Exploring Venus interior structure with infrasonic techniques
NASA Astrophysics Data System (ADS)
Mimoun, David; Garcia, Raphael; Cadu, Alexandre; Cutts, Jim; Komjathy, Attila; Pauken, Mike; Kedar, Sharon; Jackson, Jennifer; Stevenson, Dave
2017-04-01
Radar images have revealed a surface of Venus that is much younger than expected, as well as a variety of enigmatic features linked to the tectonic activity. If probing the interior structure of Venus is a formidable challenge, it is still of primary importance for understanding Venus itself, its relationship to Earth and more generally the evolution of Earth-like planets. Conventional long period seismology uses very broadband seismic sensors that require to be in contact with the planetary surface, like for the Apollo missions and for the Mars Insight mission; this approach is in the short term impractical for Venus because of its extreme temperature and pressure surface conditions. Russian probes such as Venera 13-14 have only lasted a few tens of minutes, when the required duration of the seismic measurements, based on a rough estimate of the Venus tectonic activity, is at least of a few months. We propose as a possible way forward to use the very conditions at the surface of Venus to record the signal in a more suitable environment: as acoustic and infrasonic waves resulting from seismic activity are coupled much more efficiently than on Earth in the dense carbon dioxide atmosphere, a string of micro-barometers deployed on a tether by a balloon platform at Venus over the cloud layer would record this infrasonic counterpart. Such an experiment could encompass a wide range of scientific objectives, from the characterization of the infrasonic background of Venus to the ability to record, and possibly discriminate, signatures from volcanic events, storm activity, and meteor impacts. We will discuss our proposed Venus experiment, as well as the experimental validation effort that takes place on Earth to validate the idea and possibly record infrasonic seismic counterparts
Sample Handling in Extreme Environments
NASA Technical Reports Server (NTRS)
Avellar, Louisa; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph
2013-01-01
Harsh environments, such as that on Venus, preclude the use of existing equipment for functions that involve interaction with the environment. The operating limitations of current high temperature electronics are well below the actual temperature and pressure found on Venus (460 deg C and 92 atm), so proposed lander configurations typically include a pressure vessel where the science instruments are kept at Earth-like temperature and pressure (25 deg C and 1 atm). The purpose of this project was to develop and demonstrate a method for sample transfer from an external drill to internal science instruments for a lander on Venus. The initial concepts were string and pneumatically driven systems; and the latter system was selected for its ability to deliver samples at very high speed. The pneumatic system was conceived to be driven by the pressure difference between the Venusian atmosphere and the inside of the lander. The pneumatic transfer of a small capsule was demonstrated, and velocity data was collected from the lab experiment. The sample transfer system was modeled using CAD software and prototyped using 3D printing. General structural and thermal analyses were performed to approximate the proposed system's mass and effects on the temperature and pressure inside of the lander. Additionally, a sampler breadboard for use on Titan was tested and functionality problems were resolved.
Cosmic Ray Flux Measurement with AMANDA-II
NASA Astrophysics Data System (ADS)
Chirkin, Dmitry A.; AMANDA Collaboration
2003-07-01
AMANDA-I I is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-rayand neutrino-induced muons. The ma jority of events recorded by AMANDA-I I are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. A method is developed that results in a flux measurement of cosmic rays with energies 1.5-200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-I I have energies in this range) indep endent of ice model and optical module sensitivities. Predictions of six commonly-used high-energy interaction models QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SYBILL are compared to data. Best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS (preliminary: Φ0,H = 0.106 ± 0.007 m-2 s-1 sr-1 TeV-1 , γH = 2.70 ± 0.02).
1990-02-14
Range : 1.7 million miles This photo of Venus was taken by the Galileo spacecraft's Solid State Imaging System. A high-pass spatial filter has been applied in order to emphasize the smaller-scale cloud features, and the rendition has been colorized to a bluish hue in order to emphasize the subtle contrasts in the cloud markings and to indicate how it was taken through a violet filter. The sulfuric acid clouds indicate considerable convective activity, in the equatorial regions of the planet to the left and downwind of the subsolar point (afternoon on Venus), They are analogous to 'fair weather clouds' on Earth. The filamentary dark features visible in the colorized image are here revealed to be composed of several dark nodules, like strings on a bead, each about 60 miles across.
Venus Global Reference Atmospheric Model Status and Planned Updates
NASA Technical Reports Server (NTRS)
Justh, H. L.; Dwyer Cianciolo, A. M.
2017-01-01
The Venus Global Reference Atmospheric Model (Venus-GRAM) was originally developed in 2004 under funding from NASA's In Space Propulsion (ISP) Aerocapture Project to support mission studies at the planet. Many proposals, including NASA New Frontiers and Discovery, as well as other studies have used Venus-GRAM to design missions and assess system robustness. After Venus-GRAM's release in 2005, several missions to Venus have generated a wealth of additional atmospheric data, yet few model updates have been made to Venus-GRAM. This paper serves to address three areas: (1) to present the current status of Venus-GRAM, (2) to identify new sources of data and other upgrades that need to be incorporated to maintain Venus-GRAM credibility and (3) to identify additional Venus-GRAM options and features that could be included to increase its capability. This effort will de-pend on understanding the needs of the user community, obtaining new modeling data and establishing a dedicated funding source to support continual up-grades. This paper is intended to initiate discussion that can result in an upgraded and validated Venus-GRAM being available to future studies and NASA proposals.
Venus Cloud Patterns (colorized and filtered)
NASA Technical Reports Server (NTRS)
1990-01-01
This picture of Venus was taken by the Galileo spacecrafts Solid State Imaging System on February 14, 1990, at a range of almost 1.7 million miles from the planet. A highpass spatial filter has been applied in order to emphasize the smaller scale cloud features, and the rendition has been colorized to a bluish hue in order to emphasize the subtle contrasts in the cloud markings and to indicate that it was taken through a violet filter. The sulfuric acid clouds indicate considerable convective activity, in the equatorial regions of the planet to the left and downwind of the subsolar point (afternoon on Venus). They are analogous to 'fair weather clouds' on Earth. The filamentary dark features visible in the colorized image are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth. These images of the Venus clouds were taken by Galileo's Solid State Imaging System February 13, 1990, at a range of about 1 million miles. The smallest detail visible is about 20 miles. The two right images show Venus in violet light, the top one at a time six hours later than the bottom one. They show the state of the clouds near the top of Venus's cloud deck. A right to left motion of the cloud features is evident and is consistent with westward winds of about 230 mph. The two left images show Venus in near infrared light, at the same times as the two right images. Sunlight penetrates through the clouds more deeply at the near infrared wavelengths, allowing a view near the bottom of the cloud deck. The westward motion of the clouds is slower (about 150 mph) at the lower altitude. The clouds are composed of sulfuric acid droplets and occupy a range of altitudes from 30 to 45 miles. The images have been spatially filtered to bring out small scale details and de-emphasize global shading. The filtering has introduced artifacts (wiggly lines running north/south) that are faintly visible in the infrared image. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth.
An Improved 360 Degree and Order Model of Venus Topography
NASA Technical Reports Server (NTRS)
Rappaport, Nicole J.; Konopliv, Alex S.; Kucinskas, Algis B.; Ford, Peter G.
1999-01-01
We present an improved 360 degree and order spherical harmonic solution for Venus' topography. The new model uses the most recent set of Venus altimetry data with spacecraft positions derived from a recent high resolution gravity model. Geometric analysis indicates that the offset between the center of mass and center of figure of Venus is about 10 times smaller than that for the Earth, the Moon, or Mars. Statistical analyses confirm that the RMS topography follows a power law over the central part of the spectrum. Compared to the previous topography model, the new model is more highly correlated with Venus' harmonic gravity field.
Implications of convection in the moon and the terrestrial planets
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1991-01-01
A comprehensive review is made of the thermal chemical evolution of the moon and the terrestrial planets. New results are presented which were obtained for Venus by the Magellan Mission the efforts were concentrated on this planet. Alternative models were examined for the thermal structure of the lithosphere of Venus. The statistical distribution was studied of the locations of the coronae on Venus. Models were examined for the patterns of faulting around the coronae on Venus. A series was considered of viscous models for the development and relaxation of elevation anomalies on Venus. And rates were studied of solidification of volcanic flows on Venus. Both radiative and convective heat transfer were considered.
