Sample records for stride interval fluctuation

  1. How to Sync to the Beat of a Persistent Fractal Metronome without Falling Off the Treadmill?

    PubMed Central

    Roerdink, Melvyn; Daffertshofer, Andreas; Marmelat, Vivien; Beek, Peter J.

    2015-01-01

    In rehabilitation, rhythmic acoustic cues are often used to improve gait. However, stride-time fluctuations become anti-persistent with such pacing, thereby deviating from the characteristic persistent long-range correlations in stride times of self-paced walking healthy adults. Recent studies therefore experimented with metronomes with persistence in interbeat intervals and successfully evoked persistent stride-time fluctuations. The objective of this study was to examine how participants couple their gait to a persistent metronome, evoking persistently longer or shorter stride times over multiple consecutive strides, without wandering off the treadmill. Twelve healthy participants walked on a treadmill in self-paced, isochronously paced and non-isochronously paced conditions, the latter with anti-persistent, uncorrelated and persistent correlations in interbeat intervals. Stride-to-stride fluctuations of stride times, stride lengths and stride speeds were assessed with detrended fluctuation analysis, in conjunction with an examination of the coupling between stride times and stride lengths. Stride-speed fluctuations were anti-persistent for all conditions. Stride-time and stride-length fluctuations were persistent for self-paced walking and anti-persistent for isochronous pacing. Both stride times and stride lengths changed from anti-persistence to persistence over the four non-isochronous metronome conditions, accompanied by an increasingly stronger coupling between these gait parameters, with peak values for the persistent metronomes. These results revealed that participants were able to follow the beat of a persistent metronome without falling off the treadmill by strongly coupling stride-length fluctuations to the stride-time fluctuations elicited by persistent metronomes, so as to prevent large positional displacements along the treadmill. For self-paced walking, in contrast, this coupling was very weak. In combination, these results challenge the premise that persistent metronomes in gait rehabilitation would evoke stride-to-stride dynamics reminiscent of self-paced walking healthy adults. Future studies are recommended to include an analysis of the interrelation between stride times and stride lengths in addition to the correlational structure of either one in isolation. PMID:26230254

  2. How to Sync to the Beat of a Persistent Fractal Metronome without Falling Off the Treadmill?

    PubMed

    Roerdink, Melvyn; Daffertshofer, Andreas; Marmelat, Vivien; Beek, Peter J

    2015-01-01

    In rehabilitation, rhythmic acoustic cues are often used to improve gait. However, stride-time fluctuations become anti-persistent with such pacing, thereby deviating from the characteristic persistent long-range correlations in stride times of self-paced walking healthy adults. Recent studies therefore experimented with metronomes with persistence in interbeat intervals and successfully evoked persistent stride-time fluctuations. The objective of this study was to examine how participants couple their gait to a persistent metronome, evoking persistently longer or shorter stride times over multiple consecutive strides, without wandering off the treadmill. Twelve healthy participants walked on a treadmill in self-paced, isochronously paced and non-isochronously paced conditions, the latter with anti-persistent, uncorrelated and persistent correlations in interbeat intervals. Stride-to-stride fluctuations of stride times, stride lengths and stride speeds were assessed with detrended fluctuation analysis, in conjunction with an examination of the coupling between stride times and stride lengths. Stride-speed fluctuations were anti-persistent for all conditions. Stride-time and stride-length fluctuations were persistent for self-paced walking and anti-persistent for isochronous pacing. Both stride times and stride lengths changed from anti-persistence to persistence over the four non-isochronous metronome conditions, accompanied by an increasingly stronger coupling between these gait parameters, with peak values for the persistent metronomes. These results revealed that participants were able to follow the beat of a persistent metronome without falling off the treadmill by strongly coupling stride-length fluctuations to the stride-time fluctuations elicited by persistent metronomes, so as to prevent large positional displacements along the treadmill. For self-paced walking, in contrast, this coupling was very weak. In combination, these results challenge the premise that persistent metronomes in gait rehabilitation would evoke stride-to-stride dynamics reminiscent of self-paced walking healthy adults. Future studies are recommended to include an analysis of the interrelation between stride times and stride lengths in addition to the correlational structure of either one in isolation.

  3. When Human Walking is a Random Walk

    NASA Astrophysics Data System (ADS)

    Hausdorff, J. M.

    1998-03-01

    The complex, hierarchical locomotor system normally does a remarkable job of controlling an inherently unstable, multi-joint system. Nevertheless, the stride interval --- the duration of a gait cycle --- fluctuates from one stride to the next, even under stationary conditions. We used random walk analysis to study the dynamical properties of these fluctuations under normal conditions and how they change with disease and aging. Random walk analysis of the stride-to-stride fluctuations of healthy, young adult men surprisingly reveals a self-similar pattern: fluctuations at one time scale are statistically similar to those at multiple other time scales (Hausdorff et al, J Appl Phsyiol, 1995). To study the stability of this fractal property, we analyzed data obtained from healthy subjects who walked for 1 hour at their usual pace, as well as at slower and faster speeds. The stride interval fluctuations exhibited long-range correlations with power-law decay for up to a thousand strides at all three walking rates. In contrast, during metronomically-paced walking, these long-range correlations disappeared; variations in the stride interval were uncorrelated and non-fractal (Hausdorff et al, J Appl Phsyiol, 1996). To gain insight into the mechanism(s) responsible for this fractal property, we examined the effects of aging and neurological impairment. Using detrended fluctuation analysis (DFA), we computed α, a measure of the degree to which one stride interval is correlated with previous and subsequent intervals over different time scales. α was significantly lower in healthy elderly subjects compared to young adults (p < .003) and in subjects with Huntington's disease, a neuro-degenerative disorder of the central nervous system, compared to disease-free controls (p < 0.005) (Hausdorff et al, J Appl Phsyiol, 1997). α was also significantly related to degree of functional impairment in subjects with Huntington's disease (r=0.78). Recently, we have observed that just as there are changes with α during aging, there also changes with development. Apparently, the fractal scaling of walking does not become mature until children are eleven years old. Conclusions: The fractal dynamics of spontaneous stride interval fluctuations are normally quite robust and are apparently intrinsic to the healthy adult locomotor system. However, alterations in this fractal scaling property are associated with impairment in central nervous system control, aging and neural development.

  4. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Mitchell, S. L.; Firtion, R.; Peng, C. K.; Cudkowicz, M. E.; Wei, J. Y.; Goldberger, A. L.

    1997-01-01

    Fluctuations in the duration of the gait cycle (the stride interval) display fractal dynamics and long-range correlations in healthy young adults. We hypothesized that these stride-interval correlations would be altered by changes in neurological function associated with aging and certain disease states. To test this hypothesis, we compared the stride-interval time series of 1) healthy elderly subjects and young controls and of 2) subjects with Huntington's disease and healthy controls. Using detrended fluctuation analysis we computed alpha, a measure of the degree to which one stride interval is correlated with previous and subsequent intervals over different time scales. The scaling exponent alpha was significantly lower in elderly subjects compared with young subjects (elderly: 0.68 +/- 0.14; young: 0.87 +/- 0.15; P < 0.003). The scaling exponent alpha was also smaller in the subjects with Huntington's disease compared with disease-free controls (Huntington's disease: 0.60 +/- 0.24; controls: 0.88 +/-0.17; P < 0.005). Moreover, alpha was linearly related to degree of functional impairment in subjects with Huntington's disease (r = 0.78, P < 0.0005). These findings demonstrate that strike-interval fluctuations are more random (i.e., less correlated) in elderly subjects and in subjects with Huntington's disease. Abnormal alterations in the fractal properties of gait dynamics are apparently associated with changes in central nervous system control.

  5. Ambiguity domain-based identification of altered gait pattern in ALS disorder

    NASA Astrophysics Data System (ADS)

    Sugavaneswaran, L.; Umapathy, K.; Krishnan, S.

    2012-08-01

    The onset of a neurological disorder, such as amyotrophic lateral sclerosis (ALS), is so subtle that the symptoms are often overlooked, thereby ruling out the option of early detection of the abnormality. In the case of ALS, over 75% of the affected individuals often experience awkwardness when using their limbs, which alters their gait, i.e. stride and swing intervals. The aim of this work is to suitably represent the non-stationary characteristics of gait (fluctuations in stride and swing intervals) in order to facilitate discrimination between normal and ALS subjects. We define a simple-yet-representative feature vector space by exploiting the ambiguity domain (AD) to achieve efficient classification between healthy and pathological gait stride interval. The stride-to-stride fluctuations and the swing intervals of 16 healthy control and 13 ALS-affected subjects were analyzed. Three features that are representative of the gait signal characteristics were extracted from the AD-space and are fed to linear discriminant analysis and neural network classifiers, respectively. Overall, maximum accuracies of 89.2% (LDA) and 100% (NN) were obtained in classifying the ALS gait.

  6. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait

    NASA Technical Reports Server (NTRS)

    Hausdorff, Jeffrey M.; Peng, C.-K.; Ladin, Zvi; Wei, Jeanne Y.; Goldberger, Ary L.

    1995-01-01

    Complex fluctuation of unknown origin appear in the normal gait pattern. These fluctuations might be described as being (1) uncorrelated white noise, (2) short-range correlations, or (3) long-range correlations with power-law scaling. To test these possibilities, the stride interval of 10 healthy young men was measured as they walked for 9 min at their usual rate. From these time series we calculated scaling indexes by using a modified random walk analysis and power spectral analysis. Both indexes indicated the presence of long-range self-similar correlations extending over hundreds of steps; the stride interval at any time depended on the stride interval at remote previous times, and this dependence decayed in a scale-free (fractallike) power-law fashion. These scaling indexes were significantly different from those obtained after random shuffling of the original time series, indicating the importance of the sequential ordering of the stride interval. We demonstrate that conventional models of gait generation fail to reproduce the observed scaling behavior and introduce a new type of central pattern generator model that sucessfully accounts for the experimentally observed long-range correlations.

  7. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    PubMed

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  8. Persistent Fluctuations in Stride Intervals under Fractal Auditory Stimulation

    PubMed Central

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J.; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals. PMID:24651455

  9. Possible biomechanical origins of the long-range correlations in stride intervals of walking

    NASA Astrophysics Data System (ADS)

    Gates, Deanna H.; Su, Jimmy L.; Dingwell, Jonathan B.

    2007-07-01

    When humans walk, the time duration of each stride varies from one stride to the next. These temporal fluctuations exhibit long-range correlations. It has been suggested that these correlations stem from higher nervous system centers in the brain that control gait cycle timing. Existing proposed models of this phenomenon have focused on neurophysiological mechanisms that might give rise to these long-range correlations, and generally ignored potential alternative mechanical explanations. We hypothesized that a simple mechanical system could also generate similar long-range correlations in stride times. We modified a very simple passive dynamic model of bipedal walking to incorporate forward propulsion through an impulsive force applied to the trailing leg at each push-off. Push-off forces were varied from step to step by incorporating both “sensory” and “motor” noise terms that were regulated by a simple proportional feedback controller. We generated 400 simulations of walking, with different combinations of sensory noise, motor noise, and feedback gain. The stride time data from each simulation were analyzed using detrended fluctuation analysis to compute a scaling exponent, α. This exponent quantified how each stride interval was correlated with previous and subsequent stride intervals over different time scales. For different variations of the noise terms and feedback gain, we obtained short-range correlations (α<0.5), uncorrelated time series (α=0.5), long-range correlations (0.5<α<1.0), or Brownian motion (α>1.0). Our results indicate that a simple biomechanical model of walking can generate long-range correlations and thus perhaps these correlations are not a complex result of higher level neuronal control, as has been previously suggested.

  10. Computing the variations in the self-similar properties of the various gait intervals in Parkinson disease patients.

    PubMed

    Manjeri Keloth, Sana; Arjunan, Sridhar P; Kumar, Dinesh

    2017-07-01

    This study has investigated the stride, swing, stance and double support intervals of gait for Parkinson's disease (PD) patients with different levels of severity. Self-similar properties of the gait signal were analyzed to investigate the changes in the gait pattern of the healthy and PD patients. To understand the self-similar property, detrended fluctuation analysis was performed. The analysis shows that the PD patients have less defined gait when compared to healthy. The study also shows that among the stance and swing phase of stride interval, the self-similarity is less for swing interval when compared to the stance interval of gait and decreases with the severity of gait. Also, PD patients show decreased self-similar patterns in double support interval of gait. This suggest that there are less rhythmic gait intervals and a sense of urgency to remain in support phase of gait by the PD patients.

  11. GAIT DYNAMICS, FRACTALS AND FALLS: FINDING MEANING IN THE STRIDE-TO-STRIDE FLUCTUATIONS OF HUMAN WALKING

    PubMed Central

    Hausdorff, Jeffrey M

    2007-01-01

    Until recently, quantitative studies of walking have typically focused on properties of a typical or average stride, ignoring the stride-to-stride fluctuations and considering these fluctuations to be noise. Work over the past two decades has demonstrated, however, that the alleged noise actually conveys important information. The magnitude of the stride-to-stride fluctuations and their changes over time during a walk – gait dynamics – may be useful in understanding the physiology of gait, in quantifying age-related and pathologic alterations in the locomotor control system, and in augmenting objective measurement of mobility and functional status Indeed, alterations in gait dynamics may help to determine disease severity, medication utility, and fall risk, and to objectively document improvements in response to therapeutic interventions, above and beyond what can be gleaned from measures based on the average, typical stride. This review discusses support for the idea that gait dynamics has meaning and may be useful in providing insight into the neural control of locomtion and for enhancing functional assessment of aging, chronic disease, and their impact on mobility. PMID:17618701

  12. A comparative analysis of spectral exponent estimation techniques for 1/fβ processes with applications to the analysis of stride interval time series

    PubMed Central

    Schaefer, Alexander; Brach, Jennifer S.; Perera, Subashan; Sejdić, Ervin

    2013-01-01

    Background The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f) = 1/fβ. The scaling exponent β is thus often interpreted as a “biomarker” of relative health and decline. New Method This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. Results The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Comparison with Existing Methods: Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. Conclusions The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. PMID:24200509

  13. A comparative analysis of spectral exponent estimation techniques for 1/f(β) processes with applications to the analysis of stride interval time series.

    PubMed

    Schaefer, Alexander; Brach, Jennifer S; Perera, Subashan; Sejdić, Ervin

    2014-01-30

    The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f)=1/f(β). The scaling exponent β is thus often interpreted as a "biomarker" of relative health and decline. This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effect of Interpersonal Interaction on Festinating Gait Rehabilitation in Patients with Parkinson’s Disease

    PubMed Central

    Uchitomi, Hirotaka; Ogawa, Ken-ichiro; Orimo, Satoshi; Wada, Yoshiaki; Miyake, Yoshihiro

    2016-01-01

    Although human walking gait rhythms are generated by native individual gait dynamics, these gait dynamics change during interactions between humans. A typical phenomenon is synchronization of gait rhythms during cooperative walking. Our previous research revealed that fluctuation characteristics in stride interval of subjects with Parkinson’s disease changed from random to 1/f fluctuation as fractal characteristics during cooperative walking with the gait assist system Walk-Mate, which emulates a human interaction using interactive rhythmic cues. Moreover, gait dynamics were relearned through Walk-Mate gait training. However, the system’s clinical efficacy was unclear because the previous studies did not focus on specific gait rhythm disorder symptoms. Therefore, this study aimed to evaluate the effect of Walk-Mate on festinating gait among subjects with Parkinson’s disease. Three within-subject experimental conditions were used: (1) preinteraction condition, (2) interaction condition, and (3) postinteraction condition. The only difference between conditions was the interactive rhythmic cues generated by Walk-Mate. Because subjects with festinating gait gradually and involuntarily decreased their stride interval, the regression slope of stride interval as an index of severity of preinteraction festinating gait was elevated. The regression slope in the interaction condition was more gradual than during the preinteraction condition, indicating that the interactive rhythmic cues contributed to relieving festinating gait and stabilizing gait dynamics. Moreover, the gradual regression slope was carried over to the postinteraction condition, indicating that subjects with festinating gait have the potential to relearn stable gait dynamics. These results suggest that disordered gait dynamics are clinically restored through interactive rhythmic cues and that Walk-Mate may have the potential to assist therapists in more effective rehabilitation. Trial Registration: UMIN Clinical Trials Registry UMIN000012591 PMID:27253376

  15. Effect of Interpersonal Interaction on Festinating Gait Rehabilitation in Patients with Parkinson's Disease.

    PubMed

    Uchitomi, Hirotaka; Ogawa, Ken-Ichiro; Orimo, Satoshi; Wada, Yoshiaki; Miyake, Yoshihiro

    2016-01-01

    Although human walking gait rhythms are generated by native individual gait dynamics, these gait dynamics change during interactions between humans. A typical phenomenon is synchronization of gait rhythms during cooperative walking. Our previous research revealed that fluctuation characteristics in stride interval of subjects with Parkinson's disease changed from random to 1/f fluctuation as fractal characteristics during cooperative walking with the gait assist system Walk-Mate, which emulates a human interaction using interactive rhythmic cues. Moreover, gait dynamics were relearned through Walk-Mate gait training. However, the system's clinical efficacy was unclear because the previous studies did not focus on specific gait rhythm disorder symptoms. Therefore, this study aimed to evaluate the effect of Walk-Mate on festinating gait among subjects with Parkinson's disease. Three within-subject experimental conditions were used: (1) preinteraction condition, (2) interaction condition, and (3) postinteraction condition. The only difference between conditions was the interactive rhythmic cues generated by Walk-Mate. Because subjects with festinating gait gradually and involuntarily decreased their stride interval, the regression slope of stride interval as an index of severity of preinteraction festinating gait was elevated. The regression slope in the interaction condition was more gradual than during the preinteraction condition, indicating that the interactive rhythmic cues contributed to relieving festinating gait and stabilizing gait dynamics. Moreover, the gradual regression slope was carried over to the postinteraction condition, indicating that subjects with festinating gait have the potential to relearn stable gait dynamics. These results suggest that disordered gait dynamics are clinically restored through interactive rhythmic cues and that Walk-Mate may have the potential to assist therapists in more effective rehabilitation. UMIN Clinical Trials Registry UMIN000012591.

  16. Gait consistency over a 7-day interval in people with Parkinson's disease.

    PubMed

    Urquhart, D M; Morris, M E; Iansek, R

    1999-06-01

    To evaluate the consistency of temporal and spatial parameters of the walking pattern in subjects with idiopathic Parkinson's disease (PD) over a 7-day interval during the "on" phase of the levodopa medication cycle. Walking patterns were measured on a 12-meter walkway at the Kingston Gait Laboratory, Cheltenham, using a computerized stride analyzer. Sixteen subjects (7 women, 9 men) with PD recruited from the Movement Disorders Clinic at Kingston Centre. Speed of walking, stride length, cadence, and the percentage of the walking cycle spent in the double limb support phase of gait were measured, together with the level of disability as indexed by the modified Webster scale. Product-moment correlation coefficients and intraclass correlation coefficients (ICC 2,1) for repeat measures over a 7-day interval were high for speed (r = .90; ICC = .93), cadence (r = .90; ICC = .86), and stride length (r = 1.00; ICC = .97) and moderate for double limb support duration after removal of outliers (r = .75; ICC = .73); 95% confidence intervals for the change scores were within clinically acceptable limits for all variables. The mean modified Webster score was 11.4 on the first day and 10.1 7 days later. The gait pattern and level of disability in subjects with PD without severe motor fluctuations remained stable over a 1-week period when optimal medication prevailed.

  17. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Lertratanakul, A.; Cudkowicz, M. E.; Peterson, A. L.; Kaliton, D.; Goldberger, A. L.

    2000-01-01

    Amyotrophic lateral sclerosis (ALS) is a disorder marked by loss of motoneurons. We hypothesized that subjects with ALS would have an altered gait rhythm, with an increase in both the magnitude of the stride-to-stride fluctuations and perturbations in the fluctuation dynamics. To test for this locomotor instability, we quantitatively compared the gait rhythm of subjects with ALS with that of normal controls and with that of subjects with Parkinson's disease (PD) and Huntington's disease (HD), pathologies of the basal ganglia. Subjects walked for 5 min at their usual pace wearing an ankle-worn recorder that enabled determination of the duration of each stride and of stride-to-stride fluctuations. We found that the gait of patients with ALS is less steady and more temporally disorganized compared with that of healthy controls. In addition, advanced ALS, HD, and PD were associated with certain common, as well as apparently distinct, features of altered stride dynamics. Thus stride-to-stride control of gait rhythm is apparently compromised with ALS. Moreover, a matrix of markers based on gait dynamics may be useful in characterizing certain pathologies of motor control and, possibly, in quantitatively monitoring disease progression and evaluating therapeutic interventions.

  18. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking

    PubMed Central

    2011-01-01

    Background Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed. Methods Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals. Results TW did not modify kinematic gait variability as compared to OW (multivariate T2, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T2 p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94). Conclusions Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design. PMID:21345241

  19. Investigating the correlation between paediatric stride interval persistence and gross energy expenditure.

    PubMed

    Fairley, Jillian A; Sejdić, Ervin; Chau, Tom

    2010-02-26

    Stride interval persistence, a term used to describe the correlation structure of stride interval time series, is thought to provide insight into neuromotor control, though its exact clinical meaning has not yet been realized. Since human locomotion is shaped by energy efficient movements, it has been hypothesized that stride interval dynamics and energy expenditure may be inherently tied, both having demonstrated similar sensitivities to age, disease, and pace-constrained walking. This study tested for correlations between stride interval persistence and measures of energy expenditure including mass-specific gross oxygen consumption per minute (VO₂), mass-specific gross oxygen cost per meter (VO₂) and heart rate (HR). Metabolic and stride interval data were collected from 30 asymptomatic children who completed one 10-minute walking trial under each of the following conditions: (i) overground walking, (ii) hands-free treadmill walking, and (iii) handrail-supported treadmill walking. Stride interval persistence was not significantly correlated with (p > 0.32), VO₂ (p > 0.18) or HR (p > 0.56). No simple linear dependence exists between stride interval persistence and measures of gross energy expenditure in asymptomatic children when walking overground and on a treadmill.

  20. Identifying Stride-To-Stride Control Strategies in Human Treadmill Walking

    PubMed Central

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2015-01-01

    Variability is ubiquitous in human movement, arising from internal and external noise, inherent biological redundancy, and from the neurophysiological control actions that help regulate movement fluctuations. Increased walking variability can lead to increased energetic cost and/or increased fall risk. Conversely, biological noise may be beneficial, even necessary, to enhance motor performance. Indeed, encouraging more variability actually facilitates greater improvements in some forms of locomotor rehabilitation. Thus, it is critical to identify the fundamental principles humans use to regulate stride-to-stride fluctuations in walking. This study sought to determine how humans regulate stride-to-stride fluctuations in stepping movements during treadmill walking. We developed computational models based on pre-defined goal functions to compare if subjects, from each stride to the next, tried to maintain the same speed as the treadmill, or instead stay in the same position on the treadmill. Both strategies predicted average behaviors empirically indistinguishable from each other and from that of humans. These strategies, however, predicted very different stride-to-stride fluctuation dynamics. Comparisons to experimental data showed that human stepping movements were generally well-predicted by the speed-control model, but not by the position-control model. Human subjects also exhibited no indications they corrected deviations in absolute position only intermittently: i.e., closer to the boundaries of the treadmill. Thus, humans clearly do not adopt a control strategy whose primary goal is to maintain some constant absolute position on the treadmill. Instead, humans appear to regulate their stepping movements in a way most consistent with a strategy whose primary goal is to try to maintain the same speed as the treadmill at each consecutive stride. These findings have important implications both for understanding how biological systems regulate walking in general and for being able to harness these mechanisms to develop more effective rehabilitation interventions to improve locomotor performance. PMID:25910253

  1. Nonlinear dynamical model of human gait

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Scafetta, Nicola

    2003-05-01

    We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way.

  2. How humans use visual optic flow to regulate stepping during walking.

    PubMed

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Stride-to-stride variability and complexity between novice and experienced runners during a prolonged run at anaerobic threshold speed.

    PubMed

    Mo, Shiwei; Chow, Daniel H K

    2018-05-19

    Motor control, related to running performance and running related injuries, is affected by progression of fatigue during a prolonged run. Distance runners are usually recommended to train at or slightly above anaerobic threshold (AT) speed for improving performance. However, running at AT speed may result in accelerated fatigue. It is not clear how one adapts running gait pattern during a prolonged run at AT speed and if there are differences between runners with different training experience. To compare characteristics of stride-to-stride variability and complexity during a prolonged run at AT speed between novice runners (NR) and experienced runners (ER). Both NR (n = 17) and ER (n = 17) performed a treadmill run for 31 min at his/her AT speed. Stride interval dynamics was obtained throughout the run with the middle 30 min equally divided into six time intervals (denoted as T1, T2, T3, T4, T5 and T6). Mean, coefficient of variation (CV) and scaling exponent alpha of stride intervals were calculated for each interval of each group. This study revealed mean stride interval significantly increased with running time in a non-linear trend (p<0.001). The stride interval variability (CV) maintained relatively constant for NR (p = 0.22) and changed nonlinearly for ER (p = 0.023) throughout the run. Alpha was significantly different between groups at T2, T5 and T6, and nonlinearly changed with running time for both groups with slight differences. These findings provided insights into how the motor control system adapts to progression of fatigue and evidences that long-term training enhances motor control. Although both ER and NR could regulate gait complexity to maintain AT speed throughout the prolonged run, ER also regulated stride interval variability to achieve the goal. Copyright © 2018. Published by Elsevier B.V.

  4. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations

    NASA Astrophysics Data System (ADS)

    Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L.

    2001-12-01

    We present a random walk, fractal analysis of the stride-to-stride fluctuations in the human gait rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over hundreds of strides. This fractal scaling changes characteristically with maturation in children and older adults and becomes almost completely uncorrelated with certain neurologic diseases. Stochastic modeling of the gait rhythm dynamics, based on transitions between different “neural centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model parameter, the hopping (transition) range, the model can describe alterations in gait dynamics from childhood to adulthood - including a decrease in the correlation and volatility exponents with maturation.

  5. Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.

    PubMed

    Rhea, Christopher K; Kiefer, Adam W; D'Andrea, Susan E; Warren, William H; Aaron, Roy K

    2014-08-01

    Fractal patterns characterize healthy biological systems and are considered to reflect the ability of the system to adapt to varying environmental conditions. Previous research has shown that fractal patterns in gait are altered following natural aging or disease, and this has potential negative consequences for gait adaptability that can lead to increased risk of injury. However, the flexibility of a healthy neurological system to exhibit different fractal patterns in gait has yet to be explored, and this is a necessary step toward understanding human locomotor control. Fifteen participants walked for 15min on a treadmill, either in the absence of a visual stimulus or while they attempted to couple the timing of their gait with a visual metronome that exhibited a persistent fractal pattern (contained long-range correlations) or a random pattern (contained no long-range correlations). The stride-to-stride intervals of the participants were recorded via analog foot pressure switches and submitted to detrended fluctuation analysis (DFA) to determine if the fractal patterns during the visual metronome conditions differed from the baseline (no metronome) condition. DFA α in the baseline condition was 0.77±0.09. The fractal patterns in the stride-to-stride intervals were significantly altered when walking to the fractal metronome (DFA α=0.87±0.06) and to the random metronome (DFA α=0.61±0.10) (both p<.05 when compared to the baseline condition), indicating that a global change in gait dynamics was observed. A variety of strategies were identified at the local level with a cross-correlation analysis, indicating that local behavior did not account for the consistent global changes. Collectively, the results show that a gait dynamics can be shifted in a prescribed manner using a visual stimulus and the shift appears to be a global phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials

    PubMed Central

    Liebherr, Magnus; Haas, Christian T.

    2014-01-01

    Variability indicates motor control disturbances and is suitable to identify gait pathologies. It can be quantified by linear parameters (amplitude estimators) and more sophisticated nonlinear methods (structural information). Detrended Fluctuation Analysis (DFA) is one method to measure structural information, e.g., from stride time series. Recently, an improved method, Adaptive Fractal Analysis (AFA), has been proposed. This method has not been applied to gait data before. Fractal scaling methods (FS) require long stride-to-stride data to obtain valid results. However, in clinical studies, it is not usual to measure a large number of strides (e.g., strides). Amongst others, clinical gait analysis is limited due to short walkways, thus, FS seem to be inapplicable. The purpose of the present study was to evaluate FS under clinical conditions. Stride time data of five self-paced walking trials ( strides each) of subjects with PD and a healthy control group (CG) was measured. To generate longer time series, stride time sequences were stitched together. The coefficient of variation (CV), fractal scaling exponents (DFA) and (AFA) were calculated. Two surrogate tests were performed: A) the whole time series was randomly shuffled; B) the single trials were randomly shuffled separately and afterwards stitched together. CV did not discriminate between PD and CG. However, significant differences between PD and CG were found concerning and . Surrogate version B yielded a higher mean squared error and empirical quantiles than version A. Hence, we conclude that the stitching procedure creates an artificial structure resulting in an overestimation of true . The method of stitching together sections of gait seems to be appropriate in order to distinguish between PD and CG with FS. It provides an approach to integrate FS as standard in clinical gait analysis and to overcome limitations such as short walkways. PMID:24465708

  7. Long-Range Correlations in Stride Intervals May Emerge from Non-Chaotic Walking Dynamics

    PubMed Central

    Ahn, Jooeun; Hogan, Neville

    2013-01-01

    Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations. Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic movements. PMID:24086274

  8. Forces and mechanical energy fluctuations during diagonal stride roller skiing; running on wheels?

    PubMed

    Kehler, Alyse L; Hajkova, Eliska; Holmberg, Hans-Christer; Kram, Rodger

    2014-11-01

    Mechanical energy can be conserved during terrestrial locomotion in two ways: the inverted pendulum mechanism for walking and the spring-mass mechanism for running. Here, we investigated whether diagonal stride cross-country roller skiing (DIA) utilizes similar mechanisms. Based on previous studies, we hypothesized that running and DIA would share similar phase relationships and magnitudes of kinetic energy (KE), and gravitational potential energy (GPE) fluctuations, indicating elastic energy storage and return, as if roller skiing is like 'running on wheels'. Experienced skiers (N=9) walked and ran at 1.25 and 3 m s(-1), respectively, and roller skied with DIA at both speeds on a level dual-belt treadmill that recorded perpendicular and parallel forces. We calculated the KE and GPE of the center of mass from the force recordings. As expected, the KE and GPE fluctuated with an out-of-phase pattern during walking and an in-phase pattern during running. Unlike walking, during DIA, the KE and GPE fluctuations were in phase, as they are in running. However, during the glide phase, KE was dissipated as frictional heat and could not be stored elastically in the tendons, as in running. Elastic energy storage and return epitomize running and thus we reject our hypothesis. Diagonal stride cross-country skiing is a biomechanically unique movement that only superficially resembles walking or running. © 2014. Published by The Company of Biologists Ltd.

  9. A PDF-based classification of gait cadence patterns in patients with amyotrophic lateral sclerosis.

    PubMed

    Wu, Yunfeng; Ng, Sin Chun

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a type of neurological disease due to the degeneration of motor neurons. During the course of such a progressive disease, it would be difficult for ALS patients to regulate normal locomotion, so that the gait stability becomes perturbed. This paper presents a pilot statistical study on the gait cadence (or stride interval) in ALS, based on the statistical analysis method. The probability density functions (PDFs) of stride interval were first estimated with the nonparametric Parzen-window method. We computed the mean of the left-foot stride interval and the modified Kullback-Leibler divergence (MKLD) from the PDFs estimated. The analysis results suggested that both of these two statistical parameters were significantly altered in ALS, and the least-squares support vector machine (LS-SVM) may effectively distinguish the stride patterns between the ALS patients and healthy controls, with an accurate rate of 82.8% and an area of 0.87 under the receiver operating characteristic curve.

  10. Most suitable mother wavelet for the analysis of fractal properties of stride interval time series via the average wavelet coefficient

    PubMed Central

    Zhang, Zhenwei; VanSwearingen, Jessie; Brach, Jennifer S.; Perera, Subashan

    2016-01-01

    Human gait is a complex interaction of many nonlinear systems and stride intervals exhibit self-similarity over long time scales that can be modeled as a fractal process. The scaling exponent represents the fractal degree and can be interpreted as a biomarker of relative diseases. The previous study showed that the average wavelet method provides the most accurate results to estimate this scaling exponent when applied to stride interval time series. The purpose of this paper is to determine the most suitable mother wavelet for the average wavelet method. This paper presents a comparative numerical analysis of sixteen mother wavelets using simulated and real fractal signals. Simulated fractal signals were generated under varying signal lengths and scaling exponents that indicate a range of physiologically conceivable fractal signals. The five candidates were chosen due to their good performance on the mean square error test for both short and long signals. Next, we comparatively analyzed these five mother wavelets for physiologically relevant stride time series lengths. Our analysis showed that the symlet 2 mother wavelet provides a low mean square error and low variance for long time intervals and relatively low errors for short signal lengths. It can be considered as the most suitable mother function without the burden of considering the signal length. PMID:27960102

  11. Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists.

    PubMed

    Hollman, John H; Watkins, Molly K; Imhoff, Angela C; Braun, Carly E; Akervik, Kristen A; Ness, Debra K

    2016-08-01

    Reduced inter-stride complexity during ambulation may represent a pathologic state. Evidence is emerging that treadmill training for rehabilitative purposes may constrain the locomotor system and alter gait dynamics in a way that mimics pathological states. The purpose of this study was to examine the dynamical system components of gait complexity, fractal dynamics and determinism during treadmill ambulation. Twenty healthy participants aged 23.8 (1.2) years walked at preferred walking speeds for 6min on a motorized treadmill and overground while wearing APDM 6 Opal inertial monitors. Stride times, stride lengths and peak sagittal plane trunk velocities were measured. Mean values and estimates of complexity, fractal dynamics and determinism were calculated for each parameter. Data were compared between overground and treadmill walking conditions. Mean values for each gait parameter were statistically equivalent between overground and treadmill ambulation (P>0.05). Through nonlinear analyses, however, we found that complexity in stride time signals (P<0.001), and long-range correlations in stride time and stride length signals (P=0.005 and P=0.024, respectively), were reduced on the treadmill. Treadmill ambulation induces more predictable inter-stride time dynamics and constrains fluctuations in stride times and stride lengths, which may alter feedback from destabilizing perturbations normally experienced by the locomotor control system during overground ambulation. Treadmill ambulation, therefore, may provide less opportunity for experiencing the adaptability necessary to successfully ambulate overground. Investigators and clinicians should be aware that treadmill ambulation will alter dynamic gait characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Targeting dopa-sensitive and dopa-resistant gait dysfunction in Parkinson's disease: selective responses to internal and external cues.

    PubMed

    Rochester, Lynn; Baker, Katherine; Nieuwboer, Alice; Burn, David

    2011-02-15

    Independence of certain gait characteristics from dopamine replacement therapies highlights its complex pathophysiology in Parkinson's disease (PD). We explored the effect of two different cue strategies on gait characteristics in relation to their response to dopaminergic medications. Fifty people with PD (age 69.22 ± 6.6 years) were studied. Participants walked with and without cues presented in a randomized order. Cue strategies were: (1) internal cue (attention to increase step length) and (2) external cue (auditory cue with instruction to take large step to the beat). Testing was carried out two times at home (on and off medication). Gait was measured using a Stride Analyzer (B&L Engineering). Gait outcomes were walking speed, stride length, step frequency, and coefficient of variation (CV) of stride time and double limb support duration (DLS). Walking speed, stride length, and stride time CV improved on dopaminergic medications, whereas step frequency and DLS CV did not. Internal and external cues increased stride time and walking speed (on and off dopaminergic medications). Only the external cue significantly improved stride time CV and DLS CV, whereas the internal cue had no effect (on and off dopaminergic medications). Internal and external cues selectively modify gait characteristics in relation to the type of gait disturbance and its dopa-responsiveness. Although internal (attention) and external cues target dopaminergic gait dysfunction (stride length), only external cues target stride to stride fluctuations in gait. Despite an overlap with dopaminergic pathways, external cues may effectively address nondopaminergic gait dysfunction and potentially increase mobility and reduce gait instability and falls. Copyright © 2010 Movement Disorder Society.

  13. Fractal analyses reveal independent complexity and predictability of gait

    PubMed Central

    Dierick, Frédéric; Nivard, Anne-Laure

    2017-01-01

    Locomotion is a natural task that has been assessed for decades and used as a proxy to highlight impairments of various origins. So far, most studies adopted classical linear analyses of spatio-temporal gait parameters. Here, we use more advanced, yet not less practical, non-linear techniques to analyse gait time series of healthy subjects. We aimed at finding more sensitive indexes related to spatio-temporal gait parameters than those previously used, with the hope to better identify abnormal locomotion. We analysed large-scale stride interval time series and mean step width in 34 participants while altering walking direction (forward vs. backward walking) and with or without galvanic vestibular stimulation. The Hurst exponent α and the Minkowski fractal dimension D were computed and interpreted as indexes expressing predictability and complexity of stride interval time series, respectively. These holistic indexes can easily be interpreted in the framework of optimal movement complexity. We show that α and D accurately capture stride interval changes in function of the experimental condition. Walking forward exhibited maximal complexity (D) and hence, adaptability. In contrast, walking backward and/or stimulation of the vestibular system decreased D. Furthermore, walking backward increased predictability (α) through a more stereotyped pattern of the stride interval and galvanic vestibular stimulation reduced predictability. The present study demonstrates the complementary power of the Hurst exponent and the fractal dimension to improve walking classification. Our developments may have immediate applications in rehabilitation, diagnosis, and classification procedures. PMID:29182659

  14. Surface-EMG analysis for the quantification of thigh muscle dynamic co-contractions during normal gait.

    PubMed

    Strazza, Annachiara; Mengarelli, Alessandro; Fioretti, Sandro; Burattini, Laura; Agostini, Valentina; Knaflitz, Marco; Di Nardo, Francesco

    2017-01-01

    The research purpose was to quantify the co-contraction patterns of quadriceps femoris (QF) vs. hamstring muscles during free walking, in terms of onset-offset muscular activation, excitation intensity, and occurrence frequency. Statistical gait analysis was performed on surface-EMG signals from vastus lateralis (VL), rectus femoris (RF), and medial hamstrings (MH), in 16315 strides walked by 30 healthy young adults. Results showed full superimpositions of MH with both VL and RF activity from terminal swing, 80 to 100% of gait cycle (GC), to the successive loading response (≈0-15% of GC), in around 90% of the considered strides. A further superimposition was detected during the push-off phase both between VL and MH activation intervals (38.6±12.8% to 44.1±9.6% of GC) in 21.9±13.6% of strides, and between RF and MH activation intervals (45.9±5.3% to 50.7±9.7 of GC) in 32.7±15.1% of strides. These findings led to identify three different co-contractions among QF and hamstring muscles during able-bodied walking: in early stance (in ≈90% of strides), in push-off (in 25-30% of strides) and in terminal swing (in ≈90% of strides). The co-contraction in terminal swing is the one with the highest levels of muscle excitation intensity. To our knowledge, this analysis represents the first attempt for quantification of QF/hamstring muscles co-contraction in young healthy subjects during normal gait, able to include the physiological variability of the phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.

    PubMed

    Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A

    2018-04-01

    Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking speed, fractal dynamics increased closer to 1/f when participants were exposed to asymmetric walking. These findings suggest there may not be a relationship between unperturbed preferred or slow speed walking fractal dynamics and gait adaptability. However, the emergent relationship between asymmetric walking fractal dynamics and limb phase adaptation may represent a functional reorganization of the locomotor system (i.e., improved interactivity between degrees of freedom within the system) to be better suited to attenuate externally generated perturbations at various spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A pediatric correlational study of stride interval dynamics, energy expenditure and activity level.

    PubMed

    Ellis, Denine; Sejdic, Ervin; Zabjek, Karl; Chau, Tom

    2014-08-01

    The strength of time-dependent correlations known as stride interval (SI) dynamics has been proposed as an indicator of neurologically healthy gait. Most recently, it has been hypothesized that these dynamics may be necessary for gait efficiency although the supporting evidence to date is scant. The current study examines over-ground SI dynamics, and their relationship with the cost of walking and physical activity levels in neurologically healthy children aged nine to 15 years. Twenty participants completed a single experimental session consisting of three phases: 10 min resting, 15 min walking and 10 min recovery. The scaling exponent (α) was used to characterize SI dynamics while net energy cost was measured using a portable metabolic cart, and physical activity levels were determined based on a 7-day recall questionnaire. No significant linear relationships were found between a and the net energy cost measures (r < .07; p > .25) or between α and physical activity levels (r = .01, p = .62). However, there was a marked reduction in the variance of α as activity levels increased. Over-ground stride dynamics do not appear to directly reflect energy conservation of gait in neurologically healthy youth. However, the reduction in the variance of α with increasing physical activity suggests a potential exercise-moderated convergence toward a level of stride interval persistence for able-bodied youth reported in the literature. This latter finding warrants further investigation.

  17. Non-linear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability.

    PubMed

    Terrier, Philippe; Dériaz, Olivier

    2013-01-01

    It has been observed that times series of gait parameters [stride length (SL), stride time (ST), and stride speed (SS)], exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another non-linear method estimates the degree of resilience of gait control to small perturbations, i.e., the local dynamic stability (LDS). The method makes use of the maximal Lyapunov exponent, which estimates how fast a non-linear system embedded in a reconstructed state space (attractor) diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST, and SS from which the statistical persistence among consecutive strides can be assessed), and the trajectory of the center of pressure (from which the LDS can be estimated). In 20 healthy participants, the response to rhythmic auditory cueing (RAC) of LDS and of statistical persistence [assessed with detrended fluctuation analysis (DFA)] was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor) was strongly enhanced (relative change +73%). That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step) was smaller (+3%). DFA results (scaling exponents) confirmed an anti-persistent pattern in ST, SL, and SS. Long-term LDS (but not short-term LDS) and scaling exponents exhibited a significant correlation between them (r = 0.7). Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders.

  18. The effect of virtual reality on gait variability.

    PubMed

    Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas

    2010-07-01

    Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.

  19. Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson's disease.

    PubMed

    Dotov, D G; Bayard, S; Cochen de Cock, V; Geny, C; Driss, V; Garrigue, G; Bardy, B; Dalla Bella, S

    2017-01-01

    Rhythmic auditory cueing improves certain gait symptoms of Parkinson's disease (PD). Cues are typically stimuli or beats with a fixed inter-beat interval. We show that isochronous cueing has an unwanted side-effect in that it exacerbates one of the motor symptoms characteristic of advanced PD. Whereas the parameters of the stride cycle of healthy walkers and early patients possess a persistent correlation in time, or long-range correlation (LRC), isochronous cueing renders stride-to-stride variability random. Random stride cycle variability is also associated with reduced gait stability and lack of flexibility. To investigate how to prevent patients from acquiring a random stride cycle pattern, we tested rhythmic cueing which mimics the properties of variability found in healthy gait (biological variability). PD patients (n=19) and age-matched healthy participants (n=19) walked with three rhythmic cueing stimuli: isochronous, with random variability, and with biological variability (LRC). Synchronization was not instructed. The persistent correlation in gait was preserved only with stimuli with biological variability, equally for patients and controls (p's<0.05). In contrast, cueing with isochronous or randomly varying inter-stimulus/beat intervals removed the LRC in the stride cycle. Notably, the individual's tendency to synchronize steps with beats determined the amount of negative effects of isochronous and random cues (p's<0.05) but not the positive effect of biological variability. Stimulus variability and patients' propensity to synchronize play a critical role in fostering healthier gait dynamics during cueing. The beneficial effects of biological variability provide useful guidelines for improving existing cueing treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Gait performance is not influenced by working memory when walking at a self-selected pace.

    PubMed

    Grubaugh, Jordan; Rhea, Christopher K

    2014-02-01

    Gait performance exhibits patterns within the stride-to-stride variability that can be indexed using detrended fluctuation analysis (DFA). Previous work employing DFA has shown that gait patterns can be influenced by constraints, such as natural aging or disease, and they are informative regarding a person's functional ability. Many activities of daily living require concurrent performance in the cognitive and gait domains; specifically working memory is commonly engaged while walking, which is considered dual-tasking. It is unknown if taxing working memory while walking influences gait performance as assessed by DFA. This study used a dual-tasking paradigm to determine if performance decrements are observed in gait or working memory when performed concurrently. Healthy young participants (N = 16) performed a working memory task (automated operation span task) and a gait task (walking at a self-selected speed on a treadmill) in single- and dual-task conditions. A second dual-task condition (reading while walking) was included to control for visual attention, but also introduced a task that taxed working memory over the long term. All trials involving gait lasted at least 10 min. Performance in the working memory task was indexed using five dependent variables (absolute score, partial score, speed error, accuracy error, and math error), while gait performance was indexed by quantifying the mean, standard deviation, and DFA α of the stride interval time series. Two multivariate analyses of variance (one for gait and one for working memory) were used to examine performance in the single- and dual-task conditions. No differences were observed in any of the gait or working memory dependent variables as a function of task condition. The results suggest the locomotor system is adaptive enough to complete a working memory task without compromising gait performance when walking at a self-selected pace.

  1. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    PubMed

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  2. [Descending control of quiet standing and walking: a plausible neurophysiological basis of falls in elderly people].

    PubMed

    Nakajima, Masashi

    2011-03-01

    Quiet standing and walking are generally considered to be an automatic process regulated by sensory feedback. In our report "Astasia without abasia due to peripheral neuropathy," which was published in 1994, we proposed that forced stepping in patients lacking the ankle torque is a compensatory motor control in order to maintain an upright posture. A statistical-biomechanics approach to the human postural control system has revealed open-loop (descending) control as well as closed-loop (feedback) control in quiet standing, and fractal dynamics in stride-to-stride fluctuations of walking. The descending control system of bipedal upright posture and gait may have a functional link to cognitive domains. Increasing dependence on the descending control system with aging may play a role in falls in elderly people.

  3. Data series embedding and scale invariant statistics.

    PubMed

    Michieli, I; Medved, B; Ristov, S

    2010-06-01

    Data sequences acquired from bio-systems such as human gait data, heart rate interbeat data, or DNA sequences exhibit complex dynamics that is frequently described by a long-memory or power-law decay of autocorrelation function. One way of characterizing that dynamics is through scale invariant statistics or "fractal-like" behavior. For quantifying scale invariant parameters of physiological signals several methods have been proposed. Among them the most common are detrended fluctuation analysis, sample mean variance analyses, power spectral density analysis, R/S analysis, and recently in the realm of the multifractal approach, wavelet analysis. In this paper it is demonstrated that embedding the time series data in the high-dimensional pseudo-phase space reveals scale invariant statistics in the simple fashion. The procedure is applied on different stride interval data sets from human gait measurements time series (Physio-Bank data library). Results show that introduced mapping adequately separates long-memory from random behavior. Smaller gait data sets were analyzed and scale-free trends for limited scale intervals were successfully detected. The method was verified on artificially produced time series with known scaling behavior and with the varying content of noise. The possibility for the method to falsely detect long-range dependence in the artificially generated short range dependence series was investigated. (c) 2009 Elsevier B.V. All rights reserved.

  4. Gait Implications of Visual Field Damage from Glaucoma.

    PubMed

    Mihailovic, Aleksandra; Swenor, Bonnielin K; Friedman, David S; West, Sheila K; Gitlin, Laura N; Ramulu, Pradeep Y

    2017-06-01

    To evaluate fall-relevant gait features in older glaucoma patients. The GAITRite Electronic Walkway was used to define fall-related gait parameters in 239 patients with suspected or manifest glaucoma under normal usual-pace walking conditions and while carrying a cup or tray. Multiple linear regression models assessed the association between gait parameters and integrated visual field (IVF) sensitivity after controlling for age, race, sex, medications, and comorbid illness. Under normal walking conditions, worse IVF sensitivity was associated with a wider base of support (β = 0.60 cm/5 dB IVF sensitivity decrement, 95% confidence interval [CI] = 0.12-1.09, P = 0.016). Worse IVF sensitivity was not associated with slower gait speed, shorter step or stride length, or greater left-right drift under normal walking conditions ( P > 0.05 for all), but was during cup and/or tray carrying conditions ( P < 0.05 for all). Worse IVF sensitivity was positively associated with greater stride-to-stride variability in step length, stride length, and stride velocity ( P < 0.005 for all). Inferior and superior IVF sensitivity demonstrated associations with each of the above gait parameters as well, though these associations were consistently similar to, or weaker than, the associations noted for overall IVF sensitivity. Glaucoma severity was associated with several gait parameters predictive of higher fall risk in prior studies, particularly measures of stride-to-stride variability. Gait may be useful in identifying glaucoma patients at higher risk of falls, and in designing and testing interventions to prevent falls in this high-risk group. These findings could serve to inform the development of the interventions for falls prevention in glaucoma patients.

  5. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets

    PubMed Central

    Kress, Daniel; Egelhaaf, Martin

    2014-01-01

    During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride-coupled responses are discussed. PMID:25309362

  6. Parkinsonian gait ameliorated with a moving handrail, not with a banister.

    PubMed

    Rabin, Ely; Demin, Aleksandr; Pirrotta, Stefania; Chen, Jason; Patel, Hemal; Bhambri, Ankur; Noyola, Estella; Lackner, James R; DiZio, Paul; DiFrancisco-Donoghue, Joanne; Werner, William

    2015-04-01

    To determine whether haptic (touch and proprioception) cues from touching a moving handrail while walking can ameliorate the gait symptoms of Parkinson disease (PD), such as slowness and small stride length. Nonrandomized, controlled before-after trial. Physical therapy clinic. People with PD (n=16) and healthy age-matched control subjects (n=16) with no neurologic disorders volunteered. No participants withdrew. We compared gait using a moving handrail as a novel assistive aid (speed self-selected) versus a banister and unassisted walking. Participants with PD were tested on and off dopaminergic medication. Mean gait speed, stride length, stride duration, double-support duration, and medial-lateral excursion. With the moving handrail, participants with PD increased gait speed relative to unassisted gait by 16% (.166m/s, P=.009, d=.76; 95% confidence interval [CI], .054-.278m/s) and increased stride length by 10% (.053m, P=.022, d=.37; 95% CI, .009-.097m) without significantly changing stride or double-support duration. The banister reduced speed versus unassisted gait by 11% (-.097m/s, P=.040, d=.40; 95% CI, .002-.193m/s) and reduced stride length by 8% (.32m, P=.004, d=.26; 95% CI, .010-.054m), whereas it increased stride duration by 3% (.023s, P=.022, d=.21; 95% CI, .004-.041s) and double-support duration by 35% (.044s, P=.031, d=.58; 95% CI, .005-.083s). All medication × condition interactions were P>.05. Using haptic speed cues from the moving handrail, people with PD walked faster by spontaneously (ie, without specific instruction) increasing stride length without altering cadence; banisters slowed gait. Haptic cues from the moving handrail can be used by people with PD to engage biomechanical and neural mechanisms for interpreting tactile and proprioception changes related to gait speed to control gait better than static cues afforded by banisters. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Ground reaction forces of Olympic and World Championship race walkers.

    PubMed

    Hanley, Brian; Bissas, Athanassios

    2016-01-01

    Race walking is an Olympic event where no visible loss of contact should occur and the knee must be straightened until midstance. The purpose of this study was to analyse ground reaction forces of world-class race walkers and associate them with key spatiotemporal variables. Nineteen athletes race walked along an indoor track and made contact with two force plates (1000 Hz) while being filmed using high-speed videography (100 Hz). Race walking speed was correlated with flight time (r = .46, p = .049) and flight distance (r = .69, p = .001). The knee's movement from hyperextension to flexion during late stance meant the vertical push-off force that followed midstance was smaller than the earlier loading peak (p < .001), resulting in a flattened profile. Athletes with narrower stride widths experienced reduced peak braking forces (r = .49, p = .046), peak propulsive forces (r = .54, p = .027), peak medial forces (r = .63, p = .007) and peak vertical push-off forces (r = .60, p = .011). Lower fluctuations in speed during stance were associated with higher stride frequencies (r = .69, p = .001), and highlighted the importance of avoiding too much braking in early stance. The flattened trajectory and consequential decrease in vertical propulsion might help the race walker avoid visible loss of contact (although non-visible flight times were useful in increasing stride length), while a narrow stride width was important in reducing peak forces in all three directions and could improve movement efficiency.

  8. Effect of repeated exercise and recovery on heart rate variability in elite trotting horses during high intensity interval training.

    PubMed

    Cottin, F; Barrey, E; Lopes, P; Billat, V

    2006-08-01

    Interval training is a commonly used training method for trotting horses. In addition, trainers are provided with efficient and inexpensive heart rate monitor devices for the management of training. Since the high frequency (HF) frequency peak (fHF) of heart rate variability (HRV) corresponds to the breathing frequency in combination with stride frequency during trotting, it is hypothesised that modifications of breathing and stride frequencies induced by repeated exercise could be detected from fHF. RR interval time series of 7 trotting horses were recorded during an interval training session. Interval training was made up of 5 successive 800 m high-velocity trotting runs (H1, H2...H5) separated by 1 min recovery bouts at low speed (R1, R2...R5). Fast Fourier transform (FFT) and Poincaré plot analysis techniques were applied to RR series. Repeated exercise had significant effects on HRV components during interval training. Despite constant trotting velocities during high-speed and recovery, repetition induced a decrease in mean RR interval (H1: 295 +/- 19 vs. H5: 283 +/- 15 msec, P<0.05) and in the root mean square of successive differences in RR series (RMSSD; H1: 6.31 +/- 1.28 vs. H5: 5.31 +/- 1.31 msec, P<0.05). Furthermore, high-speed and recovery repetitions induced an increase in fHF (H1: 1.37 +/- 0.35 vs. H5: 1.62 +/- 0.40 Hz and R1: 0.22 +/- 0.02 vs. R4: 0.64 +/- 0.38 Hz, P<0.05). Hence, recovery induced a decrease in the s.d. of the successive RR series (SDRR; R3: 10.5 +/- 3.96 vs. R5: 6.17 +/- 2.65 msecs, P>0.05) and in the long term index of Poincaré plot (SD2; R1: 43.29 +/- 28.90 vs. R5: 18.19 +/- 9.35 msecs, P<0.05). The observed increase in fHF during the interval training could be induced by alterations of the coupling between breathing and stride frequency linked to the emergence of fatigue. The decrease in SD2 and SDRR during successive recovery bouts could be linked with a deterioration of the recovery pattern. HRV can provide breathing frequency data of Standardbreds during training without any respiratory device. Furthermore, HRV could provide useful makers of the emergence of fatigue states during training.

  9. Compressive Sensing of Foot Gait Signals and Its Application for the Estimation of Clinically Relevant Time Series.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2016-07-01

    A new signal reconstruction algorithm for compressive sensing based on the minimization of a pseudonorm which promotes block-sparse structure on the first-order difference of the signal is proposed. Involved optimization is carried out by using a sequential version of Fletcher-Reeves' conjugate-gradient algorithm, and the line search is based on Banach's fixed-point theorem. The algorithm is suitable for the reconstruction of foot gait signals which admit block-sparse structure on the first-order difference. An additional algorithm for the estimation of stride-interval, swing-interval, and stance-interval time series from the reconstructed foot gait signals is also proposed. This algorithm is based on finding zero crossing indices of the foot gait signal and using the resulting indices for the computation of time series. Extensive simulation results demonstrate that the proposed signal reconstruction algorithm yields improved signal-to-noise ratio and requires significantly reduced computational effort relative to several competing algorithms over a wide range of compression ratio. For a compression ratio in the range from 88% to 94%, the proposed algorithm is found to offer improved accuracy for the estimation of clinically relevant time-series parameters, namely, the mean value, variance, and spectral index of stride-interval, stance-interval, and swing-interval time series, relative to its nearest competitor algorithm. The improvement in performance for compression ratio as high as 94% indicates that the proposed algorithms would be useful for designing compressive sensing-based systems for long-term telemonitoring of human gait signals.

  10. Effect of step-synchronized vibration stimulation of soles on gait in Parkinson's disease: a pilot study.

    PubMed

    Novak, Peter; Novak, Vera

    2006-05-04

    Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD). This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS) on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44-79 years, on medication) and 8 age-matched healthy subjects (5 women and 3 men). PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs) were embedded in elastic insoles (one below the heel and two below the forefoot areas) inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV), a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable). The walking speed (p < 0.04) and the CV of the stride interval (p < 0.02) differed between the groups and S-VS conditions. In the PD group, S-VS decreased stride variability (p < 0.002), increased walking speed (p < 0.0001), stride duration (p < 0.01), stride length (p < 0.0002), and cadence (p < 0.03). In the control group, S-VS decreased stride variability (p < 0.006) and increased gait speed (p < 0.03), but other locomotion parameters were not significantly altered. Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS.

  11. Evaluation of scaling invariance embedded in short time series.

    PubMed

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  12. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  13. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis

    PubMed Central

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls. PMID:28700633

  14. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis.

    PubMed

    Chidori, Kazuhiro; Yamamoto, Yuji

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.

  15. Effects of Continuous and Interval Training on Running Economy, Maximal Aerobic Speed and Gait Kinematics in Recreational Runners.

    PubMed

    González-Mohíno, Fernando; González-Ravé, José M; Juárez, Daniel; Fernández, Francisco A; Barragán Castellanos, Rubén; Newton, Robert U

    2016-04-01

    The purpose of this study was to evaluate the effects on running economy (RE), V[Combining Dot Above]O2max, maximal aerobic speed (MAS), and gait kinematics (step length [SL] and frequency, flight and contact time [CT]) in recreational athletes, with 2 different training methods, Interval and Continuous (CON). Eleven participants were randomly distributed in an interval training group (INT; n = 6) or CON training group (CON; n = 5). Interval training and CON performed 2 different training programs (95-110% and 70-75% of MAS, respectively), which consisted of 3 sessions per week during 6 weeks with the same external workload (%MAS × duration). An incremental test to exhaustion was performed to obtain V[Combining Dot Above]O2max, MAS, RE, and gait variables (high speed camera) before and after the training intervention. There was a significant improvement (p ≤ 0.05) in RE at 60 and 90% of MAS by the CON group; without changes in gait. The INT group significantly increased MAS and higher stride length at 80, 90, and 100% of MAS and lower CT at 100% of MAS. As expected, training adaptations are highly specific to the overload applied with CON producing improvements in RE at lower percentage of MAS whereas INT produces improvements in MAS. The significantly increased stride length and decreased CT for the INT group are an important outcome of favorable changes in running gait.

  16. Effect of step-synchronized vibration stimulation of soles on gait in Parkinson's disease: a pilot study

    PubMed Central

    Novak, Peter; Novak, Vera

    2006-01-01

    Background Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD). Methods This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS) on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44–79 years, on medication) and 8 age-matched healthy subjects (5 women and 3 men). PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs) were embedded in elastic insoles (one below the heel and two below the forefoot areas) inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV), a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable). Results The walking speed (p < 0.04) and the CV of the stride interval (p < 0.02) differed between the groups and S-VS conditions. In the PD group, S-VS decreased stride variability (p < 0.002), increased walking speed (p < 0.0001), stride duration (p < 0.01), stride length (p < 0.0002), and cadence (p < 0.03). In the control group, S-VS decreased stride variability (p < 0.006) and increased gait speed (p < 0.03), but other locomotion parameters were not significantly altered. Conclusion Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS. PMID:16674823

  17. An attempt to detect lameness in galloping horses by use of body-mounted inertial sensors.

    PubMed

    Lopes, Marco A F; Dearo, Antonio C O; Lee, Allen; Reed, Shannon K; Kramer, Joanne; Pai, P Frank; Yonezawa, Yoshiharu; Maki, Hiromitchi; Morgan, Terry L; Wilson, David A; Keegan, Kevin G

    2016-10-01

    OBJECTIVE To evaluate head, pelvic, and limb movement to detect lameness in galloping horses. ANIMALS 12 Thoroughbreds. PROCEDURES Movement data were collected with inertial sensors mounted on the head, pelvis, and limbs of horses trotting and galloping in a straight line before and after induction of forelimb and hind limb lameness by use of sole pressure. Successful induction of lameness was determined by measurement of asymmetric vertical head and pelvic movement during trotting. Differences in gallop strides before and after induction of lameness were evaluated with paired-sample statistical analysis and neural network training and testing. Variables included maximum, minimum, range, and time indices of vertical head and pelvic acceleration, head rotation in the sagittal plane, pelvic rotation in the frontal plane, limb contact intervals, stride durations, and limb lead preference. Difference between median standardized gallop strides for each limb lead before and after induction of lameness was calculated as the sum of squared differences at each time index and assessed with a 2-way ANOVA. RESULTS Head and pelvic acceleration and rotation, limb timing, stride duration measurements, and limb lead preference during galloping were not significantly different before and after induction of lameness in the forelimb or hind limb. Differences between limb leads before induction of lameness were similar to or greater than differences within limb leads before and after lameness induction. CONCLUSIONS AND CLINICAL RELEVANCE Galloping horses maintained asymmetry of head, pelvic, and limb motion between limb leads that was unrelated to lameness.

  18. Short-burst interval treadmill training walking capacity and performance in cerebral palsy: a pilot study.

    PubMed

    Bjornson, Kristie F; Moreau, Noelle; Bodkin, Amy Winter

    2018-04-16

    To examine the effect of short-burst interval locomotor treadmill training (SBLTT) on walking capacity and performance in cerebral palsy (CP). Twelve children with spastic diplegic CP (average 8.6 years) across Gross Motor Function Classification System levels II (8) and III (4) were randomized to 20 SBLTT sessions over 4 or 10 weeks. SBLTT consisted of alternating 30 seconds of slow and fast walking for 30 minutes/session. Outcomes included the 10 m walk test, one-minute walk test (1MWT), and timed-up-and go (TUG) (capacity) and StepWatch (performance) collected at baseline, post, and 6 weeks post. Fast speed (+.11, p = .04; +.11 m/s, p = .006), 1MWT (+11.2; +11.7 m, p = .006) and TUG (-1.7; -1.9 seconds, p = .006) improved post SBLTT and 6 weeks, respectively. Walking performance increased: average strides/day (+948; +1712, p < .001) and percent time in high strides rates (+0.4, p = 0.07; +0.2, p = .008). Pilot study suggests SBLTT may improve short-term walking capacity and performance.

  19. The effect of 1/f fluctuation in inter-stimulus intervals on auditory evoked mismatch field.

    PubMed

    Harada, Nobuyoshi; Masuda, Tadashi; Endo, Hiroshi; Nakamura, Yukihiro; Takeda, Tsunehiro; Tonoike, Mitsuo

    2005-05-13

    This study focused on the effect of regularity of environmental stimuli on the informational order extracting function of human brain. The regularity of environmental stimuli can be described with the exponent n of the fluctuation 1/f(n). We studied the effect of the exponent of the fluctuation in the inter-stimulus interval (ISI) on the elicitation of auditory evoked mismatch fields (MMF) with two sounds with alternating frequency. ISI times were given by three types of fluctuation, 1/f(0), 1/f(1), 1/f(2), and with a fixed interval (1/f(infinity)). The root mean square (RMS) value of the MMF increased significantly (F(3/9)=4.95, p=0.027) with increases in the exponent of the fluctuation. Increments in the regularity of the fluctuation provoked enhancement of the MMF, which reflected the production of a memory trace, based on the anticipation of the stimulus timing. The gradient of the curve, indicating the ratio of increments between the MMF and the exponent of fluctuation, can express a subject's capability to extract regularity from fluctuating stimuli.

  20. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.

    PubMed

    Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae

    2017-12-08

    This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Temporal Structure of Volatility Fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Fengzhong; Yamasaki, Kazuko; Stanley, H. Eugene; Havlin, Shlomo

    Volatility fluctuations are of great importance for the study of financial markets, and the temporal structure is an essential feature of fluctuations. To explore the temporal structure, we employ a new approach based on the return interval, which is defined as the time interval between two successive volatility values that are above a given threshold. We find that the distribution of the return intervals follows a scaling law over a wide range of thresholds, and over a broad range of sampling intervals. Moreover, this scaling law is universal for stocks of different countries, for commodities, for interest rates, and for currencies. However, further and more detailed analysis of the return intervals shows some systematic deviations from the scaling law. We also demonstrate a significant memory effect in the return intervals time organization. We find that the distribution of return intervals is strongly related to the correlations in the volatility.

  2. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles.

    PubMed

    Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario

    2013-02-15

    Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.

  3. Textured insoles reduce vertical loading rate and increase subjective plantar sensation in overground running.

    PubMed

    Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee

    2018-05-01

    The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.

  4. Stride length: the impact on propulsion and bracing ground reaction force in overhand throwing.

    PubMed

    Ramsey, Dan K; Crotin, Ryan L

    2018-03-26

    Propulsion and bracing ground reaction force (GRF) in overhand throwing are integral in propagating joint reaction kinetics and ball velocity, yet how stride length effects drive (hind) and stride (lead) leg GRF profiles remain unknown. Using a randomised crossover design, 19 pitchers (15 collegiate and 4 high school) were assigned to throw 2 simulated 80-pitch games at ±25% of their desired stride length. An integrated motion capture system with two force plates and radar gun tracked each throw. Vertical and anterior-posterior GRF was normalised then impulse was derived. Paired t-tests identified whether differences between conditions were significant. Late in single leg support, peak propulsion GRF was statistically greater for the drive leg with increased stride. Stride leg peak vertical GRF in braking occurred before acceleration with longer strides, but near ball release with shorter strides. Greater posterior shear GRF involving both legs demonstrated increased braking with longer strides. Conversely, decreased drive leg propulsion reduced both legs' braking effects with shorter strides. Results suggest an interconnection between normalised stride length and GRF application in propulsion and bracing. This work has shown stride length to be an important kinematic factor affecting the magnitude and timing of external forces acting upon the body.

  5. Physiological and Biomechanical Responses of Highly Trained Distance Runners to Lower-Body Positive Pressure Treadmill Running.

    PubMed

    Barnes, Kyle R; Janecke, Jessica N

    2017-11-21

    As a way to train at faster running speeds, add training volume, prevent injury, or rehabilitate after an injury, lower-body positive pressure treadmills (LBPPT) have become increasingly commonplace among athletes. However, there are conflicting evidence and a paucity of data describing the physiological and biomechanical responses to LBPPT running in highly trained or elite caliber runners at the running speeds they habitually train at, which are considerably faster than those of recreational runners. Furthermore, data is lacking regarding female runners' responses to LBPPT running. Therefore, this study was designed to evaluate the physiological and biomechanical responses to LBPPT running in highly trained male and female distance runners. Fifteen highly trained distance runners (seven male; eight female) completed a single running test composed of 4 × 9-min interval series at fixed percentages of body weight ranging from 0 to 30% body weight support (BWS) in 10% increments on LBPPT. The first interval was always conducted at 0% BWS; thereafter, intervals at 10, 20, and 30% BWS were conducted in random order. Each interval consisted of three stages of 3 min each, at velocities of 14.5, 16.1, and 17.7 km·h -1 for men and 12.9, 14.5, and 16.1 km·h -1 for women. Expired gases, ventilation, breathing frequency, heart rate (HR), rating of perceived exertion (RPE), and stride characteristics were measured during each running speed and BWS. Male and female runners had similar physiological and biomechanical responses to running on LBPPT. Increasing BWS increased stride length (p < 0.02) and flight duration (p < 0.01) and decreased stride rate (p < 0.01) and contact time (p < 0.01) in small-large magnitudes. There was a large attenuation of oxygen consumption (VO 2 ) relative to BWS (p < 0.001), while there were trivial-moderate reductions in respiratory exchange ratio, minute ventilation, and respiratory frequency (p > 0.05), and small-large effects on HR and RPE (p < 0.01). There were trivial-small differences in V E , respiratory frequency, HR, and RPE for a given VO 2 across various BWS (p > 0.05). The results indicate the male and female distance runners have similar physiological and biomechanical responses to LBPPT running. Overall, the biomechanical changes during LBPPT running all contributed to less metabolic cost and corresponding physiological changes.

  6. A Comparative Analysis of Selected Mechanical Aspects of the Ice Skating Stride.

    ERIC Educational Resources Information Center

    Marino, G. Wayne

    This study quantitatively analyzes selected aspects of the skating strides of above-average and below-average ability skaters. Subproblems were to determine how stride length and stride rate are affected by changes in skating velocity, to ascertain whether the basic assumption that stride length accurately approximates horizontal movement of the…

  7. Effect of stride frequency on thermoregulatory responses during endurance running in distance runners.

    PubMed

    Amano, Tatsuro; Ishitobi, Masaki; Ogura, Yukio; Inoue, Yoshimitsu; Koga, Shunsaku; Nishiyasu, Takeshi; Kondo, Narihiko

    2016-10-01

    Changing stride frequency may influence oxygen uptake and heart rate during running as a function of running economy and central command. This study investigated the influence of stride frequency manipulation on thermoregulatory responses during endurance running. Seven healthy endurance runners ran on a treadmill at a velocity of 15km/h for 60min in a controlled environmental chamber (ambient temperature 27°C and relative humidity 50%), and stride frequency was manipulated. Stride frequency was intermittently manipulated by increasing and decreasing frequency by 10% from the pre-determined preferred frequency. These periods of increase or decrease were separated by free frequency running in the order of free stride frequency, stride frequency manipulation (increase or decrease), free stride frequency, and stride frequency manipulation (increase or decrease) for 15min each. The increased and decreased stride frequencies were 110% and 91% of the free running frequency, respectively (196±6, 162±5, and 178±5steps/min, respectively, P<0.01). Compared to the control, stride frequency manipulation did not affect rectal temperature, heart rate, or the rate of perceived exhaustion during running. Whole-body sweat loss increased significantly when stride frequency was manipulated (1.48±0.11 and 1.57±0.11kg for control and manipulated stride frequencies, respectively, P<0.05), but stride frequency had a small effect on sweat loss overall (Cohen's d=0.31). A higher mean skin temperature was also observed under mixed frequency conditions compared to that in the control (P<0.05). While the precise mechanisms underlying these changes remain unknown (e.g. running economy or central command), our results suggest that manipulation of stride frequency does not have a large effect on sweat loss or other physiological variables, but does increase mean skin temperature during endurance running. Copyright © 2016. Published by Elsevier Ltd.

