivity were performed on coronal sections. Behavioural impairments were explored using the Morris water maze (MWM). Escape latencies were determined in all behavioural studies. The lesion induced a significant increase (P<.01) in CAT activity in the cortex at 24 hours, while SOD activity was significantly higher (P<.01) in the cortex and hippocampus at 22 days. An intense vacuolization was observed in the cortex and striatum as a result of the lesion. A neuronal loss in the striatum and hippocampus was observed. The glial reaction increased in the cortex and striatum. Visual alterations were observed in the lesion group with the lowest evolution time (P<.001). Escape latencies, corresponding to MWM schemes for long-term and short-term memory evaluation increased significantly (P<.05) in both groups of lesioned animals. It was concluded that changes in SOD and CAT activities indicate a possible implication of oxidative imbalance in the pathology associated with chronic cerebral hypoperfusion. In addition, the POCCA model in rats is useful for understanding mechanisms by which cerebral hypoperfusion produces memory and learning impairments. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Lindquist, Kristen A.; Adebayo, Morenikeji; Barrett, Lisa Feldman
2016-01-01
Negative stimuli do not only evoke fear or disgust, but can also evoke a state of ‘morbid fascination’ which is an urge to approach and explore a negative stimulus. In the present neuroimaging study, we applied an innovative method to investigate the neural systems involved in typical and atypical conceptualizations of negative images. Participants received false feedback labeling their mental experience as fear, disgust or morbid fascination. This manipulation was successful; participants judged the false feedback correct for 70% of the trials on average. The neuroimaging results demonstrated differential activity within regions in the ‘neural reference space for discrete emotion’ depending on the type of feedback. We found robust differences in the ventrolateral prefrontal cortex, the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex comparing morbid fascination to control feedback. More subtle differences in the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex were also found between morbid fascination feedback and the other emotion feedback conditions. This study is the first to forward evidence about the neural representation of the experimentally unexplored state of morbid fascination. In line with a constructionist framework, our findings suggest that neural resources associated with the process of conceptualization contribute to the neural representation of this state. PMID:26180088
Eldridge, Mark A G; Lerchner, Walter; Saunders, Richard C; Kaneko, Hiroyuki; Krausz, Kristopher W; Gonzalez, Frank J; Ji, Bin; Higuchi, Makoto; Minamimoto, Takafumi; Richmond, Barry J
2015-01-01
To study how the interaction between orbitofrontal (OFC) and rhinal (Rh) cortices influences the judgment of reward size, we reversibly disconnected these regions using the hM4Di-DREADD (Designer Receptor Exclusively Activated by Designer Drug). Repeated inactivation reduced sensitivity to differences in reward size in two monkeys. Results suggest that retrieval of relative stimulus values from memory appears to depend on interaction between Rh and OFC. PMID:26656645
Miyazawa, Daisuke; Yasui, Yuko; Yamada, Kazuyo; Ohara, Naoki; Okuyama, Harumi
2011-08-01
Previously, we noted that the dietary restriction of α-linolenic acid (ALA, n-3) for 4 weeks after weaning brought about significant decreases in the BDNF content and p38 MAPK activity in the striatum of mice, but not in the other regions of the brain, compared with an ALA- and linoleic acid (LNA, n-6)-adequate diet. In this study, we examined whether a prolonged dietary manipulation induces biochemical changes in other regions of the brain as well. Mice were fed a safflower oil (SAF) diet (ALA-restricted, LNA-adequate) or a perilla oil (PER) diet (containing adequate amounts of ALA and LNA) for 8 weeks from weaning. The docosahexaenoic acid (DHA, 22:6n-3) contents and p38 MAPK activities in the cerebral cortex, striatum and hippocampus were significantly lower in the SAF group. The BDNF contents and protein kinase C (PKC) activities in the cerebral cortex as well as in the striatum, but not in the hippocampus, were significantly lower in the SAF group. These data indicate that the biochemical changes induced by the dietary restriction of ALA have a time lag in the striatum and cortex, suggesting that the signal is transmitted through decreased p38 MAPK activity and BDNF content and ultimately decreased PKC activity.
Dissociable Frontostriatal White Matter Connectivity Underlies Reward and Motor Impulsivity
Hampton, William H.; Alm, Kylie H.; Venkatraman, Vinod; Nugiel, Tehila; Olson, Ingrid R.
2017-01-01
Dysfunction of cognitive control often leads to impulsive decision-making in clinical and healthy populations. Some research suggests that a generalized cognitive control mechanism underlies the ability to modulate various types of impulsive behavior, while other evidence suggests different forms of impulsivity are dissociable, and rely on distinct neural circuitry. Past research consistently implicates several brain regions, such as the striatum and portions of the prefrontal cortex, in impulsive behavior. However the ventral and dorsal striatum are distinct in regards to function and connectivity. Nascent evidence points to the importance of frontostriatal white matter connectivity in impulsivity, yet it remains unclear whether particular tracts relate to different control behaviors. Here we used probabilistic tractography of diffusion imaging data to relate ventral and dorsal frontostriatal connectivity to reward and motor impulsivity measures. We found a double dissociation such that individual differences in white matter connectivity between the ventral striatum and the ventromedial prefrontal cortex and dorsolateral prefrontal cortex was associated with reward impulsivity, as measured by delay discounting, whereas connectivity between dorsal striatum and supplementary motor area was associated with motor impulsivity, but not vice versa. Our findings suggest that (a) structural connectivity can is associated with a large amount of behavioral variation; (b) different types of impulsivity are driven by dissociable frontostriatal neural circuitry. PMID:28189592
Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations.
Lichtenberg, Nina T; Pennington, Zachary T; Holley, Sandra M; Greenfield, Venuz Y; Cepeda, Carlos; Levine, Michael S; Wassum, Kate M
2017-08-30
To make an appropriate decision, one must anticipate potential future rewarding events, even when they are not readily observable. These expectations are generated by using observable information (e.g., stimuli or available actions) to retrieve often quite detailed memories of available rewards. The basolateral amygdala (BLA) and orbitofrontal cortex (OFC) are two reciprocally connected key nodes in the circuitry supporting such outcome-guided behaviors. But there is much unknown about the contribution of this circuit to decision making, and almost nothing known about the whether any contribution is via direct, monosynaptic projections, or the direction of information transfer. Therefore, here we used designer receptor-mediated inactivation of OFC→BLA or BLA→OFC projections to evaluate their respective contributions to outcome-guided behaviors in rats. Inactivation of BLA terminals in the OFC, but not OFC terminals in the BLA, disrupted the selective motivating influence of cue-triggered reward representations over reward-seeking decisions as assayed by Pavlovian-to-instrumental transfer. BLA→OFC projections were also required when a cued reward representation was used to modify Pavlovian conditional goal-approach responses according to the reward's current value. These projections were not necessary when actions were guided by reward expectations generated based on learned action-reward contingencies, or when rewards themselves, rather than stored memories, directed action. These data demonstrate that BLA→OFC projections enable the cue-triggered reward expectations that can motivate the execution of specific action plans and allow adaptive conditional responding. SIGNIFICANCE STATEMENT Deficits anticipating potential future rewarding events are associated with many psychiatric diseases. Presently, we know little about the neural circuits supporting such reward expectation. Here we show that basolateral amygdala to orbitofrontal cortex projections are required for expectations of specific available rewards to influence reward seeking and decision making. The necessity of these projections was limited to situations in which expectations were elicited by reward-predictive cues. These projections therefore facilitate adaptive behavior by enabling the orbitofrontal cortex to use environmental stimuli to generate expectations of potential future rewarding events. Copyright © 2017 the authors 0270-6474/17/378374-11$15.00/0.
Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations
Lichtenberg, Nina T.; Pennington, Zachary T.; Holley, Sandra M.; Greenfield, Venuz Y.; Levine, Michael S.
2017-01-01
To make an appropriate decision, one must anticipate potential future rewarding events, even when they are not readily observable. These expectations are generated by using observable information (e.g., stimuli or available actions) to retrieve often quite detailed memories of available rewards. The basolateral amygdala (BLA) and orbitofrontal cortex (OFC) are two reciprocally connected key nodes in the circuitry supporting such outcome-guided behaviors. But there is much unknown about the contribution of this circuit to decision making, and almost nothing known about the whether any contribution is via direct, monosynaptic projections, or the direction of information transfer. Therefore, here we used designer receptor-mediated inactivation of OFC→BLA or BLA→OFC projections to evaluate their respective contributions to outcome-guided behaviors in rats. Inactivation of BLA terminals in the OFC, but not OFC terminals in the BLA, disrupted the selective motivating influence of cue-triggered reward representations over reward-seeking decisions as assayed by Pavlovian-to-instrumental transfer. BLA→OFC projections were also required when a cued reward representation was used to modify Pavlovian conditional goal-approach responses according to the reward's current value. These projections were not necessary when actions were guided by reward expectations generated based on learned action-reward contingencies, or when rewards themselves, rather than stored memories, directed action. These data demonstrate that BLA→OFC projections enable the cue-triggered reward expectations that can motivate the execution of specific action plans and allow adaptive conditional responding. SIGNIFICANCE STATEMENT Deficits anticipating potential future rewarding events are associated with many psychiatric diseases. Presently, we know little about the neural circuits supporting such reward expectation. Here we show that basolateral amygdala to orbitofrontal cortex projections are required for expectations of specific available rewards to influence reward seeking and decision making. The necessity of these projections was limited to situations in which expectations were elicited by reward-predictive cues. These projections therefore facilitate adaptive behavior by enabling the orbitofrontal cortex to use environmental stimuli to generate expectations of potential future rewarding events. PMID:28743727
Aerobic exercise modulates anticipatory reward processing via the μ-opioid receptor system.
Saanijoki, Tiina; Nummenmaa, Lauri; Tuulari, Jetro J; Tuominen, Lauri; Arponen, Eveliina; Kalliokoski, Kari K; Hirvonen, Jussi
2018-06-08
Physical exercise modulates food reward and helps control body weight. The endogenous µ-opioid receptor (MOR) system is involved in rewarding aspects of both food and physical exercise, yet interaction between endogenous opioid release following exercise and anticipatory food reward remains unresolved. Here we tested whether exercise-induced opioid release correlates with increased anticipatory reward processing in humans. We scanned 24 healthy lean men after rest and after a 1 h session of aerobic exercise with positron emission tomography (PET) using MOR-selective radioligand [ 11 C]carfentanil. After both PET scans, the subjects underwent a functional magnetic resonance imaging (fMRI) experiment where they viewed pictures of palatable versus nonpalatable foods to trigger anticipatory food reward responses. Exercise-induced changes in MOR binding in key regions of reward circuit (amygdala, thalamus, ventral and dorsal striatum, and orbitofrontal and cingulate cortices) were used to predict the changes in anticipatory reward responses in fMRI. Exercise-induced changes in MOR binding correlated negatively with the exercise-induced changes in neural anticipatory food reward responses in orbitofrontal and cingulate cortices, insula, ventral striatum, amygdala, and thalamus: higher exercise-induced opioid release predicted higher brain responses to palatable versus nonpalatable foods. We conclude that MOR activation following exercise may contribute to the considerable interindividual variation in food craving and consumption after exercise, which might promote compensatory eating and compromise weight control. © 2018 Wiley Periodicals, Inc.
Effects of weightlessness on neurotransmitter receptors in selected brain areas
NASA Technical Reports Server (NTRS)
Miller, J. D.; Murakami, D. M.; Mcmillen, B. A.; Mcconnaughey, M. M.; Williams, H. L.
1985-01-01
The central nervous system receptor dynamics of rats exposed to 7 days of microgravity are studied. The receptor affinity and receptor number at the hippocampus, lateral frontal cortex, prefrontal cortex, corpus striatum, cerebellum and pons-medulla, and the Na(+)/K(+)ATPase activity are examined. The data reveal that there is no significant change in the receptor affinity and receptor number for the lateral frontal cortex, prefrontal cortex, cerebellum and pons-medulla; however, there is an increase from 81 + or - 11 to 120 + or 5 fmole/mg protein in the receptor number for hippocampal binding, and a decrease in receptor number for the striatum from 172 + or - 14 to 143 + or - 10 fmoles/mg protein. A 9 percent decrease in Mg-dependent Na(+)/K(+)ATPase activity is observed. It is detected that the terminal mechanism may be affected by exposure to microgravity.
Jackson, Stacey A W; Horst, Nicole K; Pears, Andrew; Robbins, Trevor W; Roberts, Angela C
2016-07-01
Two learning mechanisms contribute to decision-making: goal-directed actions and the "habit" system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. © The Author 2016. Published by Oxford University Press.
Márquez, C; Poirier, G L; Cordero, M I; Larsen, M H; Groner, A; Marquis, J; Magistretti, P J; Trono, D; Sandi, C
2013-01-15
Although adverse early life experiences have been found to increase lifetime risk to develop violent behaviors, the neurobiological mechanisms underlying these long-term effects remain unclear. We present a novel animal model for pathological aggression induced by peripubertal exposure to stress with face, construct and predictive validity. We show that male rats submitted to fear-induction experiences during the peripubertal period exhibit high and sustained rates of increased aggression at adulthood, even against unthreatening individuals, and increased testosterone/corticosterone ratio. They also exhibit hyperactivity in the amygdala under both basal conditions (evaluated by 2-deoxy-glucose autoradiography) and after a resident-intruder (RI) test (evaluated by c-Fos immunohistochemistry), and hypoactivation of the medial orbitofrontal (MO) cortex after the social challenge. Alterations in the connectivity between the orbitofrontal cortex and the amygdala were linked to the aggressive phenotype. Increased and sustained expression levels of the monoamine oxidase A (MAOA) gene were found in the prefrontal cortex but not in the amygdala of peripubertally stressed animals. They were accompanied by increased activatory acetylation of histone H3, but not H4, at the promoter of the MAOA gene. Treatment with an MAOA inhibitor during adulthood reversed the peripuberty stress-induced antisocial behaviors. Beyond the characterization and validation of the model, we present novel data highlighting changes in the serotonergic system in the prefrontal cortex-and pointing at epigenetic control of the MAOA gene-in the establishment of the link between peripubertal stress and later pathological aggression. Our data emphasize the impact of biological factors triggered by peripubertal adverse experiences on the emergence of violent behaviors.
McMillen, B A; McDonald, C C
1983-03-01
The hypothesis that the nerve endings of the dopamine projection of the frontal cortex lack autoreceptors for regulation of tyrosine hydroxylase was tested by using the preferential inhibitors of dopamine autoreceptors, molindole and buspirone. In contrast to haloperidol, which elevates dopamine metabolism in the striatum and frontal cortex, both molindone and buspirone elicited little change in dopamine metabolism in the frontal cortex at doses up to 3.0 mg/kg, which cause the same maximal response in the corpus striatum as does haloperidol. Thus, the lack of autoreceptors in the frontal cortex is of pharmacological importance. That preferential inhibition of striatal dopamine autoreceptors may reverse catalepsy by enhancing synthesis and release of dopamine was tested by first inducing catalepsy with different drugs and then administering molindone or buspirone. Only buspirone (1.0 mg/kg) reversed catalepsy. This effect does not require presynaptic dopamine as catalepsy was reversed by buspirone in the dopamine-depleted rat (with 2.0 mg/kg R04-1284) as well as after postsynaptic dopamine receptor blockade by haloperidol of cis-flupenthixol. Thus, the mechanism for the reversal of catalepsy appears to be located efferent from the dopamine neuron. Buspirone, a non-benzodiazepine anti-anxiety drug, may prove useful for treatment of extrapyramidal motor disorders of either iatrogenic or idiosyncratic origin.
Bechara, Antoine
2004-06-01
Most theories of choice assume that decisions derive from an assessment of the future outcomes of various options and alternatives through some type of cost-benefit analyses. The influence of emotions on decision-making is largely ignored. The studies of decision-making in neurological patients who can no longer process emotional information normally suggest that people make judgments not only by evaluating the consequences and their probability of occurring, but also and even sometimes primarily at a gut or emotional level. Lesions of the ventromedial (which includes the orbitofrontal) sector of the prefrontal cortex interfere with the normal processing of "somatic" or emotional signals, while sparing most basic cognitive functions. Such damage leads to impairments in the decision-making process, which seriously compromise the quality of decisions in daily life. The aim of this paper is to review evidence in support of "The Somatic Marker Hypothesis," which provides a systems-level neuroanatomical and cognitive framework for decision-making and suggests that the process of decision-making depends in many important ways on neural substrates that regulate homeostasis, emotion, and feeling. The implications of this theoretical framework for the normal and abnormal development of the orbitofrontal cortex are also discussed.
Iwata, Saeko; Tsukiura, Takashi
2017-11-01
Episodic memory is defined as memory for personally experienced events, and includes memory content and contextual information of time and space. Previous neuroimaging and neuropsychological studies have demonstrated three possible roles of the temporal context in episodic memory. First, temporal information contributes to the arrangement of temporal order for sequential events in episodic memory, and this process is involved in the lateral prefrontal cortex. The second possible role of temporal information in episodic memory is the segregation between memories of multiple events, which are segregated by cues of different time information. The role of segregation is associated with the orbitofrontal regions including the orbitofrontal cortex and basal forebrain region. Third, temporal information in episodic memory plays an important role in the integration of multiple components into a coherent episodic memory, in which episodic components in the different modalities are combined by temporal information as an index. The role of integration is mediated by the medial temporal lobe including the hippocampus and parahippocampal gyrus. Thus, temporal information in episodic memory could be represented in multiple stages, which are involved in a network of the lateral prefrontal, orbitofrontal, and medial temporal lobe regions.
Schott, Björn H.; Voss, Martin; Wagner, Benjamin; Wüstenberg, Torsten; Düzel, Emrah; Behr, Joachim
2015-01-01
Recent concepts have highlighted the role of the hippocampus and adjacent medial temporal lobe (MTL) in positive symptoms like delusions in schizophrenia. In healthy individuals, the MTL is critically involved in the detection and encoding of novel information. Here, we aimed to investigate whether dysfunctional novelty processing by the MTL might constitute a potential neural mechanism contributing to the pathophysiology of delusions, using functional magnetic resonance imaging (fMRI) in 16 unmedicated patients with paranoid schizophrenia and 20 age-matched healthy controls. All patients experienced positive symptoms at time of participation. Participants performed a visual target detection task with complex scene stimuli in which novel and familiar rare stimuli were presented randomly intermixed with a standard and a target picture. Presentation of novel relative to familiar images was associated with hippocampal activation in both patients and healthy controls, but only healthy controls showed a positive relationship between novelty-related hippocampal activation and recognition memory performance after 24 h. Patients, but not controls, showed a robust neural response in the orbitofrontal cortex (OFC) during presentation of novel stimuli. Functional connectivity analysis in the patients further revealed a novelty-related increase of functional connectivity of both the hippocampus and the OFC with the rostral anterior cingulate cortex (rACC) and the ventral striatum (VS). Notably, delusions correlated positively with the difference of the functional connectivity of the hippocampus vs. the OFC with the rACC. Taken together, our results suggest that alterations of fronto-limbic novelty processing may contribute to the pathophysiology of delusions in patients with acute psychosis. PMID:26082697
van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M
2018-04-01
Statements regarding pleasantness, taste intensity or caloric content on a food label may influence the attention consumers pay to such characteristics during consumption. There is little research on the effects of selective attention on taste perception and associated brain activation in regular drinks. The aim of this study was to investigate the effect of selective attention on hedonics, intensity and caloric content on brain responses during tasting drinks. Using functional MRI brain responses of 27 women were measured while they paid attention to the intensity, pleasantness or caloric content of fruit juice, tomato juice and water. Brain activation during tasting largely overlapped between the three selective attention conditions and was found in the rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, anterior cingulate cortex and middle orbitofrontal cortex (OFC). Brain activation was higher during selective attention to taste intensity compared to calories in the right middle OFC and during selective attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral middle insula. Intensity ratings correlated with brain activation during selective attention to taste intensity in the anterior insula and lateral OFC. Our data suggest that not only the anterior insula but also the middle and lateral OFC are involved in evaluating taste intensity. Furthermore, selective attention to pleasantness engaged regions associated with food reward. Overall, our results indicate that selective attention to food properties can alter the activation of gustatory and reward regions. This may underlie effects of food labels on the consumption experience of consumers.
Cue reactivity and its inhibition in pathological computer game players.
Lorenz, Robert C; Krüger, Jenny-Kathinka; Neumann, Britta; Schott, Björn H; Kaufmann, Christian; Heinz, Andreas; Wüstenberg, Torsten
2013-01-01
Despite a rising social relevance of pathological computer game playing, it remains unclear whether the neurobiological basis of this addiction-like behavioral disorder and substance-related addiction are comparable. In substance-related addiction, attentional bias and cue reactivity are often observed. We conducted a functional magnetic resonance study using a dot probe paradigm with short-presentation (attentional bias) and long-presentation (cue reactivity) trials in eight male pathological computer game players (PCGPs) and nine healthy controls (HCs). Computer game-related and neutral computer-generated pictures, as well as pictures from the International Affective Picture System with positive and neutral valence, served as stimuli. PCGPs showed an attentional bias toward both game-related and affective stimuli with positive valence. In contrast, HCs showed no attentional bias effect at all. PCGPs showed stronger brain responses in short-presentation trials compared with HCs in medial prefrontal cortex (MPFC) and anterior cingulate gyrus and in long-presentation trials in lingual gyrus. In an exploratory post hoc functional connectivity analyses, for long-presentation trials, connectivity strength was higher between right inferior frontal gyrus, which was associated with inhibition processing in previous studies, and cue reactivity-related regions (left orbitofrontal cortex and ventral striatum) in PCGPs. We observed behavioral and neural effects in PCGPs, which are comparable with those found in substance-related addiction. However, cue-related brain responses were depending on duration of cue presentation. Together with the connectivity result, these findings suggest that top-down inhibitory processes might suppress the cue reactivity-related neural activity in long-presentation trials. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.
Noradrenergic modulation of neural erotic stimulus perception.
Graf, Heiko; Wiegers, Maike; Metzger, Coraline Danielle; Walter, Martin; Grön, Georg; Abler, Birgit
2017-09-01
We recently investigated neuromodulatory effects of the noradrenergic agent reboxetine and the dopamine receptor affine amisulpride in healthy subjects on dynamic erotic stimulus processing. Whereas amisulpride left sexual functions and neural activations unimpaired, we observed detrimental activations under reboxetine within the caudate nucleus corresponding to motivational components of sexual behavior. However, broadly impaired subjective sexual functioning under reboxetine suggested effects on further neural components. We now investigated the same sample under these two agents with static erotic picture stimulation as alternative stimulus presentation mode to potentially observe further neural treatment effects of reboxetine. 19 healthy males were investigated under reboxetine, amisulpride and placebo for 7 days each within a double-blind cross-over design. During fMRI static erotic picture were presented with preceding anticipation periods. Subjective sexual functions were assessed by a self-reported questionnaire. Neural activations were attenuated within the caudate nucleus, putamen, ventral striatum, the pregenual and anterior midcingulate cortex and in the orbitofrontal cortex under reboxetine. Subjective diminished sexual arousal under reboxetine was correlated with attenuated neural reactivity within the posterior insula. Again, amisulpride left neural activations along with subjective sexual functioning unimpaired. Neither reboxetine nor amisulpride altered differential neural activations during anticipation of erotic stimuli. Our results verified detrimental effects of noradrenergic agents on neural motivational but also emotional and autonomic components of sexual behavior. Considering the overlap of neural network alterations with those evoked by serotonergic agents, our results suggest similar neuromodulatory effects of serotonergic and noradrenergic agents on common neural pathways relevant for sexual behavior. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study.
Koenders, Laura; Cousijn, Janna; Vingerhoets, Wilhelmina A M; van den Brink, Wim; Wiers, Reinout W; Meijer, Carin J; Machielsen, Marise W J; Veltman, Dick J; Goudriaan, Anneke E; de Haan, Lieuwe
2016-01-01
Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1) and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45) underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum) were estimated using the software package SPM (VBM-8 module). Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams) and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions.
Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study
Cousijn, Janna; Vingerhoets, Wilhelmina A. M.; van den Brink, Wim; Wiers, Reinout W.; Meijer, Carin J.; Machielsen, Marise W. J.; Veltman, Dick J.; Goudriaan, Anneke E.; de Haan, Lieuwe
2016-01-01
Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1) and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45) underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum) were estimated using the software package SPM (VBM-8 module). Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams) and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions. PMID:27224247
Limbic responses to reward cues correlate with antisocial trait density in heavy drinkers.
Oberlin, Brandon G; Dzemidzic, Mario; Bragulat, Veronique; Lehigh, Cari A; Talavage, Thomas; O'Connor, Sean J; Kareken, David A
2012-03-01
Antisocial traits are common among alcoholics- particularly in certain subtypes. Although people with antisocial tendencies show atypical brain activation in some emotion and reward paradigms, how the brain reward systems of heavy drinkers (HD) are influenced by antisocial traits remains unclear. We used subjects' preferred alcohol drink odors (AO), appetitive (ApCO) and non-appetitive (NApO) control odors in functional magnetic resonance imaging (fMRI) to determine if reward system responses varied as a function of antisocial trait density (ASD). In this retrospective analysis, we examined 30 HD who had participated in imaging twice: once while exposed to clamped intravenous alcohol infusion targeted to 50mg%, and once during placebo saline infusion. Under placebo, there were positive correlations between ASD and blood oxygenation level dependent (BOLD) activation in the [AO>ApCO] contrast in the left dorsal putamen, while negative correlations were present in medial orbitofrontal cortex (OFC) and the bilateral amygdala. A similar pattern was observed in the correlation with the [AO>NApO] contrast. This inverse relationship between ASD and activation in OFC and amygdala was specific to AO. However, negative correlations between ASD and the [ApCO>NApO] contrast were also present in the insula, putamen, and medial frontal cortex. These data suggest that frontal and limbic reward circuits of those with significant ASD are less responsive to reward cues in general, and particularly to alcohol cues in medial OFC and amygdala. These findings are broadly consistent with the reward deficiency syndrome hypothesis, although positive correlation in the striatum suggests regional variability. Copyright © 2011 Elsevier Inc. All rights reserved.
Pubertal testosterone influences threat-related amygdala–orbitofrontal cortex coupling
Forbes, Erika E.; Ladouceur, Cecile D.; Worthman, Carol M.; Olino, Thomas M.; Ryan, Neal D.; Dahl, Ronald E.
2015-01-01
Growing evidence indicates that normative pubertal maturation is associated with increased threat reactivity, and this developmental shift has been implicated in the increased rates of adolescent affective disorders. However, the neural mechanisms involved in this pubertal increase in threat reactivity remain unknown. Research in adults indicates that testosterone transiently decreases amygdala–orbitofrontal cortex (OFC) coupling. Consequently, we hypothesized that increased pubertal testosterone disrupts amygdala–OFC coupling, which may contribute to developmental increases in threat reactivity in some adolescents. Hypotheses were tested in a longitudinal study by examining the impact of testosterone on functional connectivity. Findings were consistent with hypotheses and advance our understanding of normative pubertal changes in neural systems instantiating affect/motivation. Finally, potential novel insights into the neurodevelopmental pathways that may contribute to adolescent vulnerability to behavioral and emotional problems are discussed. PMID:24795438
Structural connectivity of neural reward networks in youth at risk for substance use disorders.