NASA Astrophysics Data System (ADS)
Arkani-Hamed, Jafar
1993-02-01
The thermal evolution and mechanical properties of a mechanical boundary layer of mantle convection are calculated for three Venus models—cold, Earth-like, and hot—with temperatures of 1300°C, 1400°C, and 1500°C, respectively at the base of their thermal boundary layers. The mechanical boundary layers consist of a basaltic crust with thicknesses of 3 km, 9 km, and 18 km, and depleted periodotitic mantle with thicknesses of 37 km, 65 km, and 90 km, respectively. The thin crust of the cold Venus model couples tightly to the underlying mantle and produces a single competent layer, whereas the thicker crust of the other models has a weak lower part that decouples the crust from the mantle. The characteristic wavelengths (10-20 km) of the banded terrains of tesserae surrounding Ishtar Terra can be explained by the buckling of the crusts of all three Venus models as long as their mechanical boundary layers are older than approximately 150 m.a., implying that the observed wavelengths provide no constraint on the thickness and age of the Venusian crust that is older than approximately 150 m.a. Shortening of the basaltic crust, however, cannot produce surface elevations higher than about 2 km on Venus, because basalt in the lower crust transforms to high-density eclogite, which sinks into the mantle. Therefore, Lakshmi Planum and the surrounding mountains probably contain lower-density material and are analogous to continental masses on the Earth. The ridge spacings of the northern ridge belt can be interpreted as being caused by faulting of the depleted mantle of the cold and Earth-like Venus models if the mechanical boundary layer is older than about 100 m.a. and 200 m.a., respectively. The hot model, however, cannot account for the formation of the ridge belt. Besides the characteristic wavelengths of the banded terrains and spacings of the ridge belts, the cold Venus model seems to account for many other features on Venus. The dynamic support of the surface topography of tesserae requires a convergence velocity of less than 0.1 cm year -1 for the mechanical boundary layer of the cold Venus model. This very low velocity is supported by the spatially random distribution of craters on Venus. Furthermore, the lack of pervasive volcanism on Venus in approximately the last 500 m.y., the lack of an internal magnetic field of Venus, and the lack of an oceanic type ridge system on Venus support the cold Venus model.
NASA Technical Reports Server (NTRS)
Williams, David R.; Wetherill, George
1993-01-01
Research on regional tectonic analysis of Venus equatorial highlands and comparison with earth-based and Magellan radar images is presented. Over the past two years, the tectonic analysis of Venus performed centered on global properties of the planet, in order to understand fundamental aspects of the dynamics of the mantle and lithosphere of Venus. These include studies pertaining to the original constitutive and thermal character of the planet, as well as the evolution of Venus through time, and the present day tectonics. Parameterized convection models of the Earth and Venus were developed. The parameterized convection code was reformulated to model Venus with an initially hydrous mantle to determine how the cold-trap could affect the evolution of the planet.
Venus Global Reference Atmospheric Model Status and Planned Updates
NASA Astrophysics Data System (ADS)
Justh, H. L.; Dwyer Cianciolo, A. M.
2017-05-01
Details the current status of Venus Global Reference Atmospheric Model (Venus-GRAM). Provides new sources of data and upgrades that need to be incorporated to maintain credibility and identifies options and features that could increase capability.
Abstracts for the Venus Geoscience Tutorial and Venus Geologic Mapping Workshop
NASA Technical Reports Server (NTRS)
1989-01-01
Abstracts and tutorial are presented from the workshop. Representative titles are: Geology of Southern Guinevere Planitia, Venus, Based on Analyses of Goldstone Radar Data; Tessera Terrain: Characteristics and Models of Origin; Venus Volcanism; Rate Estimates from Laboratory Studies of Sulfur Gas-Solid Reactions; and A Morphologic Study of Venus Ridge Belts.
NASA Astrophysics Data System (ADS)
Jarvinen, R.
2011-04-01
This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere.Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.
NASA Astrophysics Data System (ADS)
Jarvinen, Riku
2011-04-01
This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.
A dynamic model of Venus's gravity field
NASA Technical Reports Server (NTRS)
Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.
1984-01-01
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.
The polar thermosphere of Venus
NASA Astrophysics Data System (ADS)
Mueller-Wodarg, Ingo; Rosenblatt, Pascal; Bruinsma, Sean; Yelle, Roger; Svedhem, Håkan; Forbes, Jeffrey M.; Withers, Paul; Keating Sci. Gerald, Sr.; Lopez-Valverde, Miguel Angel
The thermosphere of Venus has been extensively observed in-situ primarily by the Pioneer Venus Orbiter, but those measurements concentrated on the low latitude regions. Until recently, no in-situ observations were made of the polar thermosphere of Venus, and reference atmospheres such as the VTS3 and VIRA models relied on solar zenith angle trends inferred at low latitudes in order to extrapolate to polar latitudes. The Venus Express Atmospheric Drag Experiment (VExADE) carries out accurate orbital tracking in order to infer for the first time ever the densities in Venus' polar thermosphere near 180 km altitude at solar minimum. During 3 recent tracking campaigns we obtained density measurements that allow us to compare actual densities in those regions with those predicted by the reference atmosphere models. We constructed a hydrostatic diffusive equilibrium at-mosphere model that interpolates between the Venus Express remote sensing measurements in the upper mesosphere and lower thermosphere region and the in-situ drag measurements by VExADE. This paper will present and discuss our latest findings.
Lunar and Planetary Science XXXV: Venus
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Venus" included the following reports:Preliminary Study of Laser-induced Breakdown Spectroscopy (LIBS) for a Venus Mission; Venus Surface Investigation Using VIRTIS Onboard the ESA/Venus Express Mission; Use of Magellan Images for Venus Landing Safety Assessment; Volatile Element Geochemistry in the Lower Atmosphere of Venus; Resurfacing Styles and Rates on Venus: Assessment of 18 Venusian Quadrangles; Stereo Imaging of Impact Craters in the Beta-Atla-Themis (BAT) Region, Venus; Depths of Extended Crater-related Deposits on Venus ; Potential Pyroclastic Deposit in the Nemesis Tessera (V14) Quadrangle of Venus; Relationship Between Coronae, Regional Plains and Rift Zones on Venus, Preliminary Results; Coronae of Parga Chasma, Venus; The Evolution of Four Volcano/Corona Hybrids on Venus; Calderas on Venus and Earth: Comparison and Models of Formation; Venus Festoon Deposits: Analysis of Characteristics and Modes of Emplacement; Topographic and Structural Analysis of Devana Chasma, Venus: A Propagating Rift System; Anomalous Radial Structures at Irnini Mons, Venus: A Parametric Study of Stresses on a Pressurized Hole; Analysis of Gravity and Topography Signals in Atalanta-Vinmara and Lavinia Planitiae Canali are Lava, Not River, Channels; and Formation of Venusian Channels in a Shield Paint Substrate.
Venus Lightning: What We Have Learned from the Venus Express Fluxgate Magnetometer
NASA Astrophysics Data System (ADS)
Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Zhang, T. L.
2010-03-01
The Venus Express magnetometer sees short (tens of milliseconds) pulses of EM waves in the Venus ionosphere as predicted by the lightning model for the PVO electric pulses. These waves are stronger than similar terrestrial signals produced by lightning.
NASA Astrophysics Data System (ADS)
Najib, D.; Nagy, A.; Toth, G.; Ma, Y.-J.
2011-10-01
We use the latest version of our four species multifluid model to study the interaction of the solar wind with Venus. The model solves simultaneously the continuity, momentum and energy equations of the different ions. The lower boundary of our model is at 100 km, below the main ionospheric peak, and the radial resolution is about 10 km in the ionosphere, thus the model does a very good job in reproducing the ionosphere and the associated processes. We carry out calculations for high and low solar activity conditions and establish the importance of mass loading by the extended exosphere of Venus. We demonstrate the importance of using the multi-fluid rather than a single fluid model. We also calculate the atmospheric escape of the ionospheric species and compare our model results with the observed parameters from Pioneer Venus and Venus Express.