  8. Passive in-home measurement of stride-to-stride gait variability comparing vision and Kinect sensing.

    PubMed

    Stone, Erik E; Skubic, Marjorie

    2011-01-01

    We present an analysis of measuring stride-to-stride gait variability passively, in a home setting using two vision based monitoring techniques: anonymized video data from a system of two web-cameras, and depth imagery from a single Microsoft Kinect. Millions of older adults fall every year. The ability to assess the fall risk of elderly individuals is essential to allowing them to continue living safely in independent settings as they age. Studies have shown that measures of stride-to-stride gait variability are predictive of falls in older adults. For this analysis, a set of participants were asked to perform a number of short walks while being monitored by the two vision based systems, along with a marker based Vicon motion capture system for ground truth. Measures of stride-to-stride gait variability were computed using each of the systems and compared against those obtained from the Vicon.

  9. Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing

    PubMed Central

    Fry, Karl E.; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc

    2016-01-01

    Background: Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. Hypotheses: The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Study Design: Prospective cohort study. Level of Evidence: Level 3. Methods: Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Results: Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated (P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. Conclusions: There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Clinical Relevance: Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs. PMID:27864504

  10. Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing.

    PubMed

    Fry, Karl E; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc

    Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Prospective cohort study. Level 3. Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated ( P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs.

  11. Relationship between neural rhythm generation disorders and physical disabilities in Parkinson's disease patients' walking.

    PubMed

    Ota, Leo; Uchitomi, Hirotaka; Ogawa, Ken-ichiro; Orimo, Satoshi; Miyake, Yoshihiro

    2014-01-01

    Walking is generated by the interaction between neural rhythmic and physical activities. In fact, Parkinson's disease (PD), which is an example of disease, causes not only neural rhythm generation disorders but also physical disabilities. However, the relationship between neural rhythm generation disorders and physical disabilities has not been determined. The aim of this study was to identify the mechanism of gait rhythm generation. In former research, neural rhythm generation disorders in PD patients' walking were characterized by stride intervals, which are more variable and fluctuate randomly. The variability and fluctuation property were quantified using the coefficient of variation (CV) and scaling exponent α. Conversely, because walking is a dynamic process, postural reflex disorder (PRD) is considered the best way to estimate physical disabilities in walking. Therefore, we classified the severity of PRD using CV and α. Specifically, PD patients and healthy elderly were classified into three groups: no-PRD, mild-PRD, and obvious-PRD. We compared the contributions of CV and α to the accuracy of this classification. In this study, 45 PD patients and 17 healthy elderly people walked 200 m. The severity of PRD was determined using the modified Hoehn-Yahr scale (mH-Y). People with mH-Y scores of 2.5 and 3 had mild-PRD and obvious-PRD, respectively. As a result, CV differentiated no-PRD from PRD, indicating the correlation between CV and PRD. Considering that PRD is independent of neural rhythm generation, this result suggests the existence of feedback process from physical activities to neural rhythmic activities. Moreover, α differentiated obvious-PRD from mild-PRD. Considering α reflects the intensity of interaction between factors, this result suggests the change of the interaction. Therefore, the interaction between neural rhythmic and physical activities is thought to plays an important role for gait rhythm generation. These characteristics have potential to evaluate the symptoms of PD.

  12. Negative Binomial Fits to Multiplicity Distributions from Central Collisions of (16)O+Cu at 14.6A GeV/c and Intermittency

    NASA Technical Reports Server (NTRS)

    Tannenbaum, M. J.

    1994-01-01

    The concept of "Intermittency" was introduced by Bialas and Peschanski to try to explain the "large" fluctuations of multiplicity in restricted intervals of rapidity or pseudorapidity. A formalism was proposed to to study non-statistical (more precisely, non-Poisson) fluctuations as a function of the size of rapidity interval, and it was further suggested that the "spikes" in the rapidity fluctuations were evidence of fractal or intermittent behavior, in analogy to turbulence in fluid dynamics which is characterized by self-similar fluctuations at all scales-the absence of well defined scale of length.

  13. Asymmetric multiscale detrended fluctuation analysis of California electricity spot price

    NASA Astrophysics Data System (ADS)

    Fan, Qingju

    2016-01-01

    In this paper, we develop a new method called asymmetric multiscale detrended fluctuation analysis, which is an extension of asymmetric detrended fluctuation analysis (A-DFA) and can assess the asymmetry correlation properties of series with a variable scale range. We investigate the asymmetric correlations in California 1999-2000 power market after filtering some periodic trends by empirical mode decomposition (EMD). Our findings show the coexistence of symmetric and asymmetric correlations in the price series of 1999 and strong asymmetric correlations in 2000. What is more, we detect subtle correlation properties of the upward and downward price series for most larger scale intervals in 2000. Meanwhile, the fluctuations of Δα(s) (asymmetry) and | Δα(s) | (absolute asymmetry) are more significant in 2000 than that in 1999 for larger scale intervals, and they have similar characteristics for smaller scale intervals. We conclude that the strong asymmetry property and different correlation properties of upward and downward price series for larger scale intervals in 2000 have important implications on the collapse of California power market, and our findings shed a new light on the underlying mechanisms of power price.

  14. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    BACKGROUND: One of the principal explanations for respiratory sinus arrhythmia is that it reflects arterial baroreflex buffering of respiration-induced arterial pressure fluctuations. If this explanation is correct, then elimination of RR interval fluctuations should increase respiratory arterial pressure fluctuations. METHODS AND RESULTS: We measured RR interval and arterial pressure fluctuations during normal sinus rhythm and fixed-rate atrial pacing at 17.2+/-1.8 (SEM) beats per minute greater than the sinus rate in 16 healthy men and 4 healthy women, 20 to 34 years of age. Measurements were made during controlled-frequency breathing (15 breaths per minute or 0.25 Hz) with subjects in the supine and 40 degree head-up tilt positions. We characterized RR interval and arterial pressure variabilities in low-frequency (0.05 to 0.15 Hz) and respiratory-frequency (0.20 to 0.30 Hz) ranges with fast Fourier transform power spectra and used cross-spectral analysis to determine the phase relation between the two signals. As expected, cardiac pacing eliminated beat-to-beat RR interval variability. Against expectations, however, cardiac pacing in the supine position significantly reduced arterial pressure oscillations in the respiratory frequency (systolic, 6.8+/-1.8 to 2.9 +/-0.6 mm Hg2/Hz, P=.017). In contrast, cardiac pacing in the 40 degree tilt position increased arterial pressure variability (systolic, 8.0+/-1.8 to 10.8 +/-2.6, P=.027). Cross-spectral analysis showed that 40 degree tilt shifted the phase relation between systolic pressure and RR interval at the respiratory frequency from positive to negative (9 +/-7 degrees versus -17+/-11 degrees, P=.04); that is, in the supine position, RR interval changes appeared to lead arterial pressure changes, and in the upright position, RR interval changes appeared to follow arterial pressure changes. CONCLUSIONS: These results demonstrate that respiratory sinus arrhythmia can actually contribute to respiratory arterial pressure fluctuations. Therefore, respiratory sinus arrhythmia does not represent simple baroreflex buffering of arterial pressure.

  15. Statistical quantifiers of memory for an analysis of human brain and neuro-system diseases

    NASA Astrophysics Data System (ADS)

    Demin, S. A.; Yulmetyev, R. M.; Panischev, O. Yu.; Hänggi, Peter

    2008-03-01

    On the basis of a memory function formalism for correlation functions of time series we investigate statistical memory effects by the use of appropriate spectral and relaxation parameters of measured stochastic data for neuro-system diseases. In particular, we study the dynamics of the walk of a patient who suffers from Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and compare against the data of healthy people (CO - control group). We employ an analytical method which is able to characterize the stochastic properties of stride-to-stride variations of gait cycle timing. Our results allow us to estimate quantitatively a few human locomotion function abnormalities occurring in the human brain and in the central nervous system (CNS). Particularly, the patient's gait dynamics are characterized by an increased memory behavior together with sizable fluctuations as compared with the locomotion dynamics of healthy patients. Moreover, we complement our findings with peculiar features as detected in phase-space portraits and spectral characteristics for the different data sets (PD, HD, ALS and healthy people). The evaluation of statistical quantifiers of the memory function is shown to provide a useful toolkit which can be put to work to identify various abnormalities of locomotion dynamics. Moreover, it allows one to diagnose qualitatively and quantitatively serious brain and central nervous system diseases.

  16. Comparison of the temporal kinematics of the canter pirouette and collected canter.

    PubMed

    Burns, T E; Clayton, H M

    1997-05-01

    The objectives were to compare the temporal characteristics of canter pirouette strides with collected canter strides in elite dressage horses, and to determine whether the stride kinematics of the canter pirouettes fulfilled the requirements specified in the Federation Equestre Internationale Rules for Dressage Events. Eleven horses were videotaped (60 fields/s) during the individual medal competition at the 1992 Olympic Games. Temporal variables were extracted from the videotapes using standard methods. Two strides were analysed on each of the left and right leads and these were pooled to give mean values for the collected canter and the pirouettes. The pirouettes were completed in 4-9 strides, (mean of 6.4). In the collected canter strides, mean duration of the suspension was 0.013 s. There was no suspension in any of the pirouette strides, instead the stance phases of the leading forelimb and trailing hindlimb overlapped by a mean of 0.163 s. In 9 horses the trailing forelimb contacted the ground before the diagonal leading hindlimb in the collected canter, whereas in the pirouettes the leading hindlimb always made contact before the trailing forelimb (mean dissociation 0.164 s), giving the strides a distinct 4 beat rhythm. Due to increases in advanced placement between the diagonal limb pair and between the 2 forelimbs, the stride duration was longer in the pirouette (0.879 s) than the collected canter (0.629 s). It is concluded that the canter pirouette strides did not maintain the rhythm and timing of the the collected canter strides in any of the 11 horses.

  17. Botulinum Toxin Dosing Trends in Spasmodic Dysphonia Over a 20-year Period.

    PubMed

    Namin, Arya W; Christopher, Kara M; Eisenbeis, John F

    2017-01-01

    The study aims to (1) identify the botulinum toxin (BTX) dosing trend in a cohort of patients who received at least 20 injections for the treatment of adductor spasmodic dysphonia (ADSD), (2) describe two distinct BTX dosing trends in treating ADSD (a "classic" dosing trend that initially decreases before stabilizing, and a "fluctuating" dosing trend), and (3) determine if patients with the "classic" dosing trend differed in age or in dosing intervals from those with the "fluctuating" dosing trend. This is a retrospective case series. Of 149 patients who received a total of 2484 BTX injections for the treatment of spasmodic dysphonia in 1993-2013, 49 patients received at least 20 injections. The BTX dose and the interval between doses were recorded. The mean dose of injections 1-20 was determined. The age at initial injection, initial dose, and interval in days between treatments were compared for the "fluctuating" and "classic" groups. The cohort exhibits a significant decrease in dose during the first 10-15 injections. The "fluctuating" group had a significantly shorter interval between injections (mean interval = 97.09 days, SD = 29.41; mean interval = 136.90 days, SD = 43.76, P = 0.002). The mean age at initial dose was not significantly different between the "classic" and "fluctuating" groups. The average BTX dose of patients with ADSD who receive long-term injections significantly decreases during the initial 10-15 injections before stabilizing. Patients who exhibit the "fluctuating" dosing pattern have a significantly shorter interval between injections than those with the "classic" dosing pattern. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Return Intervals Approach to Financial Fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Fengzhong; Yamasaki, Kazuko; Havlin, Shlomo; Stanley, H. Eugene

    Financial fluctuations play a key role for financial markets studies. A new approach focusing on properties of return intervals can help to get better understanding of the fluctuations. A return interval is defined as the time between two successive volatilities above a given threshold. We review recent studies and analyze the 1000 most traded stocks in the US stock markets. We find that the distribution of the return intervals has a well approximated scaling over a wide range of thresholds. The scaling is also valid for various time windows from one minute up to one trading day. Moreover, these results are universal for stocks of different countries, commodities, interest rates as well as currencies. Further analysis shows some systematic deviations from a scaling law, which are due to the nonlinear correlations in the volatility sequence. We also examine the memory in return intervals for different time scales, which are related to the long-term correlations in the volatility. Furthermore, we test two popular models, FIGARCH and fractional Brownian motion (fBm). Both models can catch the memory effect but only fBm shows a good scaling in the return interval distribution.

  19. Gait cycle analysis: parameters sensitive for functional evaluation of peripheral nerve recovery in rat hind limbs.

    PubMed

    Rui, Jing; Runge, M Brett; Spinner, Robert J; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2014-10-01

    Video-assisted gait kinetics analysis has been a sensitive method to assess rat sciatic nerve function after injury and repair. However, in conduit repair of sciatic nerve defects, previously reported kinematic measurements failed to be a sensitive indicator because of the inferior recovery and inevitable joint contracture. This study aimed to explore the role of physiotherapy in mitigating joint contracture and to seek motion analysis indices that can sensitively reflect motor function. Data were collected from 26 rats that underwent sciatic nerve transection and conduit repair. Regular postoperative physiotherapy was applied. Parameters regarding step length, phase duration, and ankle angle were acquired and analyzed from video recording of gait kinetics preoperatively and at regular postoperative intervals. Stride length ratio (step length of uninjured foot/step length of injured foot), percent swing of the normal paw (percentage of the total stride duration when the uninjured paw is in the air), propulsion angle (toe-off angle subtracted by midstance angle), and clearance angle (ankle angle change from toe off to midswing) decreased postoperatively comparing with baseline values. The gradual recovery of these measurements had a strong correlation with the post-nerve repair time course. Ankle joint contracture persisted despite rigorous physiotherapy. Parameters acquired from a 2-dimensional motion analysis system, that is, stride length ratio, percent swing of the normal paw, propulsion angle, and clearance angle, could sensitively reflect nerve function impairment and recovery in the rat sciatic nerve conduit repair model despite the existence of joint contractures.

  20. Six-week transition to minimalist shoes improves running economy and time-trial performance.

    PubMed

    Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D

    2017-12-01

    This study investigated if gradually introducing runners to minimalist shoes during training improved running economy and time-trial performance compared to training in conventional shoes. Changes in stride rate, stride length, footfall pattern and ankle plantar-flexor strength were also investigated. Randomised parallel intervention trial. 61 trained runners gradually increased the amount of running performed in either minimalist (n=31) or conventional (n=30) shoes during a six-week standardised training program. 5-km time-trial performance, running economy, ankle plantar-flexor strength, footfall pattern, stride rate and length were assessed in the allocated shoes at baseline and after training. Footfall pattern was determined from the time differential between rearfoot and forefoot (TD R-F ) pressure sensors. The minimalist shoe group improved time-trial performance (effect size (ES): 0.24; 95% confidence interval (CI): 0.01, 0.48; p=0.046) and running economy (ES 0.48; 95%CI: 0.22, 0.74; p<0.001) more than the conventional shoe group. There were no minimalist shoe training effects on ankle plantar-flexor concentric (ES: 0.11; 95%CI: -0.18, 0.41; p=0.45), isometric (ES: 0.23; 95%CI: -0.17, 0.64; p=0.25), or eccentric strength (ES: 0.24; 95%CI: -0.17, 0.65; p=0.24). Minimalist shoes caused large reductions in TD R-F (ES: 1.03; 95%CI: 0.65, 1.40; p<0.001) but only two runners changed to a forefoot footfall. Minimalist shoes had no effect on stride rate (ES: 0.04; 95%CI: -0.08, 0.16; p=0.53) or length (ES: 0.06; 95%CI: -0.06, 0.18; p=0.35). Gradually introducing minimalist shoes over a six-week training block is an effective method for improving running economy and performance in trained runners. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. PoleStriding exercise and vitamin E for management of peripheral vascular disease.

    PubMed

    Collins, Eileen G; Edwin Langbein, W; Orebaugh, Cynthia; Bammert, Christine; Hanson, Karla; Reda, Domenic; Edwards, Lonnie C; Littooy, Fred N

    2003-03-01

    The purpose of this investigation was to evaluate the efficacy of PoleStriding exercise (a form of walking that uses muscles of the upper and lower body in a continuous movement similar to cross-country skiing) and vitamin E (alpha-tocopherol) to improve walking ability and perceived quality of life (QOL) of patients with claudication pain secondary to peripheral arterial disease (PAD). Fifty-two subjects were randomized into four groups: PoleStriding with vitamin E (N = 13), PoleStriding with placebo (N= 14), vitamin E without exercise (N= 13), and placebo without exercise (N = 12). The dose of vitamin E was 400 IU daily. Only the PoleStriding with vitamin E and PoleStriding with placebo groups received PoleStriding instruction and training. Assignment to vitamin E or placebo was double blind. Subjects trained three times weekly for 30-45 min (rest time excluded). Individuals in vitamin E and placebo groups came to the laboratory biweekly for ankle blood-pressure measurements. Results of this randomized clinical trial provide strong evidence that PoleStriding significantly (P< 0.001) improved exercise tolerance on the constant work-rate and incremental treadmill tests. Ratings of perceived claudication pain were significantly less after the PoleStriding training program (P= 0.02). In contrast, vitamin E did not have a statistically significant effect on the subjects' ratings of perceived leg pain (P= 0.35) or treadmill walking duration ( P= 0.36). Perceived distance and walking speed (Walking Impairment Questionnaire) and perceived physical function (Rand Short Form-36) improved in the PoleStriding trained group only (P< 0.001, 0.022 and 0.003, respectively). PoleStriding effectively improved the exercise tolerance and perceived QOL of patients with PAD. Little additional benefit to exercise capacity was realized from vitamin E supplementation.

  2. Increased gait variability may not imply impaired stride-to-stride control of walking in healthy older adults: Winner: 2013 Gait and Clinical Movement Analysis Society Best Paper Award.

    PubMed

    Dingwell, Jonathan B; Salinas, Mandy M; Cusumano, Joseph P

    2017-06-01

    Older adults exhibit increased gait variability that is associated with fall history and predicts future falls. It is not known to what extent this increased variability results from increased physiological noise versus a decreased ability to regulate walking movements. To "walk", a person must move a finite distance in finite time, making stride length (L n ) and time (T n ) the fundamental stride variables to define forward walking. Multiple age-related physiological changes increase neuromotor noise, increasing gait variability. If older adults also alter how they regulate their stride variables, this could further exacerbate that variability. We previously developed a Goal Equivalent Manifold (GEM) computational framework specifically to separate these causes of variability. Here, we apply this framework to identify how both young and high-functioning healthy older adults regulate stepping from each stride to the next. Healthy older adults exhibited increased gait variability, independent of walking speed. However, despite this, these healthy older adults also concurrently exhibited no differences (all p>0.50) from young adults either in how their stride variability was distributed relative to the GEM or in how they regulated, from stride to stride, either their basic stepping variables or deviations relative to the GEM. Using a validated computational model, we found these experimental findings were consistent with increased gait variability arising solely from increased neuromotor noise, and not from changes in stride-to-stride control. Thus, age-related increased gait variability likely precedes impaired stepping control. This suggests these changes may in turn precede increased fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nonlinear time series analysis of normal and pathological human walking

    NASA Astrophysics Data System (ADS)

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2000-12-01

    Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed.

  4. Fractal Dynamics of Heartbeat Interval Fluctuations in Health and Disease

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Marconi, C.; Rahmel, A.; Grassi, B.; Ferretti, G.; Skinner, J. E.; Cerretelli, P.

    The dynamics of heartbeat interval time series were studied by a modified random walk analysis recently introduced as Detrended Fluctuation Analysis. In this analysis, the intrinsic fractal long-range power-law correlation properties of beat-to-beat fluctuations generated by the dynamical system (i.e. cardiac rhythm generator), after decomposition from extrinsic uncorrelated sources, can be quantified by the scaling exponent which, in healthy subjects, is about 1.0. The finding of a scaling coefficient of 1.0, indicating scale-invariant long-range power-law correlations (1/ƒnoise) of heartbeat fluctuations, would reflect a genuinely self-similar fractal process that typically generates fluctuations on a wide range of time scales. Lack of a characteristic time scale suggests that the neuroautonomic system underlying the control of heart rate dynamics helps prevent excessive mode-locking (error tolerance) that would restrict its functional responsiveness (plasticity) to environmental stimuli. The 1/ƒ dynamics of heartbeat interval fluctuations are unaffected by exposure to chronic hypoxia suggesting that the neuroautonomic cardiac control system is preadapted to hypoxia. Functional (hypothermia, cardiac disease) and/or structural (cardiac transplantation, early cardiac development) inactivation of neuroautonomic control is associated with the breakdown or absence of fractal complexity reflected by anticorrelated random walk-like dynamics, indicating that in these conditions the heart is unadapted to its environment.

  5. Model selection for identifying power-law scaling.

    PubMed

    Ton, Robert; Daffertshofer, Andreas

    2016-08-01

    Long-range temporal and spatial correlations have been reported in a remarkable number of studies. In particular power-law scaling in neural activity raised considerable interest. We here provide a straightforward algorithm not only to quantify power-law scaling but to test it against alternatives using (Bayesian) model comparison. Our algorithm builds on the well-established detrended fluctuation analysis (DFA). After removing trends of a signal, we determine its mean squared fluctuations in consecutive intervals. In contrast to DFA we use the values per interval to approximate the distribution of these mean squared fluctuations. This allows for estimating the corresponding log-likelihood as a function of interval size without presuming the fluctuations to be normally distributed, as is the case in conventional DFA. We demonstrate the validity and robustness of our algorithm using a variety of simulated signals, ranging from scale-free fluctuations with known Hurst exponents, via more conventional dynamical systems resembling exponentially correlated fluctuations, to a toy model of neural mass activity. We also illustrate its use for encephalographic signals. We further discuss confounding factors like the finite signal size. Our model comparison provides a proper means to identify power-law scaling including the range over which it is present. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Locomotor, cardiocirculatory and metabolic adaptations to training in Andalusian and Anglo-Arabian horses.

    PubMed

    Muñoz, A; Santisteban, R; Rubio, M D; Agüera, E I; Escribano, B M; Castejón, F M

    1999-02-01

    The effects of two training programmes in 20 Andalusian and 12 Anglo-Arabian horses were evaluated by an increasing intensity work test at velocities of 4, 5, 6, 7 and 8 m sec(-1). Heart rate was monitored and blood samples were drawn at rest and after each velocity to analyse packed cell volume, haemoglobin concentration, plasma lactate and potassium levels. Furthermore, the programmes were video-taped and stride length, duration and frequency, stance (restraint and propulsion), swing phase durations and stride vertical component were measured. The training protocol of the Andalusian horses produced significant decreases in the cardiovascular, haematological and metabolic responses to exercise. Locomotory training adaptation consisted of an increased stride frequency and a reduced stride length and vertical stride component. The last variable was the limiting factor of stride length both before and after training in the Andalusian horses. A different training protocol for show-jumping competition in Anglo-Arabian horses failed to show significant differences in the studied parameters to the work test, although an increase in stride length at velocities of over 6 m sec(-1) was observed. Stride vertical component did not have an effect on the physiological response to exercise, either before or after training.

  7. Select injury-related variables are affected by stride length and foot strike style during running.

    PubMed

    Boyer, Elizabeth R; Derrick, Timothy R

    2015-09-01

    Some frontal plane and transverse plane variables have been associated with running injury, but it is not known if they differ with foot strike style or as stride length is shortened. To identify if step width, iliotibial band strain and strain rate, positive and negative free moment, pelvic drop, hip adduction, knee internal rotation, and rearfoot eversion differ between habitual rearfoot and habitual mid-/forefoot strikers when running with both a rearfoot strike (RFS) and a mid-/forefoot strike (FFS) at 3 stride lengths. Controlled laboratory study. A total of 42 healthy runners (21 habitual rearfoot, 21 habitual mid-/forefoot) ran overground at 3.35 m/s with both a RFS and a FFS at their preferred stride lengths and 5% and 10% shorter. Variables did not differ between habitual groups. Step width was 1.5 cm narrower for FFS, widening to 0.8 cm as stride length shortened. Iliotibial band strain and strain rate did not differ between foot strikes but decreased as stride length shortened (0.3% and 1.8%/s, respectively). Pelvic drop was reduced 0.7° for FFS compared with RFS, and both pelvic drop and hip adduction decreased as stride length shortened (0.8° and 1.5°, respectively). Peak knee internal rotation was not affected by foot strike or stride length. Peak rearfoot eversion was not different between foot strikes but decreased 0.6° as stride length shortened. Peak positive free moment (normalized to body weight [BW] and height [h]) was not affected by foot strike or stride length. Peak negative free moment was -0.0038 BW·m/h greater for FFS and decreased -0.0004 BW·m/h as stride length shortened. The small decreases in most variables as stride length shortened were likely associated with the concomitant wider step width. RFS had slightly greater pelvic drop, while FFS had slightly narrower step width and greater negative free moment. Shortening one's stride length may decrease or at least not increase propensity for running injuries based on the variables that we measured. One foot strike style does not appear universally better than the other; rather, different foot strike styles may predispose runners to different types of injuries. © 2015 The Author(s).

  8. [Subjective Gait Stability in the Elderly].

    PubMed

    Hirsch, Theresa; Lampe, Jasmin; Michalk, Katrin; Röder, Lotte; Munsch, Karoline; Marquardt, Jonas

    2017-07-10

    It can be assumed that the feeling of gait stability or gait instability in the elderly may be independent of a possible fear of falling or a history of falling when walking. Up to now, there has been a lack of spatiotemporal gait parameters for older people who subjectively feel secure when walking. The aim of the study is to analyse the distribution of various gait parameters for older people who subjectively feel secure when walking. In a cross-sectional study, the gait parameters stride time, step time, stride length, step length, double support, single support, and walking speed were measured using a Vicon three-dimensional motion capture system (Plug-In Gait Lower-Body Marker Set) in 31 healthy people aged 65 years and older (mean age 72 ± 3.54 years) who subjectively feel secure when walking. There was a homogeneous distribution in the gait parameters examined, with no abnormalities. The mean values have a low variance with narrow confidence intervals. This study provides evidence that people who subjectively feel secure when walking demonstrate similarly objective gait parameters..

  9. Strategies for obstacle avoidance during walking in the cat.

    PubMed

    Chu, Kevin M I; Seto, Sandy H; Beloozerova, Irina N; Marlinski, Vladimir

    2017-08-01

    Avoiding obstacles is essential for successful navigation through complex environments. This study aimed to clarify what strategies are used by a typical quadruped, the cat, to avoid obstacles during walking. Four cats walked along a corridor 2.5 m long and 25 or 15 cm wide. Obstacles, small round objects 2.5 cm in diameter and 1 cm in height, were placed on the floor in various locations. Movements of the paw were recorded with a motion capture and analysis system (Visualeyez, PTI). During walking in the wide corridor, cats' preferred strategy for avoiding a single obstacle was circumvention, during which the stride direction changed while stride duration and swing-to-stride duration ratio were preserved. Another strategy, stepping over the obstacle, was used during walking in the narrow corridor, when lateral deviations of walking trajectory were restricted. Stepping over the obstacle involved changes in two consecutive strides. The stride preceding the obstacle was shortened, and swing-to-stride ratio was reduced. The obstacle was negotiated in the next stride of increased height and normal duration and swing-to-stride ratio. During walking on a surface with multiple obstacles, both strategies were used. To avoid contact with the obstacle, cats placed the paw away from the object at a distance roughly equal to the diameter of the paw. During obstacle avoidance cats prefer to alter muscle activities without altering the locomotor rhythm. We hypothesize that a choice of the strategy for obstacle avoidance is determined by minimizing the complexity of neuro-motor processes required to achieve the behavioral goal. NEW & NOTEWORTHY In a study of feline locomotor behavior we found that the preferred strategy to avoid a small obstacle is circumvention. During circumvention, stride direction changes but length and temporal structure are preserved. Another strategy, stepping over the obstacle, is used in narrow walkways. During overstepping, two strides adjust. A stride preceding the obstacle decreases in length and duration. The following stride negotiating the obstacle increases in height while retaining normal temporal structure and nearly normal length. Copyright © 2017 the American Physiological Society.

  10. Interaction effects of stride angle and strike pattern on running economy.

    PubMed

    Santos-Concejero, J; Tam, N; Granados, C; Irazusta, J; Bidaurrazaga-Letona, I; Zabala-Lili, J; Gil, S M

    2014-12-01

    This study aimed to investigate the relationship between stride angle and running economy (RE) in athletes with different foot strike patterns. 30 male runners completed 4 min running stages on a treadmill at different velocities. During the test, biomechanical variables such as stride angle, swing time, contact time, stride length and frequency were recorded using an optical measurement system. Their foot strike pattern was determined, and VO2 at velocities below the lactate threshold were measured to calculate RE. Midfoot/forefoot strikers had better RE than rearfoot strikers (201.5±5.6 ml · kg(-1) · km(-1) vs. 213.5±4.2 ml · kg(-1) · km(-1)respectively; p=0.019). Additionally, midfoot/fore-foot strikers presented higher stride angles than rearfoot strikers (p=0.043). Linear modelling analysis showed that stride angle is closely related to RE (r=0.62, p<0.001) and that the effect of stride angle on RE was different in the 2 groups. From an arbitrary value of 4°, a rearfoot strike pattern is likely to be more economical, whereas at any lower degree, the midfoot/forefoot strike pattern appears to be more desirable. A biomechanical running technique characterised by high stride angles and a midfoot/forefoot strike pattern is advantageous for a better RE. Athletes may find stride angle useful for improving RE. © Georg Thieme Verlag KG Stuttgart · New York.

  11. The gait standard deviation, a single measure of kinematic variability.

    PubMed

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Detrended fluctuation analysis of non-stationary cardiac beat-to-beat interval of sick infants

    NASA Astrophysics Data System (ADS)

    Govindan, Rathinaswamy B.; Massaro, An N.; Al-Shargabi, Tareq; Niforatos Andescavage, Nickie; Chang, Taeun; Glass, Penny; du Plessis, Adre J.

    2014-11-01

    We performed detrended fluctuation analysis (DFA) of cardiac beat-to-beat intervals (RRis) collected from sick newborn infants over 1-4 day periods. We calculated four different metrics from the DFA fluctuation function: the DFA exponents αL (>40 beats up to one-fourth of the record length), αs (15-30 beats), root-mean-square (RMS) fluctuation on a short-time scale (20-50 beats), and RMS fluctuation on a long-time scale (110-150 beats). Except αL , all metrics clearly distinguished two groups of newborn infants (favourable vs. adverse) with well-characterized outcomes. However, the RMS fluctuations distinguished the two groups more consistently over time compared to αS . Furthermore, RMS distinguished the RRi of the two groups earlier compared to the DFA exponent. In all the three measures, the favourable outcome group displayed higher values, indicating a higher magnitude of (auto-)correlation and variability, thus normal physiology, compared to the adverse outcome group.

  13. Giant current fluctuations in an overheated single-electron transistor

    NASA Astrophysics Data System (ADS)

    Laakso, M. A.; Heikkilä, T. T.; Nazarov, Yuli V.

    2010-11-01

    Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.

  14. The desert ant odometer: a stride integrator that accounts for stride length and walking speed.

    PubMed

    Wittlinger, Matthias; Wehner, Rüdiger; Wolf, Harald

    2007-01-01

    Desert ants, Cataglyphis, use path integration as a major means of navigation. Path integration requires measurement of two parameters, namely, direction and distance of travel. Directional information is provided by a celestial compass, whereas distance measurement is accomplished by a stride integrator, or pedometer. Here we examine the recently demonstrated pedometer function in more detail. By manipulating leg lengths in foraging desert ants we could also change their stride lengths. Ants with elongated legs ('stilts') or shortened legs ('stumps') take larger or shorter strides, respectively, and misgauge travel distance. Travel distance is overestimated by experimental animals walking on stilts, and underestimated by animals walking on stumps - strongly indicative of stride integrator function in distance measurement. High-speed video analysis was used to examine the actual changes in stride length, stride frequency and walking speed caused by the manipulations of leg length. Unexpectedly, quantitative characteristics of walking behaviour remained almost unaffected by imposed changes in leg length, demonstrating remarkable robustness of leg coordination and walking performance. These data further allowed normalisation of homing distances displayed by manipulated animals with regard to scaling and speed effects. The predicted changes in homing distance are in quantitative agreement with the experimental data, further supporting the pedometer hypothesis.

  15. Are EUR and GBP different words for the same currency?

    NASA Astrophysics Data System (ADS)

    Ivanova, K.; Ausloos, M.

    2002-05-01

    The British Pound (GBP) is not part of the Euro (EUR) monetary system. In order to find out arguments on whether GBP should join the EUR or not correlations are calculated between GBP exchange rates with respect to various currencies: USD, JPY, CHF, DKK, the currencies forming EUR and a reconstructed EUR for the time interval from 1993 till June 30, 2000. The distribution of fluctuations of the exchange rates is Gaussian for the central part of the distribution, but has fat tails for the large size fluctuations. Within the Detrended Fluctuation Analysis (DFA) statistical method the power law behavior describing the root-mean-square deviation from a linear trend of the exchange rate fluctuations is obtained as a function of time for the time interval of interest. The time-dependent exponent evolution of the exchange rate fluctuations is given. Statistical considerations imply that the GBP is already behaving as a true EUR.

  16. Fluctuations of healthy and unhealthy heartbeat intervals

    NASA Astrophysics Data System (ADS)

    Lan, Boon Leong; Toda, Mikito

    2013-04-01

    We show that the RR-interval fluctuations, defined as the difference between successive natural-logarithm of the RR interval, for healthy, congestive-heart-failure (CHF) and atrial-fibrillation (AF) subjects are well modeled by non-Gaussian stable distributions. Our results suggest that healthy or unhealthy RR-interval fluctuation can generally be modeled as a sum of a large number of independent physiological effects which are identically distributed with infinite variance. Furthermore, we show for the first time that one indicator —the scale parameter of the stable distribution— is sufficient to robustly distinguish the three groups of subjects. The scale parameters for healthy subjects are smaller than those for AF subjects but larger than those for CHF subjects —this ordering suggests that the scale parameter could be used to objectively quantify the severity of CHF and AF over time and also serve as an early warning signal for a healthy person when it approaches either boundary of the healthy range.

  17. Quantitative Gait Markers and Incident Fall Risk in Older Adults

    PubMed Central

    Holtzer, Roee; Lipton, Richard B.; Wang, Cuiling

    2009-01-01

    Background Identifying quantitative gait markers of falls in older adults may improve diagnostic assessments and suggest novel intervention targets. Methods We studied 597 adults aged 70 and older (mean age 80.5 years, 62% women) enrolled in an aging study who received quantitative gait assessments at baseline. Association of speed and six other gait markers (cadence, stride length, swing, double support, stride length variability, and swing time variability) with incident fall rate was studied using generalized estimation equation procedures adjusted for age, sex, education, falls, chronic illnesses, medications, cognition, disability as well as traditional clinical tests of gait and balance. Results Over a mean follow-up period of 20 months, 226 (38%) of the 597 participants fell. Mean fall rate was 0.44 per person-year. Slower gait speed (risk ratio [RR] per 10 cm/s decrease 1.069, 95% confidence interval [CI] 1.001–1.142) was associated with higher risk of falls in the fully adjusted models. Among six other markers, worse performance on swing (RR 1.406, 95% CI 1.027–1.926), double-support phase (RR 1.165, 95% CI 1.026–1.321), swing time variability (RR 1.007, 95% CI 1.004–1.010), and stride length variability (RR 1.076, 95% CI 1.030–1.111) predicted fall risk. The associations remained significant even after accounting for cognitive impairment and disability. Conclusions Quantitative gait markers are independent predictors of falls in older adults. Gait speed and other markers, especially variability, should be further studied to improve current fall risk assessments and to develop new interventions. PMID:19349593

  18. LSTM for diagnosis of neurodegenerative diseases using gait data

    NASA Astrophysics Data System (ADS)

    Zhao, Aite; Qi, Lin; Li, Jie; Dong, Junyu; Yu, Hui

    2018-04-01

    Neurodegenerative diseases (NDs) usually cause gait disorders and postural disorders, which provides an important basis for NDs diagnosis. By observing and analyzing these clinical manifestations, medical specialists finally give diagnostic results to the patient, which is inefficient and can be easily affected by doctors' subjectivity. In this paper, we propose a two-layer Long Short-Term Memory (LSTM) model to learn the gait patterns exhibited in the three NDs. The model was trained and tested using temporal data that was recorded by force-sensitive resistors including time series, such as stride interval and swing interval. Our proposed method outperforms other methods in literature in accordance with accuracy of the predicted diagnostic result. Our approach aims at providing the quantitative assessment so that to indicate the diagnosis and treatment of these neurodegenerative diseases in clinic

  19. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy.

    PubMed

    Sloot, Lizeth H; Harlaar, Jaap; van der Krogt, Marjolein M

    2015-10-01

    While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the effect of self-paced (SP) versus fixed speed (FS) walking and of walking with and without a virtual reality (VR) in 11 typically developing (TD) children and nine children with cerebral palsy (CP). We found that subjects walked in SP mode with twice as much between-stride walking speed variability (p<0.01), fluctuating over multiple strides. There was no main effect of SP on kinematics or kinetics, but small interaction effects between SP and group (TD versus CP) were found for five out of 33 parameters. This suggests that children with CP might need more time to familiarize to SP walking, however, these differences were generally too small to be clinically relevant. The VR environment did not affect the kinematic or kinetic parameters, but walking with VR was rated as more similar to overground walking by both groups (p=0.02). The results of this study indicate that both SP and FS walking, with and without VR, can be used interchangeably for treadmill-based clinical gait analysis in children with and without CP. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Graphic analysis and multifractal on percolation-based return interval series

    NASA Astrophysics Data System (ADS)

    Pei, A. Q.; Wang, J.

    2015-05-01

    A financial time series model is developed and investigated by the oriented percolation system (one of the statistical physics systems). The nonlinear and statistical behaviors of the return interval time series are studied for the proposed model and the real stock market by applying visibility graph (VG) and multifractal detrended fluctuation analysis (MF-DFA). We investigate the fluctuation behaviors of return intervals of the model for different parameter settings, and also comparatively study these fluctuation patterns with those of the real financial data for different threshold values. The empirical research of this work exhibits the multifractal features for the corresponding financial time series. Further, the VGs deviated from both of the simulated data and the real data show the behaviors of small-world, hierarchy, high clustering and power-law tail for the degree distributions.

  1. Fluctuations in time intervals of financial data from the view point of the Gini index

    NASA Astrophysics Data System (ADS)

    Sazuka, Naoya; Inoue, Jun-ichi

    2007-09-01

    We propose an approach to explain fluctuations in time intervals of financial markets data from the view-point of the Gini index. We show the explicit form of the Gini index for a Weibull distribution: A good candidate to describe the first passage time of foreign exchange rate. The analytical expression of the Gini index compares well with the value obtained from empirical data.

  2. Stride search: A general algorithm for storm detection in high-resolution climate data

    DOE PAGES

    Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.; ...

    2016-04-13

    This study discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclonemore » detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.« less

  3. Crossover transition in the fluctuation of Internet

    NASA Astrophysics Data System (ADS)

    Qian, Jiang-Hai

    2018-06-01

    The inconsistent fluctuation behavior of Internet predicted by preferential attachment(PA) and Gibrat's law requires empirical investigations on the actual system. By using the interval-tunable Gibrat's law statistics, we find the actual fluctuation, characterized by the conditional standard deviation of the degree growth rate, changes with the interval length and displays a crossover transition from PA type to Gibrat's law type, which has not yet been captured by any previous models. We characterize the transition dynamics quantitatively and determine the applicative range of PA and Gibrat's law. The correlation analysis indicates the crossover transition may be attributed to the accumulative correlation between the internal links.

  4. Association between daily walking and antioxidant capacity in patients with symptomatic peripheral artery disease.

    PubMed

    Gardner, Andrew W; Montgomery, Polly S; Zhao, Yan D; Silva-Palacios, Federico; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2017-06-01

    The primary aim of the study was to assess whether both the amount and pace of daily walking were associated with circulating antioxidant capacity in symptomatic patients with peripheral artery disease (PAD). Community-based walking was measured in 244 men and women who were limited by symptomatic PAD during a 1-week period in which they wore an ankle-mounted step activity monitor. Patients were further characterized by circulating antioxidant capacity with the OxiSelect (Cell Biolabs Inc, San Diego, Calif) hydroxyl radical antioxidant capacity (HORAC) activity assay. To assess the amount of walking, patients were grouped into low (≤2440 strides/d), middle (2441-3835 strides/d), and high (>3835 strides/d) stride tertiles. HORAC was higher in the middle (P = .03) and high (P = .01) stride tertiles than in the low tertile, but there was no difference between middle and high tertiles (P = .44). To assess the pace of walking, patients were grouped into slow (<25.0 strides/min), middle (25.0-31.6 strides/min), and fast (>31.6 strides/min) cadence tertiles. HORAC was higher in the high cadence tertile than in the low (P < .01) and middle (P < .01) tertiles, but there was no difference between low and middle tertiles (P = .48). Similar findings were obtained on group differences in HORAC after adjusting for age, sex, race, and ankle-brachial index for both the amount and pace of daily walking. Walking >2440 strides each day and walking at a cadence faster than 31.6 strides/min for 30 minutes each day are both associated with greater circulating antioxidant capacity in symptomatic patients with PAD. The clinical significance is that a home-based walking program may be one approach to increase endogenous antioxidant capacity. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis

    PubMed Central

    2012-01-01

    Background Symmetry and regularity of gait are essential outcomes of gait retraining programs, especially in lower-limb amputees. This study aims presenting an algorithm to automatically compute symmetry and regularity indices, and assessing the minimum number of strides for appropriate evaluation of gait symmetry and regularity through autocorrelation of acceleration signals. Methods Ten transfemoral amputees (AMP) and ten control subjects (CTRL) were studied. Subjects wore an accelerometer and were asked to walk for 70 m at their natural speed (twice). Reference values of step and stride regularity indices (Ad1 and Ad2) were obtained by autocorrelation analysis of the vertical and antero-posterior acceleration signals, excluding initial and final strides. The Ad1 and Ad2 coefficients were then computed at different stages by analyzing increasing portions of the signals (considering both the signals cleaned by initial and final strides, and the whole signals). At each stage, the difference between Ad1 and Ad2 values and the corresponding reference values were compared with the minimum detectable difference, MDD, of the index. If that difference was less than MDD, it was assumed that the portion of signal used in the analysis was of sufficient length to allow reliable estimation of the autocorrelation coefficient. Results All Ad1 and Ad2 indices were lower in AMP than in CTRL (P < 0.0001). Excluding initial and final strides from the analysis, the minimum number of strides needed for reliable computation of step symmetry and stride regularity was about 2.2 and 3.5, respectively. Analyzing the whole signals, the minimum number of strides increased to about 15 and 20, respectively. Conclusions Without the need to identify and eliminate the phases of gait initiation and termination, twenty strides can provide a reasonable amount of information to reliably estimate gait regularity in transfemoral amputees. PMID:22316184

  6. Treadmill locomotion of the mouse lemur (Microcebus murinus); kinematic parameters during symmetrical and asymmetrical gaits.

    PubMed

    Herbin, Marc; Hommet, Eva; Hanotin-Dossot, Vicky; Perret, Martine; Hackert, Rémi

    2018-06-01

    The gaits of the adult grey mouse lemur Microcebus murinus were studied during treadmill locomotion over a large range of velocities. The locomotion sequences were analysed to determine the gait and the various spatiotemporal gait parameters of the limbs. We found that velocity adjustments are accounted for differently by stride frequency and stride length depending on whether the animal showed a symmetrical or an asymmetrical gait. When using symmetrical gaits the increase in velocity is associated with a constant contribution of the stride length and stride frequency; the increase of the stride frequency being always lower. When using asymmetrical gaits, the increase in velocity is mainly assured by an increase in the stride length which tends to decrease with increasing velocity. A reduction in both stance time and swing time contributed to the increase in stride frequency for both gaits, though with a major contribution from the decrease in stance time. The pattern of locomotion obtained in a normal young adult mouse lemurs can be used as a template for studying locomotor control deficits during aging or in different environments such as arboreal ones which likely modify the kinematics of locomotion.

  7. Statistical physics and physiology: monofractal and multifractal approaches

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Amaral, L. A.; Goldberger, A. L.; Havlin, S.; Peng, C. K.

    1999-01-01

    Even under healthy, basal conditions, physiologic systems show erratic fluctuations resembling those found in dynamical systems driven away from a single equilibrium state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic systems are being constantly perturbed by external and intrinsic noise? Or, do these fluctuations actually, contain useful, "hidden" information about the underlying nonequilibrium control mechanisms? We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. Specifically, we focus on interbeat interval variability as an important quantity to help elucidate possibly non-homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii) analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. The analytic tools we discuss may be used on a wider range of physiologic signals. We first review recent progress using two analysis methods--detrended fluctuation analysis and wavelets--sufficient for quantifying monofractual structures. We then describe recent work that quantifies multifractal features of interbeat interval series, and the discovery that the multifractal structure of healthy subjects is different than that of diseased subjects.

  8. The Effects of Music Salience on the Gait Performance of Young Adults.

    PubMed

    de Bruin, Natalie; Kempster, Cody; Doucette, Angelica; Doan, Jon B; Hu, Bin; Brown, Lesley A

    2015-01-01

    The presence of a rhythmic beat in the form of a metronome tone or beat-accentuated original music can modulate gait performance; however, it has yet to be determined whether gait modulation can be achieved using commercially available music. The current study investigated the effects of commercially available music on the walking of healthy young adults. Specific aims were (a) to determine whether commercially available music can be used to influence gait (i.e., gait velocity, stride length, cadence, stride time variability), (b) to establish the effect of music salience on gait (i.e., gait velocity, stride length, cadence, stride time variability), and (c) to examine whether music tempi differentially effected gait (i.e., gait velocity, stride length, cadence, stride time variability). Twenty-five participants walked the length of an unobstructed walkway while listening to music. Music selections differed with respect to the salience or the tempo of the music. The genre of music and artists were self-selected by participants. Listening to music while walking was an enjoyable activity that influenced gait. Specifically, salient music selections increased measures of cadence, velocity, and stride length; in contrast, gait was unaltered by the presence of non-salient music. Music tempo did not differentially affect gait performance (gait velocity, stride length, cadence, stride time variability) in these participants. Gait performance was differentially influenced by music salience. These results have implications for clinicians considering the use of commercially available music as an alternative to the traditional rhythmic auditory cues used in rehabilitation programs. © the American Music Therapy Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The influence of minimalist footwear and stride length reduction on lower-extremity running mechanics and cumulative loading.

    PubMed

    Firminger, Colin R; Edwards, W Brent

    2016-12-01

    To examine the effects of shoe type and stride length reduction on lower-extremity running mechanics and cumulative loading. Within-subject with four conditions: (1) control shoe at preferred stride length; (2) control shoe at 90% preferred stride length; (3) minimalist shoe at preferred stride length; (4) minimalist shoe at 90% preferred stride length. Fourteen young healthy males ran overground at their preferred speed while motion capture, force platform, and plantar pressure data were collected. Peak moments, impulse, mechanical work, and cumulative impulse were calculated at the metatarsophalangeal, ankle, and knee joint, and compared between conditions using a 2×2 factor repeated measures ANOVA. In general, running in minimalist footwear increased measures of loading at the metatarsophalangeal joint and ankle joint (mean increases of 7.3% and 5.9%, respectively), but decreased measures of loading at the knee (mean decrease of 7.3%). Conversely, running with reduced stride length decreased single-stance measures of loading at the ankle and knee joint (ranging from -0.9% to -20.5%), though cumulative impulse was higher at the ankle and lower at the knee. Running in minimalist shoes increased loads at the metatarsophalangeal and ankle joint, which may explain some of the incidence of overuse injuries observed in minimalist shoe users. Decreased ankle loads at 90% preferred stride length were not necessarily sufficient to reduce cumulative loads when impulse and loading cycles were weighted equally. Knee loads decreased more when running at 90% preferred stride length (16.2% mean reduction) versus running in a minimalist shoe (7.3% mean reduction), but both load reduction mechanisms appeared to have an additive effect (22.2% mean reduction). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Current Fluctuations in Stochastic Lattice Gases

    NASA Astrophysics Data System (ADS)

    Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.

    2005-01-01

    We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation theory for the space-time fluctuations of the empirical current which include the previous results. We then estimate the probability of a fluctuation of the average current over a large time interval. It turns out that recent results by Bodineau and Derrida [Phys. Rev. Lett.922004180601] in certain cases underestimate this probability due to the occurrence of dynamical phase transitions.

  11. The effect of rider weight and additional weight in Icelandic horses in tölt: part II. Stride parameters responses.

    PubMed

    Gunnarsson, V; Stefánsdóttir, G J; Jansson, A; Roepstorff, L

    2017-09-01

    This study investigated the effects of rider weight in the BW ratio (BWR) range common for Icelandic horses (20% to 35%), on stride parameters in tölt in Icelandic horses. The kinematics of eight experienced Icelandic school horses were measured during an incremental exercise test using a high-speed camera (300 frames/s). Each horse performed five phases (642 m each) in tölt at a BWR between rider (including saddle) and horse starting at 20% (BWR20) and increasing to 25% (BWR25), 30% (BWR30), 35% (BWR35) and finally 20% (BWR20b) was repeated. One professional rider rode all horses and weight (lead) was added to saddle and rider as needed. For each phase, eight strides at speed of 5.5 m/s were analyzed for stride duration, stride frequency, stride length, duty factor (DF), lateral advanced placement, lateral advanced liftoff, unipedal support (UPS), bipedal support (BPS) and height of front leg action. Stride length became shorter (Y=2.73-0.004x; P0.05). In conclusion, increased BWR decreased stride length and increased DF proportionally to the same extent in all limbs, whereas BPS increased at the expense of decreased UPS. These changes can be expected to decrease tölt quality when subjectively evaluated according to the breeding goals for the Icelandic horse. However, beat, symmetry and height of front leg lifting were not affected by BWR.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.

    This study discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclonemore » detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.« less

  13. A systems biology approach to studying Tai Chi, physiological complexity and healthy aging: design and rationale of a pragmatic randomized controlled trial.

    PubMed

    Wayne, Peter M; Manor, Brad; Novak, Vera; Costa, Madelena D; Hausdorff, Jeffrey M; Goldberger, Ary L; Ahn, Andrew C; Yeh, Gloria Y; Peng, C-K; Lough, Matthew; Davis, Roger B; Quilty, Mary T; Lipsitz, Lewis A

    2013-01-01

    Aging is typically associated with progressive multi-system impairment that leads to decreased physical and cognitive function and reduced adaptability to stress. Due to its capacity to characterize complex dynamics within and between physiological systems, the emerging field of complex systems biology and its array of quantitative tools show great promise for improving our understanding of aging, monitoring senescence, and providing biomarkers for evaluating novel interventions, including promising mind-body exercises, that treat age-related disease and promote healthy aging. An ongoing, two-arm randomized clinical trial is evaluating the potential of Tai Chi mind-body exercise to attenuate age-related loss of complexity. A total of 60 Tai Chi-naïve healthy older adults (aged 50-79) are being randomized to either six months of Tai Chi training (n=30), or to a waitlist control receiving unaltered usual medical care (n=30). Our primary outcomes are complexity-based measures of heart rate, standing postural sway and gait stride interval dynamics assessed at 3 and 6months. Multiscale entropy and detrended fluctuation analysis are used as entropy- and fractal-based measures of complexity, respectively. Secondary outcomes include measures of physical and psychological function and tests of physiological adaptability also assessed at 3 and 6months. Results of this study may lead to novel biomarkers that help us monitor and understand the physiological processes of aging and explore the potential benefits of Tai Chi and related mind-body exercises for healthy aging. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. [Kinetics of heifers and cows walking on an instrumented treadmill].

    PubMed

    Nuss, K; Waldern, N M; Weishaupt, M A; Wiestner, T

    2015-01-01

    Kinetic data of stride characteristics and ground reaction forces of cattle become increasingly important as automated lameness detection may be installed in dairy cow housing systems in the future. Therefore, sound heifers and cows were measured on an instrumented treadmill to collect such basic data. Nine heifers and 10 cows were trained to walk on an instrumented treadmill. Vertical ground reaction forces as well as step and stride timing and length variables were measured for all limbs simultaneously. On average, 16 stride cycles in cows and 24 strides in heifers were analysed in each case. The cows walked on the treadmill at an average speed of 1.2 ± 0.05 m/s (mean ± standard deviation), with a stride rate of 43.0 ± 1.9/min and a stride length of 1.68 ± 0.1 m. The heifers had average values of 1.3 ± 0.04 m/s, 53.7 ± 2.2/min and 1.49 ± 0.05 m, respectively. The stance duration relative to stride duration (the duty factor) was for the cows significantly longer in the forelimbs (67%) than in the hind limbs (64%). Force-time-curves of all limbs showed two peaks, one after landing (FP1) and another during push off (FP2). Vertical ground reaction force was highest for FP1 in the hind limbs, but for FP2 in the forelimbs. At all limbs, force minimum between the peaks occurred shortly before midstance. The vertical impulse carried by both forelimbs amounted to 53.7% of the total stride impulse in cows and to 55.0% in heifers. The location of the centre of body mass varied during the stride cycle but was always located more towards the front limbs. Cows and heifers showed a symmetrical walk with minimal intra-individual variations. Relative stride impulse of the front limbs was higher than that of the hind limbs. Peak vertical force in the hind limbs was highest at landing and in the forelimbs at push off. The present study offers kinetic data of sound cows and heifers which might be helpful as guidelines for automated systems for lameness detection in cattle.

  15. Changes in Knee Biomechanics After a Hip-Abductor Strengthening Protocol for Runners With Patellofemoral Pain Syndrome

    PubMed Central

    Ferber, Reed; Kendall, Karen D.; Farr, Lindsay

    2011-01-01

    Abstract Context: Very few authors have investigated the relationship between hip-abductor muscle strength and frontal-plane knee mechanics during running. Objective: To investigate this relationship using a 3-week hip-abductor muscle-strengthening program to identify changes in strength, pain, and biomechanics in runners with patellofemoral pain syndrome (PFPS). Design: Cohort study. Setting: University-based clinical research laboratory. Patients or Other Participants: Fifteen individuals (5 men, 10 women) with PFPS and 10 individuals without PFPS (4 men, 6 women) participated. Intervention(s): The patients with PFPS completed a 3-week hip-abductor strengthening protocol; control participants did not. Main Outcome Measure(s): The dependent variables of interest were maximal isometric hip-abductor muscle strength, 2-dimensional peak knee genu valgum angle, and stride-to-stride knee-joint variability. All measures were recorded at baseline and 3 weeks later. Between-groups differences were compared using repeated-measures analyses of variance. Results: At baseline, the PFPS group exhibited reduced strength, no difference in peak genu valgum angle, and increased stride-to-stride knee-joint variability compared with the control group. After the 3-week protocol, the PFPS group demonstrated increased strength, less pain, no change in peak genu valgum angle, and reduced stride-to-stride knee-joint variability compared with baseline. Conclusions: A 3-week hip-abductor muscle-strengthening protocol was effective in increasing muscle strength and decreasing pain and stride-to-stride knee-joint variability in individuals with PFPS. However, concomitant changes in peak knee genu valgum angle were not observed. PMID:21391799

  16. The Stride Rite Intergenerational Day Care Center: Background.

    ERIC Educational Resources Information Center

    Stride Rite Corp., Cambridge, MA.

    The Stride Rite Intergenerational Day Care Center is located in the Stride Rite Corporation's headquarters in Cambridge, Massachusetts. The facility is designed to provide day care to both children and elders, using two separate wings to afford privacy to each group and a large central area for informal interaction between children and elders. The…

  17. STRIDE: Species Tree Root Inference from Gene Duplication Events.

    PubMed

    Emms, David M; Kelly, Steven

    2017-12-01

    The correct interpretation of any phylogenetic tree is dependent on that tree being correctly rooted. We present STRIDE, a fast, effective, and outgroup-free method for identification of gene duplication events and species tree root inference in large-scale molecular phylogenetic analyses. STRIDE identifies sets of well-supported in-group gene duplication events from a set of unrooted gene trees, and analyses these events to infer a probability distribution over an unrooted species tree for the location of its root. We show that STRIDE correctly identifies the root of the species tree in multiple large-scale molecular phylogenetic data sets spanning a wide range of timescales and taxonomic groups. We demonstrate that the novel probability model implemented in STRIDE can accurately represent the ambiguity in species tree root assignment for data sets where information is limited. Furthermore, application of STRIDE to outgroup-free inference of the origin of the eukaryotic tree resulted in a root probability distribution that provides additional support for leading hypotheses for the origin of the eukaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Project Stride: An Equine-Assisted Intervention to Reduce Symptoms of Social Anxiety in Young Women.

    PubMed

    Alfonso, Sarah V; Alfonso, Lauren A; Llabre, Maria M; Fernandez, M Isabel

    2015-01-01

    Although there is evidence supporting the use of equine-assisted activities to treat mental disorders, its efficacy in reducing signs and symptoms of social anxiety in young women has not been examined. We developed and pilot tested Project Stride, a brief, six-session intervention combining equine-assisted activities and cognitive-behavioral strategies to reduce symptoms of social anxiety. A total of 12 women, 18-29 years of age, were randomly assigned to Project Stride or a no-treatment control. Participants completed the Liebowitz Social Anxiety Scale at baseline, immediate-post, and 6 weeks after treatment. Project Stride was highly acceptable and feasible. Compared to control participants, those in Project Stride had significantly greater reductions in social anxiety scores from baseline to immediate-post [decrease of 24.8 points; t (9) = 3.40, P = .008)] and from baseline to follow-up [decrease of 31.8 points; t (9) = 4.12, P = .003)]. These findings support conducting a full-scale efficacy trial of Project Stride. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.

    PubMed

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-08-20

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.

  20. The influence of lower limb amputation level on the approach in the amputee long jump.

    PubMed

    Nolan, Lee; Lees, Adrian

    2007-02-15

    In this study, we investigated the adjustments to posture, kinematic and temporal characteristics of performance made by lower limb amputees during the last few strides in preparation for long jump take-off. Six male unilateral trans-femoral and seven male unilateral trans-tibial amputees competing in a World Championships final were filmed in the sagittal plane using a 100-Hz digital video camera positioned so that the last three strides to take-off were visible. After digitizing using a nine-segment model, a range of kinematic variables were computed to define technique characteristics. Both the trans-femoral and trans-tibial athletes appeared to achieve their reduction in centre of mass during the flight phase between strides, and did so mainly by extending the flight time by increasing stride length, achieved by a greater flexion of the hip joint of the touch-down leg. The trans-tibial athletes appeared to adopt a technique similar to that previously reported for able-bodied athletes. They lowered their centre of mass most on their second last stride (-1.6% of body height compared with -1.4% on the last stride) and used a flexed knee at take-off on the last stride, but they were less able to control their downward velocity at touch-down (-0.4 m x s(-1)). Both this and their restricted approach speed (8.9 m x s(-1) at touch-down), rather than technique limitations, influenced their jump performance. The trans-femoral athletes lowered their centre of mass most on the last stride (-2.3% of body height compared with -1.6% on the second last stride) and, as they were unable to flex their prosthetic knee sufficiently, achieved this by abducting their prosthetic leg during the support phase, which led to a large downward velocity at touch-down (-0.6 m x s(-1)). This, combined with their slower approach velocity (7.1 m x s(-1) at touch-down), restricted their performance.

  1. Method and apparatus for assessing cardiovascular risk

    NASA Technical Reports Server (NTRS)

    Albrecht, Paul (Inventor); Bigger, J. Thomas (Inventor); Cohen, Richard J. (Inventor)

    1998-01-01

    The method for assessing risk of an adverse clinical event includes detecting a physiologic signal in the subject and determining from the physiologic signal a sequence of intervals corresponding to time intervals between heart beats. The long-time structure of fluctuations in the intervals over a time period of more than fifteen minutes is analyzed to assess risk of an adverse clinical event. In a preferred embodiment, the physiologic signal is an electrocardiogram and the time period is at least fifteen minutes. A preferred method for analyzing the long-time structure variability in the intervals includes computing the power spectrum and fitting the power spectrum to a power law dependence on frequency over a selected frequency range such as 10.sup.-4 to 10.sup.-2 Hz. Characteristics of the long-time structure fluctuations in the intervals is used to assess risk of an adverse clinical event.

  2. Manipulating the stride length/stride velocity relationship of walking using a treadmill and rhythmic auditory cueing in non-disabled older individuals. A short-term feasibility study.

    PubMed

    Eikema, D J A; Forrester, L W; Whitall, J

    2014-09-01

    One target for rehabilitating locomotor disorders in older adults is to increase mobility by improving walking velocity. Combining rhythmic auditory cueing (RAC) and treadmill training permits the study of the stride length/stride velocity ratio (SL/SV), often reduced in those with mobility deficits. We investigated the use of RAC to increase velocity by manipulating the SL/SV ratio in older adults. Nine participants (6 female; age: 61.1 ± 8.8 years) walked overground on a gait mat at preferred and fast speeds. After acclimatization to comfortable speed on a treadmill, participants adjusted their cadence to match the cue for 3 min at 115% of preferred speed by either (a) increasing stride length only or (b) increasing stride frequency only. Following training, participants walked across the gait mat at preferred velocity without, and then with, RAC. Group analysis determined no immediate overground velocity increase, but reintroducing RAC did produce an increase in velocity after both conditions. Group and single subject analysis determined that the SL/SV ratio changed in the intended direction only in the stride length condition. We conclude that RAC is a powerful organizer of gait parameters, evidenced by its induced after-effects following short duration training. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Assessment of repeatability of a wireless, inertial sensor-based lameness evaluation system for horses.

    PubMed

    Keegan, Kevin G; Kramer, Joanne; Yonezawa, Yoshiharu; Maki, Hiromitchi; Pai, P Frank; Dent, Eric V; Kellerman, Thomas E; Wilson, David A; Reed, Shannon K

    2011-09-01

    To determine repeatability of a wireless, inertial sensor-based lameness evaluation system in horses. 236 horses. Horses were from 2 to 29 years of age and of various breeds and lameness disposition. All horses were instrumented with a wireless, inertial sensor-based motion analysis system on the head (accelerometer), pelvis (midline croup region [accelerometer]), and right forelimb (gyroscope) before evaluation in 2 consecutive trials, approximately 5 minutes apart, as the horse was trotted in a straight line. Signal-processing algorithms generated overall trial asymmetry measures for vertical head and pelvic movement and stride-by-stride differences in head and pelvic maximum and minimum positions between right and left sides of each stride. Repeatability was determined, and trial difference was determined for groups of horses with various numbers of strides for which data were collected per trial. Inertial sensor-based measures of torso movement asymmetry were repeatable. Repeatability for measures of torso asymmetry for determination of hind limb lameness was slightly greater than that for forelimb lameness. Collecting large numbers of strides degraded stride-to-stride repeatability but did not degrade intertrial repeatability. The inertial sensor system used to measure asymmetry of head and pelvic movement as an aid in the detection and evaluation of lameness in horses trotting in a straight line was sufficiently repeatable to investigate for clinical use.

  4. Periodic Fluctuation of Perceived Duration

    PubMed Central

    Shima, Shuhei; Murai, Yuki; Yuasa, Kenichi; Hashimoto, Yuki

    2018-01-01

    In recent years, several studies have reported that the allocation of spatial attention fluctuates periodically. This periodic attention was revealed by measuring behavioral performance as a function of cue-to-target interval in the Posner cueing paradigm. Previous studies reported behavioral oscillations using target detection tasks. Whether the influence of periodic attention extends to cognitively demanding tasks remains unclear. To assess this, we examined the effects of periodic attention on the perception of duration. In the experiment, participants performed a temporal bisection task while a cue was presented with various cue-to-target intervals. Perceived duration fluctuated rhythmically as a function of cue-to-target interval at a group level but not at an individual level when the target was presented on the same side as the attentional cue. The results indicate that the perception of duration is influenced by periodic attention. In other words, periodic attention can influence the performance of cognitively demanding tasks such as the perception of duration. PMID:29755719

  5. Intermittent Drug Dosing Intervals Guided by the Operational Multiple Dosing Half Lives for Predictable Plasma Accumulation and Fluctuation

    PubMed Central

    Grover, Anita; Benet, Leslie Z.

    2013-01-01

    Intermittent drug dosing intervals are usually initially guided by the terminal pharmacokinetic half life and are dependent on drug formulation. For chronic multiple dosing and for extended release dosage forms, the terminal half life often does not predict the plasma drug accumulation or fluctuation observed. We define and advance applications for the operational multiple dosing half lives for drug accumulation and fluctuation after multiple oral dosing at steady-state. Using Monte Carlo simulation, our results predict a way to maximize the operational multiple dosing half lives relative to the terminal half life by using a first-order absorption rate constant close to the terminal elimination rate constant in the design of extended release dosage forms. In this way, drugs that may be eliminated early in the development pipeline due to a relatively short half life can be formulated to be dosed at intervals three times the terminal half life, maximizing compliance, while maintaining tight plasma concentration accumulation and fluctuation ranges. We also present situations in which the operational multiple dosing half lives will be especially relevant in the determination of dosing intervals, including for drugs that follow a direct PKPD model and have a narrow therapeutic index, as the rate of concentration decrease after chronic multiple dosing (that is not the terminal half life) can be determined via simulation. These principles are illustrated with case studies on valproic acid, diazepam, and anti-hypertensives. PMID:21499748

  6. Transfer effects of fall training on balance performance and spatiotemporal gait parameters in healthy community-dwelling older adults: a pilot study.

    PubMed

    Donath, Lars; Faude, Oliver; Bridenbaugh, Stephanie A; Roth, Ralf; Soltermann, Martin; Kressig, Reto W; Zahner, Lukas

    2014-07-01

    This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale-International [FES-I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65-85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES-I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES-I (p = .33) and postural sway did not significantly change (0.36 < p < .79). Trends toward significant interaction effects were found for step width during normal walking and stride length variability during the motor dual task (p = .05, ηp 2 = .22). Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.

  7. Leg stiffness and stride frequency in human running.

    PubMed

    Farley, C T; González, O

    1996-02-01

    When humans and other mammals run, the body's complex system of muscle, tendon and ligament springs behaves like a single linear spring ('leg spring'). A simple spring-mass model, consisting of a single linear leg spring and a mass equivalent to the animal's mass, has been shown to describe the mechanics of running remarkably well. Force platform measurements from running animals, including humans, have shown that the stiffness of the leg spring remains nearly the same at all speeds and that the spring-mass system is adjusted for higher speeds by increasing the angle swept by the leg spring. The goal of the present study is to determine the relative importance of changes to the leg spring stiffness and the angle swept by the leg spring when humans alter their stride frequency at a given running speed. Human subjects ran on treadmill-mounted force platform at 2.5ms-1 while using a range of stride frequencies from 26% below to 36% above the preferred stride frequency. Force platform measurements revealed that the stiffness of the leg spring increased by 2.3-fold from 7.0 to 16.3 kNm-1 between the lowest and highest stride frequencies. The angle swept by the leg spring decreased at higher stride frequencies, partially offsetting the effect of the increased leg spring stiffness on the mechanical behavior of the spring-mass system. We conclude that the most important adjustment to the body's spring system to accommodate higher stride frequencies is that leg spring becomes stiffer.

  8. Building corporate character. Interview by Nan Stone.

    PubMed

    Hiatt, A

    1992-01-01

    Stride Rite is a good company by any definition: Keds, Sperry Top-Siders, and Stride Rite children's shoes are consumer favorites for their fit, quality, and comfort. Wall Street analysts praise the company's outstanding financial performance. Innovative programs such as the first corporate child-care center and public service scholarships support Stride Rite's reputation as one of the most responsible employers and corporate citizens in the United States. Behind Stride Rite's good performance are the building blocks of corporate character: a legacy of quality and service and a leader committed to keeping that legacy lively. When Stride Rite shipped its first children's shoes in 1919, they came with the company's commitment "to produce an honest quality product in an honest way and deliver it as promised." For Arnold Hiatt, that commitment has been the driving force behind the company's evolution from manufacturing into marketing and product development as well as the guiding principle in its relations with consumers, dealers, suppliers, and employees. But Stride Rite's corporate character is also a reflection of Hiatt himself. In his early 20s, Hiatt fled a management training program "designed to make carnivores" out of its new employees and bought Blue Star Shoes, a small manufacturing company that had gone into Chapter 11. Through experience and "stumbling around," he built Blue Star's sales to $5 million-and got a practical education in management, markets, and human nature that has proved equally useful in running Stride Rite.

  9. History dependence of human muscle-fiber conduction velocity during voluntary isometric contractions.

    PubMed

    McGill, Kevin C; Lateva, Zoia C

    2011-09-01

    The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about -0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane.

  10. History dependence of human muscle-fiber conduction velocity during voluntary isometric contractions

    PubMed Central

    Lateva, Zoia C.

    2011-01-01

    The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about −0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane. PMID:21565985

  11. Statistical physics approaches to financial fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Fengzhong

    2009-12-01

    Complex systems attract many researchers from various scientific fields. Financial markets are one of these widely studied complex systems. Statistical physics, which was originally developed to study large systems, provides novel ideas and powerful methods to analyze financial markets. The study of financial fluctuations characterizes market behavior, and helps to better understand the underlying market mechanism. Our study focuses on volatility, a fundamental quantity to characterize financial fluctuations. We examine equity data of the entire U.S. stock market during 2001 and 2002. To analyze the volatility time series, we develop a new approach, called return interval analysis, which examines the time intervals between two successive volatilities exceeding a given value threshold. We find that the return interval distribution displays scaling over a wide range of thresholds. This scaling is valid for a range of time windows, from one minute up to one day. Moreover, our results are similar for commodities, interest rates, currencies, and for stocks of different countries. Further analysis shows some systematic deviations from a scaling law, which we can attribute to nonlinear correlations in the volatility time series. We also find a memory effect in return intervals for different time scales, which is related to the long-term correlations in the volatility. To further characterize the mechanism of price movement, we simulate the volatility time series using two different models, fractionally integrated generalized autoregressive conditional heteroscedasticity (FIGARCH) and fractional Brownian motion (fBm), and test these models with the return interval analysis. We find that both models can mimic time memory but only fBm shows scaling in the return interval distribution. In addition, we examine the volatility of daily opening to closing and of closing to opening. We find that each volatility distribution has a power law tail. Using the detrended fluctuation analysis (DFA) method, we show long-term auto-correlations in these volatility time series. We also analyze return, the actual price changes of stocks, and find that the returns over the two sessions are often anti-correlated.

  12. Community Literacy at Work with STRIDE (Success Through Reading Improvement and DEvelopment): Overview of a Successful Community Literacy Program.