Squeglia, Lindsay M; Sorg, Scott F; Jacobus, Joanna; Brumback, Ty; Taylor, Charles T; Tapert, Susan F
2015-07-01
Having a positive family history of alcohol use disorders (FHP), as well as aberrant reward circuitry, has been implicated in the initiation of substance use during adolescence. This study explored the relationship between FHP status and reward circuitry in substance naïve youth to better understand future risky behaviors. Participants were 49 FHP and 45 demographically matched family history negative (FHN) substance-naïve 12-14 year-olds (54 % female). Subjects underwent structural magnetic resonance imaging, including diffusion tensor imaging. Nucleus accumbens and orbitofrontal cortex volumes were derived using FreeSurfer, and FSL probabilistic tractography probed structural connectivity and differences in white matter diffusivity estimates (e.g. fractional anisotropy, and mean, radial, and axial diffusivity) between fiber tracts connecting these regions. FHP and FHN youth did not differ on nucleus accumbens or orbitofrontal cortex volumes, white matter tract volumes, or percentages of streamlines (a proxy for fiber tract count) connecting these regions. However, within white matter tracts connecting the nucleus accumbens to the orbitofrontal cortex, FHP youth had significantly lower mean and radial diffusivity (ps < 0.03) than FHN youth. While white matter macrostructure between salience and reward regions did not differ between FHP and FHN youth, FHP youth showed greater white matter coherence within these tracts than FHN youth. Aberrant connectivity between reward regions in FHP youth could be linked to an increased risk for substance use initiation.
Impaired social response reversal. A case of 'acquired sociopathy'.
Blair, R J; Cipolotti, L
2000-06-01
In this study, we report a patient (J.S.) who, following trauma to the right frontal region, including the orbitofrontal cortex, presented with 'acquired sociopathy'. His behaviour was notably aberrant and marked by high levels of aggression and a callous disregard for others. A series of experimental investigations were conducted to address the cognitive dysfunction that might underpin his profoundly aberrant behaviour. His performance was contrasted with that of a second patient (C.L.A.), who also presented with a grave dysexecutive syndrome but no socially aberrant behaviour, and five inmates of Wormwood Scrubs prison with developmental psychopathy. While J.S. showed no reversal learning impairment, he presented with severe difficulty in emotional expression recognition, autonomic responding and social cognition. Unlike the comparison populations, J.S. showed impairment in: the recognition of, and autonomic responding to, angry and disgusted expressions; attributing the emotions of fear, anger and embarrassment to story protagonists; and the identification of violations of social behaviour. The findings are discussed with reference to models regarding the role of the orbitofrontal cortex in the control of aggression. It is suggested that J.S.'s impairment is due to a reduced ability to generate expectations of others' negative emotional reactions, in particular anger. In healthy individuals, these representations act to suppress behaviour that is inappropriate in specific social contexts. Moreover, it is proposed that the orbitofrontal cortex may be implicated specifically either in the generation of these expectations or the use of these expectations to suppress inappropriate behaviour.
The neural representation of social status in the extended face-processing network.
Koski, Jessica E; Collins, Jessica A; Olson, Ingrid R
2017-12-01
Social status is a salient cue that shapes our perceptions of other people and ultimately guides our social interactions. Despite the pervasive influence of status on social behavior, how information about the status of others is represented in the brain remains unclear. Here, we tested the hypothesis that social status information is embedded in our neural representations of other individuals. Participants learned to associate faces with names, job titles that varied in associated status, and explicit markers of reputational status (star ratings). Trained stimuli were presented in an functional magnetic resonance imaging experiment where participants performed a target detection task orthogonal to the variable of interest. A network of face-selective brain regions extending from the occipital lobe to the orbitofrontal cortex was localized and served as regions of interest. Using multivoxel pattern analysis, we found that face-selective voxels in the lateral orbitofrontal cortex - a region involved in social and nonsocial valuation, could decode faces based on their status. Similar effects were observed with two different status manipulations - one based on stored semantic knowledge (e.g., different careers) and one based on learned reputation (e.g., star ranking). These data suggest that a face-selective region of the lateral orbitofrontal cortex may contribute to the perception of social status, potentially underlying the preferential attention and favorable biases humans display toward high-status individuals. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Fronto-temporal white matter connectivity predicts reversal learning errors
Alm, Kylie H.; Rolheiser, Tyler; Mohamed, Feroze B.; Olson, Ingrid R.
2015-01-01
Each day, we make hundreds of decisions. In some instances, these decisions are guided by our innate needs; in other instances they are guided by memory. Probabilistic reversal learning tasks exemplify the close relationship between decision making and memory, as subjects are exposed to repeated pairings of a stimulus choice with a reward or punishment outcome. After stimulus–outcome associations have been learned, the associated reward contingencies are reversed, and participants are not immediately aware of this reversal. Individual differences in the tendency to choose the previously rewarded stimulus reveal differences in the tendency to make poorly considered, inflexible choices. Lesion studies have strongly linked reversal learning performance to the functioning of the orbitofrontal cortex, the hippocampus, and in some instances, the amygdala. Here, we asked whether individual differences in the microstructure of the uncinate fasciculus, a white matter tract that connects anterior and medial temporal lobe regions to the orbitofrontal cortex, predict reversal learning performance. Diffusion tensor imaging and behavioral paradigms were used to examine this relationship in 33 healthy young adults. The results of tractography revealed a significant negative relationship between reversal learning performance and uncinate axial diffusivity, but no such relationship was demonstrated in a control tract, the inferior longitudinal fasciculus. Our findings suggest that the uncinate might serve to integrate associations stored in the anterior and medial temporal lobes with expectations about expected value based on feedback history, computed in the orbitofrontal cortex. PMID:26150776
Qiu, Ying-Wei; Lv, Xiao-Fei; Jiang, Gui-Hua; Su, Huan-Huan; Ma, Xiao-Fen; Tian, Jun-Zhang; Zhuo, Fu-Zhen
2017-03-01
To characterize interhemispheric functional and anatomical connectivity and their relationships with impulsive behaviour in codeine-containing cough syrup (CCS)-dependent male adolescents and young adults. We compared volumes of corpus callosum (CC) and its five subregion and voxel-mirrored homotopic functional connectivity (VMHC) in 33 CCS-dependent male adolescents and young adults and 38 healthy controls, group-matched for age, education and smoking status. Barratt impulsiveness scale (BIS.11) was used to assess participant impulsive behaviour. Abnormal CC subregions and VMHC revealed by group comparison were extracted and correlated with impulsive behaviour and duration of CCS use. We found selective increased mid-posterior CC volume in CCS-dependent male adolescents and young adults and detected decreased homotopic interhemispheric functional connectivity of medial orbitofrontal cortex (OFC). Moreover, impairment of VMHC was associated with the impulsive behaviour and correlated with the duration of CCS abuse in CCS-dependent male adolescents and young adults. These findings reveal CC abnormalities and disruption of interhemispheric homotopic connectivity in CCS-dependent male adolescents and young adults, which provide a novel insight into the impact of interhemispheric disconnectivity on impulsive behaviour in substance addiction pathophysiology. • CCS-dependent individuals (patients) had selective increased volumes of mid-posterior corpus callosum • Patients had attenuated interhemispheric homotopic FC (VMHC) of bilateral orbitofrontal cortex • Impairment of VMHC correlated with impulsive behaviour in patients • Impairment of VMHC correlated with the CCS duration in patients.
Verdejo-García, Antonio; Albein-Urios, Natalia; Molina, Esther; Ching-López, Ana; Martínez-González, José M; Gutiérrez, Blanca
2013-11-01
Based on previous evidence of a MAOA gene*cocaine use interaction on orbitofrontal cortex volume attrition, we tested whether the MAOA low activity variant and cocaine use severity are interactively associated with impulsivity and behavioral indices of orbitofrontal dysfunction: emotion recognition and decision-making. 72 cocaine dependent individuals and 52 non-drug using controls (including healthy individuals and problem gamblers) were genotyped for the MAOA gene and tested using the UPPS-P Impulsive Behavior Scale, the Iowa Gambling Task and the Ekman's Facial Emotions Recognition Test. To test the main hypothesis, we conducted hierarchical multiple regression analyses including three sets of predictors: (1) age, (2) MAOA genotype and severity of cocaine use, and (3) the interaction between MAOA genotype and severity of cocaine use. UPPS-P, Ekman Test and Iowa Gambling Task's scores were the outcome measures. We computed the statistical significance of the prediction change yielded by each consecutive set, with 'a priori' interest in the MAOA*cocaine severity interaction. We found significant effects of the MAOA gene*cocaine use severity interaction on the emotion recognition scores and the UPPS-P's dimensions of Positive Urgency and Sensation Seeking: Low activity carriers with higher cocaine exposure had poorer emotion recognition and higher Positive Urgency and Sensation Seeking. Cocaine users carrying the MAOA low activity show a greater impact of cocaine use on impulsivity and behavioral measures of orbitofrontal cortex dysfunction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Recognition memory for vibrotactile rhythms: an fMRI study in blind and sighted individuals.
Sinclair, Robert J; Dixit, Sachin; Burton, Harold
2011-01-01
Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned "old" and "new" rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes.
Recognition memory for vibrotactile rhythms: An fMRI study in blind and sighted individuals
SINCLAIR, ROBERT J.; DIXIT, SACHIN; BURTON, HAROLD
2014-01-01
Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned “old” and “new” rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes. PMID:21846300
Striatal contributions to declarative memory retrieval
Scimeca, Jason M.; Badre, David
2012-01-01
Declarative memory is known to depend on the medial temporal lobe memory system. Recently, there has been renewed focus on the relationship between the basal ganglia and declarative memory, including the involvement of striatum. However, the contribution of striatum to declarative memory retrieval remains unknown. Here, we review neuroimaging and neuropsychological evidence for the involvement of the striatum in declarative memory retrieval. From this review, we propose that, along with the prefrontal cortex (PFC), the striatum primarily supports cognitive control of memory retrieval. We conclude by proposing three hypotheses for the specific role of striatum in retrieval: (1) Striatum modulates the re-encoding of retrieved items in accord with their expected utility (adaptive encoding), (2) striatum selectively admits information into working memory that is expected to increase the likelihood of successful retrieval (adaptive gating), and (3) striatum enacts adjustments in cognitive control based on the outcome of retrieval (reinforcement learning). PMID:22884322
Functional Neuroimaging in Psychopathy.
Del Casale, Antonio; Kotzalidis, Georgios D; Rapinesi, Chiara; Di Pietro, Simone; Alessi, Maria Chiara; Di Cesare, Gianluigi; Criscuolo, Silvia; De Rossi, Pietro; Tatarelli, Roberto; Girardi, Paolo; Ferracuti, Stefano
2015-01-01
Psychopathy is associated with cognitive and affective deficits causing disruptive, harmful and selfish behaviour. These have considerable societal costs due to recurrent crime and property damage. A better understanding of the neurobiological bases of psychopathy could improve therapeutic interventions, reducing the related social costs. To analyse the major functional neural correlates of psychopathy, we reviewed functional neuroimaging studies conducted on persons with this condition. We searched the PubMed database for papers dealing with functional neuroimaging and psychopathy, with a specific focus on how neural functional changes may correlate with task performances and human behaviour. Psychopathy-related behavioural disorders consistently correlated with dysfunctions in brain areas of the orbitofrontal-limbic (emotional processing and somatic reaction to emotions; behavioural planning and responsibility taking), anterior cingulate-orbitofrontal (correct assignment of emotional valence to social stimuli; violent/aggressive behaviour and challenging attitude) and prefrontal-temporal-limbic (emotional stimuli processing/response) networks. Dysfunctional areas more consistently included the inferior frontal, orbitofrontal, dorsolateral prefrontal, ventromedial prefrontal, temporal (mainly the superior temporal sulcus) and cingulated cortices, the insula, amygdala, ventral striatum and other basal ganglia. Emotional processing and learning, and several social and affective decision-making functions are impaired in psychopathy, which correlates with specific changes in neural functions. © 2015 S. Karger AG, Basel.
Xu, Renshi; Zhou, Yiyi; Fang, Xin; Lu, Yi; Li, Jiao; Zhang, Jie; Deng, Xia; Li, Shujuan
2014-12-10
The progressive pathogenesis and prevention of Parkinson's disease (PD) remains unknown at present. Therefore, the present study aimed to investigate the possible progressive pathogenesis and prevention of PD. Our study investigated the content of glutamate, mitochondria calcium, calmodulin, malonaldehyde and trace elements in striatum, cerebral cortex and hippocampus tissues; and the expression of bcl-2, bax and neuronal nitric oxide synthase (nNOS) in substantia nigra and striatum; and the change of apomorphine induced rotation behavior; and the treatmental effect of monosialotetrahexosylganglioside (GM1) intraperitoneal administration for 14 days in a PD rat model induced by 6-hydroxydopamine. The results revealed that the content of glutamate significantly decreased, and that of mitochondria calcium, calmodulin, malonaldehyde and ferrum significantly increased in striatum, cerebral cortex and hippocampus tissues; the content of magnesium significantly decreased, and that of cuprum and zinc significantly increased in cerebral cortex; the expression of bcl-2 significantly decreased, and that of bax and nNOS significantly increased in substantia nigra and striatum in PD rat. GM1 can partially improve the apomorphine induced rotation behavior and changes of glutamate, mitochondria calcium, calmodulin content in striatum of PD rat. Data suggested that dysfunction of excitatory amino acids neurotransmitter, calcium homeostasis disorder, abnormal metabolism of oxygen free radicals, abnormal trace elements distribution and/or deposition and excessive apoptosis participated in the progressive process of PD, and that GM1 could partially prevent the progressive damage. Copyright © 2014 Elsevier B.V. All rights reserved.
Worbe, Yulia; Marrakchi-Kacem, Linda; Lecomte, Sophie; Valabregue, Romain; Poupon, Fabrice; Guevara, Pamela; Tucholka, Alan; Mangin, Jean-François; Vidailhet, Marie; Lehericy, Stephane; Hartmann, Andreas; Poupon, Cyril
2015-02-01
Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito-frontal cortex, inferior frontal, temporo-parietal junction, medial temporal and frontal pole also had enhanced structural connectivity with the striatum and thalamus in patients with Gilles de la Tourette syndrome. In addition, the cortico-striatal pathways were characterized by elevated fractional anisotropy and diminished radial diffusivity, suggesting microstructural axonal abnormalities of white matter in Gilles de la Tourette syndrome. These changes were more prominent in females with Gilles de la Tourette syndrome compared to males and were not related to the current medication status. Taken together, our data showed widespread structural abnormalities in cortico-striato-pallido-thalamic white matter pathways in patients with Gilles de la Tourette, which likely result from abnormal brain development in this syndrome. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
Tippett, Lynette J; Waldvogel, Henry J; Snell, Russell G; Vonsattel, Jean-Paul; Young, Anne B; Faull, Richard L M
2017-01-01
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterised by extensive neuronal loss in the striatum and cerebral cortex, and a triad of clinical symptoms affecting motor, cognitive/behavioural and mood functioning. The mutation causing HD is an expansion of a CAG tract in exon 1 of the HTT gene. This chapter provides a multifaceted overview of the clinical complexity of HD. We explore recent directions in molecular genetics including the identification of loci that are genetic modifiers of HD that could potentially reveal therapeutic targets beyond the HTT gene transcript and protein. The variability of clinical symptomatology in HD is considered alongside recent findings of variability in cellular and neurochemical changes in the striatum and cerebral cortex in human brain. We review evidence from structural neuroimaging methods of progressive changes of striatum, cerebral cortex and white matter in pre-symptomatic and symptomatic HD, with a particular focus on the potential identification of neuroimaging biomarkers that could be used to test promising disease-specific and modifying treatments. Finally we provide an overview of completed clinical trials in HD and future therapeutic developments.
Alcaraz, Fabien; Marchand, Alain R; Vidal, Elisa; Guillou, Alexandre; Faugère, Angélique; Coutureau, Etienne; Wolff, Mathieu
2015-09-23
The orbitofrontal cortex (OFC) is known to play a crucial role in learning the consequences of specific events. However, the contribution of OFC thalamic inputs to these processes is largely unknown. Using a tract-tracing approach, we first demonstrated that the submedius nucleus (Sub) shares extensive reciprocal connections with the OFC. We then compared the effects of excitotoxic lesions of the Sub or the OFC on the ability of rats to use outcome identity to direct responding. We found that neither OFC nor Sub lesions interfered with the basic differential outcomes effect. However, more specific tests revealed that OFC rats, but not Sub rats, were disproportionally relying on the outcome, rather than on the discriminative stimulus, to guide behavior, which is consistent with the view that the OFC integrates information about predictive cues. In subsequent experiments using a Pavlovian contingency degradation procedure, we found that both OFC and Sub lesions produced a severe deficit in the ability to update Pavlovian associations. Altogether, the submedius therefore appears as a functionally relevant thalamic component in a circuit dedicated to the integration of predictive cues to guide behavior, previously conceived as essentially dependent on orbitofrontal functions. Significance statement: In the present study, we identify a largely unknown thalamic region, the submedius nucleus, as a new functionally relevant component in a circuit supporting the flexible use of predictive cues. Such abilities were previously conceived as largely dependent on the orbitofrontal cortex. Interestingly, this echoes recent findings in the field showing, in research involving an instrumental setup, an additional involvement of another thalamic nuclei, the parafascicular nucleus, when correct responding requires an element of flexibility (Bradfield et al., 2013a). Therefore, the present contribution supports the emerging view that limbic thalamic nuclei may contribute critically to adaptive responding when an element of flexibility is required after the establishment of initial learning. Copyright © 2015 the authors 0270-6474/15/3513183-11$15.00/0.
Liang, Shengxiang; Lin, Yunjiao; Lin, Bingbing; Li, Jianhong; Liu, Weilin; Chen, Lidian; Zhao, Shujun; Tao, Jing
2017-09-01
To evaluate whether electro-acupuncture (EA) treatment at acupoints of Zusanli (ST 36) and Quchi (LI 11) could reduce motor impairments and enhance brain functional recovery in rats with ischemic stroke. A rat model of middle cerebral artery occlusion (MCAO) was established. EA at ST 36 and LI 11was started at 24 hours (MCAO + EA group) after ischemic stroke. The nontreatment (MCAO) and sham-operated control (SC) groups were included as controls. The neurologic deficits of all groups were assessed by Zea Longa scores and the modified neurologic severity scores on 24 hours and 8 days after MCAO. To further investigate the effect of EA on infract volume and brain function, magnetic resonance imaging was used to estimate the brain lesion and brain neural activities of each group at 8 days after ischemic stroke. Within 1 week after EA treatment, the neurologic deficits were significantly alleviated, and the cerebral infarctions were improved, including visual cortex, motor cortex, striatum, dorsal thalamus, and hippocampus. Furthermore, whole brain neural activities of auditory cortex, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, orbital cortex, sensory cortex, and striatum were decreased in MCAO group, whereas that of brain neural activities were increased after EA treatment, suggesting these brain regions are in accordance with the brain structure analysis. EA at ST 36 and LI 11 could enhance the neural activity of motor function-related brain regions, including motor cortex, dorsal thalamus, and striatum in rats, which is a potential treatment for ischemia stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Human protein status modulates brain reward responses to food cues.
Griffioen-Roose, Sanne; Smeets, Paul Am; van den Heuvel, Emmy; Boesveldt, Sanne; Finlayson, Graham; de Graaf, Cees
2014-07-01
Protein is indispensable in the human diet, and its intake appears tightly regulated. The role of sensory attributes of foods in protein intake regulation is far from clear. We investigated the effect of human protein status on neural responses to different food cues with the use of functional magnetic resonance imaging (fMRI). The food cues varied by taste category (sweet compared with savory) and protein content (low compared with high). In addition, food preferences and intakes were measured. We used a randomized crossover design whereby 23 healthy women [mean ± SD age: 22 ± 2 y; mean ± SD body mass index (in kg/m(2)): 22.5 ± 1.8] followed two 16-d fully controlled dietary interventions involving consumption of either a low-protein diet (0.6 g protein · kg body weight(-1) · d(-1), ~7% of energy derived from protein, approximately half the normal protein intake) or a high-protein diet (2.2 g protein · kg body weight(-1) · d(-1), ~25% of energy, approximately twice the normal intake). On the last day of the interventions, blood oxygen level-dependent (BOLD) responses to odor and visual food cues were measured by using fMRI. The 2 interventions were followed by a 1-d ad libitum phase, during which a large array of food items was available and preference and intake were measured. When exposed to food cues (relative to the control condition), the BOLD response was higher in reward-related areas (orbitofrontal cortex, striatum) in a low-protein state than in a high-protein state. Specifically, BOLD was higher in the inferior orbitofrontal cortex in response to savory food cues. In contrast, the protein content of the food cues did not modulate the BOLD response. A low protein state also increased preferences for savory food cues and increased protein intake in the ad libitum phase as compared with a high-protein state. Protein status modulates brain responses in reward regions to savory food cues. These novel findings suggest that dietary protein status affects taste category preferences, which could play an important role in the regulation of protein intake in humans. This trial was registered at www.trialregister.nl/trialreg/admin/rctview.asp?TC=3288 as NTR3288. © 2014 American Society for Nutrition.
Trait self-esteem and neural activities related to self-evaluation and social feedback
Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui
2016-01-01
Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one’s own personality traits and of others’ opinion about one’s own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one’s own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback. PMID:26842975
Trait self-esteem and neural activities related to self-evaluation and social feedback.
Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui
2016-02-04
Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one's own personality traits and of others' opinion about one's own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one's own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback.
Orbitofrontal disinhibition of pain in migraine with aura: an interictal EEG-mapping study.
Lev, Rina; Granovsky, Yelena; Yarnitsky, David
2010-08-01
This study aimed to identify the cortical mechanisms underlying the processes of interictal dishabituation to experimental pain in subjects suffering from migraine with aura (MWA). In 21 subjects with MWA and 22 healthy controls, cortical responses to two successive trials of noxious contact-heat stimuli were analyzed using EEG-tomography software. When compared with controls, MWA patients showed significantly increased pain-evoked potential amplitudes accompanied by reduced activity in the orbitofrontal cortex (OFC) and increased activity in the pain matrix regions, including the primary somatosensory cortex (SI) (p < .05). Similarly to controls, MWA subjects displayed an inverse correlation between the OFC and SI activities, and positive interrelations between other pain-specific regions. The activity changes in the OFC negatively correlated with lifetime headache duration and longevity (p < .05). Reduced inhibitory functioning of the prefrontal cortex is a possible cause for disinhibition of the pain-related sensory cortices in migraine. The finding of OFC hypofunction over the disease course is in keeping with current concepts of migraine as a progressive brain disorder.
Delayed activation of the primary orbitofrontal cortex in post-traumatic anosmia.
Lee, Vincent Kyu; Nardone, Raffaele; Wasco, Fern; Panigrahy, Ashok; Zuccoli, Giulio
2016-01-01
Functional magnetic resonance imaging may help in elucidating the pathophysiology of post-traumatic anosmia. Using an fMRI olfactory stimulus paradigm, this study compared BOLD activation of the brain in a 21-year old male research subject with post-traumatic anosmia and a 19-year old male normal healthy control participant. A delayed activation of the primary orbitofrontal cortex was found in the subject with traumatic anosmia, which may represent a crucial pathophysiological mechanism in the subject with traumatic anosmia due to axonal injury or traumatic transection at the lamina cribrosa level. In healthy subjects the activation of secondary cortical areas may be due to the habituation effect in the primary olfactory cortex. This raises the possibility that, in the absence of secondary activation areas-that may act as a feed-back habituation or desensitization in the patient-one of the primary response areas is activated over the longer period of stimulation. The failed activation of these secondary areas in the patient may cause a feed-back habituation or desensitization in the patient and could also play a role in the disturbed perception of odours.
The Neural Correlates of Desire
Kawabata, Hideaki; Zeki, Semir
2008-01-01
In an event-related fMRI study, we scanned eighteen normal human subjects while they viewed three categories of pictures (events, objects and persons) which they classified according to desirability (desirable, indifferent or undesirable). Each category produced activity in a distinct part of the visual brain, thus reflecting its functional specialization. We used conjunction analysis to learn whether there is a brain area which is always active when a desirable picture is viewed, regardless of the category to which it belongs. The conjunction analysis of the contrast desirable > undesirable revealed activity in the superior orbito-frontal cortex. This activity bore a positive linear relationship to the declared level of desirability. The conjunction analysis of desirable > indifferent revealed activity in the mid-cingulate cortex and in the anterior cingulate cortex. In the former, activity was greater for desirable and undesirable stimuli than for stimuli classed as indifferent. Other conjunction analyses produced no significant effects. These results show that categorizing any stimulus according to its desirability activates three different brain areas: the superior orbito-frontal, the mid-cingulate, and the anterior cingulate cortices. PMID:18728753
Effects of inhaled particulate matter on the central nervous system in mice.
Kim, So Young; Kim, Jin Ki; Park, So Hyeon; Kim, Byeong-Gon; Jang, An-Soo; Oh, Seung Ha; Lee, Jun Ho; Suh, Myung-Whan; Park, Moo Kyun
2018-06-04
Little is known regarding the adverse effects of chronic particulate matter (PM) inhalation on the central nervous system (CNS). The present study aimed to examine how PM exposure impacts on oxidative stress and inflammatory processes, as well as the expression of interneurons and perineuronal nets (PNNs) in the CNS. BALB/c mice (6-week-old females, n = 32) were exposed to 1 to 5 μm size diesel-extracted particles (DEPs) (100 μg/m 3 , 5 d/week, 5 h/day) and categorized into the following four groups: 1) 4-week DEP (n = 8); 2) 4-week control (n = 8), 3) 8-week DEP (n = 8); and 4) 8-week control (n = 8). The olfactory bulb, prefrontal cortex, temporal cortex, striatum, and cerebellum were harvested from the animals in each group. The expression of antioxidants (heme oxygenase 1 [HO-1] and superoxide dismutase 2 [SOD-2]), and markers of the unfolded protein response (X-box binding protein [XBP]-1S), inflammation (tumor necrosis factor-alpha [TNF-α]), and proliferation (neurotrophin-3 and brain-derived neurotrophic factor [BDNF]) were measured using reverse transcription polymerase chain reaction (PCR) and Western blotting. The expression levels of HO-1, SOD-2, XBP-1S, TNF-α, neurotrophin-3, and BDNF were compared among groups using the Mann-Whitney U test. The temporal cortex was immunostained for parvalbumin (PV) and Wisteria floribunda agglutinin (WFA). The numbers of PV- and WFA-positive cells were counted using a confocal microscope and analyzed with the Mann-Whitney U test. HO-1 expression was elevated in the prefrontal cortex, temporal cortex, striatum, and cerebellum of mice in the 8-week DEP group compared with the control group. Expression of SOD-2 and XBP-1S was elevated in the prefrontal cortex and striatum of the 8-week DEP group compared with the control group. TNF-α expression was elevated in the prefrontal cortex, temporal cortex, striatum, and cerebellum in the 4- and 8-week DEP groups compared with the control group. Neurotrophin-3 expression was decreased in the olfactory bulb and striatum of the 8-week DEP group compared with the control group. WFA density was increased in the 8-week DEP group compared with the control group. The PV and PV + WFA densities were decreased in the 4-week DEP group compared with the control group. Chronic DEP inhalation activated oxidative stress and inflammation in multiple brain regions. Chronic DEP inhalation increased PNNs and decreased the number of interneurons, which may contribute to PM exposure-related CNS dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.