Venus Chasmata: A Lithospheric Stretching Model
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Head, J. W.
1985-01-01
An outstanding problem for Venus is the characterization of its style of global tectonics, an issue intimately related to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. A lithospheric stretching model was developed to explain the topographic characteristics of Venus chasmata and to constrain the physical properties of the Venus crust and lithosphere.
Tectonic History of the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Solomon, Sean C.
1993-01-01
The topics covered include the following: patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus; aspects of modeling the tectonics of large volcanoes on the terrestrial planets; state of stress, faulting, and eruption characteristics of large volcanoes on Mars; origin and thermal evolution of Mars; geoid-to-topography ratios on Venus; a tectonic resurfacing model for Venus; the resurfacing controversy for Venus; and the deformation belts of Lavinia Planitia.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; Gerard, J. C.; Stewart, A. I. F.; Fesen, C. G.
1990-01-01
The mechanism responsible for the Venus nitric oxide (0,1) delta band nightglow observed in the Pioneer Venus Orbiter UV spectrometer (OUVS) images was investigated using the Venus Thermospheric General Circulation Model (Dickinson et al., 1984), modified to include simple odd nitrogen chemistry. Results obtained for the solar maximum conditions indicate that the recently revised dark-disk average NO intensity at 198.0 nm, based on statistically averaged OUVS measurements, can be reproduced with minor modifications in chemical rate coefficients. The results imply a nightside hemispheric downward N flux of (2.5-3) x 10 to the 9th/sq cm sec, corresponding to the dayside net production of N atoms needed for transport.
NASA Astrophysics Data System (ADS)
Parish, H. F.; Mitchell, J.
2017-12-01
We have developed a Venus general circulation model, the Venus Middle atmosphere Model (VMM), to simulate the atmosphere from just below the cloud deck 40 km altitude to around 100 km altitude. Our primary goal is to assess the influence of waves on the variability of winds and temperatures observed around Venus' cloud deck. Venus' deep atmosphere is not simulated directly in the VMM model, so the effects of waves propagating upwards from the lower atmosphere is represented by forcing at the lower boundary of the model. Sensitivity tests allow appropriate amplitudes for the wave forcing to be determined by comparison with Venus Express and probe measurements and allow the influence of waves on the cloud-level atmosphere to be investigated. Observations at cloud altitudes are characterized by waves with a wide variety of periods and wavelengths, including gravity waves, thermal tides, Rossby waves, and Kelvin waves. These waves may be generated within the cloud deck by instabilities, or may propagate up from the deep atmosphere. Our development of the VMM is motivated by the fact that the circulation and dynamics between the surface and the cloud levels are not well measured and wind velocities below 40 km altitude cannot be observed remotely, so we focus on the dynamics at cloud levels and above. Initial results from the VMM with a simplified radiation scheme have been validated by comparison with Pioneer Venus and Venus Express observations and show reasonable agreement with the measurements.
Taking Venus models to new dimensions.
NASA Astrophysics Data System (ADS)
Murawski, K.
1997-11-01
Space plasma physicists in Poland and Japan have gained new insights into the interaction between the solar wind and Venus. Computer simulations of this 3D global interaction between the solar wind and nonmagnetized bodies have enabled greater understanding of the large-scale processes involved in such phenomena. A model that offers improved understanding of the solar wind interaction with Venus (as well as other nonmagnetized bodies impacted by the solar wind) has been developed. In this model, the interaction of the solar wind with the ionosphere of Venus is studied by calculating numerical solutions of the 3D MHD equations for two-component, chemically reactive plasma. The author describes the innovative model.
Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Haag, Emily
2013-01-01
A simplified model of solar power in the Venus environment is developed, in which the solar intensity, solar spectrum, and temperature as a function of altitude is applied to a model of photovoltaic performance, incorporating the temperature and intensity dependence of the open-circuit voltage and the temperature dependence of the bandgap and spectral response of the cell. We use this model to estimate the performance of solar cells for both the surface of Venus and for atmospheric probes at altitudes from the surface up to 60 km. The model shows that photovoltaic cells will produce power even at the surface of Venus.
NASA Technical Reports Server (NTRS)
Konopliv, Alexander S.; Sjogren, William L.
1996-01-01
This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.
Data Reduction and Analysis of Pioneer Venus Orbital Ion Mass Spectrometer
NASA Technical Reports Server (NTRS)
Cloutier, Paul A.
1996-01-01
Research was carried out on developing a flow field interaction model for both the dayside and nightside ionosphere of Venus. Specific topics related to the dayside ionosphere included: (1) wave particle mechanisms at the ionopause, (2) structure and dynamics of the Venus ionopause and Ionosphere, and (3) flows and fields in the Venus Ionosphere. The structure and dynamics of ion troughs was also studied in the nightside ionosphere of Venus.
The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures
NASA Astrophysics Data System (ADS)
Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.
2017-12-01
In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles < 2°, which effectively increases the spherically integrated albedo. They suggest that forward scattering by the H2SO4/H2O aerosols of the upper cloud is responsible for Venus' high albedo at very low phase angles. The present work investigates the implications of such a high albedo for understanding and modeling the energy balance of Venus' atmosphere. Using the successful 1D radiative transfer model SimVenus that incorporates the opacity due to 9 major gases in Venus' atmosphere, as well as multiple scattering calculations of radiation within the clouds, the sensitivity of surface temperature was studied as a function of Bond albedo. Results of these model calculations are shown in Fig. 1. Figure 1a (left). Venus' atmospheric temperature profile for different values of Bond albedo. The structure and radiative effects of the clouds are fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.
Outgassing history of Venus and the absence of water on Venus
NASA Technical Reports Server (NTRS)
Zhang, Youxue; Zindler, Alan
1992-01-01
Similarities in the size and mean density of Earth and Venus encourage the use of Earth-analogue models for the evolution of Venus. However, the amount of water in the present Venus atmosphere is miniscule compared to Earth's oceans. The 'missing' water is thus one of the most significant problems related to the origin and evolution of Venus. Other researchers proposed that Venus accreted with less water, but this was challenged. The high D/H ratio in Venus' atmosphere is consistent with an earlier water mass more than 100 times higher than at present conditions and is often cited to support a 'wet' Venus, but this amounts to only 0.01 to 0.1 percent of the water in terrestrial oceans and the high D/H ratio on Venus could easily reflect cometary injection. Nevertheless, many authors begin with the premise that Venus once had an oceanlike water mass on its surface, and investigate the many possible mechanisms that might account for its loss. In this paper we propose that Venus degassed to lower degree than the Earth and never had an oceanlike surface water mass.
Lessons Learned from Radiative Transfer Simulations of the Venus Atmosphere
NASA Technical Reports Server (NTRS)
Arney, G.; Meadows, V. S.; Lincowski, A.
2017-01-01
The Venus atmosphere is extremely complex, and because of this the spectrum of Earths sister planet is likewise intricate and a challenge to model accurately. However, accurate modeling of Venus spectrum opens up multiple opportunities to better understand the planet next door, and even for understanding Venus-like planets beyond our solar system. Near-infrared (1-2.5 um, NIR) spectral windows observable on the Venus nigthside present the opportunity to probe beneath the Venusian cloud deck and measure thermal emission from the surface and lower atmosphere remotely from Earth or from orbit. These nigthside spectral windows were discovered by Allen and Crawford (1984) and have since been used measure trace gas abundances in the Venus lower atmosphere (less than 45 km), map surface emissivity varisions, and measure properties of the lower cloud deck. These windows sample radiation from below the cloud base at roughly 45 km, and pressures in this region range from roughly Earthlike (approx. 1 bar) up to 90 bars at the surface. Temperatures in this region are high: they range from about 400 K at the base of the cloud deck up to about 740 K at the surface. This high temperature and pressure presents several challenges to modelers attempting radiative transfer simulations of this region of the atmosphere, which we will review. Venus is also important to spectrally model to predict the remote observables of Venus-like exoplanets in anticipation of data from future observatories. Venus-like planets are likely one of the most common types of terrestrial planets and so simulations of them are valuable for planning observatory and detector properties of future telescopes being designed, as well as predicting the types of observations required to characterize them.