    ERIC Educational Resources Information Center

    Macy, Rita

    STRIDE (Success Through Reading Improvement and DEvelopment) is a literacy program developed in 1986 by Crowder College, located in the rural Ozarks of southwestern Missouri. Serving all age groups with trained literacy tutors ranging in age from 11 to over 60, STRIDE has been built on five main activities: (1) develop a philosophy that is…

  13. Abnormal gait pattern emerges during curved trajectories in high-functioning Parkinsonian patients walking in line at normal speed

    PubMed Central

    Godi, Marco; Giardini, Marica; Arcolin, Ilaria; Nardone, Antonio; Giordano, Andrea; Schieppati, Marco

    2018-01-01

    Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected. PMID:29750815

  14. Kinetic-Scale Electric and Magnetic Field Fluctuations in the Solar Wind at 1 AU: THEMIS/ARTEMIS Observations

    NASA Astrophysics Data System (ADS)

    Salem, C. S.; Hanson, E.; Bonnell, J. W.; Chaston, C. C.; Bale, S. D.; Mozer, F.

    2017-12-01

    We present here an analysis of kinetic-scale electromagnetic fluctuations in the solar wind using data from THEMIS and ARTEMIS spacecraft. We use high-time resolution electric and magnetic field measurements, as well as density fluctuations, up to 128 samples per second, as well as particle burst plasma data during carefully selected solar wind intervals. We focus our analysis on a few such intervals spanning different values of plasma beta and angles between the local magnetic field and the radial Sun-Earth direction. We discuss the careful analysis process of characterizing and removing the different instrumental effects and noise sources affecting the electric and magnetic field data at those scales, above 0.1 Hz or so, above the breakpoint marking the start of the so-called dissipation range of solar wind turbulence. We compute parameters such as the electric to magnetic field ratio, the magnetic compressibility, magnetic helicity, and other relevant quantities in order to diagnose the nature of the fluctuations at those scales between the ion and electron cyclotron frequencies, extracting information on the dominant modes composing the fluctuations. We also discuss the presence and role of coherent structures in the measured fluctuations. The nature of the fluctuations in the dissipation or dispersive scales of solar wind turbulence is still debated. This observational study is also highly relevant to the current Turbulent Dissipation Challenge.

  15. Emergent dynamics of spiking neurons with fluctuating threshold

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anindita; Das, M. K.

    2017-05-01

    Role of fluctuating threshold on neuronal dynamics is investigated. The threshold function is assumed to follow a normal probability distribution. Standard deviation of inter-spike interval of the response is computed as an indicator of irregularity in spike emission. It has been observed that, the irregularity in spiking is more if the threshold variation is more. A significant change in modal characteristics of Inter Spike Intervals (ISI) is seen to occur as a function of fluctuation parameter. Investigation is further carried out for coupled system of neurons. Cooperative dynamics of coupled neurons are discussed in view of synchronization. Total and partial synchronization regimes are depicted with the help of contour plots of synchrony measure under various conditions. Results of this investigation may provide a basis for exploring the complexities of neural communication and brain functioning.

  16. Effect of stride length on overarm throwing delivery: A linear momentum response.

    PubMed

    Ramsey, Dan K; Crotin, Ryan L; White, Scott

    2014-12-01

    Changing stride length during overhand throwing delivery is thought to alter total body and throwing arm linear momentums, thereby altering the proportion of throwing arm momentum relative to the total body. Using a randomized cross-over design, nineteen pitchers (15 collegiate and 4 high school) were assigned to pitch two simulated 80-pitch games at ±25% of their desired stride length. An 8-camera motion capture system (240Hz) integrated with two force plates (960Hz) and radar gun tracked each throw. Segmental linear momentums in each plane of motion were summed yielding throwing arm and total body momentums, from which compensation ratio's (relative contribution between the two) were derived. Pairwise comparisons at hallmark events and phases identified significantly different linear momentum profiles, in particular, anteriorly directed total body, throwing arm, and momentum compensation ratios (P⩽.05) as a result of manipulating stride length. Pitchers with shorter strides generated lower forward (anterior) momentum before stride foot contact, whereas greater upward and lateral momentum (toward third base) were evident during the acceleration phase. The evidence suggests insufficient total body momentum in the intended throwing direction may potentially influence performance (velocity and accuracy) and perhaps precipitate throwing arm injuries. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Day-to-day reliability of gait characteristics in rats.

    PubMed

    Raffalt, Peter C; Nielsen, Louise R; Madsen, Stefan; Munk Højberg, Laurits; Pingel, Jessica; Nielsen, Jens Bo; Wienecke, Jacob; Alkjær, Tine

    2018-04-27

    The purpose of the present study was to determine the day-to-day reliability in stride characteristics in rats during treadmill walking obtained with two-dimensional (2D) motion capture. Kinematics were recorded from 26 adult rats during walking at 8 m/min, 12 m/min and 16 m/min on two separate days. Stride length, stride time, contact time, swing time and hip, knee and ankle joint range of motion were extracted from 15 strides. The relative reliability was assessed using intra-class correlation coefficients (ICC(1,1)) and (ICC(3,1)). The absolute reliability was determined using measurement error (ME). Across walking speeds, the relative reliability ranged from fair to good (ICCs between 0.4 and 0.75). The ME was below 91 mm for strides lengths, below 55 ms for the temporal stride variables and below 6.4° for the joint angle range of motion. In general, the results indicated an acceptable day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures and in the interpretation of the results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effects of footwear and stride length on metatarsal strains and failure in running.

    PubMed

    Firminger, Colin R; Fung, Anita; Loundagin, Lindsay L; Edwards, W Brent

    2017-11-01

    The metatarsal bones of the foot are particularly susceptible to stress fracture owing to the high strains they experience during the stance phase of running. Shoe cushioning and stride length reduction represent two potential interventions to decrease metatarsal strain and thus stress fracture risk. Fourteen male recreational runners ran overground at a 5-km pace while motion capture and plantar pressure data were collected during four experimental conditions: traditional shoe at preferred and 90% preferred stride length, and minimalist shoe at preferred and 90% preferred stride length. Combined musculoskeletal - finite element modeling based on motion analysis and computed tomography data were used to quantify metatarsal strains and the probability of failure was determined using stress-life predictions. No significant interactions between footwear and stride length were observed. Running in minimalist shoes increased strains for all metatarsals by 28.7% (SD 6.4%; p<0.001) and probability of failure for metatarsals 2-4 by 17.3% (SD 14.3%; p≤0.005). Running at 90% preferred stride length decreased strains for metatarsal 4 by 4.2% (SD 2.0%; p≤0.007), and no differences in probability of failure were observed. Significant increases in metatarsal strains and the probability of failure were observed for recreational runners acutely transitioning to minimalist shoes. Running with a 10% reduction in stride length did not appear to be a beneficial technique for reducing the risk of metatarsal stress fracture, however the increased number of loading cycles for a given distance was not detrimental either. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A method for automated control of belt velocity changes with an instrumented treadmill.

    PubMed

    Hinkel-Lipsker, Jacob W; Hahn, Michael E

    2016-01-04

    Increased practice difficulty during asymmetrical split-belt treadmill rehabilitation has been shown to improve gait outcomes during retention and transfer tests. However, research in this area has been limited by manual treadmill operation. In the case of variable practice, which requires stride-by-stride changes to treadmill belt velocities, the treadmill control must be automated. This paper presents a method for automation of asymmetrical split-belt treadmill walking, and evaluates how well this method performs with regards to timing of gait events. One participant walked asymmetrically for 100 strides, where the non-dominant limb was driven at their self-selected walking speed, while the other limb was driven randomly on a stride-by-stride basis. In the control loop, the key factors to insure that the treadmill belt had accelerated to its new velocity safely during the swing phase were the sampling rate of the A/D converter, processing time within the controller software, and acceleration of the treadmill belt. The combination of these three factors resulted in a total control loop time during each swing phase that satisfied these requirements with a factor of safety that was greater than 4. Further, a polynomial fit indicated that belt acceleration was the largest contributor to changes in this total time. This approach appears to be safe and reliable for stride-by-stride adjustment of treadmill belt speed, making it suitable for future asymmetrical split-belt walking studies. Further, it can be incorporated into virtual reality rehabilitation paradigms that utilize split-belt treadmill walking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Locomotor-respiratory coupling patterns and oxygen consumption during walking above and below preferred stride frequency.

    PubMed

    O'Halloran, Joseph; Hamill, Joseph; McDermott, William J; Remelius, Jebb G; Van Emmerik, Richard E A

    2012-03-01

    Locomotor respiratory coupling patterns in humans have been assessed on the basis of the interaction between different physiological and motor subsystems; these interactions have implications for movement economy. A complex and dynamical systems framework may provide more insight than entrainment into the variability and adaptability of these rhythms and their coupling. The purpose of this study was to investigate the relationship between steady state locomotor-respiratory coordination dynamics and oxygen consumption [Formula: see text] of the movement by varying walking stride frequency from preferred. Twelve male participants walked on a treadmill at a self-selected speed. Stride frequency was varied from -20 to +20% of preferred stride frequency (PSF) while respiratory airflow, gas exchange variables, and stride kinematics were recorded. Discrete relative phase and return map techniques were used to evaluate the strength, stability, and variability of both frequency and phase couplings. Analysis of [Formula: see text] during steady-state walking showed a U-shaped response (P = 0.002) with a minimum at PSF and PSF - 10%. Locomotor-respiratory frequency coupling strength was not greater (P = 0.375) at PSF than any other stride frequency condition. The dominant coupling across all conditions was 2:1 with greater occurrences at the lower stride frequencies. Variability in coupling was the greatest during PSF, indicating an exploration of coupling strategies to search for the coupling frequency strategy with the least oxygen consumption. Contrary to the belief that increased strength of frequency coupling would decrease oxygen consumption; these results conclude that it is the increased variability of frequency coupling that results in lower oxygen consumption.

  1. Compression based entropy estimation of heart rate variability on multiple time scales.

    PubMed

    Baumert, Mathias; Voss, Andreas; Javorka, Michal

    2013-01-01

    Heart rate fluctuates beat by beat in a complex manner. The aim of this study was to develop a framework for entropy assessment of heart rate fluctuations on multiple time scales. We employed the Lempel-Ziv algorithm for lossless data compression to investigate the compressibility of RR interval time series on different time scales, using a coarse-graining procedure. We estimated the entropy of RR interval time series of 20 young and 20 old subjects and also investigated the compressibility of randomly shuffled surrogate RR time series. The original RR time series displayed significantly smaller compression entropy values than randomized RR interval data. The RR interval time series of older subjects showed significantly different entropy characteristics over multiple time scales than those of younger subjects. In conclusion, data compression may be useful approach for multiscale entropy assessment of heart rate variability.

  2. Smartphone App-Based Assessment of Gait During Normal and Dual-Task Walking: Demonstration of Validity and Reliability.

    PubMed

    Manor, Brad; Yu, Wanting; Zhu, Hao; Harrison, Rachel; Lo, On-Yee; Lipsitz, Lewis; Travison, Thomas; Pascual-Leone, Alvaro; Zhou, Junhong

    2018-01-30

    Walking is a complex cognitive motor task that is commonly completed while performing another task such as talking or making decisions. Gait assessments performed under normal and "dual-task" walking conditions thus provide important insights into health. Such assessments, however, are limited primarily to laboratory-based settings. The objective of our study was to create and test a smartphone-based assessment of normal and dual-task walking for use in nonlaboratory settings. We created an iPhone app that used the phone's motion sensors to record movements during walking under normal conditions and while performing a serial-subtraction dual task, with the phone placed in the user's pants pocket. The app provided the user with multimedia instructions before and during the assessment. Acquired data were automatically uploaded to a cloud-based server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the app and a gold-standard-instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the phone-side leg aligned with smartphone acceleration extrema, following filtering and rotation to the earth coordinate system. We derived stride times-a clinically meaningful metric of locomotor control-from GAITRite and app data, for all strides occurring over the GAITRite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For these trials, periods of potential turning were identified via custom-developed algorithms and omitted from stride-time analyses. Across all detected strides in the laboratory, stride times derived from the app and GAITRite mat were highly correlated (P<.001, r 2 =.98). These correlations were independent of walking condition and pocket tightness. App- and GAITRite-derived stride-time dual-task costs were also highly correlated (P<.001, r 2 =.95). The error of app-derived stride times (mean 16.9, SD 9.0 ms) was unaffected by the magnitude of stride time, walking condition, or pocket tightness. For both normal and dual-task trials, average stride times derived from app walking trials demonstrated excellent test-retest reliability within and between both laboratory and home-based assessments (intraclass correlation coefficient range .82-.94). The iPhone app we created enabled valid and reliable assessment of stride timing-with the smartphone in the pocket-during both normal and dual-task walking and within both laboratory and nonlaboratory environments. Additional work is warranted to expand the functionality of this tool to older adults and other patient populations. ©Brad Manor, Wanting Yu, Hao Zhu, Rachel Harrison, On-Yee Lo, Lewis Lipsitz, Thomas Travison, Alvaro Pascual-Leone, Junhong Zhou. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 30.01.2018.

  3. Smartphone App–Based Assessment of Gait During Normal and Dual-Task Walking: Demonstration of Validity and Reliability

    PubMed Central

    Yu, Wanting; Zhu, Hao; Harrison, Rachel; Lo, On-Yee; Lipsitz, Lewis; Travison, Thomas; Pascual-Leone, Alvaro; Zhou, Junhong

    2018-01-01

    Background Walking is a complex cognitive motor task that is commonly completed while performing another task such as talking or making decisions. Gait assessments performed under normal and “dual-task” walking conditions thus provide important insights into health. Such assessments, however, are limited primarily to laboratory-based settings. Objective The objective of our study was to create and test a smartphone-based assessment of normal and dual-task walking for use in nonlaboratory settings. Methods We created an iPhone app that used the phone’s motion sensors to record movements during walking under normal conditions and while performing a serial-subtraction dual task, with the phone placed in the user’s pants pocket. The app provided the user with multimedia instructions before and during the assessment. Acquired data were automatically uploaded to a cloud-based server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the app and a gold-standard–instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the phone-side leg aligned with smartphone acceleration extrema, following filtering and rotation to the earth coordinate system. We derived stride times—a clinically meaningful metric of locomotor control—from GAITRite and app data, for all strides occurring over the GAITRite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For these trials, periods of potential turning were identified via custom-developed algorithms and omitted from stride-time analyses. Results Across all detected strides in the laboratory, stride times derived from the app and GAITRite mat were highly correlated (P<.001, r2=.98). These correlations were independent of walking condition and pocket tightness. App- and GAITRite-derived stride-time dual-task costs were also highly correlated (P<.001, r2=.95). The error of app-derived stride times (mean 16.9, SD 9.0 ms) was unaffected by the magnitude of stride time, walking condition, or pocket tightness. For both normal and dual-task trials, average stride times derived from app walking trials demonstrated excellent test-retest reliability within and between both laboratory and home-based assessments (intraclass correlation coefficient range .82-.94). Conclusions The iPhone app we created enabled valid and reliable assessment of stride timing—with the smartphone in the pocket—during both normal and dual-task walking and within both laboratory and nonlaboratory environments. Additional work is warranted to expand the functionality of this tool to older adults and other patient populations. PMID:29382625

  4. Holocene geologic and climatic history around the Gulf of Alaska

    USGS Publications Warehouse

    Mann, D.H.; Crowell, A.L.; Hamilton, T.D.; Finney, B.P.

    1998-01-01

    Though not as dramatic as during the last Ice Age, pronounced climatic changes occurred in the northeastern Pacific over the last 10,000 years. Summers warmer and drier than today's accompanied a Hypsithermal interval between 9 and 6 ka. Subsequent Neoglaciation was marked by glacier expansion after 5-6 ka and the assembly of modern-type plant communities by 3-4 ka. The Neoglacial interval contained alternating cold and warm intervals, each lasting several hundred years to one millennium, and including both the Medieval Warm Period (ca. AD 900-1350) and the Little Ice Age (ca. AD 1350-1900). Salmon abundance fluctuated during the Little Ice Age in response to local glaciation and probably also to changes in the intensity of the Aleutian Low. Although poorly understood at present, climate fluctuations at all time scales were intimately connected with oceanographic changes in the North Pacific Ocean. The Gulf of Alaska region is tectonically highly active, resulting in a history of frequent geological catastrophes during the Holocene. Twelve to 14 major volcanic eruptions occurred since 12 ka. At intervals of 20-100 years, large earthquakes have raised and lowered sea level instantaneously by meters and generated destructive tsunamis. Sea level has often varied markedly between sites only 50-100 km apart due to tectonism and the isostatic effects of glacier fluctuations.

  5. Fluctuations of hi-hat timing and dynamics in a virtuoso drum track of a popular music recording.

    PubMed

    Räsänen, Esa; Pulkkinen, Otto; Virtanen, Tuomas; Zollner, Manfred; Hennig, Holger

    2015-01-01

    Long-range correlated temporal fluctuations in the beats of musical rhythms are an inevitable consequence of human action. According to recent studies, such fluctuations also lead to a favored listening experience. The scaling laws of amplitude variations in rhythms, however, are widely unknown. Here we use highly sensitive onset detection and time series analysis to study the amplitude and temporal fluctuations of Jeff Porcaro's one-handed hi-hat pattern in "I Keep Forgettin'"-one of the most renowned 16th note patterns in modern drumming. We show that fluctuations of hi-hat amplitudes and interbeat intervals (times between hits) have clear long-range correlations and short-range anticorrelations separated by a characteristic time scale. In addition, we detect subtle features in Porcaro's drumming such as small drifts in the 16th note pulse and non-trivial periodic two-bar patterns in both hi-hat amplitudes and intervals. Through this investigation we introduce a step towards statistical studies of the 20th and 21st century music recordings in the framework of complex systems. Our analysis has direct applications to the development of drum machines and to drumming pedagogy.

  6. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics

    NASA Technical Reports Server (NTRS)

    Iyengar, N.; Peng, C. K.; Morin, R.; Goldberger, A. L.; Lipsitz, L. A.

    1996-01-01

    We postulated that aging is associated with disruption in the fractallike long-range correlations that characterize healthy sinus rhythm cardiac interval dynamics. Ten young (21-34 yr) and 10 elderly (68-81 yr) rigorously screened healthy subjects underwent 120 min of continuous supine resting electrocardiographic recording. We analyzed the interbeat interval time series using standard time and frequency domain statistics and using a fractal measure, detrended fluctuation analysis, to quantify long-range correlation properties. In healthy young subjects, interbeat intervals demonstrated fractal scaling, with scaling exponents (alpha) from the fluctuation analysis close to a value of 1.0. In the group of healthy elderly subjects, the interbeat interval time series had two scaling regions. Over the short range, interbeat interval fluctuations resembled a random walk process (Brownian noise, alpha = 1.5), whereas over the longer range they resembled white noise (alpha = 0.5). Short (alpha s)- and long-range (alpha 1) scaling exponents were significantly different in the elderly subjects compared with young (alpha s = 1.12 +/- 0.19 vs. 0.90 +/- 0.14, respectively, P = 0.009; alpha 1 = 0.75 +/- 0.17 vs. 0.99 +/- 0.10, respectively, P = 0.002). The crossover behavior from one scaling region to another could be modeled as a first-order autoregressive process, which closely fit the data from four elderly subjects. This implies that a single characteristic time scale may be dominating heartbeat control in these subjects. The age-related loss of fractal organization in heartbeat dynamics may reflect the degradation of integrated physiological regulatory systems and may impair an individual's ability to adapt to stress.

  7. Improving lifestyle interventions for people with serious mental illnesses: Qualitative results from the STRIDE study

    PubMed Central

    Yarborough, Bobbi Jo H.; Stumbo, Scott P.; Yarborough, Micah T.; Young, Thomas J.; Green, Carla A.

    2015-01-01

    Objective Individuals with serious mental illnesses are disproportionately affected by overweight and obesity. Understanding the factors that facilitate or hinder lifestyle change in this population could lead to better interventions and improved health outcomes. Methods A subset of intervention and usual-care participants (n = 84) in the STRIDE randomized trial were interviewed at 3, 9, and 18 months, yielding 101 interviews (some were interviewed more than once). Participants had a mean age of 48.1 (SD = 10.1); 64% were female. Participants had diagnoses of schizophrenia or schizoaffective disorder (41%), bipolar disorder (20%), affective psychoses (37%) or PTSD (2%). Interviews were transcribed verbatim, coded using Atlas.ti, and analyzed for common themes. Results Barriers to behavior change were similar to those described for the general population, including lack of support from significant others, the lure of unhealthy foods, and poor weather impeding exercise. Additional challenges included the effects of psychiatric symptoms, or consequences of symptoms (i.e., social isolation), on ability to make and sustain lifestyle changes. We found a strong preference for ongoing, group-based support to foster a sense of accountability which motivated and helped to sustain behavior changes. Conclusions and implications for practice Individuals with serious mental illnesses encounter many of the same barriers to weight loss seen in the general population, but they may be more vulnerable to additional obstacles. Lifestyle change interventions for this population should help participants develop the ability to iteratively cope with fluctuating mood and subsequent changes in motivation to eat healthfully and exercise regularly. PMID:26214184

  8. Kinetic and temporospatial gait parameters in a heterogeneous group of dogs.

    PubMed

    Kano, Washington T; Rahal, Sheila C; Agostinho, Felipe S; Mesquita, Luciane R; Santos, Rogerio R; Monteiro, Frederico O B; Castilho, Maira S; Melchert, Alessandra

    2016-01-04

    A prime concern of the gait analysis in a heterogeneous group of dogs is the potential influence of factors such as individual body size, body mass, type of gait, and velocity. Thus, this study aimed to evaluate in a heterogeneous group of dogs a possible correlation of the stride frequency with kinetic and temporospatial variables, as well as the percentage of body weight distribution (%BWD), and compare symmetry index (SI) between trotting and walking dogs. Twenty-nine clinically healthy dogs moving in a controlled velocity were used. The dogs were organized into two groups based on duty factor. Group 1 comprised 15 walking dogs, aged from 9 months to 8 years and weighing about 22.3 kg. Group 2 had 14 trotting dogs, aged from 1 to 6 years and weighing about 6.5 kg. The kinetic data and temporospatial parameters were obtained using a pressure-sensing walkway. The velocity was 0.9-1.1 m/s. The peak vertical force (PVF), vertical impulse (VI), gait cycle time, stance time, swing time, stride length, and percentages of body weight distribution among the four limbs were determined. For each variable, the SIs were calculated. Pearson's coefficient was used to evaluate correlation between stride frequency and other variables, initially in each group and after including all animals. Except for the %BWD (approximately 60% for the forelimbs and 40% for the hind limbs), all other parameters differed between groups. Considering each Group individually a strong correlation was observed for most of the temporospatial parameters, but no significant correlation occurred between stride frequency and PVF, and stride frequency and %BWD. However, including all dogs a strong correlation was observed in all temporospatial parameters, and moderate correlation between stride frequency and VI, and weak correlation between stride frequency and PVF. There was no correlation between stride frequency and %BWD. Groups 1 and 2 did not differ statistically in SIs. In a heterogeneous group of dogs conducted at a controlled velocity, the %BWD and most of SIs presented low variability. However, %BWD seems to be the most accurate, since factors such as the magnitude of the variables may influence the SIs inducing wrong interpretation. Based on results obtained from correlations, the standardization of stride frequency could be an alternative to minimize the variability of temporospatial parameters.

  9. Inducing self-selected human engagement in robotic locomotion training.

    PubMed

    Collins, Steven H; Jackson, Rachel W

    2013-06-01

    Stroke leads to severe mobility impairments for millions of individuals each year. Functional outcomes can be improved through manual treadmill therapy, but high costs limit patient exposure and, thereby, outcomes. Robotic gait training could increase the viable duration and frequency of training sessions, but robotic approaches employed thus far have been less effective than manual therapy. These shortcomings may relate to subconscious energy-minimizing drives, which might cause patients to engage less actively in therapy when provided with corrective robotic assistance. We have devised a new method for gait rehabilitation that harnesses, rather than fights, least-effort tendencies. Therapeutic goals, such as increased use of the paretic limb, are made easier than the patient's nominal gait through selective assistance from a robotic platform. We performed a pilot test on a healthy subject (N = 1) in which altered self-selected stride length was induced using a tethered robotic ankle-foot orthosis. The subject first walked on a treadmill while wearing the orthosis with and without assistance at unaltered and voluntarily altered stride length. Voluntarily increasing stride length by 5% increased metabolic energy cost by 4%. Robotic assistance decreased energy cost at both unaltered and voluntarily increased stride lengths, by 6% and 8% respectively. We then performed a test in which the robotic system continually monitored stride length and provided more assistance if the subject's stride length approached a target increase. This adaptive assistance protocol caused the subject to slowly adjust their gait patterns towards the target, leading to a 4% increase in stride length. Metabolic energy consumption was simultaneously reduced by 5%. These results suggest that selective-assistance protocols based on targets relevant to rehabilitation might lead patients to self-select desirable gait patterns during robotic gait training sessions, possibly facilitating better adherence and outcomes.

  10. Gait and risk of falls associated with frontal cognitive functions at different stages of Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Stella, Florindo; de Andrade, Larissa Pires; Barbieri, Fabio Augusto; Santos-Galduróz, Ruth Ferreira; Gobbi, Sebastião; Costa, José Luiz Riani; Gobbi, Lilian Teresa Bucken

    2012-09-01

    The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.

  11. A single hydrotherapy session increases range of motion and stride length in Labrador retrievers diagnosed with elbow dysplasia.

    PubMed

    Preston, T; Wills, A P

    2018-04-01

    Canine elbow dysplasia is a debilitating condition of unknown aetiology and is a common cause of forelimb lameness in dogs. Canine hydrotherapy is a therapeutic approach rapidly increasing in popularity for the treatment of a range of musculoskeletal pathologies. In this study, kinematic analysis was used to assess the effect of a customised hydrotherapy session on the range of motion, stride length and stride frequency of healthy Labrador retrievers (n=6) and Labrador retrievers diagnosed with bilateral elbow dysplasia (n=6). Reflective kinematic markers were attached to bony anatomical landmarks and dogs were recorded walking at their preferred speed on a treadmill before and 10min after a single hydrotherapy session. Range of motion, stride length and stride frequency were calculated for both forelimbs. Data were analysed via a robust mixed ANOVA to assess the effect of hydrotherapy on the kinematic parameters of both groups. Range of motion was greater in the healthy dogs at baseline (P<0.05). Hydrotherapy increased the range of motion of the forelimbs of both groups (P<0.05); dogs with elbow dysplasia demonstrated a greater improvement in range of motion than healthy dogs (P<0.05). Hydrotherapy stride length (P<0.01) of all dogs, but differences were not seen between the two groups. Stride frequency increased after hydrotherapy only in the left limb (P<0.05) in all dogs. These results support the potential of canine hydrotherapy as a therapeutic tool for the rehabilitation and treatment of Labradors with elbow dysplasia. Furthermore, results indicate that hydrotherapy might improve the gait and movement of healthy dogs. However, whether these results are transient or sustained remains undetermined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  13. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    PubMed

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  14. Effects of a minimalist shoe on running economy and 5-km running performance.

    PubMed

    Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D

    2016-09-01

    The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h(-1) in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h(-1) (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.

  15. Turbulence in the Outer Heliosheath

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Florinski, V.; Ness, N. F.

    2018-02-01

    We present in situ observations of magnetic turbulence in the draped interstellar magnetic field {\\boldsymbol{B}} measured by Voyager 1 during an undisturbed interval from 2015.3987 to 2016.6759 confirming the existence of the turbulence observed previously from 2013.3593 to 2014.6373. The power spectral density of the turbulence was the same in both cases. The turbulence had a Kolmogorov k ‑5/3 spectrum in the range from k = 1.3 × 10‑13 cm‑1 to 4 × 10‑12 cm‑1. The ratio of the turbulent fluctuations to the average magnetic field strength was only 0.02, indicating that the turbulence was very weak. Extrapolating the power-law slope to lower frequencies yields an upper limit on the turbulence outer scale of 0.01 pc = 2000 au, which may be regarded as the distance at which Voyager 1 will enter the undisturbed local interstellar medium, beyond the outer heliosheath or bow wave in the upstream direction. The maximum variance of the fluctuations was in the two directions transverse to the average magnetic field in the recent interval, whereas it was parallel to the average magnetic field in the earlier interval, suggesting a transformation from turbulence with a dominant compressive component to turbulence dominated by transverse fluctuations. As the magnitude of the fluctuations was approaching that of the uncertainties of the measurements, the latter result requires confirmation by further observations.

  16. Correlated and uncorrelated heart rate fluctuations during relaxing visualization

    NASA Astrophysics Data System (ADS)

    Papasimakis, N.; Pallikari, F.

    2010-05-01

    The heart rate variability (HRV) of healthy subjects practicing relaxing visualization is studied by use of three multiscale analysis techniques: the detrended fluctuation analysis (DFA), the entropy in natural time (ENT) and the average wavelet (AWC) coefficient. The scaling exponent of normal interbeat interval increments exhibits characteristics of the presence of long-range correlations. During relaxing visualization the HRV dynamics change in the sense that two new features emerge independent of each other: a respiration-induced periodicity that often dominates the HRV at short scales (<40 interbeat intervals) and the decrease of the scaling exponent at longer scales (40-512 interbeat intervals). In certain cases, the scaling exponent during relaxing visualization indicates the breakdown of long-range correlations. These characteristics have been previously seen in the HRV dynamics during non-REM sleep.

  17. The effect of racetrack design on gait symmetry of the pacer.

    PubMed Central

    Crawford, W H; Leach, D H

    1984-01-01

    A survey of a western Canadian racetrack determined the superelevation and transition curves to be less than the cited design standards. High-speed cinematography was used to film seven Standardbred pacers as they proceeded around one curve of the track at racing speed and for each horse 19 temporal stride parameters were obtained from these films using a film analyzer system. Average velocities were calculated and the mean stride length was found to vary from 5.08 m to 5.77 m. In all frames analyzed the hind foot was observed to contact the track surface prior to the ipsilateral forefoot and all horses displayed significant (p less than 0.05) contralateral asymmetry of some temporal stride parameters. Fifteen temporal stride parameters were significantly different (p less than 0.05) when compared between horses but only three temporal stride parameters were significantly different (p less than 0.05) when their values were compared between segments of the curved portions of the track. It is suggested that temporal gait asymmetry should not be used to judge the standards of racetrack design. PMID:6509365

  18. Exploring the relationship between stride, stature and hand size for forensic assessment.

    PubMed

    Guest, Richard; Miguel-Hurtado, Oscar; Stevenage, Sarah; Black, Sue

    2017-11-01

    Forensic evidence often relies on a combination of accurately recorded measurements, estimated measurements from landmark data such as a subject's stature given a known measurement within an image, and inferred data. In this study a novel dataset is used to explore linkages between hand measurements, stature, leg length and stride. These three measurements replicate the type of evidence found in surveillance videos with stride being extracted from an automated gait analysis system. Through correlations and regression modelling, it is possible to generate accurate predictions of stature from hand size, leg length and stride length (and vice versa), and to predict leg and stride length from hand size with, or without, stature as an intermediary variable. The study also shows improved accuracy when a subject's sex is known a-priori. Our method and models indicate the possibility of calculating or checking relationships between a suspect's physical measurements, particularly when only one component is captured as an accurately recorded measurement. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. The effect of racetrack design on gait symmetry of the pacer.

    PubMed

    Crawford, W H; Leach, D H

    1984-10-01

    A survey of a western Canadian racetrack determined the superelevation and transition curves to be less than the cited design standards. High-speed cinematography was used to film seven Standardbred pacers as they proceeded around one curve of the track at racing speed and for each horse 19 temporal stride parameters were obtained from these films using a film analyzer system. Average velocities were calculated and the mean stride length was found to vary from 5.08 m to 5.77 m. In all frames analyzed the hind foot was observed to contact the track surface prior to the ipsilateral forefoot and all horses displayed significant (p less than 0.05) contralateral asymmetry of some temporal stride parameters. Fifteen temporal stride parameters were significantly different (p less than 0.05) when compared between horses but only three temporal stride parameters were significantly different (p less than 0.05) when their values were compared between segments of the curved portions of the track. It is suggested that temporal gait asymmetry should not be used to judge the standards of racetrack design.

  20. Effect of Different Training Methods on Stride Parameters in Speed Maintenance Phase of 100-m Sprint Running.

    PubMed

    Cetin, Emel; Hindistan, I Ethem; Ozkaya, Y Gul

    2018-05-01

    Cetin, E, Hindistan, IE, Ozkaya, YG. Effect of different training methods on stride parameters in speed maintenance phase of 100-m sprint running. J Strength Cond Res 32(5): 1263-1272, 2018-This study examined the effects of 2 different training methods relevant to sloping surface on stride parameters in speed maintenance phase of 100-m sprint running. Twenty recreationally active students were assigned into one of 3 groups: combined training (Com), horizontal training (H), and control (C) group. Com group performed uphill and downhill training on a sloping surface with an angle of 4°, whereas H group trained on a horizontal surface, 3 days a week for 8 weeks. Speed maintenance and deceleration phases were divided into distances with 10-m intervals, and running time (t), running velocity (RV), step frequency (SF), and step length (SL) were measured at preexercise, and postexercise period. After 8 weeks of training program, t was shortened by 3.97% in Com group, and 2.37% in H group. Running velocity also increased for totally 100 m of running distance by 4.13 and 2.35% in Com, and H groups, respectively. At the speed maintenance phase, although t and maximal RV (RVmax) found to be statistically unaltered during overall phase, t was found to be decreased, and RVmax was preceded by 10 m in distance in both training groups. Step length was increased at 60-70 m, and SF was decreased at 70-80 m in H group. Step length was increased with concomitant decrease in SF at 80-90 m in Com group. Both training groups maintained the RVmax with a great percentage at the speed maintenance phase. In conclusion, although both training methods resulted in an increase in running time and RV, Com training method was more prominently effective method in improving RV, and this improvement was originated from the positive changes in SL during the speed maintaining phase.

  1. The use of MP3 recorders to log data from equine hoof mounted accelerometers.

    PubMed

    Parsons, K J; Wilson, A M

    2006-11-01

    MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction time and stride time). These parameters are invaluable for the characterisation and assessment of equine locomotion.

  2. Net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S A; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Carrillo Montoya, C A; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; Demanov, V; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; Erasmo, G D; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, M R; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Di Giglio, C; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gonschior, A; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, V; Ivanov, M; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, P; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, M; Kim, M; Kim, S H; Kim, D J; Kim, S; Kim, J H; Kim, J S; Kim, B; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lazzeroni, C; Lea, R; Le Bornec, Y; Lechman, M; Lee, S C; Lee, K S; Lee, G R; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; León Vargas, H; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Mohanty, A K; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastirčák, B; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, S; Sano, M; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stan, I; Stefanek, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Šumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Szymanski, M; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, V; Wagner, B; Wan, R; Wang, M; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilk, A; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, X; Zhang, H; Zhou, F; Zhou, D; Zhou, Y; Zhu, J; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-04-12

    We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76  TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma.

  3. Why noise is useful in functional and neural mechanisms of interval timing?

    PubMed Central

    2013-01-01

    Background The ability to estimate durations in the seconds-to-minutes range - interval timing - is essential for survival, adaptation and its impairment leads to severe cognitive and/or motor dysfunctions. The response rate near a memorized duration has a Gaussian shape centered on the to-be-timed interval (criterion time). The width of the Gaussian-like distribution of responses increases linearly with the criterion time, i.e., interval timing obeys the scalar property. Results We presented analytical and numerical results based on the striatal beat frequency (SBF) model showing that parameter variability (noise) mimics behavioral data. A key functional block of the SBF model is the set of oscillators that provide the time base for the entire timing network. The implementation of the oscillators block as simplified phase (cosine) oscillators has the additional advantage that is analytically tractable. We also checked numerically that the scalar property emerges in the presence of memory variability by using biophysically realistic Morris-Lecar oscillators. First, we predicted analytically and tested numerically that in a noise-free SBF model the output function could be approximated by a Gaussian. However, in a noise-free SBF model the width of the Gaussian envelope is independent of the criterion time, which violates the scalar property. We showed analytically and verified numerically that small fluctuations of the memorized criterion time leads to scalar property of interval timing. Conclusions Noise is ubiquitous in the form of small fluctuations of intrinsic frequencies of the neural oscillators, the errors in recording/retrieving stored information related to criterion time, fluctuation in neurotransmitters’ concentration, etc. Our model suggests that the biological noise plays an essential functional role in the SBF interval timing. PMID:23924391

  4. Physiological basis for human autonomic rhythms

    NASA Technical Reports Server (NTRS)

    Eckberg, D. L.

    2000-01-01

    Oscillations of arterial pressures, heart periods, and muscle sympathetic nerve activity have been studied intensively in recent years to explore otherwise obscure human neurophysiological mechanisms. The best-studied rhythms are those occurring at breathing frequencies. Published evidence indicates that respiratory fluctuations of muscle sympathetic nerve activity and electrocardiographic R-R intervals result primarily from the action of a central 'gate' that opens during expiration and closes during inspiration. Parallel respiratory fluctuations of arterial pressures and R-R intervals are thought to be secondary to arterial baroreflex physiology: changes in systolic pressure provoke changes in the R-R interval. However, growing evidence suggests that these parallel oscillations result from the influence of respiration on sympathetic and vagal-cardiac motoneurones rather than from baroreflex physiology. There is a rapidly growing literature on the use of mathematical models of low- and high-frequency (respiratory) R-R interval fluctuations in characterizing instantaneous 'sympathovagal balance'. The case for this approach is based primarily on measurements made with patients in upright tilt. However, the strong linear relation between such measures as the ratio of low- to high-frequency R-R interval oscillations and the angle of the tilt reflects exclusively the reductions of the vagal (high-frequency) component. As the sympathetic component does not change in tilt, the low- to high-frequency R-R interval ratio provides no proof that sympathetic activity increases. Moreover, the validity of extrapolating from measurements performed during upright tilt to measurements during supine rest has not been established. Nonetheless, it is clear that measures of heart rate variability provide important prognostic information in patients with cardiovascular diseases. It is not known whether reduced heart rate variability is merely a marker for the severity of disease or a measurement that identifies functional reflex abnormalities contributing to terminal dysrhythmias.

  5. Understanding the complexity of human gait dynamics

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola; Marchi, Damiano; West, Bruce J.

    2009-06-01

    Time series of human gait stride intervals exhibit fractal and multifractal properties under several conditions. Records from subjects walking at normal, slow, and fast pace speed are analyzed to determine changes in the fractal scalings as a function of the stress condition of the system. Records from subjects with different age from children to elderly and patients suffering from neurodegenerative disease are analyzed to determine changes in the fractal scalings as a function of the physical maturation or degeneration of the system. A supercentral pattern generator model is presented to simulate the above two properties that are typically found in dynamical network performance: that is, how a dynamical network responds to stress and to evolution.

  6. Optic flow odometry operates independently of stride integration in carried ants.

    PubMed

    Pfeffer, Sarah E; Wittlinger, Matthias

    2016-09-09

    Cataglyphis desert ants are impressive navigators. When the foragers roam the desert, they employ path integration. For these ants, distance estimation is one key challenge. Distance information was thought to be provided by optic flow (OF)-that is, image motion experienced during travel-but this idea was abandoned when stride integration was discovered as an odometer mechanism in ants. We show that ants transported by nest mates are capable of measuring travel distance exclusively by the use of OF cues. Furthermore, we demonstrate that the information gained from the optic flowmeter cannot be transferred to the stride integrator. Our results suggest a dual information channel that allows the ants to measure distances by strides and OF cues, although both systems operate independently and in a redundant manner. Copyright © 2016, American Association for the Advancement of Science.

  7. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent.

    PubMed

    Peng, Joshua; Fey, Nicholas P; Kuiken, Todd A; Hargrove, Levi J

    2016-02-29

    The majority of fall-related accidents are during stair ambulation-occurring commonly at the top and bottom stairs of each flight, locations in which individuals are transitioning to stairs. Little is known about how individuals adjust their biomechanics in anticipation of walking-stair transitions. We identified the anticipatory stride mechanics of nine able-bodied individuals as they approached transitions from level ground walking to stair ascent and descent. Unlike prior investigations of stair ambulation, we analyzed two consecutive "anticipation" strides preceding the transitions strides to stairs, and tested a comprehensive set of kinematic and electromyographic (EMG) data from both the leading and trailing legs. Subjects completed ten trials of baseline overground walking and ten trials of walking to stair ascent and descent. Deviations relative to baseline were assessed. Significant changes in mechanics and EMG occurred in the earliest anticipation strides analyzed for both ascent and descent transitions. For stair descent, these changes were consistent with observed reductions in walking speed, which occurred in all anticipation strides tested. For stair ascent, subjects maintained their speed until the swing phase of the latest anticipation stride, and changes were found that would normally be observed for decreasing speed. Given the timing and nature of the observed changes, this study has implications for enhancing intent recognition systems and evaluating fall-prone or disabled individuals, by testing their abilities to sense upcoming transitions and decelerate during locomotion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fluctuations in Wikipedia access-rate and edit-event data

    NASA Astrophysics Data System (ADS)

    Kämpf, Mirko; Tismer, Sebastian; Kantelhardt, Jan W.; Muchnik, Lev

    2012-12-01

    Internet-based social networks often reflect extreme events in nature and society by drastic increases in user activity. We study and compare the dynamics of the two major complex processes necessary for information spread via the online encyclopedia ‘Wikipedia’, i.e., article editing (information upload) and article access (information viewing) based on article edit-event time series and (hourly) user access-rate time series for all articles. Daily and weekly activity patterns occur in addition to fluctuations and bursting activity. The bursts (i.e., significant increases in activity for an extended period of time) are characterized by a power-law distribution of durations of increases and decreases. For describing the recurrence and clustering of bursts we investigate the statistics of the return intervals between them. We find stretched exponential distributions of return intervals in access-rate time series, while edit-event time series yield simple exponential distributions. To characterize the fluctuation behavior we apply detrended fluctuation analysis (DFA), finding that most article access-rate time series are characterized by strong long-term correlations with fluctuation exponents α≈0.9. The results indicate significant differences in the dynamics of information upload and access and help in understanding the complex process of collecting, processing, validating, and distributing information in self-organized social networks.

  9. The Role of Power Fluctuations in the Preference of Diagonal vs. Double Poling Sub-Technique at Different Incline-Speed Combinations in Elite Cross-Country Skiers

    PubMed Central

    Dahl, Christine; Sandbakk, Øyvind; Danielsen, Jørgen; Ettema, Gertjan

    2017-01-01

    In classical cross-country skiing, diagonal stride (DIA) is the major uphill sub-technique, while double poling (DP) is used on relatively flat terrain. Although, the dependence of incline and speed on the preference of either sub-technique seems clearly established, the mechanisms behind these preferences are not clear. Therefore, the purpose of this study was to compare kinetics and energy consumption in DP and DIA at the same submaximal workload in cross-country skiing under two different incline-speed combinations. We compared kinetics and physiological responses in DP and DIA at the same submaximal workload (≈200 W) under two different incline-speed conditions, (5%—12.5 km h−1 vs. 12%—6.5 km h−1) where DP and DIA were expected to be preferred, respectively. Fifteen elite male cross-country skiers performed four separate 6.5-min roller skiing sessions on a treadmill at these two conditions using DP and DIA during which physiological variables, rate of perceived exertion (RPE) and kinetics, including power fluctuations, were recorded. At 12% incline, DIA resulted in lower physiological response (e.g., heart rate) and RPE, and higher gross efficiency than DP, whereas at 5% incline these variables favored DP (P < 0.05). The skiers' preference for sub-technique (13 preferred DIA at 12% incline; all 15 preferred DP at 5% incline) was in accordance with these results. Fluctuation in instantaneous power was lowest in the preferred sub-technique at each condition (P < 0.05). Preference for DP at 5% incline (high speed) is most likely because the speed is too high for effective ski thrust in DIA, which is reflected in high power fluctuations. The mechanism for preference of DIA at 12% incline is not indicated directly by the current data set showing only small differences in power fluctuations between DIA and DP. Apart from the low speed allowing ski thrust, we suggest that restricted ability to utilize the body's mechanical energy as well as the use of arms in DP play an important role. PMID:28270769

  10. The Role of Power Fluctuations in the Preference of Diagonal vs. Double Poling Sub-Technique at Different Incline-Speed Combinations in Elite Cross-Country Skiers.

    PubMed

    Dahl, Christine; Sandbakk, Øyvind; Danielsen, Jørgen; Ettema, Gertjan

    2017-01-01

    In classical cross-country skiing, diagonal stride (DIA) is the major uphill sub-technique, while double poling (DP) is used on relatively flat terrain. Although, the dependence of incline and speed on the preference of either sub-technique seems clearly established, the mechanisms behind these preferences are not clear. Therefore, the purpose of this study was to compare kinetics and energy consumption in DP and DIA at the same submaximal workload in cross-country skiing under two different incline-speed combinations. We compared kinetics and physiological responses in DP and DIA at the same submaximal workload (≈200 W) under two different incline-speed conditions, (5%-12.5 km h -1 vs. 12%-6.5 km h -1 ) where DP and DIA were expected to be preferred, respectively. Fifteen elite male cross-country skiers performed four separate 6.5-min roller skiing sessions on a treadmill at these two conditions using DP and DIA during which physiological variables, rate of perceived exertion ( RPE ) and kinetics, including power fluctuations, were recorded. At 12% incline, DIA resulted in lower physiological response (e.g., heart rate) and RPE , and higher gross efficiency than DP, whereas at 5% incline these variables favored DP ( P < 0.05). The skiers' preference for sub-technique (13 preferred DIA at 12% incline; all 15 preferred DP at 5% incline) was in accordance with these results. Fluctuation in instantaneous power was lowest in the preferred sub-technique at each condition ( P < 0.05). Preference for DP at 5% incline (high speed) is most likely because the speed is too high for effective ski thrust in DIA, which is reflected in high power fluctuations. The mechanism for preference of DIA at 12% incline is not indicated directly by the current data set showing only small differences in power fluctuations between DIA and DP. Apart from the low speed allowing ski thrust, we suggest that restricted ability to utilize the body's mechanical energy as well as the use of arms in DP play an important role.

  11. Influence of footwear and equipment on stride length and range of motion of ankle, knee and hip joint.

    PubMed

    Schulze, Christoph; Lindner, Tobias; Woitge, Sandra; Schulz, Katharina; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer

    2014-01-01

    Footwear and equipment worn by military personnel is of importance for them to be able to meet the physical demands specific to their profession daily activities. The aim of the present study was to investigate by means of gait analysis how army-provided footwear and equipment influence the range of motion of hip, knee and ankle joints as well as stride length. Thirty-two soldiers were subjected to gait analysis on a treadmill by way of video recordings and goniometric measurements. The stride length increased when military shoes are worn. We found no influence on stride length in connection to increased loading. The weight of the shoes represents the decisive factor. Neither shoes nor equipment changed the range of motion of the knee joint. Weight of equipment affected range of motion of the hip joint. The range of motion of the upper and lower ankle joints was mainly influenced by the properties of the shoes. Military footwear and weight of equipment influence stride length and range of motion of joints of the lower extremities in a specific way. Shape of material is the decisive factor.

  12. Increased delivery stride length places greater loads on the ankle joint in elite male cricket fast bowlers.

    PubMed

    Spratford, Wayne; Hicks, Amy

    2014-01-01

    The purpose of this study was to investigate the effect stride length has on ankle biomechanics of the leading leg with reference to the potential risk of injury in cricket fast bowlers. Ankle joint kinematic and kinetic data were collected from 51 male fast bowlers during the stance phase of the final delivery stride. The bowling cohort comprised national under-19, first class and international-level athletes. Bowlers were placed into either Short, Average or Long groups based on final stride length, allowing statistical differences to be measured. A multivariate analysis of variance with a Bonferroni post-hoc correction (α = 0.05) revealed significant differences between peak plantarflexion angles (Short-Long P = 0.005, Average and Long P = 0.04) and negative joint work (Average-Long P = 0.026). This study highlighted that during fast bowling the ankle joint of the leading leg experiences high forces under wide ranges of movement. As stride length increases, greater amounts of negative work and plantarflexion are experienced. These increases place greater loads on the ankle joint and move the foot into positions that make it more susceptible to injuries such as posterior impingement syndrome.

  13. Energy absorption of impacts during running at various stride lengths.

    PubMed

    Derrick, T R; Hamill, J; Caldwell, G E

    1998-01-01

    The foot-ground impact experienced during running produces a shock wave that is transmitted through the human skeletal system. This shock wave is attenuated by deformation of the ground/shoe as well as deformation of biological tissues in the body. The goal of this study was to investigate the locus of energy absorption during the impact phase of the running cycle. Running speed (3.83 m x s[-1]) was kept constant across five stride length conditions: preferred stride length (PSL), +10% of PSL, -10% of PSL, +20% of PSL, and -20% of PSL. Transfer functions were generated from accelerometers attached to the leg and head of ten male runners. A rigid body model was used to estimate the net energy absorbed at the hip, knee, and ankle joints. There was an increasing degree of shock attenuation as stride length increased. The energy absorbed during the impact portion of the running cycle also increased with stride length. Muscles that cross the knee joint showed the greatest adjustment in response to increased shock. It was postulated that the increased perpendicular distance from the line of action of the resultant ground reaction force to the knee joint center played a role in this increased energy absorption.

  14. Fluctuations in Unimanual Hand Preference in Infants Following the Onset of Duplicated Syllable Babbling.

    ERIC Educational Resources Information Center

    Ramsay, Douglas S.

    1985-01-01

    Infants were tested for unimanual handedness at weekly intervals for a 14-week period beginning with the week of onset of duplicated syllable babbling. Group analyses indicating effects of sex and/or birth order on fluctuations and date review for individual infants suggested considerable variability across infants in occurrence and/or timing of…

  15. Musical motor feedback (MMF) in walking hemiparetic stroke patients: randomized trials of gait improvement.

    PubMed

    Schauer, Michael; Mauritz, Karl-Heinz

    2003-11-01

    To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.

  16. Lower extremity joint coupling variability during gait in young adults with and without chronic ankle instability.

    PubMed

    Lilley, Thomas; Herb, Christopher C; Hart, Joseph; Hertel, Jay

    2018-06-01

    Chronic ankle instability (CAI) is a condition resulting from a lateral ankle sprain. Shank-rearfoot joint-coupling variability differences have been found in CAI patients; however, joint-coupling variability (VCV) of the ankle and proximal joints has not been explored. Our purpose was to analyse VCV in adults with and without CAI during gait. Four joint-coupling pairs were analysed: knee sagittal-ankle sagittal, knee sagittal-ankle frontal, hip frontal-ankle sagittal and hip frontal-ankle frontal. Twenty-seven adults participated (CAI:n = 13, Control:n = 14). Lower extremity kinematics were collected during walking (4.83 km/h) and jogging (9.66 km/h). Vector-coding was used to assess the stride-to-stride variability of four coupling pairs. During walking, CAI patients exhibited higher VCV than healthy controls for knee sagittal-ankle frontal in latter parts of stance thru mid-swing. When jogging, CAI patients demonstrated lower VCV with specific differences occurring across various intervals of gait. The increased knee sagittal-ankle frontal VCV in CAI patients during walking may indicate an adaptation to deal with the previously identified decrease in variability in transverse plane shank and frontal plane rearfoot coupling during walking; while the decreased ankle-knee and ankle-hip VCV identified in CAI patients during jogging may represent a more rigid, less adaptable sensorimotor system ambulating at a faster speed.

  17. EPA Making Strides in Cleaning Up the Nation’s Most Contaminated Sites

    EPA Pesticide Factsheets

    Due to the hard work of staff to implement Administrator Pruitt's initiatives to make strides in cleaning up the nation's most contaminated toxic land sites, the USEPA is announcing significant improvement in 2017...

  18. Stride search: A general algorithm for storm detection in high resolution climate data

    DOE PAGES

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.; ...

    2015-09-08

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less

  19. Walking on an Oscillating Treadmill: Two Paths to Functional Adaptation

    NASA Technical Reports Server (NTRS)

    Brady, Rachel A.; Peters, Brian T.; Bloomberg, Jacob J.

    2010-01-01

    We mounted a treadmill on top of a six degree-of-freedom motion base platform to investigate and characterize locomotor responses produced by healthy adults when introduced to a novel walking condition. Subjects were classified into two groups according to how their stride times were affected by the perturbation. Our data suggest that a person's choice of adaptation strategy is influenced by the relationship between his unique, natural stride frequency and the external frequency imposed by the motion base. Our data suggest that a person's stride time response while walking on a laterally oscillating treadmill is influenced by the relationship between his unique, natural stride frequency and the imposed external frequency of the motion base. This relationship may be useful for checking the efficacy of gait training and rehabilitation programs. Preselecting and manipulating a person's EST could be one way to draw him out of his preferred "entrainment well" during therapy or training.

  20. Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations

    NASA Astrophysics Data System (ADS)

    Meng, Hao; Ren, Fei; Gu, Gao-Feng; Xiong, Xiong; Zhang, Yong-Jie; Zhou, Wei-Xing; Zhang, Wei

    2012-05-01

    Understanding the statistical properties of recurrence intervals (also termed return intervals in econophysics literature) of extreme events is crucial to risk assessment and management of complex systems. The probability distributions and correlations of recurrence intervals for many systems have been extensively investigated. However, the impacts of microscopic rules of a complex system on the macroscopic properties of its recurrence intervals are less studied. In this letter, we adopt an order-driven stock model to address this issue for stock returns. We find that the distributions of the scaled recurrence intervals of simulated returns have a power-law scaling with stretched exponential cutoff and the intervals possess multifractal nature, which are consistent with empirical results. We further investigate the effects of long memory in the directions (or signs) and relative prices of the order flow on the characteristic quantities of these properties. It is found that the long memory in the order directions (Hurst index Hs) has a negligible effect on the interval distributions and the multifractal nature. In contrast, the power-law exponent of the interval distribution increases linearly with respect to the Hurst index Hx of the relative prices, and the singularity width of the multifractal nature fluctuates around a constant value when Hx<0.7 and then increases with Hx. No evident effects of Hs and Hx are found on the long memory of the recurrence intervals. Our results indicate that the nontrivial properties of the recurrence intervals of returns are mainly caused by traders' behaviors of persistently placing new orders around the best bid and ask prices.

  1. Magnetic Field Fluctuations Observed in the Heliosheath and Interstellar Magnetic Field by Voyager 1 at 115.7-124.9 AU during 2011-2013

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Ness, N. F.; Florinski, V.; Heerikhuisen, J.

    2014-09-01

    We discuss microscale fluctuations of the hour averages of the magnetic field B observed on a scale of one day by Voyager 1 (V1) from 2011.0 to 2012.3143 (when it was within the distant heliosheath, where the average magnetic field strength langBrang = 0.17 nT) and during the interval from 2012.6503 to 2013.5855 (when it was within the interstellar plasma with langBrang = 0.47 nT). In both regions, the fluctuations were primarily compressive fluctuations, varying along the average B (≈T direction in RTN coordinates). In the heliosheath, the average of the daily standard deviations (SDs) of the compressive and transverse components of B were langSDcrang = 0.010 nT and langSDtrang <= 0.005 nT (which is the limit of the measurement). In the distant heliosheath langSDcrang/langBrang = 0.06, and the distributions of SD were skewed and highly kurtotic. The interstellar magnetic field (ISMF) strength was B = 0.48 nT, but the fluctuations were below the limit of measurement: langSDcrang = 0.004 nT and langabs(SDt)rang = 0.004 nT. The distributions of these interstellar SDs have skewness and kurtosis consistent with a Gaussian noise distribution. We also discuss the fluctuations of 48 s averages of B on a scale of 1 day during a 30 day interval when V1 was observing the ISMF. For the fluctuations in all three components of B, SD = 0.010 nT, which gives an upper limit on the fluctuations of the ISMF on the scales observed by V1. This SD rules out the possibility that there is significant power in electromagnetic fluctuations generated by pickup ion ring instabilities at these scales, which strongly constrains models of the IBEX ribbon.

  2. Observations of fine scale structure in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Thrane, E. V.; Grandal, B.

    1980-06-01

    An electrostatic probe designed to measure ion density with high time resolution and accuracy was flown on a Nike-Apache rocket from Andoeya Rocket Range on March 1 1978. Spectra of the spatial density fluctuations were derived in one kilometer height intervals from 65 to 127 km. Below 95 km the power spectra had a slope of about -5/3, as expected for isotropic turbulence. Above 95 km the fluctuations were stronger and showed a white noise power spectrum. These fluctuations are most likely due to plasma instabilities.

  3. Increased gait unsteadiness in community-dwelling elderly fallers

    NASA Technical Reports Server (NTRS)

    Hausdorff, J. M.; Edelberg, H. K.; Mitchell, S. L.; Goldberger, A. L.; Wei, J. Y.

    1997-01-01

    OBJECTIVE: To test the hypothesis that quantitative measures of gait unsteadiness are increased in community-dwelling elderly fallers. STUDY DESIGN: Retrospective, case-control study. SETTING: General community. PARTICIPANTS: Thirty-five community-dwelling elderly subjects older than 70 years of age who were capable of ambulating independently for 6 minutes were categorized as fallers (age, 82.2 +/- 4.9 yrs [mean +/- SD]; n = 18) and nonfallers (age, 76.5 +/- 4.0 yrs; n = 17) based on history; 22 young (age, 24.6 +/- 1.9 yrs), healthy subjects also participated as a second reference group. MAIN OUTCOME MEASURES: Stride-to-stride variability (standard deviation and coefficient of variation) of stride time, stance time, swing time, and percent stance time measured during a 6-minute walk. RESULTS: All measures of gait variability were significantly greater in the elderly fallers compared with both the elderly nonfallers and the young subjects (p < .0002). In contrast, walking speed of the elderly fallers was similar to that of the nonfallers. There were little or no differences in the variability measures of the elderly nonfallers compared with the young subjects. CONCLUSIONS: Stride-to-stride temporal variations of gait are relatively unchanged in community-dwelling elderly nonfallers, but are significantly increased in elderly fallers. Quantitative measurement of gait unsteadiness may be useful in assessing fall risk in the elderly.

  4. Effects of high doses of oxytetracycline on metacarpophalangeal joint kinematics in neonatal foals.

    PubMed

    Kasper, C A; Clayton, H M; Wright, A K; Skuba, E V; Petrie, L

    1995-07-01

    Thirteen clinically normal Belgian-type foals were used to study the effects of high doses of oxytetracycline on metacarpophalangeal joint kinematics. Seven foals (treatment group) received 2 doses of oxytetracycline (3 g, IV). The first dose was given when foals were 4 days old; the second dose was given 24 hours later. Six foals (control group) received 2 doses of saline (0.9% NaCl) solution (15 ml, IV) at equivalent time periods. All foals were videotaped at a walk twice: immediately prior to the first treatment and 24 hours after the second treatment. The tapes were digitized, and metacarpophalangeal joint angle was measured along the palmar surface of the limb during 3 strides. The angular data were normalized for time, and data from the 3 strides were averaged to describe a representative stride. Repeated measures ANOVA was used to test for differences between groups and within groups over time. Values for stride duration, stance phase percentage, and minimum metacarpophalangeal joint angle obtained before treatment were not significantly different from values obtained after treatment. Maximum metacarpophalangeal joint angle, which occurred during the stance phase of the stride, and range of joint motion were significantly increased for foals in the treatment group, compared with foals in the control group.

  5. The nature and perception of fluctuations in human musical rhythms

    NASA Astrophysics Data System (ADS)

    Hennig, Holger; Fleischmann, Ragnar; Fredebohm, Anneke; Hagmayer, York; Nagler, Jan; Witt, Annette; Theis, Fabian; Geisel, Theo

    2012-02-01

    Although human musical performances represent one of the most valuable achievements of mankind, the best musicians perform imperfectly. Musical rhythms are not entirely accurate and thus inevitably deviate from the ideal beat pattern. Nevertheless, computer generated perfect beat patterns are frequently devalued by listeners due to a perceived lack of human touch. Professional audio editing software therefore offers a humanizing feature which artificially generates rhythmic fluctuations. However, the built-in humanizing units are essentially random number generators producing only simple uncorrelated fluctuations. Here, for the first time, we establish long-range fluctuations as an inevitable natural companion of both simple and complex human rhythmic performances [1]. Moreover, we demonstrate that listeners strongly prefer long-range correlated fluctuations in musical rhythms. Thus, the favorable fluctuation type for humanizing interbeat intervals coincides with the one generically inherent in human musical performances. [1] HH et al., PLoS ONE,6,e26457 (2011)

  6. Information transmission using non-poisson regular firing.

    PubMed

    Koyama, Shinsuke; Omi, Takahiro; Kass, Robert E; Shinomoto, Shigeru

    2013-04-01

    In many cortical areas, neural spike trains do not follow a Poisson process. In this study, we investigate a possible benefit of non-Poisson spiking for information transmission by studying the minimal rate fluctuation that can be detected by a Bayesian estimator. The idea is that an inhomogeneous Poisson process may make it difficult for downstream decoders to resolve subtle changes in rate fluctuation, but by using a more regular non-Poisson process, the nervous system can make rate fluctuations easier to detect. We evaluate the degree to which regular firing reduces the rate fluctuation detection threshold. We find that the threshold for detection is reduced in proportion to the coefficient of variation of interspike intervals.

  7. STATISTICALLY DETERMINED DISPERSION RELATIONS OF MAGNETIC FIELD FLUCTUATIONS IN THE TERRESTRIAL FORESHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnat, B.; O’Connell, D.; Nakariakov, V. M.

    2016-08-20

    We obtain dispersion relations of magnetic field fluctuations for two crossings of the terrestrial foreshock by Cluster spacecraft. These crossings cover plasma conditions that differ significantly in their plasma β and in the density of the reflected ion beam, but not in the properties of the encountered ion population, both showing shell-like distribution function. Dispersion relations are reconstructed using two-point instantaneous wave number estimations from pairs of Cluster spacecraft. The accessible range of wave vectors, limited by the available spacecraft separations, extends to ≈2 × 10{sup 4} km. Results show multiple branches of dispersion relations, associated with different powers ofmore » magnetic field fluctuations. We find that sunward propagating fast magnetosonic waves and beam resonant modes are dominant for the high plasma β interval with a dense beam, while the dispersions of the interval with low beam density include Alfvén and fast magnetosonic modes propagating sunward and anti-sunward.« less

  8. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    PubMed

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  9. The effect of three different types of walking aids on spatio-temporal gait parameters in community-dwelling older adults.

    PubMed

    Härdi, Irene; Bridenbaugh, Stephanie A; Gschwind, Yves J; Kressig, Reto W

    2014-04-01

    Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.

  10. Residual standard deviation: Validation of a new measure of dual-task cost in below-knee prosthesis users.

    PubMed

    Howard, Charla L; Wallace, Chris; Abbas, James; Stokic, Dobrivoje S

    2017-01-01

    We developed and evaluated properties of a new measure of variability in stride length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride length and cadence are regressed against velocity to derive the best fit line from which the variability (SD) of the distance between the actual and predicted data points is calculated. We examined construct, concurrent, and discriminative validity of RSD using dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched controls. Subjects walked first over an electronic walkway while performing separately a serial subtraction and backwards spelling task, and then at self-selected slow, normal, and fast speeds used to derive the best fit line for stride length and cadence against velocity. Construct validity was demonstrated by significantly greater increase in RSD during dual-task gait in prosthesis users than controls (group-by-condition interaction, stride length p=0.0006, cadence p=0.009). Concurrent validity was established against coefficient of variation (CV) by moderate-to-high correlations (r=0.50-0.87) between dual-task cost RSD and dual-task cost CV for both stride length and cadence in prosthesis users and controls. Discriminative validity was documented by the ability of dual-task cost calculated from RSD to effectively differentiate prosthesis users from controls (area under the receiver operating characteristic curve, stride length 0.863, p=0.001, cadence 0.808, p=0.007), which was better than the ability of dual-task cost CV (0.692, 0.648, respectively, not significant). These results validate RSD as a new measure of variability in below-knee prosthesis users. Future studies should include larger cohorts and other populations to ascertain its generalizability. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ongoing behavior predicts perceptual report of interval duration

    PubMed Central

    Gouvêa, Thiago S.; Monteiro, Tiago; Soares, Sofia; Atallah, Bassam V.; Paton, Joseph J.

    2014-01-01

    The ability to estimate the passage of time is essential for adaptive behavior in complex environments. Yet, it is not known how the brain encodes time over the durations necessary to explain animal behavior. Under temporally structured reinforcement schedules, animals tend to develop temporally structured behavior, and interval timing has been suggested to be accomplished by learning sequences of behavioral states. If this is true, trial to trial fluctuations in behavioral sequences should be predictive of fluctuations in time estimation. We trained rodents in an duration categorization task while continuously monitoring their behavior with a high speed camera. Animals developed highly reproducible behavioral sequences during the interval being timed. Moreover, those sequences were often predictive of perceptual report from early in the trial, providing support to the idea that animals may use learned behavioral patterns to estimate the duration of time intervals. To better resolve the issue, we propose that continuous and simultaneous behavioral and neural monitoring will enable identification of neural activity related to time perception that is not explained by ongoing behavior. PMID:24672473

  12. The Effect of a Six-Month Dancing Program on Motor-Cognitive Dual-Task Performance in Older Adults.

    PubMed

    Hamacher, Dennis; Hamacher, Daniel; Rehfeld, Kathrin; Hökelmann, Anita; Schega, Lutz

    2015-10-01

    Dancing is a complex sensorimotor activity involving physical and mental elements which have positive effects on cognitive functions and motor control. The present randomized controlled trial aims to analyze the effects of a dancing program on the performance on a motor-cognitive dual task. Data of 35 older adults, who were assigned to a dancing group or a health-related exercise group, are presented in the study. In pretest and posttest, we assessed cognitive performance and variability of minimum foot clearance, stride time, and stride length while walking. Regarding the cognitive performance and the stride-to-stride variability of minimum foot clearance, interaction effects have been found, indicating that dancing lowers gait variability to a higher extent than conventional health-related exercise. The data show that dancing improves minimum foot clearance variability and cognitive performance in a dual-task situation. Multi-task exercises (like dancing) might be a powerful tool to improve motor-cognitive dual-task performance.

  13. Acute differences in foot strike and spatiotemporal variables for shod, barefoot or minimalist male runners.

    PubMed

    McCallion, Ciara; Donne, Bernard; Fleming, Neil; Blanksby, Brian

    2014-05-01

    This study compared stride length, stride frequency, contact time, flight time and foot-strike patterns (FSP) when running barefoot, and in minimalist and conventional running shoes. Habitually shod male athletes (n = 14; age 25 ± 6 yr; competitive running experience 8 ± 3 yr) completed a randomised order of 6 by 4-min treadmill runs at velocities (V1 and V2) equivalent to 70 and 85% of best 5-km race time, in the three conditions. Synchronous recording of 3-D joint kinematics and ground reaction force data examined spatiotemporal variables and FSP. Most participants adopted a mid-foot strike pattern, regardless of condition. Heel-toe latency was less at V2 than V1 (-6 ± 20 vs. -1 ± 13 ms, p < 0.05), which indicated a velocity related shift towards a more FFS pattern. Stride duration and flight time, when shod and in minimalist footwear, were greater than barefoot (713 ± 48 and 701 ± 49 vs. 679 ± 56 ms, p < 0.001; and 502 ± 45 and 503 ± 41 vs. 488 ±4 9 ms, p < 0.05, respectively). Contact time was significantly longer when running shod than barefoot or in minimalist footwear (211±30 vs. 191 ± 29 ms and 198 ± 33 ms, p < 0.001). When running barefoot, stride frequency was significantly higher (p < 0.001) than in conventional and minimalist footwear (89 ± 7 vs. 85 ± 6 and 86 ± 6 strides·min(-1)). In conclusion, differences in spatiotemporal variables occurred within a single running session, irrespective of barefoot running experience, and, without a detectable change in FSP. Key pointsDifferences in spatiotemporal variables occurred within a single running session, without a change in foot strike pattern.Stride duration and flight time were greater when shod and in minimalist footwear than when barefoot.Stride frequency when barefoot was higher than when shod or in minimalist footwear.Contact time when shod was longer than when barefoot or in minimalist footwear.Spatiotemporal variables when running in minimalist footwear more closely resemble shod than barefoot running.

  14. Acute Differences in Foot Strike and Spatiotemporal Variables for Shod, Barefoot or Minimalist Male Runners

    PubMed Central

    McCallion, Ciara; Donne, Bernard; Fleming, Neil; Blanksby, Brian

    2014-01-01

    This study compared stride length, stride frequency, contact time, flight time and foot-strike patterns (FSP) when running barefoot, and in minimalist and conventional running shoes. Habitually shod male athletes (n = 14; age 25 ± 6 yr; competitive running experience 8 ± 3 yr) completed a randomised order of 6 by 4-min treadmill runs at velocities (V1 and V2) equivalent to 70 and 85% of best 5-km race time, in the three conditions. Synchronous recording of 3-D joint kinematics and ground reaction force data examined spatiotemporal variables and FSP. Most participants adopted a mid-foot strike pattern, regardless of condition. Heel-toe latency was less at V2 than V1 (-6 ± 20 vs. -1 ± 13 ms, p < 0.05), which indicated a velocity related shift towards a more FFS pattern. Stride duration and flight time, when shod and in minimalist footwear, were greater than barefoot (713 ± 48 and 701 ± 49 vs. 679 ± 56 ms, p < 0.001; and 502 ± 45 and 503 ± 41 vs. 488 ±4 9 ms, p < 0.05, respectively). Contact time was significantly longer when running shod than barefoot or in minimalist footwear (211±30 vs. 191 ± 29 ms and 198 ± 33 ms, p < 0.001). When running barefoot, stride frequency was significantly higher (p < 0.001) than in conventional and minimalist footwear (89 ± 7 vs. 85 ± 6 and 86 ± 6 strides·min-1). In conclusion, differences in spatiotemporal variables occurred within a single running session, irrespective of barefoot running experience, and, without a detectable change in FSP. Key points Differences in spatiotemporal variables occurred within a single running session, without a change in foot strike pattern. Stride duration and flight time were greater when shod and in minimalist footwear than when barefoot. Stride frequency when barefoot was higher than when shod or in minimalist footwear. Contact time when shod was longer than when barefoot or in minimalist footwear. Spatiotemporal variables when running in minimalist footwear more closely resemble shod than barefoot running. PMID:24790480

  15. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes.