Dissociable frontostriatal white matter connectivity underlies reward and motor impulsivity.
Hampton, William H; Alm, Kylie H; Venkatraman, Vinod; Nugiel, Tehila; Olson, Ingrid R
2017-04-15
Dysfunction of cognitive control often leads to impulsive decision-making in clinical and healthy populations. Some research suggests that a generalized cognitive control mechanism underlies the ability to modulate various types of impulsive behavior, while other evidence suggests different forms of impulsivity are dissociable, and rely on distinct neural circuitry. Past research consistently implicates several brain regions, such as the striatum and portions of the prefrontal cortex, in impulsive behavior. However the ventral and dorsal striatum are distinct in regards to function and connectivity. Nascent evidence points to the importance of frontostriatal white matter connectivity in impulsivity, yet it remains unclear whether particular tracts relate to different control behaviors. Here we used probabilistic tractography of diffusion imaging data to relate ventral and dorsal frontostriatal connectivity to reward and motor impulsivity measures. We found a double dissociation such that individual differences in white matter connectivity between the ventral striatum and the ventromedial prefrontal cortex and dorsolateral prefrontal cortex was associated with reward impulsivity, as measured by delay discounting, whereas connectivity between dorsal striatum and supplementary motor area was associated with motor impulsivity, but not vice versa. Our findings suggest that (a) structural connectivity can is associated with a large amount of behavioral variation; (b) different types of impulsivity are driven by dissociable frontostriatal neural circuitry. Copyright © 2017 Elsevier Inc. All rights reserved.
Hsu, Lieh-Ching; Ko, Yu-Jen; Cheng, Hao-Yuan; Chang, Ching-Wen; Lin, Yu-Chin; Cheng, Ying-Hui; Hsieh, Ming-Tsuen; Peng, Wen Huang
2012-01-01
This study investigated the antidepressant activity of ethanolic extract of U. lanosa Wallich var. appendiculata Ridsd (ULEtOH) for two-weeks administrations by using FST and TST on mice. In order to understand the probable mechanism of antidepressant-like activity of ULEtOH in FST and TST, the researchers measured the levels of monoamines and monoamine oxidase activities in mice brain, and combined the antidepressant drugs (fluoxetine, imipramine, maprotiline, clorgyline, bupropion and ketanserin). Lastly, the researchers analyzed the content of RHY in the ULEtOH. The results showed that ULEtOH exhibited antidepressant-like activity in FST and TST in mice. ULEtOH increased the levels of 5-HT and 5-HIAA in cortex, striatum, hippocampus, and hypothalamus, the levels of NE and MHPG in cortex and hippocampus, the level of NE in striatum, and the level of DOPAC in striatum. Two-week injection of IMI, CLO, FLU and KET enhanced the antidepressant-like activity of ULEtOH. ULEtOH inhibited the activity of MAO-A. The amount of RHY in ULEtOH was 17.12 mg/g extract. Our findings support the view that ULEtOH exerts antidepressant-like activity. The antidepressant-like mechanism of ULEtOH may be related to the increase in monoamines levels in the hippocampus, cortex, striatum, and hypothalamus of mice. PMID:22567032
Orbitofrontal Reality Filtering
Schnider, Armin
2013-01-01
Decades of research have deepened our understanding of how the brain forms memories and uses them to build our mental past and future. But how does it determine whether an evoked memory refers to the present and can be acted upon? The study of patients who confuse reality, as evident from confabulation and disorientation, has opened ways to explore this vital capacity. Results indicate that the brain recurs to a phylogenetically old faculty of the orbitofrontal cortex – extinction – and structures of the reward system to keep thought and behavior in phase with reality. PMID:23772208
Investigation of orbitofrontal sulcogyral pattern in chronic schizophrenia.
Cropley, Vanessa L; Bartholomeusz, Cali F; Wu, Peter; Wood, Stephen J; Proffitt, Tina; Brewer, Warrick J; Desmond, Patricia M; Velakoulis, Dennis; Pantelis, Christos
2015-11-30
Abnormalities of orbitofrontal cortex (OFC) pattern type distribution have been associated with schizophrenia-spectrum disorders. We investigated OFC pattern type in a large sample of chronic schizophrenia patients and healthy controls. We found an increased frequency of Type II but no difference in Type I or III folding pattern in the schizophrenia group in comparison to controls. Further large studies are required to investigate the diagnostic specificity of altered OFC pattern type and to confirm the distribution of pattern type in the normal population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Taste, olfactory, and food reward value processing in the brain.
Rolls, Edmund T
2015-04-01
Complementary neuronal recordings in primates, and functional neuroimaging in humans, show that the primary taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture (including fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in a second tier of processing, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by associative learning with olfactory and visual inputs, and these neurons encode food reward value on a continuous scale in that they only respond to food when hungry, and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions, and selective attention to affective value, modulate the representation of the reward value of taste and olfactory stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex, a tertiary taste cortical area. The food reward representations formed in this way play an important role in the control of appetite, and food intake. Individual differences in these reward representations may contribute to obesity, and there are age-related differences in these value representations that shape the foods that people in different age groups find palatable. In a third tier of processing in medial prefrontal cortex area 10, decisions between stimuli of different reward value are taken, by attractor decision-making networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Psychological and Neuroanatomical Model of Obsessive-Compulsive Disorder
Huey, Edward D.; Zahn, Roland; Krueger, Frank; Moll, Jorge; Kapogiannis, Dimitrios; Wassermann, Eric M.; Grafman, Jordan
2009-01-01
Imaging, surgical, and lesion studies suggest that the prefrontal cortex (orbitofrontal and anterior cingulate cortexes), basal ganglia, and thalamus are involved in the pathogenesis of obsessive-compulsive disorder (OCD). On the basis of these findings several models of OCD have been developed, but have had difficulty fully integrating the psychological and neuroanatomical findings of OCD. Recent research in the field of cognitive neuroscience on the normal function of these brain areas demonstrates the role of the orbitofrontal cortex in reward, the anterior cingulate cortex in error detection, the basal ganglia in affecting the threshold for activation of motor and behavioral programs, and the prefrontal cortex in storing memories of behavioral sequences (called “structured event complexes” or SECs). The authors propose that the initiation of these SECs can be accompanied by anxiety that is relieved with completion of the SEC, and that a deficit in this process could be responsible for many of the symptoms of OCD. Specifically, the anxiety can form the basis of an obsession, and a compulsion can be an attempt to receive relief from the anxiety by repeating parts of, or an entire, SEC. The authors discuss empiric support for, and specific experimental predictions of, this model. The authors believe that this model explains the specific symptoms, and integrates the psychology and neuroanatomy of OCD better than previous models. PMID:19196924
Intrinsic network activity in tinnitus investigated using functional MRI
Leaver, Amber M.; Turesky, Ted K.; Seydell-Greenwald, Anna; Morgan, Susan; Kim, Hung J.; Rauschecker, Josef P.
2016-01-01
Tinnitus is an increasingly common disorder in which patients experience phantom auditory sensations, usually ringing or buzzing in the ear. Tinnitus pathophysiology has been repeatedly shown to involve both auditory and non-auditory brain structures, making network-level studies of tinnitus critical. In this magnetic resonance imaging (MRI) study, we used two resting-state functional connectivity (RSFC) approaches to better understand functional network disturbances in tinnitus. First, we demonstrated tinnitus-related reductions in RSFC between specific brain regions and resting-state networks (RSNs), defined by independent components analysis (ICA) and chosen for their overlap with structures known to be affected in tinnitus. Then, we restricted ICA to data from tinnitus patients, and identified one RSN not apparent in control data. This tinnitus RSN included auditory-sensory regions like inferior colliculus and medial Heschl’s gyrus, as well as classically non-auditory regions like the mediodorsal nucleus of the thalamus, striatum, lateral prefrontal and orbitofrontal cortex. Notably, patients’ reported tinnitus loudness was positively correlated with RSFC between the mediodorsal nucleus and the tinnitus RSN, indicating that this network may underlie the auditory-sensory experience of tinnitus. These data support the idea that tinnitus involves network dysfunction, and further stress the importance of communication between auditory-sensory and fronto-striatal circuits in tinnitus pathophysiology. PMID:27091485
Dopamine and the Neural "Now": Essay and Review of Addiction: A Disorder of Choice.
Lewis, Marc D
2011-03-01
Rather than view addiction as a disease, Heyman sees it as a choice-one that works like other choices, whereby immediate rewards outshine long-term gains. He rejects neuroscientific explanations of addictive behavior, because he believes they cast it as involuntary or disease-like. I argue that the disease-versus-choice debate creates a false dichotomy: Neuroscience does not have to frame addiction as a disease. Rather, it can help explain how addicts make impulsive choices in the moment and distort appraisal and decision-making habits in the long run. Specifically, the salience of drug-related cues is enhanced by dopamine activity in the ventral striatum, orbitofrontal cortex, and amygdala, due to the intense hedonic impact of repeated drug experiences. Moreover, dopamine-based craving peaks when drug (or alcohol or gambling) rewards become available, in the moment, and this rapid increase in attractiveness preempts rational judgment. Finally, repeated dopamine enhancement modifies brain structures to maximize the appeal of addictive activities, minimize the appeal of competing rewards, and undermine the cognitive capacities necessary to choose between them. I conclude that addiction is not a monolithic state but a recurrent series of choices that permit negotiation, and sometimes cooperation, between immediate and long-range goals. © The Author(s) 2011.
Galli, Lisa; Schott, Björn H.; Wold, Andrew; van der Schalk, Job; Manstead, Antony S. R.; Scherer, Klaus; Walter, Henrik
2015-01-01
Humans have a strong tendency to affiliate with other people, especially in emotional situations. Here, we suggest that a critical mechanism underlying this tendency is that socially sharing emotional experiences is in itself perceived as hedonically positive and thereby contributes to the regulation of individual emotions. We investigated the effect of social sharing of emotions on subjective feelings and neural activity by having pairs of friends view emotional (negative and positive) and neutral pictures either alone or with the friend. While the two friends remained physically separated throughout the experiment—with one undergoing functional magnetic resonance imaging and the other performing the task in an adjacent room—they were made aware on a trial-by-trial basis whether they were seeing pictures simultaneously with their friend (shared) or alone (unshared). Ratings of subjective feelings were improved significantly when participants viewed emotional pictures together than alone, an effect that was accompanied by activity increase in ventral striatum and medial orbitofrontal cortex, two important components of the reward circuitry. Because these effects occurred without any communication or interaction between the friends, they point to an important proximate explanation for the basic human motivation to affiliate with others, particularly in emotional situations. PMID:25298009
Schmidt, Brandy; Papale, Andrew; Redish, A David; Markus, Etan J
2013-02-15
Navigation can be accomplished through multiple decision-making strategies, using different information-processing computations. A well-studied dichotomy in these decision-making strategies compares hippocampal-dependent "place" and dorsal-lateral striatal-dependent "response" strategies. A place strategy depends on the ability to flexibly respond to environmental cues, while a response strategy depends on the ability to quickly recognize and react to situations with well-learned action-outcome relationships. When rats reach decision points, they sometimes pause and orient toward the potential routes of travel, a process termed vicarious trial and error (VTE). VTE co-occurs with neurophysiological information processing, including sweeps of representation ahead of the animal in the hippocampus and transient representations of reward in the ventral striatum and orbitofrontal cortex. To examine the relationship between VTE and the place/response strategy dichotomy, we analyzed data in which rats were cued to switch between place and response strategies on a plus maze. The configuration of the maze allowed for place and response strategies to work competitively or cooperatively. Animals showed increased VTE on trials entailing competition between navigational systems, linking VTE with deliberative decision-making. Even in a well-learned task, VTE was preferentially exhibited when a spatial selection was required, further linking VTE behavior with decision-making associated with hippocampal processing.
Merz, Christian J.; Klucken, Tim; Schweckendiek, Jan; Vaitl, Dieter; Wolf, Oliver T.; Stark, Rudolf
2011-01-01
In an fMRI study, effects of contingency awareness on conditioned responses were assessed in three groups comprising 118 subjects. A differential fear-conditioning paradigm with visual conditioned stimuli, an electrical unconditioned stimulus and two distractors was applied. The instructed aware group was informed about the contingencies, whereas the distractors prevented contingency detection in the unaware group. The third group (learned aware) was not informed about the contingencies, but learned them despite the distractors. Main effects of contingency awareness on conditioned responses emerged in several brain structures. Post hoc tests revealed differential dorsal anterior cingulate, insula and ventral striatum responses in aware conditioning only, whereas the amygdala was activated independent of contingency awareness. Differential responses of the hippocampus were specifically observed in learned aware subjects, indicating a role in the development of contingency awareness. The orbitofrontal cortex showed varying response patterns: lateral structures showed higher responses in instructed aware than unaware subjects, the opposite was true for medial parts. Conditioned subjective and electrodermal responses emerged only in the two aware groups. These results confirm the independence of conditioned amygdala responses from contingency awareness and indicate specific neural circuits for different aspects of fear acquisition in unaware, learned aware and instructed aware subjects. PMID:20693389
Altered neural reward and loss processing and prediction error signalling in depression
Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela
2015-01-01
Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763
Ferreira-Santos, Fernando; Almeida, Pedro R.; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A.
2015-01-01
Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. PMID:25971600
Wagner, Ullrich; Galli, Lisa; Schott, Björn H; Wold, Andrew; van der Schalk, Job; Manstead, Antony S R; Scherer, Klaus; Walter, Henrik
2015-06-01
Humans have a strong tendency to affiliate with other people, especially in emotional situations. Here, we suggest that a critical mechanism underlying this tendency is that socially sharing emotional experiences is in itself perceived as hedonically positive and thereby contributes to the regulation of individual emotions. We investigated the effect of social sharing of emotions on subjective feelings and neural activity by having pairs of friends view emotional (negative and positive) and neutral pictures either alone or with the friend. While the two friends remained physically separated throughout the experiment-with one undergoing functional magnetic resonance imaging and the other performing the task in an adjacent room-they were made aware on a trial-by-trial basis whether they were seeing pictures simultaneously with their friend (shared) or alone (unshared). Ratings of subjective feelings were improved significantly when participants viewed emotional pictures together than alone, an effect that was accompanied by activity increase in ventral striatum and medial orbitofrontal cortex, two important components of the reward circuitry. Because these effects occurred without any communication or interaction between the friends, they point to an important proximate explanation for the basic human motivation to affiliate with others, particularly in emotional situations. © The Author (2014). Published by Oxford University Press.
Rudebeck, Peter H.; Murray, Elisabeth A.
2014-01-01
The primate orbitofrontal cortex (OFC) is often treated as a single entity, but architectonic and connectional neuroanatomy indicates that it has distinguishable parts. Nevertheless, few studies have attempted to dissociate the functions of its subregions. Here we review findings from recent neuropsychological and neurophysiological studies that do so. The lateral OFC seems to be important for learning, representing and updating specific object–reward associations. Medial OFC seems to be important for value comparisons and choosing among objects on that basis. Rather than viewing this dissociation of function in terms of learning versus choosing, however, we suggest that it reflects the distinction between contrasts and comparisons: differences versus similarities. Making use of high-dimensional representations that arise from the convergence of several sensory modalities, the lateral OFC encodes contrasts among outcomes. The medial MFC reduces these contrasting representations of value to a single dimension, a common currency, in order to compare alternative choices. PMID:22145870
Elucidating the underlying components of food valuation in the human orbitofrontal cortex.
Suzuki, Shinsuke; Cross, Logan; O'Doherty, John P
2017-12-01
The valuation of food is a fundamental component of our decision-making. Yet little is known about how value signals for food and other rewards are constructed by the brain. Using a food-based decision task in human participants, we found that subjective values can be predicted from beliefs about constituent nutritive attributes of food: protein, fat, carbohydrates and vitamin content. Multivariate analyses of functional MRI data demonstrated that, while food value is represented in patterns of neural activity in both medial and lateral parts of the orbitofrontal cortex (OFC), only the lateral OFC represents the elemental nutritive attributes. Effective connectivity analyses further indicate that information about the nutritive attributes represented in the lateral OFC is integrated within the medial OFC to compute an overall value. These findings provide a mechanistic account for the construction of food value from its constituent nutrients.
Pubertal testosterone influences threat-related amygdala-orbitofrontal cortex coupling.
Spielberg, Jeffrey M; Forbes, Erika E; Ladouceur, Cecile D; Worthman, Carol M; Olino, Thomas M; Ryan, Neal D; Dahl, Ronald E
2015-03-01
Growing evidence indicates that normative pubertal maturation is associated with increased threat reactivity, and this developmental shift has been implicated in the increased rates of adolescent affective disorders. However, the neural mechanisms involved in this pubertal increase in threat reactivity remain unknown. Research in adults indicates that testosterone transiently decreases amygdala-orbitofrontal cortex (OFC) coupling. Consequently, we hypothesized that increased pubertal testosterone disrupts amygdala-OFC coupling, which may contribute to developmental increases in threat reactivity in some adolescents. Hypotheses were tested in a longitudinal study by examining the impact of testosterone on functional connectivity. Findings were consistent with hypotheses and advance our understanding of normative pubertal changes in neural systems instantiating affect/motivation. Finally, potential novel insights into the neurodevelopmental pathways that may contribute to adolescent vulnerability to behavioral and emotional problems are discussed. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Herold, R; Feldmann, A; Simon, M; Tényi, T; Kövér, F; Nagy, F; Varga, E; Fekete, S
2009-03-01
We tested the association between theory of mind (ToM) performance and structural changes in the brains of patients in the early course of schizophrenia. Voxel-based morphometry (VBM) data of 18 patients with schizophrenia were compared with those of 21 controls. ToM skills were assessed by computerized faux pas (FP) tasks. Patients with schizophrenia performed significantly worse in FP tasks than healthy subjects. VBM revealed significantly reduced gray matter density in certain frontal, temporal and subcortical regions in patients with schizophrenia. Poor FP performance of schizophrenics correlated with gray matter reduction in the left orbitofrontal cortex and right temporal pole. Our data indicate an association between poor ToM performance and regional gray matter reduction in the left orbitofrontal cortex and right temporal pole shortly after the onset of schizophrenia.
Right Orbitofrontal Cortex Mediates Conscious Olfactory Perception
Li, Wen; Lopez, Leonardo; Osher, Jason; Howard, James D.; Parrish, Todd B.; Gottfried, Jay A.
2013-01-01
Understanding how the human brain translates sensory impressions into conscious percepts is a key challenge of neuroscience research. Work in this area has overwhelmingly centered on the conscious experience of vision at the exclusion of the other senses—in particular, smell. We hypothesized that the orbitofrontal cortex (OFC) is a central substrate for olfactory conscious experience because of its privileged physiological role in odor processing. Combining functional magnetic resonance imaging, peripheral autonomic recordings, and olfactory psychophysics, we studied a case of complete anosmia (smell loss) in a patient with circumscribed traumatic brain injury to the right OFC. Despite a complete absence of conscious olfaction, the patient exhibited robust “blind smell,” as indexed by reliable odor-evoked neural activity in the left OFC and normal autonomic responses to odor hedonics during presentation of stimuli to the left nostril. These data highlight the right OFC’s critical role in subserving human olfactory consciousness. PMID:20817780
Van de Berg, W D; Blokland, A; Cuello, A C; Schmitz, C; Vreuls, W; Steinbusch, H W; Blanco, C E
2000-10-01
Deficits in cognitive function have been related to quantitative changes in synaptic population, particularly in the cerebral cortex. Here, we used an established model of perinatal asphyxia that induces morphological changes, i.e. neuron loss in the cerebral cortex and striatum, as well as behavioural deficits. We hypothesized that perinatal asphyxia may lead to a neurodegenerative process resulting in cognitive impairment and altered presynaptic bouton numbers in adult rats. We studied cognitive performance at 18 months and presynaptic bouton numbers at 22 months following perinatal asphyxia. Data of the spatial Morris water escape task did not reveal clear memory or learning deficits in aged asphyctic rats compared to aged control rats. However, a memory impairment in aged rats versus young rats was observed, which was more pronounced in asphyctic rats. We found an increase in presynaptic bouton density in the parietal cortex, whereas no changes were found in striatum and frontal cortex in asphyctic rats. An increase of striatal volume was observed in asphyctic rats, leading to an increase in presynaptic bouton numbers in this area. These findings stress the issue that volume measurements have to be taken into account when determining presynaptic bouton density. Furthermore, perinatal asphyxia led to region-specific changes in presynaptic bouton numbers and it worsened the age-related cognitive impairment. These results suggest that perinatal asphyxia induced neuronal loss, which is compensated for by an increase in presynaptic bouton numbers.
Neuroimaging studies of the striatum in cognition Part I: healthy individuals
Provost, Jean-Sebastien; Hanganu, Alexandru; Monchi, Oury
2015-01-01
The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well-accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity. PMID:26500513
Neuroimaging studies of the striatum in cognition Part I: healthy individuals.
Provost, Jean-Sebastien; Hanganu, Alexandru; Monchi, Oury
2015-01-01
The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well-accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity.
Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).
Lefaucheur, Jean-Pascal; Antal, Andrea; Ayache, Samar S; Benninger, David H; Brunelin, Jérôme; Cogiamanian, Filippo; Cotelli, Maria; De Ridder, Dirk; Ferrucci, Roberta; Langguth, Berthold; Marangolo, Paola; Mylius, Veit; Nitsche, Michael A; Padberg, Frank; Palm, Ulrich; Poulet, Emmanuel; Priori, Alberto; Rossi, Simone; Schecklmann, Martin; Vanneste, Sven; Ziemann, Ulf; Garcia-Larrea, Luis; Paulus, Walter
2017-01-01
A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS in a therapeutic setting. In addition, the easy management and low cost of tDCS devices allow at home use by the patient, but this might raise ethical and legal concerns with regard to potential misuse or overuse. We must be careful to avoid inappropriate applications of this technique by ensuring rigorous training of the professionals and education of the patients. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Lao, Yi; Wang, Yalin; Shi, Jie; Ceschin, Rafael; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha
2015-01-01
Finding the neuroanatomical correlates of prematurity is vital to understanding which structures are affected, and design efficient prevention andtreatment strategy. Converging results reveal that thalamic abnormalities are important indicators of prematurity. However, little is known about the localization of the disturbance within the subnuclei of the thalamus, or on the association of altered thalamic development with other deep gray matter disturbances. Here, using brain structural magnetic resonance imaging (MRI), we perform a novel combined shape and pose analysis of the thalamus and ventral striatum between 17 preterm and 19 term-born neonates. We detect statistically significant surface deformations and pose changes on the thalamus andventral striatum, successfully locating the alterations on specific regions such as the anterior and ventral-anterior thalamic nuclei, and for the first time, demonstrating the feasibility of using relative pose parameters as indicators for prematurity in neonates. We also perform a set of correlation analyses between the thalamus and the ventral striatum, based on the surface and pose results. Our methods show that regional abnormalities of the thalamus are associated with alterations of the ventral striatum, possibly due to disturbed development of sharedpre-frontal connectivity. More specifically, the significantly correlated regions in these two structures point to frontal-subcortical pathways including the dorsolateral prefrontal-subcortical circuit, the lateral orbitofrontal-subcortical circuit, the motor circuit, and the oculomotor circuit. These findings reveal new insight into potential subcortical structural covariatesfor poor neurodevelopmental outcomes in the preterm population. PMID:25366970
Orbitofrontal cortex mediates pain inhibition by monetary reward.
Becker, Susanne; Gandhi, Wiebke; Pomares, Florence; Wager, Tor D; Schweinhardt, Petra
2017-04-01
Pleasurable stimuli, including reward, inhibit pain, but the level of the neuraxis at which they do so and the cerebral processes involved are unknown. Here, we characterized a brain circuitry mediating pain inhibition by reward. Twenty-four healthy participants underwent functional magnetic resonance imaging while playing a wheel of fortune game with simultaneous thermal pain stimuli and monetary wins or losses. As expected, winning decreased pain perception compared to losing. Inter-individual differences in pain modulation by monetary wins relative to losses correlated with activation in the medial orbitofrontal cortex (mOFC). When pain and reward occured simultaneously, mOFCs functional connectivity changed: the signal time course in the mOFC condition-dependent correlated negatively with the signal time courses in the rostral anterior insula, anterior-dorsal cingulate cortex and primary somatosensory cortex, which might signify moment-to-moment down-regulation of these regions by the mOFC. Monetary wins and losses did not change the magnitude of pain-related activation, including in regions that code perceived pain intensity when nociceptive input varies and/or receive direct nociceptive input. Pain inhibition by reward appears to involve brain regions not typically involved in nociceptive intensity coding but likely mediate changes in the significance and/or value of pain. © The Author (2017). Published by Oxford University Press.
Oldham, Stuart; Murawski, Carsten; Fornito, Alex; Youssef, George; Yücel, Murat; Lorenzetti, Valentina
2018-04-25
The processing of rewards and losses are crucial to everyday functioning. Considerable interest has been attached to investigating the anticipation and outcome phases of reward and loss processing, but results to date have been inconsistent. It is unclear if anticipation and outcome of a reward or loss recruit similar or distinct brain regions. In particular, while the striatum has widely been found to be active when anticipating a reward, whether it activates in response to the anticipation of losses as well remains ambiguous. Furthermore, concerning the orbitofrontal/ventromedial prefrontal regions, activation is often observed during reward receipt. However, it is unclear if this area is active during reward anticipation as well. We ran an Activation Likelihood Estimation meta-analysis of 50 fMRI studies, which used the Monetary Incentive Delay Task (MIDT), to identify which brain regions are implicated in the anticipation of rewards, anticipation of losses, and the receipt of reward. Anticipating rewards and losses recruits overlapping areas including the striatum, insula, amygdala and thalamus, suggesting that a generalised neural system initiates motivational processes independent of valence. The orbitofrontal/ventromedial prefrontal regions were recruited only during the reward outcome, likely representing the value of the reward received. Our findings help to clarify the neural substrates of the different phases of reward and loss processing, and advance neurobiological models of these processes. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto
2014-03-01
We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.