Importance of Including Topography in Numerical Simulations of Venus' Atmospheric Circulation
NASA Astrophysics Data System (ADS)
Parish, H. F.; Schubert, G.; Lebonnois, S.; Covey, C. C.; Walterscheid, R. L.; Grossman, A.
2012-12-01
Venus' atmosphere is characterized by strong superrotation, in which the wind velocities at cloud heights are around 60 times faster than the surface rotation rate. The reasons for this strong superrotation are still not well understood. Since the surface of the planet is both a source and sink of atmospheric angular momentum it is important to understand and properly account for the interactions at the surface-atmosphere boundary. A key aspect of the surface-atmosphere interaction is the topography. Topography has been introduced into different general circulation models (GCMs) of Venus' atmosphere, producing significant, but widely varying effects on the atmospheric circulation. The reasons for the inconsistencies among model results are not well known, but our studies suggest they might be related to the influences of different dynamical cores. In our recent study, we have analyzed the angular momentum budget for two Venus GCMs, the Venus Community Atmosphere model (Venus CAM) and the Laboratoire de Meteorologie Dynamique (LMD) Venus GCM. Because of Venus' low magnitude surface winds, surface friction alone supplies only a relatively weak angular momentum forcing to the atmosphere. We find that if surface friction is introduced without including surface topography, the angular momentum balance of the atmosphere may be dominated by effects such as numerical diffusion, a sponge layer, or other numerical residuals that are generally included in all GCMs, and can themselves be sources of angular momentum. However, we find the mountain torque associated with realistic Venus surface topography supplies a much larger source of angular momentum than the surface friction, and dominates nonphysical numerical terms. (A similar effect occurs for rapidly rotating planets like Earth, but in this case numerical errors in the angular momentum budget are relatively small even in the absence of mountain torque). Even if surface friction dominates numerical terms in the angular momentum budgets of simulations without realistic topography, it must be remembered that there are no observational constraints on model parameterizations of the real surface friction on Venus. It is essential for a planet such as Venus, for which surface friction alone supplies only weak angular momentum forcing, to include surface topography to generate realistic forcing of angular momentum and avoid the influences of numerical artifacts, which can be significant. Venus' topography, as mapped using measurements from the Magellan mission, shows significant hemispheric asymmetry. In this work we examine the impact of this asymmetry using simulations of Venus' circulation with and without topography, within the latest version of the Venus CAM GCM.
NASA Astrophysics Data System (ADS)
Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-04-01
Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in Cambridge: personal recollections C. Montonen; Part VI. The Superstring: 35. Introduction to Part VI; 36. Supersymmetry in string theory F. Gliozzi; 37. Gravity from strings: personal reminiscences of early developments T. Yoneya; 38. From the Nambu-Goto to the σ-model action L. Brink; 39. Locally supersymmetric action for superstring P. Di Vecchia; 40. Personal recollections E. Cremmer; 41. The scientific contributions of Joël Scherk J. H. Schwarz; Part VII. Preparing the String Renaissance: 42. Introduction to Part VII; 43. From strings to superstrings: a personal perspective M. B. Green; 44. Quarks, strings and beyond A. M. Polyakov; 45. The rise of the superstring theory A. Cappelli and F. Colomo; Appendices; Index.
Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study
NASA Technical Reports Server (NTRS)
Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram
2009-01-01
We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.
Greenhouse models of Venus' high surface temperature, as constrained by Pioneer Venus measurements
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Toon, O. B.; Boese, R.
1980-01-01
Recent measurements conducted from the Pioneer Venus probes and orbiter have provided a significantly improved definition of the solar net flux profile, the gaseous composition, temperature structure, and cloud properties of Venus' lower atmosphere. Using these data, we have carried out a series of one-dimensional radiative-convective equilibrium calculations to determine the viability of the greenhouse model of Venus' high surface temperature and to assess the chief contributors to the greenhouse effect. New sources of infrared opacity include the permitted transitions of SO2, CO, and HCl as well as opacity due to several pressure-induced transitions of CO2. We find that the observed surface temperature and lapse rate structure of the lower atmosphere can be reproduced quite closely with a greenhouse model that contains the water vapor abundance reported by the Venera spectrophotometer experiment. Thus the greenhouse effect can account for essentially all of Venus' high surface temperature. The prime sources of infrared opacity are, in order of importance, CO2, H2O, cloud particles, and SO2, with CO and HCl playing very minor roles.
A mantle plume model for the Equatorial Highlands of Venus
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Hager, Bradford H.
1991-01-01
The possibility that the Equatorial Highlands are the surface expressions of hot upwelling mantle plumes is considered via a series of mantle plume models developed using a cylindrical axisymmetric finite element code and depth-dependent Newtonian rheology. The results are scaled by assuming whole mantle convection and that Venus and the earth have similar mantle heat flows. The best model fits are for Beta and Atla. The common feature of the allowed viscosity models is that they lack a pronounced low-viscosity zone in the upper mantle. The shape of Venus's long-wavelength admittance spectrum and the slope of its geoid spectrum are also consistent with the lack of a low-viscosity zone. It is argued that the lack of an asthenosphere on Venus is due to the mantle of Venus being drier than the earth's mantle. Mantle plumes may also have contributed to the formation of some smaller highland swells, such as the Bell and Eistla regions and the Hathor/Innini/Ushas region.
Venus geology, geochemistry, and geophysics - Research results from the USSR
NASA Astrophysics Data System (ADS)
Barsukov, V. L.; Basilevsky, A. T.; Volkov, V. P.; Zharkov, V. N.
The book includes papers on the Venusian volcanism, hot-spot structures, the Lakshmi phenomenon, tesserae, ridge belts on plains, impact craters, evidence on the crustal dichotomy, the global tectonic style, resurfacing, and Venusian igneous rocks. Special attention is given to volatiles in the atmosphere and crust, the expansion of topography into spherical harmonics, rotation, statistical properties of topography and the gravity field, a physical model of Venus, and models of the thermal evolution of Venus. Also presented are an atlas of Venusian surface images and a table listing topographic features on Venus and their coordinates.
NASA Astrophysics Data System (ADS)
Lin, Chien-Hung
2017-05-01
We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.
Cosmic superstrings: Observable remnants of brane inflation
NASA Astrophysics Data System (ADS)
Wyman, Mark Charles
Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).
NASA Technical Reports Server (NTRS)
Smrekar, S.; Parmentier, E.
1994-01-01
Describes the characteristics of possible hotspots on Venus, the approach used to simulate mantle upwelling, model results, and presents the implications for the properties of plumes and the lithosphere, hotspot evolution, and resurfacing on Venus.
The Atmosphere and Climate of Venus
NASA Astrophysics Data System (ADS)
Bullock, M. A.; Grinspoon, D. H.