    PubMed

    Auvinet, Bernard; Touzard, Claude; Montestruc, François; Delafond, Arnaud; Goeb, Vincent

    2017-01-31

    Gait disorders and gait analysis under single and dual-task conditions are topics of great interest, but very few studies have looked for the relevance of gait analysis under dual-task conditions in elderly people on the basis of a clinical approach. An observational study including 103 patients (mean age 76.3 ± 7.2, women 56%) suffering from gait disorders or memory impairment was conducted. Gait analysis under dual-task conditions was carried out for all patients. Brain MRI was performed in the absence of contra-indications. Three main gait variables were measured: walking speed, stride frequency, and stride regularity. For each gait variable, the dual task cost was computed and a quartile analysis was obtained. Nonparametric tests were used for all the comparisons (Wilcoxon, Kruskal-Wallis, Fisher or Chi 2 tests). Four clinical subgroups were identified: gait instability (45%), recurrent falls (29%), memory impairment (18%), and cautious gait (8%). The biomechanical severity of these subgroups was ordered according to walking speed and stride regularity under both conditions, from least to most serious as follows: memory impairment, gait instability, recurrent falls, cautious gait (p < 0.01 for walking speed, p = 0.05 for stride regularity). According to the established diagnoses of gait disorders, 5 main pathological subgroups were identified (musculoskeletal diseases (n = 11), vestibular diseases (n = 6), mild cognitive impairment (n = 24), central nervous system pathologies, (n = 51), and without diagnosis (n = 8)). The dual task cost for walking speed, stride frequency and stride regularity were different among these subgroups (p < 0.01). The subgroups mild cognitive impairment and central nervous system pathologies both showed together a higher dual task cost for each variable compared to the other subgroups combined (p = 0.01). The quartile analysis of dual task cost for stride frequency and stride regularity allowed the identification of 3 motor phenotypes (p < 0.01), without any difference for white matter hyperintensities, but with an increased Scheltens score from the first to the third motor phenotype (p = 0.05). Gait analysis under dual-task conditions in elderly people suffering from gait disorders or memory impairment is of great value in assessing the severity of gait disorders, differentiating between peripheral pathologies and central nervous system pathologies, and identifying motor phenotypes. Correlations between motor phenotypes and brain imaging require further studies.

  16. Quantifying economic fluctuations by adapting methods of statistical physics

    NASA Astrophysics Data System (ADS)

    Plerou, Vasiliki

    2001-09-01

    The first focus of this thesis is the investigation of cross-correlations between the price fluctuations of different stocks using the conceptual framework of random matrix theory (RMT), developed in physics to describe the statistical properties of energy-level spectra of complex nuclei. RMT makes predictions for the statistical properties of matrices that are universal, i.e., do not depend on the interactions between the elements comprising the system. In physical systems, deviations from the predictions of RMT provide clues regarding the mechanisms controlling the dynamics of a given system so this framework is of potential value if applied to economic systems. This thesis compares the statistics of cross-correlation matrix C-whose elements Cij are the correlation coefficients of price fluctuations of stock i and j-against the ``null hypothesis'' of a random matrix having the same symmetry properties. It is shown that comparison of the eigenvalue statistics of C with RMT results can be used to distinguish random and non-random parts of C. The non-random part of C which deviates from RMT results, provides information regarding genuine cross-correlations between stocks. The interpretations and potential practical utility of these deviations are also investigated. The second focus is the characterization of the dynamics of stock price fluctuations. The statistical properties of the changes G Δt in price over a time interval Δ t are quantified and the statistical relation between G Δt and the trading activity-measured by the number of transactions NΔ t in the interval Δt is investigated. The statistical properties of the volatility, i.e., the time dependent standard deviation of price fluctuations, is related to two microscopic quantities: NΔt and the variance W2Dt of the price changes for all transactions in the interval Δ t. In addition, the statistical relationship between G Δt and the number of shares QΔt traded in Δ t is investigated.

  17. Spatiotemporal characteristics of motor actions by blind long jump athletes.

    PubMed

    Torralba, Miguel Angel; Padullés, José María; Losada, Jose Luis; López, Jose Luis

    2017-01-01

    Blind people depend on spatial and temporal representations to perform activities of daily living and compete in sport. The aim of this study is to determine the spatiotemporal characteristics of long jumps performed by blind athletes and compare findings with those reported for sighted athletes. We analysed a sample of 12 male athletes competing in the F11 Long Jump Finals at the Paralympic Games in London 2012. Performances were recorded using four high-speed cameras, and speeds were measured using a radar speed gun. The images were processed using validated image analysis software. The long jump run-up is shorter in blind athletes than in sighted athletes. We observed statistically significant differences for body centre of mass velocity and an increase in speed over the last three strides prior to take-off, contrasting with reports for sighted athletes and athletes with less severe visual impairment, who maintain or reduce their speed during the last stride. Stride length for the last three strides was the only spatial characteristic that was not significantly associated with effective jump distance. Blind long jumpers extend rather than shorten their last stride. Contact time with the take-off board is longer than that reported for sighted athletes. The actions of blind long jumpers, unlike those without disabilities, do not vary their leg actions during the final runway approach for optimal placement on the take-off board.

  18. Energy Expenditure of Trotting Gait Under Different Gait Parameters

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Bao; Gao, Feng

    2017-07-01

    Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.

  19. 28 CFR 16.98 - Exemption of the Drug Enforcement Administration (DEA)-limited access.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (Justice/DEA-013) (7) System to Retrieve Information from Drug Evidence (STRIDE/Ballistics) (Justice/DEA... Retrieve Information from Drug Evidence (STRIDE/Ballistics) (Justice/DEA-014) only to the extent that..., implemented internal quality assurance procedures to ensure that ESS data is as thorough, accurate, and...

  20. 28 CFR 16.98 - Exemption of the Drug Enforcement Administration (DEA)-limited access.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (Justice/DEA-013) (7) System to Retrieve Information from Drug Evidence (STRIDE/Ballistics) (Justice/DEA... Retrieve Information from Drug Evidence (STRIDE/Ballistics) (Justice/DEA-014) only to the extent that..., implemented internal quality assurance procedures to ensure that ESS data is as thorough, accurate, and...

  1. The strategies to reduce iron deficiency in blood donors randomized trial: design, enrolment and early retention

    PubMed Central

    Bialkowski, W.; Bryant, B. J.; Schlumpf, K. S.; Wright, D. J.; Birch, R.; Kiss, J. E.; D’Andrea, P.; Cable, R. G.; Spencer, B. R.; Vij, V.; Mast, A. E.

    2014-01-01

    Background and Objectives Repeated blood donation produces iron deficiency. Changes in dietary iron intake do not prevent donation-induced iron deficiency. Prolonging the interdonation interval or using oral iron supplements can mitigate donation-induced iron deficiency. The most effective operational methods for reducing iron deficiency in donors are unknown. Materials and Methods ‘Strategies To Reduce Iron Deficiency’ (STRIDE) was a two-year, randomized, placebo-controlled study in blood donors. 692 donors were randomized into one of two educational groups or one of three interventional groups. Donors randomized to educational groups either received letters thanking them for donating, or, suggesting iron supplements or delayed donation if they had low ferritin. Donors randomized to interventional groups either received placebo, 19-mg or 38-mg iron pills. Results Iron deficient erythropoiesis was present in 52.7% of males and 74.6% of females at enrolment. Adverse events within 60 days of enrolment were primarily mild gastrointestinal symptoms (64%). The incidence of de-enrolment within 60 days was more common in the interventional groups than in the educational groups (P = 0.002), but not more common in those receiving iron than placebo (P = 0.68). Conclusion The prevalence of iron deficient erythropoiesis in donors enrolled in the STRIDE study is comparable to previously described cohorts of regular blood donors. De-enrolment within 60 days was higher for donors receiving tablets, although no more common in donors receiving iron than placebo. PMID:25469720

  2. Reliability of spatial-temporal gait parameters during dual-task interference in people with multiple sclerosis. A cross-sectional study.

    PubMed

    Monticone, Marco; Ambrosini, Emilia; Fiorentini, Roberta; Rocca, Barbara; Liquori, Valentina; Pedrocchi, Alessandra; Ferrante, Simona

    2014-09-01

    To evaluate the reliability and minimum detectable change (MDC) of spatial-temporal gait parameters in subjects with multiple sclerosis (MS) during dual tasking. This cross-sectional study involved 25 healthy subjects (mean age 49.9 ± 15.8 years) and 25 people with MS (mean age 49.2 ± 11.5 years). Gait under motor-cognitive and motor-motor dual tasking conditions was evaluated in two sessions separated by a one-day interval using the GAITRite Walkway System. Test-retest reliability was assessed using intraclass correlation coefficients (ICCs), standard errors of measurement (SEM), and coefficients of variation (CV). MDC scores were computed for the velocity, cadence, step and stride length, step and stride time, double support time, the % of gait cycle for single support and stance phase, and base of support. All of the gait parameters reported good to excellent ICCs under both conditions, with healthy subject values of >0.69 and MS subject values of >0.84. SEM values were always below 18% for both groups of subjects. The gait patterns of the people with MS were slightly more variable than those of the normal controls (CVs: 5.88-41.53% vs 2.84-30.48%). The assessment of quantitative gait parameters in healthy subjects and people with MS is highly reliable under both of the investigated dual tasking conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The strategies to reduce iron deficiency in blood donors randomized trial: design, enrolment and early retention.

    PubMed

    Bialkowski, W; Bryant, B J; Schlumpf, K S; Wright, D J; Birch, R; Kiss, J E; D'Andrea, P; Cable, R G; Spencer, B R; Vij, V; Mast, A E

    2015-02-01

    Repeated blood donation produces iron deficiency. Changes in dietary iron intake do not prevent donation-induced iron deficiency. Prolonging the interdonation interval or using oral iron supplements can mitigate donation-induced iron deficiency. The most effective operational methods for reducing iron deficiency in donors are unknown. 'Strategies To Reduce Iron Deficiency' (STRIDE) was a two-year, randomized, placebo-controlled study in blood donors. 692 donors were randomized into one of two educational groups or one of three interventional groups. Donors randomized to educational groups either received letters thanking them for donating, or, suggesting iron supplements or delayed donation if they had low ferritin. Donors randomized to interventional groups either received placebo, 19-mg or 38-mg iron pills. Iron deficient erythropoiesis was present in 52·7% of males and 74·6% of females at enrolment. Adverse events within 60 days of enrolment were primarily mild gastrointestinal symptoms (64%). The incidence of de-enrolment within 60 days was more common in the interventional groups than in the educational groups (P = 0·002), but not more common in those receiving iron than placebo (P = 0·68). The prevalence of iron deficient erythropoiesis in donors enrolled in the STRIDE study is comparable to previously described cohorts of regular blood donors. De-enrolment within 60 days was higher for donors receiving tablets, although no more common in donors receiving iron than placebo. © 2014 International Society of Blood Transfusion.

  4. Universal characteristics of fractal fluctuations in prime number distribution

    NASA Astrophysics Data System (ADS)

    Selvam, A. M.

    2014-11-01

    The frequency of occurrence of prime numbers at unit number spacing intervals exhibits self-similar fractal fluctuations concomitant with inverse power law form for power spectrum generic to dynamical systems in nature such as fluid flows, stock market fluctuations and population dynamics. The physics of long-range correlations exhibited by fractals is not yet identified. A recently developed general systems theory visualizes the eddy continuum underlying fractals to result from the growth of large eddies as the integrated mean of enclosed small scale eddies, thereby generating a hierarchy of eddy circulations or an inter-connected network with associated long-range correlations. The model predictions are as follows: (1) The probability distribution and power spectrum of fractals follow the same inverse power law which is a function of the golden mean. The predicted inverse power law distribution is very close to the statistical normal distribution for fluctuations within two standard deviations from the mean of the distribution. (2) Fractals signify quantum-like chaos since variance spectrum represents probability density distribution, a characteristic of quantum systems such as electron or photon. (3) Fractal fluctuations of frequency distribution of prime numbers signify spontaneous organization of underlying continuum number field into the ordered pattern of the quasiperiodic Penrose tiling pattern. The model predictions are in agreement with the probability distributions and power spectra for different sets of frequency of occurrence of prime numbers at unit number interval for successive 1000 numbers. Prime numbers in the first 10 million numbers were used for the study.

  5. A measurement of the medium-scale anisotropy in the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Inman, C. A.; Kowitt, M. S.; Meyer, S. S.; Page, L. A.; Puchalla, J. L.; Silverberg, R. F.

    1994-01-01

    Observations from the first flight of the Medium Scale Anisotropy Measurement (MSAM) are analyzed to place limits on Gaussian fluctuations in the cosmic microwave background radiation (CMBR). This instrument chops a 30 min beam in a three-position pattern with a throw of +/- 40 min; the resulting data is analyzed in statistically independent single- and double-difference sets. We observe in four spectral channels at 5.6, 9.0, 16.5, and 22.5/cm, allowing the separation of interstellar dust emission from CMBR fluctuations. The dust component is correlated with the IRAS 100 micron map. The CMBR component has two regions where the signature of an unresolved source is seen. Rejecting these two source regions, we obtain a detection of fluctuations which match CMBR in our spectral bands of 0.6 x 10(exp -5) is less than Delta (T)/T is less than 2.2 x 10(exp -5) (90% CL interval) for total rms Gaussian fluctuations with correlation angle 0.5 deg, using the single-difference demodulation. Fore the double difference demodulation, the result is 1.1 x 10(exp -5) is less than Delta(T)/T is less than 3.1 x 10(exp -5) (90% CL interval) at a correlation angle of 0.3 deg.

  6. Statistical analysis of severe magnetic fluctuations in the near-Earth plasma sheet observed by THEMIS-E

    NASA Astrophysics Data System (ADS)

    Xu, Heqiucen; Shiokawa, Kazuo; Frühauff, Dennis

    2017-10-01

    We statistically analyzed severe magnetic fluctuations in the nightside near-Earth plasma sheet at 6-12 RE (Earth radii; 1 RE = 6371 km), because they are important for non-magnetohydrodynamics (non-MHD) effects in the magnetotail and are considered to be necessary for current disruption in the inside-out substorm model. We used magnetic field data from 2013 and 2014 obtained by the Time History of Events and Macroscale Interactions during Substorms E (THEMIS-E) satellite (sampling rate: 4 Hz). A total of 1283 severe magnetic fluctuation events were identified that satisfied the criteria σB/B > 0. 5, where σB and B are the standard deviation and the average value of magnetic field intensity during the time interval of the local proton gyroperiod, respectively. We found that the occurrence rates of severe fluctuation events are 0.00118, 0.00899, and 0.0238 % at 6-8, 8-10, and 10-12 RE, respectively, and most events last for no more than 15 s. From these occurrence rates, we estimated the possible scale sizes of current disruption by severe magnetic fluctuations as 3.83 RE3 by assuming that four substorms with 5 min intervals of current disruption occur every day. The fluctuation events occurred most frequently at the ZGSM (Z distance in the geocentric solar magnetospheric coordinate system) close to the model neutral sheet within 0.2 RE. Most events occur in association with sudden decreases in the auroral electrojet lower (AL) index and magnetic field dipolarization, indicating that they are related to substorms. Sixty-two percent of magnetic fluctuation events were accompanied by ion flow with velocity V > 100 km s-1, indicating that the violation of ion gyromotion tends to occur during high-speed flow in the near-Earth plasma sheet. The superposed epoch analysis also indicated that the flow speed increases before the severe magnetic fluctuations. We discuss how both the inside-out and outside-in substorm models can explain this increase in flow speeds before magnetic fluctuation events.

  7. Quasi-periodic Fluctuations and Chromospheric Evaporation in a Solar Flare Ribbon Observed by Hinode/EIS, IRIS, and RHESSI

    NASA Astrophysics Data System (ADS)

    Brosius, Jeffrey W.; Daw, Adrian N.; Inglis, Andrew R.

    2016-10-01

    The Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic (P ≈ 75.6 ± 9.2 s) intensity fluctuations occurred in emission lines of O IV, Mg VI, Mg vii, Si vii, Fe xiv, and Fe xvi during the flare's impulsive rise, and ended when the maximum intensity in Fe xxiii was reached. The profiles of the O IV-Fe xvi lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe xxiii profile revealed multiple components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RHESSI detected 25-100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe xiv (4.6 × 1010 cm-3) and Mg vii (7.8 × 109 cm-3) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 × 106 K, and 46 s at 6.3 × 105 K (about half the quasi-period); assuming Fe xiv's density for Fe xxiii yields a radiative cooling time of 103 s (13 times the quasi-period) at 1.4 × 107 K.

  8. Project STRIDE: Services for Transition to Independence through Education. Final Report, July 1988-June 1990 [and] Manual.

    ERIC Educational Resources Information Center

    Ross-Gordon, Jovita M.; And Others

    The Services for Transition to Independence through Education (STRIDE) project evaluated a model for providing comprehensive training and employment services to adults with mild handicaps, using existing vocational education classes and special needs support programs in a secondary vocational technical school in Altoona, Pennsylvania. Services…

  9. Greenwashing: Knowing Is Half the Battle

    ERIC Educational Resources Information Center

    Neugebauer, Adam

    2011-01-01

    The growing interest in "green" products in recent years has been met stride-for-stride with marketing campaigns attempting to tap into that trend. This once-niche sector was finally becoming mainstream and the market scrambled to meet that demand. Companies and organizations took steps to make themselves and their products and services more…

  10. Can Democracy Represent Children? Toward a Politics of Difference

    ERIC Educational Resources Information Center

    Wall, John

    2012-01-01

    Children and youth under 18 have made significant strides in recent years toward fuller inclusion in democratic processes. These strides, however, rarely rise to the level of direct political representation, whether in changing policies, making laws, or voting. This article argues that democracies will be able to represent children only by…

  11. Habituation of 10-year-old hockey players to treadmill skating.

    PubMed

    Lockwood, Kelly L; Frost, Gail

    2007-05-01

    This study assessed changes in selected physiological and kinematic variables over 6 weeks of treadmill skating in an effort to understand the process of habituation to this novel training modality. Seven male, Atom-A hockey players who were injury-free and had no previous treadmill skating experience participated in the study. Players performed four 1-min skating bouts at progressively increasing speeds, each week, for 6 weeks. One speed (10.5 km/h) was repeated weekly to allow for assessment of the habituation process. Our criteria for habituation were: a decrease in stride rate, heart rate and rating of perceived exertion, and an increase in stride length, trunk angle and vertical movement of the centre of mass, leading to a plateau, over the course of the 6-week study. Significant decreases were seen in stride rate, heart rate and ratings of perceived exertion, and significant increases were found in stride length. Some of these changes were evident after only one week of training and all were present by week 4. After 6 weeks (24 min) of exposure to treadmill skating, all participants displayed a visibly more efficient skating style.

  12. Effects of gyrokinesis exercise on the gait pattern of female patients with chronic low back pain

    PubMed Central

    Seo, Kook-Eun; Park, Tae-Jin

    2016-01-01

    [Purpose] The purpose of the present study was to use kinematic variables to identify the effects of 8/weeks’ performance of a gyrokinesis exercise on the gait pattern of females with chronic low back pain. [Subjects] The subjects of the present study were females in their late 20s to mid 30s who were chronic back pain patients. [Methods] A 3-D motion analysis system was used to measure the changes in their gait patterns between pre and post-gyrokintic exercise. The SPSS 21.0 statistics program was used to perform the paired t-test, to compare the gait patterns of pre-post-gyrokinesis exercise. [Results] In the gait analysis, pre-post-gyrokinesis exercise gait patterns showed statistically significant differences in right and left step length, stride length, right-left step widths, and stride speed. [Conclusion] Gait pattern analysis revealed increases in step length, stride length, and stride speed along with a decrease in step width after 8 weeks of gyrokinesis exercise, demonstrating it improved gait pattern. PMID:27065537

  13. Lower extremity muscle activation during baseball pitching.

    PubMed

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  14. Effects of a Flexibility and Relaxation Programme, Walking, and Nordic Walking on Parkinson's Disease

    PubMed Central

    Reuter, I.; Mehnert, S.; Leone, P.; Kaps, M.; Oechsner, M.; Engelhardt, M.

    2011-01-01

    Symptoms of Parkinson's disease (PD) progress despite optimized medical treatment. The present study investigated the effects of a flexibility and relaxation programme, walking, and Nordic walking (NW) on walking speed, stride length, stride length variability, Parkinson-specific disability (UPDRS), and health-related quality of life (PDQ 39). 90 PD patients were randomly allocated to the 3 treatment groups. Patients participated in a 6-month study with 3 exercise sessions per week, each lasting 70 min. Assessment after completion of the training showed that pain was reduced in all groups, and balance and health-related quality of life were improved. Furthermore, walking, and Nordic walking improved stride length, gait variability, maximal walking speed, exercise capacity at submaximal level, and PD disease-specific disability on the UPDRS in addition. Nordic walking was superior to the flexibility and relaxation programme and walking in improving postural stability, stride length, gait pattern and gait variability. No significant injuries occurred during the training. All patients of the Nordic walking group continued Nordic walking after completing the study. PMID:21603199

  15. Analysis of walking variability through simultaneous evaluation of the head, lumbar, and lower-extremity acceleration in healthy youth

    PubMed Central

    Toda, Haruki; Nagano, Akinori; Luo, Zhiwei

    2016-01-01

    [Purpose] The purpose of this study was to clarify whether walking speed affects acceleration variability of the head, lumbar, and lower extremity by simultaneously evaluating of acceleration. [Subjects and Methods] Twenty young individuals recruited from among the staff at Kurashiki Heisei Hospital participated in this study. Eight accelerometers were used to measure the head, lumbar and lower extremity accelerations. The participants were instructed to walk at five walking speeds prescribed by a metronome. Acceleration variability was assessed by a cross-correlation analysis normalized using z-transform in order to evaluate stride-to-stride variability. [Results] Vertical acceleration variability was the smallest in all body parts, and walking speed effect had laterality. Antero-posterior acceleration variability was significantly associated with walking speed at sites other than the head. Medio-lateral acceleration variability of the bilateral hip alone was smaller than the antero-posterior variability. [Conclusion] The findings of this study suggest that the effect of walking speed changes on the stride-to-stride acceleration variability was individual for each body parts, and differs among directions. PMID:27390419

  16. Effects of different frequencies of rhythmic auditory cueing on the stride length, cadence, and gait speed in healthy young females.

    PubMed

    Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng

    2015-02-01

    [Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.

  17. Spatiotemporal characteristics of motor actions by blind long jump athletes

    PubMed Central

    Torralba, Miguel Angel; Padullés, José María; Losada, Jose Luis; López, Jose Luis

    2017-01-01

    Background Blind people depend on spatial and temporal representations to perform activities of daily living and compete in sport. Objective The aim of this study is to determine the spatiotemporal characteristics of long jumps performed by blind athletes and compare findings with those reported for sighted athletes. Methods We analysed a sample of 12 male athletes competing in the F11 Long Jump Finals at the Paralympic Games in London 2012. Performances were recorded using four high-speed cameras, and speeds were measured using a radar speed gun. The images were processed using validated image analysis software. Results The long jump run-up is shorter in blind athletes than in sighted athletes. We observed statistically significant differences for body centre of mass velocity and an increase in speed over the last three strides prior to take-off, contrasting with reports for sighted athletes and athletes with less severe visual impairment, who maintain or reduce their speed during the last stride. Stride length for the last three strides was the only spatial characteristic that was not significantly associated with effective jump distance. Blind long jumpers extend rather than shorten their last stride. Contact time with the take-off board is longer than that reported for sighted athletes. Conclusion The actions of blind long jumpers, unlike those without disabilities, do not vary their leg actions during the final runway approach for optimal placement on the take-off board. PMID:29018542

  18. Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking.

    PubMed

    O'Neill, Matthew C; Lee, Leng-Feng; Demes, Brigitte; Thompson, Nathan E; Larson, Susan G; Stern, Jack T; Umberger, Brian R

    2015-09-01

    The common chimpanzee (Pan troglodytes) is a facultative biped and our closest living relative. As such, the musculoskeletal anatomies of their pelvis and hind limbs have long provided a comparative context for studies of human and fossil hominin locomotion. Yet, how the chimpanzee pelvis and hind limb actually move during bipedal walking is still not well defined. Here, we describe the three-dimensional (3-D) kinematics of the pelvis, hip, knee and ankle during bipedal walking and compare those values to humans walking at the same dimensionless and dimensional velocities. The stride-to-stride and intraspecific variations in 3-D kinematics were calculated using the adjusted coefficient of multiple correlation. Our results indicate that humans walk with a more stable pelvis than chimpanzees, especially in tilt and rotation. Both species exhibit similar magnitudes of pelvis list, but with segment motion that is opposite in phasing. In the hind limb, chimpanzees walk with a more flexed and abducted limb posture, and substantially exceed humans in the magnitude of hip rotation during a stride. The average stride-to-stride variation in joint and segment motion was greater in chimpanzees than humans, while the intraspecific variation was similar on average. These results demonstrate substantial differences between human and chimpanzee bipedal walking, in both the sagittal and non-sagittal planes. These new 3-D kinematic data are fundamental to a comprehensive understanding of the mechanics, energetics and control of chimpanzee bipedalism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Gait characteristics, balance performance and falls in ambulant adults with cerebral palsy: An observational study.

    PubMed

    Morgan, P; Murphy, A; Opheim, A; McGinley, J

    2016-07-01

    The relationship between spatiotemporal gait parameters, balance performance and falls history was investigated in ambulant adults with cerebral palsy (CP). Participants completed a single assessment of gait using an instrumented walkway at preferred and fast speeds, balance testing (Balance Evaluation Systems Test; BESTest), and reported falls history. Seventeen ambulatory adults with CP, mean age 37 years, participated. Gait speed was typically slow at both preferred and fast speeds (mean 0.97 and 1.21m/s, respectively), with short stride length and high cadence relative to speed. There was a significant, large positive relationship between preferred gait speed and BESTest total score (ρ=0.573; p<0.05) and fast gait speed and BESTest total score (ρ=0.647, p<0.01). The stride lengths of fallers at both preferred and fast speeds differed significantly from non-fallers (p=0.032 and p=0.025, respectively), with those with a prior history of falls taking shorter strides. Faster gait speed was associated with better performance on tests of anticipatory and postural response components of the BESTest, suggesting potential therapeutic training targets to address either gait speed or balance performance. Future exploration of the implications of slow walking speed and reduced stride length on falls and community engagement, and the potential prognostic value of stride length on identifying falls risk is recommended. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing.

    PubMed

    Stoggl, Thomas; Enqvist, Jonas; Muller, Erich; Holmberg, Hans-Christer

    2010-01-01

    In modern sprint cross-country skiing, strength and maximal speed are major determinants of performance. The aims of this study were to ascertain the anthropometric characteristics of world-class sprint skiers and to evaluate whether a specific body composition and/or body dimension characterizes a successful sprint skier. Our hypothesis was that body height and lean body mass are related to peak speed in double poling and diagonal stride. Fourteen male national and international elite skiers performed two peak speed tests in double poling and diagonal stride roller skiing on a treadmill and were analysed using dual-energy X-ray absorptiometry to determine body composition and body dimensions. Relative pole length was positively correlated with both techniques (double poling: r = 0.77, P < 0.01; diagonal stride: r = 0.60, P < 0.05) and was the only variable that was part of the multiple regression model for both double poling and diagonal stride peak speed. Body height was not correlated with any technique, whereas lean trunk mass (r = 0.75, P < 0.01), body mass index (r = 0.66, P < 0.01), total lean mass (r = 0.69, P < 0.01), and body mass (r = 0.57, P < 0.05) were positively related to double poling peak speed. Total lean mass (absolute: r = 0.58, P < 0.05; relative: r = 0.76, P < 0.001) and relative lean mass of the trunk, arms (both r = 0.72, P < 0.01), and legs (r = 0.54, P < 0.05) were positively related to diagonal stride peak speed. In conclusion, skiers should aim to achieve a body composition with a high percentage of lean mass and low fat mass. A focus on trunk mass through increased muscle mass appears to be important, especially for double poling. The use of longer poles (percent body height) seems to be advantageous for both double poling and diagonal stride peak speed, whereas body dimensions do not appear to be a predictive factor.

  1. Selective Breeding and Short-Term Access to a Running Wheel Alter Stride Characteristics in House Mice.

    PubMed

    Claghorn, Gerald C; Thompson, Zoe; Kay, Jarren C; Ordonez, Genesis; Hampton, Thomas G; Garland, Theodore

    Postural and kinematic aspects of running may have evolved to support high runner (HR) mice to run approximately threefold farther than control mice. Mice from four replicate HR lines selectively bred for high levels of voluntary wheel running show many differences in locomotor behavior and morphology as compared with four nonselected control (C) lines. We hypothesized that HR mice would show stride alterations that have coadapted with locomotor behavior, morphology, and physiology. More specifically, we predicted that HR mice would have stride characteristics that differed from those of C mice in ways that parallel some of the adaptations seen in highly cursorial animals. For example, we predicted that limbs of HR mice would swing closer to the parasagittal plane, resulting in a two-dimensional measurement of narrowed stance width. We also expected that some differences between HR and C mice might be amplified by 6 d of wheel access, as is used to select breeders each generation. We used the DigiGait Imaging System (Mouse Specifics) to capture high-speed videos in ventral view as mice ran on a motorized treadmill across a range of speeds and then to automatically calculate several aspects of strides. Young adults of both sexes were tested both before and after 6 d of wheel access. Stride length, stride frequency, stance width, stance time, brake time, propel time, swing time, duty factor, and paw contact area were analyzed using a nested analysis of covariance, with body mass as a covariate. As expected, body mass and treadmill speed affected nearly every analyzed metric. Six days of wheel access also affected nearly every measure, indicating pervasive training effects, in both HR and C mice. As predicted, stance width was significantly narrower in HR than C mice. Paw contact area and duty factor were significantly greater in minimuscle individuals (subset of HR mice with 50%-reduced hind limb muscle mass) than in normal-muscled HR or C mice. We conclude that stride characteristics of house mice are adaptable in response to both selective breeding and changes in daily locomotor behavior (activity levels) that occur during as few as 6 d. These results have important implications for understanding the evolution and coadaptation of locomotor behavior and performance.

  2. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking

    PubMed Central

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  3. Activating and relaxing music entrains the speed of beat synchronized walking.

    PubMed

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  4. Fractal Tempo Fluctuation and Pulse Prediction

    PubMed Central

    Rankin, Summer K.; Large, Edward W.; Fink, Philip W.

    2010-01-01

    WE INVESTIGATED PEOPLES’ ABILITY TO ADAPT TO THE fluctuating tempi of music performance. In Experiment 1, four pieces from different musical styles were chosen, and performances were recorded from a skilled pianist who was instructed to play with natural expression. Spectral and rescaled range analyses on interbeat interval time-series revealed long-range (1/f type) serial correlations and fractal scaling in each piece. Stimuli for Experiment 2 included two of the performances from Experiment 1, with mechanical versions serving as controls. Participants tapped the beat at ¼- and ⅛-note metrical levels, successfully adapting to large tempo fluctuations in both performances. Participants predicted the structured tempo fluctuations, with superior performance at the ¼-note level. Thus, listeners may exploit long-range correlations and fractal scaling to predict tempo changes in music. PMID:25190901

  5. Kick, Glide, Pole! Cross-Country Skiing Fun (Part II)

    ERIC Educational Resources Information Center

    Duoos, Bridget A.

    2012-01-01

    Part I of Kick, Glide, Pole! Cross-Country Skiing Fun, which was published in last issue, discussed how to select cross-country ski equipment, dress for the activity and the biomechanics of the diagonal stride. Part II focuses on teaching the diagonal stride technique and begins with a progression of indoor activities. Incorporating this fun,…

  6. Controls on Thermal Discharge in Yellowstone NAtional Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Mohrmann, Jacob Steven

    2007-10-01

    Significant fluctuations in discharge occur in hot springs in Yellowstone National Park on a seasonal to decadal scale (Ingebritsen et al., 2001) and an hourly scale (Vitale, 2002). The purpose of this study was to determine the interval of the fluctuations in discharge and to explain what causes those discharge patterns in three thermally influenced streams in Yellowstone National Park. By monitoring flow in these streams, whose primary source of input is thermal discharge, we were able to find several significant patterns of discharge fluctuations. Patterns were found by using two techniques of spectral analysis. The spectral analyses completed involved using the program "R" as well as Microsoft Excel, both of which use Fourier transforms. The Fourier transform is a linear operator that identifies frequencies in the original function. Stream flow data were collected using a FloDar open channel flow monitor. The flow meter collected data at15-minute intervals at White Creek and Rabbit Creek for a period of approximately two weeks each during the Fall. Flow data were also used from 15-minute data interval from a USGS gaging station at Tantalus Creek. Patterns of discharge fluctuation were found in each stream. By comparing spectral analysis results of flow data with spectral analysis of published tide data and barometric pressure data, connections were drawn between fluctuations in tidal and barometric-pressure patterns and flow patterns. Also, visual comparisons used to identify potential correspondence with earthquakes and precipitation events. At Tantalus Creek, patterns were affected only by barometric pressure changes. At White Creek, one pattern was attributed to barometric pressure fluctuations, and another pattern was found that could be associated with earth-tide forces. At Rabbit Creek, these patterns were absent. A pattern at 8.55 hours, which could not be attributed to barometric pressure or earth tide forces, was found at Rabbit and White Creeks. The 8.55 hour pattern in discharge found at both Rabbit and White Creeks may suggest a physical link between the sites, which are close (2.5 km). The time pattern could be a result of a shared hydrothermal aquifer, convectively heating and discharging at both streams. However, the common time pattern could also be the result of independent factors, which coincidentally caused a similar time pattern.

  7. Statistical analysis on multifractal detrended cross-correlation coefficient for return interval by oriented percolation

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Wang, Jun

    2015-06-01

    We investigate and quantify the multifractal detrended cross-correlation of return interval series for Chinese stock markets and a proposed price model, the price model is established by oriented percolation. The return interval describes the waiting time between two successive price volatilities which are above some threshold, the present work is an attempt to quantify the level of multifractal detrended cross-correlation for the return intervals. Further, the concept of MF-DCCA coefficient of return intervals is introduced, and the corresponding empirical research is performed. The empirical results show that the return intervals of SSE and SZSE are weakly positive multifractal power-law cross-correlated, and exhibit the fluctuation patterns of MF-DCCA coefficients. The similar behaviors of return intervals for the price model is also demonstrated.

  8. Appearance of deterministic mixing behavior from ensembles of fluctuating hydrodynamics simulations of the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Narayanan, Kiran; Samtaney, Ravi

    2018-04-01

    We obtain numerical solutions of the two-fluid fluctuating compressible Navier-Stokes (FCNS) equations, which consistently account for thermal fluctuations from meso- to macroscales, in order to study the effect of such fluctuations on the mixing behavior in the Richtmyer-Meshkov instability (RMI). The numerical method used was successfully verified in two stages: for the deterministic fluxes by comparison against air-SF6 RMI experiment, and for the stochastic terms by comparison against the direct simulation Monte Carlo results for He-Ar RMI. We present results from fluctuating hydrodynamic RMI simulations for three He-Ar systems having length scales with decreasing order of magnitude that span from macroscopic to mesoscopic, with different levels of thermal fluctuations characterized by a nondimensional Boltzmann number (Bo). For a multidimensional FCNS system on a regular Cartesian grid, when using a discretization of a space-time stochastic flux Z (x ,t ) of the form Z (x ,t ) →1 /√{h ▵ t }N (i h ,n Δ t ) for spatial interval h , time interval Δ t , h , and Gaussian noise N should be greater than h0, with h0 corresponding to a cell volume that contains a sufficient number of molecules of the fluid such that the fluctuations are physically meaningful and produce the right equilibrium spectrum. For the mesoscale RMI systems simulated, it was desirable to use a cell size smaller than this limit in order to resolve the viscous shock. This was achieved by using a modified regularization of the noise term via Z (h3,h03)>x ,t →1 /√ ▵ t max(i h ,n Δ t ) , with h0=ξ h ∀h

  9. Phase fluctuation spectra: New radio science information to become available in the DSN tracking system Mark III-77

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    An algorithm was developed for the continuous and automatic computation of Doppler noise concurrently at four sample rate intervals, evenly spanning three orders of magnitude. Average temporal Doppler phase fluctuation spectra will be routinely available in the DSN tracking system Mark III-77 and require little additional processing. The basic (noise) data will be extracted from the archival tracking data file (ATDF) of the tracking data management system.

  10. Optimal stride frequencies in running at different speeds.

    PubMed

    van Oeveren, Ben T; de Ruiter, Cornelis J; Beek, Peter J; van Dieën, Jaap H

    2017-01-01

    During running at a constant speed, the optimal stride frequency (SF) can be derived from the u-shaped relationship between SF and heart rate (HR). Changing SF towards the optimum of this relationship is beneficial for energy expenditure and may positively change biomechanics of running. In the current study, the effects of speed on the optimal SF and the nature of the u-shaped relation were empirically tested using Generalized Estimating Equations. To this end, HR was recorded from twelve healthy (4 males, 8 females) inexperienced runners, who completed runs at three speeds. The three speeds were 90%, 100% and 110% of self-selected speed. A self-selected SF (SFself) was determined for each of the speeds prior to the speed series. The speed series started with a free-chosen SF condition, followed by five imposed SF conditions (SFself, 70, 80, 90, 100 strides·min-1) assigned in random order. The conditions lasted 3 minutes with 2.5 minutes of walking in between. SFself increased significantly (p<0.05) with speed with averages of 77, 79, 80 strides·min-1 at 2.4, 2.6, 2.9 m·s-1, respectively). As expected, the relation between SF and HR could be described by a parabolic curve for all speeds. Speed did not significantly affect the curvature, nor did it affect optimal SF. We conclude that over the speed range tested, inexperienced runners may not need to adapt their SF to running speed. However, since SFself were lower than the SFopt of 83 strides·min-1, the runners could reduce HR by increasing their SFself.

  11. Shedding light on walking in the dark: the effects of reduced lighting on the gait of older adults with a higher-level gait disorder and controls.

    PubMed

    Kesler, Anat; Leibovich, Gregory; Herman, Talia; Gruendlinger, Leor; Giladi, Nir; Hausdorff, Jeffrey M

    2005-08-28

    To study the effects of reduced lighting on the gait of older adults with a high level gait disorder (HLGD) and to compare their response to that of healthy elderly controls. 22 patients with a HLGD and 20 age-matched healthy controls were studied under usual lighting conditions (1000 lumens) and in near darkness (5 lumens). Gait speed and gait dynamics were measured under both conditions. Cognitive function, co-morbidities, depressive symptoms, and vision were also evaluated. Under usual lighting conditions, patients walked more slowly, with reduced swing times, and increased stride-to-stride variability, compared to controls. When walking under near darkness conditions, both groups slowed their gait. All other measures of gait were not affected by lighting in the controls. In contrast, patients further reduced their swing times and increased their stride-to-stride variability, both stride time variability and swing time variability. The unique response of the patients was not explained by vision, mental status, co-morbidities, or the values of walking under usual lighting conditions. Walking with reduced lighting does not affect the gait of healthy elderly subjects, except for a reduction in speed. On the other hand, the gait of older adults with a HLGD becomes more variable and unsteady when they walk in near darkness, despite adapting a slow and cautious gait. Further work is needed to identify the causes of the maladaptive response among patients with a HLGD and the potential connection between this behavior and the increased fall risk observed in these patients.

  12. Overcoming the limitations of the Harmonic Ratio for the reliable assessment of gait symmetry.

    PubMed

    Pasciuto, Ilaria; Bergamini, Elena; Iosa, Marco; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2017-02-28

    The Harmonic Ratio (HR) is an index based on the spectral analysis of lower trunk accelerations that is commonly used to assess the quality of gait. However, it presents several issues concerning reliability and interpretability. As a consequence, the literature provides very different values albeit corresponding to the same populations. In the present work, an improved harmonic ratio (iHR) was defined, relating the power of the intrinsic harmonics (i.e. associated with the symmetric component of gait) to the total power of the signal for each stride, leading to a normalised index ranging from 0 to 100%. The effect of the considered number of harmonics and strides on the estimate of both HR and iHR was assessed. The gait of three groups of volunteers was investigated: young healthy adults, elderly women and male trans-femoral amputees. Both HR and iHR were able to discriminate gait deviations from the gait of young healthy adults. Moreover, iHR proved to be more robust with respect to the number of considered harmonics and strides, and to exhibit a lower inter-stride variability. Additionally, using a normalised index as iHR led to a more straightforward interpretation and improved comparability. The importance of standardised conditions for the index evaluation was unveiled, and, in order to enhance the future comparability of the index, the following guidelines were presented: considering at least 20 harmonics and 20 strides; expressing the acceleration components in a repeatable, anatomical, local system of reference; and evaluating the iHR index, rather than the traditional HR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Metabolic Cost of Stride Rate, Resistance, and Combined Use of Arms and Legs on the Elliptical Trainer

    ERIC Educational Resources Information Center

    Mier, Constance M.; Feito, Yuri

    2006-01-01

    We measured the effects of stride rate, resistance, and combined arm-leg use on energy expenditure during elliptical trainer exercise and assessed the accuracy of the manufacturer's energy expenditure calculations. Twenty-six men and women (M age = 29 years, SD = 8; M body weight = 73.0 kg, SD = 15.2) participated. Twenty-two participants…

  14. Evaluation of the microsoft kinect skeletal versus depth data analysis for timed-up and go and figure of 8 walk tests.

    PubMed

    Hotrabhavananda, Benjamin; Mishra, Anup K; Skubic, Marjorie; Hotrabhavananda, Nijaporn; Abbott, Carmen

    2016-08-01

    We compared the performance of the Kinect skeletal data with the Kinect depth data in capturing different gait parameters during the Timed-up and Go Test (TUG) and Figure of 8 Walk Test (F8W). The gait parameters considered were stride length, stride time, and walking speed for the TUG, and number of steps and completion time for the F8W. A marker-based Vicon motion capture system was used for the ground-truth measurements. Five healthy participants were recruited for the experiment and were asked to perform three trials of each task. Results show that depth data analysis yields stride length and stride time measures with significantly low percentile errors as compared to the skeletal data analysis. However, the skeletal and depth data performed similar with less than 3% of absolute mean percentile error in determining the walking speed for the TUG and both parameters of F8W. The results show potential capabilities of Kinect depth data analysis in computing many gait parameters, whereas, the Kinect skeletal data can also be used for walking speed in TUG and F8W gait parameters.

  15. The behavioral assessment and alleviation of pain associated with castration in beef calves treated with flunixin meglumine and caudal lidocaine epidural anesthesia with epinephrine

    PubMed Central

    Currah, Jan M.; Hendrick, Steven H.; Stookey, Joseph M.

    2009-01-01

    The objectives of this study were 1) to determine the effects of flunixin megulmine in combination with caudal epidural anesthesia as a postoperative analgesic in beef calves following surgical castration, and 2) to consider stride length and pedometry as potential behavioral assessment tools for detecting postcastration pain. Surgical castration was performed in 101 beef calves randomly assigned to 3 treatment subgroups: 1) castration without anesthesia (SURG); 2) castration following lidocaine with epinephrine caudal epidural anesthesia (SURG + EPI); 3) castration following lidocaine with epinephrine caudal epidural anesthesia and flunixin meglumine (SURG + EPI + F). Several outcomes, including pedometer counts, changes in stride length, subjective visual assessment of pain, instantaneous scan sampling of the calves’ postoperative activities, and the amount of movement and vocalization during the castration procedure, were measured to identify and quantify pain. The results indicated that stride length and the number of steps taken by calves after castration appear to be good measures of pain. Significant differences found between treatment groups for stride length and visual assessments suggest that flunixin meglumine can be considered to provide visible pain relief up to 8 hours postcastration. PMID:19436444

  16. The behavioral assessment and alleviation of pain associated with castration in beef calves treated with flunixin meglumine and caudal lidocaine epidural anesthesia with epinephrine.

    PubMed

    Currah, Jan M; Hendrick, Steven H; Stookey, Joseph M

    2009-04-01

    The objectives of this study were 1) to determine the effects of flunixin megulmine in combination with caudal epidural anesthesia as a postoperative analgesic in beef calves following surgical castration, and 2) to consider stride length and pedometry as potential behavioral assessment tools for detecting postcastration pain. Surgical castration was performed in 101 beef calves randomly assigned to 3 treatment subgroups: 1) castration without anesthesia (SURG); 2) castration following lidocaine with epinephrine caudal epidural anesthesia (SURG + EPI); 3) castration following lidocaine with epinephrine caudal epidural anesthesia and flunixin meglumine (SURG + EPI + F). Several outcomes, including pedometer counts, changes in stride length, subjective visual assessment of pain, instantaneous scan sampling of the calves' postoperative activities, and the amount of movement and vocalization during the castration procedure, were measured to identify and quantify pain. The results indicated that stride length and the number of steps taken by calves after castration appear to be good measures of pain. Significant differences found between treatment groups for stride length and visual assessments suggest that flunixin meglumine can be considered to provide visible pain relief up to 8 hours postcastration.

  17. Gait variability in community dwelling adults with Alzheimer disease.

    PubMed

    Webster, Kate E; Merory, John R; Wittwer, Joanne E

    2006-01-01

    Studies have shown that measures of gait variability are associated with falling in older adults. However, few studies have measured gait variability in people with Alzheimer disease, despite the high incidence of falls in Alzheimer disease. The purpose of this study was to compare gait variability of community-dwelling older adults with Alzheimer disease and control subjects at various walking speeds. Ten subjects with mild-moderate Alzheimer disease and ten matched control subjects underwent gait analysis using an electronic walkway. Participants were required to walk at self-selected slow, preferred, and fast speeds. Stride length and step width variability were determined using the coefficient of variation. Results showed that stride length variability was significantly greater in the Alzheimer disease group compared with the control group at all speeds. In both groups, increases in walking speed were significantly correlated with decreases in stride length variability. Step width variability was significantly reduced in the Alzheimer disease group compared with the control group at slow speed only. In conclusion, there is an increase in stride length variability in Alzheimer disease at all walking speeds that may contribute to the increased incidence of falls in Alzheimer disease.

  18. Fluctuations of radio occultation signals in sounding the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Kan, Valery; Gorbunov, Michael E.; Sofieva, Viktoria F.

    2018-02-01

    We discuss the relationships that link the observed fluctuation spectra of the amplitude and phase of signals used for the radio occultation sounding of the Earth's atmosphere, with the spectra of atmospheric inhomogeneities. Our analysis employs the approximation of the phase screen and of weak fluctuations. We make our estimates for the following characteristic inhomogeneity types: (1) the isotropic Kolmogorov turbulence and (2) the anisotropic saturated internal gravity waves. We obtain the expressions for the variances of the amplitude and phase fluctuations of radio occultation signals as well as their estimates for the typical parameters of inhomogeneity models. From the GPS/MET observations, we evaluate the spectra of the amplitude and phase fluctuations in the altitude interval from 4 to 25 km in the middle and polar latitudes. As indicated by theoretical and experimental estimates, the main contribution into the radio signal fluctuations comes from the internal gravity waves. The influence of the Kolmogorov turbulence is negligible. We derive simple relationships that link the parameters of internal gravity waves and the statistical characteristics of the radio signal fluctuations. These results may serve as the basis for the global monitoring of the wave activity in the stratosphere and upper troposphere.

  19. Mechanical energy storage device for hip disarticulation

    NASA Technical Reports Server (NTRS)

    Vallotton, W. C. (Inventor)

    1977-01-01

    An artificial leg including a trunk socket, a thigh section hingedly coupled to the trunk socket, a leg section hingedly coupled to the thigh section and a foot section hingedly coupled to the leg section is outlined. A mechanical energy storage device is operatively associated with the artificial leg for storage and release of energy during the normal walking stride of the user. Energy is stored in the mechanical energy storage device during a weight-bearing phase of the walking stride when the user's weight is on the artificial leg. Energy is released during a phase of the normal walking stride, when the user's weight is removed from the artificial leg. The stored energy is released from the energy storage device to pivot the thigh section forwardly about the hinged coupling to the trunk socket.

  20. Kinematic constraints associated with the acquisition of overarm throwing part I: step and trunk actions.

    PubMed

    Stodden, David F; Langendorfer, Stephen J; Fleisig, Glenn S; Andrews, James R

    2006-12-01

    The purposes of this study were to: (a) examine differences within specific kinematic variables and ball velocity associated with developmental component levels of step and trunk action (Roberton & Halverson, 1984), and (b) if the differences in kinematic variables were significantly associated with the differences in component levels, determine potential kinematic constraints associated with skilled throwing acquisition. Results indicated stride length (69.3 %) and time from stride foot contact to ball release (39. 7%) provided substantial contributions to ball velocity (p < .001). All trunk kinematic measures increased significantly with increasing component levels (p < .001). Results suggest that trunk linear and rotational velocities, degree of trunk tilt, time from stride foot contact to ball release, and ball velocity represented potential control parameters and, therefore, constraints on overarm throwing acquisition.

  1. Evaluating the approach run of class F11 visually impaired athletes in triple and long jumps.

    PubMed

    Theodorou, Apostolos; Skordilis, Emmanouil

    2012-04-01

    The present study examined stride pattern characteristics of Class F11 visually impaired long jumpers and triple jumpers. Athletes demonstrated initial ascending footfall variability followed by descending variability, on the second (long jumpers) and third (triple jumpers) stride prior to take-off, at a mean distance of 6.26 m (long jumpers) and 7.36 m (triple jumpers) from the take-off board. Toe-board-distance variability reached a maximum value of 0.36 m and 0.38 m for the long and triple jump, respectively. Last stride toe-board-distance variability was 0.29 m (long jump) and 0.25 m (triple jump). Class F11 visually impaired athletes exhibit regulation of goal-directed gait analogous to that of non-visually impaired athletes.

  2. Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals

    NASA Astrophysics Data System (ADS)

    Piskorski, J.; Kosmider, M.; Mieszkowski, D.; Krauze, T.; Wykretowicz, A.; Guzik, P.

    2018-02-01

    Heart rate asymmetry is a phenomenon by which the accelerations and decelerations of heart rate behave differently, and this difference is consistent and unidirectional, i.e. in most of the analyzed recordings the inequalities have the same directions. So far, it has been established for variance and runs based types of descriptors of RR intervals time series. In this paper we apply the newly developed method of Asymmetric Detrended Fluctuation Analysis, which so far has mainly been used with economic time series, to the set of 420 stationary 30 min time series of RR intervals from young, healthy individuals aged between 20 and 40. This asymmetric approach introduces separate scaling exponents for rising and falling trends. We systematically study the presence of asymmetry in both global and local versions of this method. In this study global means "applying to the whole time series" and local means "applying to windows jumping along the recording". It is found that the correlation structure of the fluctuations left over after detrending in physiological time series shows strong asymmetric features in both magnitude, with α+ <α-, where α+ is related to heart rate decelerations and α- to heart rate accelerations, and the proportion of the signal in which the above inequality holds. A very similar effect is observed if asymmetric noise is added to a symmetric self-affine function. No such phenomena are observed in the same physiological data after shuffling or with a group of symmetric synthetic time series.

  3. Palaeoenvironmental changes during the Danian-Selandian boundary interval: The ichnological record at the Sopelana section (Basque Basin, W Pyrenees)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tovar, F. J.; Uchman, A.; Orue-Etxebarria, X.; Apellaniz, E.

    2013-02-01

    Ichnological analysis was conducted in the Danian-Selandian (D-S) boundary interval from the Sopelana section (Basque Basin, northern Spain) to improve characterization of the recently defined Global Stratotype Section and Point of the base of the Selandian Stage (Middle Paleocene) in the nearby Zumaia section, and to interpret the Danian-Selandian boundary event with its associated palaeoenvironmental changes. The trace fossil assemblage of the boundary interval is relatively scarce and shows low diversity, consisting of Chondrites, Planolites, Thalassinoides, Trichichnus and Zoophycos, which cross-cut a diffuse, burrow-mottled background, typical of a normal burrowing tiered community. Distribution of trace fossils shows local drops in abundance and diversity just above the D-S boundary and about half a metre upwards into the succeeding Selandian. Generally, the Selandian part of the section has slightly lower trace fossil diversity and abundance. This is interpreted as due to a higher detrital food supply, corresponding to a sea-level fall, in contrast to a decreased food supply during the Selandian sea-level rise. Smaller-scale fluctuations of trace fossil diversity and abundance are also interpreted as due more to food content fluctuations in the sediment than to oxygenation of pore waters. Results reveal the minor influence of an extreme warming event (hyperthermal conditions) at the D-S boundary which affected the whole benthic habitat. Contrarily, a probable major effect of sea-level fluctuations can be envisaged, which determined variations in siliciclastic input and food content.

  4. Intermittency via moments and distributions in central O+Cu collisions at 14. 6 A[center dot]GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M.J.

    Fluctuations in pseudorapidity distributions of charged particles from central (ZCAL) collisions of [sup 16]O+Cu at 14.6 A[center dot]GeV/c have been analyzed by Ju Kang using the method of scaled factorial moments as a function of the interval [delta][eta] an apparent power-law growth of moments with decreasing interval is observed down to [delta][eta] [approximately] 0.1, and the measured slope parameters are found to obey two scaling rules. Previous experience with E[sub T] distributions suggested that fluctuations of multiplicity and transverse energy can be well described by Gamma or Negative Binomial Distributions (NBD) and excellent fits to NBD were obtained in allmore » [delta][eta] bins. The k parameter of the NBD fit was found to increase linearly with the [delta][eta] interval, which due to the well known property of the NBD under convolution, indicates that the multiplicity distributions in adjacent bins of pseudorapidity [delta][eta] [approximately] 0.1 are largely statistically independent.« less

  5. Intermittency via moments and distributions in central O+Cu collisions at 14.6 A{center_dot}GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M.J.; The E802 Collaboration

    Fluctuations in pseudorapidity distributions of charged particles from central (ZCAL) collisions of {sup 16}O+Cu at 14.6 A{center_dot}GeV/c have been analyzed by Ju Kang using the method of scaled factorial moments as a function of the interval {delta}{eta} an apparent power-law growth of moments with decreasing interval is observed down to {delta}{eta} {approximately} 0.1, and the measured slope parameters are found to obey two scaling rules. Previous experience with E{sub T} distributions suggested that fluctuations of multiplicity and transverse energy can be well described by Gamma or Negative Binomial Distributions (NBD) and excellent fits to NBD were obtained in all {delta}{eta}more » bins. The k parameter of the NBD fit was found to increase linearly with the {delta}{eta} interval, which due to the well known property of the NBD under convolution, indicates that the multiplicity distributions in adjacent bins of pseudorapidity {delta}{eta} {approximately} 0.1 are largely statistically independent.« less

  6. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste*

    PubMed Central

    Wu, Man-Chang; Sun, Ke-Wei; Zhang, Yong

    2006-01-01

    A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 °C to 20 °C suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions of 8.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 °C) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation; (3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation. PMID:16502503

  7. Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations

    NASA Technical Reports Server (NTRS)

    Koh, J.; Brown, T. E.; Beightol, L. A.; Eckberg, D. L.

    1998-01-01

    We studied the effects of mechanical lung inflation on respiratory frequency R-R interval and arterial pressure fluctuations in nine healthy young adults undergoing elective orthopedic surgery. We conducted this research to define the contribution of pulmonary and thoracic stretch receptor input to respiratory sinus arrhythmia. We compared fast Fourier transform spectral power during three modes of ventilation: (1) spontaneous, frequency-controlled (0.25 Hz) breathing, (2) intermittent positive pressure ventilation (0.25 Hz, with a tidal volume of 8 ml/kg) and (3) high frequency jet ventilation (5.0 Hz, 2.5 kg/cm2), after sedation and vecuronium paralysis. Mean R-R intervals, arterial pressures and arterial blood gas levels were comparable during all three breathing conditions. Respiratory frequency systolic pressure spectral power was comparable during spontaneous breathing and conventional mechanical ventilation, but was significantly reduced during high frequency jet ventilation (P < 0.05). Respiratory frequency R-R interval spectral power (used as an index of respiratory sinus arrhythmia) declined dramatically with sedation and muscle paralysis (P < 0.05), but was greater during conventional mechanical, than high frequency jet ventilation (P < 0.05). These results suggest that although phasic inputs from pulmonary and thoracic stretch receptors make a statistically significant contribution to respiratory sinus arrhythmia, that contribution is small.

  8. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.

    PubMed

    Sabatini, Angelo Maria; Ligorio, Gabriele; Mannini, Andrea

    2015-11-23

    In biomechanical studies Optical Motion Capture Systems (OMCS) are considered the gold standard for determining the orientation and the position (pose) of an object in a global reference frame. However, the use of OMCS can be difficult, which has prompted research on alternative sensing technologies, such as body-worn inertial sensors. We developed a drift-free method to estimate the three-dimensional (3D) displacement of a body part during cyclical motions using body-worn inertial sensors. We performed the Fourier analysis of the stride-by-stride estimates of the linear acceleration, which were obtained by transposing the specific forces measured by the tri-axial accelerometer into the global frame using a quaternion-based orientation estimation algorithm and detecting when each stride began using a gait-segmentation algorithm. The time integration was performed analytically using the Fourier series coefficients; the inverse Fourier series was then taken for reconstructing the displacement over each single stride. The displacement traces were concatenated and spline-interpolated to obtain the entire trace. The method was applied to estimate the motion of the lower trunk of healthy subjects that walked on a treadmill and it was validated using OMCS reference 3D displacement data; different approaches were tested for transposing the measured specific force into the global frame, segmenting the gait and performing time integration (numerically and analytically). The width of the limits of agreements were computed between each tested method and the OMCS reference method for each anatomical direction: Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP); using the proposed method, it was observed that the vertical component of displacement (VT) was within ±4 mm (±1.96 standard deviation) of OMCS data and each component of horizontal displacement (ML and AP) was within ±9 mm of OMCS data. Fourier harmonic analysis was applied to model stride-by-stride linear accelerations during walking and to perform their analytical integration. Our results showed that analytical integration based on Fourier series coefficients was a useful approach to accurately estimate 3D displacement from noisy acceleration data.

  9. Softer, higher-friction flooring improves gait of cows with and without sole ulcers.

    PubMed

    Flower, F C; de Passillé, A M; Weary, D M; Sanderson, D J; Rushen, J

    2007-03-01

    We studied dairy cows (n = 30) walking on concrete and on a soft, high-friction composite rubber surface to examine how flooring influenced gait and how this differed for cows with hoof lesions. Cows had hooves trimmed 9 wk after the trial and were classified as either with or without sole ulcers. Video recordings of the cows while walking were digitized using motion analysis software to calculate stride variables (length, height, overlap, duration, proportion of triple support, and speed). Gait was scored by a subjective scoring system (1 = sound to 5 = severely lame) and by a continuous visual analog scale for each of 7 gait attributes. Cows with sole ulcers walking on a composite rubber surface had longer strides (156.9 +/- 2.6 vs. 149.6 +/- 2.6 cm), higher stride heights (9.7 +/- 0.3 vs. 8.8 +/- 0.3 cm), more stride overlap (0.4 +/- 2.0 vs. -4.3 +/- 2.0 cm), shorter periods of triple support (3 legs in ground contact; 68.6 +/- 2.0 vs. 73.8 +/- 2.0%), walked faster (1.22 +/- 0.04 vs. 1.17 +/- 0.04 m/s) and had lower overall gait scores (2.9 +/- 0.1 vs. 3.1 +/- 0.1), better tracking-up (19 +/- 2 vs. 24 +/- 2), better joint flexion (29 +/- 2 vs. 33 +/- 2), more symmetric steps (31 +/- 3 vs. 36 +/- 3), and less reluctance to bear weight on their legs (12 +/- 2 vs. 16 +/- 2) compared with walking on concrete. Similar results were found for cows without sole ulcers. Most of the subjective gait measures could distinguish between cows with and without sole ulcers, but this was not the case for kinematic measures other than stride height. Cows with higher gait scores (more severe lameness) showed the greatest improvement in stride length (r = -0.51), triple support (r = 0.59), swing duration (r = -0.44), overall gait score (r = 0.46), and reluctance to bear weight (r = 0.66) when walking on the rubber surface compared with cows with lower gait scores. These results indicate that rubber flooring provides a more secure footing and is more comfortable to walk on, especially for lame cattle.

  10. Variable diffusion in stock market fluctuations

    NASA Astrophysics Data System (ADS)

    Hua, Jia-Chen; Chen, Lijian; Falcon, Liberty; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2015-02-01

    We analyze intraday fluctuations in several stock indices to investigate the underlying stochastic processes using techniques appropriate for processes with nonstationary increments. The five most actively traded stocks each contains two time intervals during the day where the variance of increments can be fit by power law scaling in time. The fluctuations in return within these intervals follow asymptotic bi-exponential distributions. The autocorrelation function for increments vanishes rapidly, but decays slowly for absolute and squared increments. Based on these results, we propose an intraday stochastic model with linear variable diffusion coefficient as a lowest order approximation to the real dynamics of financial markets, and to test the effects of time averaging techniques typically used for financial time series analysis. We find that our model replicates major stylized facts associated with empirical financial time series. We also find that ensemble averaging techniques can be used to identify the underlying dynamics correctly, whereas time averages fail in this task. Our work indicates that ensemble average approaches will yield new insight into the study of financial markets' dynamics. Our proposed model also provides new insight into the modeling of financial markets dynamics in microscopic time scales.

  11. A physical model for earthquakes. I - Fluctuations and interactions. II - Application to southern California

    NASA Technical Reports Server (NTRS)

    Rundle, John B.

    1988-01-01

    The idea that earthquakes represent a fluctuation about the long-term motion of plates is expressed mathematically through the fluctuation hypothesis, under which all physical quantities which pertain to the occurance of earthquakes are required to depend on the difference between the present state of slip on the fault and its long-term average. It is shown that under certain circumstances the model fault dynamics undergo a sudden transition from a spatially ordered, temporally disordered state to a spatially disordered, temporally ordered state, and that the latter stages are stable for long intervals of time. For long enough faults, the dynamics are evidently chaotic. The methods developed are then used to construct a detailed model for earthquake dynamics in southern California. The result is a set of slip-time histories for all the major faults, which are similar to data obtained by geological trenching studies. Although there is an element of periodicity to the events, the patterns shift, change and evolve with time. Time scales for pattern evolution seem to be of the order of a thousand years for average recurring intervals of about a hundred years.

  12. Gait-cycle characteristics and running economy in elite Eritrean and European runners.

    PubMed

    Santos-Concejero, Jordan; Oliván, Jesús; Maté-Muñoz, José L; Muniesa, Carlos; Montil, Marta; Tucker, Ross; Lucia, Alejandro

    2015-04-01

    This study aimed to determine whether biomechanical characteristics such as ground-contact time, swing time, and stride length and frequency contribute to the exceptional running economy of East African runners. Seventeen elite long-distance runners (9 Eritrean, 8 European) performed an incremental maximal running test and 3 submaximal running bouts at 17, 19, and 21 km/h. During the tests, gas-exchange parameters were measured to determine maximal oxygen uptake (VO2max) and running economy (RE). In addition, ground-contact time, swing time, stride length, and stride frequency were measured. The European runners had higher VO2max values than the Eritrean runners (77.2 ± 5.2 vs 73.5 ± 6.0 mL · kg-1 · min-1, P = .011, effect sizes [ES] = 0.65), although Eritrean runners were more economical at 19 km/h (191.4 ± 10.4 vs 205.9 ± 13.3 mL · kg-1 · min-1, P = .026, ES = 1.21). There were no differences between groups for ground-contact time, swing time, stride length, or stride frequency at any speed. Swing time was associated with running economy at 21 km/h in the Eritrean runners (r = .71, P = .033), but no other significant association was found between RE and biomechanical variables. Finally, best 10-km performance was significantly correlated with RE (r = -.57; P = .013). Eritrean runners have superior RE compared with elite European runners. This appears to offset their inferior VO2max. However, the current data suggest that their better RE does not have a biomechanical basis. Other factors, not measured in the current study, may contribute to this RE advantage.

  13. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.

    PubMed

    Burnfield, Judith M; Buster, Thad W; Goldman, Amy J; Corbridge, Laura M; Harper-Hanigan, Kellee

    2016-06-01

    Intensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (<1month post infarct). However, only limited data have been published regarding the relationship between training parameters and physiologic demands during this early recovery phase. To examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure. A prospective, repeated measures design was used. Ten inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial. Stride length, cadence, and paretic single limb support increased with faster walking speeds (p⩽0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p⩽0.001). RPE also was greatest at the fastest compared to two slowest speeds (p<0.05). During the acute phase of stroke recovery, PBWSTT at the fastest speed (2.0mph) promoted practice of a more optimal gait pattern with greater intensity of effort as evidenced by the longer stride length, increased between-limb symmetry, greater muscle activation, and higher RPE compared to training at the slowest speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Disturbances of automatic gait control mechanisms in higher level gait disorder.

    PubMed

    Danoudis, Mary; Ganesvaran, Ganga; Iansek, Robert

    2016-07-01

    The underlying mechanisms responsible for the gait changes in frontal gait disorder (FGD), a form of higher level gait disorders, are poorly understood. We investigated the relationship between stride length and cadence (SLCrel) in people with FGD (n=15) in comparison to healthy older adults (n=21) to improve our understanding of the changes to gait in FGD. Gait data was captured using an electronic walkway system as participants walked at five self-selected speed conditions: preferred, very slow, slow, fast and very fast. Linear regression was used to determine the strength of the relationship (R(2)), slope and intercept. In the FGD group 9 participants had a strong SLCrel (linear group) (R(2)>0.8) and 6 a weak relationship (R(2)<0.8) (nonlinear group). The linear FGD group did not differ to healthy control for slope (p>0.05) but did have a lower intercept (p<0.001). The linear FGD group modulated gait speed by adjusting stride length and cadence similar to controls whereas the nonlinear FGD participants adjusted stride length but not cadence similar to controls. The non-linear FGD group had greater disturbance to their gait, poorer postural control and greater fear of falling compared to the linear FGD group. Investigation of the SLCrel resulted in new insights into the underlying mechanisms responsible for the gait changes found in FGD. The findings suggest stride length regulation was disrupted in milder FGD but as the disorder worsened, cadence control also became disordered resulting in a break down in the relationship between stride length and cadence. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cumulative loads increase at the knee joint with slow-speed running compared to faster running: a biomechanical study.

    PubMed

    Petersen, Jesper; Sørensen, Henrik; Nielsen, Rasmus Østergaard

    2015-04-01

    Biomechanical cross-sectional study. To investigate the hypothesis that the cumulative load at the knee during running increases as running speed decreases. The knee joint load per stride decreases as running speed decreases. However, by decreasing running speed, the number of strides per given distance is increased. Running a given distance at a slower speed may increase the cumulative load at the knee joint compared with running the same distance at a higher speed, hence increasing the risk of running-related injuries in the knee. Kinematic and ground reaction force data were collected from 16 recreational runners, during steady-state running with a rearfoot strike pattern at 3 different speeds (mean ± SD): 8.02 ± 0.17 km/h, 11.79 ± 0.21 km/h, and 15.78 ± 0.22 km/h. The cumulative load (cumulative impulse) over a 1000-m distance was calculated at the knee joint on the basis of a standard 3-D inverse-dynamics approach. Based on a 1000-m running distance, the cumulative load at the knee was significantly higher at a slow running speed than at a high running speed (relative difference, 80%). The mean load per stride at the knee increased significantly across all biomechanical parameters, except impulse, following an increase in running speed. Slow-speed running decreases knee joint loads per stride and increases the cumulative load at the knee joint for a given running distance compared to faster running. The primary reason for the increase in cumulative load at slower speeds is an increase in number of strides needed to cover the same distance.

  16. Validation of a commercial inertial sensor system for spatiotemporal gait measurements in children.

    PubMed

    Lanovaz, Joel L; Oates, Alison R; Treen, Tanner T; Unger, Janelle; Musselman, Kristin E

    2017-01-01

    Although inertial sensor systems are becoming a popular tool for gait analysis in both healthy and pathological adult populations, there are currently no data on the validity of these systems for use with children. The purpose of this study was to validate spatiotemporal data from a commercial inertial sensor system (MobilityLab) in typically-developing children. Data from 10 children (5 males; 3.0-8.3 years, mean=5.1) were collected simultaneously from MobilityLab and 3D motion capture during gait at self-selected and fast walking speeds. Spatiotemporal parameters were compared between the two methods using a Bland-Altman method. The results indicate that, while the temporal gait measurements were similar between the two systems, MobilityLab demonstrated a consistent bias with respect to measurement of the spatial data (stride length). This error is likely due to differences in relative leg length and gait characteristics in children compared to the MobilityLab adult reference population used to develop the stride length algorithm. A regression-based equation was developed based on the current data to correct the MobilityLab stride length output. The correction was based on leg length, stride time, and shank range-of-motion, each of which were independently associated with stride length. Once the correction was applied, all of the spatiotemporal parameters evaluated showed good agreement. The results of this study indicate that MobilityLab is a valid tool for gait analysis in typically-developing children. Further research is needed to determine the efficacy of this system for use in children suffering from pathologies that impact gait mechanics. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Gait parameter risk factors for falls under simple and dual task conditions in cognitively impaired older people.

    PubMed

    Taylor, Morag E; Delbaere, Kim; Mikolaizak, A Stefanie; Lord, Stephen R; Close, Jacqueline C T

    2013-01-01

    Impaired gait may contribute to the increased rate of falls in cognitively impaired older people. We investigated whether gait under simple and dual task conditions could predict falls in this group. The study sample consisted of 64 community dwelling older people with mild to moderate cognitive impairment. Participants walked at their preferred speed under three conditions: (a) simple walking, (b) walking while carrying a glass of water and (c) walking while counting backwards from 30. Spatiotemporal gait parameters were measured using the GAITRite(®) mat. Falls were recorded prospectively for 12months with the assistance of carers. Twenty-two (35%) people fell two or more times in the 12month follow-up period. There was a significant main effect of gait condition and a significant main effect of faller status for mean value measures (velocity, stride length, double support time and stride width) and for variability measures (swing time variability and stride length variability). Examination of individual gait parameters indicated that the multiple fallers walked more slowly, had shorter stride length, spent longer time in double support, had a wider support width and showed more variability in stride length and swing time (p<0.05). There was no significant interaction between gait condition and faller status for any of the gait variables. In conclusion, dual task activities adversely affect gait in cognitively impaired older people. Multiple fallers performed worse in each gait condition but the addition of a functional or cognitive secondary task provided no added benefit in discriminating fallers from non-fallers with cognitive impairment. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Variability of segment coordination using a vector coding technique: Reliability analysis for treadmill walking and running.