Frye, Cheryl A; Paris, Jason J; Rhodes, Madeline E
2010-01-01
Sequential actions of 17β-estradiol (E2) and progesterone (P4) in the hypothalamus and the P4 metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), in the midbrain ventral tegmental area (VTA) respectively mediate the initiation and intensity of lordosis of female rats and mayalso modulate anxiety and social behaviors, through actions in these, and/or other brain regions. Biosynthesis of E2, P4, and 3α,5α-THP can also occur in brain, independent of peripheral gland secretion, in response to environmental/behavioral stimuli. The extent to which engaging in tasks related to reproductive behaviors and/or mating increased E2 or progestin concentrations in brain was investigated. In Experiment 1, proestrous rats were randomly assigned to be tested in individual tasks, including the open field, elevated plus maze, partner preference, social interaction, or no test control, in conjunction with paced mating or no mating. Engaging in paced mating, but not other behaviors, significantly increased dihydroprogesterone (DHP) and 3α,5α-THP levels in midbrain, hippocampus, striatum, and cortex. In Experiment 2, proestrous rats were tested in the combinations of the above tasks (open field and elevated plus maze, partner preference, and social interaction) with or without paced mating. As in Experiment 1, only engaging in paced mating increased DHP and 3α,5α-THP concentrations in midbrain, hippocampus, striatum, and cortex. Thus, paced mating enhances concentrations of 5α-reduced progestins in brain areas associated with reproduction (midbrain), as well as exploration/anxiety (hippocampus and striatum) and social behavior (cortex). PMID:17379660
Achterberg, E.J. Marijke; van Kerkhof, Linda W.M.; Damsteegt, Ruth; Trezza, Viviana
2015-01-01
Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD. PMID:25568111
Ghashghaei, H T; Hilgetag, C C; Barbas, H
2007-02-01
The prefrontal cortex and the amygdala have synergistic roles in regulating purposive behavior, effected through bidirectional pathways. Here we investigated the largely unknown extent and laminar relationship of prefrontal input-output zones linked with the amygdala using neural tracers injected in the amygdala in rhesus monkeys. Prefrontal areas varied vastly in their connections with the amygdala, with the densest connections found in posterior orbitofrontal and posterior medial cortices, and the sparsest in anterior lateral prefrontal areas, especially area 10. Prefrontal projection neurons directed to the amygdala originated in layer 5, but significant numbers were also found in layers 2 and 3 in posterior medial and orbitofrontal cortices. Amygdalar axonal terminations in prefrontal cortex were most frequently distributed in bilaminar bands in the superficial and deep layers, by columns spanning the entire cortical depth, and less frequently as small patches centered in the superficial or deep layers. Heavy terminations in layers 1-2 overlapped with calbindin-positive inhibitory neurons. A comparison of the relationship of input to output projections revealed that among the most heavily connected cortices, cingulate areas 25 and 24 issued comparatively more projections to the amygdala than they received, whereas caudal orbitofrontal areas were more receivers than senders. Further, there was a significant relationship between the proportion of 'feedforward' cortical projections from layers 2-3 to 'feedback' terminations innervating the superficial layers of prefrontal cortices. These findings indicate that the connections between prefrontal cortices and the amygdala follow similar patterns as corticocortical connections, and by analogy suggest pathways underlying the sequence of information processing for emotions.
An attentional theory of emotional influences on risky decisions.
Levine, Daniel S; Ramirez, Patrick A
2013-01-01
It is well known that choices between gambles can depend not only on the probabilities of gains or losses but also on the emotional richness of the items to be gained or lost. Rottenstreich and Hsee (2001) demonstrated that overweighting of low probabilities is magnified if the possible events are emotionally rich, such as a kiss versus an amount of money. Ramirez (2010) showed that persistence in the face of comparable numerically presented losses is greater when the scenario involves taking care of a pet (emotionally richer) versus a business (emotionally poorer). Much of this phenomenon is captured in a neural network model of the Rottenstreich-Hsee data (Levine, 2012). The model is based on interactions among the orbitofrontal cortex, amygdala, cingulate, striatum, thalamus, and premotor cortex that implement categorization of multiattribute vectors representing choice options, in a manner consistent with the gists of fuzzy trace theory. Before categorization, the vectors are weighted by selective attention to attributes that are either emotionally salient or task relevant, with increasing emotional arousal shifting the attentional weights away from numerical attributes such as precise probabilities. This interpretation is supported by the data of Hsee and Rottenstreich (2004) showing that how much participants would pay to save endangered animals is not influenced by the number to be saved if they see pictures but is influenced by the number if they are given verbal descriptions. The theory suggests a few open questions. How are the selective attentional signals represented in the interactions between prefrontal cortex and subcortical areas? Would the salience of numerical attributes still be reduced with high arousal in highly numerate participants? Would the differences between the pet and business scenarios be altered if the positive or negative feedback participants received were shown via pictures rather than numbers? Copyright © 2013 Elsevier B.V. All rights reserved.
Contreras-Rodríguez, Oren; Albein-Urios, Natalia; Perales, José C; Martínez-Gonzalez, José M; Vilar-López, Raquel; Fernández-Serrano, María J; Lozano-Rojas, Oscar; Verdejo-García, Antonio
2015-12-01
To contrast functional connectivity on ventral and dorsal striatum networks in cocaine dependence relative to pathological gambling, via a resting-state functional connectivity approach; and to determine the association between cocaine dependence-related neuroadaptations indexed by functional connectivity and impulsivity, compulsivity and drug relapse. Cross-sectional study of 20 individuals with cocaine dependence (CD), 19 individuals with pathological gambling (PG) and 21 healthy controls (HC), and a prospective cohort study of 20 CD followed-up for 12 weeks to measure drug relapse. CD and PG were recruited through consecutive admissions to a public clinic specialized in substance addiction treatment (Centro Provincial de Drogodependencias) and a public clinic specialized in gambling treatment (AGRAJER), respectively; HC were recruited through community advertisement in the same area in Granada (Spain). Seed-based functional connectivity in the ventral striatum (ventral caudate and ventral putamen) and dorsal striatum (dorsal caudate and dorsal putamen), the Kirby delay-discounting questionnaire, the reversal-learning task and a dichotomous measure of cocaine relapse indicated with self-report and urine tests. CD relative to PG exhibit enhanced connectivity between the ventral caudate seed and subgenual anterior cingulate cortex, the ventral putamen seed and dorsomedial pre-frontal cortex and the dorsal putamen seed and insula (P≤0.001, kE=108). Connectivity between the ventral caudate seed and subgenual anterior cingulate cortex is associated with steeper delay discounting (P≤0.001, kE=108) and cocaine relapse (P≤0.005, kE=34). Cocaine dependence-related neuroadaptations in the ventral striatum of the brain network are associated with increased impulsivity and higher rate of cocaine relapse. © 2015 Society for the Study of Addiction.
Function of basal ganglia in bridging cognitive and motor modules to perform an action
Nagano-Saito, Atsuko; Martinu, Kristina; Monchi, Oury
2014-01-01
The basal ganglia (BG) are thought to be involved in the integration of multiple sources of information, and their dysfunction can lead to disorders such as Parkinson's disease (PD). PD patients show motor and cognitive dysfunction with specific impairments in the internal generation of motor actions and executive deficits, respectively. The role of the BG, then, would be to integrate information from several sources in order to make a decision on a resulting action adequate for the required task. Reanalyzing the data set from our previous study (Martinu et al., 2012), we investigated this hypothesis by applying a graph theory method to a series of fMRI data during the performance of self-initiated (SI) finger movement tasks obtained in healthy volunteers (HV) and early stage PD patients. Dorsally, connectivity strength between the medial prefrontal areas (mPFC) and cortical regions including the primary motor area (M1), the extrastriate visual cortex, and the associative cortex, was reduced in the PD patients. The connectivity strengths were positively correlated to activity in the striatum in both groups. Ventrally, all connectivity between the striatum, the thalamus, and the extrastriate visual cortex decreased in strength in the PD, as did the connectivity between the striatum and the ventrolateral PFC (VLPFC). Individual response time (RT) was negatively correlated to connectivity strength between the dorsolateral PFC (DLPFC) and the striatum and positively correlated to connectivity between the VLPFC and the striatum in the HV. These results indicate that the BG, with the mPFC and thalamus, are involved in integrating multiple sources of information from areas such as DLPFC, and VLPFC, connecting to M1, thereby determining a network that leads to the adequate decision and performance of the resulting action. PMID:25071432
Reduced recruitment of orbitofrontal cortex to human social chemosensory cues in social anxiety.
Zhou, Wen; Hou, Ping; Zhou, Yuxiang; Chen, Denise
2011-04-01
Social anxiety refers to the prevalent and debilitating experience of fear and anxiety of being scrutinized in social situations. It originates from both learned (e.g. adverse social conditioning) and innate (e.g. shyness) factors. Research on social anxiety has traditionally focused on negative emotions induced by visual and auditory social cues in socially anxious clinical populations, and posits a dysfunctional orbitofrontal-amygdala circuit as a primary etiological mechanism. Yet as a trait, social anxiety is independent of one's specific emotional state. Here we probe the neural substrate of intrinsic social anxiety by employing a unique type of social stimuli, airborne human social chemosensory cues that are inherently social, ubiquitously present, and yet operating below verbal awareness. We show that the adopted social chemosensory cues were not perceived to be human-related, did not differentially bias self-report of anxiety or autonomic nervous system responses, yet individuals with elevated social anxiety demonstrated a reduced recruitment of the orbitofrontal cortex to social chemosensory cues. No reciprocal activity in the amygdala was observed. Our findings point to an intrinsic neural substrate underlying social anxiety that is not associated with prior adverse social conditioning, thereby providing the first neural evidence for the inherent social aspect of this enigmatic phenomenon. Copyright © 2010 Elsevier Inc. All rights reserved.
Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and {sup 18}FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo andmore » once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction.« less
Methylphenidate Attenuates Limbic Brain Inhibition after Cocaine-Cues Exposure in Cocaine Abusers
Volkow, Nora D.; Wang, Gene-Jack; Tomasi, Dardo; Telang, Frank; Fowler, Joanna S.; Pradhan, Kith; Jayne, Millard; Logan, Jean; Goldstein, Rita Z.; Alia-Klein, Nelly; Wong, Christopher
2010-01-01
Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2–5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction. PMID:20634975
Methylphenidate increases glucose uptake in the brain of young and adult rats.
Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L
2015-10-01
Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Fair play: social norm compliance failures in behavioural variant frontotemporal dementia.
O'Callaghan, Claire; Bertoux, Maxime; Irish, Muireann; Shine, James M; Wong, Stephanie; Spiliopoulos, Leonidas; Hodges, John R; Hornberger, Michael
2016-01-01
Adherence to social norms is compromised in a variety of neuropsychiatric conditions. Functional neuroimaging studies have investigated social norm compliance in healthy individuals, leading to the identification of a network of fronto-subcortical regions that underpins this ability. However, there is a lack of corroborative evidence from human lesion models investigating the structural anatomy of norm compliance across this fronto-subcortical network. To address this, we developed a neuroeconomic task to investigate social norm compliance in a neurodegenerative lesion model: behavioural variant frontotemporal dementia, a condition characterized by gross social dysfunction. The task assessed norm compliance across three behaviours that are well-studied in the neuroeconomics literature: fairness, prosocial and punishing behaviours. We administered our novel version of the Ultimatum Game in 22 patients with behavioural variant frontotemporal dementia and 22 age-matched controls, to assess how decision-making behaviour was modulated in response to (i) fairness of monetary offers; and (ii) social context of monetary offers designed to produce either prosocial or punishing behaviours. Voxel-based morphometry was used to characterize patterns of grey matter atrophy associated with task performance. Acceptance rates between patients and controls were equivalent when only fairness was manipulated. However, patients were impaired in modulating their decisions in response to social contextual information. Patients' performance in the punishment condition was consistent with a reduced tendency to engage in punishment; this was associated with decreased grey matter volume in the anterior cingulate, orbitofrontal cortex, left dorsolateral prefrontal cortex and right inferior frontal gyrus. In the prosocial condition, patients' performance suggested a reduced expression of prosocial behaviour, associated with decreased grey matter in the anterior insula, lateral orbitofrontal cortex, anterior cingulate and dorsal striatum. Acceptance rates in the Ultimatum Game were also significantly related to impairments in the everyday expression of empathic concern. In conclusion, we demonstrate that compliance to basic social norms (fairness) can be maintained in behavioural variant frontotemporal dementia; however, more complex normative behaviours (prosociality, punishment) that require integration of social contextual information are disrupted in association with atrophy in key fronto-striatal regions. These results suggest that the integration of social contextual information to guide normative behaviour is uniquely impaired in behavioural variant frontotemporal dementia, and may explain other common features of the condition including gullibility and impaired empathy. Our findings also converge with previous functional neuroimaging investigations in healthy individuals and provide the first description of the structural anatomy of social norm compliance in a neurodegenerative lesion model. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Akbarian, S.; Smith, M. A.; Jones, E. G.; Bloom, F. E. (Principal Investigator)
1995-01-01
Animal studies and cell culture experiments demonstrated that posttranscriptional editing of the transcript of the GluR-2 gene, resulting in substitution of an arginine for glutamine in the second transmembrane region (TM II) of the expressed protein, is associated with a reduction in Ca2+ permeability of the receptor channel. Thus, disturbances in GluR-2 RNA editing with alteration of intracellular Ca2+ homeostasis could lead to neuronal dysfunction and even neuronal degeneration. The present study determined the proportions of edited and unedited GluR-2 RNA in the prefrontal cortex of brains from patients with Alzheimer's disease, in the striatum of brains from patients with Huntington's disease, and in the same areas of brains from age-matched schizophrenics and controls, by using reverse transcriptase-polymerase chain reaction, restriction endonuclease digestion, gel electrophoresis and scintillation radiometry. In the prefrontal cortex of controls, < 0.1% of all GluR-2 RNA molecules were unedited and > 99.9% were edited; in the prefrontal cortex both of schizophrenics and of Alzheimer's patients approximately 1.0% of all GluR-2 RNA molecules were unedited and 99% were edited. In the striatum of controls and of schizophrenics, approximately 0.5% of GluR-2 RNA molecules were unedited and 99.5% were edited; in the striatum of Huntington's patients nearly 5.0% of GluR-2 RNA was unedited. In the prefrontal white matter of controls, approximately 7.0% of GluR-2 RNA was unedited. In the normal human prefrontal cortex and striatum, the large majority of GluR-2 RNA molecules contains a CGG codon for arginine in the TMII coding region; this implies that the corresponding AMPA receptors have a low Ca2+ permeability, as previously demonstrated for the rat brain. The process of GluR-2 RNA editing is compromised in a region-specific manner in schizophrenia, in Alzheimer's disease and Huntington's Chorea although in each of these disorders there is still a large excess of edited GluR-2 RNA molecules. Disturbances of GluR-2 RNA editing leading to excessive Ca2+ permeability, may contribute to neuronal dysfunction in schizophrenia and to neuronal death in Alzheimer's disease and Huntington's disease.
Da Costa, A P; Broad, K D; Kendrick, K M
1997-06-01
In sheep maternal behaviour and the formation of the selective olfactory, ewe/lamb bond are induced by feedback to the brain from stimulation of the vagina and cervix during parturition. In the present study, we have used in situ hybridization histochemistry to quantify changes in cellular expression of two immediately-early genes, c-fos and zif/268, in order to identify activated brain regions during the induction of maternal behaviour and olfactory bonding as well as regions where plastic changes are occurring during with the formation of the olfactory memory associated with bonding. Three different treatment groups were used. One group gave birth normally, became maternal and were allowed to interact with their lambs for 30 min. A second group received exogenous treatment with oestradiol and progesterone to induce lactation and then received a 5-min period of artificial stimulation of the vagina and cervix (VCS) which reliably induces maternal behaviour but could not interact with lambs. A final control group received exogenous hormone treatment but no VCS or interaction with lambs. Compared to the control group, post-partum animals and animals that had received VCS showed increased c-fos expression in a number of cortical regions (cingulate, entorhinal and somatosensory), the mediodorsal thalamic nucleus and the lateral habenula, the limbic system (bed nucleus of the stria terminalis, lateral septum, medial arnygdala, dentate gyrus and the CA3 region of the hippocampus) and the hypothalamus (medial preoptic area, mediobasal hypothalamus, paraventricular nucleus, supraoptic nucleus and periventricular complex). The group that gave birth and had contact with their lambs for 30 min had significantly enhanced c-fos mRNA expression in the cingulate cortex compared to those receiving VCS and additionally showed significantly increased c-fos mRNA expression in olfactory processing regions (olfactory bulb, piriform cortex and orbitofrontal cortex). Expression of zif/268 was significantly increased in the entorhinal cortex, orbitofrontal cortex and dentate gyrus of the parturition group compared to either the control or the VCS alone groups. These results show a clear differentiation between neural substrates controlling the expression of maternal behaviour and those involved in the olfactory memory process associated with selective recognition of offspring although at the level of the hippocampus and cingulate cortex there may be some degree of overlap. Alterations in zif/268 at tertiary processing sites for olfactory information (orbitofrontal cortex) and the entorhinal cortex and dentate gyrus may reflect plastic changes occurring during the early stages of olfactory memory formation.
The involvement of the striatum in decision making
Goulet-Kennedy, Julie; Labbe, Sara; Fecteau, Shirley
2016-01-01
Decision making has been extensively studied in the context of economics and from a group perspective, but still little is known on individual decision making. Here we discuss the different cognitive processes involved in decision making and its associated neural substrates. The putative conductors in decision making appear to be the prefrontal cortex and the striatum. Impaired decision-making skills in various clinical populations have been associated with activity in the prefrontal cortex and in the striatum. We highlight the importance of strengthening the degree of integration of both cognitive and neural substrates in order to further our understanding of decision-making skills. In terms of cognitive paradigms, there is a need to improve the ecological value of experimental tasks that assess decision making in various contexts and with rewards; this would help translate laboratory learnings into real-life benefits. In terms of neural substrates, the use of neuroimaging techniques helps characterize the neural networks associated with decision making; more recently, ways to modulate brain activity, such as in the prefrontal cortex and connected regions (eg, striatum), with noninvasive brain stimulation have also shed light on the neural and cognitive substrates of decision making. Together, these cognitive and neural approaches might be useful for patients with impaired decision-making skills. The drive behind this line of work is that decision-making abilities underlie important aspects of wellness, health, security, and financial and social choices in our daily lives. PMID:27069380
Friedman, Lauren G; Riemslagh, Fréderike W; Sullivan, Josefa M; Mesias, Roxana; Williams, Frances M; Huntley, George W; Benson, Deanna L
2015-01-01
Neocortical interactions with the dorsal striatum support many motor and executive functions, and such underlying functional networks are particularly vulnerable to a variety of developmental, neurological, and psychiatric brain disorders, including autism spectrum disorders, Parkinson's disease, and Huntington's disease. Relatively little is known about the development of functional corticostriatal interactions, and in particular, virtually nothing is known of the molecular mechanisms that control generation of prefrontal cortex-striatal circuits. Here, we used regional and cellular in situ hybridization techniques coupled with neuronal tract tracing to show that Cadherin-8 (Cdh8), a homophilic adhesion protein encoded by a gene associated with autism spectrum disorders and learning disability susceptibility, is enriched within striatal projection neurons in the medial prefrontal cortex and in striatal medium spiny neurons forming the direct or indirect pathways. Developmental analysis of quantitative real-time polymerase chain reaction and western blot data show that Cdh8 expression peaks in the prefrontal cortex and striatum at P10, when cortical projections start to form synapses in the striatum. High-resolution immunoelectron microscopy shows that Cdh8 is concentrated at excitatory synapses in the dorsal striatum, and Cdh8 knockdown in cortical neurons impairs dendritic arborization and dendrite self-avoidance. Taken together, our findings indicate that Cdh8 delineates developing corticostriatal circuits where it is a strong candidate for regulating the generation of normal cortical projections, neuronal morphology, and corticostriatal synapses. © 2014 Wiley Periodicals, Inc.
Underconnectivity between voice-selective cortex and reward circuitry in children with autism.
Abrams, Daniel A; Lynch, Charles J; Cheng, Katherine M; Phillips, Jennifer; Supekar, Kaustubh; Ryali, Srikanth; Uddin, Lucina Q; Menon, Vinod
2013-07-16
Individuals with autism spectrum disorders (ASDs) often show insensitivity to the human voice, a deficit that is thought to play a key role in communication deficits in this population. The social motivation theory of ASD predicts that impaired function of reward and emotional systems impedes children with ASD from actively engaging with speech. Here we explore this theory by investigating distributed brain systems underlying human voice perception in children with ASD. Using resting-state functional MRI data acquired from 20 children with ASD and 19 age- and intelligence quotient-matched typically developing children, we examined intrinsic functional connectivity of voice-selective bilateral posterior superior temporal sulcus (pSTS). Children with ASD showed a striking pattern of underconnectivity between left-hemisphere pSTS and distributed nodes of the dopaminergic reward pathway, including bilateral ventral tegmental areas and nucleus accumbens, left-hemisphere insula, orbitofrontal cortex, and ventromedial prefrontal cortex. Children with ASD also showed underconnectivity between right-hemisphere pSTS, a region known for processing speech prosody, and the orbitofrontal cortex and amygdala, brain regions critical for emotion-related associative learning. The degree of underconnectivity between voice-selective cortex and reward pathways predicted symptom severity for communication deficits in children with ASD. Our results suggest that weak connectivity of voice-selective cortex and brain structures involved in reward and emotion may impair the ability of children with ASD to experience speech as a pleasurable stimulus, thereby impacting language and social skill development in this population. Our study provides support for the social motivation theory of ASD.
van Hasselt, Felisa N.; de Visser, Leonie; Tieskens, Jacintha M.; Cornelisse, Sandra; Baars, Annemarie M.; Lavrijsen, Marla; Krugers, Harm J.; van den Bos, Ruud; Joëls, Marian
2012-01-01
Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology–e.g. depression, anxiety and schizophrenia- later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures. PMID:22693577
The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.
Weilnhammer, Veith A; Stuke, Heiner; Sterzer, Philipp; Schmack, Katharina
2018-05-23
Sensory information is inherently noisy, sparse, and ambiguous. In contrast, visual experience is usually clear, detailed, and stable. Bayesian theories of perception resolve this discrepancy by assuming that prior knowledge about the causes underlying sensory stimulation actively shapes perceptual decisions. The CNS is believed to entertain a generative model aligned to dynamic changes in the hierarchical states of our volatile sensory environment. Here, we used model-based fMRI to study the neural correlates of the dynamic updating of hierarchically structured predictions in male and female human observers. We devised a crossmodal associative learning task with covertly interspersed ambiguous trials in which participants engaged in hierarchical learning based on changing contingencies between auditory cues and visual targets. By inverting a Bayesian model of perceptual inference, we estimated individual hierarchical predictions, which significantly biased perceptual decisions under ambiguity. Although "high-level" predictions about the cue-target contingency correlated with activity in supramodal regions such as orbitofrontal cortex and hippocampus, dynamic "low-level" predictions about the conditional target probabilities were associated with activity in retinotopic visual cortex. Our results suggest that our CNS updates distinct representations of hierarchical predictions that continuously affect perceptual decisions in a dynamically changing environment. SIGNIFICANCE STATEMENT Bayesian theories posit that our brain entertains a generative model to provide hierarchical predictions regarding the causes of sensory information. Here, we use behavioral modeling and fMRI to study the neural underpinnings of such hierarchical predictions. We show that "high-level" predictions about the strength of dynamic cue-target contingencies during crossmodal associative learning correlate with activity in orbitofrontal cortex and the hippocampus, whereas "low-level" conditional target probabilities were reflected in retinotopic visual cortex. Our findings empirically corroborate theorizations on the role of hierarchical predictions in visual perception and contribute substantially to a longstanding debate on the link between sensory predictions and orbitofrontal or hippocampal activity. Our work fundamentally advances the mechanistic understanding of perceptual inference in the human brain. Copyright © 2018 the authors 0270-6474/18/385008-14$15.00/0.
A phenotypic structure and neural correlates of compulsive behaviors in adolescents.
Montigny, Chantale; Castellanos-Ryan, Natalie; Whelan, Robert; Banaschewski, Tobias; Barker, Gareth J; Büchel, Christian; Gallinat, Jürgen; Flor, Herta; Mann, Karl; Paillère-Martinot, Marie-Laure; Nees, Frauke; Lathrop, Mark; Loth, Eva; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Schumann, Gunter; Smolka, Michael N; Struve, Maren; Robbins, Trevor W; Garavan, Hugh; Conrod, Patricia J
2013-01-01
A compulsivity spectrum has been hypothesized to exist across Obsessive-Compulsive disorder (OCD), Eating Disorders (ED), substance abuse (SA) and binge-drinking (BD). The objective was to examine the validity of this compulsivity spectrum, and differentiate it from an externalizing behaviors dimension, but also to look at hypothesized personality and neural correlates. A community-sample of adolescents (N=1938; mean age 14.5 years), and their parents were recruited via high-schools in 8 European study sites. Data on adolescents' psychiatric symptoms, DSM diagnoses (DAWBA) and substance use behaviors (AUDIT and ESPAD) were collected through adolescent- and parent-reported questionnaires and interviews. The phenotypic structure of compulsive behaviors was then tested using structural equation modeling. The model was validated using personality variables (NEO-FFI and TCI), and Voxel-Based Morphometry (VBM) analysis. Compulsivity symptoms best fit a higher-order two factor model, with ED and OCD loading onto a compulsivity factor, and BD and SA loading onto an externalizing factor, composed also of ADHD and conduct disorder symptoms. The compulsivity construct correlated with neuroticism (r=0.638; p ≤ 0.001), conscientiousness (r=0.171; p ≤ 0.001), and brain gray matter volume in left and right orbitofrontal cortex, right ventral striatum and right dorsolateral prefrontal cortex. The externalizing factor correlated with extraversion (r=0.201; p ≤ 0.001), novelty-seeking (r=0.451; p ≤ 0.001), and negatively with gray matter volume in the left inferior and middle frontal gyri. Results suggest that a compulsivity spectrum exists in an adolescent, preclinical sample and accounts for variance in both OCD and ED, but not substance-related behaviors, and can be differentiated from an externalizing spectrum.
Changes in brain activity related to eating chocolate: from pleasure to aversion.
Small, D M; Zatorre, R J; Dagher, A; Evans, A C; Jones-Gotman, M
2001-09-01
We performed successive H(2)(15)O-PET scans on volunteers as they ate chocolate to beyond satiety. Thus, the sensory stimulus and act (eating) were held constant while the reward value of the chocolate and motivation of the subject to eat were manipulated by feeding. Non-specific effects of satiety (such as feelings of fullness and autonomic changes) were also present and probably contributed to the modulation of brain activity. After eating each piece of chocolate, subjects gave ratings of how pleasant/unpleasant the chocolate was and of how much they did or did not want another piece of chocolate. Regional cerebral blood flow was then regressed against subjects' ratings. Different groups of structures were recruited selectively depending on whether subjects were eating chocolate when they were highly motivated to eat and rated the chocolate as very pleasant [subcallosal region, caudomedial orbitofrontal cortex (OFC), insula/operculum, striatum and midbrain] or whether they ate chocolate despite being satiated (parahippocampal gyrus, caudolateral OFC and prefrontal regions). As predicted, modulation was observed in cortical chemosensory areas, including the insula and caudomedial and caudolateral OFC, suggesting that the reward value of food is represented here. Of particular interest, the medial and lateral caudal OFC showed opposite patterns of activity. This pattern of activity indicates that there may be a functional segregation of the neural representation of reward and punishment within this region. The only brain region that was active during both positive and negative compared with neutral conditions was the posterior cingulate cortex. Therefore, these results support the hypothesis that there are two separate motivational systems: one orchestrating approach and another avoidance behaviours.