Venus lies just sunward of the inner edge of the Sun's habitable zone. Liquid water is not stable. Like Earth and Mars, Venus probably accreted at least an ocean's worth of water, although there are alternative scenarios. The loss of this water led to the massive, dry CO2 atmosphere, extensive H2SO4 clouds (at least some of the time), and an intense CO2 greenhouse effect. This chapter describes the current understanding of Venus' atmosphere, established from the data of dozens of spacecraft and atmospheric probe missions since 1962, and by telescopic observations since the nineteenth century. Theoretical work to model the temperature, chemistry, and circulation of Venus' atmosphere is largely based on analogous models developed in the Earth sciences. We discuss the data and modeling used to understand the temperature structure of the atmosphere, as well as its composition, cloud structure, and general circulation. We address what is known and theorized about the origin and early evolution of Venus' atmosphere. It is widely understood that Venus' dense CO2 atmosphere is the ultimate result of the loss of an ocean to space, but the timing of major transitions in Venus' climate is very poorly constrained by the available data. At present, the bright clouds allow only 20% of the sunlight to drive the energy balance and therefore determine conditions at Venus' surface. Like Earth and Mars, differential heating between the equator and poles drives the atmospheric circulation. Condensable species in the atmosphere create clouds and hazes that drive feedbacks that alter radiative forcing. Also in common with Earth and Mars, the loss of light, volatile elements to space produces long-term changes in composition and chemistry. As on Earth, geologic processes are most likely modifying the atmosphere and clouds by injecting gases from volcanos as well as directly through chemical reactions with the surface. The sensitivity of Venus' atmospheric energy balance is quantified in this chapter in terms of the initial forcing due to a perturbation, radiative response, and indirect responses, which are feedbacks — either positive or negative. When applied to one Venus climate model, we found that the albedo-radiative feedback is more important than greenhouse forcing for small changes in atmospheric H2O and SO2. An increase in these gases cools the planet by making the clouds brighter. On geologic timescales the reaction of some atmospheric species (SO2, CO, OCS, S, H2O, H2S, HCl, HF) with surface minerals could cause significant changes in atmospheric composition. Laboratory data and thermochemical modeling have been important for showing that atmospheric SO2 would be depleted in ~10 m.y. if carbonates are available at the surface. Without replenishment, the clouds would disappear. Alternatively, the oxidation of pyrite could add SO2 to the atmosphere while producing stable Fe oxides at the surface. The correlation of near-infrared high emissivity (dark) surface features with three young, large volcanos on Venus is strong evidence for recent volcanic activity at these sites, certainly over the timescale necessary to support the clouds. We address the nature of heterogeneous reactions with the surface and the implications for climate change on Venus. Chemical and mineralogical signatures of past climates must exist at the surface and below, so in situ experiments on the composition of surface layers are vital for reconstructing Venus' past climate. Many of the most Earth-like planets found around other stars will probably resemble Venus or a younger version of Venus. We finish the chapter with discussing what Venus can tell us about life in the universe, since it is an example of a planetary climate rendered uninhabitable. It also resembles our world's likely future. As with the climate history of Venus, however, the timing of predictable climate transitions on the Earth is poorly constrained by the data.
Light Z' in heterotic string standardlike models
NASA Astrophysics Data System (ADS)
Athanasopoulos, P.; Faraggi, A. E.; Mehta, V. M.
2014-05-01
The discovery of the Higgs boson at the LHC supports the hypothesis that the Standard Model provides an effective parametrization of all subatomic experimental data up to the Planck scale. String theory, which provides a viable perturbative approach to quantum gravity, requires for its consistency the existence of additional gauge symmetries beyond the Standard Model. The construction of heterotic string models with a viable light Z' is, however, highly constrained. We outline the construction of standardlike heterotic string models that allow for an additional Abelian gauge symmetry that may remain unbroken down to low scales. We present a string inspired model, consistent with the string constraints.
A high resolution gravity model for Venus - GVM-1
NASA Technical Reports Server (NTRS)
Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.
1993-01-01
A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.
The dynamics of the Venus ionosphere
NASA Technical Reports Server (NTRS)
Miller, K. L.
1988-01-01
Data from the Pioneer-Venus orbiter has demonstrated the importance of understanding ion dynamics in the Venus ionosphere. The analysis of the data has shown that during solar maximum the topside Venus ionosphere in the dark hemisphere is generated almost entirely on the dayside of the planet during solar maximum, and flows with supersonic velocities across the terminator into the nightside. The flow field in the ionosphere is mainly axially-symmetric about the sun-Venus axis, as are most measured ionospheric quantities. The primary data base used consisted of the ion velocity measurements made by the RPA during three years that periapsis of the orbiter was maintained in the Venus ionosphere. Examples of ion velocities were published and modeled. This research examined the planetary flow patterns measured in the Venus ionosphere, and the physical implications of departures from the mean flow.
Geophysical models of Western Aphrodite-Niobe region: Venus
NASA Technical Reports Server (NTRS)
Marchenkov, K. I.; Saunders, R. S.; Banerdt, W. B.
1993-01-01
The new topography and gravitational field data for Venus expressed in spherical harmonics of degree and order up to 50 allow us to analyze the crust-mantle boundary relief and stress state of the Venusian lithosphere. In these models, we consider models in which convection is confined beneath a thick, buoyant lithosphere. We divide the convection regime into an upper mantle and lower mantle component. The lateral scales are smaller than on Earth. In these models, relative to Earth, convection is reflected in higher order terms of the gravitational field. On Venus geoid height and topography are highly correlated, although the topography appears to be largely compensated. We hypothesize that Venus topography for those wavelengths that correlate well with the geoid is partly compensated at the crust-mantle boundary, while for the others compensation may be distributed over the whole mantle. In turn the strong sensitivity of the stresses to parameters of the models of the external layers of Venus together with geological mapping allows us to begin investigations of the tectonics and geodynamics of the planet. For stress calculations we use a new technique of space- and time-dependent Green's response functions using Venus models with rheologically stratified lithosphere and mantle and a ductile lower crust. In the basic model of Venus the mean crust is 50-70 km thick, the density contrast across the crust-mantle boundary is in the range from 0.3 to 0.4 g/cm(exp -3). The thickness of a weak mantle zone may be from 350 to 1000 km. Strong sensitivity of calculated stress to various parameters of the layered model of Venus together with geological mapping and analysis of surface tectonic patterns allow us to investigate the tectonics and geodynamics of the planet. The results are presented in the form of maps of compression-extension and maximum shear stresses in the lithosphere and maps of crust-mantle boundary relief, which can be presented as a function of time. We have modeled the region of Western Aphrodite and the Niobe plains to get reasonable depths of compensation. Crust mantle boundary relief is calculated for Western Aphrodite-Niobe relative to a mean crustal thickness of 50 km. The calculations include the consequences of simple crust models and more complicated models with a weak, ductile lower crust, a strong upper mantle and a weak lower mantle layer.
Cosmic ray energy spectrum measurement with the Antarctic Muon and Neutrino Detector Array (AMANDA)
NASA Astrophysics Data System (ADS)
Chirkin, Dmitry Aleksandrovich
AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are smaller. The downgoing muon simulation was substantially improved by using the extensive air shower generator CORSIKA to describe the shower development in the atmosphere, and by writing a new software package for the muon propagation (MMC), which reduced computational and algorithm errors below the level of uncertainties of the muon cross sections in ice. A method was developed that resulted in a flux measurement of cosmic rays with energies 1.5--200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have energies in this range) independent of ice model and optical module sensitivities. Predictions of six commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SIBYLL) are compared to data. The best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum (phi0,i · E -gammai) for cosmic-ray components from hydrogen to iron (i = H,..., Fe) and their mass distribution according to Wiebel-South (Wiebel-South & Biermann, 1999), phi 0,i and gammai were corrected to achieve the best description of the data. For the hydrogen component, values of phi0,H = 0.106 +/- 0.007 m-2 sr-1s-1TeV-1 , gammaH = 2.70 +/- 0.02 are obtained. For the South Pole, a vertical muon flux at 1 TeV of (1.05 +/- 0.07) · 10 -10 cm-2 sr-1s -1GeV-1 is obtained (for all interaction models), and the fitted spectral index is 2.66 +/- 0.02 (for QGSJET, VENUS, and NEXUS). The difference in the predicted value of the spectral index gamma between high-energy interaction models is as much as 0.1, which is explained by the difference in the observed muon multiplicity at the depth of the detector in data simulated with different interaction models.
Solar Wind Interaction and Impact on the Venus Atmosphere
NASA Astrophysics Data System (ADS)
Futaana, Yoshifumi; Stenberg Wieser, Gabriella; Barabash, Stas; Luhmann, Janet G.