    PubMed

    Hafer, Jocelyn F; Boyer, Katherine A

    2017-01-01

    Coordination variability (CV) quantifies the variety of movement patterns an individual uses during a task and may provide a measure of the flexibility of that individual's motor system. While there is growing popularity of segment CV as a marker of motor system health or adaptability, it is not known how many strides of data are needed to reliably calculate CV. This study aimed to determine the number of strides needed to reliably calculate CV in treadmill walking and running, and to compare CV between walking and running in a healthy population. Ten healthy young adults walked and ran at preferred speeds on a treadmill and a modified vector coding technique was used to calculate CV for the following segment couples: pelvis frontal plane vs. thigh frontal plane, thigh sagittal plane vs. shank sagittal plane, thigh sagittal plane vs. shank transverse plane, and shank transverse plane vs. rearfoot frontal plane. CV for each coupling of interest was calculated for 2-15 strides for each participant and gait type. Mean CV was calculated across the entire gait cycle and, separately, for 4 phases of the gait cycle. For running and walking 8 and 10 strides, respectively, were sufficient to obtain a reliable CV estimate. CV was significantly different between walking and running for the thigh vs. shank couple comparisons. These results suggest that 10 strides of treadmill data are needed to reliably calculate CV for walking and running. Additionally, the differences in CV between walking and running suggest that the role of knee (i.e., inter-thigh- shank) control may differ between these forms of locomotion. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. QUASI-PERIODIC FLUCTUATIONS AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE RIBBON OBSERVED BY HINODE /EIS, IRIS , AND RHESSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosius, Jeffrey W.; Inglis, Andrew R.; Daw, Adrian N., E-mail: Jeffrey.W.Brosius@nasa.gov

    The Hinode /Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic ( P ≈ 75.6 ± 9.2 s) intensity fluctuations occurred in emission lines of O iv, Mg vi, Mg vii, Si vii, Fe xiv, and Fe xvi during the flare's impulsive rise, and ended when the maximum intensity in Fe xxiii was reached. The profiles of the O iv–Fe xvi lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe xxiii profile revealed multiplemore » components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RHESSI detected 25–100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe xiv (4.6 × 10{sup 10} cm{sup −3}) and Mg vii (7.8 × 10{sup 9} cm{sup −3}) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 × 10{sup 6} K, and 46 s at 6.3 × 10{sup 5} K (about half the quasi-period); assuming Fe xiv's density for Fe xxiii yields a radiative cooling time of 10{sup 3} s (13 times the quasi-period) at 1.4 × 10{sup 7} K.« less

  20. Quasi-Periodic Fluctuations and Chromospheric Evaporation in a Solar Flare Ribbon Observed by Hinode/EIS, IRIS, and RHESSI

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Daw, Adrian N.; Inglis, Andrew R.

    2016-01-01

    The Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic (P approx. = 75.6 +/- 9.2 s) intensity fluctuations occurred in emission lines of O IV, Mg VI, Mg VII, Si VII, Fe XIV, and Fe XVI during the flare's impulsive rise, and ended when the maximum intensity in Fe XXIII was reached. The profiles of the O IV- Fe XVI lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe XXIII profile revealed multiple components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RHESSI detected 25-100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe XIV (4.6 x 10(exp 10) per cu cm) and Mg VII (7.8 x 10(exp 9) per cu cm) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 x 10(exp 6) K, and 46 s at 6.3 x 10(exp 5) K (about half the quasi-period); assuming Fe XIV's density for Fe XXIII yields a radiative cooling time of 10(exp 3) s (13 times the quasi-period) at 1.4 x 10(exp 7) K.

  1. An exploratory clustering approach for extracting stride parameters from tracking collars on free-ranging wild animals.

    PubMed

    Dewhirst, Oliver P; Roskilly, Kyle; Hubel, Tatjana Y; Jordan, Neil R; Golabek, Krystyna A; McNutt, J Weldon; Wilson, Alan M

    2017-02-01

    Changes in stride frequency and length with speed are key parameters in animal locomotion research. They are commonly measured in a laboratory on a treadmill or by filming trained captive animals. Here, we show that a clustering approach can be used to extract these variables from data collected by a tracking collar containing a GPS module and tri-axis accelerometers and gyroscopes. The method enables stride parameters to be measured during free-ranging locomotion in natural habitats. As it does not require labelled data, it is particularly suitable for use with difficult to observe animals. The method was tested on large data sets collected from collars on free-ranging lions and African wild dogs and validated using a domestic dog. © 2017. Published by The Company of Biologists Ltd.

  2. Respiratory modulation of human autonomic function on Earth.

    PubMed

    Eckberg, Dwain L; Cooke, William H; Diedrich, André; Biaggioni, Italo; Buckey, Jay C; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Kuusela, Tom A; Tahvanainen, Kari U O; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J; Levine, Benjamin D; Adams-Huet, Beverley; Robertson, David; Blomqvist, C Gunnar

    2016-10-01

    We studied healthy supine astronauts on Earth with electrocardiogram, non-invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings. The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs. R-R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea. The subjects' responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled-frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R-R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R-R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long-term neuroplasticity in serial measurements made over 20 days during and following space travel? Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Respiratory modulation of human autonomic function on Earth

    PubMed Central

    Cooke, William H.; Diedrich, André; Biaggioni, Italo; Buckey, Jay C.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Kuusela, Tom A.; Tahvanainen, Kari U. O.; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J.; Levine, Benjamin D.; Adams‐Huet, Beverley; Robertson, David; Blomqvist, C. Gunnar

    2016-01-01

    Key points We studied healthy supine astronauts on Earth with electrocardiogram, non‐invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings.The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs.R‐R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea.The subjects’ responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. Abstract We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled‐frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R‐R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R‐R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long‐term neuroplasticity in serial measurements made over 20 days during and following space travel? PMID:27028958

  4. Symmetry for the duration of entropy-consuming intervals.

    PubMed

    García-García, Reinaldo; Domínguez, Daniel

    2014-05-01

    We introduce the violation fraction υ as the cumulative fraction of time that a mesoscopic system spends consuming entropy at a single trajectory in phase space. We show that the fluctuations of this quantity are described in terms of a symmetry relation reminiscent of fluctuation theorems, which involve a function Φ, which can be interpreted as an entropy associated with the fluctuations of the violation fraction. The function Φ, when evaluated for arbitrary stochastic realizations of the violation fraction, is odd upon the symmetry transformations that are relevant for the associated stochastic entropy production. This fact leads to a detailed fluctuation theorem for the probability density function of Φ. We study the steady-state limit of this symmetry in the paradigmatic case of a colloidal particle dragged by optical tweezers through an aqueous solution. Finally, we briefly discuss possible applications of our results for the estimation of free-energy differences from single-molecule experiments.

  5. Hip adductor muscle function in forward skating.

    PubMed

    Chang, Ryan; Turcotte, Rene; Pearsall, David

    2009-09-01

    Adductor strain injuries are prevalent in ice hockey. It has long been speculated that adductor muscular strains may be caused by repeated eccentric contractions which decelerate the leg during a stride. The purpose of this study was to investigate the relationship of skating speed with muscle activity and lower limb kinematics, with a particular focus on the role of the hip adductors. Seven collegiate ice hockey players consented to participate. Surface electromyography (EMG) and kinematics of the lower extremities were measured at three skating velocities 3.33 m/s (slow), 5.00 m/s (medium) and 6.66 m/s (fast). The adductor magnus muscle exhibited disproportionately larger increases in peak muscle activation and significantly prolonged activation with increased speed. Stride rate and stride length also increased significantly with skating velocity, in contrast, hip, knee and ankle total ranges of motion did not. To accommodate for the increased stride rate with higher skating speeds, the rate of hip abduction increased significantly in concert with activations of adductor magnus indicating a substantial eccentric contraction. In conclusion, these findings highlight the functional importance of the adductor muscle group and hip abduction-adduction in skating performance as well as indirectly support the notion that groin strain injury potential increases with skating speed.

  6. Impact of SCBA size and fatigue from different firefighting work cycles on firefighter gait.

    PubMed

    Kesler, Richard M; Bradley, Faith F; Deetjen, Grace S; Angelini, Michael J; Petrucci, Matthew N; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T

    2018-04-04

    Risk of slips, trips and falls in firefighters maybe influenced by the firefighter's equipment and duration of firefighting. This study examined the impact of a four self-contained breathing apparatus (SCBA) three SCBA of increasing size and a prototype design and three work cycles one bout (1B), two bouts with a five-minute break (2B) and two bouts back-to-back (BB) on gait in 30 firefighters. Five gait parameters (double support time, single support time, stride length, step width and stride velocity) were examined pre- and post-firefighting activity. The two largest SCBA resulted in longer double support times relative to the smallest SCBA. Multiple bouts of firefighting activity resulted in increased single and double support time and decreased stride length, step width and stride velocity. These results suggest that with larger SCBA or longer durations of activity, firefighters may adopt more conservative gait patterns to minimise fall risk. Practitioner Summary: The effects of four self-contained breathing apparatus (SCBA) and three work cycles on five gait parameters were examined pre- and post-firefighting activity. Both SCBA size and work cycle affected gait. The two largest SCBA resulted in longer double support times. Multiple bouts of activity resulted in more conservative gait patterns.

  7. Generalization of improved step length symmetry from treadmill to overground walking in persons with stroke and hemiparesis†

    PubMed Central

    Savin, Douglas N.; Morton, Susanne M.; Whitall, Jill

    2013-01-01

    Objectives Determine whether adaptation to a swing phase perturbation during gait transferred from treadmill to overground walking, the rate of overground deadaptation, and whether overground aftereffects improved step length asymmetry in persons with hemiparetic stroke and gait asymmetry. Methods Ten participants with stroke and hemiparesis and 10 controls walked overground on an instrumented gait mat, adapted gait to a swing phase perturbation on a treadmill, then walked overground on the gait mat again. Outcome measures, primary: overground step length symmetry, rates of treadmill step length symmetry adaptation and overground step length symmetry deadaptation; secondary: overground gait velocity, stride length, and stride cycle duration. Results Step length symmetry aftereffects generalized to overground walking and adapted at a similar rate on the treadmill in both groups. Aftereffects decayed at a slower rate overground in participants with stroke and temporarily improved overground step length asymmetry. Both groups’ overground gait velocity increased post adaptation due to increased stride length and decreased stride duration. Conclusions Stroke and hemiparesis do not impair generalization of step length symmetry changes from adapted treadmill to overground walking, but prolong overground aftereffects. Significance Motor adaptation during treadmill walking may be an effective treatment for improving overground gait asymmetries post-stroke. PMID:24286858

  8. A new look at the Dynamic Similarity Hypothesis: the importance of swing phase.

    PubMed

    Raichlen, David A; Pontzer, Herman; Shapiro, Liza J

    2013-01-01

    The Dynamic Similarity Hypothesis (DSH) suggests that when animals of different size walk at similar Froude numbers (equal ratios of inertial and gravitational forces) they will use similar size-corrected gaits. This application of similarity theory to animal biomechanics has contributed to fundamental insights in the mechanics and evolution of a diverse set of locomotor systems. However, despite its popularity, many mammals fail to walk with dynamically similar stride lengths, a key element of gait that determines spontaneous speed and energy costs. Here, we show that the applicability of the DSH is dependent on the inertial forces examined. In general, the inertial forces are thought to be the centripetal force of the inverted pendulum model of stance phase, determined by the length of the limb. If instead we model inertial forces as the centripetal force of the limb acting as a suspended pendulum during swing phase (determined by limb center of mass position), the DSH for stride length variation is fully supported. Thus, the DSH shows that inter-specific differences in spatial kinematics are tied to the evolution of limb mass distribution patterns. Selection may act on morphology to produce a given stride length, or alternatively, stride length may be a "spandrel" of selection acting on limb mass distribution.

  9. East Antarctic Ice Sheet fluctuations during the Middle Miocene Climatic Transition inferred from faunal and biogeochemical data on planktonic foraminifera (ODP Hole 747A, Kerguelen Plateau)

    USGS Publications Warehouse

    Verducci, M.; Foresi, L.M.; Scott, G.H.; ,; Sprovieri, M.; Lirer, F.

    2007-01-01

    This research focuses on a detailed study of faunal and biogeochemical changes that occurred at ODP Hole 747A in the Kerguelen Plateau region of the Southern Ocean during the middle Miocene (14.8-11.8 Ma). Abundance fluctuations of several planktonic foraminiferal taxa, stable oxygen isotope and Mg/Ca ratios have been integrated as a multi-proxy approach to reach a better understanding of the growth modality and fluctuations of the East Antarctic Ice Sheet (EAIS) during this period. A 7°C decrease in Sea Surface Temperature (SST), an abrupt turnover in the planktonic foraminiferal assemblage, a 1.5‰ shift towards heavier δ18O values (Mi3 event) and a related shift towards heavier seawater δ118O values between 13.9 and 13.7 Ma, are interpreted to reflect rapid surface water cooling and EAIS expansion. Hole 747A data suggest a major change in the variability of the climate system fostered by EAIS expansion between 13.9 and 13.7 Ma. Ice sheet fluctuations were greater during the interval 14.8-13.9 Ma compared with those from 13.7 to 11.8 Ma, whereas the latter interval was characterized by a more stable EAIS. In our opinion, the middle Miocene ice sheet expansion in Antarctica represents a first step towards the development of the modern permanent ice sheet

  10. Anomalous neuronal responses to fluctuated inputs

    NASA Astrophysics Data System (ADS)

    Hosaka, Ryosuke; Sakai, Yutaka

    2015-10-01

    The irregular firing of a cortical neuron is thought to result from a highly fluctuating drive that is generated by the balance of excitatory and inhibitory synaptic inputs. A previous study reported anomalous responses of the Hodgkin-Huxley neuron to the fluctuated inputs where an irregularity of spike trains is inversely proportional to an input irregularity. In the current study, we investigated the origin of these anomalous responses with the Hindmarsh-Rose neuron model, map-based models, and a simple mixture of interspike interval distributions. First, we specified the parameter regions for the bifurcations in the Hindmarsh-Rose model, and we confirmed that the model reproduced the anomalous responses in the dynamics of the saddle-node and subcritical Hopf bifurcations. For both bifurcations, the Hindmarsh-Rose model shows bistability in the resting state and the repetitive firing state, which indicated that the bistability was the origin of the anomalous input-output relationship. Similarly, the map-based model that contained bistability reproduced the anomalous responses, while the model without bistability did not. These results were supported by additional findings that the anomalous responses were reproduced by mimicking the bistable firing with a mixture of two different interspike interval distributions. Decorrelation of spike trains is important for neural information processing. For such spike train decorrelation, irregular firing is key. Our results indicated that irregular firing can emerge from fluctuating drives, even weak ones, under conditions involving bistability. The anomalous responses, therefore, contribute to efficient processing in the brain.

  11. Evaluation of serum theophylline concentrations following administration of sustained-release beads in applesauce to asthmatic preschool children.

    PubMed

    Leeder, J S; Robertson, C; Correia, J; Isles, A F; Levison, H; Macleod, S M

    1986-02-01

    A sustained-release theophylline preparation (Theo-Dur Sprinkle) was evaluated in young asthmatic patients aged 1 to 6 years and receiving a daily dose of 23.4 +/- 2.0 mg/kg (mean +/- SD) to determine, on the basis of serial serum concentrations obtained over a 12-hour dosing interval at steady state, the suitability of such a product in patients likely to metabolize the drug very rapidly. Peak theophylline concentrations of 15.1 +/- 4.1 mg/L were achieved 5.5 +/- 1.5 hours after dosing. The mean maximum to minimum concentration difference was 6.9 +/- 2.2 mg/L for the dosing interval studied. Fluctuations in theophylline concentration less than 100% were achieved in nine of the 12 study patients. Use of the "sprinkle-technique" with Theo-Dur Sprinkle appears to be a simple and effective method of maintaining acceptable fluctuations in serum theophylline concentrations in preschool asthmatic children.

  12. Photon time-interval statistics applied to the analysis of laser heterodyne signal with photon counter

    NASA Astrophysics Data System (ADS)

    Liu, Lisheng; Zhang, Heyong; Guo, Jin; Zhao, Shuai; Wang, Tingfeng

    2012-08-01

    In this paper, we report a mathematical derivation of probability density function (PDF) of time-interval between two successive photoelectrons of the laser heterodyne signal, and give a confirmation of the theoretical result by both numerical simulation and an experiment. The PDF curve of the beat signal displays a series of fluctuations, the period and amplitude of which are respectively determined by the beat frequency and the mixing efficiency. The beat frequency is derived from the frequency of fluctuations accordingly when the PDF curve is measured. This frequency measurement method still works while the traditional Fast Fourier Transform (FFT) algorithm hardly derives the correct peak value of the beat frequency in the condition that we detect 80 MHz beat signal with 8 Mcps (counts per-second) photons count rate, and this indicates an advantage of the PDF method.

  13. THE Role OF Anisotropy AND Intermittency IN Solar Wind/Magnetosphere Coupling

    NASA Astrophysics Data System (ADS)

    Jankovicova, D.; Voros, Z.

    2006-12-01

    Turbulent fluctuations are common in the solar wind as well as in the Earth's magnetosphere. The fluctuations of both magnetic field and plasma parameters exhibit non-Gaussian statistics. Neither the amplitude of these fluctuations nor their spectral characteristics can provide a full statistical description of multi-scale features in turbulence. It substantiates a statistical approach including the estimation of experimentally accessible statistical moments. In this contribution, we will directly estimate the third (skewness) and the fourth (kurtosis) statistical moments from the available time series of magnetic measurements in the solar wind (ACE and WIND spacecraft) and in the Earth's magnetosphere (SYM-H index). Then we evaluate how the statistical moments change during strong and weak solar wind/magnetosphere coupling intervals.

  14. Simultaneous dense coding affected by fluctuating massless scalar field

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Ye, Yiyong; Luo, Darong

    2018-04-01

    In this paper, we investigate the simultaneous dense coding (SDC) protocol affected by fluctuating massless scalar field. The noisy model of SDC protocol is constructed and the master equation that governs the SDC evolution is deduced. The success probabilities of SDC protocol are discussed for different locking operators under the influence of vacuum fluctuations. We find that the joint success probability is independent of the locking operators, but other success probabilities are not. For quantum Fourier transform and double controlled-NOT operators, the success probabilities drop with increasing two-atom distance, but SWAP operator is not. Unlike the SWAP operator, the success probabilities of Bob and Charlie are different. For different noisy interval values, different locking operators have different robustness to noise.

  15. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight.

    PubMed

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2015-01-01

    Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m(-2) s(-1). Compared with leaves exposed to a constant light of 1200 μmol photons m(-2) s(-1), both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m(-2) s(-1) under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m(-2) s(-1) under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m(-2) s(-1) under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow.

  16. Heavy-Tailed Fluctuations in the Spiking Output Intensity of Semiconductor Lasers with Optical Feedback

    PubMed Central

    2016-01-01

    Although heavy-tailed fluctuations are ubiquitous in complex systems, a good understanding of the mechanisms that generate them is still lacking. Optical complex systems are ideal candidates for investigating heavy-tailed fluctuations, as they allow recording large datasets under controllable experimental conditions. A dynamical regime that has attracted a lot of attention over the years is the so-called low-frequency fluctuations (LFFs) of semiconductor lasers with optical feedback. In this regime, the laser output intensity is characterized by abrupt and apparently random dropouts. The statistical analysis of the inter-dropout-intervals (IDIs) has provided many useful insights into the underlying dynamics. However, the presence of large temporal fluctuations in the IDI sequence has not yet been investigated. Here, by applying fluctuation analysis we show that the experimental distribution of IDI fluctuations is heavy-tailed, and specifically, is well-modeled by a non-Gaussian stable distribution. We find a good qualitative agreement with simulations of the Lang-Kobayashi model. Moreover, we uncover a transition from a less-heavy-tailed state at low pump current to a more-heavy-tailed state at higher pump current. Our results indicate that fluctuation analysis can be a useful tool for investigating the output signals of complex optical systems; it can be used for detecting underlying regime shifts, for model validation and parameter estimation. PMID:26901346

  17. Climate effects on historic bluefin tuna captures in the Gibraltar Strait and Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Ganzedo, Unai; Polanco-Martínez, Josué M.; Caballero-Alfonso, Ángela M.; Faria, Sérgio H.; Li, Jianke; Castro-Hernández, José J.

    2016-06-01

    Historical capture records of bluefin tuna (Thunnus thynnus; BFT hereafter) from the Gibraltar Strait and Western Mediterranean show pronounced short- and long-term fluctuations. Some of these fluctuations are believed to be associated with biological and ecological process, as well as distinct climate factors. For the period of study (1700-1936) of this work, we found a long-term increasing trend in the BFT captures and in the climate variables. After applying a statistical time series analysis of relevant climate variables and long-term tuna capture records, it is highlighted the role played by sea-surface temperature (SST) on bluefin population variations. The most relevant result of this study is the strong correlation found between the total solar irradiance (TSI) - an external component of the climate system - and bluefin captures. The solar irradiance could have affected storminess during the period under study, mainly during the time interval 1700-1810. We suggest physico-biological mechanisms that explain the BFT catch fluctuations in two consecutive time intervals. In the first period, from 1700 to 1810, this mechanism could be high storm and wind activity, which would have made the BFT fisheries activities more difficult by reducing their efficacy. In contrast, during the interval from 1810 to 1907, the effects of wind and storms could be on spawning behaviour and larval ecology, and hence on year class strength, rather than on fish or fisherman's behaviour. These findings open up a range of new lines of enquiry that are relevant for both, fisheries and climate change research.

  18. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging.

    PubMed

    Azharuddin, Mohammad; Bera, Sumanta Kr; Datta, Himadri; Dasgupta, Anjan Kr

    2014-03-01

    In this paper we have studied the thermal fluctuation patterns occurring at the ocular surface of the left and right eyes for aqueous deficient dry eye (ADDE) patients and control subjects by thermal imaging. We conducted our experiment on 42 patients (84 eyes) with aqueous deficient dry eyes and compared with 36 healthy volunteers (72 eyes) without any history of ocular surface disorder. Schirmer's test, Tear Break-up Time, tear Meniscus height and fluorescein staining tests were conducted. Ocular surface temperature measurement was done, using an FL-IR thermal camera and thermal fluctuation in left and right eyes was calculated and analyzed using MATLAB. The time series containing the sum of squares of the temperature fluctuation on the ocular surface were compared for aqueous deficient dry eye and control subjects. Significant statistical difference between the fluctuation patterns for control and ADDE was observed (p < 0.001 at 95% confidence interval). Thermal fluctuations in left and right eyes are significantly correlated in controls but not in ADDE subjects. The possible origin of such correlation in control and lack of correlation in the ADDE subjects is discussed in the text. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Theoretical considerations on maximum running speeds for large and small animals.

    PubMed

    Fuentes, Mauricio A

    2016-02-07

    Mechanical equations for fast running speeds are presented and analyzed. One of the equations and its associated model predict that animals tend to experience larger mechanical stresses in their limbs (muscles, tendons and bones) as a result of larger stride lengths, suggesting a structural restriction entailing the existence of an absolute maximum possible stride length. The consequence for big animals is that an increasingly larger body mass implies decreasing maximal speeds, given that the stride frequency generally decreases for increasingly larger animals. Another restriction, acting on small animals, is discussed only in preliminary terms, but it seems safe to assume from previous studies that for a given range of body masses of small animals, those which are bigger are faster. The difference between speed scaling trends for large and small animals implies the existence of a range of intermediate body masses corresponding to the fastest animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less

  1. Multidirectional walk test in individuals with Parkinson's disease: a validity study.

    PubMed

    Bryant, Mon S; Workman, Craig D; Jackson, George R

    2015-03-01

    Gait parameters of forward, backward, and sideways walk were studied when the participants walked overground in four directions at their self-selected speed and were compared with walking in the four directions on an instrumented GAITRite walkway. Intraclass correlation coefficients between the overground walk test measures and the instrumented walkway measures of gait speed, cadence, and stride length for the forward walk were 0.85, 0.88, and 0.87, respectively. For the backward walk, the coefficients were 0.91 for gait speed, 0.75 for cadence, and 0.93 for stride length. For the sideways walk, the coefficients were 0.92 for gait speed, 0.93 for cadence, and 0.94 for stride length. Gait parameters of forward, backward, and sideways walk obtained by the overground walk test had excellent agreement with those obtained by the instrumented walkway. The quick timed test provided quantitative data for gait evaluation and was valid for clinical use.

  2. Quantifying stock-price response to demand fluctuations

    NASA Astrophysics Data System (ADS)

    Plerou, Vasiliki; Gopikrishnan, Parameswaran; Gabaix, Xavier; Stanley, H. Eugene

    2002-08-01

    We empirically address the question of how stock prices respond to changes in demand. We quantify the relations between price change G over a time interval Δt and two different measures of demand fluctuations: (a) Φ, defined as the difference between the number of buyer-initiated and seller-initiated trades, and (b) Ω, defined as the difference in number of shares traded in buyer- and seller-initiated trades. We find that the conditional expectation functions of price change for a given Φ or Ω, Φ and Ω (``market impact function''), display concave functional forms that seem universal for all stocks. For small Ω, we find a power-law behavior Ω~Ω1/8 with δ depending on Δt (δ~3 for Δt=5 min, δ~3/2 for Δt=15 min and δ~1 for large Δt). We find that large price fluctuations occur when demand is very small-a fact that is reminiscent of large fluctuations that occur at critical points in spin systems, where the divergent nature of the response function leads to large fluctuations.

  3. Atmospheric Fluctuation Measurements with the Palomar Testbed Interferometer

    NASA Astrophysics Data System (ADS)

    Linfield, R. P.; Lane, B. F.; Colavita, M. M.; PTI Collaboration

    Observations of bright stars with the Palomar Testbed Interferometer, at a wavelength of 2.2 microns, have been used to measure atmospheric delay fluctuations. The delay structure function Dτ(Δ t) was calculated for 66 scans (each >= 120s in length) on seven nights in 1997 and one in 1998. For all except one scan, Dτ exhibited a clean power law shape over the time interval 50-500 msec. Over shorter time intervals, the effect of the delay line servo loop corrupts Dτ. Over longer time intervals (usually starting at > 1s), the slope of Dτ decreases, presumably due to some combination of saturation e.g. finite turbulent layer thickness) and the effect of the finite wind speed crossing time on our 110 m baseline. The mean power law slopes for the eight nights ranged from 1.16 to 1.36, substantially flatter than the value of 1.67 for three dimensional Kolmogorov turbulence. Such sub-Kolmogorov slopes will result in atmospheric seeling (θ) that improves rapidly with increasing wavelength: θ propto λ1-(2β), where β is the observed power law slope of Dτ. The atmospheric errors in astrometric measurements with an interferometer will average down more quickly than in the Kolmogorov case.

  4. Age, experience and genetic background influence treadmill walking in mice

    PubMed Central

    Wooley, Christine M.; Xing, Shuqin; Burgess, Robert W.; Cox, Gregory A.; Seburn, Kevin L.

    2009-01-01

    WOOLEY, C.M., S. XING, R.W. BURGESS, G.A. COX, AND K.L. SEBURN. Age, experience and genetic background influence treadmill walking in mice. PHYSIOL. BEHAV. XX(X), XXX-XXX, 2008 – The use of a treadmill to gather data for gait analysis in mice is a convenient, sensitive method to evaluate motor performance. However, evidence from several species, including mice, shows that treadmill locomotion is a novel task that is not equivalent to over ground locomotion and that may be particularly sensitive to the test environment and protocol. We investigated the effects of age, genetic background and repeated trials on treadmill walking in mice and show that these factors are important considerations in the interpretation of gait data. Specifically we report that as C57BL/6J (B6) mice age, the animals use progressively longer, less frequent strides to maintain the same walking speed. The increase is most rapid between 1 and 6 months of age and is explained, in part, by changes in size and weight. We also extended previous findings showing that repeat trials cause mice to modify their treadmill gait pattern. In general, B6 mice tend to take shorter, more frequent steps and adopt a wider dynamic stance with repeated walking trials. The nature and extent of the response changes with both the number and timing of the trials and was observed with inter-trial intervals as long as 3 months. Finally, we compared the gait pattern of an additional seven inbred strains of mice and found significant variation in the length and frequency of strides used to maintain the same walking speed. The combined results offer the bases for further mechanistic studies and can be used to guide optimal experimental design. PMID:19027767

  5. The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl

    PubMed Central

    Daley, Monica A; Voloshina, Alexandra; Biewener, Andrew A

    2009-01-01

    Here we investigate the interplay between intrinsic mechanical and neural factors in muscle contractile performance during running, which has been less studied than during walking. We report in vivo recordings of the gastrocnemius muscle of the guinea fowl (Numida meleagris), during the response and recovery from an unexpected drop in terrain. Previous studies on leg and joint mechanics following this perturbation suggested that distal leg extensor muscles play a key role in stabilisation. Here, we test this through direct recordings of gastrocnemius fascicle length (using sonomicrometry), muscle–tendon force (using buckle transducers), and activity (using indwelling EMG). Muscle recordings were analysed from the stride just before to the second stride following the perturbation. The gastrocnemius exhibits altered force and work output in the perturbed and first recovery strides. Muscle work correlates strongly with leg posture at the time of ground contact. When the leg is more extended in the drop step, net gastrocnemius work decreases (−5.2 J kg−1versus control), and when the leg is more flexed in the step back up, it increases (+9.8 J kg−1versus control). The muscle's work output is inherently stabilising because it pushes the body back toward its pre-perturbation (level running) speed and leg posture. Gastrocnemius length and force return to level running means by the second stride following the perturbation. EMG intensity differs significantly from level running only in the first recovery stride following the perturbation, not within the perturbed stride. The findings suggest that intrinsic mechanical factors contribute substantially to the initial changes in muscle force and work. The statistical results suggest that a history-dependent effect, shortening deactivation, may be an important factor in the intrinsic mechanical changes, in addition to instantaneous force–velocity and force–length effects. This finding suggests the potential need to incorporate history-dependent muscle properties into neuromechanical simulations of running, particularly if high muscle strains are involved and stability characteristics are important. Future work should test whether a Hill or modified Hill type model provides adequate prediction in such conditions. Interpreted in light of previous studies on walking, the findings support the concept of speed-dependent roles of reflex feedback. PMID:19359369

  6. Underwater bipedal locomotion by octopuses in disguise.

    PubMed

    Huffard, Christine L; Boneka, Farnis; Full, Robert J

    2005-03-25

    Here we report bipedal movement with a hydrostatic skeleton. Two species of octopus walk on two alternating arms using a rolling gait and appear to use the remaining six arms for camouflage. Octopus marginatus resembles a coconut, and Octopus (Abdopus) aculeatus, a clump of floating algae. Using underwater video, we analyzed the kinematics of their strides. Each arm was on the sand for more than half of the stride, qualifying this behavior as a form of walking.

  7. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    PubMed

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  8. An on-ice measurement approach to analyse the biomechanics of ice hockey skating.

    PubMed

    Buckeridge, Erica; LeVangie, Marc C; Stetter, Bernd; Nigg, Sandro R; Nigg, Benno M

    2015-01-01

    Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High) and nine low caliber (Low) hockey players performed 30 m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65) to excellent (r>0.95) scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05). High caliber exhibited greater hip range of motion and forefoot force application (p<0.05). The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice.

  9. An On-Ice Measurement Approach to Analyse the Biomechanics of Ice Hockey Skating

    PubMed Central

    Buckeridge, Erica; LeVangie, Marc C.; Stetter, Bernd; Nigg, Sandro R.; Nigg, Benno M.

    2015-01-01

    Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High) and nine low caliber (Low) hockey players performed 30m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65) to excellent (r>0.95) scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05). High caliber exhibited greater hip range of motion and forefoot force application (p<0.05). The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice. PMID:25973775

  10. Stride-related rein tension patterns in walk and trot in the ridden horse.

    PubMed

    Egenvall, Agneta; Roepstorff, Lars; Eisersiö, Marie; Rhodin, Marie; van Weeren, René

    2015-12-30

    The use of tack (equipment such as saddles and reins) and especially of bits because of rein tension resulting in pressure in the mouth is questioned because of welfare concerns. We hypothesised that rein tension patterns in walk and trot reflect general gait kinematics, but are also determined by individual horse and rider effects. Six professional riders rode three familiar horses in walk and trot. Horses were equipped with rein tension meters logged by inertial measurement unit technique. Left and right rein tension data were synchronized with the gait. Stride split data (0-100 %) were analysed using mixed models technique to elucidate the left/right rein and stride percentage interaction, in relation to the exercises performed. In walk, rein tension was highest at hindlimb stance. Rein tension was highest in the suspension phase at trot, and lowest during the stance phase. In rising trot there was a significant difference between the two midstance phases, but not in sitting trot. When turning in trot there was a significant statistical association with the gait pattern with the tension being highest in the inside rein when the horse was on the outer fore-inner hindlimb diagonal. Substantial between-rider variation was demonstrated in walk and trot and between-horse variation in walk. Biphasic rein tensions patterns during the stride were found mainly in trot.

  11. Differences in stride between healthy ostriches (Struthio camelus) and those affected by tibiotarsal rotation.

    PubMed

    Cooper, R G

    2007-03-01

    Twenty healthy ostriches (ten cocks and ten hens), and twenty birds with tibiotarsal rotation (nine cocks and 11 hens) (14 months old) were isolated, hooded and weighed. A run (50 m x 2.5 m) was divided into sections marked 5 m, 10 m, 15 m and 20 m. Time taken for each bird to pass these points was recorded and speed computed. The degree of tibiotarsal rotation in the right foot was mean +/- SEM, 156 +/- 2.69 degrees. Comparisons between left and right foot length in healthy birds showed no significant differences. Foot length was significantly lower in tibiotarsal rotation (P = 0.03). The right foot in tibiotarsal rotation was significantly shorter than the left foot. The number of strides per each 5 m division were significantly (P < 0.05) greater in tibiotarsal rotation by comparison with healthy birds. At 20 m, healthy cocks had more strides than hens. The stride length in hens was significantly (P < 0.05) greater than cocks at 5, 10 and 15 m, respectively, but lower throughout in tibiotarsal rotation (P = 0.001). The speed of hens was significantly (P < 0.05) greater than cocks. Tibiotarsal rotation resulted in significantly (P < 0.05) reduced speeds. Hens may be able to escape danger faster than cocks. The occurrence of tibiotarsal rotation necessitates consideration of genetics, management, sex, nutrition and growth rates.

  12. Effect on Oxygen Cost of Transport from 8-Weeks of Progressive Training with Barefoot Running.

    PubMed

    Tam, N; Tucker, R; Astephen Wilson, J L; Santos-Concejero, J

    2015-11-01

    Popular interest in barefoot running has emerged as a result of its alleged performance and injury prevention benefits. Oxygen cost of transport (COT) improvements from barefoot running, however, remains equivocal. The aim of this study was to determine the influence of an 8-week progressive barefoot training program on COT and associated spatiotemporal variables. 15 male runners participated in this study. Variables such as oxygen uptake, biomechanical and spatiotemporal characteristics of gait, including ground contact (GC) and swing time; stride length and frequency and ankle plantar-dorsiflexion were measured pre- and post-intervention. The COT did not differ between barefoot and shod running either pre- or post-training. Improved barefoot COT (p<0.05) but not shod was found between pre- and post-training. Biomechanical differences between barefoot and shod conditions persisted over the training period. A decrease in barefoot COT was associated with a decrease in GC time (p=0.003, r=0.688) and a small increase in stride frequency (p=0.030; r=0.569). Ground contact time and stride frequency, previously associated with COT, only partly contribute (32% - Stride frequency and 47% - GC time) to a decrease in COT after barefoot training. Thus other physiological and biomechanical variables must influence the improvement in COT after a barefoot training intervention. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Dual-tasks and walking fast: relationship to extra-pyramidal signs in advanced Alzheimer disease.

    PubMed

    Camicioli, Richard; Bouchard, Thomas; Licis, Lisa

    2006-10-25

    Extra-pyramidal signs (EPS) and cadence predicted falls risk in patients with advanced Alzheimer disease (AD). Dual task performance predicts falls with variable success. Dual-task performance and walking fast were examined in advanced AD patients with EPS (EPS+, >3 modified Unified Parkinson's Disease Rating Scale [UPDRS] signs) or without EPS (EPS-, three or less UPDRS signs). Demographics, mental and functional status, behavioral impairment, EPS, and quantitative gait measures (GaitRite) were determined. The effects of an automatic dual-task (simple counting) and of walking fast on spatial and temporal gait characteristics were compared between EPS+ and EPS- subjects using a repeated measures design. Cadence decreased, while stride time, swing time and variability in swing time increased with the dual task. Results were insignificant after adjusting for secondary task performance. With walking fast, speed, cadence and stride length increased while stride time, swing time and double support time decreased. Although EPS+ subjects were slower and had decreased stride length, dual task and walking fast effects did not differ from EPS- subjects. Patient characteristics, the type of secondary task and the specific gait measures examined vary in the literature. In this moderately to severely demented population, EPS did not affect "unconscious" (dual task) or "conscious" (walking fast) gait modulation. Given their high falls risk, and retained ability to modulate walking, EPS+ AD patients may be ideal candidates for interventions aimed at preventing falls.

  14. Empirical Modeling of the Statistical Structure of Radio Signals from Satellites Moving over Mid- and High-Latitude Trajectories in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Fatkullin, M. N.; Solodovnikov, G. K.; Trubitsyn, V. M.

    2004-01-01

    The results of developing the empirical model of parameters of radio signals propagating in the inhomogeneous ionosphere at middle and high latitudes are presented. As the initial data we took the homogeneous data obtained as a result of observations carried out at the Antarctic ``Molodezhnaya'' station by the method of continuous transmission probing of the ionosphere by signals of the satellite radionavigation ``Transit'' system at coherent frequencies of 150 and 400 MHz. The data relate to the summer season period in the Southern hemisphere of the Earth in 1988-1989 during high (F > 160) activity of the Sun. The behavior of the following statistical characteristics of radio signal parameters was analyzed: (a) the interval of correlation of fluctuations of amplitudes at a frequency of 150 MHz (τkA) (b) the interval of correlation of fluctuations of the difference phase (τkϕ) and (c) the parameter characterizing frequency spectra of amplitude (PA) and phase (Pϕ) fluctuations. A third-degree polynomial was used for modeling of propagation parameters. For all above indicated propagation parameters, the coefficients of the third-degree polynomial were calculated as a function of local time and magnetic activity. The results of calculations are tabulated.

  15. Pendular motion in the brachiation of captive Lagothrix and Ateles.

    PubMed

    Turnquist, J E; Schmitt, D; Rose, M D; Cant, J G

    1999-01-01

    Pendular motion during brachiation of captive Lagothrix lagothricha lugens and Ateles fusciceps robustus was analyzed to demonstrate similarities, and differences, between these two closely related large bodied atelines. This is the first captive study of the kinematics of brachiation in Lagothrix. Videorecordings of one adult male of each species were made in a specially designed cage constructed at the DuMond Conservancy/Monkey Jungle, Miami, FL. Java software (Jandel Scientific Inc., San Rafael, CA) was used for frame-by-frame kinematic analysis of individual strides/steps. Results demonstrate that the sequence of hand and tail contacts differ significantly between the two species with Lagothrix using a new tail hold with every hand hold, while Ateles generally utilizes a new tail hold with only every other hand hold. Stride length and stride frequency, even after adjusting for limb length, also differ significantly between the two species. Lagothrix brachiation utilizes short, choppy strides with quick hand holds, while Ateles uses long, fluid strides with longer hand holds. During brachiation not only is Lagothrix's body significantly less horizontal than that of Ateles but also, within Ateles, there are significant differences between steps depending on tail use. Because of the unique nature of tail use in Ateles, many aspects of body positioning in Lagothrix more closely resemble Ateles steps without a simultaneous tail hold rather than those with one. Overall pendulum length in Lagothrix is shorter than in Ateles. Tail use in Ateles has a significant effect on maximum pendulum length during a step. Although neither species achieves the extreme pendulum effect and long period of free-flight of hylobatids in fast ricochetal brachiation, in captivity both consistently demonstrate effective brachiation with brief periods of free-flight and pendular motion. Morphological similarities between ateline brachiators and hylobatids are fewer and less pronounced in Lagothrix than in Ateles. This study demonstrates that Lagothrix brachiation is also less hylobatid-like than that of Ateles.

  16. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricus terrestris

    PubMed

    Quillin

    1999-03-01

    This study examined the relationship between ontogenetic increase in body size and the kinematics of peristaltic locomotion by the earthworm Lumbricus terrestris, a soft-bodied organism supported by a hydrostatic skeleton. Whereas the motions of most vertebrates and arthropods are based primarily on the changes in the joint angles between rigid body segments, the motions of soft-bodied organisms with hydrostatic skeletons are based primarily on the changes in dimensions of the deformable body segments themselves. The overall kinematics of peristaltic crawling and the dynamic shape changes of individual earthworm segments were measured for individuals ranging in body mass (mb) by almost three orders of magnitude (0.012-8.5 g). Preferred crawling speed varied both within and among individuals: earthworms crawled faster primarily by taking longer strides, but also by taking more strides per unit time and by decreasing duty factor. On average, larger worms crawled at a greater absolute speed than smaller worms (U p2finity mb0.33) and did so by taking slightly longer strides (l p2finity mb0.41, where l is stride length) than expected by geometric similarity, using slightly lower stride frequencies (f p2finity mb-0.07) and the same duty factor (df p2finity mb-0.03). Circumferential and longitudinal body wall strains were generally independent of body mass, while strain rates changed little as a function of body mass. Given the extent of kinematic variation within and among earthworms, the crawling of earthworms of different sizes can be considered to show kinematic similarity when the kinematic variables are normalized by body length. Since the motions of peristaltic organisms are based primarily on changes in the dimensions of the deformable body wall, the scaling of the material properties of the body wall is probably an especially important determinant of the scaling of the kinematics of locomotion.

  17. Influence of custom-made and prefabricated insoles before and after an intense run

    PubMed Central

    2017-01-01

    Each time the foot contacts the ground during running there is a rapid deceleration that results in a shock wave that is transmitted from the foot to the head. The fatigue of the musculoskeletal system during running may decrease the ability of the body to absorb those shock waves and increase the risk of injury. Insoles are commonly prescribed to prevent injuries, and both custom-made and prefabricated insoles have been observed to reduce shock accelerations during running. However, no study to date has included a direct comparison of their behaviour measured over the same group of athletes, and therefore great controversy still exists regarding their effectiveness in reducing impact loading during running. The aim of the study was to analyse the acute differences in stride and shock parameters while running on a treadmill with custom-made and prefabricated insoles. Stride parameters (stride length, stride rate) and shock acceleration parameters (head and tibial peak acceleration, shock magnitude, acceleration rate, and shock attenuation) were measured using two triaxial accelerometers in 38 runners at 3.33 m/s before and after a 15-min intense run while using the sock liner of the shoe (control condition), prefabricated insoles and custom-made insoles. No differences in shock accelerations were found between the custom-made and the control insoles. The prefabricated insoles increased the head acceleration rate (post-fatigue, p = 0.029) compared to the control condition. The custom-made reduced tibial (pre-fatigue, p = 0.041) and head acceleration rates (pre-fatigue and post-fatigue, p = 0.01 and p = 0.046) compared to the prefabricated insoles. Neither the stride nor the acceleration parameters were modified as a result of the intense run. In the present study, the acute use of insoles (custom-made, prefabricated) did not reduce shock accelerations compared to the control insoles. Therefore, their effectiveness at protecting against injuries associated with elevated accelerations is not supported and remains unclear. PMID:28245273

  18. Assessing Stride Variables and Vertical Stiffness with GPS-Embedded Accelerometers: Preliminary Insights for the Monitoring of Neuromuscular Fatigue on the Field

    PubMed Central

    Buchheit, Martin; Gray, Andrew; Morin, Jean-Benoit

    2015-01-01

    The aim of the present study was to examine the ability of a GPS-imbedded accelerometer to assess stride variables and vertical stiffness (K), which are directly related to neuromuscular fatigue during field-based high-intensity runs. The ability to detect stride imbalances was also examined. A team sport player performed a series of 30-s runs on an instrumented treadmill (6 runs at 10, 17 and 24 km·h-1) with or without his right ankle taped (aimed at creating a stride imbalance), while wearing on his back a commercially-available GPS unit with an embedded 100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) time, and K were computed from both treadmill and accelerometers (Athletic Data Innovations) data. The agreement between treadmill (criterion measure) and accelerometer-derived data was examined. We also compared the ability of the different systems to detect the stride imbalance. Biases were small (CT and K) and moderate (FT). The typical error of the estimate was trivial (CT), small (K) and moderate (FT), with nearly perfect (CT and K) and large (FT) correlations for treadmill vs. accelerometer. The tape induced very large increase in the right - left foot ∆ in CT, FT and K measured by the treadmill. The tape effect on CT and K ∆ measured with the accelerometers were also very large, but of lower magnitude than with the treadmill. The tape effect on accelerometer-derived ∆ FT was unclear. Present data highlight the potential of a GPS-embedded accelerometer to assess CT and K during ground running. Key points GPS-embedded tri-axial accelerometers may be used to assess contact time and vertical stiffness during ground running. These preliminary results open new perspective for the field monitoring of neuromuscular fatigue and performance in run-based sports PMID:26664264

  19. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight

    PubMed Central

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2015-01-01

    Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m−2 s−1. Compared with leaves exposed to a constant light of 1200 μmol photons m−2 s−1, both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m−2 s−1 under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m−2 s−1 under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m−2 s−1 under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow. PMID:26322062

  20. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Agarwalla, Bijay Kumar; Wang, Jian-Sheng

    2012-10-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas.

  1. Detecting Tooth Damage in Geared Drive Trains

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.

    1997-01-01

    This paper describes a method that was developed to detect gear tooth damage that does not require a priori knowledge of the frequency characteristic of the fault. The basic idea of the method is that a few damaged teeth will cause transient load fluctuations unlike the normal tooth load fluctuations. The method attempts to measure the energy in the lower side bands of the modulated signal caused by the transient load fluctuations. The method monitors the energy in the frequency interval which excludes the frequency of the lowest dominant normal tooth load fluctuation and all frequencies above it. The method reacted significantly to the tooth fracture damage results documented in the Lewis data sets which were obtained from tests of the OH-58A transmission and tests of high contact ratio spiral bevel gears. The method detected gear tooth fractures in all four of the high contact ratio spiral bevel gear runs. Published results indicate other detection methods were only able to detect faults for three out of four runs.

  2. Method and System for Determining Relative Displacement and Heading for Navigation

    NASA Technical Reports Server (NTRS)

    Sheikh, Suneel Ismail (Inventor); Pines, Darryll J. (Inventor); Conroy, Joseph Kim (Inventor); Spiridonov, Timofey N. (Inventor)

    2015-01-01

    A system and method for determining a location of a mobile object is provided. The system determines the location of the mobile object by determining distances between a plurality of sensors provided on a first and second movable parts of the mobile object. A stride length, heading, and separation distance between the first and second movable parts are computed based on the determined distances and the location of the mobile object is determined based on the computed stride length, heading, and separation distance.

  3. Fractal Physiology and the Fractional Calculus: A Perspective

    PubMed Central

    West, Bruce J.

    2010-01-01

    This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. We emphasize the difference between homeostatic and allometric control mechanisms. Homeostatic control has a negative feedback character, which is both local and rapid. Allometric control, on the other hand, is a relatively new concept that takes into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the network variable. We hypothesize that allometric control maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can often be described using the fractional calculus to capture the dynamics of complex physiologic networks. PMID:21423355

  4. Nature of Kinetic Scale Fluctuations in Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Salem, C. S.; Chen, C. H.; Sundkvist, D. J.; Chaston, C. C.; Bale, S. D.; Mozer, F.

    2012-12-01

    We present an investigation of the nature of small-scale turbulent fluctuations in the solar wind. The nature of the dissipation range fluctuations of solar wind turbulence remains a major open question in heliospheric physics. The steepening of the observed (magnetic field) spectra at ion scales was originally attributed to ion cyclotron damping, but it was later suggested that it could well be due to the dispersive nature of fluctuations at these scales. The nature of the dispersive cascade at and below the ion scales is still debated, two leading hypothesis being that these fluctuations have characteristics of Kinetic Alfven Waves (KAW) or whistler waves. Other possible contributions from current sheets and/or kinetic instabilities have been suggested. There is mounting evidence that the fluctuations at these scales are KAW-like. In this study, we analyze several carefully selected unperturbed solar wind intervals, using magnetic field, electric field as well as density measurements from the Cluster spacecraft in order to identify the nature of the wave modes present, how frequent they are and try to determine whether one or more wave modes at different times. We examine the electric to magnetic field fluctuation ratio (δ E/δd B), the magnetic compressibility (δ B∥ /δ B) as well as density fluctuations using newly developed diagnostic techniques by Salem et al (2012) and Chen et al (2012). We look for variations of the nature and properties of these kinetic scale fluctuations with solar wind conditions, such as the plasma beta and the angle between the magnetic field and the flow velocity which controls the measured (spacecraft frame) frequency of the fluctuations. We discuss how these results would impact how the solar wind plasma is heated.

  5. Weight fluctuation, mortality and vascular disease in Pima Indians.

    PubMed

    Hanson, R L; Jacobsson, L T; McCance, D R; Narayan, K M; Pettitt, D J; Bennett, P H; Knowler, W C

    1996-05-01

    To examine the relationship of weight fluctuation to mortality rates and incidence of vascular disease. A cohort of Pima Indians, 572 of whom had non-insulin-dependent diabetes mellitus and 766 without diabetes. Individuals were invited biennially to research examinations. The root mean square error (RMSE) of the linear trend of weight with time for the first four examinations after age 20 years was used as an index of weight fluctuation. Subjects were followed from the fourth examination until death or until 31 December 1991. The mortality rate ratio (MRR) and its 95% confidence interval (CI) for those with a high weight fluctuation index relative to those with a lower value were determined. The median duration of follow up was 9.3 (range 0.1-22.6) years. All cause mortality (n = 356); incidence of diabetic retinopathy (n = 145), diabetic nephropathy (n = 132) and electrocardiographic abnormalities (n = 82). There was no significant relationship between weight fluctuation and mortality for diabetic subjects (MRR = 1.0, 95% CI 0.8-1.3, p = 0.91). Nondiabetic subjects with a high weight fluctuation index had a higher mortality rate than those with a lower index (MRR = 1.5, 95% CI 1.0-2.1, p = 0.03); the association was stronger among men than among women. The excess mortality in the high weight fluctuation group was not due to cardiovascular diseases, but to noncardiovascular causes and the risk for alcohol-related death was particularly increased. Weight fluctuation was not associated with the incidence of diabetic retinopathy, nephropathy or electrocardiographic abnormalities. A high weight fluctuation index was associated with higher mortality rates in nondiabetic, but not in diabetic, Pima Indians. The excess mortality is largely due to noncardiovascular causes of death and may reflect lifestyle factors associated with weight fluctuation, rather than its metabolic effects.

  6. Pattern and forcing of Northern Hemisphere glacier variations during the last millennium

    NASA Astrophysics Data System (ADS)

    Porter, Stephen C.

    1986-07-01

    Time series depicting mountain glacier fluctuations in the Alps display generally similar patterns over the last two centuries, as do chronologies of glacier variations for the same interval from elsewhere in the Northern Hemisphere. Episodes of glacier advance consistently are associated with intervals of high average volcanic aerosol production, as inferred from acidity variations in a Greenland ice core. Advances occur whenever acidity levels rise sharply from background values to reach concentrations ≥1.2 μequiv H +/kg above background. A phase lag of about 10-15 yr, equivalent to reported response lags of Alpine glacier termini, separates the beginning of acidity increases from the beginning of subsequent ice advances. A similar relationship, but based on limited and less-reliable historical data and on lichenometric ages, is found for the preceding 2 centuries. Calibrated radiocarbon dates related to advances of non-calving and non-surging glaciers during the earlier part of the Little Ice Age display a comparable consistent pattern. An interval of reduced acidity values between about 1090 and 1230 A.D. correlates with a time of inferred glacier contraction during the Medieval Optimum. The observed close relation between Noothern Hemisphere glacier fluctuations and variations in Greenland ice-core acidity suggests that sulfur-rich aerosols generated by volcanic eruptions are a primary forcing mechanism of glacier fluctuations, and therefore of climate, on a decadal scale. The amount of surface cooling attributable to individual large eruptions or to episodes of eruptions is simlar to the probable average temperature reduction during culminations of Little Ice Age alacier advances (ca. 0.5°-1.2°C), as inferred from depression of equilibrium-line altitudes.

  7. Sleep stage classification by body movement index and respiratory interval indices using multiple radar sensors.

    PubMed

    Kagawa, Masayuki; Sasaki, Noriyuki; Suzumura, Kazuki; Matsui, Takemi

    2015-01-01

    Disturbed sleep has become more common in recent years. To increase the quality of sleep, undergoing sleep observation has gained interest as an attempt to resolve possible problems. In this paper, we evaluate a non-restrictive and non-contact method for classifying real-time sleep stages and report on its potential applications. The proposed system measures body movements and respiratory signals of a sleeping person using a multiple 24-GHz microwave radar placed beneath the mattress. We determined a body-movement index to identify wake and sleep periods, and fluctuation indices of respiratory intervals to identify sleep stages. For identifying wake and sleep periods, the rate agreement between the body-movement index and the reference result using the R&K method was 83.5 ± 6.3%. One-minute standard deviations, one of the fluctuation indices of respiratory intervals, had a high degree of contribution and showed a significant difference across the three sleep stages (REM, LIGHT, and DEEP; p <; 0.001). Although the degree that the 5-min fractal dimension contributed-another fluctuation index-was not as high as expected, its difference between REM and DEEP sleep was significant (p <; 0.05). We applied a linear discriminant function to classify wake or sleep periods and to estimate the three sleep stages. The accuracy was 79.3% for classification and 71.9% for estimation. This is a novel system for measuring body movements and body-surface movements that are induced by respiration and for measuring high sensitivity pulse waves using multiple radar signals. This method simplifies measurement of sleep stages and may be employed at nursing care facilities or by the general public to increase sleep quality.

  8. Quasi-Periodic Fluctuations and Chromospheric Evaporation in a Solar Flare Ribbon Observed by Hinode/EIS, IRIS, RHESSI, and Fermi/GBM

    NASA Astrophysics Data System (ADS)

    Brosius, J. W.; Inglis, A. R.; Daw, A. N.

    2016-12-01

    We obtained rapid cadence (11.2 s) EUV stare spectra of a GOES M7.3 flare ribbonin AR 12036 on 2014 April 18 with Hinode/EIS, along with coordinated IRIS, RHESSI,and Fermi/GBM observations. Quasi-periodic (P ≈ 75.6 ± 9.2 s)intensity fluctuations occurred in emission lines of O IV, Mg VI, Mg VII, Si VII, Fe XIV, and Fe XVI during the flare's impulsive rise, and ended when the maximumintensity in Fe XXIII was reached. The profiles of the O IV - Fe XVI lines revealthat they were all redshifted during most of the interval of quasi-periodicintensity fluctuations, while the Fe XXIII profile revealed multiple componentsincluding one or two highly blueshifted ones. This indicates that the flareunderwent explosive chromospheric evaporation during its impulsive rise.Fluctuations in the relative Doppler velocities were detected, but theirsignal-to-noise ratios were inadequate to extract significant quasi-periodicities.RHESSI detected 25-100 keV hard X-ray sources in the ribbon near the EIS slit'spointing position during the peaks in the EIS intensity fluctuations. We concludethat the series of quasi-periodic intensity peaks in the EUV light curves wasproduced by a series of nonthermal electron injections into the chromosphere. Theinjections may be attributed to MHD oscillations in a magnetic trap, MHDoscillations in a nearby, non-flaring magnetic loop, or magnetic reconnection in a large-scale current sheet dominated by repeated formation of magnetic islands.Electron densities derived with Fe XIV (4.6 × 1010 cm-3) and Mg VII(7.8 × 109 cm-3) average line intensity ratios during the interval ofquasi-periodic intensity fluctuations, combined with the radiative loss functionof an optically thin plasma (derived with CHIANTI), yield radiative cooling timesof 32 s at 2.0 MK, and 46 s at 0.63 MK; assuming the same density for Fe XXIIIthat we derived for Fe XIV yields a radiative cooling time of 1000 s at 14 MK.We speculate that fluctuations are observed in the lower temperature (but not FeXXIII) lines because at those temperatures the plasma had sufficient time toradiatively cool between successive energy injections. Quasi-periodic fluctuationswere observed by IRIS in the same ribbon, 40 arcsec to the west, where RHESSIdetected no hard X-ray emission.

  9. Averaging interval selection for the calculation of Reynolds shear stress for studies of boundary layer turbulence.

    NASA Astrophysics Data System (ADS)

    Lee, Zoe; Baas, Andreas

    2013-04-01

    It is widely recognised that boundary layer turbulence plays an important role in sediment transport dynamics in aeolian environments. Improvements in the design and affordability of ultrasonic anemometers have provided significant contributions to studies of aeolian turbulence, by facilitating high frequency monitoring of three dimensional wind velocities. Consequently, research has moved beyond studies of mean airflow properties, to investigations into quasi-instantaneous turbulent fluctuations at high spatio-temporal scales. To fully understand, how temporal fluctuations in shear stress drive wind erosivity and sediment transport, research into the best practice for calculating shear stress is necessary. This paper builds upon work published by Lee and Baas (2012) on the influence of streamline correction techniques on Reynolds shear stress, by investigating the time-averaging interval used in the calculation. Concerns relating to the selection of appropriate averaging intervals for turbulence research, where the data are typically non-stationary at all timescales, are well documented in the literature (e.g. Treviño and Andreas, 2000). For example, Finnigan et al. (2003) found that underestimating the required averaging interval can lead to a reduction in the calculated momentum flux, as contributions from turbulent eddies longer than the averaging interval are lost. To avoid the risk of underestimating fluxes, researchers have typically used the total measurement duration as a single averaging period. For non-stationary data, however, using the whole measurement run as a single block average is inadequate for defining turbulent fluctuations. The data presented in this paper were collected in a field study of boundary layer turbulence conducted at Tramore beach near Rosapenna, County Donegal, Ireland. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different heights between 0.11 and 1.62 metres above the bed. A technique for determining time-averaging intervals for a series of anemometers stacked in a close vertical array is presented. A minimum timescale is identified using spectral analysis to determine the inertial sub-range, where energy is neither produced nor dissipated but passed down to increasingly smaller scales. An autocorrelation function is then used to derive a scaling pattern between anemometer heights, which defines a series of averaging intervals of increasing length with height above the surface. Results demonstrate the effect of different averaging intervals on the calculation of Reynolds shear stress and highlight the inadequacy of using the total measurement duration as a single block average. Lee, Z. S. & Baas, A. C. W. (2012). Streamline correction for the analysis of boundary layer turbulence. Geomorphology, 171-172, 69-82. Treviño, G. and Andreas, E.L., 2000. Averaging Intervals For Spectral Analysis Of Nonstationary Turbulence. Boundary-Layer Meteorology, 95(2): 231-247. Finnigan, J.J., Clement, R., Malhi, Y., Leuning, R. and Cleugh, H.A., 2003. Re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Boundary-Layer Meteorology, 107(1): 1-48.

  10. Changes in the Hurst exponent of heartbeat intervals during physical activity

    NASA Astrophysics Data System (ADS)

    Martinis, M.; Knežević, A.; Krstačić, G.; Vargović, E.

    2004-07-01

    The fractal scaling properties of the heartbeat time series are studied in different controlled ergometric regimes using both the improved Hurst rescaled range (R/S) analysis and the detrended fluctuation analysis (DFA). The long-time “memory effect” quantified by the value of the Hurst exponent H>0.5 is found to increase during progressive physical activity in healthy subjects, in contrast to those having stable angina pectoris, where it decreases. The results are also supported by the detrended fluctuation analysis. We argue that this finding may be used as a useful new diagnostic parameter for short heartbeat time series.

  11. The Superstatistical Nature and Interoccurrence Time of Atmospheric Mercury Concentration Fluctuations

    EPA Science Inventory

    The probability density function (PDF) of the time intervals between subsequent extreme events in atmospheric Hg0 concentration data series from different latitudes has been investigated. The Hg0 dynamic possesses a long-term memory autocorrelation function. Above a fixed thresh...

  12. Proportionality between Doppler noise and integrated signal path electron density validated by differenced S-X range

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.

  13. Reynolds number of transition and self-organized criticality of strong turbulence.

    PubMed

    Yakhot, Victor

    2014-10-01

    A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k>Λf, where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf

  14. Volatility-constrained multifractal detrended cross-correlation analysis: Cross-correlation among Mainland China, US, and Hong Kong stock markets

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Zhang, Minjia; Li, Qingchen

    2017-04-01

    This study focuses on multifractal detrended cross-correlation analysis of the different volatility intervals of Mainland China, US, and Hong Kong stock markets. A volatility-constrained multifractal detrended cross-correlation analysis (VC-MF-DCCA) method is proposed to study the volatility conductivity of Mainland China, US, and Hong Kong stock markets. Empirical results indicate that fluctuation may be related to important activities in real markets. The Hang Seng Index (HSI) stock market is more influential than the Shanghai Composite Index (SCI) stock market. Furthermore, the SCI stock market is more influential than the Dow Jones Industrial Average stock market. The conductivity between the HSI and SCI stock markets is the strongest. HSI was the most influential market in the large fluctuation interval of 1991 to 2014. The autoregressive fractionally integrated moving average method is used to verify the validity of VC-MF-DCCA. Results show that VC-MF-DCCA is effective.

  15. Appropriate time scales for nonlinear analyses of deterministic jump systems

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya

    2011-06-01

    In the real world, there are many phenomena that are derived from deterministic systems but which fluctuate with nonuniform time intervals. This paper discusses the appropriate time scales that can be applied to such systems to analyze their properties. The financial markets are an example of such systems wherein price movements fluctuate with nonuniform time intervals. However, it is common to apply uniform time scales such as 1-min data and 1-h data to study price movements. This paper examines the validity of such time scales by using surrogate data tests to ascertain whether the deterministic properties of the original system can be identified from uniform sampled data. The results show that uniform time samplings are often inappropriate for nonlinear analyses. However, for other systems such as neural spikes and Internet traffic packets, which produce similar outputs, uniform time samplings are quite effective in extracting the system properties. Nevertheless, uniform samplings often generate overlapping data, which can cause false rejections of surrogate data tests.

  16. Influence of fluctuations of historic water bodies on fault stability and earthquake recurrence interval: The Dead Sea Rift as a case study

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben-Avraham, Zvi

    2017-04-01

    Despite the global, social and scientific impact of earthquakes, their triggering mechanisms remain often poorly defined. We suggest that dynamic changes in the levels of the historic water bodies occupying tectonic depressions at the Dead Sea Rift cause significant variations in the shallow crustal stress field and affect local fault systems in a way that may promote or suppress earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. We use analytical and numerical poroelastic models to simulate immediate and delayed seismic responses resulting from the observed historic water level changes. The role of variability in the poroelastic and the elastic properties of the rocks composing the upper crust in inducing or retarding deformations under a strike-slip faulting regime is studied. The solution allows estimating a possible reduction in a seismic recurrence interval. Considering the historic water level fluctuation, our preliminary simulations show a promising agreement with paleo-seismic rates identified in the field.

  17. Reynolds number of transition and self-organized criticality of strong turbulence

    NASA Astrophysics Data System (ADS)

    Yakhot, Victor

    2014-10-01

    A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k >Λf , where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf

  18. The causes of recurrent geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lepping, R. P.

    1976-01-01

    The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.

  19. An accelerometric measure of the gait pattern in horses after the administration of sublingual detomidine.

    PubMed

    López-Sanromán, F J; de la Riva Andrés, S; Holmbak-Petersen, R; Pérez-Nogués, M; Forés Jackson, P; Santos González, M

    2014-10-01

    The locomotor pattern alterations produced after the administration of a sublingual detomidine gel was measured by an accelerometric method in horses. Using a randomized two-way crossover design, all animals (n = 6) randomly received either detomidine gel or a placebo administered sublingually. A triaxial accelerometric device was used for gait assessment 15 minutes before (baseline) and every 10 minutes after each treatment for a period of 180 minutes. Eight different parameters were calculated, including speed, stride frequency, stride length, regularity, dorsoventral, propulsion, mediolateral, and total power. Force of acceleration and the three components of power were also calculated. Significant statistical differences were observed between groups in all the parameters but stride length. The majority of significant changes started between 30 and 70 minutes after drug administration and lasted for 160 minutes. This route of administration is definitely useful in horses in which a prolonged sedation is required, with stability being a major concern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Improvement in Body Image, Perceived Health, and Health-Related Self-Efficacy Among People With Serious Mental Illness: The STRIDE Study.

    PubMed

    Yarborough, Bobbi Jo H; Leo, Michael C; Yarborough, Micah T; Stumbo, Scott; Janoff, Shannon L; Perrin, Nancy A; Green, Carla A

    2016-03-01

    The authors examined secondary outcomes of STRIDE, a randomized controlled trial that tested a weight-loss and lifestyle intervention for individuals taking antipsychotic medications. Hierarchical linear regression was used to explore the effects of the intervention and weight change at follow-up (six, 12, and 24 months) on body image, perceived health, and health-related self-efficacy. Participants were 200 adults who were overweight and taking antipsychotic agents. Weight change × study arm interaction was associated with significant improvement in body image from baseline to six months. From baseline to 12 months, body image scores of intervention participants improved by 1.7 points more compared with scores of control participants; greater weight loss was associated with more improvement. Between baseline and 24 months, greater weight loss was associated with improvements in body image, perceived health, and health-related self-efficacy. Participation in STRIDE improved body image, and losing weight improved perceived health and health-related self-efficacy.

  1. Does external walking environment affect gait patterns?

    PubMed

    Patterson, Matthew R; Whelan, Darragh; Reginatto, Brenda; Caprani, Niamh; Walsh, Lorcan; Smeaton, Alan F; Inomata, Akihiro; Caulfield, Brian

    2014-01-01

    The objective of this work is to develop an understanding of the relationship between mobility metrics obtained outside of the clinic or laboratory and the context of the external environment. Ten subjects walked with an inertial sensor on each shank and a wearable camera around their neck. They were taken on a thirty minute walk in which they mobilized over the following conditions; normal path, busy hallway, rough ground, blind folded and on a hill. Stride time, stride time variability, stance time and peak shank rotation rate during swing were calculated using previously published algorithms. Stride time was significantly different between several of the conditions. Technological advances mean that gait variables can now be captured as patients go about their daily lives. The results of this study show that the external environment has a significant impact on the quality of gait metrics. Thus, context of external walking environment is an important consideration when analyzing ambulatory gait metrics from the unsupervised home and community setting.

  2. Early dolomitization in the Lower Cretaceous shallow-water carbonates of Southern Apennines (Italy): Clues about palaeoclimatic fluctuations in western Tethys

    NASA Astrophysics Data System (ADS)

    Vinci, Francesco; Iannace, Alessandro; Parente, Mariano; Pirmez, Carlos; Torrieri, Stefano; Giorgioni, Maurizio

    2017-12-01

    A multidisciplinary study of the dolomitized bodies present in the Lower Cretaceous platform carbonates of Mt. Faito (Southern Apennines - Italy) was carried out in order to explore the connection between early dolomite formation and fluctuating climate conditions. The Berriasian-Aptian investigated succession is 466 m thick and mainly consists of shallow-water lagoonal limestones with frequent dolomite caps. The dolomitization intensity varies along the succession and reaches its peak in the upper Hauterivian-lower Barremian interval, where it is present a completely dolomitized interval about 100-m-thick. Field relations, petrography, mineralogy, and geochemistry of the analyzed dolomite bodies allowed identifying two populations of early dolomites, a fine-medium crystalline (FMdol) and a coarse crystalline dolomite (Cdol), both interpreted as the product of mesohaline water reflux. According to our interpretation, FMdol precipitated from concentrated brines in the very early stage of the reflux process, producing typical sedimentary features as dolomite caps. In the successive step of the process, the basin-ward 'latent' reflux precipitated Cdol from less concentrated brines. A peculiar feature of the studied succession is the great consistency between stratigraphic distribution of dolomite bodies and their geochemical signature. The completely dolomitized Hauterivian-Barremian interval, in fact, is characterized by geochemical values suggesting an origin from distinctly saltier brines. Considering that the observed near-surface dolomitization process is controlled by physical and chemical parameters reflecting the paleoenvironmental and paleoclimatic conditions during dolomite formation, we propose that the stratigraphically controlled dolomitization intensity reflects periodic fluctuations in the salinity of dolomitizing fluid, in turn controlled by long-term climate oscillations. The present work highlights that the stratigraphic distribution of early diagenetic dolomite may be used as proxy to define the climatic fluctuations that have influenced the sedimentary dynamics in the Early Cretaceous. Moreover, considering that a comparable early dolomite distribution is present also in the Dinaric Platform, we suggest that a regional scale climate control acted on early dolomite formation and distribution. Refining the knowledge of such a key control may have a significative impact on hydrocarbon reservoir characterization and exploration in the Periadriatic area.

  3. Levodopa delivery systems: advancements in delivery of the gold standard.

    PubMed

    Ngwuluka, Ndidi; Pillay, Viness; Du Toit, Lisa C; Ndesendo, Valence; Choonara, Yahya; Modi, Girish; Naidoo, Dinesh

    2010-02-01

    Despite the fact that Parkinson's disease (PD) was discovered almost 200 years ago, its treatment and management remain immense challenges because progressive loss of dopaminergic nigral neurons, motor complications experienced by the patients as the disease progresses and drawbacks of pharmacotherapeutic management still persist. Various therapeutic agents have been used in the management of PD, including levodopa (l-DOPA), selegiline, amantadine, bromocriptine, entacapone, pramipexole dihydrochloride and more recently istradefylline and rasagiline. Of all agents, l-DOPA although the oldest, remains the most effective. l-DOPA is easier to administer, better tolerated, less expensive and is required by almost all PD patients. However, l-DOPA's efficacy in advanced PD is significantly reduced due to metabolism, subsequent low bioavailability and irregular fluctuations in its plasma levels. Significant strides have been made to improve the delivery of l-DOPA in order to enhance its bioavailability and reduce plasma fluctuations as well as motor complications experienced by patients purportedly resulting from pulsatile stimulation of the striatal dopamine receptors. Drug delivery systems that have been instituted for the delivery of l-DOPA include immediate release formulations, liquid formulations, dispersible tablets, controlled release formulations, dual-release formulations, microspheres, infusion and transdermal delivery, among others. In this review, the l-DOPA-loaded drug delivery systems developed over the past three decades are elaborated. The ultimate aim was to assess critically the attempts made thus far directed at improving l-DOPA absorption, bioavailability and maintenance of constant plasma concentrations, including the drug delivery technologies implicated. This review highlights the fact that neuropharmaceutics is at a precipice, which is expected to spur investigators to take that leap to enable the generation of innovative delivery systems for the effective management of PD.