Kuiper, Lindsey B; Frohmader, Karla S; Coolen, Lique M
2017-09-01
The use of psychostimulants is often associated with hypersexuality, and psychostimulant users have identified the effects of drug on sexual behavior as a reason for further use. It was previously demonstrated in male rats that methamphetamine (Meth), when administered concurrently with sexual behavior results in impairment of inhibition of sexual behavior in a conditioned sex aversion (CSA) paradigm where mating is paired with illness. This is indicative of maladaptive sex behavior following Meth and sex experience. The present study examined the neural pathways activated during inhibition of sexual behavior in male rats and the effects of concurrent Meth and sexual behavior on neural activity, using ERK phosphorylation (pERK). First, exposure to conditioned aversive stimuli in males trained to inhibit sexual behavior in the CSA paradigm increased pERK expression in medial prefrontal (mPFC), orbitofrontal cortex (OFC) and areas in striatum and amygdala. Second, effects of concurrent Meth and sex experience were tested in males that were exposed to four daily sessions of concurrent Meth (1 mg/kg) or saline and mating and subsequently exposed to CSA one week after last treatment. Meth and mating-treated males showed significant impairment of inhibition of mating, higher pERK expression under baseline conditions, and disrupted pERK induction by exposure to the conditioned aversive stimuli in mPFC and OFC. These alterations of pERK occurred in CaMKII-expressing neurons, suggesting changes in efferent projections of these areas. Altogether, these data show that concurrent Meth and mating experience causes maladapative sexual behavior that is associated with alterations in neural activation in mPFC and OFC.
Brain Processing of Contagious Itch in Patients with Atopic Dermatitis
Schut, Christina; Mochizuki, Hideki; Grossman, Shoshana K.; Lin, Andrew C.; Conklin, Christopher J.; Mohamed, Feroze B.; Gieler, Uwe; Kupfer, Joerg; Yosipovitch, Gil
2017-01-01
Several studies show that itch and scratching cannot only be induced by pruritogens like histamine or cowhage, but also by the presentation of certain (audio-) visual stimuli like pictures on crawling insects or videos showing other people scratching. This phenomenon is coined “Contagious itch” (CI). Due to the fact that CI is more profound in patients with the chronic itchy skin disease atopic dermatitis (AD), we believe that it is highly relevant to study brain processing of CI in this group. Knowledge on brain areas involved in CI in AD-patients can provide us with useful hints regarding non-invasive treatments that AD-patients could profit from when they are confronted with itch-inducing situations in daily life. Therefore, this study investigated the brain processing of CI in AD-patients. 11 AD-patients underwent fMRI scans during the presentation of an itch inducing experimental video (EV) and a non-itch inducing control video (CV). Perfusion based brain activity was measured using arterial spin labeling functional MRI. As expected, the EV compared to the CV led to an increase in itch and scratching (p < 0.05). CI led to a significant increase in brain activity in the supplementary motor area, left ventral striatum and right orbitofrontal cortex (threshold: p < 0.001; cluster size k > 50). Moreover, itch induced by watching the EV was by trend correlated with activity in memory-related regions including the temporal cortex and the (pre-) cuneus as well as the posterior operculum, a brain region involved in itch processing (threshold: p < 0.005; cluster size k > 50). These findings suggest that the fronto-striatal circuit, which is associated with the desire to scratch, might be a target region for non-invasive treatments in AD patients. PMID:28790959
Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency.
Yates, Justin R; Darna, Mahesh; Gipson, Cassandra D; Dwoskin, Linda P; Bardo, Michael T
2015-09-15
Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [(3)H]DA and [(3)H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC. Copyright © 2015 Elsevier B.V. All rights reserved.
Hankir, Mohammed K; Patt, Marianne; Patt, Jörg T W; Becker, Georg A; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K
2016-01-01
Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [ 11 C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [ 11 C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.
Hankir, Mohammed K.; Patt, Marianne; Patt, Jörg T. W.; Becker, Georg A.; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K.
2017-01-01
Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [11C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [11C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting. PMID:28133443
Sevy, Serge; Smith, Gwenn S; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Kingsley, Peter B; Kumra, Sanjiv; Abdelmessih, Sherif; Eidelberg, David
2008-05-01
Cannabis users have been reported to have decreased regional cerebral glucose metabolism after short periods of abstinence. The purpose of this study was to measure striatal dopamine receptor (D2/D3) availability and cerebral glucose metabolism with positron emission tomography (PET) in young adults who had a prolonged exposure to cannabis and who had been abstinent for a period of at least 12 weeks. Six 18-21-year-old male subjects with cannabis dependence in early full remission and six age- and sex-matched healthy subjects underwent PET scans for D2/D3 receptor availability measured with [C11]-raclopride and glucose metabolism measured with [18F]-FDG. All subjects were sober for at least 12 weeks before PET scan procedures. PET data were analyzed with statistical parametric mapping software (SPM99; uncorrected p < 0.001, corrected p < 0.05 at the cluster level). Toxicology screening was performed prior to the PET scan to confirm the lack of drugs of abuse. Striatal D2/D3 receptor availability did not differ significantly between groups. Compared to controls, subjects with cannabis dependence had lower normalized glucose metabolism in the right orbitofrontal cortex, putamen bilaterally, and precuneus. There were no significant correlations between striatal D2/D3 receptor availability and normalized glucose metabolism in any region of the frontal cortex or striatum. These findings may reflect both cannabis exposure and adaptive changes that occur after a prolonged period of abstinence. Subsequent studies should address whether metabolic and dopamine receptor effects are associated with either active use or longer-term withdrawal in these relatively young subjects.
A Phenotypic Structure and Neural Correlates of Compulsive Behaviors in Adolescents
Montigny, Chantale; Castellanos-Ryan, Natalie; Whelan, Robert; Banaschewski, Tobias; Barker, Gareth J.; Büchel, Christian; Gallinat, Jürgen; Flor, Herta; Mann, Karl; Paillère-Martinot, Marie-Laure; Nees, Frauke; Lathrop, Mark; Loth, Eva; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Schumann, Gunter; Smolka, Michael N.; Struve, Maren; Robbins, Trevor W.; Garavan, Hugh; Conrod, Patricia J.
2013-01-01
Background A compulsivity spectrum has been hypothesized to exist across Obsessive-Compulsive disorder (OCD), Eating Disorders (ED), substance abuse (SA) and binge-drinking (BD). The objective was to examine the validity of this compulsivity spectrum, and differentiate it from an externalizing behaviors dimension, but also to look at hypothesized personality and neural correlates. Method A community-sample of adolescents (N=1938; mean age 14.5 years), and their parents were recruited via high-schools in 8 European study sites. Data on adolescents’ psychiatric symptoms, DSM diagnoses (DAWBA) and substance use behaviors (AUDIT and ESPAD) were collected through adolescent- and parent-reported questionnaires and interviews. The phenotypic structure of compulsive behaviors was then tested using structural equation modeling. The model was validated using personality variables (NEO-FFI and TCI), and Voxel-Based Morphometry (VBM) analysis. Results Compulsivity symptoms best fit a higher-order two factor model, with ED and OCD loading onto a compulsivity factor, and BD and SA loading onto an externalizing factor, composed also of ADHD and conduct disorder symptoms. The compulsivity construct correlated with neuroticism (r=0.638; p≤0.001), conscientiousness (r=0.171; p≤0.001), and brain gray matter volume in left and right orbitofrontal cortex, right ventral striatum and right dorsolateral prefrontal cortex. The externalizing factor correlated with extraversion (r=0.201; p≤0.001), novelty-seeking (r=0.451; p≤0.001), and negatively with gray matter volume in the left inferior and middle frontal gyri. Conclusions Results suggest that a compulsivity spectrum exists in an adolescent, preclinical sample and accounts for variance in both OCD and ED, but not substance-related behaviors, and can be differentiated from an externalizing spectrum. PMID:24244633
Howard, James D.
2017-01-01
Goal-directed behavior is sensitive to the current value of expected outcomes. This requires independent representations of specific rewards, which have been linked to orbitofrontal cortex (OFC) function. However, the mechanisms by which the human brain updates specific goals on the fly, and translates those updates into choices, have remained unknown. Here we implemented selective devaluation of appetizing food odors in combination with pattern-based neuroimaging and a decision-making task. We found that in a hungry state, participants chose to smell high-intensity versions of two value-matched food odor rewards. After eating a meal corresponding to one of the two odors, participants switched choices toward the low intensity of the sated odor but continued to choose the high intensity of the nonsated odor. This sensory-specific behavioral effect was mirrored by pattern-based changes in fMRI signal in lateral posterior OFC, where specific reward identity representations were altered after the meal for the sated food odor but retained for the nonsated counterpart. In addition, changes in functional connectivity between the OFC and general value coding in ventromedial prefrontal cortex (vmPFC) predicted individual differences in satiety-related choice behavior. These findings demonstrate how flexible representations of specific rewards in the OFC are updated by devaluation, and how functional connections to vmPFC reflect the current value of outcomes and guide goal-directed behavior. SIGNIFICANCE STATEMENT The orbitofrontal cortex (OFC) is critical for goal-directed behavior. A recent proposal is that OFC fulfills this function by representing a variety of state and task variables (“cognitive maps”), including a conjunction of expected reward identity and value. Here we tested how identity-specific representations of food odor reward are updated by satiety. We found that fMRI pattern-based signatures of reward identity in lateral posterior OFC were modulated after selective devaluation, and that connectivity between this region and general value coding ventromedial prefrontal cortex (vmPFC) predicted choice behavior. These results provide evidence for a mechanism by which devaluation modulates a cognitive map of expected reward in OFC and thereby alters general value signals in vmPFC to guide goal-directed behavior. PMID:28159906
Changes in the Brain Endocannabinoid System in Rat Models of Depression.
Smaga, Irena; Jastrzębska, Joanna; Zaniewska, Magdalena; Bystrowska, Beata; Gawliński, Dawid; Faron-Górecka, Agata; Broniowska, Żaneta; Miszkiel, Joanna; Filip, Małgorzata
2017-04-01
A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression. The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses. Both models used, i.e., bulbectomized (OBX) and Wistar Kyoto (WKY) rats, were characterized at the behavioral level by increased immobility time. In the OBX rats, anandamide (AEA) levels were decreased in the prefrontal cortex, hippocampus, and striatum and increased in the nucleus accumbens, while 2-arachidonoylglycerol (2-AG) levels were increased in the prefrontal cortex and decreased in the nucleus accumbens with parallel changes in the expression of eCB metabolizing enzymes in several structures. It was also observed that CB 1 receptor expression decreased in the hippocampus, dorsal striatum, and nucleus accumbens, and CB 2 receptor expression decreased in the prefrontal cortex and hippocampus. In WKY rats, the levels of eCBs were reduced in the prefrontal cortex (2-AG) and dorsal striatum (AEA) and increased in the prefrontal cortex (AEA) with different changes in the expression of eCB metabolizing enzymes, while the CB 1 receptor density was increased in several brain regions. These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).
Cascade of neural processing orchestrates cognitive control in human frontal cortex
Tang, Hanlin; Yu, Hsiang-Yu; Chou, Chien-Chen; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel
2016-01-01
Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12352.001 PMID:26888070
Visual Predictions in the Orbitofrontal Cortex Rely on Associative Content
Chaumon, Maximilien; Kveraga, Kestutis; Barrett, Lisa Feldman; Bar, Moshe
2014-01-01
Predicting upcoming events from incomplete information is an essential brain function. The orbitofrontal cortex (OFC) plays a critical role in this process by facilitating recognition of sensory inputs via predictive feedback to sensory cortices. In the visual domain, the OFC is engaged by low spatial frequency (LSF) and magnocellular-biased inputs, but beyond this, we know little about the information content required to activate it. Is the OFC automatically engaged to analyze any LSF information for meaning? Or is it engaged only when LSF information matches preexisting memory associations? We tested these hypotheses and show that only LSF information that could be linked to memory associations engages the OFC. Specifically, LSF stimuli activated the OFC in 2 distinct medial and lateral regions only if they resembled known visual objects. More identifiable objects increased activity in the medial OFC, known for its function in affective responses. Furthermore, these objects also increased the connectivity of the lateral OFC with the ventral visual cortex, a crucial region for object identification. At the interface between sensory, memory, and affective processing, the OFC thus appears to be attuned to the associative content of visual information and to play a central role in visuo-affective prediction. PMID:23771980
Adverse Effects of Cannabis on Adolescent Brain Development: A Longitudinal Study
Camchong, Jazmin; Lim, Kelvin O; Kumra, Sanjiv
2017-01-01
Abstract Cannabis is widely perceived as a safe recreational drug and its use is increasing in youth. It is important to understand the implications of cannabis use during childhood and adolescence on brain development. This is the first longitudinal study that compared resting functional connectivity of frontally mediated networks between 43 healthy controls (HCs; 20 females; age M = 16.5 ± 2.7) and 22 treatment-seeking adolescents with cannabis use disorder (CUD; 8 females; age M = 17.6 ± 2.4). Increases in resting functional connectivity between caudal anterior cingulate cortex (ACC) and superior frontal gyrus across time were found in HC, but not in CUD. CUD showed a decrease in functional connectivity between caudal ACC and dorsolateral and orbitofrontal cortices across time. Lower functional connectivity between caudal ACC cortex and orbitofrontal cortex at baseline predicted higher amounts of cannabis use during the following 18 months. Finally, high amounts of cannabis use during the 18-month interval predicted lower intelligence quotient and slower cognitive function measured at follow-up. These data provide compelling longitudinal evidence suggesting that repeated exposure to cannabis during adolescence may have detrimental effects on brain resting functional connectivity, intelligence, and cognitive function. PMID:26912785
Watanabe, Keiko; Masaoka, Yuri; Kawamura, Mitsuru; Yoshida, Masaki; Koiwa, Nobuyoshi; Yoshikawa, Akira; Kubota, Satomi; Ida, Masahiro; Ono, Kenjiro; Izumizaki, Masahiko
2018-01-01
Autobiographical odor memory (AM-odor) accompanied by a sense of realism of a specific memory elicits strong emotions. AM-odor differs from memory triggered by other sensory modalities, possibly because olfaction involves a unique sensory process. Here, we examined the orbitofrontal cortex (OFC), using functional magnetic resonance imaging (fMRI) to determine which OFC subregions are related to AM-odor. Both AM-odor and a control odor successively increased subjective ratings of comfortableness and pleasantness. Importantly, AM-odor also increased arousal levels and the vividness of memories, and was associated with a deep and slow breathing pattern. fMRI analysis indicated robust activation in the left posterior OFC (L-POFC). Connectivity between the POFC and whole brain regions was estimated using psychophysiological interaction analysis (PPI). We detected several trends in connectivity between L-POFC and bilateral precuneus, bilateral rostral dorsal anterior cingulate cortex (rdACC), and left parahippocampus, which will be useful for targeting our hypotheses for future investigations. The slow breathing observed in AM-odor was correlated with rdACC activation. Odor associated with emotionally significant autobiographical memories was accompanied by slow and deep breathing, possibly involving rdACC processing.
Contreras-Rodríguez, Oren; Albein-Urios, Natalia; Vilar-López, Raquel; Perales, Jose C; Martínez-Gonzalez, Jose M; Fernández-Serrano, Maria J; Lozano-Rojas, Oscar; Clark, Luke; Verdejo-García, Antonio
2016-05-01
Neural biomarkers for the active detrimental effects of cocaine dependence (CD) are lacking. Direct comparisons of brain connectivity in cocaine-targeted networks between CD and behavioural addictions (i.e. pathological gambling, PG) may be informative. This study therefore contrasted the resting-state functional connectivity networks of 20 individuals with CD, 19 individuals with PG and 21 healthy individuals (controls). Study groups were assessed to rule out psychiatric co-morbidities (except alcohol abuse and nicotine dependence) and current substance use or gambling (except PG). We first examined global connectivity differences in the corticolimbic reward network and then utilized seed-based analyses to characterize the connectivity of regions displaying between-group differences. We examined the relationships between seed-based connectivity and trait impulsivity and cocaine severity. CD compared with PG displayed increased global functional connectivity in a large-scale ventral corticostriatal network involving the orbitofrontal cortex, caudate, thalamus and amygdala. Seed-based analyses showed that CD compared with PG exhibited enhanced connectivity between the orbitofrontal and subgenual cingulate cortices and between caudate and lateral prefrontal cortex, which are involved in representing the value of decision-making feedback. CD and PG compared with controls showed overlapping connectivity changes between the orbitofrontal and dorsomedial prefrontal cortices and between amygdala and insula, which are involved in stimulus-outcome learning. Orbitofrontal-subgenual cingulate cortical connectivity correlated with impulsivity and caudate/amygdala connectivity correlated with cocaine severity. We conclude that CD is linked to enhanced connectivity in a large-scale ventral corticostriatal-amygdala network that is relevant to decision making and likely to reflect an active cocaine detrimental effect. © 2015 Society for the Study of Addiction.
Márquez, C; Poirier, G L; Cordero, M I; Larsen, M H; Groner, A; Marquis, J; Magistretti, P J; Trono, D; Sandi, C
2013-01-01
Although adverse early life experiences have been found to increase lifetime risk to develop violent behaviors, the neurobiological mechanisms underlying these long-term effects remain unclear. We present a novel animal model for pathological aggression induced by peripubertal exposure to stress with face, construct and predictive validity. We show that male rats submitted to fear-induction experiences during the peripubertal period exhibit high and sustained rates of increased aggression at adulthood, even against unthreatening individuals, and increased testosterone/corticosterone ratio. They also exhibit hyperactivity in the amygdala under both basal conditions (evaluated by 2-deoxy-glucose autoradiography) and after a resident–intruder (RI) test (evaluated by c-Fos immunohistochemistry), and hypoactivation of the medial orbitofrontal (MO) cortex after the social challenge. Alterations in the connectivity between the orbitofrontal cortex and the amygdala were linked to the aggressive phenotype. Increased and sustained expression levels of the monoamine oxidase A (MAOA) gene were found in the prefrontal cortex but not in the amygdala of peripubertally stressed animals. They were accompanied by increased activatory acetylation of histone H3, but not H4, at the promoter of the MAOA gene. Treatment with an MAOA inhibitor during adulthood reversed the peripuberty stress-induced antisocial behaviors. Beyond the characterization and validation of the model, we present novel data highlighting changes in the serotonergic system in the prefrontal cortex—and pointing at epigenetic control of the MAOA gene—in the establishment of the link between peripubertal stress and later pathological aggression. Our data emphasize the impact of biological factors triggered by peripubertal adverse experiences on the emergence of violent behaviors. PMID:23321813
Hamazaki, Kei; Hamazaki, Tomohito; Inadera, Hidekuni
2013-11-30
Previous studies of postmortem orbitofrontal cortex have shown abnormalities in levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), in individuals with schizophrenia, bipolar disorder, and major depressive disorder (MDD). We have previously measured PUFA levels in the postmortem hippocampus from patients with schizophrenia or bipolar disorder and control subjects; however, we found no significant differences between the groups except for small changes in n-6 PUFAs. Furthermore, our study of the postmortem amygdala showed no significant differences in major PUFAs in individuals with schizophrenia, bipolar disorder, or MDD in comparison with controls. In the present study, we investigated whether there were any changes in PUFAs in the entorhinal cortexes of patients with schizophrenia (n=15), bipolar disorder (n=15), or MDD (n=15) compared with unaffected controls (n=15) matched for characteristics including age and sex. In contrast to previous studies of the orbitofrontal cortex and hippocampus, we found no significant differences in major PUFAs. However, we found a 34.3% decrease in docosapentaenoic acid (DPA) (22:5n-3) in patients with MDD and an 8.7% decrease in docosatetraenoic acid (22:4n-6) in those with schizophrenia, compared with controls. Changes in PUFAs in patients with these psychiatric disorders may be specific to certain brain regions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Reduced Cortical Thickness and Increased Surface Area in Antisocial Personality Disorder
Jiang, Weixiong; Li, Gang; Liu, Huasheng; Shi, Feng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang
2016-01-01
Antisocial Personality Disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness and surface area, as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of cortical thickness and surface area in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger surface area in several specific brain regions, i.e., bilateral superior frontal gyrus, orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus, middle temporal gyrus, and left bank of superior temporal sulcus. In addition, we also found that the ability of impulse control was positively correlated with cortical thickness in the superior frontal gyrus, middle frontal gyrus, orbitofrontal cortex, pars triangularis, superior temporal gyrus, and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in cortical thickness and surface area in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD. PMID:27600947
Disentangling Depression and Distress Networks in the Tinnitus Brain
Joos, Kathleen; Vanneste, Sven; De Ridder, Dirk
2012-01-01
Tinnitus is the continuous perception of an internal auditory stimulus. This permanent sound often affects a person's emotional state inducing distress and depressive feelings changes in 6–25% of the affected population. Distress and depression are two distinct emotional states. Whereas distress describes a transient aversive state, interfering with a person's ability to adequately adapt to stressors, depressive feelings should rather be considered as a more constant emotional state. Based on previous observations in chronic pain, posttraumatic stress disorder and depression, we assume that both states are related to separate neural circuits. We used the Dutch version of the Tinnitus Questionnaire to assess the global index of distress together with the Beck Depression Inventory to evaluate the depressive symptoms accompanying tinnitus. Furthermore sLORETA analysis was performed to correlate current density distribution with distress and depression scores, revealing a lateralization effect of depression versus distress. Distress is mainly correlated with alpha 2, beta 1 and beta 2 activity of the right frontopolar cortex and orbitofrontal cortex in combination with beta 2 activation of the anterior cingulate cortex. In contrast, the more permanent depressive alterations induced by tinnitus are associated with activity of alpha 2 activity in the left frontopolar and orbitofrontal cortex. These specific neural circuits are embedded in a greater neural network, with the parahippocampal region functioning as a crucial linkage between both tinnitus related pathways. PMID:22808188
Age Differences in Prefrontal Surface Area and Thickness in Middle Aged to Older Adults.
Dotson, Vonetta M; Szymkowicz, Sarah M; Sozda, Christopher N; Kirton, Joshua W; Green, Mackenzie L; O'Shea, Andrew; McLaren, Molly E; Anton, Stephen D; Manini, Todd M; Woods, Adam J
2015-01-01
Age is associated with reductions in surface area and cortical thickness, particularly in prefrontal regions. There is also evidence of greater thickness in some regions at older ages. Non-linear age effects in some studies suggest that age may continue to impact brain structure in later decades of life, but relatively few studies have examined the impact of age on brain structure within middle-aged to older adults. We investigated age differences in prefrontal surface area and cortical thickness in healthy adults between the ages of 51 and 81 years. Participants received a structural 3-Tesla magnetic resonance imaging scan. Based on a priori hypotheses, primary analyses focused on surface area and cortical thickness in the dorsolateral prefrontal cortex, anterior cingulate cortex, and orbitofrontal cortex. We also performed exploratory vertex-wise analyses of surface area and cortical thickness across the entire cortex. We found that older age was associated with smaller surface area in the dorsolateral prefrontal and orbitofrontal cortices but greater cortical thickness in the dorsolateral prefrontal and anterior cingulate cortices. Vertex-wise analyses revealed smaller surface area in primarily frontal regions at older ages, but no age effects were found for cortical thickness. Results suggest age is associated with reduced surface area but greater cortical thickness in prefrontal regions during later decades of life, and highlight the differential effects age has on regional surface area and cortical thickness.
Reduced cortical thickness and increased surface area in antisocial personality disorder.
Jiang, Weixiong; Li, Gang; Liu, Huasheng; Shi, Feng; Wang, Tao; Shen, Celina; Shen, Hui; Lee, Seong-Whan; Hu, Dewen; Wang, Wei; Shen, Dinggang
2016-11-19
Antisocial personality disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness (CTh) and surface area (SA), as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of CTh and SA in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger SA in several specific brain regions, i.e., bilateral superior frontal gyrus (SFG), orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus (MFG), middle temporal gyrus (MTG), and left bank of superior temporal sulcus (STS). In addition, we also found that the ability of impulse control was positively correlated with CTh in the SFG, MFG, orbitofrontal cortex (OFC), pars triangularis, superior temporal gyrus (STG), and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in CTh and SA in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Covert shift of attention modulates the value encoding in the orbitofrontal cortex
Xie, Yang; Nie, Chechang
2018-01-01
During value-based decision making, we often evaluate the value of each option sequentially by shifting our attention, even when the options are presented simultaneously. The orbitofrontal cortex (OFC) has been suggested to encode value during value-based decision making. Yet it is not known how its activity is modulated by attention shifts. We investigated this question by employing a passive viewing task that allowed us to disentangle effects of attention, value, choice and eye movement. We found that the attention modulated OFC activity through a winner-take-all mechanism. When we attracted the monkeys’ attention covertly, the OFC neuronal activity reflected the reward value of the newly attended cue. The shift of attention could be explained by a normalization model. Our results strongly argue for the hypothesis that the OFC neuronal activity represents the value of the attended item. They provide important insights toward understanding the OFC’s role in value-based decision making. PMID:29533184
Covert shift of attention modulates the value encoding in the orbitofrontal cortex.
Xie, Yang; Nie, Chechang; Yang, Tianming
2018-03-13
During value-based decision making, we often evaluate the value of each option sequentially by shifting our attention, even when the options are presented simultaneously. The orbitofrontal cortex (OFC) has been suggested to encode value during value-based decision making. Yet it is not known how its activity is modulated by attention shifts. We investigated this question by employing a passive viewing task that allowed us to disentangle effects of attention, value, choice and eye movement. We found that the attention modulated OFC activity through a winner-take-all mechanism. When we attracted the monkeys' attention covertly, the OFC neuronal activity reflected the reward value of the newly attended cue. The shift of attention could be explained by a normalization model. Our results strongly argue for the hypothesis that the OFC neuronal activity represents the value of the attended item. They provide important insights toward understanding the OFC's role in value-based decision making. © 2018, Xie et al.
The value of identity: olfactory notes on orbitofrontal cortex function.
Gottfried, Jay A; Zelano, Christina
2011-12-01
Neuroscientific research has emphatically promoted the idea that the key function of the orbitofrontal cortex (OFC) is to encode value. Associative learning studies indicate that OFC representations of stimulus cues reflect the predictive value of expected outcomes. Neuroeconomic studies suggest that the OFC distills abstract representations of value from discrete commodities to optimize choice. Although value-based models provide good explanatory power for many different findings, these models are typically disconnected from the very stimuli and commodities giving rise to those value representations. Little provision is made, either theoretically or empirically, for the necessary cooperative role of object identity, without which value becomes orphaned from its source. As a step toward remediating the value of identity, this review provides a focused olfactory survey of OFC research, including new work from our lab, to highlight the elemental involvement of this region in stimulus-specific predictive coding of both perceptual outcomes and expected values. © 2011 New York Academy of Sciences.
Lucky Rhythms in Orbitofrontal Cortex Bias Gambling Decisions in Humans
Sacré, Pierre; Kerr, Matthew S. D.; Kahn, Kevin; Gonzalez-Martinez, Jorge; Bulacio, Juan; Park, Hyun-Joo; Johnson, Matthew A.; Thompson, Susan; Jones, Jaes; Chib, Vikram S.; Gale, John T.; Sarma, Sridevi V.