2017-11-01
Venus has intrigued planetary scientists for decades because of its huge contrasts to Earth, in spite of its nickname of "Earth's Twin". Its invisible upper atmosphere and space environment are also part of the larger story of Venus and its evolution. In 60s to 70s, several missions (Venera and Mariner series) explored Venus-solar wind interaction regions. They identified the basic structure of the near-Venus space environment, for example, existence of the bow shock, magnetotail, ionosphere, as well as the lack of the intrinsic magnetic field. A huge leap in knowledge about the solar wind interaction with Venus was made possible by the 14-year long mission, Pioneer Venus Orbiter (PVO), launched in 1978. More recently, ESA's probe, Venus Express (VEX), was inserted into orbit in 2006, operated for 8 years. Owing to its different orbit from that of PVO, VEX made unique measurements in the polar and terminator regions, and probed the near-Venus tail for the first time. The near-tail hosts dynamic processes that lead to plasma energization. These processes in turn lead to the loss of ionospheric ions to space, slowly eroding the Venusian atmosphere. VEX carried an ion spectrometer with a moderate mass-separation capability and the observed ratio of the escaping hydrogen and oxygen ions in the wake indicates the stoichiometric loss of water from Venus. The structure and dynamics of the induced magnetosphere depends on the prevailing solar wind conditions. VEX studied the response of the magnetospheric system on different time scales. A plethora of waves was identified by the magnetometer on VEX; some of them were not previously observed by PVO. Proton cyclotron waves were seen far upstream of the bow shock, mirror mode waves were observed in magnetosheath and whistler mode waves, possibly generated by lightning discharges were frequently seen. VEX also encouraged renewed numerical modeling efforts, including fluid-type of models and particle-fluid hybrid type of models, describing the plasma interaction on scales ranging from ion gyro radius to the entire induced magnetosphere. In this review article, we review what has been found from space physics measurements around Venus (from the solar wind down to the ionopause), with a particular emphasis on updated results since the Venus Express mission. We conclude the article by a short discussion on the remaining open scientific questions and the future of this field.
Isostatic compensation of equatorial highlands on Venus
NASA Technical Reports Server (NTRS)
Kucinskas, Algis B.; Turcotte, Donald L.
1994-01-01
Spherical harmonic models for Venus' global topography and gravity incorporating Magellan data are used to test isostatic compensation models in five 30 deg x 30 deg regions representative of the main classes of equatorial highlands. The power spectral density for the harmonic models obeys a power-law scaling with spectral slope Beta approximately 2 (Brown noise) for the topography and Beta approximately 3 (Kaula's law) for the geoid, similar to what is observed for Earth. The Venus topography spectrum has lower amplitudes than Earth's which reflects the dominant lowland topography on Venus. Observed degree geoid to topography ratios (GTRs) on Venus are significantly smaller than degree GTRs for uncompensated topography, indicative of substantial compensation. Assuming a global Airy compensation, most of the topography is compensated at depths greater than 100 km, suggesting a thick lithosphere on Venus. For each region considered we obtain a regional degree of compensation C from a linear regression of Bouguer anomaly versus Bouguer gravity data. Geoid anomaly (N) versus topography variation (h) data for each sample were compared, in the least-squares sense, to theoretical correlations for Pratt, Airy, and thermal thinning isostasy models yielding regional GTR, zero-elevation crustal thickness (H), and zero elevation thermal lithosphere thickness (y(sub L(sub 0)), respectively. We find the regional compensation to be substantial (C approximately 52-80%), and the h, N data correlations in the chosen areas can be explained by isostasy models applicable on the Earth and involving variations in crustal thickness (Airy) and/or lithospheric (thermal thinning) thickness. However, a thick crust and lithosphere (y(sub L(sub 0)) approximately 300 km) must be assumed for Venus.
Venus Global Reference Atmospheric Model
NASA Technical Reports Server (NTRS)
Justh, Hilary L.
2017-01-01
Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model developed by MSFC that is widely used for diverse mission applications including: Systems design; Performance analysis; Operations planning for aerobraking, Entry, Descent and Landing, and aerocapture; Is not a forecast model; Outputs include density, temperature, pressure, wind components, and chemical composition; Provides dispersions of thermodynamic parameters, winds, and density; Optional trajectory and auxiliary profile input files Has been used in multiple studies and proposals including NASA Engineering and Safety Center (NESC) Autonomous Aerobraking and various Discovery proposals; Released in 2005; Available at: https://software.nasa.gov/software/MFS-32314-1.
Optimizing Aerobot Exploration of Venus
NASA Astrophysics Data System (ADS)
Ford, Kevin S.
1997-03-01
Venus Flyer Robot (VFR) is an aerobot; an autonomous balloon probe designed for remote exploration of Earth's sister planet in 2003. VFR's simple navigation and control system permits travel to virtually any location on Venus, but it can survive for only a limited duration in the harsh Venusian environment. To help address this limitation, we develop: (1) a global circulation model that captures the most important characteristics of the Venusian atmosphere; (2) a simple aerobot model that captures thermal restrictions faced by VFR at Venus; and (3) one exact and two heuristic algorithms that, using abstractions (1) and (2), construct routes making the best use of VFR's limited lifetime. We demonstrate this modeling by planning several small example missions and a prototypical mission that explores numerous interesting sites recently documented in the plane tary geology literature.
Optimizing Aerobot Exploration of Venus
NASA Technical Reports Server (NTRS)
Ford, Kevin S.
1997-01-01
Venus Flyer Robot (VFR) is an aerobot; an autonomous balloon probe designed for remote exploration of Earth's sister planet in 2003. VFR's simple navigation and control system permits travel to virtually any location on Venus, but it can survive for only a limited duration in the harsh Venusian environment. To help address this limitation, we develop: (1) a global circulation model that captures the most important characteristics of the Venusian atmosphere; (2) a simple aerobot model that captures thermal restrictions faced by VFR at Venus; and (3) one exact and two heuristic algorithms that, using abstractions (1) and (2), construct routes making the best use of VFR's limited lifetime. We demonstrate this modeling by planning several small example missions and a prototypical mission that explores numerous interesting sites recently documented in the plane tary geology literature.
Identification of market trends with string and D2-brane maps
NASA Astrophysics Data System (ADS)
Bartoš, Erik; Pinčák, Richard
2017-08-01
The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.
NASA Technical Reports Server (NTRS)
1974-01-01
The 1976/77 multiple probe mission of the Pioneer Venus spacecraft is discussed, along with the 1978 and 1980 missions. Various questions about Venus are answered; velocities and temperatures expected in the atmosphere, atmospheric chemistry, magnetic measurements, and model atmospheres are included.
NASA Astrophysics Data System (ADS)
Fegley, B., Jr.
2003-12-01
Venus is Earth's nearest planetary neighbor, and has fascinated mankind since the dawn of history. Venus' clouds reflect most of the sunlight shining on the planet and make it the brightest object in the sky after the Sun and Moon. Venus is visible with the naked eye as an evening star until a few hours after sunset, or as a morning star shortly before sunrise. Many ancient civilizations observed and worshipped Venus, which had a different name in each society, e.g., Ishtar to the Babylonians, Aphrodite to the Greeks, Tai'pei to the Chinese, and Venus to the Romans (Hunt and Moore, 1982). Venus has continued to play an important role in myth, literature, and science throughout history. In the early seventeenth century, Galileo's observations of the phases of Venus showed that the geocentric (Ptolemaic) model of the solar system was wrong and that the heliocentric (Copernican) model was correct. About a century later, Edmund Halley proposed that the distance from the Earth to the Sun (which was then unknown and is defined as one astronomical unit, AU) could be measured by observing transits of Venus across the Sun. These transits occur in pairs separated by eight years at intervals of 105.5 yr and 121.5 yr in an overall cycle of 243 yr, e.g., June 6, 1761, June 3, 1769; December 9, 1874, December 6, 1882, June 8, 2004, June 6, 2012, December 11, 2117, and December 8, 2125. The first attempted measurements of the astronomical unit during the 1761 transit were unsuccessful. However, several observers reported a halo around Venus as it entered and exited the Sun's disk. Thomas Bergman in Uppsala and Mikhail Lomonosov in St. Petersburg, independently speculated that the halo was due to an atmosphere on Venus. Eight years later observations of the 1769 solar transit (including those made by Captain Cook's expedition to Tahiti) gave a value of 1 AU=153 million kilometers, ~2.3% larger than the actual size (149.6 million kilometers) of the astronomical unit (Woolf, 1959; Maor, 2000).
p-adic string theories provide lattice Discretization to the ordinary string worldsheet.