  4. Gait models and mechanical energy in three cross-country skiing techniques.

    PubMed

    Pellegrini, Barbara; Zoppirolli, Chiara; Bortolan, Lorenzo; Zamparo, Paola; Schena, Federico

    2014-11-01

    Fluctuations in mechanical energy of the body center of mass (COM) have been widely analyzed when investigating different gaits in human and animal locomotion. We applied this approach to estimate the mechanical work in cross-country skiing and to identify the fundamental mechanisms of this particular form of locomotion. We acquired movements of body segments, skis, poles and plantar pressures for eight skiers while they roller skied on a treadmill at 14 km h(-1) and a 2 deg slope using three different techniques (diagonal stride, DS; double poling, DP; double poling with kick, DK). The work associated with kinetic energy (KE) changes of COM was not different between techniques; the work against gravity associated with potential energy (PE) changes was higher for DP than for DK and was lowest for DS. Mechanical work against the external environment was 0.87 J m(-1) kg(-1) for DS, 0.70 J m(-1) kg(-1) for DP and 0.79 J m(-1) kg(-1) for DK. The work done to overcome frictional forces, which is negligible in walking and running, was 17.8%, 32.3% and 24.8% of external mechanical work for DS, DP and DK, respectively. The pendulum-like recovery (R%) between PE and KE was ~45%, ~26% and ~9% for DP, DK and DS, respectively, but energy losses by friction are not accounted for in this computation. The pattern of fluctuations of PE and KE indicates that DS can be described as a 'grounded running', where aerial phases are substituted by ski gliding phases, DP can be described as a pendular gait, whereas DK is a combination of both. © 2014. Published by The Company of Biologists Ltd.

  5. Exceptional running and turning performance in a mite.

    PubMed

    Rubin, Samuel; Young, Maria Ho-Yan; Wright, Jonathan C; Whitaker, Dwight L; Ahn, Anna N

    2016-03-01

    The Southern California endemic mite Paratarsotomus macropalpis was filmed in the field on a concrete substrate and in the lab to analyze stride frequency, gait and running speed under different temperature conditions and during turning. At ground temperatures ranging from 45 to 60 °C, mites ran at a mean relative speed of 192.4 ± 2.1 body lengths (BL) s(-1), exceeding the highest previously documented value for a land animal by 12.5%. Stride frequencies were also exceptionally high (up to 135 Hz), and increased with substrate temperature. Juveniles exhibited higher relative speeds than adults and possess proportionally longer legs, which allow for greater relative stride lengths. Although mites accelerated and decelerated rapidly during straight running (7.2 ± 1.2 and -10.1 ± 2.1 m s(-2), respectively), the forces involved were comparable to those found in other animals. Paratarsotomus macropalpis employs an alternating tetrapod gait during steady running. Shallow turns were accomplished by a simple asymmetry in stride length. During tight turns, mites pivoted around the tarsus of the inside third leg (L3), which thus behaved like a grappling hook. Pivot turns were characterized by a 42% decrease in turning radius and a 40% increase in angular velocity compared with non-pivot turns. The joint angle amplitudes of the inner L2 and L3 were negligible during a pivot turn. While exceptional, running speeds in P. macropalpis approximate values predicted from inter-specific scaling relationships. © 2016. Published by The Company of Biologists Ltd.

  6. Ambulatory estimation of foot placement during walking using inertial sensors.

    PubMed

    Martin Schepers, H; van Asseldonk, Edwin H F; Baten, Chris T M; Veltink, Peter H

    2010-12-01

    This study proposes a method to assess foot placement during walking using an ambulatory measurement system consisting of orthopaedic sandals equipped with force/moment sensors and inertial sensors (accelerometers and gyroscopes). Two parameters, lateral foot placement (LFP) and stride length (SL), were estimated for each foot separately during walking with eyes open (EO), and with eyes closed (EC) to analyze if the ambulatory system was able to discriminate between different walking conditions. For validation, the ambulatory measurement system was compared to a reference optical position measurement system (Optotrak). LFP and SL were obtained by integration of inertial sensor signals. To reduce the drift caused by integration, LFP and SL were defined with respect to an average walking path using a predefined number of strides. By varying this number of strides, it was shown that LFP and SL could be best estimated using three consecutive strides. LFP and SL estimated from the instrumented shoe signals and with the reference system showed good correspondence as indicated by the RMS difference between both measurement systems being 6.5 ± 1.0 mm (mean ± standard deviation) for LFP, and 34.1 ± 2.7 mm for SL. Additionally, a statistical analysis revealed that the ambulatory system was able to discriminate between the EO and EC condition, like the reference system. It is concluded that the ambulatory measurement system was able to reliably estimate foot placement during walking. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Signals from the ventrolateral thalamus to the motor cortex during locomotion

    PubMed Central

    Marlinski, Vladimir; Nilaweera, Wijitha U.; Zelenin, Pavel V.; Sirota, Mikhail G.

    2012-01-01

    The activity of the motor cortex during locomotion is profoundly modulated in the rhythm of strides. The source of modulation is not known. In this study we examined the activity of one of the major sources of afferent input to the motor cortex, the ventrolateral thalamus (VL). Experiments were conducted in chronically implanted cats with an extracellular single-neuron recording technique. VL neurons projecting to the motor cortex were identified by antidromic responses. During locomotion, the activity of 92% of neurons was modulated in the rhythm of strides; 67% of cells discharged one activity burst per stride, a pattern typical for the motor cortex. The characteristics of these discharges in most VL neurons appeared to be well suited to contribute to the locomotion-related activity of the motor cortex. In addition to simple locomotion, we examined VL activity during walking on a horizontal ladder, a task that requires vision for correct foot placement. Upon transition from simple to ladder locomotion, the activity of most VL neurons exhibited the same changes that have been reported for the motor cortex, i.e., an increase in the strength of stride-related modulation and shortening of the discharge duration. Five modes of integration of simple and ladder locomotion-related information were recognized in the VL. We suggest that, in addition to contributing to the locomotion-related activity in the motor cortex during simple locomotion, the VL integrates and transmits signals needed for correct foot placement on a complex terrain to the motor cortex. PMID:21994259

  8. The Ergogenic Effect of Elastic Therapeutic Tape on Stride and Step Length in Fatigued Runners

    PubMed Central

    Ward, John; Sorrels, Kenneth; Coats, Jesse; Pourmoghaddam, Amir; Moskop, JoAnn; Ueckert, Kate; Glass, Amanda

    2014-01-01

    Objective The purpose of this study was to determine if elastic therapeutic tape placed on anterior lower limbs would affect stride and step length in fatigued runners’ gait. Methods Forty-two healthy participants were equally divided into a kinesiology tape group (Rocktape) and a no-tape control group. Participants in both groups underwent a baseline running gait test at 6 mph without tape. After this, participants engaged in an exhaustive lower body fatigue protocol until they reached maximal volitional exhaustion. Participants were then randomized to 1 of 2 interventions: (1) Experimental group, which had kinesiology tape placed under tension on the anterior aspect of their lower limbs bilaterally from the upper thigh to just below the patella, or (2) Control group, which did not receive taping. All participants then engaged in a similar 6-mph running gait postanalysis. Participant’s gait was analyzed for 90 seconds during each test iteration. Researchers used a 2-way repeated-measures analysis of variance considering fatigue (prefatigue, postfatigue) and group (tape, no-tape) as subject factors. Results After the fatigue protocol, the no-tape group demonstrated a significant decrease in step length of 14.2 mm (P = .041) and stride length of 29.4 mm (P = .043). The kinesiology tape group did not demonstrate a significant decline in these gait parameters. Conclusions In this preliminary study, placing elastic therapeutic tape over the anterior lower limbs demonstrated short-term preservation of runner step length and stride length in a fatigued state. PMID:25435835

  9. Good agreement between smart device and inertial sensor-based gait parameters during a 6-min walk.

    PubMed

    Proessl, F; Swanson, C W; Rudroff, T; Fling, B W; Tracy, B L

    2018-05-28

    Traditional laboratory-based kinetic and kinematic gait analyses are expensive, time-intensive, and impractical for clinical settings. Inertial sensors have gained popularity in gait analysis research and more recently smart devices have been employed to provide quantification of gait. However, no study to date has investigated the agreement between smart device and inertial sensor-based gait parameters during prolonged walking. Compare spatiotemporal gait metrics measured with a smart device versus previously validated inertial sensors. Twenty neurologically healthy young adults (7 women; age: 25.0 ± 3.7 years; BMI: 23.4 ± 2.9 kg/m 2 ) performed a 6-min walk test (6MWT) wearing inertial sensors and smart devices to record stride duration, stride length, cadence, and gait speed. Pearson correlations were used to assess associations between spatiotemporal measures from the two devices and agreement between the two methods was assessed with Bland-Altman plots and limits of agreement. All spatiotemporal gait metrics (stride duration, cadence, stride length and gait speed) showed strong (r>0.9) associations and good agreement between the two devices. Smart devices are capable of accurately reflecting many of the spatiotemporal gait metrics of inertial sensors. As the smart devices also accurately reflected individual leg output, future studies may apply this analytical strategy to clinical populations, to identify hallmarks of disability status and disease progression in a more ecologically valid environment. Copyright © 2018. Published by Elsevier B.V.

  10. The hindlimb in walking horses: 1. Kinematics and ground reaction forces.

    PubMed

    Hodson, E; Clayton, H M; Lanovaz, J L

    2001-01-01

    The objective was to study associations between kinematics and ground reaction forces in the hindlimb of walking horses. Video (60 Hz) and force (2000 Hz) data were gathered for 8 strides from each of 5 sound horses during the walk. Sagittal plane kinematics were measured concurrently with the vertical and longitudinal ground reaction forces. The hindlimb showed rapid loading and braking in the initial 10% stride. The stifle, tarsal and coffin joints flexed and the fetlock joint extended during this period of rapid loading. The vertical ground reaction force showed 2 peaks separated by a dip; this pattern was similar to the fetlock joint angle-time graph. Peaks in the longitudinal ground reaction force did not appear to correspond with kinematic events. Total braking impulse was equal to total propulsive impulse over the entire stride. Flexion and extension of the hip were responsible for protraction and retraction of the entire limb. Maximal protraction occurred shortly before the end of swing and maximal retraction occurred during breakover. During the middle part of stance the tarsal joint extended slowly, while the stifle began to flex when the limb was retracted beyond the midstance position at 28% stride. Flexion cycles of the stifle and tarsal joints were well coordinated during the swing phase to raise the distal limb as it was protracted. The results demonstrate a relationship between limb kinematics and vertical limb loading in the hindlimbs of sound horses. Future studies will elucidate the alterations in response to lameness.

  11. Linear variability of gait according to socioeconomic status in elderly

    PubMed Central

    2016-01-01

    Aim: To evaluate the linear variability of comfortable gait according to socioeconomic status in community-dwelling elderly. Method: For this cross-sectional observational study 63 self- functioning elderly were categorized according to the socioeconomic level on medium-low (n= 33, age 69.0 ± 5.0 years) and medium-high (n= 30, age 71.0 ± 6.0 years). Each participant was asked to perform comfortable gait speed for 3 min on an 40 meters elliptical circuit, recording in video five strides which were transformed into frames, determining the minimum foot clearance, maximum foot clearance and stride length. The intra-group linear variability was calculated by the coefficient of variation in percent. Results: The trajectory parameters variability is not different according to socioeconomic status with a 30% (range= 15-55%) for the minimum foot clearance and 6% (range= 3-8%) in maximum foot clearance. Meanwhile, the stride length consistently was more variable in the medium-low socioeconomic status for the overall sample (p= 0.004), female (p= 0.041) and male gender (p= 0.007), with values near 4% ​​(range = 2.5-5.0%) in the medium-low and 2% (range = 1.5-3.5%) in the medium-high. Conclusions: The intra-group linear variability is consistently higher and within reference parameters for stride length during comfortable gait for elderly belonging to medium-low socioeconomic status. This might be indicative of greater complexity and consequent motor adaptability. PMID:27546931

  12. Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.

    PubMed

    Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2012-11-08

    A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.

  13. Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiana-Alsina, J.; Torrent, M. C.; Masoller, C.

    Low-frequency fluctuations (LFFs) represent a dynamical instability that occurs in semiconductor lasers when they are operated near the lasing threshold and subject to moderate optical feedback. LFFs consist of sudden power dropouts followed by gradual, stepwise recoveries. We analyze experimental time series of intensity dropouts and quantify the complexity of the underlying dynamics employing two tools from information theory, namely, Shannon's entropy and the Martin, Plastino, and Rosso statistical complexity measure. These measures are computed using a method based on ordinal patterns, by which the relative length and ordering of consecutive interdropout intervals (i.e., the time intervals between consecutive intensitymore » dropouts) are analyzed, disregarding the precise timing of the dropouts and the absolute durations of the interdropout intervals. We show that this methodology is suitable for quantifying subtle characteristics of the LFFs, and in particular the transition to fully developed chaos that takes place when the laser's pump current is increased. Our method shows that the statistical complexity of the laser does not increase continuously with the pump current, but levels off before reaching the coherence collapse regime. This behavior coincides with that of the first- and second-order correlations of the interdropout intervals, suggesting that these correlations, and not the chaotic behavior, are what determine the level of complexity of the laser's dynamics. These results hold for two different dynamical regimes, namely, sustained LFFs and coexistence between LFFs and steady-state emission.« less

  14. Correlated microtiming deviations in jazz and rock music.

    PubMed

    Sogorski, Mathias; Geisel, Theo; Priesemann, Viola

    2018-01-01

    Musical rhythms performed by humans typically show temporal fluctuations. While they have been characterized in simple rhythmic tasks, it is an open question what is the nature of temporal fluctuations, when several musicians perform music jointly in all its natural complexity. To study such fluctuations in over 100 original jazz and rock/pop recordings played with and without metronome we developed a semi-automated workflow allowing the extraction of cymbal beat onsets with millisecond precision. Analyzing the inter-beat interval (IBI) time series revealed evidence for two long-range correlated processes characterized by power laws in the IBI power spectral densities. One process dominates on short timescales (t < 8 beats) and reflects microtiming variability in the generation of single beats. The other dominates on longer timescales and reflects slow tempo variations. Whereas the latter did not show differences between musical genres (jazz vs. rock/pop), the process on short timescales showed higher variability for jazz recordings, indicating that jazz makes stronger use of microtiming fluctuations within a measure than rock/pop. Our results elucidate principles of rhythmic performance and can inspire algorithms for artificial music generation. By studying microtiming fluctuations in original music recordings, we bridge the gap between minimalistic tapping paradigms and expressive rhythmic performances.

  15. Neuromuscular strategies for the transitions between level and hill surfaces during walking

    PubMed Central

    Gottschall, Jinger S.; Nichols, T. Richard

    2011-01-01

    Despite continual fluctuations in walking surface properties, humans and animals smoothly transition between terrains in their natural surroundings. Walking transitions have the potential to influence dynamic balance in both the anterior–posterior and medial–lateral directions, thereby increasing fall risk and decreasing mobility. The goal of the current manuscript is to provide a review of the literature that pertains to the topic of surface slope transitions between level and hill surfaces, as well as report the recent findings of two experiments that focus on the neuromuscular strategies of surface slope transitions. Our results indicate that in anticipation of a change in surface slope, neuromuscular patterns during level walking prior to a hill are significantly different from the patterns during level walking without the future change in surface. Typically, the changes in muscle activity were due to co-contraction of opposing muscle groups and these changes correspond to modifications in head pitch. In addition, further experiments revealed that the neck proprioceptors may be an initial source of feedback for upcoming surface slope transitions. Together, these results illustrate that in order to safely traverse varying surfaces, transitions strides are functionally distinct from either level walking or hill walking independently. PMID:21502127

  16. Interval timing under a behavioral microscope: Dissociating motivational and timing processes in fixed-interval performance.

    PubMed

    Daniels, Carter W; Sanabria, Federico

    2017-03-01

    The distribution of latencies and interresponse times (IRTs) of rats was compared between two fixed-interval (FI) schedules of food reinforcement (FI 30 s and FI 90 s), and between two levels of food deprivation. Computational modeling revealed that latencies and IRTs were well described by mixture probability distributions embodying two-state Markov chains. Analysis of these models revealed that only a subset of latencies is sensitive to the periodicity of reinforcement, and prefeeding only reduces the size of this subset. The distribution of IRTs suggests that behavior in FI schedules is organized in bouts that lengthen and ramp up in frequency with proximity to reinforcement. Prefeeding slowed down the lengthening of bouts and increased the time between bouts. When concatenated, latency and IRT models adequately reproduced sigmoidal FI response functions. These findings suggest that behavior in FI schedules fluctuates in and out of schedule control; an account of such fluctuation suggests that timing and motivation are dissociable components of FI performance. These mixture-distribution models also provide novel insights on the motivational, associative, and timing processes expressed in FI performance. These processes may be obscured, however, when performance in timing tasks is analyzed in terms of mean response rates.

  17. Middle Tertiary stratigraphic sequences of the San Joaquin Basin, California: Chapter 6 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Johnson, Cari L.; Graham, Stephan A.

    2007-01-01

    An integrated database of outcrop studies, borehole logs, and seismic-reflection profiles is used to divide Eocene through Miocene strata of the central and southern San Joaquin Basin, California, into a framework of nine stratigraphic sequences. These third- and higher-order sequences (<3 m.y. duration) comprise the principal intervals for petroleum assessment for the basin, including key reservoir and source rock intervals. Important characteristics of each sequence are discussed, including distribution and stratigraphic relationships, sedimentary facies, regional correlation, and age relations. This higher-order stratigraphic packaging represents relatively short-term fluctuations in various forcing factors including climatic effects, changes in sediment supply, local and regional tectonism, and fluctuations in global eustatic sea level. These stratigraphic packages occur within the context of second-order stratigraphic megasequences, which mainly reflect long-term tectonic basin evolution. Despite more than a century of petroleum exploration in the San Joaquin Basin, many uncertainties remain regarding the age, correlation, and origin of the third- and higher-order sequences. Nevertheless, a sequence stratigraphic approach allows definition of key intervals based on genetic affinity rather than purely lithostratigraphic relationships, and thus is useful for reconstructing the multiphase history of this basin, as well as understanding its petroleum systems.

  18. Short-term weight change and fluctuation as risk factors for type 2 diabetes in Finnish male smokers.

    PubMed

    Kataja-Tuomola, Merja; Sundell, Jari; Männistö, Satu; Virtanen, Mikko J; Kontto, Jukka; Albanes, Demetrius; Virtamo, Jarmo

    2010-05-01

    Risk of weight change and fluctuation for type 2 diabetes was studied in a prospective study among 20,952 Finnish male smokers aged 50-69 years. Baseline data on lifestyle and medical history were collected, and height and weight measured. Weight was measured thrice after the baseline, 1 year apart. Weight change was defined as the slope of the regression line fitted to the four measurements and weight fluctuation as the root-mean-square-error deviation from this line. Incident cases of diabetes were identified from a national medication reimbursement register; 535 cases up to 9 years' follow-up. The Cox proportional hazards model served to estimate relative risk [RR, 95% confidence interval (CI)]. Weight gain and fluctuation associated with higher risk for diabetes, multivariate RR = 1.77, 95% CI 1.44-2.17, for weight gain of at least 4 kg compared with those of weight change less than 4 kg, and RR = 1.64, 95% CI 1.24-2.17 in the highest weight fluctuation quintile compared to the lowest. These RRs remained similar when weight change and fluctuation were adjusted for each other. Large weight fluctuation increased the risk of diabetes both in men who gained weight (>or=4 kg), had stable weight (+/- <4 kg), and lost weight (>or=4 kg); RR = 2.17, 95% CI 1.60-2.94, RR = 1.47, 95% CI 1.14-1.91, and RR = 2.04, 95% CI 1.47-2.83, respectively, compared to those with stable weight and moderate fluctuation. Short-term weight gain and large weight fluctuation are independent risk factors for diabetes.

  19. Gait during hydrokinesitherapy following total hip arthroplasty.

    PubMed

    Giaquinto, Salvatore; Ciotola, Elena; Margutti, Ferdinando; Valentini, Fabio

    2007-05-15

    To obtain gait parameters during hydrotherapy (HT) in patients who were referred for rehabilitation after total hip arthroprostheses. The study had a cohort prospective design. Patients who underwent primary total hip arthroplasty (THA) followed a HT rehabilitation program. Twenty-one consecutive patients were enrolled. Five of them dropped out for various reasons, independently of HT. Therefore 16 patients could be evaluated (5 men and 11 women). Sixteen age-matched healthy volunteers were the control subjects. Nine patients had a right THA and 7 a left THA. On average HT duration was 15.7 days (SD 3.8). The patients presented with a mean speed of 749 meters per hour (SD 146) at the baseline. At the last session the mean speed was 1175 meters per hour (SD 396). The mean stance duration was 1.59 s (SD 0.28) on the operated side and 1.67 (SD 0.27) on the non-operated side. By contrast, the mean swing duration was 1.02 s (SD 0.20) on the operated side and 0.95 s (SD 0.16) on the non-operated side. The differences in balance were statistically significant. The step duration was the same on both sides. At the beginning of HT the stance/swing ratio was 1.62 (SD 0.40) on the operated side, whereas it was 1.74 (SD 0.42) on the non-operated side. In the controls the ratio was 1.45. During HT both values fluctuated but the trend was toward a better coherence over time. At the beginning the mean stride length was 0.484 meters (SD 0.116) and the value became 0.628 (SD 0.131) after 15 training sessions. At the individual level, recovery occurred in a non-linear fashion, but the mean regression line had a coefficient of 27.1 and the intercept was at 560.3. The study design permits accurate definition of stride parameters during rehabilitation which allows optimization of the programme. Increase in speed and regain of balance are monitored on a daily basis and they appear as the targets of a HT programme.

  20. Complex reference values for endocrine and special chemistry biomarkers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey.

    PubMed

    Adeli, Khosrow; Higgins, Victoria; Nieuwesteeg, Michelle; Raizman, Joshua E; Chen, Yunqi; Wong, Suzy L; Blais, David

    2015-08-01

    Defining laboratory biomarker reference values in a healthy population and understanding the fluctuations in biomarker concentrations throughout life and between sexes are critical to clinical interpretation of laboratory test results in different disease states. The Canadian Health Measures Survey (CHMS) has collected blood samples and health information from the Canadian household population. In collaboration with the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER), the data have been analyzed to determine reference value distributions and reference intervals for several endocrine and special chemistry biomarkers in pediatric, adult, and geriatric age groups. CHMS collected data and blood samples from thousands of community participants aged 3 to 79 years. We used serum samples to measure 13 immunoassay-based special chemistry and endocrine markers. We assessed reference value distributions and, after excluding outliers, calculated age- and sex-specific reference intervals, along with corresponding 90% CIs, according to CLSI C28-A3 guidelines. We observed fluctuations in biomarker reference values across the pediatric, adult, and geriatric age range, with stratification required on the basis of age for all analytes. Additional sex partitions were required for apolipoprotein AI, homocysteine, ferritin, and high sensitivity C-reactive protein. The unique collaboration between CALIPER and CHMS has enabled, for the first time, a detailed examination of the changes in various immunochemical markers that occur in healthy individuals of different ages. The robust age- and sex-specific reference intervals established in this study provide insight into the complex biological changes that take place throughout development and aging and will contribute to improved clinical test interpretation. © 2015 American Association for Clinical Chemistry.

  1. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  2. Multiscaling behavior of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Jannesar, M.; Jamali, T.; Sadeghi, A.; Movahed, S. M. S.; Fesler, G.; Meyer, E.; Khoshnevisan, B.; Jafari, G. R.

    2017-06-01

    The scaling behavior of friction between rough surfaces is a well-known phenomenon. It might be asked whether such a scaling feature also exists for friction at an atomic scale despite the absence of roughness on atomically flat surfaces. Indeed, other types of fluctuations, e.g., thermal and instrumental fluctuations, become appreciable at this length scale and can lead to scaling behavior of the measured atomic-scale friction. We investigate this using the lateral force exerted on the tip of an atomic force microscope (AFM) when the tip is dragged over the clean NaCl (001) surface in ultra-high vacuum at room temperature. Here the focus is on the fluctuations of the lateral force profile rather than its saw-tooth trend; we first eliminate the trend using the singular value decomposition technique and then explore the scaling behavior of the detrended data, which contains only fluctuations, using the multifractal detrended fluctuation analysis. The results demonstrate a scaling behavior for the friction data ranging from 0.2 to 2 nm with the Hurst exponent H =0.61 ±0.02 at a 1 σ confidence interval. Moreover, the dependence of the generalized Hurst exponent, h (q ) , on the index variable q confirms the multifractal or multiscaling behavior of the nanofriction data. These results prove that fluctuation of nanofriction empirical data has a multifractal behavior which deviates from white noise.

  3. Cardio-respiratory and plasma lactate responses to exercise with low draught resistances in standardbred trotters.

    PubMed

    Gottlieb-Vedi, M; Essén-Gustavsson, B; Lindholm, A

    1996-12-01

    Five Standardbred trotters performed treadmill exercise with incrementally increasing trotting velocities for 2 min intervals in three different tests until fatigue. Each test was performed with draught loads of either 10, 20 or 30 kilopond (kp). Each trotting interval was followed by 2 min periods at a walk without draught load. Recordings were made of heart rate (HR), respiratory rate (RR), plasma lactate (PLA) and stride frequency (SF) at the end of each trotting interval. The HR increased to average values of 191 +/- 10,203 +/- 10 and 214 +/- 7 bpm and PLA increased to 3.8 +/- 0.7, 7.3 +/- 3.8 and 10.8 +/- 6.4 mmol/l at 9 m/s in the three tests, respectively. The HR response to exercise was significantly higher with increasing draught loads, and PLA was significantly higher with 30 kp compared to 10 kp draught resistance. The lowest respiratory rate was seen in the test with 30 kp loading. Peak oxygen uptake (VO2peak) was measured in a separate test on a sloped treadmill with increasing velocities without draught load and averaged 70.4 +/- 9.11/min. Muscle biopsies were taken from the gluteus muscle. Individual variations were seen in VO2peak, muscle fibre composition and HR and PLA responses to exercise. In conclusion, at a certain velocity a small increase in draught resistance from 10 to 30 kp significantly increases both the HR and PLA responses. At comparable work intensities the horses differed in circulatory and metabolic responses to exercise.

  4. Anti-dementia drugs and changes in gait: a pre-post quasi-experimental pilot study.

    PubMed

    Beauchet, Olivier; Launay, Cyrille P; Allali, Gazan; Watfa, Gilles; Gallouj, Karim; Herrmann, François R; Annweiler, Cédric

    2013-11-21

    Anti-dementia drugs may improve gait performance. No comparison between acetylcholinesterase inhibitors (CEIs) and memantine-related changes in gait variability has been reported. The objectives of this study were to 1) quantify and compare the mean values and coefficients of variation (CoV) of stride time in demented patients with Alzheimer's disease and related disorders (ADRD) before and after the use of CEIs or memantine, and in age- and gender-matched controls patients with ADRD using no anti-dementia drugs; and 2) to determine whether changes in CoV of stride time differed between CEIs or memantine. A total of 120 demented patients with mild-to-moderate ADRD were prospectively included in this pre-post quasi-experimental study with two intervention groups (43 patients taking CEIs, and 41 taking memantine) and a control group (36 age- and gender matched patients without any anti-dementia drugs). CoV of stride time and walking speed were measured with GAITRite® system while usual walking at steady state. Age, gender, number of drugs daily taken, use of psychoactive drugs, body mass index and time between the two visits were also recorded. There was no difference between groups for the time between baseline and follow-up assessments (232.9 ± 103.7 days for patients without anti-dementia drugs, 220.0 ± 67.5 days for patients with CEIs, 186.7 ± 96.2 days for patients with memantine, P = 0.062). Patients with memantine had a lower (i.e., better) CoV of stride time at follow-up assessment compared to those with CEIs (4.2 ± 2.4% versus 5.8 ± 4.2%, P = 0.010). Patients with memantine had a greater decrease in CoV of stride time compared to those with CEIs (-1.90% versus 0.93%, P = 0.010) and mixed-effects linear regressions showed that this decrease was specifically explained by memantine (P = 0.028). Our results showed that patients with ADRD and treated with memantine, but not those with CEIs, decreased their gait variability, and thus improved their gait safety (Trial registration number: NCT01315704).

  5. Transfer function analysis of the autonomic response to respiratory activity during random interval breathing

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Berger, R. D.; Saul, J. P.; Stevenson, K.; Cohen, R. J.

    1987-01-01

    We report a new method for the noninvasive characterization of the frequency response of the autonomic nervous system (ANS) in mediating fluctuations in heart rate (HR). The approach entails computation of the transfer function magnitude and phase between instantaneous lung volume and HR. Broad band fluctuations in lung volume were initiated when subjects breathed on cue to a sequence of beeps spaced randomly in time. We studied 10 subjects in both supine and standing positions. The transfer function, averaged among all the subjects, showed systematic differences between the two postures, reflecting the differing frequency responses of the sympathetic and parasympathetic divisions of the ANS.

  6. Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot

    PubMed Central

    Jayaram, Kaushik; Full, Robert J.

    2016-01-01

    Jointed exoskeletons permit rapid appendage-driven locomotion but retain the soft-bodied, shape-changing ability to explore confined environments. We challenged cockroaches with horizontal crevices smaller than a quarter of their standing body height. Cockroaches rapidly traversed crevices in 300–800 ms by compressing their body 40–60%. High-speed videography revealed crevice negotiation to be a complex, discontinuous maneuver. After traversing horizontal crevices to enter a vertically confined space, cockroaches crawled at velocities approaching 60 cm⋅s−1, despite body compression and postural changes. Running velocity, stride length, and stride period only decreased at the smallest crevice height (4 mm), whereas slipping and the probability of zigzag paths increased. To explain confined-space running performance limits, we altered ceiling and ground friction. Increased ceiling friction decreased velocity by decreasing stride length and increasing slipping. Increased ground friction resulted in velocity and stride length attaining a maximum at intermediate friction levels. These data support a model of an unexplored mode of locomotion—“body-friction legged crawling” with body drag, friction-dominated leg thrust, but no media flow as in air, water, or sand. To define the limits of body compression in confined spaces, we conducted dynamic compressive cycle tests on living animals. Exoskeletal strength allowed cockroaches to withstand forces 300 times body weight when traversing the smallest crevices and up to nearly 900 times body weight without injury. Cockroach exoskeletons provided biological inspiration for the manufacture of an origami-style, soft, legged robot that can locomote rapidly in both open and confined spaces. PMID:26858443

  7. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.

    PubMed

    Daley, Monica A; Birn-Jeffery, Aleksandra

    2018-05-22

    Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors. © 2018. Published by The Company of Biologists Ltd.

  8. Use of harmonic ratios to examine the effect of cueing strategies on gait stability in persons with Parkinson's disease.

    PubMed

    Lowry, Kristin A; Carrel, Andrew J; McIlrath, Jessica M; Smiley-Oyen, Ann L

    2010-04-01

    To determine if gait stability, as measured by harmonic ratios (HRs) derived from trunk accelerations, is improved during 3 amplitude-based cueing strategies (visual cues, lines on the floor 20% longer than preferred step length; verbal cues, experimenter saying "big step" every third; cognitive cues, participants think "big step") in people with Parkinson's disease. Gait analysis with a triaxial accelerometer. University research laboratory. A volunteer sample of persons with Parkinson's disease (N=7) (Hoehn and Yahr stages 2-3). Not applicable Gait stability was quantified by anterior-posterior (AP), vertical, and mediolateral (ML) HRs; higher ratios indicated improved gait stability. Spatiotemporal parameters assessed were walking speed, stride length, cadence, and the coefficient of variation for stride time. Of the amplitude-based cues, verbal and cognitive resulted in the largest improvements in the AP HR (P=.018) with a trend in the vertical HR as well as the largest improvements in both stride length and velocity. None of the cues positively affected stability in the ML direction. Descriptively, all participants increased speed and stride length, but only those in Hoehn and Yahr stage 2 (not Hoehn and Yahr stage 3) showed improvements in HRs. Cueing for "big steps" is effective for improving gait stability in the AP direction with modest improvements in the vertical direction, but it is not effective in the ML direction. These data support the use of trunk acceleration measures in assessing the efficacy of common therapeutic interventions. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Gait characteristics and spatio-temporal variables of climbing in bonobos (Pan paniscus).

    PubMed

    Schoonaert, Kirsten; D'Août, Kristiaan; Samuel, Diana; Talloen, Willem; Nauwelaerts, Sandra; Kivell, Tracy L; Aerts, Peter

    2016-11-01

    Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate. Our results show greater variation in footfall patterns with increasing incline, resulting in more lateral gait sequences. During climbing on arboreal inclines, smaller steps and strides but higher stride frequencies and duty factors are found compared to horizontal arboreal walking. This may facilitate better balance control and dynamic stability on the arboreal substrate. We found no gradual change in spatio-temporal variables with increasing incline; instead, the results for all inclines were clustered together. Bonobos take larger strides at lower stride frequencies and lower duty factors on a horizontal arboreal substrate than on a flat terrestrial substrate. We suggest that these changes are the result of the better grip of the grasping feet on an arboreal substrate. Speed modulation of the spatio-temporal variables is similar across substrate inclinations and between substrate types, suggesting a comparable underlying motor control. Finally, we contrast these variables of arboreal inclined climbing with those of terrestrial bipedal locomotion, and briefly discuss the results with respect to the origin of habitual bipedalism. Am. J. Primatol. 78:1165-1177, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Accelerometric comparison of the locomotor pattern of horses sedated with xylazine hydrochloride, detomidine hydrochloride, or romifidine hydrochloride.

    PubMed

    López-Sanromán, F Javier; Holmbak-Petersen, Ronald; Varela, Marta; del Alamo, Ana M; Santiago, Isabel

    2013-06-01

    To evaluate the duration of effects on movement patterns of horses after sedation with equipotent doses of xylazine hydrochloride, detomidine hydrochloride, or romifidine hydrochloride and determine whether accelerometry can be used to quantify differences among drug treatments. 6 healthy horses. Each horse was injected IV with saline (0.9% NaCl) solution (10 mL), xylazine diluted in saline solution (0.5 mg/kg), detomidine diluted in saline solution (0.01 mg/kg), or romifidine diluted in saline solution (0.04 mg/kg) in random order. A triaxial accelerometric device was used for gait assessment 15 minutes before and 5, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after each treatment. Eight variables were calculated, including speed, stride frequency, stride length, regularity, dorsoventral power, propulsive power, mediolateral power, and total power; the force of acceleration and 3 components of power were then calculated. Significant differences were evident in stride frequency and regularity between treatments with saline solution and each α2-adrenoceptor agonist drug; in speed, dorsoventral power, propulsive power, total power, and force values between treatments with saline solution and detomidine or romifidine; and in mediolateral power between treatments with saline solution and detomidine. Stride length did not differ among treatments. Accelerometric evaluation of horses administered α2-adrenoceptor agonist drugs revealed more prolonged sedative effects of romifidine, compared with effects of xylazine or detomidine. Accelerometry could be useful in assessing the effects of other sedatives and analgesics. Accelerometric data may be helpful in drug selection for situations in which a horse's balance and coordination are important.

  11. Strategy quantification using body worn inertial sensors in a reactive agility task.

    PubMed

    Eke, Chika U; Cain, Stephen M; Stirling, Leia A

    2017-11-07

    Agility performance is often evaluated using time-based metrics, which provide little information about which factors aid or limit success. The objective of this study was to better understand agility strategy by identifying biomechanical metrics that were sensitive to performance speed, which were calculated with data from an array of body-worn inertial sensors. Five metrics were defined (normalized number of foot contacts, stride length variance, arm swing variance, mean normalized stride frequency, and number of body rotations) that corresponded to agility terms defined by experts working in athletic, clinical, and military environments. Eighteen participants donned 13 sensors to complete a reactive agility task, which involved navigating a set of cones in response to a vocal cue. Participants were grouped into fast, medium, and slow performance based on their completion time. Participants in the fast group had the smallest number of foot contacts (normalizing by height), highest stride length variance (normalizing by height), highest forearm angular velocity variance, and highest stride frequency (normalizing by height). The number of body rotations was not sensitive to speed and may have been determined by hand and foot dominance while completing the agility task. The results of this study have the potential to inform the development of a composite agility score constructed from the list of significant metrics. By quantifying the agility terms previously defined by expert evaluators through an agility score, this study can assist in strategy development for training and rehabilitation across athletic, clinical, and military domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Gait dynamics in Pisa syndrome and Camptocormia: The role of stride length and hip kinematics.

    PubMed

    Tramonti, C; Di Martino, S; Unti, E; Frosini, D; Bonuccelli, U; Rossi, B; Ceravolo, R; Chisari, C

    2017-09-01

    This is an observational cross-sectional study evaluating gait dynamics in patients with Parkinson's Disease (PD) and severe postural deformities, PD without axial deviations and healthy subjects. Ten PS individuals with Pisa syndrome (PS) and nine subjects with Camptocormia (CC) performed 3-D Gait Analysis and were evaluated with walking and balance scales. Correlations with clinical and functional scales were investigated. Spatio-temporal and kinematic data were compared to ten PD subjects without postural deformities (PP) and ten healthy matched individuals (CG). Data obtained showed decreased walking velocity, stride and step length in PP, PS and CC groups compared to controls. The correlation analysis showed that stride and step length were associated with reduced functional abilities and disease severity in PS and CC groups. Kinematic data revealed marked reduction in range of movements (ROMs) at all lower-extremity joints in PS group. While, in CC group the main differences were pronounced in hip and knee joints. PS and CC groups presented a more pronounced reduction in hip articular excursion compared to PP subjects, revealing an increased hip flexion pattern during gait cycle. Moreover, the increased hip and knee flexion pattern adversely affected functional performance during walking tests. Results obtained provide evidence that step length, along with stride length, can be proposed as simple and clear indicators of disease severity and reduced functional abilities. The reduction of ROMs at hip joint represented an important mechanism contributing to decreased walking velocity, balance impairment and reduced gait performance in PD patients with postural deformities. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Factors Influencing Obstacle Crossing Performance in Patients with Parkinson's Disease

    PubMed Central

    Liao, Ying-Yi; Yang, Yea-Ru; Wu, Yih-Ru; Wang, Ray-Yau

    2014-01-01

    Background Tripping over obstacles is the major cause of falls in community-dwelling patients with Parkinson's disease (PD). Understanding the factors associated with the obstacle crossing behavior may help to develop possible training programs for crossing performance. This study aimed to identify the relationships and important factors determining obstacle crossing performance in patients with PD. Methods Forty-two idiopathic patients with PD (Hoehn and Yahr stages I to III) participated in this study. Obstacle crossing performance was recorded by the Liberty system, a three-dimensional motion capture device. Maximal isometric strength of the lower extremity was measured by a handheld dynamometer. Dynamic balance and sensory integration ability were assessed using the Balance Master system. Movement velocity (MV), maximal excursion (ME), and directional control (DC) were obtained during the limits of stability test to quantify dynamic balance. The sum of sensory organization test (SOT) scores was used to quantify sensory organization ability. Results Both crossing stride length and stride velocity correlated significantly with lower extremity muscle strength, dynamic balance control (forward and sideward), and sum of SOT scores. From the regression model, forward DC and ankle dorsiflexor strength were identified as two major determinants for crossing performance (R2 = .37 to.41 for the crossing stride length, R2 = .43 to.44 for the crossing stride velocity). Conclusions Lower extremity muscle strength, dynamic balance control and sensory integration ability significantly influence obstacle crossing performance. We suggest an emphasis on muscle strengthening exercises (especially ankle dorsiflexors), balance training (especially forward DC), and sensory integration training to improve obstacle crossing performance in patients with PD. PMID:24454723

  14. The adaptation of limb kinematics to increasing walking speeds in freely moving mice 129/Sv and C57BL/6.

    PubMed

    Serradj, Nadjet; Jamon, Marc

    2009-07-19

    The kinematics of locomotion was analyzed in two strains of great importance for the creation of mutated mice (C56BL/6 and 129/Sv). Different behavioral situations were used to trigger sequences of movement covering the whole range of velocities in the mice, and the variations of kinematic parameters were analyzed in relation with velocity. Both stride frequency and stride length contributed to the moving speed, but stride frequency was found to be the main contributor to the speed increase. A trot-gallop transition was detected at speed about 70 cm/s, in relation with a sharp shift in limb coordination. The results of this study were consistent with pieces of information previously published concerning the gait analyses of other strains, and provided an integrative view of the basic motor pattern of mice. On the other hand some qualitative differences were found in the movement characteristics of the two strains. The stride frequency showed a higher contribution to speed in 129/Sv than in C57BL/6. In addition, 129/Sv showed a phase shift in the forelimb and hindlimb, and a different position of the foot during the stance time that revealed a different gait and body position during walking. Overall, 129/Sv moved at a slower speed than C57BL/6 in any behavioral situation. This difference was related to a basal lower level of motor activity. The possibility that an alteration in the dopamine circuit was responsible for the different movement pattern in 129/Sv is discussed.

  15. Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot.

    PubMed

    Jayaram, Kaushik; Full, Robert J

    2016-02-23

    Jointed exoskeletons permit rapid appendage-driven locomotion but retain the soft-bodied, shape-changing ability to explore confined environments. We challenged cockroaches with horizontal crevices smaller than a quarter of their standing body height. Cockroaches rapidly traversed crevices in 300-800 ms by compressing their body 40-60%. High-speed videography revealed crevice negotiation to be a complex, discontinuous maneuver. After traversing horizontal crevices to enter a vertically confined space, cockroaches crawled at velocities approaching 60 cm⋅s(-1), despite body compression and postural changes. Running velocity, stride length, and stride period only decreased at the smallest crevice height (4 mm), whereas slipping and the probability of zigzag paths increased. To explain confined-space running performance limits, we altered ceiling and ground friction. Increased ceiling friction decreased velocity by decreasing stride length and increasing slipping. Increased ground friction resulted in velocity and stride length attaining a maximum at intermediate friction levels. These data support a model of an unexplored mode of locomotion--"body-friction legged crawling" with body drag, friction-dominated leg thrust, but no media flow as in air, water, or sand. To define the limits of body compression in confined spaces, we conducted dynamic compressive cycle tests on living animals. Exoskeletal strength allowed cockroaches to withstand forces 300 times body weight when traversing the smallest crevices and up to nearly 900 times body weight without injury. Cockroach exoskeletons provided biological inspiration for the manufacture of an origami-style, soft, legged robot that can locomote rapidly in both open and confined spaces.

  16. Reliability of segmental accelerations measured using a new wireless gait analysis system.

    PubMed

    Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod

    2006-01-01

    The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.

  17. Stride dynamics, gait variability and prospective falls risk in active community dwelling older women.

    PubMed

    Paterson, Kade; Hill, Keith; Lythgo, Noel

    2011-02-01

    Measures of walking instability such as stride dynamics and gait variability have been shown to identify future fallers in older adult populations with gait limitations or mobility disorders. This study investigated whether measures of walking instability can predict future fallers (over a prospective 12 month period) in a group of healthy and active older women. Ninety-seven healthy active women aged between 55 and 90 years walked for 7 min around a continuous walking circuit. Gait data recorded by a GAITRite(®) walkway and foot-mounted accelerometers were used to calculate measures of stride dynamics and gait variability. The participant's physical function and balance were assessed. Fall incidence was monitored over the following 12 months. Inter-limb differences (p≤0.04) in stride dynamics were found for fallers (one or more falls) aged over 70 years, and multiple fallers (two or more falls) aged over 55 years, but not in non-fallers or a combined group of single and non-fallers. No group differences were found in the measures of physical function, balance or gait, including variability. Additionally, no gait variable predicted falls. Reduced coordination of inter-limb dynamics was found in active healthy older fallers and multiple fallers despite no difference in other measures of intrinsic falls risk. Evaluating inter-limb dynamics may be a clinically sensitive technique to detect early gait instability and falls risk in high functioning older adults, prior to change in other measures of physical function, balance and gait. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  19. Fluctuation relation for heat exchange in Markovian open quantum systems

    NASA Astrophysics Data System (ADS)

    Ramezani, M.; Golshani, M.; Rezakhani, A. T.

    2018-04-01

    A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.

  20. Fluctuation relation for heat exchange in Markovian open quantum systems.

    PubMed

    Ramezani, M; Golshani, M; Rezakhani, A T

    2018-04-01

    A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.

  1. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak, E-mail: Lorin_Matthews@baylor.edu

    2013-10-20

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface ofmore » an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.« less

  2. Communication: Mechanochemical fluctuation theorem and thermodynamics of self-phoretic motors

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Kapral, Raymond

    2017-12-01

    Microscopic dynamical aspects of the propulsion of nanomotors by self-phoretic mechanisms are considered. Propulsion by self-diffusiophoresis relies on the mechanochemical coupling between the fluid velocity field and the concentration fields induced by asymmetric catalytic reactions on the motor surface. The consistency between the thermodynamics of this coupling and the microscopic reversibility of the underlying molecular dynamics is investigated. For this purpose, a mechanochemical fluctuation theorem for the joint probability to find the motor at position r after n reactive events have occurred during the time interval t is derived, starting from coupled Langevin equations for the translational, rotational, and chemical fluctuations of self-phoretic motors. An important result that follows from this analysis is the identification of an effect that is reciprocal to self-propulsion by diffusiophoresis, which leads to a dependence of the reaction rate on the value of an externally applied force.

  3. Identification of local myocardial repolarization time by bipolar electrode potential.

    PubMed

    Namba, Tsunetoyo; Todo, Takahiro; Yao, Takenori; Ashihara, Takashi; Haraguchi, Ryo; Nakazawa, Kazuo; Ikeda, Takanori; Ohe, Tohru

    2007-01-01

    The aim of this study was to investigate whether bipolar electrode potentials (BEPs) reflect local myocardial repolarization dynamics, using computer simulation. Simulated action potential and BEP mapping of myocardial tissue during fibrillation was performed. The BEP was modified to make all the fluctuations have the same polarity. Then, the modified BEP (mBEP) was transformed to "dynamic relative amplitude" (DRA) designed to make all the fluctuations have the similar amplitude. The repolarization end point corresponded to the end of the repolarization-related small fluctuation that clearly appeared in the DRA of mBEP. Using the DRA of mBEP, we could reproduce the repolarization dynamics in the myocardial tissue during fibrillation. The BEP may facilitate identifying the repolarization time. Furthermore, BEP mapping has the possibility that it would be available for evaluating repolarization behavior in myocardial tissue even during fibrillation. The accuracy of activation-recovery interval was also reconfirmed.

  4. Recurrence interval analysis of trading volumes

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Zhou, Wei-Xing

    2010-06-01

    We study the statistical properties of the recurrence intervals τ between successive trading volumes exceeding a certain threshold q . The recurrence interval analysis is carried out for the 20 liquid Chinese stocks covering a period from January 2000 to May 2009, and two Chinese indices from January 2003 to April 2009. Similar to the recurrence interval distribution of the price returns, the tail of the recurrence interval distribution of the trading volumes follows a power-law scaling, and the results are verified by the goodness-of-fit tests using the Kolmogorov-Smirnov (KS) statistic, the weighted KS statistic and the Cramér-von Mises criterion. The measurements of the conditional probability distribution and the detrended fluctuation function show that both short-term and long-term memory effects exist in the recurrence intervals between trading volumes. We further study the relationship between trading volumes and price returns based on the recurrence interval analysis method. It is found that large trading volumes are more likely to occur following large price returns, and the comovement between trading volumes and price returns is more pronounced for large trading volumes.

  5. Recurrence interval analysis of trading volumes.

    PubMed

    Ren, Fei; Zhou, Wei-Xing

    2010-06-01

    We study the statistical properties of the recurrence intervals τ between successive trading volumes exceeding a certain threshold q. The recurrence interval analysis is carried out for the 20 liquid Chinese stocks covering a period from January 2000 to May 2009, and two Chinese indices from January 2003 to April 2009. Similar to the recurrence interval distribution of the price returns, the tail of the recurrence interval distribution of the trading volumes follows a power-law scaling, and the results are verified by the goodness-of-fit tests using the Kolmogorov-Smirnov (KS) statistic, the weighted KS statistic and the Cramér-von Mises criterion. The measurements of the conditional probability distribution and the detrended fluctuation function show that both short-term and long-term memory effects exist in the recurrence intervals between trading volumes. We further study the relationship between trading volumes and price returns based on the recurrence interval analysis method. It is found that large trading volumes are more likely to occur following large price returns, and the comovement between trading volumes and price returns is more pronounced for large trading volumes.

  6. Three-dimensional kinematics of the lower limbs during forward ice hockey skating.

    PubMed

    Upjohn, Tegan; Turcotte, René; Pearsall, David J; Loh, Jonathan

    2008-05-01

    The objectives of the study were to describe lower limb kinematics in three dimensions during the forward skating stride in hockey players and to contrast skating techniques between low- and high-calibre skaters. Participant motions were recorded with four synchronized digital video cameras while wearing reflective marker triads on the thighs, shanks, and skates. Participants skated on a specialized treadmill with a polyethylene slat bed at a self-selected speed for 1 min. Each participant completed three 1-min skating trials separated by 5 min of rest. Joint and limb segment angles were calculated within the local (anatomical) and global reference planes. Similar gross movement patterns and stride rates were observed; however, high-calibre participants showed a greater range and rate of joint motion in both the sagittal and frontal planes, contributing to greater stride length for high-calibre players. Furthermore, consequent postural differences led to greater lateral excursion during the power stroke in high-calibre skaters. In conclusion, specific kinematic differences in both joint and limb segment angle movement patterns were observed between low- and high-calibre skaters.

  7. The Effects of Walking Workstations on Biomechanical Performance.

    PubMed

    Grindle, Daniel M; Baker, Lauren; Furr, Mike; Puterio, Tim; Knarr, Brian; Higginson, Jill

    2018-04-03

    Prolonged sitting has been associated with negative health effects. Walking workstations have become increasingly popular in the workplace. There is a lack of research on the biomechanical effect of walking workstations. This study analyzed whether walking while working alters normal gait patterns. Nine participants completed four walking trials at 2.4 km·h -1 and 4.0 km·h -1 : baseline walking condition, walking while performing a math task, a reading task, and a typing task. Biomechanical data were collected using standard motion capture procedures. The first maximum vertical ground reaction force, stride width, stride length, minimum toe clearance, peak swing hip abduction and flexion angles, peak swing and stance ankle dorsiflexion and knee flexion angles were analyzed. Differences between conditions were evaluated using analysis of variance tests with Bonferroni correction (p ≤ 0.05). Stride width decreased during the reading task at both speeds. Although other parameters exhibited significant differences when multitasking, these changes were within the normal range of gait variability. It appears that for short periods, walking workstations do not negatively impact gait in healthy young adults.

  8. Control of voluntary and optogenetically perturbed locomotion by spike rate and timing of neurons of the mouse cerebellar nuclei

    PubMed Central

    Sarnaik, Rashmi

    2018-01-01

    Neurons of the cerebellar nuclei (CbN), which generate cerebellar output, are inhibited by Purkinje cells. With extracellular recordings during voluntary locomotion in head-fixed mice, we tested how the rate and coherence of inhibition influence CbN cell firing and well-practiced movements. Firing rates of Purkinje and CbN cells were modulated systematically through the stride cycle (~200–300 ms). Optogenetically stimulating ChR2-expressing Purkinje cells with light steps or trains evoked either asynchronous or synchronous inhibition of CbN cells. Steps slowed CbN firing. Trains suppressed CbN cell firing less effectively, but consistently altered millisecond-scale spike timing. Steps or trains that perturbed stride-related modulation of CbN cell firing rates correlated well with irregularities of movement, suggesting that ongoing locomotion is sensitive to alterations in modulated CbN cell firing. Unperturbed locomotion continued more often during trains than steps, however, suggesting that stride-related modulation of CbN spiking is less readily disrupted by synchronous than asynchronous inhibition. PMID:29659351

  9. Reference data for normal subjects obtained with an accelerometric device.

    PubMed

    Auvinet, Bernard; Berrut, Gilles; Touzard, Claude; Moutel, Laurent; Collet, Nadine; Chaleil, Denis; Barrey, Eric

    2002-10-01

    We collected gait analysis data for 282 healthy adults and elderly people (144 women and 138 men aged 20-98) using an accelerometric device, whose reproducibility (intra-tester and inter-testers) has been validated for gait studies. The subjects walked at their own speed along a corridor (40 m). Stride frequency (SF) (after correction for height), step symmetry (Sym), stride regularity (Reg), and vertical harmonic (slope) were all independent of age or gender. The median-lateral harmonic (slope) (MSH) was influenced by gender, but not by age. Other variables (walking speed, stride length (SL), cranial-caudal activity and raw accelerations at heel contact, mid-stance and initial push-off) were dependent on gender and age. They were higher in men than in women, and began to decrease during the sixth decade in men and the seventh decade in women. The raw acceleration at foot flat was independent of gender but was influenced by age. This accelerometric device is easy to use and requires no specialized equipment and could be used to analyze walking in clinical practice.

  10. Gait analysis in demented subjects: Interests and perspectives

    PubMed Central

    Beauchet, Olivier; Allali, Gilles; Berrut, Gilles; Hommet, Caroline; Dubost, Véronique; Assal, Frédéric

    2008-01-01

    Gait disorders are more prevalent in dementia than in normal aging and are related to the severity of cognitive decline. Dementia-related gait changes (DRGC) mainly include decrease in walking speed provoked by a decrease in stride length and an increase in support phase. More recently, dual-task related changes in gait were found in Alzheimer’s disease (AD) and non-Alzheimer dementia, even at an early stage. An increase in stride-to-stride variability while usual walking and dual-tasking has been shown to be more specific and sensitive than any change in mean value in subjects with dementia. Those data show that DRGC are not only associated to motor disorders but also to problem with central processing of information and highlight that dysfunction of temporal and frontal lobe may in part explain gait impairment among demented subjects. Gait assessment, and more particularly dual-task analysis, is therefore crucial in early diagnosis of dementia and/or related syndromes in the elderly. Moreover, dual-task disturbances could be a specific marker of falling at a pre-dementia stage. PMID:18728766

  11. Simultaneous Global Positioning System observations of equatorial scintillations and total electron content fluctuations

    NASA Astrophysics Data System (ADS)

    Beach, Theodore L.; Kintner, Paul M.

    1999-10-01

    One aspect of the Global Positioning System (GPS) is the potential to conduct geophysical research, and worldwide networks of GPS receivers have been established to exploit this potential. Several research groups have begun using this global GPS data to study ionospheric total electron content (TEC) variations, also referred to as GPS phase fluctuations, as surrogates for ionospheric scintillations. This paper investigates the relationship between GPS amplitude scintillations and TEC variations for the same line of sight using observations from Ancón, Peru. These observations were taken under equatorial spread F conditions for three nights in April 1997. As expected, only when the spectrum of TEC fluctuations includes significant power at the Fresnel scale do scintillations appear. We also find that when the TEC fluctuation spectrum includes the Fresnel scale, the S4 scintillation index is roughly proportional to measures of TEC fluctuation for the weak scintillations observed. The proportionality constant varies from night to night, however, casting doubt on the ability to predict GPS S4 successfully from TEC fluctuation data alone. We also present a simple theoretical phase screen model and show that if a relationship between TEC fluctuation measures and S4 exists, that relationship depends on the power spectrum of phase variations at the screen. Unfortunately, the available TEC data, at 30 s per sample (with some aliasing apparently permitted), offer limited spectral information. A preliminary comparison of 1 s/sample data with the same data decimated to a 30 s/sample interval suggests, however, that the level of successful S4 prediction, based on TEC fluctuation measures alone, is comparable at either sample rate.

  12. Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: evidence for hydraulic lift.

    PubMed

    Ishikawa, C Millikin; Bledsoe, C S

    2000-12-01

    In a 3-year study, seasonal and daily soil water fluctuations in a California blue oak woodland were investigated by measuring soil water potential (Ψ s ) at hourly intervals. Soil water potential remained relatively high well into the annual summer drought, with values above -0.5 MPa until June even in a dry year. As drought progressed, Ψ s (at 25, 50, 75, and 100 cm depth) decreased to less than -3 MPa, providing evidence for continued blue oak root activity throughout the summer. We observed diurnal Ψ s fluctuations (gradual increase at night and rapid decrease during daytime) characteristic of hydraulic lift, a process by which plant roots redistribute water from wet to dry soil layers. These diurnal fluctuations were observed at all four soil depths and began to appear when Ψ s reached approximately -0.3 MPa. When Ψ s reached approximately -3 MPa, fluctuations became "offset" from those typical of hydraulic lift. These offset fluctuations (apparent at low water potentials when temperature fluctuations were large) closely followed diurnal fluctuations in soil temperature. We propose that these offset patterns resulted from a combination of hydraulic lift cessation and an over-correction for temperature in the model used to calculate Ψ s from raw sensor data. The appearance and disappearance of hydraulic lift fluctuations seemed to depend on Ψ s . While soil temperatures and dates at which hydraulic lift appeared (and disappeared) were significantly different between wet and dry years, Ψ s values associated with hydraulic lift appearance were not significantly different. Hydraulic lift occurred too late in summer to benefit annual forage grasses. However, water released by blue oak trees at night could slow the rate of soil water depletion and extend blue oaks' growing season.

  13. Correlated microtiming deviations in jazz and rock music

    PubMed Central

    Sogorski, Mathias; Geisel, Theo

    2018-01-01

    Musical rhythms performed by humans typically show temporal fluctuations. While they have been characterized in simple rhythmic tasks, it is an open question what is the nature of temporal fluctuations, when several musicians perform music jointly in all its natural complexity. To study such fluctuations in over 100 original jazz and rock/pop recordings played with and without metronome we developed a semi-automated workflow allowing the extraction of cymbal beat onsets with millisecond precision. Analyzing the inter-beat interval (IBI) time series revealed evidence for two long-range correlated processes characterized by power laws in the IBI power spectral densities. One process dominates on short timescales (t < 8 beats) and reflects microtiming variability in the generation of single beats. The other dominates on longer timescales and reflects slow tempo variations. Whereas the latter did not show differences between musical genres (jazz vs. rock/pop), the process on short timescales showed higher variability for jazz recordings, indicating that jazz makes stronger use of microtiming fluctuations within a measure than rock/pop. Our results elucidate principles of rhythmic performance and can inspire algorithms for artificial music generation. By studying microtiming fluctuations in original music recordings, we bridge the gap between minimalistic tapping paradigms and expressive rhythmic performances. PMID:29364920

  14. Conserved charge fluctuations using the D measure in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Netrakanti, P. K.; Garg, P.

    2017-05-01

    We study the net-charge fluctuation D -measure variable, in high-energy heavy-ion collisions in heavy-ion jet interaction generator (HIJING), ultrarelativistic quantum molecular dynamics (UrQMD), and hadron resonance gas (HRG) models for various center-of-mass energies (√{sNN}). The effects of kinematic acceptance and resonance decay, in the pseudorapidity acceptance interval (Δ η ) and lower transverse momentum (pTmin) threshold, on fluctuation measures are discussed. A strong dependence of D with the Δ η in HIJING and UrQMD models is observed as opposed to results obtained from the HRG model. The dissipation of fluctuation signal is estimated by fitting the D measure as a function of the Δ η . An extrapolated function for higher Δ η values at lower √{sNN} is different from the results obtained from models. Particle species dependence of D and the effect of the pTmin selection threshold are discussed in HIJING and HRG models. The comparison of D , at midrapidity, of net-charge fluctuations at various √{sNN} obtained from the models with the data from the A Large Ion Collider Experiment (ALICE) experiment is discussed. The results from the present paper as a function of Δ η and √{sNN} will provide a baseline for comparison to experimental measurements.

  15. Easily configured real-time CPOE Pick Off Tool supporting focused clinical research and quality improvement.

    PubMed

    Rosenbaum, Benjamin P; Silkin, Nikolay; Miller, Randolph A

    2014-01-01

    Real-time alerting systems typically warn providers about abnormal laboratory results or medication interactions. For more complex tasks, institutions create site-wide 'data warehouses' to support quality audits and longitudinal research. Sophisticated systems like i2b2 or Stanford's STRIDE utilize data warehouses to identify cohorts for research and quality monitoring. However, substantial resources are required to install and maintain such systems. For more modest goals, an organization desiring merely to identify patients with 'isolation' orders, or to determine patients' eligibility for clinical trials, may adopt a simpler, limited approach based on processing the output of one clinical system, and not a data warehouse. We describe a limited, order-entry-based, real-time 'pick off' tool, utilizing public domain software (PHP, MySQL). Through a web interface the tool assists users in constructing complex order-related queries and auto-generates corresponding database queries that can be executed at recurring intervals. We describe successful application of the tool for research and quality monitoring.

  16. Fractal scaling analysis of groundwater dynamics in confined aquifers

    NASA Astrophysics Data System (ADS)

    Tu, Tongbi; Ercan, Ali; Kavvas, M. Levent

    2017-10-01

    Groundwater closely interacts with surface water and even climate systems in most hydroclimatic settings. Fractal scaling analysis of groundwater dynamics is of significance in modeling hydrological processes by considering potential temporal long-range dependence and scaling crossovers in the groundwater level fluctuations. In this study, it is demonstrated that the groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior. Detrended fluctuation analysis (DFA) was utilized to quantify the monofractality, and multifractal detrended fluctuation analysis (MF-DFA) and multiscale multifractal analysis (MMA) were employed to examine the multifractal behavior. The DFA results indicated that fractals exist in groundwater level time series, and it was shown that the estimated Hurst exponent is closely dependent on the length and specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist, which may be partially due to a broad probability density distribution with infinite moments. Furthermore, it is demonstrated that the underlying distribution of groundwater level fluctuations exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics depending on the site characteristics. However, fractional Brownian motion (fBm), which has been identified as an appropriate model to characterize groundwater level fluctuation, is Gaussian with finite moments. Therefore, fBm may be inadequate for the description of physical processes with infinite moments, such as the groundwater level fluctuations in this study. It is concluded that there is a need for generalized governing equations of groundwater flow processes that can model both the long-memory behavior and the Brownian finite-memory behavior.

  17. Intermittent carbonate sedimentation in the equatoral Indian Ocean: fluctuations of the Eocene CCD?

    NASA Astrophysics Data System (ADS)

    Mitchison, F.; Kachovich, S.; Backman, J.; Pike, J.

    2017-12-01

    IODP Expedition 362 recently drilled from the sea floor to oceanic basement in the eastern equatorial Indian Ocean at Site U1480G (3°N, 91°E, water depth 4148 m). Beneath the thick ( 1250 m) predominantly siliciclastic Nicobar Fan succession, a condensed ( 10 m) middle Eocene pelagic interval displayed striking decimetre-scale banding, alternating between calcareous oozes and darker clays. We investigate whether deposition of the calcareous sediments was associated with periodic global carbonate accumulation events previously documented in the Equatorial Pacific and Atlantic Oceans, linked to oscillations of the carbonate compensation depth (CCD). We present high-resolution geochemical records (carbonate, organic carbon, bulk carbonate stable isotopes) and scanning electron microscope micro-element maps through several of the calcareous to clay transitions, as well as microfossil assemblages and new biostratigraphic constraints for the interval. Our data will reveal whether the banded sediments represent fluctuations of the CCD, and whether the CCD was likely responding to global (e.g. changes in pCO2) or local (e.g. local changes in calcareous plankton productivity) processes.

  18. Benchmark of multi-phase method for the computation of fast ion distributions in a tokamak plasma in the presence of low-amplitude resonant MHD activity

    NASA Astrophysics Data System (ADS)

    Bierwage, A.; Todo, Y.

    2017-11-01

    The transport of fast ions in a beam-driven JT-60U tokamak plasma subject to resonant magnetohydrodynamic (MHD) mode activity is simulated using the so-called multi-phase method, where 4 ms intervals of classical Monte-Carlo simulations (without MHD) are interlaced with 1 ms intervals of hybrid simulations (with MHD). The multi-phase simulation results are compared to results obtained with continuous hybrid simulations, which were recently validated against experimental data (Bierwage et al., 2017). It is shown that the multi-phase method, in spite of causing significant overshoots in the MHD fluctuation amplitudes, accurately reproduces the frequencies and positions of the dominant resonant modes, as well as the spatial profile and velocity distribution of the fast ions, while consuming only a fraction of the computation time required by the continuous hybrid simulation. The present paper is limited to low-amplitude fluctuations consisting of a few long-wavelength modes that interact only weakly with each other. The success of this benchmark study paves the way for applying the multi-phase method to the simulation of Abrupt Large-amplitude Events (ALE), which were seen in the same JT-60U experiments but at larger time intervals. Possible implications for the construction of reduced models for fast ion transport are discussed.

  19. Widespread cardiovascular autonomic dysfunction in primary amyloidosis: does spontaneous hyperventilation have a compensatory role against postural hypotension?

    PubMed Central

    Bernardi, L; Passino, C; Porta, C; Anesi, E; Palladini, G; Merlini, G

    2002-01-01

    Objective: To investigate the possible causes of abnormal blood pressure control in light chain related (primary, AL) amyloidosis. Design: Cardiovascular, autonomic, and respiratory response to passive tilting were investigated in 51 patients with primary amyloidosis (mean (SEM) age 56 (2) years) and in 20 age matched controls. Spontaneous fluctuations in RR interval, respiration, end tidal carbon dioxide, blood pressure, and skin microcirculation were recorded during supine rest and with tilting. The values were subjected to spectral analysis to assess baroreflex sensitivity and the autonomic modulation of cardiac and vascular responses. Setting: Tertiary referral centre. Results: Autonomic modulation of the heart and blood pressure was nearly absent in the patients with amyloidosis: thus baroreflex sensitivity and the low frequency (0.1 Hz) fluctuations in all cardiovascular signals were severely reduced (p < 0.01 or more), as were respiratory fluctuations in the RR interval, and no change was observed upon tilting. Despite reduced autonomic modulation, blood pressure remained relatively stable in the amyloid group from supine to tilting. End tidal carbon dioxide was reduced in the amyloid patients (p < 0.001) indicating persistent hyperventilation; the breathing rate correlated inversely with the fall in blood pressure on tilting (p < 0.05). Conclusions: In primary amyloidosis, pronounced abnormalities in arterial baroreflexes and cardiovascular autonomic modulation to the heart and the vessels may be partly compensated for by hyperventilation at a slow breathing rate. PMID:12433892

  20. Mono Lake excursion recorded in sediment of the Santa Clara Valley, California

    USGS Publications Warehouse

    Mankinen, Edward A.; Wentworth, Carl M.

    2004-01-01

    Two intervals recording anomalous paleomagnetic inclinations were encountered in the top 40 meters of research drill hole CCOC in the Santa Clara Valley, California. The younger of these two intervals has an age of 28,090 ± 330 radiocarbon years B.P. (calibrated age ∼32.8 ka). This age is in excellent agreement with the latest estimate for the Mono Lake excursion at the type locality and confirms that the excursion has been recorded by sediment in the San Francisco Bay region. The age of an anomalous inclination change below the Mono Lake excursion was not directly determined, but estimates of sedimentation rates indicate that the geomagnetic behavior it represents most likely occurred during the Mono Lake/Laschamp time interval (∼45–28 ka). If true, it may represent one of several recurring fluctuations of magnetic inclination during an interval of a weak geomagnetic dipole, behavior noted in other studies in the region.

  1. Effects of general fatigue induced by incremental maximal exercise test on gait stability and variability of healthy young subjects.

    PubMed

    Vieira, Marcus Fraga; de Sá E Souza, Gustavo Souto; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa; Andrade, Adriano O

    2016-10-01

    The purpose of this study was to determine whether general fatigue induced by incremental maximal exercise test (IMET) affects gait stability and variability in healthy subjects. Twenty-two young healthy male subjects walked in a treadmill at preferred walking speed for 4min prior (PreT) the test, which was followed by three series of 4min of walking with 4min of rest among them. Gait variability was assessed using walk ratio (WR), calculated as step length normalized by step frequency, root mean square (RMSratio) of trunk acceleration, standard deviation of medial-lateral trunk acceleration between strides (VARML), coefficient of variation of step frequency (SFCV), length (SLCV) and width (SWCV). Gait stability was assessed using margin of stability (MoS) and local dynamic stability (λs). VARML, SFCV, SLCV and SWCV increased after the test indicating an increase in gait variability. MoS decreased and λs increased after the test, indicating a decrease in gait stability. All variables showed a trend to return to PreT values, but the 20-min post-test interval appears not to be enough for a complete recovery. The results showed that general fatigue induced by IMET alters negatively the gait, and an interval of at least 20min should be considered for injury prevention in tasks with similar demands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Scale invariance in biophysics

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene

    2000-06-01

    In this general talk, we offer an overview of some problems of interest to biophysicists, medical physicists, and econophysicists. These include DNA sequences, brain plaques in Alzheimer patients, heartbeat intervals, and time series giving price fluctuations in economics. These problems have the common feature that they exhibit features that appear to be scale invariant. Particularly vexing is the problem that some of these scale invariant phenomena are not stationary-their statistical properties vary from one time interval to the next or form one position to the next. We will discuss methods, such as wavelet methods and multifractal methods, to cope with these problems. .

  3. A Latest Glacial and Holocene Record From Medicine Lake, Siskiyou County, California: Preliminary Diatom, Pollen, and Sediment Data

    NASA Astrophysics Data System (ADS)

    Starratt, S. W.; Barron, J. A.; Kneeshaw, T.; Phillips, L.; Lowenstern, J.; Wanket, J. A.