2016-01-01
It is well established that emotions influence our decisions, yet the neural basis of this biasing effect is not well understood. Here we directly recorded local field potentials from the OrbitoFrontal Cortex (OFC) in five human subjects performing a financial decision-making task. We observed a striking increase in gamma-band (36–50 Hz) oscillatory activity that reflected subjects’ decisions to make riskier choices. Additionally, these gamma rhythms were linked back to mismatched expectations or “luck” occurring in past trials. Specifically, when a subject expected to win but lost, the trial was defined as “unlucky” and when the subject expected to lose but won, the trial was defined as “lucky”. Finally, a fading memory model of luck correlated to an objective measure of emotion, heart rate variability. Our findings suggest OFC may play a pivotal role in processing a subject’s internal (emotional) state during financial decision-making, a particularly interesting result in light of the more recent “cognitive map” theory of OFC function. PMID:27830753
NASA Astrophysics Data System (ADS)
Kapadia, Fenika
Studies on the orbitofrontal cortex (OFC) during normal aging have shown a decline in cognitive functions, a loss of spines/synapses in layer III and gene expression changes related to neural communication. Biological changes during the course of normal aging are summarized into 9 hallmarks based on aging in peripheral tissue. Whether these hallmarks apply to non-dividing brain tissue is not known. Therefore, we opted to perform large-scale proteomic profiling of the OFC layer II/III during normal aging from 15 young and 18 old male subjects. MaxQuant was utilized for label-free quantification and statistical analysis by the Random Intercept Model (RIM) identified 118 differentially expressed (DE) age-related proteins. Altered neural communication was the most represented hallmark of aging (54% of DE proteins), highlighting the importance of communication in the brain. Functional analysis showed enrichment in GABA/glutamate signaling and pro-inflammatory responses. The former may contribute to alterations in excitation/inhibition, leading to cognitive decline during aging.
Human Orbitofrontal Cortex Represents a Cognitive Map of State Space.
Schuck, Nicolas W; Cai, Ming Bo; Wilson, Robert C; Niv, Yael
2016-09-21
Although the orbitofrontal cortex (OFC) has been studied intensely for decades, its precise functions have remained elusive. We recently hypothesized that the OFC contains a "cognitive map" of task space in which the current state of the task is represented, and this representation is especially critical for behavior when states are unobservable from sensory input. To test this idea, we apply pattern-classification techniques to neuroimaging data from humans performing a decision-making task with 16 states. We show that unobservable task states can be decoded from activity in OFC, and decoding accuracy is related to task performance and the occurrence of individual behavioral errors. Moreover, similarity between the neural representations of consecutive states correlates with behavioral accuracy in corresponding state transitions. These results support the idea that OFC represents a cognitive map of task space and establish the feasibility of decoding state representations in humans using non-invasive neuroimaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Stolyarova, Alexandra; Izquierdo, Alicia
2017-01-01
We make choices based on the values of expected outcomes, informed by previous experience in similar settings. When the outcomes of our decisions consistently violate expectations, new learning is needed to maximize rewards. Yet not every surprising event indicates a meaningful change in the environment. Even when conditions are stable overall, outcomes of a single experience can still be unpredictable due to small fluctuations (i.e., expected uncertainty) in reward or costs. In the present work, we investigate causal contributions of the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) in rats to learning under expected outcome uncertainty in a novel delay-based task that incorporates both predictable fluctuations and directional shifts in outcome values. We demonstrate that OFC is required to accurately represent the distribution of wait times to stabilize choice preferences despite trial-by-trial fluctuations in outcomes, whereas BLA is necessary for the facilitation of learning in response to surprising events. DOI: http://dx.doi.org/10.7554/eLife.27483.001 PMID:28682238
Saez, Rebecca A; Saez, Alexandre; Paton, Joseph J; Lau, Brian; Salzman, C Daniel
2017-07-05
The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Jun; Liu, Jiangang; Liang, Jimin; Zhang, Hongchuan; Zhao, Jizheng; Rieth, Cory A.; Huber, David E.; Li, Wu; Shi, Guangming; Ai, Lin; Tian, Jie; Lee, Kang
2013-01-01
To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis. PMID:20423709
Ostrander, Serena; Cazares, Victor A.; Kim, Charissa; Cheung, Shauna; Gonzalez, Isabel; Izquierdo, Alicia
2011-01-01
The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) are important neural regions in responding adaptively to changes in the incentive value of reward. Recent evidence suggests these structures may be differentially engaged in effort and cue-guided choice behavior. In two t-maze experiments, we examined the effects of bilateral lesions of either BLA or OFC on 1) effortful choices where rats could climb a barrier for a high reward or select a low reward with no effort and 2) effortful choices when a visual cue signaled changes in reward magnitude. In both experiments, BLA rats displayed transient work aversion, choosing the effortless low reward option. OFC rats were work averse only in the no cue conditions, displaying a pattern of attenuated recovery from the cue conditions signaling reward unavailability in the effortful arm. Control measures rule out an inability to discriminate the cue in either lesion group. PMID:21639604
Effects of loss aversion on neural responses to loss outcomes: An event-related potential study.
Kokmotou, Katerina; Cook, Stephanie; Xie, Yuxin; Wright, Hazel; Soto, Vicente; Fallon, Nicholas; Giesbrecht, Timo; Pantelous, Athanasios; Stancak, Andrej
2017-05-01
Loss aversion is the tendency to prefer avoiding losses over acquiring gains of the same amount. To shed light on the spatio-temporal processes underlying loss aversion, we analysed the associations between individual loss aversion and electrophysiological responses to loss and gain outcomes in a monetary gamble task. Electroencephalographic feedback-related negativity (FRN) was computed in 29 healthy participants as the difference in electrical potentials between losses and gains. Loss aversion was evaluated using non-linear parametric fitting of choices in a separate gamble task. Loss aversion correlated positively with FRN amplitude (233-263ms) at electrodes covering the lower face. Feedback related potentials were modelled by five equivalent source dipoles. From these dipoles, stronger activity in a source located in the orbitofrontal cortex was associated with loss aversion. The results suggest that loss aversion implemented during risky decision making is related to a valuation process in the orbitofrontal cortex, which manifests during learning choice outcomes. Copyright © 2017. Published by Elsevier B.V.
Rudebeck, Peter H; Murray, Elisabeth A
2011-12-01
The primate orbitofrontal cortex (OFC) is often treated as a single entity, but architectonic and connectional neuroanatomy indicate that it has distinguishable parts. Nevertheless, few studies have attempted to dissociate the functions of its subregions. Here we review findings from recent neuropsychological and neurophysiological studies that do so. The lateral OFC seems to be important for learning, representing, and updating specific object-reward associations. The medial OFC seems to be important for value comparisons and choosing among objects on that basis. Rather than viewing this dissociation of function in terms of learning versus choosing, however, we suggest that it reflects the distinction between contrasts and comparisons: differences versus similarities. Making use of high-dimensional representations that arise from the convergence of several sensory modalities, the lateral OFC encodes contrasts among outcomes. The medial OFC reduces these contrasting representations of value to a single dimension, a common currency, in order to compare alternative choices. © 2011 New York Academy of Sciences.
Hu, Yifan; Iordan, Alexandru D.; Moore, Matthew; Dolcos, Florin
2016-01-01
Converging evidence identifies trait optimism and the orbitofrontal cortex (OFC) as personality and brain factors influencing anxiety, but the nature of their relationships remains unclear. Here, the mechanisms underlying the protective role of trait optimism and of increased OFC volume against symptoms of anxiety were investigated in 61 healthy subjects, who completed measures of trait optimism and anxiety, and underwent structural scanning using magnetic resonance imaging. First, the OFC gray matter volume (GMV) was associated with increased optimism, which in turn was associated with reduced anxiety. Second, trait optimism mediated the relation between the left OFC volume and anxiety, thus demonstrating that increased GMV in this brain region protects against symptoms of anxiety through increased optimism. These results provide novel evidence about the brain–personality mechanisms protecting against anxiety symptoms in healthy functioning, and identify potential targets for preventive and therapeutic interventions aimed at reducing susceptibility and increasing resilience against emotional disturbances. PMID:26371336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akiyama, K.; Sato, M.; Otsuki, S.
1982-02-01
The specific /sup 3/H-spiperone binding to membrane homogenates of the striatum, mesolimbic area, and frontal cortex was examined in two groups of rats pretreated once daily with saline or 4 mg/kg of methamphetamine (MAP) for 14 days. At 7 days following cessation of chronic pretreatment, all rats received an injection of 4 mg/kg of MAP and were decapitated 1 hr after the injection. In the chronic saline-pretreatment group, the single administration of MAP induced significant changes in the number (Bmax) of specific /sup 3/H-spiperone binding sites (a decrease in the striatum and an increase in the mesolimbic area and frontalmore » cortex), but no significant changes in the affinity (KD) in any brain area. The chronic MAP pretreatment markedly augmented the changes in Bmax in the striatum and mesolimbic area. The increase in specific /sup 3/H-spiperone binding sites in the mesolimbic area is discussed in relation to MAP-induced behavioral hypersensitivity.« less
Johnson, Curtis L; Schwarb, Hillary; Horecka, Kevin M; McGarry, Matthew D J; Hillman, Charles H; Kramer, Arthur F; Cohen, Neal J; Barbey, Aron K
2018-05-01
Brain tissue mechanical properties, measured in vivo with magnetic resonance elastography (MRE), have proven to be sensitive metrics of neural tissue integrity. Recently, our group has reported on the positive relationship between viscoelasticity of the hippocampus and performance on a relational memory task in healthy young adults, which highlighted the potential of sensitive MRE measures for studying brain health and its relation to cognitive function; however, structure-function relationships outside of the hippocampus have not yet been explored. In this study, we examined the relationships between viscoelasticity of both the hippocampus and the orbitofrontal cortex and performance on behavioral assessments of relational memory and fluid intelligence. In a sample of healthy, young adults (N = 53), there was a significant, positive relationship between orbitofrontal cortex viscoelasticity and fluid intelligence performance (r = 0.42; p = .002). This finding is consistent with the previously reported relationship between hippocampal viscoelasticity and relational memory performance (r = 0.41; p = .002). Further, a significant double dissociation between the orbitofrontal-fluid intelligence relationship and the hippocampal-relational memory relationship was observed. These data support the specificity of regional brain MRE measures in support of separable cognitive functions. This report of a structure-function relationship observed with MRE beyond the hippocampus suggests a future role for MRE as a sensitive neuroimaging technique for brain mapping. Copyright © 2018 Elsevier Inc. All rights reserved.
Vega, Daniel; Ripollés, Pablo; Soto, Àngel; Torrubia, Rafael; Ribas, Joan; Monreal, Jose Antonio; Pascual, Juan Carlos; Salvador, Raymond; Pomarol-Clotet, Edith; Rodríguez-Fornells, Antoni; Marco-Pallarés, Josep
2018-02-01
Borderline Personality Disorder (BPD) is a disabling and difficult-to-treat mental disease. One of its core features is a significant difficulty in affect regulation, which is often accompanied by Non-Suicidal Self-Injury (NSSI). It is suggested that this type of behavior elicits positive emotions and mitigates emotional distress, and therefore can ultimately be reinforced and promoted. In spite of the high prevalence of NSSI behaviors (also in non-BPD samples), their role in modulating reward-related processes has not yet been investigated in BPD patients. In the present study, this lack of research was addressed. A large sample of BPD patients (N = 40), divided into two groups depending on the presence of NSSI, and a group of matched healthy controls underwent functional Magnetic Resonance Imaging (fMRI) while performing a gambling task. Patients who committed NSSI acts exhibited enhanced activation of the orbitofrontal cortex following an unexpected reward, when compared with controls and BPD patients with no NSSI behavior. In addition, the NSSI group showed diminished functional connectivity between the left orbitofrontal cortex and the right parahippocampal gyrus. These findings might suggest impaired ability to update reward associations of potential choices when both BPD and NSSI are present. We propose that the presence of NSSI involves alterations in the reward system independently of BPD, and thus can be considered as a possible phenotype for reward-related alterations.
Moura, Alana Pimentel; Parmeggiani, Belisa; Gasparotto, Juciano; Grings, Mateus; Fernandez Cardoso, Gabriela Miranda; Seminotti, Bianca; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens; Wajner, Moacir; Leipnitz, Guilhian
2018-01-01
High glycine (GLY) levels have been suggested to induce neurotoxic effects in the central nervous system of patients with nonketotic hyperglycinemia (NKH). Since the mechanisms involved in the neuropathophysiology of NKH are not totally established, we evaluated the effect of a single intracerebroventricular administration of GLY on the content of proteins involved in neuronal damage and inflammatory response, as well as on the phosphorylation of the MAPK p38, ERK1/2, and JNK in rat striatum and cerebral cortex. We also examined glial fibrillary acidic protein (GFAP) staining, a marker of glial reactivity. The parameters were analyzed 30 min or 24 h after GLY administration. GLY decreased Tau phosphorylation in striatum and cerebral cortex 30 min and 24 h after its administration. On the other hand, synaptophysin levels were decreased in striatum at 30 min and in cerebral cortex at 24 h after GLY injection. GLY also decreased the phosphorylation of p38, ERK1/2, and JNK 30 min after its administration in both brain structures. Moreover, GLY-induced decrease of p38 phosphorylation in striatum was attenuated by N-methyl-D-aspartate receptor antagonist MK-801. In contrast, synuclein, NF-κB, iκB, inducible nitric oxide synthase and nitrotyrosine content, and GFAP immunostaining were not altered by GLY infusion. It may be presumed that the decreased phosphorylation of MAPK associated with alterations of markers of neuronal injury induced by GLY may contribute to the neurological dysfunction observed in NKH.
When chocolate seeking becomes compulsion: gene-environment interplay.
Patrono, Enrico; Di Segni, Matteo; Patella, Loris; Andolina, Diego; Valzania, Alessandro; Latagliata, Emanuele Claudio; Felsani, Armando; Pompili, Assunta; Gasbarri, Antonella; Puglisi-Allegra, Stefano; Ventura, Rossella
2015-01-01
Eating disorders appear to be caused by a complex interaction between environmental and genetic factors, and compulsive eating in response to adverse circumstances characterizes many eating disorders. We compared compulsion-like eating in the form of conditioned suppression of palatable food-seeking in adverse situations in stressed C57BL/6J and DBA/2J mice, two well-characterized inbred strains, to determine the influence of gene-environment interplay on this behavioral phenotype. Moreover, we tested the hypothesis that low accumbal D2 receptor (R) availability is a genetic risk factor of food compulsion-like behavior and that environmental conditions that induce compulsive eating alter D2R expression in the striatum. To this end, we measured D1R and D2R expression in the striatum and D1R, D2R and α1R levels in the medial prefrontal cortex, respectively, by western blot. Exposure to environmental conditions induces compulsion-like eating behavior, depending on genetic background. This behavioral pattern is linked to decreased availability of accumbal D2R. Moreover, exposure to certain environmental conditions upregulates D2R and downregulates α1R in the striatum and medial prefrontal cortex, respectively, of compulsive animals. These findings confirm the function of gene-environment interplay in the manifestation of compulsive eating and support the hypothesis that low accumbal D2R availability is a "constitutive" genetic risk factor for compulsion-like eating behavior. Finally, D2R upregulation and α1R downregulation in the striatum and medial prefrontal cortex, respectively, are potential neuroadaptive responses that parallel the shift from motivated to compulsive eating.
Tamakoshi, Keigo; Ishida, Kazuto; Kawanaka, Kentaro; Takamatsu, Yasuyuki; Tamaki, Hiroyuki
2017-10-01
We investigated the effects of acrobatic training (AT) on expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits in the sensorimotor cortex and striatum after intracerebral hemorrhage (ICH). Male Wistar rats were divided into 4 groups: ICH without AT (ICH), ICH with AT (ICH + AT), sham operation without AT (SHAM), and sham operation with AT (SHAM + AT). ICH was induced by collagenase injection into the left striatum. The ICH + AT group performed 5 acrobatic tasks daily on days 4-28 post ICH. Forelimb sensorimotor function was evaluated using the forelimb placing test. On days 14 and 29, mRNA expression levels of AMPAR subunits GluR1-4 were measured by real-time reverse transcription-polymerase chain reaction. Forelimb placing test scores were significantly higher in the ICH + AT group than in the ICH group. Expression levels of all AMPAR subunit mRNAs were significantly higher in the ipsilateral sensorimotor cortex of rats in the ICH + AT group than in that of rats in the ICH group on day 29. GluR3 and GluR4 expression levels were reduced in the ipsilateral striatum of rats in the ICH group compared with that of rats in the SHAM group on day 14. These changes may play a critical role in motor skills training-induced recovery after ICH. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Liu, Qing; Xu, Tian-Yong; Zhang, Zhi-Bi; Leung, Chi-Kwan; You, Ding-Yun; Wang, Shang-Wen; Yi, Shuai; Jing, Qiang; Xie, Run-Fang; Li, Huifang-Jie; Zeng, Xiao-Feng
2017-06-15
Ketamine and ethanol are increasingly being used together as recreational drugs in rave parties. Their effects on the dopamine (DA) system remain largely unknown. This study aimed to investigate the effects of consuming two different concentrations of ketamine with and without alcohol on the DA system. We employed the conditioned place preference (CPP) paradigm to evaluate the rewarding effects of the combined administration of two different doses of ketamine (30mg/kg and 60mg/kg) with ethanol (0.3156g/kg). We evaluated the effects of the combined drug treatment on the transcriptional output of tyrosine hydroxylase (TH), dopa decarboxylase (DDC), synaptosomal-associated protein 25 (SNAP25), and vesicular monoamine transporter 2 (VMAT2) as well as protein expression level of brain-derived neurotrophic factor (BDNF) in rat prefrontal cortex (PFC) and striatum. We found that rats exhibited a dose-dependent, drug-paired, place preference to ketamine and ethanol associated with an elevated DA level in the striatum but not in the PFC. Moreover, treatment involving low- or high-dose ketamine with or without ethanol caused a differential regulatory response in the mRNA levels of the four DA metabolism genes and the cellular protein abundance of BDNF via the cortex-striatum circuitry. This study investigated the molecular mechanisms that occur following the combined administration of ketamine and ethanol in the DA system, which could potentially lead to alterations in the mental status and behavior of ketamine/ethanol users. Our findings may aid the development of therapeutic strategies for substance abuse patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Wallace, Gregory L; White, Stuart F; Robustelli, Briana; Sinclair, Stephen; Hwang, Soonjo; Martin, Alex; Blair, R James R
2014-04-01
Although there is growing evidence of brain abnormalities among individuals with conduct disorder (CD), the structural neuroimaging literature is mixed and frequently aggregates cortical volume rather than differentiating cortical thickness from surface area. The current study assesses CD-related differences in cortical thickness, surface area, and gyrification as well as volume differences in subcortical structures critical to neurodevelopmental models of CD (amygdala; striatum) in a carefully characterized sample. We also examined whether group structural differences were related to severity of callous-unemotional (CU) traits in the CD sample. Participants were 49 community adolescents aged 10 to 18 years, 22 with CD and 27 healthy comparison youth. Structural MRI was collected and the FreeSurfer image analysis suite was used to provide measures of cortical thickness, surface area, and local gyrification as well as subcortical (amygdala and striatum) volumes. Youths with CD showed reduced cortical thickness in the superior temporal cortex. There were also indications of reduced gyrification in the ventromedial frontal cortex, particularly for youths with CD without comorbid attention-deficit/hyperactivity disorder. There were no group differences in cortical surface area. However, youths with CD also showed reduced amygdala and striatum (putamen and pallidum) volumes. Right temporal cortical thickness was significantly inversely related to severity of CU traits. Youths with CD show reduced cortical thickness within superior temporal regions, some indication of reduced gyrification within ventromedial frontal cortex and reduced amygdala and striatum (putamen and pallidum) volumes. These results are discussed with reference to neurobiological models of CD. Published by Elsevier Inc.
The Essential Role of Primate Orbitofrontal Cortex in Conflict-Induced Executive Control Adjustment
Buckley, Mark J.; Tanaka, Keiji
2014-01-01
Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions. PMID:25122901
Chudasama, Y; Robbins, Trevor W
2003-09-24
To examine possible heterogeneity of function within the ventral regions of the rodent frontal cortex, the present study compared the effects of excitotoxic lesions of the orbitofrontal cortex (OFC) and the infralimbic cortex (ILC) on pavlovian autoshaping and discrimination reversal learning. During the pavlovian autoshaping task, in which rats learn to approach a stimulus predictive of reward [conditional stimulus (CS+)], only the OFC group failed to acquire discriminated approach but was unimpaired when preoperatively trained. In the visual discrimination learning and reversal task, rats were initially required to discriminate a stimulus positively associated with reward. There was no effect of either OFC or ILC lesions on discrimination learning. When the stimulus-reward contingencies were reversed, both groups of animals committed more errors, but only the OFC-lesioned animals were unable to suppress the previously rewarded stimulus-reward association, committing more "stimulus perseverative" errors. In contrast, the ILC group showed a pattern of errors that was more attributable to "learning" than perseveration. These findings suggest two types of dissociation between the effects of OFC and ILC lesions: (1) OFC lesions impaired the learning processes implicated in pavlovian autoshaping but not instrumental simultaneous discrimination learning, whereas ILC lesions were unimpaired at autoshaping and their reversal learning deficit did not reflect perseveration, and (2) OFC lesions induced perseverative responding in reversal learning but did not disinhibit responses to pavlovian CS-. In contrast, the ILC lesion had no effect on response inhibitory control in either of these settings. The findings are discussed in the context of dissociable executive functions in ventral sectors of the rat prefrontal cortex.
Relative hyperperfusion by SPECT in a family with a presenilin 1 (T245P) mutation.
Edwards-Lee, Terri; Wen, Johnny; Chung, Julia A; Vasinrapee, Panukorn; Mishkin, Frederick S
2008-01-01
Clinical characteristics of autosomal dominant Alzheimer's disease often differ clinically from sporadic disease with the onset of seizures, spasticity and myoclonus early in the disease course. Similarly imaging characteristics may also differ. We report the findings of relative hyperperfusion by Tc-99m HMPAO SPECT in the medial orbitofrontal cortex and anterior temporal lobe in four affected family members carrying a presenilin 1 mutation. SPECT of the four individuals was compared to an age-matched normal database. We speculate that the findings of relative medial orbitofrontal and anterior temporal lobe hyperperfusion may be a marker of early onset Alzheimer's disease in this family.
Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A
2014-01-01
Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421
Ribeiro, Rafael Teixeira; Zanatta, Ângela; Amaral, Alexandre Umpierrez; Leipnitz, Guilhian; de Oliveira, Francine Hehn; Seminotti, Bianca; Wajner, Moacir
2018-04-01
Tissue accumulation of L-2-hydroxyglutaric acid (L-2-HG) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-2-HGA), a rare neurometabolic inherited disease characterized by neurological symptoms and brain white matter abnormalities whose pathogenesis is not yet well established. L-2-HG was intracerebrally administered to rat pups at postnatal day 1 (P1) to induce a rise of L-2-HG levels in the central nervous system (CNS). Thereafter, we investigated whether L-2-HG in vivo administration could disturb redox homeostasis and induce brain histopathological alterations in the cerebral cortex and striatum of neonatal rats. L-2-HG markedly induced the generation of reactive oxygen species (increase of 2',7'-dichloroflurescein-DCFH-oxidation), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione-GSH) and sulfhydryl content in the cerebral cortex. Alterations of the activities of various antioxidant enzymes were also observed in the cerebral cortex and striatum following L-2-HG administration. Furthermore, L-2-HG-induced lipid peroxidation and GSH decrease in the cerebral cortex were prevented by the antioxidant melatonin and by the classical antagonist of NMDA glutamate receptor MK-801, suggesting the involvement of reactive species and of overstimulation of NMDA receptor in these effects. Finally, L-2-HG provoked significant vacuolation and edema particularly in the cerebral cortex with less intense alterations in the striatum that were possibly associated with the unbalanced redox homeostasis caused by this metabolite. Taken together, it is presumed that these pathomechanisms may underlie the neurological symptoms and brain abnormalities observed in the affected patients.
Wang, Zhuo; Myers, Kalisa G.; Guo, Yumei; Ocampo, Marco A.; Pang, Raina D.; Jakowec, Michael W.; Holschneider, Daniel P.
2013-01-01
Exercise training is widely used for neurorehabilitation of Parkinson’s disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases in rCBF in the medial prefrontal cortex (cingulate, prelimbic, infralimbic). Our results in this PD rat model uniquely highlight the breadth of functional reorganizations in motor and limbic circuits following lesion and long-term, aerobic exercise, and provide a framework for understanding the neural substrates underlying exercise-based neurorehabilitation. PMID:24278239
[Mental Space Navigation and Mental Time Travel].
Kawamura, Mitsuru
2017-11-01
We examined patients with mental space navigation or mental time travel disorder to identify regions in the brain that may play a critical role in mental time travel in terms of clinical neuropsychology. These regions included the precneus, posterior cingulate gyrus, retrosplenial cortex, and hippocampus, as well as the orbitofrontal cortex: the anterior and posterior medial areas were both shown to be important in this process. Further studies are required to define whether these form a network for mental time travel.
ERIC Educational Resources Information Center
Nonkes, Lourens J. P.; van de Vondervoort, Ilse I. G. M.; de Leeuw, Mark J. C.; Wijlaars, Linda P.; Maes, Joseph H. R.; Homberg, Judith R.
2012-01-01
Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT[superscript -/-]) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting…
Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Seminotti, Bianca; Ribeiro, César Augusto; Lagranha, Valeska Lizzi; Pereira, Carolina Coffi; de Oliveira, Francine Hehn; de Souza, Diogo Gomes; Goodman, Stephen; Woontner, Michael; Wajner, Moacir
2015-09-16
Bioenergetics dysfunction has been postulated as an important pathomechanism of brain damage in glutaric aciduria type I, but this is still under debate. We investigated activities of citric acid cycle (CAC) enzymes, lactate release, respiration and membrane potential (ΔΨm) in mitochondrial preparations from cerebral cortex and striatum of 30-day-old glutaryl-CoA dehydrogenase deficient (Gcdh-/-) and wild type mice fed a baseline or a high lysine (Lys, 4.7%) chow for 60 or 96h. Brain histological analyses were performed in these animals, as well as in 90-day-old animals fed a baseline or a high Lys chow during 30 days starting at 60-day-old. A moderate reduction of citrate synthase and isocitrate dehydrogenase activities was observed only in the striatum from 30-day-old Gcdh-/- animals submitted to a high Lys chow. In contrast, the other CAC enzyme activities, lactate release, the respiratory parameters state 3, state 4, the respiratory control ratio and CCCP-stimulated (uncoupled) state, as well as ΔΨm were not altered in the striatum. Similarly, none of the evaluated parameters were changed in the cerebral cortex from these animals under baseline or Lys overload. On the other hand, histological analyses revealed the presence of intense vacuolation in the cerebral cortex of 60 and 90-day-old Gcdh-/- mice fed a baseline chow and in the striatum of 90-day-old Gcdh-/- mice submitted to Lys overload for 30 days. Taken together, the present data demonstrate mild impairment of bioenergetics homeostasis and marked histological alterations in striatum from Gcdh-/- mice under a high Lys chow, suggesting that disruption of energy metabolism is not mainly involved in the brain injury of these animals. Copyright © 2015 Elsevier B.V. All rights reserved.