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
p-adic String Theories Provide Lattice Discretization to the Ordinary String Worldsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p{yields}1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
Venus in motion: An animated video catalog of Pioneer Venus Orbiter Cloud Photopolarimeter images
NASA Technical Reports Server (NTRS)
Limaye, Sanjay S.
1992-01-01
Images of Venus acquired by the Pioneer Venus Orbiter Cloud Photopolarimeter (OCPP) during the 1982 opportunity have been utilized to create a short video summary of the data. The raw roll by roll images were first navigated using the spacecraft attitude and orbit information along with the CPP instrument pointing information. The limb darkening introduced by the variation of solar illumination geometry and the viewing angle was then modelled and removed. The images were then projected to simulate a view obtained from a fixed perspective with the observer at 10 Venus radii away and located above a Venus latitude of 30 degrees south and a longitude 60 degrees west. A total of 156 images from the 1982 opportunity have been animated at different dwell rates.
Fitting cosmic microwave background data with cosmic strings and inflation.
Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon
2008-01-18
We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).
Regional tectonic analysis of Venus as part of the Pioneer Venus guest investigator project
NASA Technical Reports Server (NTRS)
Williams, David R.
1991-01-01
Over the past year, much of the tectonic analysis of Venus we have done has centered on global properties of the planet, in order to understand fundamental aspects of the dynamics of the mantle and lithosphere of Venus. We have developed convection models of the Earth and Venus. These models assume whole mantle internally-heated convection. The viscosity is temperature, volatile-content, and stress dependent. An initial temperature and volatile content is assumed, and the thermal evolution is tracked for 4.6 billion years. During this time, heating occurs by decay of radiogenic elements in the mantle, and degassing and regassing of volatiles takes place at the surface. For a model assuming plate tectonics as the primary heat loss mechanism, representing the Earth through most of it's history and perhaps Venus' earlier history, degassing of the mantle was found to occur rapidly (approximately 200 My) over a large range of parameters. Even for parameters chosen to represent extreme cases of an initially cool planet, low radiogenic heating, and large initial volatile complement, the mantle water content was degassed to an equilibrium value in about 2 By. These values may be applicable to the early Venus, if a large, Moon-forming impact on Earth resulted in efficient heating and loss of water, leaving Venus with a comparably greater volatile budget and less vigorous early convection. It may therefore be impossible to retain large amounts of water in the interior of Venus until the planet cools down enough for the 'cold-trap' effect to take place. This effect traps crust forming melts within the mantle due to a cusp in the solidus, causing these melts to refreeze at depth into a dense eclogite phase, which will inhibit ascent of this material to the surface. This effect, however, requires a hydrous mantle, so early loss of water might prevent it from taking place. Since without plate tectonics there is no mechanism for regassing volatiles into the mantle, as occurs on Earth at subduction zones, this means the interior of Venus would at present be almost completely dry. We have also calculated argon degassing, and mantle flow velocities. viscosities, and cooling rates in these models, and these values can provide constraints on present day mantle dynamics.
NASA Astrophysics Data System (ADS)
McGouldrick, Kevin; Molaverdikhani, K.; Esposito, L. W.; Pankratz, C. K.
2010-10-01
The Laboratory for Atmospheric and Space Physics is carrying on a project to restore and preserve data products from several past missions for archival and use by the scientific community. This project includes the restoration of data from Mariner 6/7, Pioneer Venus, Voyager 1/2, and Galileo. Here, we present initial results of this project that involve Pioneer Venus Orbiter Ultraviolet Spectrometer (PVO UVS) data. Using the Discrete Ordinate Method for Radiative Transfer (DISORT), we generate a suite of models for the three free parameters in the upper atmosphere of Venus in which we are interested: sulfur dioxide abundance at 40mb, scale height of sulfur dioxide, and the typical radius of the upper haze particles (assumed to be composed of 84.5% sulfuric acid). We calculate best fits to our radiative transfer model results for multi-spectral images taken with PVO UVS, as well as the 'visible' channel (includes wavelengths from 290nm to about 1000nm) of the mapping mode of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M-Vis) on the Venus Express spacecraft, currently orbiting Venus. This work is funded though the NASA Planetary Mission Data Analysis Program, NNH08ZDA001N.
Study and interpretation of the millimeter-wave spectrum of Venus
NASA Technical Reports Server (NTRS)
Fahd, Antoine K.; Steffes, Paul G.
1992-01-01
The effects of the Venus atmospheric constituents on its millimeter wavelength emission are investigated. Specifically, this research describes the methodology and the results of laboratory measurements which are used to calculate the opacity of some of the major absorbers in the Venus atmosphere. The pressure broadened absorption of gaseous SO2/CO2 and gaseous H2SO4/CO2 has been measured at millimeter wavelengths. We have also developed new formalisms for computing the absorptivities of these gases based on our laboratory work. The complex dielectric constant of liquid sulfuric acid has been measured and the expected opacity from the liquid sulfuric acid cloud layer found in the atmosphere of Venus has been evaluated. The partial pressure of gaseous H2SO4 has been measured which results in a more accurate estimate of the dissociation factor of H2SO4. A radiative transfer model has been developed in order to understand how each atmospheric constituent affects the millimeter wave emissions from Venus. Our results from the radiative transfer model are compared with recent observations of the micro-wave and millimeter wave emissions from Venus. Our main conclusion from this work is that gaseous H2SO4 is the most likely cause of the variation in the observed emission from Venus at 112 GHz.
NASA Astrophysics Data System (ADS)
Peter, Kerstin; Pätzold, Martin; Molina-Cuberos, Gregorio; Witasse, Olivier; González-Galindo, F.; Withers, Paul; Bird, Michael K.; Häusler, Bernd; Hinson, David P.; Tellmann, Silvia; Tyler, G. Leonard
2014-05-01
The electron density distributions of the lower ionospheres of Mars and Venus are mainly dependent on the solar X-ray and EUV flux and the solar zenith angle. The influence of an increasing solar flux is clearly seen in the increase of the observed peak electron density and total electron content (TEC) of the main ionospheric layers. The model “Ionization in Atmospheres” (IonA) was developed to compare ionospheric radio sounding observations, which were performed with the radio science experiments MaRS on Mars Express and VeRa on Venus Express, with simulated electron density profiles of the Mars and Venus ionospheres. This was done for actual observation conditions (solar flux, solar zenith angle, planetary coordinates) from the bases of the ionospheres to ∼160 km altitude. IonA uses models of the neutral atmospheres at ionospheric altitudes (Mars Climate Database (MCD) v4.3 for Mars; VenusGRAM/VIRA for Venus) and solar flux information in the 0.5-95 nm wavelength range (X-ray to EUV) from the SOLAR2000 data base. The comparison between the observed electron density profiles and the IonA profiles for Mars, simulated for a selected MCD scenario (background atmosphere), shows that the general behavior of the Mars ionosphere is reproduced by all scenarios. The MCD “low solar flux/clear atmosphere” and “low solar flux/MY24” scenarios agree best (on average) with the MaRS set of observations, although the actual Mars atmosphere seemed to be still slightly colder at ionospheric altitudes. For Venus, the VenusGRAM model, based on VIRA, is too limited to be used for the IonA simulation of electron density profiles. The behavior of the V2 peak electron density and TEC as a function of solar zenith angle are in general reproduced, but the peak densities and the TEC are either over- or underestimated for low or high solar EUV fluxes, respectively. The simulated V2 peak altitudes are systematically underestimated by 5 km on average for solar zenith angles less than 45° and the peak altitudes rise for zenith angles larger than 60°. The latter is the opposite of the observed behavior. The explanation is that VIRA and VenusGRAM are valid only for high solar activity, although there is also very poor agreement with VeRa observations from the recent solar cycle, in which the solar activity increases to high values. The disagreement between the observation and simulation of the Venus electron density profiles proves, that the true encountered Venus atmosphere at ionospheric altitudes was denser but locally cooler than predicted by VIRA.