    2002-12-01

    Medicine Lake is a small (165 ha), relatively shallow (average 7.3 m), medium- altitude (2,036 m) lake located within the summit caldera of Medicine Lake volcano, a dormant Quaternary shield volcano located in the southern Cascade Range. During September 1999 and 2000, high-resolution bathymetry, seismic-reflection profiles, and sediment cores were collected from the lake. Twenty six samples from core B100NC-1 (water depth 12.6 m; length 226 cm) were analyzed for physical properties, sediment grain size, diatoms, pollen, and total organic carbon (TOC). Using both 14C (AMS) dating and tephrochronology, the sediments at the bottom of the core are estimated to be 11,000 cal yr B.P., thus yielding an estimated average sedimentation rate of about 21 cm/1,000 yr. The lowermost part of the core (226 cm - ~200 cm) records the transition from glacial to interglacial conditions. During the period from about 11,000-7,200 cal yr B.P., lake level fluctuated between deeper oligotrophic conditions with a diatom flora dominated by Cyclotella spp. and shallower intervals with a diverse benthic flora. The relative low abundance (10-15%) of Abies (fir) pollen and relative high abundance (30-40%) of Artemesia (sagebrush) pollen in this interval suggest drier than present-day conditions. The lowest part of this interval (226 cm - 210 cm) is almost devoid of Cyclotella and may represent an ice-covered lake in which only a small benthic flora could exist around the margins of the lake where light penetration was the greatest. The sediments in this interval are relatively low in TOC and are dominated by glacial flour. From about 7,200 cal yr B.P. to the present, conditions have fluctuated between higher lake levels (three intervals) that are dominated by Cyclotella with a reduced number and diversity of benthic taxa, and lower lake levels (two intervals) during which the abundances of Cyclotella decrease to less than 10%. Relative values of Abies and Pinus (pine) pollen are higher during high lake levels, whereas pollen of aquatic taxa (primarily Isoetes [quillwort]) increases in significance at lower lake levels. Total organic carbon is higher during high stands and lower during low stands. Comparison with recently published multi-proxy studies of the Lake Tahoe-Truckee River-Pyramid Lake drainage system suggest that some of the changes in lake level observed at Medicine Lake between about 7,500-4,500 cal yr B.P. may be regional in nature, while fluctuations over the last 4,500 yr probably reflect conditions affecting only the local watershed.

  4. Instrumented gait analysis: a measure of gait improvement by a wheeled walker in hospitalized geriatric patients.

    PubMed

    Schülein, Samuel; Barth, Jens; Rampp, Alexander; Rupprecht, Roland; Eskofier, Björn M; Winkler, Jürgen; Gaßmann, Karl-Günter; Klucken, Jochen

    2017-02-27

    In an increasing aging society, reduced mobility is one of the most important factors limiting activities of daily living and overall quality of life. The ability to walk independently contributes to the mobility, but is increasingly restricted by numerous diseases that impair gait and balance. The aim of this cross-sectional observation study was to examine whether spatio-temporal gait parameters derived from mobile instrumented gait analysis can be used to measure the gait stabilizing effects of a wheeled walker (WW) and whether these gait parameters may serve as surrogate marker in hospitalized patients with multifactorial gait and balance impairment. One hundred six patients (ages 68-95) wearing inertial sensor equipped shoes passed an instrumented walkway with and without gait support from a WW. The walkway assessed the risk of falling associated gait parameters velocity, swing time, stride length, stride time- and double support time variability. Inertial sensor-equipped shoes measured heel strike and toe off angles, and foot clearance. The use of a WW improved the risk of spatio-temporal parameters velocity, swing time, stride length and the sagittal plane associated parameters heel strike and toe off angles in all patients. First-time users (FTUs) showed similar gait parameter improvement patterns as frequent WW users (FUs). However, FUs with higher levels of gait impairment improved more in velocity, stride length and toe off angle compared to the FTUs. The impact of a WW can be quantified objectively by instrumented gait assessment. Thus, objective gait parameters may serve as surrogate markers for the use of walking aids in patients with gait and balance impairments.

  5. Three-Dimensional Kinematic Gait Analysis of Doberman Pinschers with and without Cervical Spondylomyelopathy

    PubMed Central

    Foss, K.; da Costa, R.C.; Moore, S.

    2014-01-01

    Background The optimal treatment of cervical spondylomyelopathy (CSM) is controversial, with the owner’s and clinician’s perception of gait improvement often being used as outcome measures. These methods are subjective and suffer from observer bias. Objectives To establish kinematic gait parameters utilizing digital motion capture in normal Doberman Pinschers and compare them with CSM-affected Dobermans. Animals Nineteen Doberman Pinschers; 10 clinically normal and 9 with CSM. Methods All dogs were enrolled prospectively and fitted with a Lycra® body suit, and motion capture was performed and used to reconstruct a 3-D stick diagram representation of each dog based on 32 reflective markers, from which several parameters were measured. These included stride duration, length, and height; maximal and minimal spinal angles; elbow and stifle flexion and extension; and maximum and minimum distances between the thoracic and pelvic limbs. A random-effects linear regression model was used to compare parameters between groups. Results Significant differences between groups included smaller minimum (mean = 116 mm; P = .024) and maximum (mean = 184 mm; P = .001) distance between the thoracic limbs in CSM-affected dogs. Additionally, thoracic limb stride duration was also smaller (P = .009) in CSM-affected dogs (mean = 0.7 seconds) when compared with normal dogs (mean = 0.8 seconds). In the pelvic limbs, the average stifle flexion (mean = 100°; P = .048) and extension (mean = 136°; P = .009), as well as number of strides (mean = 2.7 strides; P = .033) were different between groups. Conclusions and Clinical Importance Our findings suggest that computerized gait analysis reveals more consistent kinematic differences in the thoracic limbs, which can be used as future objective outcome measures. PMID:23194100

  6. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy.

    PubMed

    Moore, Isabel S

    2016-06-01

    Running economy (RE) has a strong relationship with running performance, and modifiable running biomechanics are a determining factor of RE. The purposes of this review were to (1) examine the intrinsic and extrinsic modifiable biomechanical factors affecting RE; (2) assess training-induced changes in RE and running biomechanics; (3) evaluate whether an economical running technique can be recommended and; (4) discuss potential areas for future research. Based on current evidence, the intrinsic factors that appeared beneficial for RE were using a preferred stride length range, which allows for stride length deviations up to 3 % shorter than preferred stride length; lower vertical oscillation; greater leg stiffness; low lower limb moment of inertia; less leg extension at toe-off; larger stride angles; alignment of the ground reaction force and leg axis during propulsion; maintaining arm swing; low thigh antagonist-agonist muscular coactivation; and low activation of lower limb muscles during propulsion. Extrinsic factors associated with a better RE were a firm, compliant shoe-surface interaction and being barefoot or wearing lightweight shoes. Several other modifiable biomechanical factors presented inconsistent relationships with RE. Running biomechanics during ground contact appeared to play an important role, specifically those during propulsion. Therefore, this phase has the strongest direct links with RE. Recurring methodological problems exist within the literature, such as cross-comparisons, assessing variables in isolation, and acute to short-term interventions. Therefore, recommending a general economical running technique should be approached with caution. Future work should focus on interdisciplinary longitudinal investigations combining RE, kinematics, kinetics, and neuromuscular and anatomical aspects, as well as applying a synergistic approach to understanding the role of kinetics.

  7. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors.

    PubMed

    Mariani, Benoit; Hoskovec, Constanze; Rochat, Stephane; Büla, Christophe; Penders, Julien; Aminian, Kamiar

    2010-11-16

    This study describes the validation of a new wearable system for assessment of 3D spatial parameters of gait. The new method is based on the detection of temporal parameters, coupled to optimized fusion and de-drifted integration of inertial signals. Composed of two wirelesses inertial modules attached on feet, the system provides stride length, stride velocity, foot clearance, and turning angle parameters at each gait cycle, based on the computation of 3D foot kinematics. Accuracy and precision of the proposed system were compared to an optical motion capture system as reference. Its repeatability across measurements (test-retest reliability) was also evaluated. Measurements were performed in 10 young (mean age 26.1±2.8 years) and 10 elderly volunteers (mean age 71.6±4.6 years) who were asked to perform U-shaped and 8-shaped walking trials, and then a 6-min walking test (6MWT). A total of 974 gait cycles were used to compare gait parameters with the reference system. Mean accuracy±precision was 1.5±6.8cm for stride length, 1.4±5.6cm/s for stride velocity, 1.9±2.0cm for foot clearance, and 1.6±6.1° for turning angle. Difference in gait performance was observed between young and elderly volunteers during the 6MWT particularly in foot clearance. The proposed method allows to analyze various aspects of gait, including turns, gait initiation and termination, or inter-cycle variability. The system is lightweight, easy to wear and use, and suitable for clinical application requiring objective evaluation of gait outside of the lab environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Functional implications of muscle co-contraction during gait in advanced age.

    PubMed

    Lo, Justine; Lo, On-Yee; Olson, Erin A; Habtemariam, Daniel; Iloputaife, Ikechukwu; Gagnon, Margaret M; Manor, Brad; Lipsitz, Lewis A

    2017-03-01

    Older adults often exhibit high levels of lower extremity muscle co-contraction, which may be the cause or effect of age-related impairments in gait and associated falls. Normal gait requires intact executive function and thus can be slowed by challenging executive resources available to the neuromuscular system through the performance of a dual task. We therefore investigated associations between lower limb co-contraction and gait characteristics under normal and dual task conditions in healthy older adults (85.4±5.9years). We hypothesized that greater co-contraction is associated with slower gait speed during dual task conditions that stress executive and attentional abilities. Co-contraction was quantified during different phases of the gait cycle using surface electromyography (EMG) signals obtained from the anterior tibialis and lateral gastrocnemius while walking at preferred speed during normal and dual task conditions. Variables included the time difference to complete the Trail Making Test A and B (ΔTMT) and gait measures during normal or dual task walking. Higher co-contraction levels during the swing phase of both normal and dual task walking were associated with longer ΔTMT (normal: R 2 =0.25, p=0.02; dual task: R 2 =0.27, p=0.01). Co-contraction was associated with gait measures during dual task walking only; greater co-contraction levels during stride and stance were associated with slower gait speed (stride: R 2 =0.38, p=0.04; stance: R 2 =0.38, p=0.04), and greater co-contraction during stride was associated with longer stride time (R 2 =0.16, p=0.03). Our results suggest that relatively high lower limb co-contraction may explain some of the mobility impairments associated with the conduct of executive tasks in older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. An Automatic Gait Feature Extraction Method for Identifying Gait Asymmetry Using Wearable Sensors

    PubMed Central

    Vassallo, Michael

    2018-01-01

    This paper aims to assess the use of Inertial Measurement Unit (IMU) sensors to identify gait asymmetry by extracting automatic gait features. We design and develop an android app to collect real time synchronous IMU data from legs. The results from our method are validated using a Qualisys Motion Capture System. The data are collected from 10 young and 10 older subjects. Each performed a trial in a straight corridor comprising 15 strides of normal walking, a turn around and another 15 strides. We analyse the data for total distance, total time, total velocity, stride, step, cadence, step ratio, stance, and swing. The accuracy of detecting the stride number using the proposed method is 100% for young and 92.67% for older subjects. The accuracy of estimating travelled distance using the proposed method for young subjects is 97.73% and 98.82% for right and left legs; and for the older, is 88.71% and 89.88% for right and left legs. The average travelled distance is 37.77 (95% CI ± 3.57) meters for young subjects and is 22.50 (95% CI ± 2.34) meters for older subjects. The average travelled time for young subjects is 51.85 (95% CI ± 3.08) seconds and for older subjects is 84.02 (95% CI ± 9.98) seconds. The results show that wearable sensors can be used for identifying gait asymmetry without the requirement and expense of an elaborate laboratory setup. This can serve as a tool in diagnosing gait abnormalities in individuals and opens the possibilities for home based self-gait asymmetry assessment. PMID:29495299

  10. Together We STRIDE: A quasi-experimental trial testing the effectiveness of a multi-level obesity intervention for Hispanic children in rural communities.

    PubMed

    Ko, Linda K; Rillamas-Sun, Eileen; Bishop, Sonia; Cisneros, Oralia; Holte, Sarah; Thompson, Beti

    2018-04-01

    Hispanic children are disproportionally overweight and obese compared to their non-Hispanic white counterparts in the US. Community-wide, multi-level interventions have been successful to promote healthier nutrition, increased physical activity (PA), and weight loss. Using community-based participatory approach (CBPR) that engages community members in rural Hispanic communities is a promising way to promote behavior change, and ultimately weight loss among Hispanic children. Led by a community-academic partnership, the Together We STRIDE (Strategizing Together Relevant Interventions for Diet and Exercise) aims to test the effectiveness of a community-wide, multi-level intervention to promote healthier diets, increased PA, and weight loss among Hispanic children. The Together We STRIDE is a parallel quasi-experimental trial with a goal of recruiting 900 children aged 8-12 years nested within two communities (one intervention and one comparison). Children will be recruited from their respective elementary schools. Components of the 2-year multi-level intervention include comic books (individual-level), multi-generational nutrition and PA classes (family-level), teacher-led PA breaks and media literacy education (school-level), family nights, a farmer's market and a community PA event (known as ciclovia) at the community-level. Children from the comparison community will receive two newsletters. Height and weight measures will be collected from children in both communities at three time points (baseline, 6-months, and 18-months). The Together We STRIDE study aims to promote healthier diet and increased PA to produce healthy weight among Hispanic children. The use of CBPR approach and the engagement of the community will springboard strategies for intervention' sustainability. Clinical Trials Registration Number: NCT02982759 Retrospectively registered. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    PubMed

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45

  12. METABOLIC SYNDROME AND DAILY AMBULATION IN CHILDREN, ADOLESCENTS, AND YOUNG ADULTS

    PubMed Central

    Gardner, Andrew W.; Parker, Donald E.; Krishnan, Sowmya; Chalmers, Laura J.

    2012-01-01

    Purposes To compare daily ambulatory measures in children, adolescents, and young adults with and without metabolic syndrome, and to assess which metabolic syndrome components, demographic measures, and body composition measures are associated with daily ambulatory measures. Methods Two-hundred fifty subjects between the ages of 10 and 30 years were assessed on metabolic syndrome components, demographic and clinical measures, body fat percentage, and daily ambulatory strides, durations, and cadences during seven consecutive days. Forty-five of the 250 subjects had metabolic syndrome, as defined by the International Diabetes Federation. Results Subjects with metabolic syndrome ambulated at a slower daily average cadence than those without metabolic syndrome (13.6 ± 2.2 strides/min vs. 14.9 ± 3.2 strides/min; p=0.012), and they had slower cadences for continuous durations of 60 minutes (p=0.006), 30 minutes (p=0.005), 20 minutes (p=0.003), 5 minutes (p=0.002), and 1 minute (p=0.001). However, the total amount of time spent ambulating each day was not different (p=0.077). After adjustment for metabolic syndrome status, average cadence is linearly associated with body fat percentage (p<0.001) and fat mass (p<0.01). Group difference in average cadence was no longer significant after adjusting for body fat percentage (p=0.683) and fat mass (p=0.973). Conclusion Children, adolescents, and young adults with metabolic syndrome ambulate more slowly and take fewer strides throughout the day than those without metabolic syndrome, even though the total amount of time spent ambulating is not different. Furthermore, the detrimental influence of metabolic syndrome on ambulatory cadence is primarily a function of body fatness. PMID:22811038

  13. Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations

    PubMed Central

    2010-01-01

    Background The aim of this study was to evaluate a method based on a single accelerometer for the assessment of gait symmetry and regularity in subjects wearing lower limb prostheses. Methods Ten transfemoral amputees and ten healthy control subjects were studied. For the purpose of this study, subjects wore a triaxial accelerometer on their thorax, and foot insoles. Subjects were asked to walk straight ahead for 70 m at their natural speed, and at a lower and faster speed. Indices of step and stride regularity (Ad1 and Ad2, respectively) were obtained by the autocorrelation coefficients computed from the three acceleration components. Step and stride durations were calculated from the plantar pressure data and were used to compute two reference indices (SI1 and SI2) for step and stride regularity. Results Regression analysis showed that both Ad1 well correlates with SI1 (R2 up to 0.74), and Ad2 well correlates with SI2 (R2 up to 0.52). A ROC analysis showed that Ad1 and Ad2 has generally a good sensitivity and specificity in classifying amputee's walking trial, as having a normal or a pathologic step or stride regularity as defined by means of the reference indices SI1 and SI2. In particular, the antero-posterior component of Ad1 and the vertical component of Ad2 had a sensitivity of 90.6% and 87.2%, and a specificity of 92.3% and 81.8%, respectively. Conclusions The use of a simple accelerometer, whose components can be analyzed by the autocorrelation function method, is adequate for the assessment of gait symmetry and regularity in transfemoral amputees. PMID:20085653

  14. Weight Fluctuation and Postmenopausal Breast Cancer in the National Health and Nutrition Examination Survey I Epidemiologic Follow-Up Study.

    PubMed

    Komaroff, Marina

    2016-01-01

    The aim of this study is to investigate if weight fluctuation is an independent risk factor for postmenopausal breast cancer (PBC) among women who gained weight in adult years. NHANES I Epidemiologic Follow-Up Study (NHEFS) database was used in the study. Women that were cancers-free at enrollment and diagnosed for the first time with breast cancer at age 50 or greater were considered cases. Controls were chosen from the subset of cancers-free women and matched to cases by years of follow-up and status of body mass index (BMI) at 25 years of age. Weight fluctuation was measured by the root-mean-square-error (RMSE) from a simple linear regression model for each woman with their body mass index (BMI) regressed on age (started at 25 years) while women with the positive slope from this regression were defined as weight gainers. Data were analyzed using conditional logistic regression models. A total of 158 women were included into the study. The conditional logistic regression adjusted for weight gain demonstrated positive association between weight fluctuation in adult years and postmenopausal breast cancers (odds ratio/OR = 1.67; 95% confidence interval/CI: 1.06-2.66). The data suggested that long-term weight fluctuation was significant risk factor for PBC among women who gained weight in adult years. This finding underscores the importance of maintaining lost weight and avoiding weight fluctuation.

  15. Weight Fluctuation and Postmenopausal Breast Cancer in the National Health and Nutrition Examination Survey I Epidemiologic Follow-Up Study

    PubMed Central

    Komaroff, Marina

    2016-01-01

    Objective. The aim of this study is to investigate if weight fluctuation is an independent risk factor for postmenopausal breast cancer (PBC) among women who gained weight in adult years. Methods. NHANES I Epidemiologic Follow-Up Study (NHEFS) database was used in the study. Women that were cancers-free at enrollment and diagnosed for the first time with breast cancer at age 50 or greater were considered cases. Controls were chosen from the subset of cancers-free women and matched to cases by years of follow-up and status of body mass index (BMI) at 25 years of age. Weight fluctuation was measured by the root-mean-square-error (RMSE) from a simple linear regression model for each woman with their body mass index (BMI) regressed on age (started at 25 years) while women with the positive slope from this regression were defined as weight gainers. Data were analyzed using conditional logistic regression models. Results. A total of 158 women were included into the study. The conditional logistic regression adjusted for weight gain demonstrated positive association between weight fluctuation in adult years and postmenopausal breast cancers (odds ratio/OR = 1.67; 95% confidence interval/CI: 1.06–2.66). Conclusions. The data suggested that long-term weight fluctuation was significant risk factor for PBC among women who gained weight in adult years. This finding underscores the importance of maintaining lost weight and avoiding weight fluctuation. PMID:26953120

  16. The effect of the dynamic wet troposphere on VLBI measurements

    NASA Technical Reports Server (NTRS)

    Treuhaft, R. N.; Lanyi, G. E.

    1986-01-01

    Calculations using a statistical model of water vapor fluctuations yield the effect of the dynamic wet troposphere on Very Long Baseline Interferometry (VLBI) measurements. The statistical model arises from two primary assumptions: (1) the spatial structure of refractivity fluctuations can be closely approximated by elementary (Kolmogorov) turbulence theory, and (2) temporal fluctuations are caused by spatial patterns which are moved over a site by the wind. The consequences of these assumptions are outlined for the VLBI delay and delay rate observables. For example, wet troposphere induced rms delays for Deep Space Network (DSN) VLBI at 20-deg elevation are about 3 cm of delay per observation, which is smaller, on the average, than other known error sources in the current DSN VLBI data set. At 20-deg elevation for 200-s time intervals, water vapor induces approximately 1.5 x 10 to the minus 13th power s/s in the Allan standard deviation of interferometric delay, which is a measure of the delay rate observable error. In contrast to the delay error, the delay rate measurement error is dominated by water vapor fluctuations. Water vapor induced VLBI parameter errors and correlations are calculated. For the DSN, baseline length parameter errors due to water vapor fluctuations are in the range of 3 to 5 cm. The above physical assumptions also lead to a method for including the water vapor fluctuations in the parameter estimation procedure, which is used to extract baseline and source information from the VLBI observables.

  17. Reliability and validity of pressure and temporal parameters recorded using a pressure-sensitive insole during running.

    PubMed

    Mann, Robert; Malisoux, Laurent; Brunner, Roman; Gette, Paul; Urhausen, Axel; Statham, Andrew; Meijer, Kenneth; Theisen, Daniel

    2014-01-01

    Running biomechanics has received increasing interest in recent literature on running-related injuries, calling for new, portable methods for large-scale measurements. Our aims were to define running strike pattern based on output of a new pressure-sensitive measurement device, the Runalyser, and to test its validity regarding temporal parameters describing running gait. Furthermore, reliability of the Runalyser measurements was evaluated, as well as its ability to discriminate different running styles. Thirty-one healthy participants (30.3 ± 7.4 years, 1.78 ± 0.10 m and 74.1 ± 12.1 kg) were involved in the different study parts. Eleven participants were instructed to use a rearfoot (RFS), midfoot (MFS) and forefoot (FFS) strike pattern while running on a treadmill. Strike pattern was subsequently defined using a linear regression (R(2)=0.89) between foot strike angle, as determined by motion analysis (1000 Hz), and strike index (SI, point of contact on the foot sole, as a percentage of foot sole length), as measured by the Runalyser. MFS was defined by the 95% confidence interval of the intercept (SI=43.9-49.1%). High agreement (overall mean difference 1.2%) was found between stance time, flight time, stride time and duty factor as determined by the Runalyser and a force-measuring treadmill (n=16 participants). Measurements of the two devices were highly correlated (R ≥ 0.80) and not significantly different. Test-retest intra-class correlation coefficients for all parameters were ≥ 0.94 (n=14 participants). Significant differences (p<0.05) between FFS, RFS and habitual running were detected regarding SI, stance time and stride time (n=24 participants). The Runalyser is suitable for, and easily applicable in large-scale studies on running biomechanics. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study.

    PubMed

    Chang, Shuo-Hsiu; Afzal, Taimoor; Berliner, Jeffrey; Francisco, Gerard E

    2018-01-01

    Robotic wearable exoskeletons have been utilized as a gait training device in persons with spinal cord injury. This pilot study investigated the feasibility of offering exoskeleton-assisted gait training (EGT) on gait in individuals with incomplete spinal cord injury (iSCI) in preparation for a phase III RCT. The objective was to assess treatment reliability and potential efficacy of EGT and conventional physical therapy (CPT). Forty-four individuals were screened, and 13 were eligible to participate in the study. Nine participants consented and were randomly assigned to receive either EGT or CPT with focus on gait. Subjects received EGT or CPT, five sessions a week (1 h/session daily) for 3 weeks. American Spinal Injury Association (ASIA) Lower Extremity Motor Score (LEMS), 10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), Timed Up and Go (TUG) test, and gait characteristics including stride and step length, cadence and stance, and swing phase durations were assessed at the pre- and immediate post- training. Mean difference estimates with 95% confidence intervals were used to analyze the differences. After training, improvement was observed in the 6MWT for the EGT group. The CPT group showed significant improvement in the TUG test. Both the EGT and the CPT groups showed significant increase in the right step length. EGT group also showed improvement in the stride length. EGT could be applied to individuals with iSCI to facilitate gait recovery. The subjects were able to tolerate the treatment; however, exoskeleton size range may be a limiting factor in recruiting larger cohort of patients. Future studies with larger sample size are needed to investigate the effectiveness and efficacy of exoskeleton-assisted gait training as single gait training and combined with other gait training strategies. Clinicaltrials.org, NCT03011099, retrospectively registered on January 3, 2017.

  19. Technology-assisted balance and gait training reduces falls in patients with Parkinson's disease: a randomized controlled trial with 12-month follow-up.

    PubMed

    Shen, Xia; Mak, Margaret K Y

    2015-02-01

    Objective. To examine the effects of technology-assisted balance and gait training on reducing falls in patients with Parkinson's disease (PD). Methods. Eligible subjects were randomly allocated to an experimental group given technology-assisted balance and gait training (BAL, n = 26) and an active control group undertaking strengthening exercises (CON, n = 25). The training in each group lasted for 3 months. The number of fallers and fall rate were used as primary outcomes, and single-leg-stance-time, latency of postural response to perturbation, self-selected gait velocity, and stride length as secondary outcomes. Fall incidence was recorded over 15 months after the baseline assessment (Pre). Other tests were performed at Pre, after 3-month intervention (Post(3m)), at 3 months (Post(6m)), and 12 months (Post(15m)) after treatment completion. Results. Forty-five subjects who completed the 3-month training were included in the data analysis. There were fewer fallers in the BAL than in the CON group at Post(3m), Post(6m), and Post(15m) (P < .05). In addition, the BAL group had lower fall rate than the CON group at Post(3m) and Post(6m) (incidence rate ratio: 0.111-0.188, P < .05), and marginally so at Post(15m) (incidence rate ratio: 0.407, P = .057). Compared with the CON subjects, the BAL subjects demonstrated greater reduction in the postural response latency and increase in the stride length against baseline at each assessment interval (P < .05), and marginally more increases of single-leg-stance-time at Post(3m) (P = .064), Post(6m) (P = .041) and Post(15m) (P = .087). Conclusions. Our positive findings provide evidence for the clinical use of technology-assisted balance and gait training in reducing falls in people with PD. © The Author(s) 2014.

  20. Effects of practice on variability in an isochronous serial interval production task: asymptotical levels of tapping variability after training are similar to those of musicians.

    PubMed

    Madison, Guy; Karampela, Olympia; Ullén, Fredrik; Holm, Linus

    2013-05-01

    Timing permeates everyday activities such as walking, dancing and music, yet the effect of short-term practice in this ubiquitous activity is largely unknown. In two training experiments involving sessions spread across several days, we examined short-term practice effects on timing variability in a sequential interval production task. In Experiment 1, we varied the mode of response (e.g., drumstick and finger tapping) and the level of sensory feedback. In Experiment 2 we varied the interval in 18 levels ranging from 500 ms to 1624 ms. Both experiments showed a substantial decrease in variability within the first hour of practice, but little thereafter. This effect was similar across mode of response, amount of feedback, and interval duration, and was manifested as a reduction in both local variability (between neighboring intervals) and drift (fluctuation across multiple intervals). The results suggest mainly effects on motor implementation rather than on cognitive timing processes, and have methodological implications for timing studies that have not controlled for practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Time series data analysis using DFA

    NASA Astrophysics Data System (ADS)

    Okumoto, A.; Akiyama, T.; Sekino, H.; Sumi, T.

    2014-02-01

    Detrended fluctuation analysis (DFA) was originally developed for the evaluation of DNA sequence and interval for heart rate variability (HRV), but it is now used to obtain various biological information. In this study we perform DFA on artificially generated data where we already know the relationship between signal and the physical event causing the signal. We generate artificial data using molecular dynamics. The Brownian motion of a polymer under an external force is investigated. In order to generate artificial fluctuation in the physical properties, we introduce obstacle pillars fixed to nanostructures. Using different conditions such as presence or absence of obstacles, external field, and the polymer length, we perform DFA on energies and positions of the polymer.

  2. Determining probability distribution of coherent integration time near 133 Hz and 1346 km in the Pacific Ocean.

    PubMed

    Spiesberger, John L

    2013-02-01

    The hypothesis tested is that internal gravity waves limit the coherent integration time of sound at 1346 km in the Pacific ocean at 133 Hz and a pulse resolution of 0.06 s. Six months of continuous transmissions at about 18 min intervals are examined. The source and receiver are mounted on the bottom of the ocean with timing governed by atomic clocks. Measured variability is only due to fluctuations in the ocean. A model for the propagation of sound through fluctuating internal waves is run without any tuning with data. Excellent resemblance is found between the model and data's probability distributions of integration time up to five hours.

  3. INS/EKF-based stride length, height and direction intent detection for walking assistance robots.

    PubMed

    Brescianini, Dario; Jung, Jun-Young; Jang, In-Hun; Park, Hyun Sub; Riener, Robert

    2011-01-01

    We propose an algorithm used to obtain the information on stride length, height difference, and direction based on user's intent during walking. For exoskeleton robots used to assist paraplegic patients' walking, this information is used to generate gait patterns by themselves in on-line. To obtain this information, we attach an inertial measurement unit(IMU) on crutches and apply an extended kalman filter-based error correction method to reduce the phenomena of drift due to bias of the IMU. The proposed method is verifed in real walking scenarios including walking, climbing up-stairs, and changing direction of walking with normal. © 2011 IEEE

  4. Automated mapping of pharmacy orders from two electronic health record systems to RxNorm within the STRIDE clinical data warehouse.

    PubMed

    Hernandez, Penni; Podchiyska, Tanya; Weber, Susan; Ferris, Todd; Lowe, Henry

    2009-11-14

    The Stanford Translational Research Integrated Database Environment (STRIDE) clinical data warehouse integrates medication information from two Stanford hospitals that use different drug representation systems. To merge this pharmacy data into a single, standards-based model supporting research we developed an algorithm to map HL7 pharmacy orders to RxNorm concepts. A formal evaluation of this algorithm on 1.5 million pharmacy orders showed that the system could accurately assign pharmacy orders in over 96% of cases. This paper describes the algorithm and discusses some of the causes of failures in mapping to RxNorm.

  5. Kinematic and kinetic comparison of barefoot and shod running in mid/forefoot and rearfoot strike runners.

    PubMed

    Thompson, M A; Lee, S S; Seegmiller, J; McGowan, C P

    2015-05-01

    Barefoot running has been associated with decreased stride length and switching from a rearfoot strike (RFS) pattern to a mid/forefoot strike (M/FFS) pattern. However, some individuals naturally contact the ground on their mid/forefoot, even when wearing cushioned running shoes. The purpose of this study was to determine if the mechanics of barefoot running by natural shod RFS runners differed from natural shod M/FFS runners. Twenty habitually shod runners (ten natural M/FFS and ten natural RFS) participated in this study. Three-dimensional motion analysis and ground reaction force data were captured as subjects ran at their preferred running speed in both barefoot and shod conditions. M/FFS experienced only a decrease in stride length when switching from shod to barefoot running. Whereas, when switching from shod to barefoot running, RFS individuals experienced a decrease in stride length, switched to a plantarflexed position at ground contact and saw reduced impact peak magnitudes. These results suggest that when barefoot, the RFS group ran similar to the M/FFS group running barefoot or shod. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Can anti-gravity running improve performance to the same degree as over-ground running?

    PubMed

    Brennan, Christopher T; Jenkins, David G; Osborne, Mark A; Oyewale, Michael; Kelly, Vincent G

    2018-03-11

    This study examined the changes in running performance, maximal blood lactate concentrations and running kinematics between 85%BM anti-gravity (AG) running and normal over-ground (OG) running over an 8-week training period. Fifteen elite male developmental cricketers were assigned to either the AG or over-ground (CON) running group. The AG group (n = 7) ran twice a week on an AG treadmill and once per week over-ground. The CON group (n = 8) completed all sessions OG on grass. Both AG and OG training resulted in similar improvements in time trial and shuttle run performance. Maximal running performance showed moderate differences between the groups, however the AG condition resulted in less improvement. Large differences in maximal blood lactate concentrations existed with OG running resulting in greater improvements in blood lactate concentrations measured during maximal running. Moderate increases in stride length paired with moderate decreases in stride rate also resulted from AG training. The use of AG training to supplement regular OG training for performance should be used cautiously, as extended use over long periods of time could lead to altered stride mechanics and reduced blood lactate.

  7. Tiger beetles pursue prey using a proportional control law with a delay of one half-stride.

    PubMed

    Haselsteiner, Andreas F; Gilbert, Cole; Wang, Z Jane

    2014-06-06

    Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s(-1), is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier.

  8. Cinematographical analysis of javelin throwing techniques of decathletes.

    PubMed Central

    Kunz, H.; Kaufmann, D. A.

    1983-01-01

    Th purpose of this study was to analyse by correlational methods the biomechanical factors involved in achieving the maximal distance thrown in the javelin event. Twelve Swiss decathletes and two world class javelin specialists were filmed by a high speed (102 fps) 16 mm camera throwing a total of 20 trials. The co-ordinates of the resulting cyclograms were processed by a computer programme and the results submitted to correlational analysis. The highest correlation was 0.76 between velocity at release and distance thrown. Other negative correlations were found between distance thrown and angle of the javelin with the horizontal (0.52) and distance thrown and throwing hand to contralateral foot distance during the last strides (0.67). Javelin specialists, who had longer throws than decathletes (mean = 79.03 m versus 54.29 m), had a smaller difference between the angle of attack and angle of release. The results suggest that in order to attain maximal distance thrown the javelin thrower should achieve positive acceleration during the running approach, effective thrusting with th right leg on the penultimate stride and carry the javelin during the last strides at the optimal angle of release (32 to 36 degrees). Images p200-a p200-b PMID:6652405

  9. Intelligent person identification system using stereo camera-based height and stride estimation

    NASA Astrophysics Data System (ADS)

    Ko, Jung-Hwan; Jang, Jae-Hun; Kim, Eun-Soo

    2005-05-01

    In this paper, a stereo camera-based intelligent person identification system is suggested. In the proposed method, face area of the moving target person is extracted from the left image of the input steros image pair by using a threshold value of YCbCr color model and by carrying out correlation between the face area segmented from this threshold value of YCbCr color model and the right input image, the location coordinates of the target face can be acquired, and then these values are used to control the pan/tilt system through the modified PID-based recursive controller. Also, by using the geometric parameters between the target face and the stereo camera system, the vertical distance between the target and stereo camera system can be calculated through a triangulation method. Using this calculated vertical distance and the angles of the pan and tilt, the target's real position data in the world space can be acquired and from them its height and stride values can be finally extracted. Some experiments with video images for 16 moving persons show that a person could be identified with these extracted height and stride parameters.

  10. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    PubMed Central

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases. PMID:19493356

  11. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    PubMed

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases.

  12. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  13. Detrended fluctuation analysis of short datasets: An application to fetal cardiac data

    NASA Astrophysics Data System (ADS)

    Govindan, R. B.; Wilson, J. D.; Preißl, H.; Eswaran, H.; Campbell, J. Q.; Lowery, C. L.

    2007-02-01

    Using detrended fluctuation analysis (DFA) we perform scaling analysis of short datasets of length 500-1500 data points. We quantify the long range correlation (exponent α) by computing the mean value of the local exponents αL (in the asymptotic regime). The local exponents are obtained as the (numerical) derivative of the logarithm of the fluctuation function F(s) with respect to the logarithm of the scale factor s:αL=dlog10F(s)/dlog10s. These local exponents display huge variations and complicate the correct quantification of the underlying correlations. We propose the use of the phase randomized surrogate (PRS), which preserves the long range correlations of the original data, to minimize the variations in the local exponents. Using the numerically generated uncorrelated and long range correlated data, we show that performing DFA on several realizations of PRS and estimating αL from the averaged fluctuation functions (of all realizations) can minimize the variations in αL. The application of this approach to the fetal cardiac data (RR intervals) is discussed and we show that there is a statistically significant correlation between α and the gestation age.

  14. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling and general nonlinear systems

    NASA Astrophysics Data System (ADS)

    Li, Huanan

    2013-03-01

    Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas. Finally a practical formalism dealing with cumulants of heat transfer across general nonlinear quantum systems is established based on field theoretical/algebraic method.

  15. Effects of linear and nonlinear speech rate changes on speech intelligibility in stationary and fluctuating maskers

    PubMed Central

    Cooke, Martin; Aubanel, Vincent

    2017-01-01

    Algorithmic modifications to the durational structure of speech designed to avoid intervals of intense masking lead to increases in intelligibility, but the basis for such gains is not clear. The current study addressed the possibility that the reduced information load produced by speech rate slowing might explain some or all of the benefits of durational modifications. The study also investigated the influence of masker stationarity on the effectiveness of durational changes. Listeners identified keywords in sentences that had undergone linear and nonlinear speech rate changes resulting in overall temporal lengthening in the presence of stationary and fluctuating maskers. Relative to unmodified speech, a slower speech rate produced no intelligibility gains for the stationary masker, suggesting that a reduction in information rate does not underlie intelligibility benefits of durationally modified speech. However, both linear and nonlinear modifications led to substantial intelligibility increases in fluctuating noise. One possibility is that overall increases in speech duration provide no new phonetic information in stationary masking conditions, but that temporal fluctuations in the background increase the likelihood of glimpsing additional salient speech cues. Alternatively, listeners may have benefitted from an increase in the difference in speech rates between the target and background. PMID:28618803

  16. Sensors for Using Times of Flight to Measure Flow Velocities

    NASA Technical Reports Server (NTRS)

    Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James

    2006-01-01

    Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.

  17. A hetero-core fiber optic smart mat sensor for discrimination between a moving human and object on temporal loss peaks

    NASA Astrophysics Data System (ADS)

    Hosoki, Ai; Nishiyama, Michiko; Choi, Yongwoon; Watanabe, Kazuhiro

    2011-05-01

    In this paper, we propose discrimination method between a moving human and object by means of a hetero-core fiber smart mat sensor which induces the optical loss change in time. In addition to several advantages such as flexibility, thin size and resistance to electro-magnetic interference for a fiber optic sensor, a hetero-core fiber optic sensor is sensitive to bending action of the sensor portion and independent of temperature fluctuations. Therefore, the hetero-core fiber thin mat sensor can have a fewer sensing portions than the conventional floor pressure sensors, furthermore, can detect the wide area covering the length of strides. The experimental results for human walking tests showed that the mat sensors were reproducibly working in real-time under limiting locations the foot passed in the mat sensor. Focusing on the temporal peak numbers in the optical loss, human walking and wheeled platform moving action induced the peak numbers in the range of 1 - 3 and 5 - 7, respectively, for the 10 persons including 9 male and 1 female. As a result, we conclude that the hetero-core fiber mat sensor is capable of discriminating between the moving human and object such as a wheeled platform focusing on the peak numbers in the temporal optical loss.

  18. Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm.

    PubMed

    Dix, Laura Marie Louise; Weeke, Lauren Carleen; de Vries, Linda Simone; Groenendaal, Floris; Baerts, Willem; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-08-01

    To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm. This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO 2 (etCO 2 ) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO 2 fluctuations of ≥5  mm Hg. Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO 2 increase and 70 episodes of etCO 2 decrease. During etCO 2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P < .01) and electrical activity decreased (SATs/minute decreased, interval between SATs increased; P < .01). All measures recovered when etCO 2 returned to baseline. During etCO 2 decreases, brain oxygenation decreased (regional cerebral oxygen saturation decreased, fractional tissue oxygen extraction decreased; P < .01) and brain activity increased (SATs/minute increased, P < .05), also with recovery after return of etCO 2 to baseline. An acute increase in etCO 2 is associated with increased cerebral oxygenation and decreased brain activity, whereas an acute decrease is associated with decreased cerebral oxygenation and slightly increased brain activity. Combining continuous CO 2 monitoring with near-infrared spectroscopy may enable the detection of otherwise undetected fluctuations in arterial carbon dioxide partial pressure that may be harmful to the neonatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Multiparticle collision simulations of two-dimensional one-component plasmas: Anomalous transport and dimensional crossovers

    NASA Astrophysics Data System (ADS)

    Di Cintio, Pierfrancesco; Livi, Roberto; Lepri, Stefano; Ciraolo, Guido

    2017-04-01

    By means of hybrid multiparticle collsion-particle-in-cell (MPC-PIC) simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled two-dimensional (2D) and quasi-one-dimensional (1D) plasmas. We find that the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for 2D systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.

  20. Evaluation of hydrologic data collected at the North Penn Area 12 Superfund Site, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Grazul, Kevin E.; Wood, Charles R.

    1998-01-01

    The North Penn Area 12 Superfund Site is underlain by the Lockatong Formation, which consists of interbedded gray to black siltstone and shale. The beds of the Lockatong Formation strike northeast and dip about 10d to 20d to the northwest in the vicinity of the site. Ground water moves through fractures that are nearly vertical and horizontal in the shale and siltstone. Permeability and storage are very low. Borehole-geophysical logs were obtained from eight wells to determine the location of fractures, water-producing and water-receiving intervals, and intervals of borehole flow. The logs also were used to quantify fluid movement in the borehole, to characterize the lithology, and to obtain data on well construction. The logs indicate fractures at depths less than 100 feet are more frequent and generally are more productive than fractures at depths greater than 100 feet. The fluid resistivity of water in shallow intervals usually was greater than that in deeper intervals. The rate and direction of fluid movement under nonpumping conditions differs in the boreholes logged. In the northwest part of the site, no vertical flow was detected in three wells and very small amounts of flow were measured in two wells. In the southwest part of the site, downward flow was measured in two wells. Aquifer-isolation tests in three wells provided information on hydraulic heads and specific capacities in discrete vertical intervals and allowed collection of water samples form discrete water-bearing intervals. Natural annual fluctuations of water levels in 11 wells ranged form 11.4 to 28.3 feet. Seven of the 11 wells gave very similar water-level hydrographs. The four southernmost wells on the site show rises in water levels after precipitation much sooner than the other seven wells. Two other wells show daily fluctuations caused by pumping. A potentiometric-surface map of the site and vicinity was prepared from water-level measurements made in late July 1995. The map can be used to determine the approximate direction of ground-water flow.

  1. The External Performance Appraisal of China Energy Regulation: An Empirical Study Using a TOPSIS Method Based on Entropy Weight and Mahalanobis Distance.

    PubMed

    Wang, Zheng-Xin; Li, Dan-Dan; Zheng, Hong-Hao

    2018-01-30

    In China's industrialization process, the effective regulation of energy and environment can promote the positive externality of energy consumption while reducing negative externality, which is an important means for realizing the sustainable development of an economic society. The study puts forward an improved technique for order preference by similarity to an ideal solution based on entropy weight and Mahalanobis distance (briefly referred as E-M-TOPSIS). The performance of the approach was verified to be satisfactory. By separately using traditional and improved TOPSIS methods, the study carried out the empirical appraisals on the external performance of China's energy regulation during 1999~2015. The results show that the correlation between the performance indexes causes the significant difference between the appraisal results of E-M-TOPSIS and traditional TOPSIS. The E-M-TOPSIS takes the correlation between indexes into account and generally softens the closeness degree compared with traditional TOPSIS. Moreover, it makes the relative closeness degree fluctuate within a small-amplitude. The results conform to the practical condition of China's energy regulation and therefore the E-M-TOPSIS is favorably applicable for the external performance appraisal of energy regulation. Additionally, the external economic performance and social responsibility performance (including environmental and energy safety performances) based on the E-M-TOPSIS exhibit significantly different fluctuation trends. The external economic performance dramatically fluctuates with a larger fluctuation amplitude, while the social responsibility performance exhibits a relatively stable interval fluctuation. This indicates that compared to the social responsibility performance, the fluctuation of external economic performance is more sensitive to energy regulation.

  2. Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata

    NASA Astrophysics Data System (ADS)

    Weibel, R.; Lindström, S.; Pedersen, G. K.; Johansson, L.; Dybkjær, K.; Whitehouse, M. J.; Boyce, A. J.; Leng, M. J.

    2016-08-01

    In a terrestrial Triassic-Jurassic boundary succession of southern Sweden, perfectly zoned sphaerosiderites are restricted to a specific sandy interval deposited during the end-Triassic event. Underlying and overlying this sand interval there are several other types of siderite micromorphologies, i.e. poorly zoned sphaerosiderite, spheroidal (ellipsoid) siderite, spherical siderite and rhombohedral siderite. Siderite overgrowths occur mainly as rhombohedral crystals on perfectly zoned sphaerosiderite and as radiating fibrous crystals on spheroidal siderite. Concretionary sparry, microspar and/or micritic siderite cement postdate all of these micromorphologies. The carbon isotope composition of the siderite measured by conventional mass spectrometry shows the characteristic broad span of data, probably as a result of multiple stages of microbial activity. SIMS (secondary ion mass spectrometry) revealed generally higher δ13C values for the concretionary cement than the perfectly zoned sphaerosiderite, spheroidal siderite and their overgrowths, which marks a change in the carbon source during burial. All the various siderite morphologies have almost identical oxygen isotope values reflecting the palaeo-groundwater composition. A pedogenic/freshwater origin is supported by the trace element compositions of varying Fe:Mn ratios and low Mg contents. Fluctuating groundwater is the most likely explanation for uniform repeated siderite zones of varying Fe:Mn ratios reflecting alternating physiochemical conditions and hostility to microbial life/activity. Bacterially mediated siderite precipitation likely incorporated Mn and other metal ions during conditions that are not favourable for the bacteria and continued with Fe-rich siderite precipitation as the physico-chemical conditions changed into optimal conditions again, reflecting the response to groundwater fluctuations.

  3. Pulsed growth of fungal hyphal tips.

    PubMed

    López-Franco, R; Bartnicki-Garcia, S; Bracker, C E

    1994-12-06

    Somatic fungal hyphae are generally assumed to elongate at steady linear rates when grown under constant environmental conditions with ample nutrients. However, patterns of pulsed hyphal elongation were detected during apparent steady growth of hyphal tips in fungi from several major taxonomic groups (Oomycetes, Pythium aphanidermatum and Saprolegnia ferax; Zygomycetes, Gilbertella persicaria; Deuteromycetes, Trichoderma viride; Ascomycetes, Neurospora crassa and Fusarium culmorum; Basidiomycetes, Rhizoctonia solani). Growing hyphal tips were recorded with video-enhanced phase-contrast microscopy at high magnification, and digital images were measured at very short time intervals (1-5 s). In all fungi tested, the hyphal elongation rate was never perfectly steady but fluctuated continuously with alternating periods of fast and slow growth at more or less regular intervals. Pulsed growth was observed in fungi differing in cell diameter, overall growth rate, taxonomic position, and presence and pattern of Spitzenkörper organization, suggesting that this is a general phenomenon. Frequency and amplitude of the pulses varied among the test organisms. T. viride and N. crassa showed the most frequent pulses (average of 13-14 per min), and F. culmorum the least frequent (2.7 per min). Average pulse amplitude varied from 0.012 microns/s for F. culmorum to 0.068 microns/s for G. persicaria. In F. culmorum and T. viride, the fast phase of the growth pulses was correlated with the merger of satellite Spitzenkörper with the main Spitzenkörper. These findings are consistent with a causal relationship between fluctuations in the overall rate of secretory vesicle delivery/discharge at the hyphal apex and the fluctuations in hyphal elongation rate.

  4. Characterizing chaotic dynamics from integrate-and-fire interspike intervals at the presence of noise

    NASA Astrophysics Data System (ADS)

    Mohammad, Yasir K.; Pavlova, Olga N.; Pavlov, Alexey N.

    2016-04-01

    We discuss the problem of quantifying chaotic dynamics at the input of the "integrate-and-fire" (IF) model from the output sequences of interspike intervals (ISIs) for the case when the fluctuating threshold level leads to the appearance of noise in ISI series. We propose a way to detect an ability of computing dynamical characteristics of the input dynamics and the level of noise in the output point processes. The proposed approach is based on the dependence of the largest Lyapunov exponent from the maximal orientation error used at the estimation of the averaged rate of divergence of nearby phase trajectories.

  5. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Havlin, S.; Hausdorff, J. M.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1995-01-01

    Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, it is found that for subjects at high risk of sudden death (e.g., congestive heart failure patients), these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiologic models of systems that appear to be heterodynamic rather than homeostatic.

  6. A reaction-diffusion model for market fluctuations - A relation between price change and traded volumes

    NASA Astrophysics Data System (ADS)

    Yuvan, Steven; Bier, Martin

    2018-02-01

    Two decades ago Bak et al. (1997) [3] proposed a reaction-diffusion model to describe market fluctuations. In the model buyers and sellers diffuse from opposite ends of a 1D interval that represents a price range. Trades occur when buyers and sellers meet. We show analytically and numerically that the model well reproduces the square-root relation between traded volumes and price changes that is observed in real-life markets. The result is remarkable as this relation has commonly been explained in terms of more elaborate trader strategies. We furthermore explain why the square-root relation is robust under model modifications and we show how real-life bond market data exhibit the square-root relation.

  7. Standard deviation of vertical two-point longitudinal velocity differences in the atmospheric boundary layer.

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.

    1971-01-01

    Statistical estimates of wind shear in the planetary boundary layer are important in the design of V/STOL aircraft, and for the design of the Space Shuttle. The data analyzed in this study consist of eleven sets of longitudinal turbulent velocity fluctuation time histories digitized at 0.2 sec intervals with approximately 18,000 data points per time history. The longitudinal velocity fluctuations were calculated with horizontal wind and direction data collected at the 18-, 30-, 60-, 90-, 120-, and 150-m levels. The data obtained confirm the result that Eulerian time spectra transformed to wave-number spectra with Taylor's frozen eddy hypothesis possess inertial-like behavior at wave-numbers well out of the inertial subrange.

  8. A model for foreign exchange markets based on glassy Brownian systems

    PubMed Central

    Trinidad-Segovia, J. E.; Clara-Rahola, J.; Puertas, A. M.; De las Nieves, F. J.

    2017-01-01

    In this work we extend a well-known model from arrested physical systems, and employ it in order to efficiently depict different currency pairs of foreign exchange market price fluctuation distributions. We consider the exchange rate price in the time range between 2010 and 2016 at yearly time intervals and resolved at one minute frequency. We then fit the experimental datasets with this model, and find significant qualitative symmetry between price fluctuation distributions from the currency market, and the ones belonging to colloidal particles position in arrested states. The main contribution of this paper is a well-known physical model that does not necessarily assume the independent and identically distributed (i.i.d.) restrictive condition. PMID:29206868

  9. Epilepsy

    MedlinePlus

    ... made great strides in detecting patterns of abnormal electrical activity in the brain that cause epileptic seizures. A technology to measure brain activity, called electroencephalography (EEG), became ...

  10. Charged particle production in p+Pb collisions measured by the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Shulga, Evgeny; ATLAS Collaboration

    2017-01-01

    Per-event charged particle spectra and nuclear modification factors are measured with the ATLAS detector at the LHC in p+Pb interactions at √sNN = 5.02 TeV. Results are presented as a function of transverse momentum, rapidity, and in different intervals of collision centrality, which is characterised in p+Pb collisions by the total transverse energy measured over the pseudorapidity interval -3.2 < η < -4.9 in the direction of the lead beam. Three different calculations of the number of nucleons participating in p+Pb collisions have been performed, assuming the Glauber model and its Glauber-Gribov Colour Fluctuation extensions. The results using different models are compared with each other, as well as with other measurements made under the same conditions and also with centrality definition based on different rapidity intervals.

  11. Offshore Wind Power Integration in severely fluctuating Wind Conditions

    NASA Astrophysics Data System (ADS)

    von Bremen, L.

    2010-09-01

    Strong power fluctuations from offshore wind farms that are induced by wind speed fluctuations pose a severe problem to the save integration of offshore wind power into the power supply system. Experience at the first large-scale offshore wind farm Horns Rev showed that spatial smoothing of power fluctuations within a single wind farm is significantly smaller than onshore results suggest when distributed wind farms of 160 MW altogether are connected to a single point of common-coupling. Wind power gradients larger than 10% of the rated capacity within 5 minutes require large amount of regulation power that is very expensive for the grid operator. It must be noted that a wind speed change of only 0.5m/s result in a wind power change of 10% (within the range of 9-11 m/s where the wind power curve is steepest). Hence, it is very important for the grid operator to know if strong fluctuations are likely or not. Observed weather conditions at the German wind energy research platform FINO1 in the German bight are used to quantify wind fluctuations. With a standard power curve these wind fluctuations are transfered to wind power. The aim is to predict the probability of exceedence of certain wind power gradients that occur in a time interval of e.g. 12 hours. During 2006 and 2009 the distribution of wind power fluctuations looks very similar giving hope that distinct atmospheric processes can be determined that act as a trigger. Most often high wind power fluctuations occur in a range of wind speeds between 9-12 m/s as can be expected from the shape of the wind power curve. A cluster analysis of the 500 hPa geopotential height to detect predominant weather regimes shows that high fluctuations are more likely in north-western flow. It is shown that most often high fluctuations occur in non-stable atmospheric stratification. The description of stratification by means of the vertical gradient of the virtual potential temperature is chosen to be indicative for convection, i.e. it can be assumed that a negative gradient indicates convection which leads to strong wind fluctuations in the updraft and downdraft of the cloud. Neural Networks are used to determine the probability of exceedence of wind power gradients from a set of atmospheric parameters that are taken from Numerical Weather Prediction Models. Parameters describing atmospheric stability, that are related to convection (e.g. rain rate) and that forecast wind gusts tend to carry most information to estimate expected wind power fluctuations.

  12. Non-genetic individuality in Escherichia coli motor switching

    PubMed Central

    Mora, Thierry; Bai, Fan; Che, Yong-Suk; Minamino, Tohru; Namba, Keiichi; Wingreen, Ned S.

    2011-01-01

    By analyzing 30-minute, high-resolution recordings of single E. coli flagellar motors in the physiological regime, we show that two main properties of motor switching —the mean clockwise and mean counter-clockwise interval durations— vary significantly. When we represent these quantities on a two-dimensional plot for several cells, the data does not fall on a one-dimensional curve, as expected with a single control parameter, but instead spreads in two dimensions, pointing to motor individuality. The largest variations are in the mean counter-clockwise interval, and are attributable to variations in the concentration of the internal signaling molecule CheY-P. In contrast, variations in the mean clockwise interval are interpreted in terms of motor individuality. We argue that the sensitivity of the mean counter-clockwise interval to fluctuations in CheY-P is consistent with an optimal strategy of run and tumble. The concomittent variability in mean run length may allow populations of cells to better survive in rapidly changing environments by “hedging their bets”. PMID:21422514

  13. Statistical Characteristics of the Gaussian-Noise Spikes Exceeding the Specified Threshold as Applied to Discharges in a Thundercloud

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.

    2017-12-01

    We obtain expressions for the probabilities of the normal-noise spikes with the Gaussian correlation function and for the probability density of the inter-spike intervals. As distinct from the delta-correlated noise, in which the intervals are distributed by the exponential law, the probability of the subsequent spike depends on the previous spike and the interval-distribution law deviates from the exponential one for a finite noise-correlation time (frequency-bandwidth restriction). This deviation is the most pronounced for a low detection threshold. Similarity of the behaviors of the distributions of the inter-discharge intervals in a thundercloud and the noise spikes for the varying repetition rate of the discharges/spikes, which is determined by the ratio of the detection threshold to the root-mean-square value of noise, is observed. The results of this work can be useful for the quantitative description of the statistical characteristics of the noise spikes and studying the role of fluctuations for the discharge emergence in a thundercloud.

  14. Effects of a capacitive-resistive electric transfer therapy on physiological and biomechanical parameters in recreational runners: A randomized controlled crossover trial.

    PubMed

    Duñabeitia, Iratxe; Arrieta, Haritz; Torres-Unda, Jon; Gil, Javier; Santos-Concejero, Jordan; Gil, Susana M; Irazusta, Jon; Bidaurrazaga-Letona, Iraia

    2018-05-26

    This study compared the effects of a capacitive-resistive electric transfer therapy (Tecar) and passive rest on physiological and biomechanical parameters in recreational runners when performed shortly after an exhausting training session. Randomized controlled crossover trial. University biomechanical research laboratory. Fourteen trained male runners MAIN OUTCOME MEASURES: Physiological (running economy, oxygen uptake, respiratory exchange ratio, ventilation, heart rate, blood lactate concentration) and biomechanical (step length; stride angle, height, frequency, and contact time; swing time; contact phase; support phase; push-off phase) parameters were measured during two incremental treadmill running tests performed two days apart after an exhaustive training session. When running at 14 km/h and 16 km/h, the Tecar treatment group presented greater increases in stride length (p < 0.001), angle (p < 0.05) and height (p < 0.001) between the first and second tests than the control group and, accordingly, greater decreases in stride frequency (p < 0.05). Physiological parameters were similar between groups. The present study suggests that a Tecar therapy intervention enhances biomechanical parameters in recreational runners after an exhaustive training session more than passive rest, generating a more efficient running pattern without affecting selected physiological parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Gait Parameter Adjustments for Walking on a Treadmill at Preferred, Slower, and Faster Speeds in Older Adults with Down Syndrome

    PubMed Central

    Smith, Beth A.; Kubo, Masayoshi; Ulrich, Beverly D.

    2012-01-01

    The combined effects of ligamentous laxity, hypotonia, and decrements associated with aging lead to stability-enhancing foot placement adaptations during routine overground walking at a younger age in adults with Down syndrome (DS) compared to their peers with typical development (TD). Our purpose here was to examine real-time adaptations in older adults with DS by testing their responses to walking on a treadmill at their preferred speed and at speeds slower and faster than preferred. We found that older adults with DS were able to adapt their gait to slower and faster than preferred treadmill speeds; however, they maintained their stability-enhancing foot placements at all speeds compared to their peers with TD. All adults adapted their gait patterns similarly in response to faster and slower than preferred treadmill-walking speeds. They increased stride frequency and stride length, maintained step width, and decreased percent stance as treadmill speed increased. Older adults with DS, however, adjusted their stride frequencies significantly less than their peers with TD. Our results show that older adults with DS have the capacity to adapt their gait parameters in response to different walking speeds while also supporting the need for intervention to increase gait stability. PMID:22693497

  16. Biomechanics of youth windmill softball pitching.

    PubMed

    Werner, Sherry L; Guido, John A; McNeice, Ryan P; Richardson, Jasper L; Delude, Neil A; Stewart, Gregory W

    2005-04-01

    Limited research attention has been paid to the potentially harmful windmill softball pitch. No information is available regarding lower extremity kinetics in softball pitching. The stresses on the throwing arm of youth windmill pitchers are clinically significant and similar to those found for college softball pitchers. Descriptive laboratory study. Three-dimensional, high-speed (240-Hz) video and stride foot force plate (1200 Hz) data were collected on fastballs from 53 youth softball pitchers. Kinematic parameters related to pitching mechanics and resultant kinetics on the throwing-arm elbow and shoulder joints were calculated. Kinetic parameters were compared to those reported for baseball pitchers. Elbow and shoulder joint loads were similar to those found for baseball pitchers and college softball pitchers. Shoulder distraction stress averaged 94% body weight for the youth pitchers. Stride foot ground reaction force patterns were not similar to those reported for baseball pitchers. Vertical and braking force components under the stride foot were in excess of body weight. Excessive distraction stress and joint torques at the throwing-arm elbow and shoulder are similar to those found in baseball pitchers, which suggests that windmill softball pitchers are at risk for overuse injuries. Normative information regarding upper and lower extremity kinematics and kinetics for 12- to 19-year-old softball pitchers has been established.

  17. Effect of stride frequency on metabolic costs and rating of perceived exertion during walking in water.

    PubMed

    Masumoto, Kenji; Nishizaki, Yoshiko; Hamada, Ayako

    2013-06-01

    We investigated the effect of stride frequency (SF) on metabolic costs and rating of perceived exertion (RPE) during walking in water and on dry land. Eleven male subjects walked on a treadmill on dry land and on an underwater treadmill at their preferred SF (PSF) and walked at an SF which was lower and higher than the PSF (i.e., PSF ± 5, 10, and 15 strides min(-1)). Walking speed was kept constant at each subject's preferred walking speed in water and on dry land. Oxygen uptake, heart rate, RPE, PSF and preferred walking speeds were measured. Metabolic costs and RPE were significantly higher when walking at low and high SF conditions than when walking at the PSF condition both in water and on dry land (P<0.05). Additionally, the high SF condition produced significantly higher metabolic costs and RPE than the equivalent low SF condition during walking in water (P<0.01). Furthermore, metabolic costs, RPE, PSF, and the preferred walking speed were significantly lower in water than on dry land when walking at the PSF (P<0.05). These observations indicate that a change in SF influences metabolic costs and RPE during walking in water. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Tiger beetles pursue prey using a proportional control law with a delay of one half-stride

    PubMed Central

    Haselsteiner, Andreas F.; Gilbert, Cole; Wang, Z. Jane

    2014-01-01

    Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s−1, is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier. PMID:24718454

  19. Spatiotemporal Gait Characteristics Associated with Cognitive Impairment: A Multicenter Cross-Sectional Study, the Intercontinental "Gait, cOgnitiOn & Decline" Initiative.

    PubMed

    Beauchet, Olivier; Blumen, Helena M; Callisaya, Michele L; De Cock, Anne-Marie; Kressig, Reto W; Srikanth, Velandai; Steinmetz, Jean-Paul; Verghese, Joe; Allali, Gilles

    2018-01-23

    The study aims to determine the spatiotemporal gait parameters and/or their combination(s) that best differentiate between cognitively healthy individuals (CHI), patients with mild cognitive impairment (MCI) and those with mild and moderate dementia, regardless of the etiology of cognitive impairment. A total of 2099 participants (1015 CHI, 478 patients with MCI, 331 patients with mild dementia and 275 with moderate dementia) were selected from the intercontinental "Gait, cOgnitiOn & Decline" (GOOD) initiative, which merged different databases from seven cross-sectional studies. Mean values and coefficients of variation (CoV) of spatiotemporal gait parameters were recorded during usual walking with the GAITRite® system. The severity of cognitive impairment was associated with worse performance on all gait parameters. Stride velocity had the strongest association with cognitive impairment, regardless of cognitive status. High mean value and CoV of stride length characterized moderate dementia, whereas increased CoV of stride time was specific to MCI status. The findings support the existence of specific cognitive impairment-related gait disturbances with differences related to stages of cognitive impairment, which may be used to screen individuals with cognitive impairment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Fetlock joint kinematics differ with age in Thoroughbred [was thoroughbred] racehorses.

    PubMed

    Butcher, Michael T; Ashley-Ross, M A

    2002-05-01

    Fetlock joint kinematics during galloping in 2-, 3-, 4-, and 5-year-old Thoroughbreds in race training were quantified to determine if differences due to age could account for the observation that 2-year old Thoroughbred racehorses incur a high number of injuries to the bones and soft tissues in the distal forelimbs during training and at the outset of racing. Twelve Thoroughbred racehorses were videotaped in the sagittal plane at 250 frames/s during their daily galloping workout on a 7/8 mile sand-surface training track. Four galloping strides were recorded for each horse and subsequently digitized to determine fetlock joint angles of the leading forelimb during the limb support period of a stride. Four kinematic variables were measured from each stride's angular profile: angle of fetlock joint dorsi-flexion at mid-stance, negative angular velocity, positive angular velocity and time from hoof impact to mid-stance phase of limb support. The 2-year old Thoroughbreds had significantly quicker rates of dorsi-flexion of their fetlock joints than 3- (p=0.01), 4- (p=0.01), and 5-year old (p<0.01) Thoroughbreds following impact of the leading forelimb during moderate galloping (avg. 14 m/s). Higher rates of dorsi-flexion in young Thoroughbreds may reflect immaturity (lack of stiffness) of the suspensory apparatus tissues.

  1. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial.

    PubMed

    Thaut, M H; Leins, A K; Rice, R R; Argstatter, H; Kenyon, G P; McIntosh, G C; Bolay, H V; Fetter, M

    2007-01-01

    The effectiveness of 2 different types of gait training in stroke rehabilitation, rhythmic auditory stimulation (RAS) versus neurodevelopmental therapy (NDT)/Bobath- based training, was compared in 2 groups of hemiparetic stroke patients over a 3-week period of daily training (RAS group, n = 43; NDT/Bobath group =35). Mean entry date into the study was 21.3 days poststroke for the RAS group and 22.3 days for the control group. Patients entered the study as soon as they were able to complete 5 stride cycles with handheld assistance. Patients were closely equated by age, gender, and lesion site. Motor function in both groups was pre-assessed by the Barthel Index and the Fugl-Meyer Scales. Pre- to posttest measures showed a significant improvement in the RAS group for velocity (P = .006), stride length (P = .0001), cadence (P = .0001) and symmetry (P = .0049) over the NDT/Bobath group. Effect sizes for RAS over NDT/Bobath training were 13.1 m/min for velocity, 0.18 m for stride length, and 19 steps/min for cadence. The data show that after 3 weeks of gait training, RAS is an effective therapeutic method to enhance gait training in hemiparetic stroke rehabilitation. Gains were significantly higher for RAS compared to NDT/Bobath training.

  2. Calibrated Noise Measurements with Induced Receiver Gain Fluctuations

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Walker, David; Gu, Dazhen; Rajola, Marco; Spevacek, Ashly

    2011-01-01

    The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory in science and engineering. These limitations were encountered when modeling the performance of radiometer calibration architectures and algorithms in the presence of non stationary receiver fluctuations. Analyses of measured signals have traditionally been limited to a single measurement series. Whereas in a radiometer that samples a set of noise references, the data collection can be treated as an ensemble set of measurements of the receiver state. Noise Assisted Data Analysis is a growing field of study with significant potential for aiding the understanding and modeling of non stationary processes. Typically, NADA entails adding noise to a signal to produce an ensemble set on which statistical analysis is performed. Alternatively as in radiometric measurements, mixing a signal with calibrated noise provides, through the calibration process, the means to detect deviations from the stationary assumption and thereby a measurement tool to characterize the signal's non stationary properties. Data sets comprised of calibrated noise measurements have been limited to those collected with naturally occurring fluctuations in the radiometer receiver. To examine the application of NADA using calibrated noise, a Receiver Gain Modulation Circuit (RGMC) was designed and built to modulate the gain of a radiometer receiver using an external signal. In 2010, an RGMC was installed and operated at the National Institute of Standards and Techniques (NIST) using their Noise Figure Radiometer (NFRad) and national standard noise references. The data collected is the first known set of calibrated noise measurements from a receiver with an externally modulated gain. As an initial step, sinusoidal and step-function signals were used to modulate the receiver gain, to evaluate the circuit characteristics and to study the performance of a variety of calibration algorithms. The receiver noise temperature and time-bandwidth product of the NFRad are calculated from the data. Statistical analysis using temporal-dependent calibration algorithms reveals that the natural occurring fluctuations in the receiver are stationary over long intervals (100s of seconds); however the receiver exhibits local non stationarity over the interval over which one set of reference measurements are collected. A variety of calibration algorithms have been applied to the data to assess algorithms' performance with the gain fluctuation signals. This presentation will describe the RGMC, experiment design and a comparative analysis of calibration algorithms.

  3. Using Plantar Electrical Stimulation to Improve Postural Balance and Plantar Sensation Among Patients With Diabetic Peripheral Neuropathy: A Randomized Double Blinded Study

    PubMed Central

    Najafi, Bijan; Talal, Talal K.; Grewal, Gurtej Singh; Menzies, Robert; Armstrong, David G.; Lavery, Lawrence A.

    2017-01-01

    Objective: People with diabetic peripheral neuropathy (DPN) often exhibit deteriorations in motor-performance mainly due to lack of plantar-sensation. The study explored effectiveness of plantar electrical-stimulation therapy to enhance motor-performance among people with DPN. Design and methods: Using a double-blinded model, 28 volunteers with DPN (age: 57.8 ± 10.2 years) were recruited and randomized to either intervention (IG: n = 17) or control (CG: n = 11) group. Both groups received identical plantar-stimulation devices for six weeks of daily use at home; however, only the IG devices were set to deliver stimulation. Balance (ankle, hip, and center of mass [COM] sway) and gait (stride velocity [SV], stride time [ST], stride length [SL], and cadence) were measured using validated wearable sensors. Outcomes were assessed at baseline and at six-week. Clinical assessment including vascular as measured by ankle-brachial-index (ABI) and plantar-sensation as quantified by vibratory plantar threshold (VPT) were also measured at baseline and six weeks. Results: No difference were observed between groups for baseline characteristics (P > .050). Posttherapy, ankle and COM sway with eyes open were significantly improved (P < .05, Cohen’s effect size d = 0.67-0.76) in the IG with no noticeable changes in CG. All gait parameters were significantly improved in the IG with highest effect size observed for cadence (d = 1.35, P = .000). Results revealed improvement in VPT (P = .004, d = 1.15) with significant correlation with stride velocity improvement (r = .56, P = .037). ABI was improved in the IG in particulate among those with ABI>1.20 (P = .041, d = 0.99) Conclusion: This study suggests that daily home use of plantar electrical-stimulation may be a practical means to enhance motor-performance and plantar-sensation in people with DPN. PMID:28627217

  4. Locomotion evaluation for racing in thoroughbreds.

    PubMed

    Barrey, E; Evans, S E; Evans, D L; Curtis, R A; Quinton, R; Rose, R J

    2001-04-01

    The potential racing and locomotory profile of a Thoroughbred yearling should be taken into account for its training programme and racing career. A gait test has been designed to assist the trainer in this task. The aim of this study was to investigate the temporal and kinetic locomotory variables of Thoroughbreds at the gallop, in relationship to their racing ability. Thirty Thoroughbred horses in race training were tested at maximal speed during a training session. The training exercise consisted of a warming-up session at trot and canter for 10 min followed by a gallop session at increasing speed on a dirt track 1942 m long. The maximal speed was measured for the last 800 m before the finishing post. An acclerometric device attached to the girth provided quantitative information about the kinetic and temporal variables of the gallop such as: stride length (SL), stride frequency (SF), times elapsed between each hoof midstance phase (HIND, DIAGO, FORE), regularity of the strides (REG), mean vector of propulsion (VPROP), energy of propulsion (EPROP) and energy of loading (ELOAD). The performance records (number of wins, placings and average earning/start [PERF]) were used to analyse the relationship with the gait measurements. The mean maximum speed was 15.26 m/s. Several locomotory variables were significantly (P < 0.05) correlated to the gallop speed: SL (0.90), SF (0.75), DIAGO (0.42), REG (-0.47), VPROP (0.52), ELOAD (0.56) and EPROP (0.65). There were significant correlations between PERF and the following gait variables: REG (0.79), DIAGO (0.43), SF (0.42), SL (-0.32) and ELOAD (-0.40). The horses that won short distance races (< 1400 m) had a larger relative ground contact duration and higher stride frequency than horses that won in longer distance races. The gait test was easy to perform and provided useful locomotory variables that may be used to evaluate the racing ability of the Thoroughbreds in training.