Carlisi, Christina O; Norman, Luke; Murphy, Clodagh M; Christakou, Anastasia; Chantiluke, Kaylita; Giampietro, Vincent; Simmons, Andrew; Brammer, Michael; Murphy, Declan G; Mataix-Cols, David; Rubia, Katya
2017-12-01
Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) often share phenotypes of repetitive behaviors, possibly underpinned by abnormal decision-making. To compare neural correlates underlying decision-making between these disorders, brain activation of boys with ASD (N = 24), OCD (N = 20) and typically developing controls (N = 20) during gambling was compared, and computational modeling compared performance. Patients were unimpaired on number of risky decisions, but modeling showed that both patient groups had lower choice consistency and relied less on reinforcement learning compared to controls. ASD individuals had disorder-specific choice perseverance abnormalities compared to OCD individuals. Neurofunctionally, ASD and OCD boys shared dorsolateral/inferior frontal underactivation compared to controls during decision-making. During outcome anticipation, patients shared underactivation compared to controls in lateral inferior/orbitofrontal cortex and ventral striatum. During reward receipt, ASD boys had disorder-specific enhanced activation in inferior frontal/insular regions relative to OCD boys and controls. Results showed that ASD and OCD individuals shared decision-making strategies that differed from controls to achieve comparable performance to controls. Patients showed shared abnormalities in lateral-(orbito)fronto-striatal reward circuitry, but ASD boys had disorder-specific lateral inferior frontal/insular overactivation, suggesting that shared and disorder-specific mechanisms underpin decision-making in these disorders. Findings provide evidence for shared neurobiological substrates that could serve as possible future biomarkers. © The Author 2017. Published by Oxford University Press.
Völlm, Birgit; Richardson, Paul; McKie, Shane; Elliott, Rebecca; Dolan, Mairead; Deakin, Bill
2007-11-15
Decision making is guided by the likely consequences of behavioural choices. Neuronal correlates of financial reward have been described in a number of functional imaging studies in humans. Areas implicated in reward include ventral striatum, dopaminergic midbrain, amygdala and orbitofrontal cortex. Response to loss has not been as extensively studied but may involve prefrontal and medial temporal cortices. It has been proposed that increased sensitivity to reward and reduced sensitivity to punishment underlie some of the psychopathology in impulsive personality disordered individuals. However, few imaging studies using reinforcement tasks have been conducted in this group. In this fMRI study, we investigate the effects of positive (monetary reward) and negative (monetary loss) outcomes on BOLD responses in two target selection tasks. The experimental group comprised eight people with Cluster B (antisocial and borderline) personality disorder, whilst the control group contained fourteen healthy participants. A key finding was the absence of prefrontal responses and reduced BOLD signal in the subcortical reward system in the PD group during positive reinforcement. Impulsivity scores correlated negatively with prefrontal responses in the PD but not the control group during both, reward and loss. Our results suggest dysfunctional responses to rewarding and aversive stimuli in Cluster B personality disordered individuals but do not support the notion of hypersensitivity to reward and hyposensitivity to loss.
Vieira, Joana B; Ferreira-Santos, Fernando; Almeida, Pedro R; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A
2015-12-01
Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Somkuwar, Sucharita S.; Kantak, Kathleen M.; Dwoskin, Linda P.
2015-01-01
Attention Deficit Hyperactivity Disorder (ADHD) is associated with hypofunctional medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). Methylphenidate (MPH) remediates ADHD, in part, by inhibiting the norepinephrine transporter (NET). MPH also reduces ADHD-like symptoms in Spontaneously Hypertensive Rats (SHRs), a model of ADHD. However, effects of chronic MPH treatment on NET function in mPFC and OFC in SHR have not been reported. In the current study, long-term effects of repeated treatment with a therapeutically relevant oral dose of MPH during adolescence on NET function in subregions of mPFC (cingulate gyrus, prelimbic cortex and infralimbic cortex) and in the OFC of adult SHR, Wistar-Kyoto (WKY, inbred control) and Wistar (WIS, outbred control) rats were determined using in vivo voltammetry. Following local ejection of norepinephrine (NE), uptake rate was determined as peak amplitude (Amax) x first-order rate constant (k-1). In mPFC subregions, no strain or treatment effects were found in NE uptake rate. In OFC, NE uptake rate in vehicle-treated adult SHR was greater than in adult WKY and WIS administered vehicle. MPH treatment during adolescence normalized NE uptake rate in OFC in SHR. Thus, the current study implicates increased NET function in OFC as an underlying mechanism for reduced noradrenergic transmission in OFC, and consequently, the behavioral deficits associated with ADHD. MPH treatment during adolescence normalized NET function in OFC in adulthood, suggesting that the therapeutic action of MPH persists long after treatment cessation and may contribute to lasting reductions in deficits associated with ADHD. PMID:25680322
Maliszewski-Hall, Anne M; Alexander, Michelle; Tkáč, Ivan; Öz, Gülin; Rao, Raghavendra
2017-01-01
Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1 H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague-Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.
Gaser, Christian; Nenadic, Igor; Buchsbaum, Bradley R; Hazlett, Erin A; Buchsbaum, Monte S
2004-01-01
Enlargement of the lateral ventricles is among the most frequently reported macroscopic brain structural changes in schizophrenia, although variable in extent and localization. The authors investigated whether ventricular enlargement is related to regionally specific volume loss. High-resolution magnetic resonance imaging scans from 39 patients with schizophrenia were analyzed with deformation-based morphometry, a voxel-wise whole brain morphometric technique. Significant negative correlations with the ventricle-brain ratio were found for voxels in the left and right thalamus and posterior putamen and in the left superior temporal gyrus and insula. Thalamic shrinkage, especially of medial nuclei and the adjacent striatum and insular cortex, appear to be important contributors to ventricular enlargement in schizophrenia.
Brain Systems for Assessing Facial Attractiveness
ERIC Educational Resources Information Center
Winston, Joel S.; O'Doherty, John; Kilner, James M.; Perrett, David I.; Dolan, Raymond J.
2007-01-01
Attractiveness is a facial attribute that shapes human affiliative behaviours. In a previous study we reported a linear response to facial attractiveness in orbitofrontal cortex (OFC), a region involved in reward processing. There are strong theoretical grounds for the hypothesis that coding stimulus reward value also involves the amygdala. The…
Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding
Frühholz, Sascha; Ceravolo, Leonardo; Grandjean, Didier
2016-01-01
Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinson’s disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding the physiological function of the STN itself. This underscores the crucial importance of obtaining evidence from healthy participants. In this study, we tested the structural and functional connectivity between the STN and other brain regions related to vocal emotion in a healthy population by combining diffusion tensor imaging and psychophysiological interaction analysis from a high-resolution functional magnetic resonance imaging study. As expected, we showed that the STN is functionally connected to the structures involved in emotional prosody decoding, notably the orbitofrontal cortex, inferior frontal gyrus, auditory cortex, pallidum and amygdala. These functional results were corroborated by probabilistic fiber tracking, which revealed that the left STN is structurally connected to the amygdala and the orbitofrontal cortex. These results confirm, in healthy participants, the role played by the STN in human emotion and its structural and functional connectivity with the brain network involved in vocal emotions. PMID:26400857
Adverse Effects of Cannabis on Adolescent Brain Development: A Longitudinal Study.
Camchong, Jazmin; Lim, Kelvin O; Kumra, Sanjiv
2017-03-01
Cannabis is widely perceived as a safe recreational drug and its use is increasing in youth. It is important to understand the implications of cannabis use during childhood and adolescence on brain development. This is the first longitudinal study that compared resting functional connectivity of frontally mediated networks between 43 healthy controls (HCs; 20 females; age M = 16.5 ± 2.7) and 22 treatment-seeking adolescents with cannabis use disorder (CUD; 8 females; age M = 17.6 ± 2.4). Increases in resting functional connectivity between caudal anterior cingulate cortex (ACC) and superior frontal gyrus across time were found in HC, but not in CUD. CUD showed a decrease in functional connectivity between caudal ACC and dorsolateral and orbitofrontal cortices across time. Lower functional connectivity between caudal ACC cortex and orbitofrontal cortex at baseline predicted higher amounts of cannabis use during the following 18 months. Finally, high amounts of cannabis use during the 18-month interval predicted lower intelligence quotient and slower cognitive function measured at follow-up. These data provide compelling longitudinal evidence suggesting that repeated exposure to cannabis during adolescence may have detrimental effects on brain resting functional connectivity, intelligence, and cognitive function. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hayward, R. David; Owen, Amy D.; Koenig, Harold G.; Steffens, David C.; Payne, Martha E.
2011-01-01
The orbitofrontal cortex (OFC) is a region of the brain that has been empirically linked with religious or spiritual activity, and atrophy in this region has been shown to contribute to serious mental illness in late life. This study used structural magnetic resonance imaging to examine the association between religious or spiritual factors and volume of the orbitalfrontal cortex (OFC). Change in the volume of participants’ left and right OFC was measured longitudinally over a period of two to eight years. Multiple linear regression analyses showed that religious or spiritual factors were related to extent of atrophy in the left OFC. Significantly less atrophy of the left OFC was observed in participants who reported a life-changing religious or spiritual experience during the course of the study, and in members of Protestant religious groups who reported being born-again when entering the study. Significantly greater atrophy of the left OFC was also associated with more frequent participation in public religious worship. No significant relationship was observed between religious or spiritual factors and extent of atrophy in the right OFC. These results support the presence of a long-term relationship between religious or spiritual experience and brain structure, which may have clinical implications. PMID:22611519
Brain Cortical Thickness Differences in Adolescent Females with Substance Use Disorders.
Boulos, Peter K; Dalwani, Manish S; Tanabe, Jody; Mikulich-Gilbertson, Susan K; Banich, Marie T; Crowley, Thomas J; Sakai, Joseph T
2016-01-01
We recruited right-handed female patients, 14-19 years of age, from a university-based treatment program for youths with substance use disorders and community controls similar for age, race and zip code of residence. We obtained 43 T1-weighted structural brain images (22 patients and 21 controls) to examine group differences in cortical thickness across the entire brain as well as six a priori regions-of-interest: 1) medial orbitofrontal cortex; 2) rostral anterior cingulate cortex; and 3) middle frontal cortex, in each hemisphere. Age and IQ were entered as nuisance factors for all analyses. A priori region-of-interest analyses yielded no significant differences. However, whole-brain group comparisons revealed that the left pregenual rostral anterior cingulate cortex extending into the left medial orbitofrontal region (355.84 mm2 in size), a subset of two of our a priori regions-of-interest, was significantly thinner in patients compared to controls (vertex-level threshold p = 0.005 and cluster-level family wise error corrected threshold p = 0.05). The whole-brain group differences did not survive after adjusting for depression or externalizing scores. Whole-brain within-patient analyses demonstrated a positive association between cortical thickness in the left precuneus and behavioral disinhibition scores (458.23 mm2 in size). Adolescent females with substance use disorders have significant differences in brain cortical thickness in regions engaged by the default mode network and that have been associated with problems of emotional dysregulation, inhibition, and behavioral control in past studies.
Zuurbier, Lisette A; Nikolova, Yuliya S; Ahs, Fredrik; Hariri, Ahmad R
2013-06-01
Emotion regulation refers to strategies through which individuals influence their experience and expression of emotions. Two typical strategies are reappraisal, a cognitive strategy for reframing the context of an emotional experience, and suppression, a behavioral strategy for inhibiting emotional responses. Functional neuroimaging studies have revealed that regions of the prefrontal cortex modulate amygdala reactivity during both strategies, but relatively greater downregulation of the amygdala occurs during reappraisal. Moreover, these studies demonstrated that engagement of this modulatory circuitry varies as a function of gender. The uncinate fasciculus is a major structural pathway connecting regions of the anterior temporal lobe, including the amygdala to inferior frontal regions, especially the orbitofrontal cortex. The objective of the current study was to map variability in the structural integrity of the uncinate fasciculus onto individual differences in self-reported typical use of reappraisal and suppression. Diffusion tensor imaging was used in 194 young adults to derive regional fractional anisotropy values for the right and left uncinate fasciculus. All participants also completed the Emotion Regulation Questionnaire. In women but not men, self-reported typical reappraisal use was positively correlated with fractional anisotropy values in a region of the left uncinate fasciculus within the orbitofrontal cortex. In contrast, typical use of suppression was not significantly correlated with fractional anisotropy in any region of the uncinate fasciculus in either men or women. Our data suggest that in women typical reappraisal use is specifically related to the integrity of white matter pathways linking the amygdala and prefrontal cortex.
Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers.
Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Franceschi, D; Sedler, M J; Gatley, S J; Hitzemann, R; Ding, Y S; Wong, C; Logan, J
2001-03-01
Methamphetamine has raised concerns because it may be neurotoxic to the human brain. Although prior work has focused primarily on the effects of methamphetamine on dopamine cells, there is evidence that other neuronal types are affected. The authors measured regional brain glucose metabolism, which serves as a marker of brain function, to assess if there is evidence of functional changes in methamphetamine abusers in regions other than those innervated by dopamine cells. Fifteen detoxified methamphetamine abusers and 21 comparison subjects underwent positron emission tomography following administration of [(18)F]fluorodeoxyglucose. Whole brain metabolism in the methamphetamine abusers was 14% higher than that of comparison subjects; the differences were most accentuated in the parietal cortex (20%). After normalization for whole brain metabolism, methamphetamine abusers exhibited significantly lower metabolism in the thalamus (17% difference) and striatum (where the differences were larger for the caudate [12%] than for the putamen [6%]). Statistical parametric mapping analyses corroborated these findings, revealing higher metabolism in the parietal cortex and lower metabolism in the thalamus and striatum of methamphetamine abusers. The fact that the parietal cortex is a region devoid of any significant dopaminergic innervation suggests that the higher metabolism seen in this region in the methamphetamine abusers is the result of methamphetamine effects in circuits other than those modulated by dopamine. In addition, the lower metabolism in the striatum and thalamus (major outputs of dopamine signals into the cortex) is likely to reflect the functional consequence of methamphetamine in dopaminergic circuits. These results provide evidence that, in humans, methamphetamine abuse results in changes in function of dopamine- and nondopamine-innervated brain regions.
Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex.
Kahnt, Thorsten; Tobler, Philippe N
2017-02-08
Neuromodulators such as dopamine can alter the intrinsic firing properties of neurons and may thereby change the configuration of larger functional circuits. The primate orbitofrontal cortex (OFC) receives dopaminergic input from midbrain nuclei, but the role of dopamine in the OFC is still unclear. Here we tested the idea that dopaminergic activity changes the pattern of connectivity between the OFC and the rest of the brain and thereby reconfigures functional networks in the OFC. To this end, we combined double-blind, placebo-controlled pharmacology [D 2 receptor (D2R) antagonist amisulpride] in humans with resting-state functional magnetic resonance imaging and clustering methods. In the placebo group, we replicated previously observed parcellations of the OFC into two and six subregions based on connectivity patterns with the rest of the brain. Most importantly, while the twofold clustering did not differ significantly between groups, blocking D2Rs significantly changed the composition of the sixfold parcellation, suggesting a dopamine-dependent reconfiguration of functional OFC subregions. Moreover, multivariate decoding analyses revealed that amisulpride changed the whole-brain connectivity patterns of individual OFC subregions. In particular, D2R blockade shifted the balance of OFC connectivity from associative areas in the temporal and parietal lobe toward functional connectivity with the frontal cortex. In summary, our results suggest that dopamine alters the composition of functional OFC circuits, possibly indicating a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks. SIGNIFICANCE STATEMENT A key role of any neuromodulator may be the reconfiguration of functional brain circuits. Here we test this idea with regard to dopamine and the organization of functional networks in the orbitofrontal cortex (OFC). We show that blockade of dopamine D 2 receptors has profound effects on the functional connectivity patterns of the OFC, yielding altered connectivity-based subdivisions of this region. Our results suggest that dopamine changes the connectional configuration of the OFC, possibly leading to transitions between different operating modes that favor either sensory input or recurrent processing in the prefrontal cortex. More generally, our findings support a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks and may have clinical implications for understanding the actions of antipsychotic agents. Copyright © 2017 the authors 0270-6474/17/371493-12$15.00/0.
Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex.
Ramírez-Lugo, Leticia; Peñas-Rincón, Ana; Ángeles-Durán, Sandybel; Sotres-Bayon, Francisco
2016-10-12
The ability to select an appropriate behavioral response guided by previous emotional experiences is critical for survival. Although much is known about brain mechanisms underlying emotional associations, little is known about how these associations guide behavior when several choices are available. To address this, we performed local pharmacological inactivations of several cortical regions before retrieval of an aversive memory in choice-based versus no-choice-based conditioned taste aversion (CTA) tasks in rats. Interestingly, we found that inactivation of the orbitofrontal cortex (OFC), but not the dorsal or ventral medial prefrontal cortices, blocked retrieval of choice CTA. However, OFC inactivation left retrieval of no-choice CTA intact, suggesting its role in guiding choice, but not in retrieval of CTA memory. Consistently, OFC activity increased in the choice condition compared with no-choice, as measured with c-Fos immunolabeling. Notably, OFC inactivation did not affect choice behavior when it was guided by innate taste aversion. Consistent with an anterior insular cortex (AIC) involvement in storing taste memories, we found that AIC inactivation impaired retrieval of both choice and no-choice CTA. Therefore, this study provides evidence for OFC's role in guiding choice behavior and shows that this is dissociable from AIC-dependent taste aversion memory. Together, our results suggest that OFC is required and recruited to guide choice selection between options of taste associations relayed from AIC. Survival and mental health depend on being able to choose stimuli not associated with danger. This is particularly important when danger is associated with stimuli that we ingest. Although much is known about the brain mechanisms that underlie associations with dangerous taste stimuli, very little is known about how these stored emotional associations guide behavior when it involves choice. By combining pharmacological and immunohistochemistry tools with taste-guided tasks, our study provides evidence for the key role of orbitofrontal cortex activity in choice behavior and shows that this is dissociable from the adjacent insular cortex-dependent taste aversion memory. Understanding the brain mechanisms that underlie the impact that emotional associations have on survival choice behaviors may lead to better treatments for mental disorders characterized by emotional decision-making deficits. Copyright © 2016 the authors 0270-6474/16/3610574-10$15.00/0.
Howard, James D; Kahnt, Thorsten
2017-03-08
Goal-directed behavior is sensitive to the current value of expected outcomes. This requires independent representations of specific rewards, which have been linked to orbitofrontal cortex (OFC) function. However, the mechanisms by which the human brain updates specific goals on the fly, and translates those updates into choices, have remained unknown. Here we implemented selective devaluation of appetizing food odors in combination with pattern-based neuroimaging and a decision-making task. We found that in a hungry state, participants chose to smell high-intensity versions of two value-matched food odor rewards. After eating a meal corresponding to one of the two odors, participants switched choices toward the low intensity of the sated odor but continued to choose the high intensity of the nonsated odor. This sensory-specific behavioral effect was mirrored by pattern-based changes in fMRI signal in lateral posterior OFC, where specific reward identity representations were altered after the meal for the sated food odor but retained for the nonsated counterpart. In addition, changes in functional connectivity between the OFC and general value coding in ventromedial prefrontal cortex (vmPFC) predicted individual differences in satiety-related choice behavior. These findings demonstrate how flexible representations of specific rewards in the OFC are updated by devaluation, and how functional connections to vmPFC reflect the current value of outcomes and guide goal-directed behavior. SIGNIFICANCE STATEMENT The orbitofrontal cortex (OFC) is critical for goal-directed behavior. A recent proposal is that OFC fulfills this function by representing a variety of state and task variables ("cognitive maps"), including a conjunction of expected reward identity and value. Here we tested how identity-specific representations of food odor reward are updated by satiety. We found that fMRI pattern-based signatures of reward identity in lateral posterior OFC were modulated after selective devaluation, and that connectivity between this region and general value coding ventromedial prefrontal cortex (vmPFC) predicted choice behavior. These results provide evidence for a mechanism by which devaluation modulates a cognitive map of expected reward in OFC and thereby alters general value signals in vmPFC to guide goal-directed behavior. Copyright © 2017 the authors 0270-6474/17/372627-12$15.00/0.
When Chocolate Seeking Becomes Compulsion: Gene-Environment Interplay
Patella, Loris; Andolina, Diego; Valzania, Alessandro; Latagliata, Emanuele Claudio; Felsani, Armando; Pompili, Assunta; Gasbarri, Antonella; Puglisi-Allegra, Stefano; Ventura, Rossella
2015-01-01
Background Eating disorders appear to be caused by a complex interaction between environmental and genetic factors, and compulsive eating in response to adverse circumstances characterizes many eating disorders. Materials and Methods We compared compulsion-like eating in the form of conditioned suppression of palatable food-seeking in adverse situations in stressed C57BL/6J and DBA/2J mice, two well-characterized inbred strains, to determine the influence of gene-environment interplay on this behavioral phenotype. Moreover, we tested the hypothesis that low accumbal D2 receptor (R) availability is a genetic risk factor of food compulsion-like behavior and that environmental conditions that induce compulsive eating alter D2R expression in the striatum. To this end, we measured D1R and D2R expression in the striatum and D1R, D2R and α1R levels in the medial prefrontal cortex, respectively, by western blot. Results Exposure to environmental conditions induces compulsion-like eating behavior, depending on genetic background. This behavioral pattern is linked to decreased availability of accumbal D2R. Moreover, exposure to certain environmental conditions upregulates D2R and downregulates α1R in the striatum and medial prefrontal cortex, respectively, of compulsive animals. These findings confirm the function of gene-environment interplay in the manifestation of compulsive eating and support the hypothesis that low accumbal D2R availability is a “constitutive” genetic risk factor for compulsion-like eating behavior. Finally, D2R upregulation and α1R downregulation in the striatum and medial prefrontal cortex, respectively, are potential neuroadaptive responses that parallel the shift from motivated to compulsive eating. PMID:25781028
Lipska, Barbara K; Lerman, Daniel N; Khaing, Zin Z; Weickert, Cynthia Shannon; Weinberger, Daniel R
2003-07-01
We used in situ hybridization histochemistry to assess expression of dopamine receptors (D1R, D2R and D3R), neurotensin, proenkephalin and glutamate decarboxylase-67 (GAD67) in the prefrontal cortex, striatum, and/or nucleus accumbens in adult rats with neonatal ventral hippocampal (VH) lesions and in control animals after acute and chronic treatment with antipsychotic drugs clozapine and haloperidol. We also acquired these measures in a separate cohort of treatment-naïve sham and neonatally VH-lesioned rats used as an animal model of schizophrenia. Our results indicate that the neonatal VH lesion did not alter expression of D1R, D3R, neurotensin or proenkephalin expression in any brain region examined. However, D2R mRNA expression was down-regulated in the striatum, GAD67 mRNA was down-regulated in the prefrontal cortex and prodynorphin mRNA was up-regulated in the striatum of the VH-lesioned rats as compared with sham controls. Antipsychotic drugs did not alter expression of D1R, D2R or D3R receptor mRNAs but elevated neurotensin and proenkephalin expression in both groups of rats; patterns of changes were dependent on the duration of treatment and brain area examined. GAD67 mRNA was up-regulated by chronic antispychotics in the nucleus accumbens and the striatum and by chronic haloperidol in the prefrontal cortex in both sham and lesioned rats. These results indicate that the developmental VH lesion changed the striatal expression of D2R and prodynorphin and robustly compromised prefrontal GAD67 expression but did not modify drug-induced expression of any genes examined in this study.
Xu, Ling-Zhi; Xu, De-Feng; Han, Ying; Liu, Li-Jing; Sun, Cheng-Yu; Deng, Jia-Hui; Zhang, Ruo-Xi; Yuan, Ming; Zhang, Su-Zhen; Li, Zhi-Meng; Xu, Yi; Li, Jin-Sheng; Xie, Su-Hua; Li, Su-Xia; Zhang, Hong-Yan; Lu, Lin
2017-01-01
Morinda officinalis oligosaccharides have been reported to exert neuroprotective and antidepressant-like effects in the forced swim test in mice. However, the mechanisms that underlie the antidepressant-like effects of Morinda officinalis oligosaccharides are unclear. Chronic unpredictable stress and forced swim test were used to explore the antidepressant-like effects of Morinda officinalis oligosaccharides and resilience to stress in rats. The phosphoinositide-3 kinase inhibitor LY294002 was microinjected in the medial prefrontal cortex to explore the role of glycogen synthase kinase-3β in the antidepressant-like effects of Morinda officinalis oligosaccharides. The expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase 3β, β-catenin, and synaptic proteins was determined in the medial prefrontal cortex and the orbitofrontal cortex by western blot. We found that Morinda officinalis oligosaccharides effectively ameliorated chronic unpredictable stress-induced depression-like behaviors in the sucrose preference test and forced swim test. The Morinda officinalis oligosaccharides also significantly rescued chronic unpredictable stress-induced abnormalities in the brain-derived neurotrophic factor-glycogen synthase kinase-3β-β-catenin pathway and synaptic protein deficits in the medial prefrontal cortex but not orbitofrontal cortex. The activation of glycogen synthase kinase-3β by the phosphoinositide-3 kinase inhibitor LY294002 abolished the antidepressant-like effects of Morinda officinalis oligosaccharides in the forced swim test. Naïve rats that were treated with Morinda officinalis oligosaccharides exhibited resilience to chronic unpredictable stress, accompanied by increases in the expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase-3β, and β-catenin in the medial prefrontal cortex. Our findings indicate that the brain-derived neurotrophic factor-glycogen synthase kinase-3β-β-catenin pathway in the medial prefrontal cortex may underlie the antidepressant-like effect of Morinda officinalis oligosaccharides and resilience to stress. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Ottowitz, William E; Deckersbach, Thilo; Savage, Cary R; Lindquist, Martin A; Dougherty, Darin D
2010-01-01
To evaluate the functional integrity of brain regions underlying strategic mnemonic processing in patients with major depressive disorder, the authors administered a modified version of the California Verbal Learning Test to depressed patients during presentation of lists of unrelated words and, conversely, during presentation of lists of related words with and without orientation regarding the relatedness of the words (eight healthy females, IQ=122, and eight depressed females, IQ=107). Brain function evaluated across all three conditions showed that patients with major depressive disorder revealed activation of the right anterior cingulate cortex, left ventrolateral prefrontal cortex, both hippocampi, and the left orbitofrontal cortex. Further analysis showed that patients with major depressive disorder had greater activation of the right anterior cingulate cortex during semantic organization and the right ventrolateral prefrontal cortex during strategy initiation.
Ahn, Sung Jun; Kyeong, Sunghyon; Suh, Sang Hyun; Kim, Jae-Jin; Chung, Tae-Sub; Seok, Jeong-Ho
2016-11-14
Patients with major depressive disorder (MDD) present heterogeneous clinical symptoms, and childhood abuse is associated with deepening of psychopathology. The aim of this study was to identify structural brain abnormalities in MDD and to assess further differences in gray matter density (GMD) associated with childhood abuse in MDD. Differences in regional GMD between 34 MDD patients and 26 healthy controls were assessed using magnetic resonance imaging and optimized voxel-based morphometry. Within the MDD group, further comparisons were performed focusing on the experience of maltreatment during childhood (23 MDD with child abuse vs 11 MDD without child abuse). Compared with healthy controls, the MDD patient group showed decreased GMD in the bilateral orbitofrontal cortices, right superior frontal gyrus, right posterior cingulate gyrus, bilateral middle occipital gyri, and left cuneus. In addition, the patient group showed increased GMD in bilateral postcentral gyri, parieto-occipital cortices, putamina, thalami, and hippocampi, and left cerebellar declive and tuber of vermis. Within the MDD patient group, the subgroup with abuse showed a tendency of decreased GMD in right orbitofrontal cortex, but showed increased GMD in the left postcentral gyrus compared to the subgroup without abuse. Our findings suggest a complicated dysfunction of networks between cortical-subcortical circuits in MDD. In addition, increased GMD in postcentral gyrus and a possible reduction of GMD in the orbitofrontal cortex of MDD patients with abuse subgroup may be associated with abnormalities of body perception and emotional dysregulation.
Matricon, Julien; Seillier, Alexandre; Giuffrida, Andrea
2016-09-01
The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Sege, Christopher T; Bradley, Margaret M; Weymar, Mathias; Lang, Peter J
2017-05-30
fMRI studies of reward find increased neural activity in ventral striatum and medial prefrontal cortex (mPFC), whereas other regions, including the dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), and anterior insula, are activated when anticipating aversive exposure. Although these data suggest differential activation during anticipation of pleasant or of unpleasant exposure, they also arise in the context of different paradigms (e.g., preparation for reward vs. threat of shock) and participants. To determine overlapping and unique regions active during emotional anticipation, we compared neural activity during anticipation of pleasant or unpleasant exposure in the same participants. Cues signalled the upcoming presentation of erotic/romantic, violent, or everyday pictures while BOLD activity during the 9-s anticipatory period was measured using fMRI. Ventral striatum and a ventral mPFC subregion were activated when anticipating pleasant, but not unpleasant or neutral, pictures, whereas activation in other regions was enhanced when anticipating appetitive or aversive scenes. Copyright © 2017 Elsevier B.V. All rights reserved.
Shared Predisposition in the Association Between Cannabis Use and Subcortical Brain Structure.
Pagliaccio, David; Barch, Deanna M; Bogdan, Ryan; Wood, Phillip K; Lynskey, Michael T; Heath, Andrew C; Agrawal, Arpana
2015-10-01
Prior neuroimaging studies have suggested that alterations in brain structure may be a consequence of cannabis use. Siblings discordant for cannabis use offer an opportunity to use cross-sectional data to disentangle such causal hypotheses from shared effects of genetics and familial environment on brain structure and cannabis use. To determine whether cannabis use is associated with differences in brain structure in a large sample of twins/siblings and to examine sibling pairs discordant for cannabis use to separate potential causal and predispositional factors linking lifetime cannabis exposure to volumetric alterations. Cross-sectional diagnostic interview, behavioral, and neuroimaging data were collected from community sampling and established family registries from August 2012 to September 2014. This study included data from 483 participants (22-35 years old) enrolled in the ongoing Human Connectome Project, with 262 participants reporting cannabis exposure (ie, ever used cannabis in their lifetime). Cannabis exposure was measured with the Semi-Structured Assessment for the Genetics of Alcoholism. Whole-brain, hippocampus, amygdala, ventral striatum, and orbitofrontal cortex volumes were related to lifetime cannabis use (ever used, age at onset, and frequency of use) using linear regressions. Genetic (ρg) and environmental (ρe) correlations between cannabis use and brain volumes were estimated. Linear mixed models were used to examine volume differences in sex-matched concordant unexposed (n = 71 pairs), exposed (n = 81 pairs), or exposure discordant (n = 89 pairs) sibling pairs. Among 483 study participants, cannabis exposure was related to smaller left amygdala (approximately 2.3%; P = .007) and right ventral striatum (approximately 3.5%; P < .005) volumes. These volumetric differences were within the range of normal variation. The association between left amygdala volume and cannabis use was largely owing to shared genetic factors (ρg = -0.43; P = .004), while the origin of the association with right ventral striatum volumes was unclear. Importantly, brain volumes did not differ between sex-matched siblings discordant for use (fixed effect = -7.43; t = -0.93, P = .35). Both the exposed and unexposed siblings in pairs discordant for cannabis exposure showed reduced amygdala volumes relative to members of concordant unexposed pairs (fixed effect = 12.56; t = 2.97; P = .003). In this study, differences in amygdala volume in cannabis users were attributable to common predispositional factors, genetic or environmental in origin, with little support for causal influences. Causal influences, in isolation or in conjunction with predispositional factors, may exist for other brain regions (eg, ventral striatum) or at more severe levels of cannabis involvement and deserve further study.
Regional Brain Activity in Abstinent Methamphetamine Dependent Males Following Cue Exposure.
Malcolm, Robert; Myrick, Hugh; Li, Xingbao; Henderson, Scott; Brady, Kathleen T; George, Mark S; See, Ronald E
Neuroimaging of drug-associated cue presentations has aided in understanding the neurobiological substrates of craving and relapse for cocaine, alcohol, and nicotine. However, imaging of cue-reactivity in methamphetamine addiction has been much less studied. Nine caucasian male methamphetamine-dependent subjects and nine healthy controls were scanned in a Phillips 3.0T MRI scan when they viewed a randomized presentation of visual cues of methamphetamine, neutral objects, and rest conditions. Functional Imaging data were analyzed with Statistical Parametric Mapping software 5 (SPM 5). Methamphetamine subjects had significant brain activation in the ventral striatum and medial frontal cortex in comparison to meth pictures and neutral pictures in healthy controls (p<0.005, threshold 15 voxels). Interestingly the ventral striatum activation significantly correlated with the days since the last use of meth (r=-0.76, p=0.017). No significant activity was found in healthy control group. The preliminary data suggest that methamphetamine dependent subjects, when exposed to methamphetamine-associated visual cues, have increased brain activity in ventral striatum, caudate nucleus and medial frontal cortex which subserve craving, drug-seeking, and drug use.
Li, Xingbao; Du, Lian; Sahlem, Gregory L; Badran, Bashar W; Henderson, Scott; George, Mark S
2017-05-01
Previous studies reported that repetitive transcranial magnetic stimulation (rTMS) can reduce cue-elicited craving and decrease cigarette consumption in smokers. The mechanism of this effect however, remains unclear. We used resting-state functional magnetic resonance imaging (rsfMRI) to test the effect of rTMS in non-treatment seeking smokers. We used a single blinded, sham-controlled, randomized counterbalanced crossover design where participants underwent two visits separated by at least 1 week. Participants received active rTMS over the left dorsolateral prefrontal cortex (DLPFC) during one of their visits, and sham rTMS during their other visit. They had two rsFMRI scans before and after each rTMS session. We used the same rTMS stimulation parameters as in a previous study (10Hz, 5s-on, 10s-off, 100% resting motor threshold, 3000 pulses). Ten non-treatment-seeking, nicotine-dependent, cigarette smokers (6 women, an average age of 39.72 and an average cigarette per day of 17.30) finished the study. rsFMRI results demonstrate that as compared to a single session of sham rTMS, a single session of active rTMS inhibits brain activity in the right insula and thalamus in fractional amplitude of low frequency fluctuation (fALFF). For intrinsic brain connectivity comparisons, active TMS resulted in significantly decreased connectivity from the site of rTMS to the left orbitomedial prefrontal cortex. This data suggests that one session of rTMS can reduce activity in the right insula and right thalamus as measured by fALFF. The data also demonstrates that rTMS can reduce rsFC between the left DLPFC and the medial orbitofrontal cortex. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Sowman, Paul F.; Crain, Stephen; Harrison, Elisabeth; Johnson, Blake W.
2012-01-01
While stuttering is known to be characterized by anomalous brain activations during speech, very little data is available describing brain activations during stuttering. To our knowledge there are no reports describing brain activations that precede blocking. In this case report we present magnetoencephalographic data from a person who stutters…
Walton, Mark E; Chau, Bolton K H; Kennerley, Steven W
2015-02-01
Our environment and internal states are frequently complex, ambiguous and dynamic, meaning we need to have selection mechanisms to ensure we are basing our decisions on currently relevant information. Here, we review evidence that orbitofrontal (OFC) and ventromedial prefrontal cortex (VMPFC) play conserved, critical but distinct roles in this process. While OFC may use specific sensory associations to enhance task-relevant information, particularly in the context of learning, VMPFC plays a role in ensuring irrelevant information does not impinge on the decision in hand.
Affective neuroscience of pleasure: reward in humans and animals
2010-01-01
Introduction Pleasure and reward are generated by brain circuits that are largely shared between humans and other animals. Discussion Here, we survey some fundamental topics regarding pleasure mechanisms and explicitly compare humans and animals. Conclusion Topics surveyed include liking, wanting, and learning components of reward; brain coding versus brain causing of reward; subjective pleasure versus objective hedonic reactions; roles of orbitofrontal cortex and related cortex regions; subcortical hedonic hotspots for pleasure generation; reappraisals of dopamine and pleasure-electrode controversies; and the relation of pleasure to happiness. PMID:18311558
Frontotemporal networks and behavioral symptoms in primary progressive aphasia.
D'Anna, Lucio; Mesulam, Marsel M; Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Murphy, Declan; Wieneke, Christina; Martersteck, Adam; Cobia, Derin; Rogalski, Emily; Catani, Marco
2016-04-12
To determine if behavioral symptoms in patients with primary progressive aphasia (PPA) were associated with degeneration of a ventral frontotemporal network. We used diffusion tensor imaging tractography to quantify abnormalities of the uncinate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex. Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofrontal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls were recruited. In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent than the language deficits. Although all 3 tracts had structural pathology as determined by tractography, significant correlations with scores on the Frontal Behavioral Inventory were found only for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex was also correlated with these scores. Our findings indicate that damage to a frontotemporal network mediated by the uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA. © 2016 American Academy of Neurology.
Frontotemporal networks and behavioral symptoms in primary progressive aphasia
Mesulam, Marsel M.; Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Murphy, Declan; Wieneke, Christina; Martersteck, Adam; Cobia, Derin; Rogalski, Emily
2016-01-01
Objective: To determine if behavioral symptoms in patients with primary progressive aphasia (PPA) were associated with degeneration of a ventral frontotemporal network. Methods: We used diffusion tensor imaging tractography to quantify abnormalities of the uncinate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex. Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofrontal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls were recruited. Results: In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent than the language deficits. Although all 3 tracts had structural pathology as determined by tractography, significant correlations with scores on the Frontal Behavioral Inventory were found only for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex was also correlated with these scores. Conclusions: Our findings indicate that damage to a frontotemporal network mediated by the uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA. PMID:26992858
Neural Correlates of Appetite and Hunger-Related Evaluative Judgments
Piech, Richard M.; Lewis, Jade; Parkinson, Caroline H.; Owen, Adrian M.; Roberts, Angela C.; Downing, Paul E.; Parkinson, John A.
2009-01-01
How much we desire a meal depends on both the constituent foods and how hungry we are, though not every meal becomes more desirable with increasing hunger. The brain therefore needs to be able to integrate hunger and meal properties to compute the correct incentive value of a meal. The present study investigated the functional role of the amygdala and the orbitofrontal cortex in mediating hunger and dish attractiveness. Furthermore, it explored neural responses to dish descriptions particularly susceptible to value-increase following fasting. We instructed participants to rate how much they wanted food menu items while they were either hungry or sated, and compared the rating differences in these states. Our results point to the representation of food value in the amygdala, and to an integration of attractiveness with hunger level in the orbitofrontal cortex. Dishes particularly desirable during hunger activated the thalamus and the insula. Our results specify the functions of evaluative structures in the context of food attractiveness, and point to a complex neural representation of dish qualities which contribute to state-dependent value. PMID:19672296
Neural correlates of appetite and hunger-related evaluative judgments.
Piech, Richard M; Lewis, Jade; Parkinson, Caroline H; Owen, Adrian M; Roberts, Angela C; Downing, Paul E; Parkinson, John A
2009-08-12
How much we desire a meal depends on both the constituent foods and how hungry we are, though not every meal becomes more desirable with increasing hunger. The brain therefore needs to be able to integrate hunger and meal properties to compute the correct incentive value of a meal. The present study investigated the functional role of the amygdala and the orbitofrontal cortex in mediating hunger and dish attractiveness. Furthermore, it explored neural responses to dish descriptions particularly susceptible to value-increase following fasting. We instructed participants to rate how much they wanted food menu items while they were either hungry or sated, and compared the rating differences in these states. Our results point to the representation of food value in the amygdala, and to an integration of attractiveness with hunger level in the orbitofrontal cortex. Dishes particularly desirable during hunger activated the thalamus and the insula. Our results specify the functions of evaluative structures in the context of food attractiveness, and point to a complex neural representation of dish qualities which contribute to state-dependent value.
Tracking Emotional Valence: The Role of the Orbitofrontal Cortex
Goodkind, Madeleine S.; Sollberger, Marc; Gyurak, Anett; Rosen, Howard J.; Rankin, Katherine; Miller, Bruce; Levenson, Robert
2011-01-01
Successful navigation of the social world requires the ability to recognize and track emotions as they unfold and change dynamically. Neuroimaging and neurological studies of emotion recognition have primarily focused on the ability to identify the emotion shown in static photographs of facial expressions, showing correlations with the amygdala as well as temporal and frontal brain regions. In the current study we examined the neural correlates of continuously tracking dynamically-changing emotions. Fifty-nine patients with diverse neurodegenerative diseases used a rating dial to track continuously how positive or how negative the character in a film clip felt. Tracking accuracy was determined by comparing participants’ ratings with the ratings of 10 normal control participants. The relationship between tracking accuracy and regional brain tissue content was examined using voxel-based morphometry. Low tracking accuracy was primarily associated with gray matter loss in the right lateral orbitofrontal cortex (OFC). Our finding that the right OFC is critical to the ability to track dynamically-changing emotions is consistent with previous research showing right OFC involvement in both socioemotional understanding and modifying responding in changing situations. PMID:21425397
Dolcos, Sanda; Hu, Yifan; Iordan, Alexandru D; Moore, Matthew; Dolcos, Florin
2016-02-01
Converging evidence identifies trait optimism and the orbitofrontal cortex (OFC) as personality and brain factors influencing anxiety, but the nature of their relationships remains unclear. Here, the mechanisms underlying the protective role of trait optimism and of increased OFC volume against symptoms of anxiety were investigated in 61 healthy subjects, who completed measures of trait optimism and anxiety, and underwent structural scanning using magnetic resonance imaging. First, the OFC gray matter volume (GMV) was associated with increased optimism, which in turn was associated with reduced anxiety. Second, trait optimism mediated the relation between the left OFC volume and anxiety, thus demonstrating that increased GMV in this brain region protects against symptoms of anxiety through increased optimism. These results provide novel evidence about the brain-personality mechanisms protecting against anxiety symptoms in healthy functioning, and identify potential targets for preventive and therapeutic interventions aimed at reducing susceptibility and increasing resilience against emotional disturbances. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Learning to Select Actions with Spiking Neurons in the Basal Ganglia
Stewart, Terrence C.; Bekolay, Trevor; Eliasmith, Chris
2012-01-01
We expand our existing spiking neuron model of decision making in the cortex and basal ganglia to include local learning on the synaptic connections between the cortex and striatum, modulated by a dopaminergic reward signal. We then compare this model to animal data in the bandit task, which is used to test rodent learning in conditions involving forced choice under rewards. Our results indicate a good match in terms of both behavioral learning results and spike patterns in the ventral striatum. The model successfully generalizes to learning the utilities of multiple actions, and can learn to choose different actions in different states. The purpose of our model is to provide both high-level behavioral predictions and low-level spike timing predictions while respecting known neurophysiology and neuroanatomy. PMID:22319465
Liu, Lu; Xue, Gui; Potenza, Marc N; Zhang, Jin-Tao; Yao, Yuan-Wei; Xia, Cui-Cui; Lan, Jing; Ma, Shan-Shan; Fang, Xiao-Yi
2017-01-01
Risk-taking is purported to be central to addictive behaviors. However, for Internet gaming disorder (IGD), a condition conceptualized as a behavioral addiction, the neural processes underlying impaired decision-making (risk evaluation and outcome processing) related to gains and losses have not been systematically investigated. Forty-one males with IGD and 27 healthy comparison (HC) male participants were recruited, and the cups task was used to identify neural processes associated with gain- and loss-related risk- and outcome-processing in IGD. During risk evaluation, the IGD group, compared to the HC participants, showed weaker modulation for experienced risk within the bilateral dorsolateral prefrontal cortex (DLPFC) ( t = - 4.07; t = - 3.94; P FWE < 0.05) and inferior parietal lobule (IPL) ( t = - 4.08; t = - 4.08; P FWE < 0.05) for potential losses. The modulation of the left DLPFC and bilateral IPL activation were negatively related to addiction severity within the IGD group ( r = - 0.55; r = - 0.61; r = - 0.51; P FWE < 0.05). During outcome processing, the IGD group presented greater responses for the experienced reward within the ventral striatum, ventromedial prefrontal cortex, and orbitofrontal cortex (OFC) ( t = 5.04, P FWE < 0.05) for potential gains, as compared to HC participants. Within the IGD group, the increased reward-related activity in the right OFC was positively associated with severity of IGD ( r = 0.51, P FWE < 0.05). These results provide a neurobiological foundation for decision-making deficits in individuals with IGD and suggest an imbalance between hypersensitivity for reward and weaker risk experience and self-control for loss. The findings suggest a biological mechanism for why individuals with IGD may persist in game-seeking behavior despite negative consequences, and treatment development strategies may focus on targeting these neural pathways in this population.
Impaired Feedback Processing for Symbolic Reward in Individuals with Internet Game Overuse
Kim, Jinhee; Kim, Hackjin; Kang, Eunjoo
2017-01-01
Reward processing, which plays a critical role in adaptive behavior, is impaired in addiction disorders, which are accompanied by functional abnormalities in brain reward circuits. Internet gaming disorder, like substance addiction, is thought to be associated with impaired reward processing, but little is known about how it affects learning, especially when feedback is conveyed by less-salient motivational events. Here, using both monetary (±500 KRW) and symbolic (Chinese characters “right” or “wrong”) rewards and penalties, we investigated whether behavioral performance and feedback-related neural responses are altered in Internet game overuse (IGO) group. Using functional MRI, brain responses for these two types of reward/penalty feedback were compared between young males with problems of IGO (IGOs, n = 18, mean age = 22.2 ± 2.0 years) and age-matched control subjects (Controls, n = 20, mean age = 21.2 ± 2.1) during a visuomotor association task where associations were learned between English letters and one of four responses. No group difference was found in adjustment of error responses following the penalty or in brain responses to penalty, for either monetary or symbolic penalties. The IGO individuals, however, were more likely to fail to choose the response previously reinforced by symbolic (but not monetary) reward. A whole brain two-way ANOVA analysis for reward revealed reduced activations in the IGO group in the rostral anterior cingulate cortex/ventromedial prefrontal cortex (vmPFC) in response to both reward types, suggesting impaired reward processing. However, the responses to reward in the inferior parietal region and medial orbitofrontal cortex/vmPFC were affected by the types of reward in the IGO group. Unlike the control group, in the IGO group the reward response was reduced only for symbolic reward, suggesting lower attentional and value processing specific to symbolic reward. Furthermore, the more severe the Internet gaming overuse symptoms in the IGO group, the greater the activations of the ventral striatum for monetary relative to symbolic reward. These findings suggest that IGO is associated with bias toward motivationally salient reward, which would lead to poor goal-directed behavior in everyday life. PMID:29051739
Lamusuo, S; Hirvonen, J; Lindholm, P; Martikainen, I K; Hagelberg, N; Parkkola, R; Taiminen, T; Hietala, J; Helin, S; Virtanen, A; Pertovaara, A; Jääskeläinen, S K
2017-10-01
Repetitive transcranial magnetic stimulation (rTMS) at M1/S1 cortex has been shown to alleviate neuropathic pain. To investigate the possible neurobiological correlates of cortical neurostimulation for the pain relief. We studied the effects of M1/S1 rTMS on nociception, brain dopamine D2 and μ-opioid receptors using a randomized, sham-controlled, double-blinded crossover study design and 3D-positron emission tomography (PET). Ten healthy subjects underwent active and sham rTMS treatments to the right M1/S1 cortex with E-field navigated device. Dopamine D2 and μ-receptor availabilities were assessed with PET radiotracers [ 11 C]raclopride and [ 11 C]carfentanil after each rTMS treatment. Thermal quantitative sensory testing (QST), contact heat evoked potential (CHEP) and blink reflex (BR) recordings were performed between the PET scans. μ-Opioid receptor availability was lower after active than sham rTMS (P ≤ 0.0001) suggested release of endogenous opioids in the right ventral striatum, medial orbitofrontal, prefrontal and anterior cingulate cortices, and left insula, superior temporal gyrus, dorsolateral prefrontal cortex and precentral gyrus. There were no differences in striatal dopamine D2 receptor availability between active and sham rTMS, consistent with lack of long-lasting measurable dopamine release. Active rTMS potentiated the dopamine-regulated habituation of the BR compared to sham (P = 0.02). Thermal QST and CHEP remained unchanged after active rTMS. rTMS given to M1/S1 activates the endogenous opioid system in a wide brain network associated with processing of pain and other salient stimuli. Direct enhancement of top-down opioid-mediated inhibition may partly explain the clinical analgesic effects of rTMS. Neurobiological correlates of rTMS for the pain relief are unclear. rTMS on M1/S1 with 11 C-carfentanyl-PET activates endogenous opioids. Thermal and heat pain thresholds remain unchanged. rTMS induces top-down opioid-mediated inhibition but not change the sensory discrimination of painful stimuli. © 2017 European Pain Federation - EFIC®.
Pharmacological and therapeutic directions in ADHD: Specificity in the PFC.
Levy, Florence
2008-02-28
Recent directions in the treatment of ADHD have involved both a broadening of pharmacological perspectives to include nor-adrenergic as well as dopaminergic agents. A review of animal and human studies of pharmacological and therapeutic directions in ADHD suggests that the D1 receptor is a specific site for dopaminergic regulation of the PFC, but optimal levels of dopamine (DA) are required for beneficial effects on working memory. Animal and human studies indicate that the alpha-2A receptor is also important for prefrontal regulation, leaving open the question of the relative importance of these receptor sites. The therapeutic effects of ADHD medications in the prefrontal cortex have focused attention on the development of working memory capacity in ADHD. The actions of dopaminergic vs noradrenergic agents, currently available for the treatment of ADHD have overlapping, but different actions in the prefrontal cortex (PFC) and subcortical centers. While stimulants act on D1 receptors in the dorsolateral prefrontal cortex, they also have effects on D2 receptors in the corpus striatum and may also have serotonergic effects at orbitofrontal areas. At therapeutic levels, dopamine (DA) stimulation (through DAT transporter inhibition) decreases noise level acting on subcortical D2 receptors, while NE stimulation (through alpha-2A agonists) increases signal by acting preferentially in the PFC possibly on DAD1 receptors. On the other hand, alpha-2A noradrenergic transmission is more limited to the prefrontal cortex (PFC), and thus less likely to have motor or stereotypic side effects, while alpha-2B and alpha-2C agonists may have wider cortical effects. The data suggest a possible hierarchy of specificity in the current medications used in the treatment of ADHD, with guanfacine likely to be most specific for the treatment of prefrontal attentional and working memory deficits. Stimulants may have broader effects on both vigilance and motor impulsivity, depending on dose levels, while atomoxetine may have effects on attention, anxiety, social affect, and sedation via noradrenergic transmission. At a theoretical level, the advent of possible specific alpha-2A noradrenergic therapies has posed the question of the role of working memory in ADHD. Head to head comparisons of stimulant and noradrenergic alpha-2A, alpha-2B and alpha-2C agonists, utilizing vigilance and affective measures should help to clarify pharmacological and therapeutic differences.
Woodward, Neil D; Cowan, Ronald L; Park, Sohee; Ansari, M Sib; Baldwin, Ronald M; Li, Rui; Doop, Mikisha; Kessler, Robert M; Zald, David H
2011-04-01
Schizotypal personality traits are associated with schizophrenia spectrum disorders, and individuals with schizophrenia spectrum disorders demonstrate increased dopamine transmission in the striatum. The authors sought to determine whether individual differences in normal variation in schizotypal traits are correlated with dopamine transmission in the striatum and in extrastriatal brain regions. Sixty-three healthy volunteers with no history of psychiatric illness completed the Schizotypal Personality Questionnaire and underwent positron emission tomography imaging with [(18)F]fallypride at baseline and after administration of oral d-amphetamine (0.43 mg/kg). Dopamine release, quantified by subtracting each participant's d-amphetamine scan from his or her baseline scan, was correlated with Schizotypal Personality Questionnaire total and factor scores using region-of-interest and voxel-wise analyses. Dopamine release in the striatum was positively correlated with overall schizotypal traits. The association was especially robust in the associative subdivision of the striatum. Voxel-wise analyses identified additional correlations between dopamine release and schizotypal traits in the left middle frontal gyrus and left supramarginal gyrus. Exploratory analyses of Schizotypal Personality Questionnaire factor scores revealed correlations between dopamine release and disorganized schizotypal traits in the striatum, thalamus, medial prefrontal cortex, temporal lobe, insula, and inferior frontal cortex. The association between dopamine signaling and psychosis phenotypes extends to individual differences in normal variation in schizotypal traits and involves dopamine transmission in both striatal and extrastriatal brain regions. Amphetamine-induced dopamine release may be a useful endophenotype for investigating the genetic basis of schizophrenia spectrum disorders.
Striatum on the anxiety map: Small detours into adolescence
Lago, Tiffany; Davis, Andrew; Grillon, Christian; Ernst, Monique
2016-01-01
Adolescence is the most sensitive period for the development of pathological anxiety. Moreover, specific neural changes associated with the striatum might be related to adolescent vulnerability to anxiety. Up to now, the study of anxiety has primarily focused on the amygdala, bed nucleus of the stria terminalis (BNST), hippocampus and ventromedial prefrontal cortex (vmPFC), while the striatum has typically not been considered as part of the anxiety system. This review proposes the addition of the striatum, a complex, multi-component structure, to the anxiety network by underscoring two lines of research. First, the co-occurrence of the adolescent striatal development with the peak vulnerability of adolescents to anxiety disorders might potentially reflect a causal relationship. Second, the recognition of the role of the striatum in fundamental behavioral processes that do affect anxiety supports the putative importance of the striatum in anxiety. These behavioral processes include (1) attention, (2) conditioning/prediction error, and (3) motivation. This review proposes a simplistic schematic representation of the anxiety circuitry that includes the striatum, and aims to promote further work in this direction, as the role of the striatum in shaping an anxiety phenotype during adolescence could have critical implications for understanding and preventing the peak onset of anxiety disorders during this period. PMID:27276526