  5. The use of body weight support on ground level: an alternative strategy for gait training of individuals with stroke.

    PubMed

    Sousa, Catarina O; Barela, José A; Prado-Medeiros, Christiane L; Salvini, Tania F; Barela, Ana M F

    2009-12-01

    Body weight support (BWS) systems on treadmill have been proposed as a strategy for gait training of subjects with stroke. Considering that ground level is the most common locomotion surface and that there is little information about individuals with stroke walking with BWS on ground level, it is important to investigate the use of BWS on ground level in these individuals as a possible alternative strategy for gait training. Thirteen individuals with chronic stroke (four women and nine men; mean age 54.46 years) were videotaped walking on ground level in three experimental conditions: with no harness, with harness bearing full body weight, and with harness bearing 30% of full body weight. Measurements were recorded for mean walking speed, cadence, stride length, stride speed, durations of initial and terminal double stance, single limb support, swing period, and range of motion of ankle, knee, and hip joints; and foot, shank, thigh, and trunk segments. The use of BWS system leads to changes in stride length and speed, but not in stance and swing period duration. Only the hip joint was influenced by the BWS system in the 30% BWS condition. Shank and thigh segments presented less range of motion in the 30% BWS condition than in the other conditions, and the trunk was held straighter in the 30% BWS condition than in the other conditions. Individuals with stroke using BWS system on ground level walked slower and with shorter stride length than with no harness. BWS also led to reduction of hip, shank, and thigh range of motion. However, this system did not change walking temporal organization and body side asymmetry of individuals with stroke. On the other hand, the BWS system enabled individuals with chronic stroke to walk safely and without physical assistance. In interventions, the physical therapist can watch and correct gait pattern in patients' performance without the need to provide physical assistance.

  6. Objective assessment of gait in xylazine-induced ataxic horses.

    PubMed

    Nout-Lomas, Y S; Page, K M; Kang, H G; Aanstoos, M E; Greene, H M

    2017-05-01

    There is poor agreement between observers of equine neurological gait abnormalities using the modified Mayhew grading scale. To stimulate a dose-dependent ataxia in horses through xylazine administration and identify quantifiable relevant gait parameters. Balanced, randomised, 2-way crossover design. Eight horses were assessed before and after administration of xylazine (low dose and high dose). Gait analyses performed before and after xylazine administration included: 1) kinematic data collected on an equine high-speed treadmill (flat and 10% decline) and from accelerometers placed on head and sacrum; and 2) kinetic data collected on a force plate. All horses developed dose-dependent ataxia. Horses developed a dose-dependent increased stride time, stride length, and time of contact (P<0.0001), and a decreased stride frequency (P<0.0002) after administration of xylazine. Although pelvic acceleration increased in the mediolateral direction (P<0.05) in horses walked on the treadmill, this movement decreased when walking over ground after administration of xylazine (P<0.05). Furthermore, centre of pressure and path length indices changed significantly in horses following administration of xylazine (P<0.05). This study examined one breed of horse (Arabian), all of similar height and weight. Accelerometers were attached to skin, not bone; no correction was made for artefacts from skin displacement. The sedative drug effect is of certain duration, limiting the data collection period. Administration of xylazine induced a dose-dependent ataxia in horses and resulted in significant changes of gait parameters, pelvic accelerations, and stabilographic variables, some of which changed in a dose-dependent fashion. Some of the altered gait parameters in this model were probably a result of overall slowing down of the stride cycle secondary to the sedative effect. Continued efforts to discover and evaluate quantifiable gait parameters that are susceptible to change following development of clinical neurological disease in horses is warranted. © 2016 EVJ Ltd.

  7. Changes in gait while backward counting in demented older adults with frontal lobe dysfunction.

    PubMed

    Allali, Gilles; Kressig, Reto W; Assal, Frédéric; Herrmann, François R; Dubost, Véronique; Beauchet, Olivier

    2007-10-01

    Gait disorders caused by dementia have been associated with frontal lobe dysfunction. Dual-tasking is used to explore the involvement of cortical level in gait control. It has been shown that dual-task induced gait changes that could be related to (1) the efficiency of executive function, (2) the level of difficulty involved in the walking-associated task, or (3) the articulo-motor components comprised in the walking-associated task. A better understanding of dual-task related changes in demented subjects with frontal lobe dysfunction could help us to clarify the role of the frontal lobe in motor gait control. To assess and compare the effects of two mental arithmetic tasks involving similar articulo-motor components but different level of difficulty on the mean values and coefficient of variation (CV) of stride time among demented older adults with impaired executive function. The mean values and coefficients of variation of stride time were measured using a GAITRite-System among 16 demented older adults with impaired executive function while walking with and without forward counting (FC) and backward counting (BC). The mean values and CV of stride time were significantly higher under both dual-task conditions than during a simple walking task (p<0.05). The change in CV of stride time during BC was significantly higher when compared with the change during FC (p=0.015), whereas the change in mean value was not significant (p=0.056). There was no difference between the dual-task and single task condition as far the number of enumerated figures were concerned (p=0.678 for FC and p=0.069 for BC), but significantly fewer figures were enumerated while BC compared with FC (p<0.001). BC provoked more changes in gait parameters than FC with major modification in gait variability related to an inappropriate focusing of attention. These findings suggest that the CV may be a suitable criterion for the assessment of gait control.

  8. Effects of form-focused training on running biomechanics: A pilot randomized trial in untrained individuals

    PubMed Central

    Kumar, Deepak; McDermott, Kelly; Feng, Haojun; Goldman, Veronica; Luke, Anthony; Souza, Richard B; Hecht, Frederick M

    2015-01-01

    Objective To investigate the changes in running biomechanics after training in Form-Focused running using ChiRunning vs. Not-Form focused training and Self-Directed training in untrained individuals. Design Pilot study - Randomized controlled trial. Setting Research Institution with Tertiary Care Medical Center. Participants Seventeen subjects (9 males, 8 females) with pre-hypertension. Methods Twenty-two participants were randomized to three study arms but 17 completed the study. The study arms were: 1) group-based Form-Focused running using ChiRunning (enrolled, n =10; completed, n=7); 2) group-based conventional running (enrolled, n=6; completed, n=4); 3) self-directed training with educational materials (enrolled, n =6; completed, n=6). The training schedule was prescribed for 8 weeks with 4 weeks of follow-up. All subjects completed overground running motion analyses before and after training. Outcomes Ankle, knee, hip joint peak moments and powers; Average vertical loading rate (AVLR), impact peak, cadence, stride length, strike index, and stride reach. Paired T-tests were used to compare differences with-in groups over-time. Results Form-Focused group reduced their Stride Reach (P = .047) after the training but not the other groups. Form-Focused group showed a close to significant reduction in knee adduction moment (P = .051) and a reduction in the peak ankle eversion moment (P = .027). Self-Directed group showed an increase in the running speed, (P =.056) and increases in ankle and knee joint powers and moments. Conclusions There are differences in the changes in running biomechanics between individuals trained in running form that emphazies mid-foot strike, higher cadence, and shorter stride compared to those not trained in the thise technique. These differences may be associated with reduced lower extremity stress in individuals trained in this running form but future studies are needed to confirm these findings in larger samples. PMID:25633634

  9. Use of a wireless, inertial sensor-based system to objectively evaluate flexion tests in the horse.

    PubMed

    Marshall, J F; Lund, D G; Voute, L C

    2012-12-01

    A wireless, inertial sensor-based system has previously been validated for evaluation of equine lameness. However, threshold values have not been determined for the assessment of responses to flexion tests. The aim of this investigation was to evaluate a sensor-based system for objective assessment of the response to flexion. Healthy adult horses (n = 17) in work were recruited prospectively. Horses were instrumented with sensors on the head (accelerometer), pelvis (accelerometer) and right forelimb (gyroscope), before trotting in a straight line (minimum 25 strides) for 2 consecutive trials. Sensors measured 1) vertical pelvic movement asymmetry (PMA) for both right and left hindlimb strides and 2) average difference in maximum and minimum pelvic height (PDMax and PDMin) between right and left hindlimb strides in millimetres. A hindlimb was randomly selected for proximal flexion (60 s), after which the horse trotted a minimum of 10 strides. Response to flexion was blindly assessed as negative or positive by an experienced observer. Changes in PMA, PDMax and PDMin between baseline and flexion examinations were calculated for each test. Statistical analysis consisted of a Pearson's product moment test and linear regression on baseline trials, Mann-Whitney rank sum test for effect of flexion and receiver operator curve (ROC) analysis of test parameters. There was a strong correlation between trials for PMA, PDMin and PDMax measurements (P < 0.001). A positive flexion test resulted in a significant increase in PMA (P = 0.021) and PDMax (P = 0.05) only. Receiver-operator curve analysis established cut-off values for change in PMA and PDMax of 0.068 and 4.47 mm, respectively (sensitivity = 0.71, specificity = 0.65) to indicate a positive response to flexion. A positive response to flexion resulted in significant changes to objective measurements of pelvic symmetry. Findings support the use of inertial sensor systems to objectively assess response to flexion tests. Further investigation is warranted to establish cut-off values for objective assessment of other diagnostic procedures.

  10. Quantifying Short-Term Dynamics of Parkinson’s Disease Using Self-Reported Symptom Data From an Internet Social Network

    PubMed Central

    Wicks, Paul; Vaughan, Timothy; Pentland, Alex

    2013-01-01

    Background Parkinson’s disease (PD) is an incurable neurological disease with approximately 0.3% prevalence. The hallmark symptom is gradual movement deterioration. Current scientific consensus about disease progression holds that symptoms will worsen smoothly over time unless treated. Accurate information about symptom dynamics is of critical importance to patients, caregivers, and the scientific community for the design of new treatments, clinical decision making, and individual disease management. Long-term studies characterize the typical time course of the disease as an early linear progression gradually reaching a plateau in later stages. However, symptom dynamics over durations of days to weeks remains unquantified. Currently, there is a scarcity of objective clinical information about symptom dynamics at intervals shorter than 3 months stretching over several years, but Internet-based patient self-report platforms may change this. Objective To assess the clinical value of online self-reported PD symptom data recorded by users of the health-focused Internet social research platform PatientsLikeMe (PLM), in which patients quantify their symptoms on a regular basis on a subset of the Unified Parkinson’s Disease Ratings Scale (UPDRS). By analyzing this data, we aim for a scientific window on the nature of symptom dynamics for assessment intervals shorter than 3 months over durations of several years. Methods Online self-reported data was validated against the gold standard Parkinson’s Disease Data and Organizing Center (PD-DOC) database, containing clinical symptom data at intervals greater than 3 months. The data were compared visually using quantile-quantile plots, and numerically using the Kolmogorov-Smirnov test. By using a simple piecewise linear trend estimation algorithm, the PLM data was smoothed to separate random fluctuations from continuous symptom dynamics. Subtracting the trends from the original data revealed random fluctuations in symptom severity. The average magnitude of fluctuations versus time since diagnosis was modeled by using a gamma generalized linear model. Results Distributions of ages at diagnosis and UPDRS in the PLM and PD-DOC databases were broadly consistent. The PLM patients were systematically younger than the PD-DOC patients and showed increased symptom severity in the PD off state. The average fluctuation in symptoms (UPDRS Parts I and II) was 2.6 points at the time of diagnosis, rising to 5.9 points 16 years after diagnosis. This fluctuation exceeds the estimated minimal and moderate clinically important differences, respectively. Not all patients conformed to the current clinical picture of gradual, smooth changes: many patients had regimes where symptom severity varied in an unpredictable manner, or underwent large rapid changes in an otherwise more stable progression. Conclusions This information about short-term PD symptom dynamics contributes new scientific understanding about the disease progression, currently very costly to obtain without self-administered Internet-based reporting. This understanding should have implications for the optimization of clinical trials into new treatments and for the choice of treatment decision timescales. PMID:23343503

  11. Quantifying short-term dynamics of Parkinson's disease using self-reported symptom data from an Internet social network.

    PubMed

    Little, Max; Wicks, Paul; Vaughan, Timothy; Pentland, Alex

    2013-01-24

    Parkinson's disease (PD) is an incurable neurological disease with approximately 0.3% prevalence. The hallmark symptom is gradual movement deterioration. Current scientific consensus about disease progression holds that symptoms will worsen smoothly over time unless treated. Accurate information about symptom dynamics is of critical importance to patients, caregivers, and the scientific community for the design of new treatments, clinical decision making, and individual disease management. Long-term studies characterize the typical time course of the disease as an early linear progression gradually reaching a plateau in later stages. However, symptom dynamics over durations of days to weeks remains unquantified. Currently, there is a scarcity of objective clinical information about symptom dynamics at intervals shorter than 3 months stretching over several years, but Internet-based patient self-report platforms may change this. To assess the clinical value of online self-reported PD symptom data recorded by users of the health-focused Internet social research platform PatientsLikeMe (PLM), in which patients quantify their symptoms on a regular basis on a subset of the Unified Parkinson's Disease Ratings Scale (UPDRS). By analyzing this data, we aim for a scientific window on the nature of symptom dynamics for assessment intervals shorter than 3 months over durations of several years. Online self-reported data was validated against the gold standard Parkinson's Disease Data and Organizing Center (PD-DOC) database, containing clinical symptom data at intervals greater than 3 months. The data were compared visually using quantile-quantile plots, and numerically using the Kolmogorov-Smirnov test. By using a simple piecewise linear trend estimation algorithm, the PLM data was smoothed to separate random fluctuations from continuous symptom dynamics. Subtracting the trends from the original data revealed random fluctuations in symptom severity. The average magnitude of fluctuations versus time since diagnosis was modeled by using a gamma generalized linear model. Distributions of ages at diagnosis and UPDRS in the PLM and PD-DOC databases were broadly consistent. The PLM patients were systematically younger than the PD-DOC patients and showed increased symptom severity in the PD off state. The average fluctuation in symptoms (UPDRS Parts I and II) was 2.6 points at the time of diagnosis, rising to 5.9 points 16 years after diagnosis. This fluctuation exceeds the estimated minimal and moderate clinically important differences, respectively. Not all patients conformed to the current clinical picture of gradual, smooth changes: many patients had regimes where symptom severity varied in an unpredictable manner, or underwent large rapid changes in an otherwise more stable progression. This information about short-term PD symptom dynamics contributes new scientific understanding about the disease progression, currently very costly to obtain without self-administered Internet-based reporting. This understanding should have implications for the optimization of clinical trials into new treatments and for the choice of treatment decision timescales.

  12. Fluctuations and correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Bazavov, A.; Bhattacharya, Tanmoy; DeTar, C. E.; Ding, H.-T.; Gottlieb, Steven; Gupta, Rajan; Hegde, P.; Heller, Urs M.; Karsch, F.; Laermann, E.; Levkova, L.; Mukherjee, Swagato; Petreczky, P.; Schmidt, Christian; Soltz, R. A.; Soeldner, W.; Sugar, R.; Vranas, Pavlos M.

    2012-08-01

    We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results are obtained using calculations with tree-level improved gauge and the highly improved staggered quark actions with almost physical light and strange quark masses at three different values of the lattice cutoff. Our choice of parameters corresponds to a value of 160 MeV for the lightest pseudoscalar Goldstone mass and a physical value of the kaon mass. The three diagonal charge susceptibilities and the correlations among conserved charges have been extrapolated to the continuum limit in the temperature interval 150MeV≤T≤250MeV. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T≲150MeV. We observe significant deviations in the temperature range 160MeV≲T≲170MeV and qualitative differences in the behavior of the three conserved charge sectors. At T≃160MeV quadratic net baryon number fluctuations in QCD agree with HRG model calculations, while the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These findings are relevant to the discussion of freeze-out conditions in relativistic heavy ion collisions.

  13. Variability of higher order wavefront aberrations after blinks.

    PubMed

    Hagyó, Krisztina; Csákány, Béla; Lang, Zsolt; Németh, János

    2009-01-01

    To investigate the rapid alterations in value and fluctuation of ocular wavefront aberrations during the interblink interval. Forty-two volunteers were examined with a WASCA Wavefront Analyzer (Carl Zeiss Meditec AG) using modified software. For each subject, 150 images (about 6 frames/second) were registered during an interblink period. The outcome measures were spherical and cylindrical refraction and root-mean-square (RMS) values for spherical, coma, and total higher order aberrations. Fifth order polynomials were fitted to the data and the fluctuation trends of the parameters were determined. We calculated the prevalence of the trends with an early local minimum (type 1). The tear production status (Schirmer test) and tear film break-up time (BUT) were also measured. Fluctuation trends with an early minimum (type 1) were significantly more frequent than trends with an early local maximum (type 2) for total higher order aberrations RMS (P=.036). The incidence of type 1 fluctuation trends was significantly greater for coma and total higher order aberrations RMS (P=.041 and P=.003, respectively) in subjects with normal results in the BUT or Schirmer test than in those with abnormal results. In the normal subjects, the first minimum of type 1 RMS fluctuation trends occurred, on average, between 3.8 and 5.1 seconds after blink. We suggest that wavefront aberrations can be measured most accurately at the time after blink when they exhibit a decreased degree of dispersion. We recommend that a snapshot of wavefront measurements be made 3 to 5 seconds after blink.

  14. Efficacy of Code Optimization on Cache-based Processors

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    The current common wisdom in the U.S. is that the powerful, cost-effective supercomputers of tomorrow will be based on commodity (RISC) micro-processors with cache memories. Already, most distributed systems in the world use such hardware as building blocks. This shift away from vector supercomputers and towards cache-based systems has brought about a change in programming paradigm, even when ignoring issues of parallelism. Vector machines require inner-loop independence and regular, non-pathological memory strides (usually this means: non-power-of-two strides) to allow efficient vectorization of array operations. Cache-based systems require spatial and temporal locality of data, so that data once read from main memory and stored in high-speed cache memory is used optimally before being written back to main memory. This means that the most cache-friendly array operations are those that feature zero or unit stride, so that each unit of data read from main memory (a cache line) contains information for the next iteration in the loop. Moreover, loops ought to be 'fat', meaning that as many operations as possible are performed on cache data-provided instruction caches do not overflow and enough registers are available. If unit stride is not possible, for example because of some data dependency, then care must be taken to avoid pathological strides, just ads on vector computers. For cache-based systems the issues are more complex, due to the effects of associativity and of non-unit block (cache line) size. But there is more to the story. Most modern micro-processors are superscalar, which means that they can issue several (arithmetic) instructions per clock cycle, provided that there are enough independent instructions in the loop body. This is another argument for providing fat loop bodies. With these restrictions, it appears fairly straightforward to produce code that will run efficiently on any cache-based system. It can be argued that although some of the important computational algorithms employed at NASA Ames require different programming styles on vector machines and cache-based machines, respectively, neither architecture class appeared to be favored by particular algorithms in principle. Practice tells us that the situation is more complicated. This report presents observations and some analysis of performance tuning for cache-based systems. We point out several counterintuitive results that serve as a cautionary reminder that memory accesses are not the only factors that determine performance, and that within the class of cache-based systems, significant differences exist.

  15. Characterization and optimization of spiral eddy current coils for in-situ crack detection

    NASA Astrophysics Data System (ADS)

    Mandache, Catalin

    2018-03-01

    In-situ condition-based maintenance is making strides in the aerospace industry and it is seen as an alternative to scheduled, time-based maintenance. With fatigue cracks originating from fastener holes as the main reason for structural failures, embedded eddy current coils are a viable non-invasive solution for their timely detection. The development and potential broad use of these coils are motivated by a few consistent arguments: (i) inspection of structures of complicated geometries and hard to access areas, that often require disassembly, (ii) alternative to regular inspection actions that could introduce inadvertent damage, (iii) for structures that have short inspection intervals, and (iv) for repaired structures where fastener holes contain bushings and prevent further bolt-hole inspections. Since the spiral coils are aiming at detecting radial cracks emanating from the fastener holes, their design parameters should allow for high inductance, low ohmic losses and power requirements, as well as optimal size and high sensitivity to discontinuities. In this study, flexible, surface conformable, spiral eddy current coils are empirically investigated on mock-up specimens, while numerical analysis is performed for their optimization and design improvement.

  16. Duration of Agitation, Fluctuations of Consciousness, and Associations with Outcome in Patients with Subarachnoid Hemorrhage.

    PubMed

    Reznik, Michael E; Mahta, Ali; Schmidt, J Michael; Frey, Hans-Peter; Park, Soojin; Roh, David J; Agarwal, Sachin; Claassen, Jan

    2018-01-08

    Agitation is common after subarachnoid hemorrhage (SAH) and may be independently associated with outcomes. We sought to determine whether the duration of agitation and fluctuating consciousness were also associated with outcomes in patients with SAH. We identified all patients with positive Richmond Agitation Sedation Scale (RASS) scores from a prospective observational cohort of patients with SAH from 2011 to 2015. Total duration of agitation was extrapolated for each patient using available RASS scores, and 24-h mean and standard deviation (SD) of RASS scores were calculated for each patient. We also calculated each patient's duration of substantial fluctuation of consciousness, defined as the number of days with 24-h RASS SD > 1. Patients were stratified by 3-month outcome using the modified Rankin scale, and associations with outcome were assessed via logistic regression. There were 98 patients with at least one positive RASS score, with median total duration of agitation 8 h (interquartile range [IQR] 4-18), and median duration of substantially fluctuating consciousness 2 days (IQR 1-3). Unfavorable 3-month outcome was significantly associated with a longer duration of fluctuating consciousness (odds ratio [OR] per day, 1.51; 95% confidence interval [CI], 1.04-2.20; p = 0.031), but a briefer duration of agitation (OR per hour, 0.94; 95% CI, 0.89-0.99; p = 0.031). Though a longer duration of fluctuating consciousness was associated with worse outcomes in our cohort, total duration of agitation was not, and may have had the opposite effect. Our findings should therefore challenge the intensity with which agitation is often treated in SAH patients.

  17. Long-term weight-change slope, weight fluctuation and risk of type 2 diabetes mellitus in middle-aged Japanese men and women: findings of Aichi Workers' Cohort Study.

    PubMed

    Zhang, Y; Yatsuya, H; Li, Y; Chiang, C; Hirakawa, Y; Kawazoe, N; Tamakoshi, K; Toyoshima, H; Aoyama, A

    2017-03-20

    This study aims to investigate the association of long-term weight-change slopes, weight fluctuation and the risk of type 2 diabetes mellitus (T2DM) in middle-aged Japanese men and women. A total of 4234 participants of Aichi Workers' Cohort Study who were aged 35-66 years and free of diabetes in 2002 were followed through 2014. Past body weights at the ages of 20, 25, 30, 40 years, and 5 years before baseline as well as measured body weight at baseline were regressed on the ages. Slope and root-mean-square-error of the regression line were obtained and used to represent the weight changes and the weight fluctuation, respectively. The associations of the weight-change slopes and the weight fluctuation with incident T2DM were estimated by Cox proportional hazards models. During the median follow-up of 12.2 years, 400 incident cases of T2DM were documented. After adjustment for baseline overweight and other lifestyle covariates, the weight-change slopes were significantly associated with higher incidence of T2DM (hazard ratio (HR): 1.80, 95% confident interval (CI): 1.17-2.77 for men; and HR: 2.78, 95% CI: 1.07-7.23 for women), while the weight fluctuation was not (HR: 1.08, 95% CI: 1.00-1.18 for men and HR: 1.02, 95% CI: 0.84-1.25 for women). Regardless of the presence of overweight, the long-term weight-change slopes were significantly associated with the increased risk of T2DM; however, the weight fluctuation was not associated with the risk of T2DM in middle-aged Japanese men and women.

  18. The External Performance Appraisal of China Energy Regulation: An Empirical Study Using a TOPSIS Method Based on Entropy Weight and Mahalanobis Distance

    PubMed Central

    Li, Dan-Dan; Zheng, Hong-Hao

    2018-01-01

    In China’s industrialization process, the effective regulation of energy and environment can promote the positive externality of energy consumption while reducing negative externality, which is an important means for realizing the sustainable development of an economic society. The study puts forward an improved technique for order preference by similarity to an ideal solution based on entropy weight and Mahalanobis distance (briefly referred as E-M-TOPSIS). The performance of the approach was verified to be satisfactory. By separately using traditional and improved TOPSIS methods, the study carried out the empirical appraisals on the external performance of China’s energy regulation during 1999~2015. The results show that the correlation between the performance indexes causes the significant difference between the appraisal results of E-M-TOPSIS and traditional TOPSIS. The E-M-TOPSIS takes the correlation between indexes into account and generally softens the closeness degree compared with traditional TOPSIS. Moreover, it makes the relative closeness degree fluctuate within a small-amplitude. The results conform to the practical condition of China’s energy regulation and therefore the E-M-TOPSIS is favorably applicable for the external performance appraisal of energy regulation. Additionally, the external economic performance and social responsibility performance (including environmental and energy safety performances) based on the E-M-TOPSIS exhibit significantly different fluctuation trends. The external economic performance dramatically fluctuates with a larger fluctuation amplitude, while the social responsibility performance exhibits a relatively stable interval fluctuation. This indicates that compared to the social responsibility performance, the fluctuation of external economic performance is more sensitive to energy regulation. PMID:29385781

  19. Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities

    NASA Astrophysics Data System (ADS)

    Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.

    A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the oscillating function versus the average fluctuations length if the standard of fluctuations of inhomogeneities length is greater then the wave length. When the standard of fluctuations of medium inhomogeneities extension is smaller then the wave length, the av-erage intensity value weakly depends from the average fluctuations extension. The obtained results may be used for analysis of the electromagnetic wave propagation into the media with the fluctuating parameters caused by such factors as leafs of trees, cumulus, internal gravity waves with a chaotic phase and etc. Acknowledgment: This work was supported by the Russian Foundation for Basic Research (projects 08-02-97026 and 09-05-00450).

  20. Kinematics gait disorder in men with fibromyalgia.

    PubMed

    Heredia-Jimenez, Jose M; Soto-Hermoso, Victor M

    2014-01-01

    The aim of this study was to assess the kinematics disorder of gait in men with fibromyalgia. We studied 12 male with fibromyalgia and 14 healthy men. Each participant of the study walked five trials along a 18.6-m walkway. Fibromyalgia patients completed a Spanish version of Fibromyalgia Impact Questionnaire. Significant differences between fibromyalgia and control groups were found in velocity, stride length, and cadence. Gait parameters of men affected by fibromyalgia were impaired when compared to those of healthy group due to bradykinesia. According to previous studies to assess gait variables in female patients, the male with fibromyalgia also showed lower values of velocity, cadence, and stride length than healthy group but not reported significant differences in swing, stance, single, or double support phase.

  1. Gait characteristics over the course of a race in recreational marathon competitors.

    PubMed

    Bertram, John E A; Prebeau-Menezes, Leif; Szarko, Matthew J

    2013-03-01

    We analyzed gait and function of the supporting limb in participants of a marathon race at three stages: prerace, midrace (18 km), and near the end of the race (36 km). We confirmed that the most successful runners were able to maintain running speed for the duration of the race with little change in speed or gait. Speed slowed progressively during the race for those with slower race times, but stride frequency-stride length relationships remained normal for the speed they ran. These findings differ from most lab-based studies of fatigue, in which runners are forced to match a constant preset treadmill speed. Small changes in maximum ground force were seen in both slow- and fast-running participants as race end approached.

  2. Observation of Bernstein Waves Excited by Newborn Interstellar Pickup Ions in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Gary, S. Peter; Murphy, Neil; Gray, Perry C.; Burlaga, Leonard F.

    2012-01-01

    A recent examination of 1.9 s magnetic field data recorded by the Voyager 2 spacecraft in transit to Jupiter revealed several instances of strongly aliased spectra suggestive of unresolved high-frequency magnetic fluctuations at 4.4 AU. A closer examination of these intervals using the highest resolution data available revealed one clear instance of wave activity at spacecraft frame frequencies from 0.2 to 1 Hz. Using various analysis techniques, we have characterized these fluctuations as Bernstein mode waves excited by newborn interstellar pickup ions. We can find no other interpretation or source consistent with the observations, but this interpretation is not without questions. In this paper, we report a detailed analysis of the waves, including their frequency and polarization, that supports our interpretation.

  3. Fractal rigidity in migraine

    NASA Astrophysics Data System (ADS)

    Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz; West, Bruce J.

    2004-04-01

    We study the middle cerebral artery blood flow velocity (MCAfv) in humans using transcranial Doppler ultrasonography (TCD). Scaling properties of time series of the axial flow velocity averaged over a cardiac beat interval may be characterized by two exponents. The short time scaling exponent (STSE) determines the statistical properties of fluctuations of blood flow velocities in short-time intervals while the Hurst exponent describes the long-term fractal properties. In many migraineurs the value of the STSE is significantly reduced and may approach that of the Hurst exponent. This change in dynamical properties reflects the significant loss of short-term adaptability and the overall hyperexcitability of the underlying cerebral blood flow control system. We call this effect fractal rigidity.

  4. Low within- and between-day variability in exposure to new insulin glargine 300 U/ml.

    PubMed

    Becker, R H A; Nowotny, I; Teichert, L; Bergmann, K; Kapitza, C

    2015-03-01

    To characterize the variability in exposure and metabolic effect of insulin glargine 300 U/ml (Gla-300) at steady state in people with type 1 diabetes (T1DM). A total of 50 participants with T1DM underwent two 24-h euglycaemic clamps in steady-state conditions after six once-daily administrations of 0.4 U/kg Gla-300 in a double-blind, randomized, two-treatment, two-period, crossover clamp study. Participants were randomized to receive Gla-300 as a standard cartridge formulation in the first treatment period, and as a formulation with enhanced stability through polysorbate-20 addition in the second treatment period, or vice versa. This design allowed the assessment of bioequivalence between formulations and, subsequently, within- and between-day variability. The cumulative exposure and effect of Gla-300 developed linearly over 24 h, and were evenly distributed across 6- and 12-h intervals. Diurnal fluctuation in exposure (within-day variability) was low; the peak-to-trough ratio of insulin concentration profiles was <2, and both the swing and peak-to-trough fluctuation were <1. Day-to-day reproducibility of exposure was high: the between-day within-subject coefficients of variation for total systemic exposure (area under the serum insulin glargine concentration time curve from time 0 to 24 h after dosing) and maximum insulin concentration were 17.4% [95% confidence interval (CI) 15-21] and 33.4% (95% CI 28-41), respectively. Reproducibility of the metabolic effect was lower than that of exposure. Gla-300 provides predictable, evenly distributed 24-h coverage as a result of low fluctuation and high reproducibility in insulin exposure, and appears suitable for effective basal insulin use. © 2014 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  5. New Results in Magnitude and Sign Correlations in Heartbeat Fluctuations for Healthy Persons and Congestive Heart Failure (CHF) Patients

    NASA Astrophysics Data System (ADS)

    Diosdado, A. Muñoz; Cruz, H. Reyes; Hernández, D. Bueno; Coyt, G. Gálvez; González, J. Arellanes

    2008-08-01

    Heartbeat fluctuations exhibit temporal structure with fractal and nonlinear features that reflect changes in the neuroautonomic control. In this work we have used the detrended fluctuation analysis (DFA) to analyze heartbeat (RR) intervals of 54 healthy subjects and 40 patients with congestive heart failure during 24 hours; we separate time series for sleep and wake phases. We observe long-range correlations in time series of healthy persons and CHF patients. However, the correlations for CHF patients are weaker than the correlations for healthy persons; this fact has been reported by Ashkenazy et al. [1] but with a smaller group of subjects. In time series of CHF patients there is a crossover, it means that the correlations for high and low frequencies are different, but in time series of healthy persons there are not crossovers even if they are sleeping. These crossovers are more pronounced for CHF patients in the sleep phase. We decompose the heartbeat interval time series into magnitude and sign series, we know that these kinds of signals can exhibit different time organization for the magnitude and sign and the magnitude series relates to nonlinear properties of the original time series, while the sign series relates to the linear properties. Magnitude series are long-range correlated, while the sign series are anticorrelated. Newly, the correlations for healthy persons are different that the correlations for CHF patients both for magnitude and sign time series. In the paper of Ashkenazy et al. they proposed the empirical relation: αsign≈1/2(αoriginal+αmagnitude) for the short-range regime (high frequencies), however, we have found a different relation that in our calculations is valid for short and long-range regime: αsign≈1/4(αoriginal+αmagnitude).

  6. The "Chaos Theory" and nonlinear dynamics in heart rate variability analysis: does it work in short-time series in patients with coronary heart disease?

    PubMed

    Krstacic, Goran; Krstacic, Antonija; Smalcelj, Anton; Milicic, Davor; Jembrek-Gostovic, Mirjana

    2007-04-01

    Dynamic analysis techniques may quantify abnormalities in heart rate variability (HRV) based on nonlinear and fractal analysis (chaos theory). The article emphasizes clinical and prognostic significance of dynamic changes in short-time series applied on patients with coronary heart disease (CHD) during the exercise electrocardiograph (ECG) test. The subjects were included in the series after complete cardiovascular diagnostic data. Series of R-R and ST-T intervals were obtained from exercise ECG data after sampling digitally. The range rescaled analysis method determined the fractal dimension of the intervals. To quantify fractal long-range correlation's properties of heart rate variability, the detrended fluctuation analysis technique was used. Approximate entropy (ApEn) was applied to quantify the regularity and complexity of time series, as well as unpredictability of fluctuations in time series. It was found that the short-term fractal scaling exponent (alpha(1)) is significantly lower in patients with CHD (0.93 +/- 0.07 vs 1.09 +/- 0.04; P < 0.001). The patients with CHD had higher fractal dimension in each exercise test program separately, as well as in exercise program at all. ApEn was significant lower in CHD group in both RR and ST-T ECG intervals (P < 0.001). The nonlinear dynamic methods could have clinical and prognostic applicability also in short-time ECG series. Dynamic analysis based on chaos theory during the exercise ECG test point out the multifractal time series in CHD patients who loss normal fractal characteristics and regularity in HRV. Nonlinear analysis technique may complement traditional ECG analysis.

  7. Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.

    PubMed

    Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood

    2010-12-01

    It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.

  8. Kinetics of matching.

    PubMed

    Mark, T A; Gallistel, C R

    1994-01-01

    Rats responded on concurrent variable interval schedules of brain stimulation reward in 2-trial sessions. Between trials, there was a 16-fold reversal in the relative rate of reward. In successive, narrow time windows, the authors compared the ratio of the times spent on the 2 levers to the ratio of the rewards received. Time-allocation ratios tracked wide, random fluctuations in the reward ratio. The adjustment to the midsession reversal in relative rate of reward was largely completed within 1 interreward interval on the leaner schedule. Both results were unaffected by a 16-fold change in the combined rates of reward. The large, rapid, scale-invariant shifts in time-allocation ratios that underlie matching behavior imply that the subjective relative rate of reward can be determined by a very few of the most recent interreward intervals and that this estimate can directly determine the ratio of the expected stay durations.

  9. Comparison of glucose fluctuations between day- and night-time measured using a continuous glucose monitoring system in diabetic dogs.

    PubMed

    Mori, Akihiro; Kurishima, Miyuki; Oda, Hitomi; Saeki, Kaori; Arai, Toshiro; Sako, Toshinori

    2013-01-31

    Monitoring of blood glucose concentration is important to evaluate the diabetic status of dogs. Continuous glucose monitoring systems (CGMS) have been applied in veterinary medicine for glucose monitoring in diabetic dogs. The purpose of the study was to evaluate the daily glycemic profiles obtained with CGMS and compare glucose fluctuations between day- and night-time in diabetic dogs. Five diabetic dogs were used in this study and were treated with either NPH insulin or insulin detemir. For data analyses, day-time was defined as 9:00 am-9:00 pm and night-time as 9:00 pm-9:00 am. Using glucose profiles, we determined the mean glucose concentrations (1- and 12-hr intervals), and times spent in hyperglycemia >200 mg/dl or hypoglycemia <60 mg/dl. None of the parameters differed significantly between day-time and night-time in dogs treated with NPH insulin or insulin detemir. In conclusion, this study confirmed, using CGMS, that there are no differences in glucose fluctuations between day- and night-time, in diabetic dogs on a similar feeding regimen and insulin administration.

  10. A study of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.

    1975-01-01

    Twenty-one geomagnetic storm events during 1966 and 1970 were studied by using simultaneous interplanetary magnetic field and plasma parameters. Explorer 33 and 35 field and plasma data were analyzed on large-scale (hourly) and small-scale (3 min.) during the time interval coincident with initial phase of the geomagnetic storms. The solar-ecliptic Bz component turns southward at the end of the initial phase, thus triggering the main phase decrease in Dst geomagnetic field. When the Bz is already negative, its value becomes further negative. The By component also shows large fluctuations along with Bz. When there are no clear changes in the Bz component, the By shows abrupt changes at the main phase onet. On the small-scale behavior of the magnetic field and electric field (E=-VxB) studied in details for the three events, it is found that the field fluctuations in By, Bz and Ey and Ez are present in the initial phase. These fluctuations become larger just before the main phase of the storm begins. In the largescale behavior field remains quiet because the small scale variations are averaged out.

  11. Analysis of the statistic al properties of pulses in atmospheric corona discharge

    NASA Astrophysics Data System (ADS)

    Aubrecht, L.; Koller, J.; Plocek, J.; Stanék, Z.

    2000-03-01

    The properties of the negative corona current pulses in a single point-to-plane configuration have been extensively studied by many investigators. The amplitude and the interval of these pulses are not generally constant and depend on many variables. The repetition rate and the amplitude of the pulses fluctuate in time. Since these fluctuations are subject to a certain probability distribution, the statistical processing was used for the analysis of the pulse fluctuations. The behavior of the pulses has been also investigated in a multipoint geometry configuration. The dependence of the behavior of the corona pulses on the gap lengths, the material, the shape of the point electrode, the number and separation of electrodes (in the multiple-point mode) has been investigated, too. No detailed study has been carried out up to now for this case. The attention has been devoted also to the study of the pulses on the points of live materials (needles of coniferous trees). This contribution describes recent studies of the statistical properties of the pulses for various conditions.

  12. Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques

    NASA Astrophysics Data System (ADS)

    Shiri, Jalal; Kisi, Ozgur; Yoon, Heesung; Lee, Kang-Kun; Hossein Nazemi, Amir

    2013-07-01

    The knowledge of groundwater table fluctuations is important in agricultural lands as well as in the studies related to groundwater utilization and management levels. This paper investigates the abilities of Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN) and Support Vector Machine (SVM) techniques for groundwater level forecasting in following day up to 7-day prediction intervals. Several input combinations comprising water table level, rainfall and evapotranspiration values from Hongcheon Well station (South Korea), covering a period of eight years (2001-2008) were used to develop and test the applied models. The data from the first six years were used for developing (training) the applied models and the last two years data were reserved for testing. A comparison was also made between the forecasts provided by these models and the Auto-Regressive Moving Average (ARMA) technique. Based on the comparisons, it was found that the GEP models could be employed successfully in forecasting water table level fluctuations up to 7 days beyond data records.

  13. Monthly Fluctuations of Insomnia Symptoms in a Population-Based Sample

    PubMed Central

    Morin, Charles M.; LeBlanc, M.; Ivers, H.; Bélanger, L.; Mérette, Chantal; Savard, Josée; Jarrin, Denise C.

    2014-01-01

    Study Objectives: To document the monthly changes in sleep/insomnia status over a 12-month period; to determine the optimal time intervals to reliably capture new incident cases and recurrent episodes of insomnia and the likelihood of its persistence over time. Design: Participants were 100 adults (mean age = 49.9 years; 66% women) randomly selected from a larger population-based sample enrolled in a longitudinal study of the natural history of insomnia. They completed 12 monthly telephone interviews assessing insomnia, use of sleep aids, stressful life events, and physical and mental health problems in the previous month. A total of 1,125 interviews of a potential 1,200 were completed. Based on data collected at each assessment, participants were classified into one of three subgroups: good sleepers, insomnia symptoms, and insomnia syndrome. Results: At baseline, 42 participants were classified as good sleepers, 34 met criteria for insomnia symptoms, and 24 for an insomnia syndrome. There were significant fluctuations of insomnia over time, with 66% of the participants changing sleep status at least once over the 12 monthly assessments (51.5% for good sleepers, 59.5% for insomnia syndrome, and 93.4% for insomnia symptoms). Changes of status were more frequent among individuals with insomnia symptoms at baseline (mean = 3.46, SD = 2.36) than among those initially classified as good sleepers (mean = 2.12, SD = 2.70). Among the subgroup with insomnia symptoms at baseline, 88.3% reported improved sleep (i.e., became good sleepers) at least once over the 12 monthly assessments compared to 27.7% whose sleep worsened (i.e., met criteria for an insomnia syndrome) during the same period. Among individuals classified as good sleepers at baseline, risks of developing insomnia symptoms and syndrome over the subsequent months were, respectively, 48.6% and 14.5%. Monthly assessment over an interval of 6 months was found most reliable to estimate incidence rates, while an interval of 3 months proved the most reliable for defining chronic insomnia. Conclusions: Monthly assessment of insomnia and sleep patterns revealed significant variability over the course of a 12-month period. These findings highlight the importance for future epidemiological studies of conducting repeated assessment at shorter than the typical yearly interval in order to reliably capture the natural course of insomnia over time. Citation: Morin CM; LeBlanc M; Ivers H; Bélanger L; Mérette C; Savard J; Jarrin DC. Monthly fluctuations of insomnia symptoms in a population-based sample. SLEEP 2014;37(2):319-326. PMID:24497660

  14. Numerical modeling of short-term slow slip events in the Shikoku region considering the effect of earth tides and plate configuration

    NASA Astrophysics Data System (ADS)

    Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.

    2016-12-01

    Several studies reported that occurrence of slow slip events (SSEs) in the Nankai region is affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The tidal effect on the SSEs is also examined by numerical studies (e.g., Hawthorne and Rubin, 2013). In our previous study, repeating SSEs in the Shikoku region are numerically reproduced, incorporating the actual plate configuration (Matsuzawa et al., 2013). In this study, we examined the behavior of SSEs in the Shikoku region, considering stress perturbation by earth tides. Our numerical model is similar to our previous study (Matsuzawa et al., 2013). A plate interface is expressed by small triangular elements. A rate- and state-dependent friction law (RS-law) with cutoff velocities is adopted as the friction law on each element. We assumed that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. The short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of short-term SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we assume that the stress change is represented by periods of 10 major tides. Incorporating this stress perturbation, we calculate the evolution of slip on the plate interface. In the numerical result, repeating short-term SSEs are reproduced in the short-term SSE region. Recurrent intervals of SSEs at an isolated patch (e.g., northeastern Shikoku) have small fluctuation. Introducing tidal effect, peak velocity becomes faster than that in the case without tidal effect. On the other hand, the difference of peak velocities is not clear between the cases with and without tidal effect at widely connected SSE region (e.g., western Shikoku), as the intervals and peak velocities of SSEs are largely fluctuated in both cases. Hirahara (2016) suggested that the recurrence interval of events is synchronized to the period of external force, when these two periods are close. In our result, recurrence intervals of SSEs at the isolated patch seem to be less fluctuated in the case with tides, and perhaps, may be attracted to the period of integer multiple of the long period tides (e.g., Mf), although further examination is required to confirm this interpretation.

  15. Exercise and Nutritional Supplementation on Community-Dwelling Elderly Japanese Women With Sarcopenic Obesity: A Randomized Controlled Trial.

    PubMed

    Kim, Hunkyung; Kim, Miji; Kojima, Narumi; Fujino, Ken; Hosoi, Erika; Kobayashi, Hisamine; Somekawa, Shinji; Niki, Yoshifumi; Yamashiro, Yukari; Yoshida, Hideyo

    2016-11-01

    To investigate the effects of exercise and/or nutritional supplementation on body composition, blood components, and physical function in community-dwelling elderly Japanese women with sarcopenic obesity. Randomized controlled trial. Urban community in Tokyo, Japan. Among 1213 community-dwelling elderly women over 70 years of age, 307 were defined with sarcopenic obesity, and 139 women participated in the study. Participants were randomly assigned to one of four intervention groups. The exercise and nutrition (Ex + N) and exercise only (Ex) groups attended 60-minute exercise classes twice a week for 3 months. The Ex + N and nutrition only (N) groups were provided with essential amino acid supplementation and tea fortified with catechins to be taken daily for 3 months. Health education classes were provided to the control (HE) group every 2 weeks. Bioelectric impedance analysis was used to measure body composition. Skeletal muscle mass index was calculated using measures of muscle mass and height. Physical function measures included grip strength, knee extension strength, usual walking speed, and walking parameters (stride, step length, width, walking angles). Blood samples were obtained to analyze levels of albumin, triglycerides, cholesterol, hemoglobin A1c, leptin, cystatin C, vitamin D, interleukin-6, and high-sensitivity C-reactive protein. Significant between-group × time interactions were observed in usual walking speed (P = .012), stride (P = .004), right step length (P = .003), average number of steps (P = .029), and vitamin D (P < .001). Compared to the HE group, the Ex + N intervention significantly decreased total body fat mass (P = .036) and increased stride (P = .038) and vitamin D (P < .001). Significant reductions in trunk fat were observed in the Ex group compared with HE (P = .014). The Ex + N and Ex interventions were over four times as likely (odds ratio [95% confidence interval]) to reduce body fat mass than the HE group (4.42 [1.21-16.19]; 4.50 [1.13-17.9], respectively). Significant odds ratios of the Ex + N intervention improving walking speed (3.05 [1.01-9.19]), vitamin D (14.22 [1.64-123.02]), and leptin (3.86 [1.19-12.47]) were also observed. Although exercise and nutrition have beneficial effects on individual variables of body composition, blood components, and physical function, improvements in muscle mass and variable combinations such as percent fat + skeletal muscle mass index or percent fat + physical functions were not observed in this population. Further large-scale and long-term investigation is necessary. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  16. Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators

    NASA Astrophysics Data System (ADS)

    Kerman, Andrew

    2013-03-01

    Electrical resonators are widely used in quantum information processing with any qubits that are manipulated via electromagnetic interactions. In most cases they are engineered to interact with qubits via real or virtual exchange of (typically microwave) photons, and the resonator must therefore have both a high quality factor and strong quantum fluctuations, corresponding to the strong-coupling limit of cavity QED. Although great strides in the control of quantum information have been made using this so-called ``circuit QED'' architecture, it also comes with some important disadvantages. In this talk, we discuss a new paradigm for coupling qubits electromagnetically via resonators, in which the qubits do not exchange photons with the resonator, but instead exert quasi-classical, effective ``forces'' on it. We show how this type of interaction is similar to that induced between the internal state of a trapped atomic ion and its center-of-mass motion by the photon recoil momentum, and that the resulting entangling operations are insensitive both to the state of the resonator and to its quality factor. The methods we describe are applicable to a variety of qubit-resonator systems, including superconducting and semiconducting solid-state qubits, and trapped molecular ions. This work is sponsored by the ASDR&E under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

  17. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  18. Discrete-storm water-table fluctuation method to estimate episodic recharge.

    USGS Publications Warehouse

    Nimmo, John R.; Horowittz, Charles; Mitchell, Lara

    2015-01-01

    We have developed a method to identify and quantify recharge episodes, along with their associated infiltration-related inputs, by a consistent, systematic procedure. Our algorithm partitions a time series of water levels into discrete recharge episodes and intervals of no episodic recharge. It correlates each recharge episode with a specific interval of rainfall, so storm characteristics such as intensity and duration can be associated with the amount of recharge that results. To be useful in humid climates, the algorithm evaluates the separability of events, so that those whose recharge cannot be associated with a single storm can be appropriately lumped together. Elements of this method that are subject to subjectivity in the application of hydrologic judgment are values of lag time, fluctuation tolerance, and master recession parameters. Because these are determined once for a given site, they do not contribute subjective influences affecting episode-to-episode comparisons. By centralizing the elements requiring scientific judgment, our method facilitates such comparisons by keeping the most subjective elements openly apparent, making it easy to maintain consistency. If applied to a period of data long enough to include recharge episodes with broadly diverse characteristics, the method has value for predicting how climatic alterations in the distribution of storm intensities and seasonal duration may affect recharge.

  19. European vegetation during Marine Oxygen Isotope Stage-3

    NASA Astrophysics Data System (ADS)

    Huntley, Brian; Alfano, Mary J. o.; Allen, Judy R. M.; Pollard, Dave; Tzedakis, Polychronis C.; de Beaulieu, Jacques-Louis; Grüger, Eberhard; Watts, Bill

    2003-03-01

    European vegetation during representative "warm" and "cold" intervals of stage-3 was inferred from pollen analytical data. The inferred vegetation differs in character and spatial pattern from that of both fully glacial and fully interglacial conditions and exhibits contrasts between warm and cold intervals, consistent with other evidence for stage-3 palaeoenvironmental fluctuations. European vegetation thus appears to have been an integral component of millennial environmental fluctuations during stage-3; vegetation responded to this scale of environmental change and through feedback mechanisms may have had effects upon the environment. The pollen-inferred vegetation was compared with vegetation simulated using the BIOME 3.5 vegetation model for climatic conditions simulated using a regional climate model (RegCM2) nested within a coupled global climate and vegetation model (GENESIS-BIOME). Despite some discrepancies in detail, both approaches capture the principal features of the present vegetation of Europe. The simulated vegetation for stage-3 differs markedly from that inferred from pollen analytical data, implying substantial discrepancy between the simulated climate and that actually prevailing. Sensitivity analyses indicate that the simulated climate is too warm and probably has too short a winter season. These discrepancies may reflect incorrect specification of sea surface temperature or sea-ice conditions and may be exacerbated by vegetation-climate feedback in the coupled global model.

  20. Examination of print and telephone channels for physical activity promotion: Rationale, design, and baseline data from Project STRIDE.

    PubMed

    Marcus, Bess H; Napolitano, Melissa A; King, Abby C; Lewis, Beth A; Whiteley, Jessica A; Albrecht, Anna E; Parisi, Alfred F; Bock, Beth C; Pinto, Bernardine M; Sciamanna, Christopher A; Jakicic, John M; Papandonatos, George D

    2007-01-01

    Project STRIDE is a 4-year randomized controlled trial comparing two computer-based expert system guided intervention delivery channels (phone vs. print) for physical activity adoption and short-term maintenance among previously sedentary adults. Sedentary adults (n=239) were randomized to one of the following (1) telephone-based, individualized motivationally-tailored feedback; (2) print-based, individualized motivationally-tailored feedback; (3) contact-control delayed treatment group (received intervention after 12 months as control). This paper: (1) outlines the study design, rationale, and participant sample; and (2) describes relationships between baseline variables to better understand their influence on the efficacy of the intervention. Participants averaged 19.8+/-25.0 min of physical activity/week that was at least of moderate intensity, with no group differences. The average estimated VO(2) at 85% of maximum heart rate was 25.6 ml/kg/min. Body fat was 34.1% for women and 23.2% for men and the BMI of the sample averaged 28.5 kg/m(2). Project STRIDE examines non face-to-face approaches for promoting physical activity behavior. It has unique features including a direct comparison of an expert system guided intervention delivered via phone or print. Future analyses will examine the cost-effectiveness of the interventions and this will likely yield important information for policy-makers.

  1. Exploring the feasibility and acceptability of sensor monitoring of gait and falls in the homes of persons with multiple sclerosis.

    PubMed

    Newland, Pamela; Wagner, Joanne M; Salter, Amber; Thomas, Florian P; Skubic, Marjorie; Rantz, Marilyn

    2016-09-01

    Gait parameters variability and falls are problems for persons with MS and have not been adequately captured in the home. Our goal was to explore the feasibility and acceptability of monitoring of gait and falls in the homes of persons with MS over a period of 30 days. To test the feasibility of measuring gait and falls for 30days in the home of persons with MS, spatiotemporal gait parameters stride length, stride time, and gait speed were compared. A 3D infrared depth imaging system has been developed to objectively measure gait and falls in the home environment. Participants also completed a 16-foot GaitRite electronic pathway walk to validate spatiotemporal parameters of gait (gait speed (cm/s), stride length (cm), and gait cycle time(s)) during the timed 25 foot walking test (T25FWT). We also documented barriers to feasibility of installing the in-home sensors for these participants. The results of the study suggest that the Kinect sensor may be used as an alternative device to measure gait for persons with MS, depending on the desired accuracy level. Ultimately, using in-home sensors to analyze gait parameters in real time is feasible and could lead to better analysis of gait in persons with MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Lower limb mechanics during moderate high-heel jogging and running in different experienced wearers.

    PubMed

    Fu, Fengqin; Zhang, Yan; Shu, Yang; Ruan, Guoqing; Sun, Jianjun; Baker, Julien S; Gu, Yaodong

    2016-08-01

    The aim of this study is to investigate the differences in lower limb kinematics and kinetics between experienced (EW) and inexperienced (IEW) moderate high-heel wearers during jogging and running. Eleven experienced female wearers of moderate high-heel shoes and eleven matched controls participated in jogging and running tests. A Vicon motion analysis system was used to capture kinematic data and a Kistler force platform was used to collect ground reaction force (GRF). There were no significant differences in jogging and running speed respectively. Compared with IEW, EW adopted larger stride length (SL) with lower stride frequency (SF) at each corresponding speed. During running, EW enlarged SL significantly while IEW increased both SL and SF significantly. Kinematic data showed that IEW had generally larger joint range of motion (ROM) and peak angles during stance phase. Speed effect was not obvious within IEW. EW exhibited a significantly increased maximal vertical GRF (Fz2) and vertical average loading rate (VALR) during running, which was potentially caused by overlong stride. These suggest that both EW and IEW are at high risk of joint injuries when running on moderate high heels. For wearers who have to do some running on moderate high heels, it is crucial to control joint stability and balance SL and SF consciously. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Stratigraphy, correlation, and age estimates for fossils from Area 123, Koobi Fora.

    PubMed

    Feibel, Craig S; Lepre, Christopher J; Quinn, Rhonda L

    2009-08-01

    Geological data from the Bura Hasuma region at Koobi Fora provide important constraints for estimating the ages of hominin fossils recovered there, including the cranium KNM-ER 1813. Strata of the upper Burgi, KBS, and Okote members in this part of Koobi Fora reflect three depositional regimes driven by changing paleogeography through time. The upper Burgi and lowermost KBS sequence in the southern Bura Hasuma region accumulated in a lacustrine to delta front setting, with highly localized depositional patterns, limiting the lateral extent of lithostratigraphic markers. Farther north, uppermost upper Burgi through KBS member strata document a fluctuating lake margin, with complex facies patterns. This interval is marked by laterally extensive lithostratigraphic markers, including molluscan packstones, beach sandstones, and stromatolite beds. The uppermost KBS and Okote members show a transition to dominantly fluvial character, with localized and discontinuous accumulation. An age model for the richly fossiliferous Area 123 sequence demonstrates the complexity of terrestrial accumulation patterns. Early lacustrine and delta front accumulation is marked by fairly continuous sedimentation, and high accumulation rates (up to ca. 91 cm/k.yr.). The fluctuating lake margin interval reflects lower sedimentation rates coupled with intervals of exposure, decreasing accumulation significantly (to ca. 13 cm/k.yr.). The capping fluvial interval is marked by significant erosion surfaces, breaks which may drop the overall accumulation rate even lower (ca. 0.3 cm/k.yr.). The data provided here establish a geological framework at odds with a recent proposal of ages considerably younger (by ca. 250 k.yr.) for many of the fossils from Area 123 and elsewhere. Tests of age models demonstrate that the younger ages are not possible. While minor refinements to age estimates for fossils are indicated by improved chronostratigraphic control, in the case of KNM-ER 1813, an age of younger than 1.78 Ma is precluded on magnetostratigraphic grounds.

  4. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms. PMID:25275515

  5. Greater Fall Risk in Elderly Women Than in Men Is Associated With Increased Gait Variability During Multitasking.

    PubMed

    Johansson, Jonas; Nordström, Anna; Nordström, Peter

    2016-06-01

    As 90% of fractures are caused by falls, and as fractures are more common in elderly women than in elderly men, a better understanding of potential sex differences in fall rates and underlying mechanisms is needed. The purpose of this study was to determine whether women are more prone than men to falling, and to evaluate whether the risk of falling is associated with variations in gait patterns. The cohort for this prospective observational study consisted of 1390 community-dwelling men and women aged 70 years, examined in a health survey between July 2012 and November 2014. Gait patterns were measured using a computerized walkway system during normal-speed, fast-speed, and dual-task trials. Triaxial accelerometers were used to collect objective data on physical activity, and self-reported fall data were collected by telephone 6 and 12 months after examination. Incident low-energy falls were defined as unexpected events in which participants came to rest on the ground. During the follow-up period, 148 study participants (88 women, 60 men; P = .01) reported falls. After adjusting for multiple confounders, including objective measures of physical activity, socioeconomic factors, cardiovascular disease, and cognitive function, the odds ratio for falling in women was 1.49 (95% confidence interval [CI] 1.02-2.19). Variations in gait pattern were significantly (20%-40%) increased in fallers compared with nonfallers during the dual-task trial for step width, step length, stride length, step time, stance time, stride velocity, and single support time (all P < .05). Furthermore, women showed 15% to 35% increased variability in all of these gait parameters during the dual-task trial compared with men (all P < .01). In the present cohort, 70-year-old women were at greater risk of falls compared with their male counterparts. This increased risk was associated with increased variation in gait pattern during dual-task activities, and may contribute to women's greater fracture risk compared with men. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, S. Y.; Yuan, Z. G.; Hadid, L. Z.

    In the solar wind, power spectral density (PSD) of the magnetic field fluctuations generally follow the so-called Kolmogorov spectrum f {sup −5/3} in the inertial range, where the dynamics is thought to be dominated by nonlinear interactions between counter-propagating incompressible Alfvén wave parquets. These features are thought to be ubiquitous in space plasmas. The present study gives a new and more complex picture of magnetohydrodynamic (MHD) turbulence as observed in the terrestrial magnetosheath. The study uses three years of in situ data from the Cluster mission to explore the nature of the magnetic fluctuations at MHD scales in different locationsmore » within the magnetosheath, including flanks and subsolar regions. It is found that the magnetic field fluctuations at MHD scales generally have a PSD close to f {sup −1} (shallower than the Kolmogorov one f {sup −5/3}) down to the ion characteristic scale, which recalls the energy-containing scales of solar wind turbulence. The Kolmogorov spectrum is observed only away from the bow shock toward the flank and the magnetopause regions in 17% of the analyzed time intervals. Measuring the magnetic compressibility, it is shown that only a fraction (35%) of the observed Kolmogorov spectra was populated by shear Alfvénic fluctuations, whereas the majority of the events (65%) was found to be dominated by compressible magnetosonic-like fluctuations, which contrasts with well-known turbulence properties in the solar wind. This study gives a first comprehensive view of the origin of the f {sup −1} and the transition to the Kolmogorov inertial range; both questions remain controversial in solar wind turbulence.« less

  7. Decomposing Intra-Subject Variability in Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Di Martino, Adriana; Ghaffari, Manely; Curchack, Jocelyn; Reiss, Philip; Hyde, Christopher; Vannucci, Marina; Petkova, Eva; Klein, Donald F.; Castellanos, F. Xavier

    2009-01-01

    Background Increased intra-subject response time standard deviations (RT-SD) discriminate children with Attention-Deficit/Hyperactivity Disorder (ADHD) from healthy controls. RT-SD is averaged over time, thus it does not provide information about the temporal structure of response time variability. We previously hypothesized that such increased variability may be related to slow spontaneous fluctuations in brain activity occurring with periods between 15s and 40s. Here, we investigated whether these slow response time fluctuations add unique differentiating information beyond the global increase in RT-SD. Methods We recorded RT at 3s intervals for 15 minutes during an Eriksen flanker task for 29 children with ADHD and 26 age-matched typically developing controls (TDC) (mean ages 12.5 ± 2.4 and 11.6 ± 2.5; 26 and 12 boys, respectively). The primary outcome was the magnitude of the spectral component in the frequency range between 0.027 and 0.073 Hz measured with continuous Morlet wavelet transform. Results The magnitude of the low frequency fluctuation was greater for children with ADHD compared to TDC (p=0.02, d= 0.69). After modeling ADHD diagnosis as a function of RT-SD, adding this specific frequency range significantly improved the model fit (p=0.03; odds ratio= 2.58). Conclusions Fluctuations in low frequency response time variability predict the diagnosis of ADHD beyond the effect associated with global differences in variability. Future studies will examine whether such spectrally specific fluctuations in behavioral responses are linked to intrinsic regional cerebral hemodynamic oscillations which occur at similar frequencies. PMID:18423424

  8. Large-scale fluctuations in the number density of galaxies in independent surveys of deep fields

    NASA Astrophysics Data System (ADS)

    Shirokov, S. I.; Lovyagin, N. Yu.; Baryshev, Yu. V.; Gorokhov, V. L.

    2016-06-01

    New arguments supporting the reality of large-scale fluctuations in the density of the visible matter in deep galaxy surveys are presented. A statistical analysis of the radial distributions of galaxies in the COSMOS and HDF-N deep fields is presented. Independent spectral and photometric surveys exist for each field, carried out in different wavelength ranges and using different observing methods. Catalogs of photometric redshifts in the optical (COSMOS-Zphot) and infrared (UltraVISTA) were used for the COSMOS field in the redshift interval 0.1 < z < 3.5, as well as the zCOSMOS (10kZ) spectroscopic survey and the XMM-COSMOS and ALHAMBRA-F4 photometric redshift surveys. The HDFN-Zphot and ALHAMBRA-F5 catalogs of photometric redshifts were used for the HDF-N field. The Pearson correlation coefficient for the fluctuations in the numbers of galaxies obtained for independent surveys of the same deep field reaches R = 0.70 ± 0.16. The presence of this positive correlation supports the reality of fluctuations in the density of visible matter with sizes of up to 1000 Mpc and amplitudes of up to 20% at redshifts z ~ 2. The absence of correlations between the fluctuations in different fields (the correlation coefficient between COSMOS and HDF-N is R = -0.20 ± 0.31) testifies to the independence of structures visible in different directions on the celestial sphere. This also indicates an absence of any influence from universal systematic errors (such as "spectral voids"), which could imitate the detection of correlated structures.

  9. Sacroiliitis

    MedlinePlus

    ... an inflammation of one or both of your sacroiliac joints — situated where your lower spine and pelvis ... climbing Running Taking large strides Causes Causes for sacroiliac joint dysfunction include: Traumatic injury. A sudden impact, ...

  10. Take Another Look at Ads

    ERIC Educational Resources Information Center

    McCafferty, John J.

    1973-01-01

    Presents an interview with former Federal Communications Commissioner, Lee Loevinger, who feels more people should recognize that the advertising field has made great strides in self-regulation in recent years. (RB)

  11. Muscle Activation Patterns in Infants with Myelomeningocele Stepping on a Treadmill

    PubMed Central

    Sansom, Jennifer K.; Teulier, Caroline; Smith, Beth A.; Moerchen, Victoria; Muraszko, Karin; Ulrich, Beverly D.

    2013-01-01

    Purpose To characterize how infants with myelomeningocele (MMC) activate lower limb muscles over the first year of life, without practice, while stepping on a motorized treadmill. Methods Twelve infants with MMC were tested longitudinally at 1, 6, 12 months. Electromyography (EMG) was used to collect data from the tibialis anterior (TA), lateral gastrocnemius (LG), rectus femoris (RF), biceps femoris (BF). Results Across the first year, infants showed no EMG activity for ~50% of the stride cycle w/poor rhythmicity and timing of muscles, when activated. Single muscle activation predominated; agonist-antagonist co-activation was low. Probability of individual muscle activity across the stride decreased w/age. Conclusions Infants with MMC show high variability in timing and duration of muscle activity, few complex combinations, and very little change over time. PMID:23685739

  12. What Is the Shape of Developmental Change?

    PubMed Central

    Adolph, Karen E.; Robinson, Scott R.; Young, Jesse W.; Gill-Alvarez, Felix

    2009-01-01

    Developmental trajectories provide the empirical foundation for theories about change processes during development. However, the ability to distinguish among alternative trajectories depends on how frequently observations are sampled. This study used real behavioral data, with real patterns of variability, to examine the effects of sampling at different intervals on characterization of the underlying trajectory. Data were derived from a set of 32 infant motor skills indexed daily during the first 18 months. Larger sampling intervals (2-31 days) were simulated by systematically removing observations from the daily data and interpolating over the gaps. Infrequent sampling caused decreasing sensitivity to fluctuations in the daily data: Variable trajectories erroneously appeared as step-functions and estimates of onset ages were increasingly off target. Sensitivity to variation decreased as an inverse power function of sampling interval, resulting in severe degradation of the trajectory with intervals longer than 7 days. These findings suggest that sampling rates typically used by developmental researchers may be inadequate to accurately depict patterns of variability and the shape of developmental change. Inadequate sampling regimes therefore may seriously compromise theories of development. PMID:18729590

  13. Return volatility interval analysis of stock indexes during a financial crash

    NASA Astrophysics Data System (ADS)

    Li, Wei-Shen; Liaw, Sy-Sang

    2015-09-01

    We investigate the interval between return volatilities above a certain threshold q for 10 countries data sets during the 2008/2009 global financial crisis, and divide these data into several stages according to stock price tendencies: plunging stage (stage 1), fluctuating or rebounding stage (stage 2) and soaring stage (stage 3). For different thresholds q, the cumulative distribution function always satisfies a power law tail distribution. We find the absolute value of the power-law exponent is lowest in stage 1 for various types of markets, and increases monotonically from stage 1 to stage 3 in emerging markets. The fractal dimension properties of the return volatility interval series provide some surprising results. We find that developed markets have strong persistence and transform to weaker correlation in the plunging and soaring stages. In contrast, emerging markets fail to exhibit such a transformation, but rather show a constant-correlation behavior with the recurrence of extreme return volatility in corresponding stages during a crash. We believe this long-memory property found in recurrence-interval series, especially for developed markets, plays an important role in volatility clustering.

  14. Fluctuation and reproducibility of exposure and effect of insulin glargine in healthy subjects.

    PubMed

    Becker, R H A; Frick, A D; Teichert, L; Nosek, L; Heinemann, L; Heise, T; Rave, K

    2008-11-01

    Low diurnal fluctuation and high day-to-day reproducibility in exposure and effect characterize beneficial basal insulin products. Two insulin glargine (LANTUS) formulations [without (R) or with polysorbate-20 (T)], added to minimize unfolding of proteins and subsequent formation of fibril structures, were assessed for equivalence in exposure and effect, and aspects of fluctuation and reproducibility in time-concentration and time-action profiles. A dose of 0.4 U/kg was subcutaneously administered to 24 healthy subjects in a two-sequence (R-T-R-T or T-R-T-R), randomized, four-way crossover trial utilizing 30-h Biostator-based euglycaemic glucose clamps. Identical serum insulin glargine concentration and time-action profiles established average, individual and population equivalence in insulin exposure and effect. Point estimates for 24-h area under the curve for insulin (INS-AUC(0-24) (h)) and glucose infusion rates (GIR-AUC(0-24) (h)) were 97% [90% confidence interval (CI): 91-103%] and 100% (88-114%), respectively. Within-subject variability (coefficient of variation) for INS-AUC(0-24) (h) and GIR-AUC(0-24) (h) were 19% (95% CI: 14-25%) and 34% (24-43%), respectively. The diurnal relative fluctuation of the serum insulin glargine concentration was 20% (95% CI: 19-21%). Insulin glargine in either formulation presents with a high day-to-day reproducibility of a uniform release after injection enabling an effective basal insulin supplementation.

  15. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE PAGES

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.; ...

    2016-01-16

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterizedmore » by two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥/T || > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  16. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterizedmore » by two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥/T || > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  17. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.

    PubMed

    Hockmann, Kerstin; Tandy, Susan; Lenz, Markus; Reiser, René; Conesa, Héctor M; Keller, Martin; Studer, Björn; Schulin, Rainer

    2015-09-01

    Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L(-1) in summer and <40 μg L(-1) in winter, which closely correlated with fluctuations in dissolved organic carbon (DOC) concentrations. With the development of anaerobic conditions upon waterlogging, Sb in leachate decreased to 2-5 μg L(-1) Sb and remained stable at this level. Antimony speciation measurements in soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005.

    PubMed

    Gary, S Peter; Jian, Lan K; Broiles, Thomas W; Stevens, Michael L; Podesta, John J; Kasper, Justin C

    2016-01-01

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o . The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o  = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥ /T ||  > 1 (where the subscripts denote directions relative to B o ), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.

  19. Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005

    PubMed Central

    Jian, Lan K.; Broiles, Thomas W.; Stevens, Michael L.; Podesta, John J.; Kasper, Justin C.

    2016-01-01

    Abstract Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft‐frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén‐cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right‐hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind. PMID:27818854

  20. Characterization of petroleum reservoirs in the Eocene Green River Formation, Central Uinta Basin, Utah

    USGS Publications Warehouse

    Morgan, C.D.; Bereskin, S.R.

    2003-01-01

    The oil-productive Eocene Green River Formation in the central Uinta Basin of northeastern Utah is divided into five distinct intervals. In stratigraphically ascending order these are: 1) Uteland Butte, 2) Castle Peak, 3) Travis, 4) Monument Butte, and 5) Beluga. The reservoir in the Uteland Butte interval is mainly lacustrine limestone with rare bar sandstone beds, whereas the reservoirs in the other four intervals are mainly channel and lacustrine sandstone beds. The changing depositional environments of Paleocene-Eocene Lake Uinta controlled the characteristics of each interval and the reservoir rock contained within. The Uteland Butte consists of carbonate and rare, thin, shallow-lacustrine sandstone bars deposited during the initial rise of the lake. The Castle Peak interval was deposited during a time of numerous and rapid lake-level fluctuations, which developed a simple drainage pattern across the exposed shallow and gentle shelf with each fall and rise cycle. The Travis interval records a time of active tectonism that created a steeper slope and a pronounced shelf break where thick cut-and-fill valleys developed during lake-level falls and rises. The Monument Butte interval represents a return to a gentle, shallow shelf where channel deposits are stacked in a lowstand delta plain and amalgamated into the most extensive reservoir in the central Uinta Basin. The Beluga interval represents a time of major lake expansion with fewer, less pronounced lake-level falls, resulting in isolated single-storied channel and shallow-bar sandstone deposits.

Top