Simulation of Energetic Neutral Atom Images at Venus
NASA Astrophysics Data System (ADS)
Gunell, H.; Holmström, M.; Biernat, H. K.; Erkaev, N. V.; Lammer, H.; Lichtenegger, H.; Penz, T.
2003-12-01
We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus. The plasma flow around Venus is modelled by a semi-analytical MHD simulation that includes mass-loading (Biernat et al., J. Geophys. Res., vol. 104, 12617--12626, 1999; Biernat,et al., Adv. Space Res., 28, 2001). These results are compared with the results that are obtained when the Spreiter-Stahara flow model (Spreiter and Stahara, Adv Space Res., 14, 5--19, 1994) is used. The ENA images are calculated by combining the proton bulk flow and temperature results of the MHD model with a model of the neutral atmosphere using the energy dependent cross sections for the charge exchange collisions. The ENA production rate is integrated along lines of sight to a virtual instrument, thus simulating what could be measured by a space-craft-carried ENA instrument. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The main contribution to the ENA flux observed in the ENA images stems from a region of space between the ionopause and the bow shock on the dayside of the planet. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars (Holmström et al., J. Geophys. Res., 107, 1277, doi: 10.1029/2001JA000325, 2002). The reason for the lower ENA flux at Venus is thought to be the smaller extent of Venus' exosphere. The steeper falloff of the neutral gas density with altitude in the exosphere of Venus is caused by Venus' mass, which is 7.5 times greater than the mass of Mars. The dependence of the ENA flux on the altitude of the ionopause is studied numerically, and it is found that the ENA flux decreases as the ionopause altitude is increased.
Day and night models of the Venus thermosphere
NASA Technical Reports Server (NTRS)
Massie, S. T.; Hunten, D. M.; Sowell, D. R.
1983-01-01
A model atmosphere of Venus for altitudes between 100 and 178 km is presented for the dayside and nightside. Densities of CO2, CO, O, N2, He, and O2 on the dayside, for 0800 and 1600 hours local time, are obtained by simultaneous solution of continuity equations. These equations couple ionospheric and neutral chemistry and the transport processes of molecular and eddy diffusion. Photodissociation and photoionization J coefficients are presented to facilitate the incorporation of chemistry into circulation models of the Venus atmosphere. Midnight densities of CO2 CO, O, N2, He, and N are derived from integration of the continuity equations, subject to specified fluxes. The nightside densities and fluxes are consistent with the observed airglow of NO and O2(1 Delta). The homopause of Venus is located near 133 km on both the dayside and nightside.
Radiative energy balance of the Venus mesosphere
NASA Astrophysics Data System (ADS)
Haus, R.; Goering, H.
1990-03-01
An accurate radiative transfer model for line-by-line gaseous absorption, as well as for cloud absorption and multiple scattering, is used in the present calculation of solar heating and thermal cooling rates for standard temperature profiles and temperatures yielded by the Venera 15 Fourier Spectrometer Experiment. A strong dependency is noted for heating and cooling rates on cloud-structure variations. The Venus mesosphere is characterized by main cloud-cover heating and overlying-haze cooling. These results are applicable to Venus atmosphere dynamical models.
Hot spot heat transfer - Its application to Venus and implications to Venus and earth
NASA Technical Reports Server (NTRS)
Morgan, P.; Phillips, R. J.
1983-01-01
Using a model that gives a relationship between surface elevation, lithospheric thickness, and heat flux, the hot spot heat loss mechanism is tested for Venus. The mechanism is found to readily explain the predicted heat loss of the planet with a modest number of hot spots (of the order of 35). Lithospheric thickness variations can explain approximately 93 percent of the mapped topography of Venus. Above a radius of 6053 km, additional compensation is required, and this can be effected by incorporating a variable thickness crust into the model. If it is assumed that the crust is generated on the crests of the hot spots, probably by processes associated with volcanism, the model is consistent with nearly 99 percent of the mapped topography of Venus. In addition, the model is basically consistent with available gravity data and interpretations that suggest compensated topography and great depths of compensation (100-1000 km) for the midlatitudes of the planet. It is thought that the approximately 1 percent of the topography not explained by hot spot crustal generation is compensated at a shallower depth primarily by variations in crustal thickness that are not directly related to hot spot volcanism.
NASA Astrophysics Data System (ADS)
Rosenblatt, Pascal; Bruinsma, Sean; Mueller-Wodarg, Ingo; Haeusler, Bernd
On its highly elliptical 24 hour orbit around Venus, the Venus Express (VEx) spacecraft briefly reaches a pericenter altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008 (campaign1), October 2009 (cam-paign2), February and April 2010 (campaign3), for which the pericenter altitude was lowered to about 175 km in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in-situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the pericenter pass, allowing us to infer total atmospheric mass density at the pericenter altitude. The GINS software (Géodésie par Intégration Numérique e e Simultanées) is used to accurately reconstruct the orbital motion of VEx through an iterative least-squares fitting process to the Doppler tracking data. The drag acceleration is modelled using an initial atmospheric density model (VTS model, A. Hedin). A drag scale factor is estimated for each pericenter pass, which scales Hedin's density model in order to best fit the radio tracking data. About 20 density scale factors have been obtained mainly from the second and third VExADE campaigns, which indicate a lower density by a factor of about one-third than Hedin's model predicts. These first ever polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements. The preliminary results of the VExADE cam-paigns show that it is possible to obtain reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEx pericenter altitude to below 170 Km.
Aeronomy of the Venus Upper Atmosphere
NASA Astrophysics Data System (ADS)
Gérard, J.-C.; Bougher, S. W.; López-Valverde, M. A.; Pätzold, M.; Drossart, P.; Piccioni, G.
2017-11-01
We present aeronomical observations collected using remote sensing instruments on board Venus Express, complemented with ground-based observations and numerical modeling. They are mostly based on VIRTIS and SPICAV measurements of airglow obtained in the nadir mode and at the limb above 90 km. They complement our understanding of the behavior of Venus' upper atmosphere that was largely based on Pioneer Venus observations mostly performed over thirty years earlier. Following a summary of recent spectral data from the EUV to the infrared, we examine how these observations have improved our knowledge of the composition, thermal structure, dynamics and transport of the Venus upper atmosphere. We then synthesize progress in three-dimensional modeling of the upper atmosphere which is largely based on global mapping and observations of time variations of the nitric oxide and O2 nightglow emissions. Processes controlling the escape flux of atoms to space are described. Results based on the VeRA radio propagation experiment are summarized and compared to ionospheric measurements collected during earlier space missions. Finally, we point out some unsolved and open questions generated by these recent datasets and model comparisons.
Studies of the Chemistry of the Nightside Ionosphere of Venus
NASA Technical Reports Server (NTRS)
Fox, J.L.
1992-01-01
During the tenure of this grant, we have been looking into the chemistry of the nightside ionosphere of Venus with a view toward elucidating the relative roles of electron precipitation and plasma transport as sources of the nightside ionosphere. Secondary goals have included determining the densities of minor species on the nightside, and verifying the relative normalization of the Pioneer Venus orbiter ion mass spectrometer (OIMS) and orbiter neutral mass spectrometer (ONMS) in the photochemical equilibrium region. Our studies have involved a combination of numerical modeling and analysis of the Pioneer Venus UADS data base, specifically data from the OIMS, ONMS and electron temperature probe (OETP). We have set up a one-dimensional model of the Venus nightside ionosphere, in which downward fluxes of atomic ions are introduced at the upper boundary to simulate transport of ions from the dayside. Our model shows that the densities of mass-28 ions (CO+ + N+) resulting from an influx of atomic ions from the dayside are quite small, due to the high ionization potentials of CO and N2 that make chemical production difficult.
Venus - Ishtar gravity anomaly
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.
1984-01-01
The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.
Volatile transport on Venus and implications for surface geochemistry and geology
NASA Technical Reports Server (NTRS)
Brackett, Robert A.; Fegley, Bruce; Arvidson, Raymond E.
1995-01-01
The high vapor pressure of volatile metal halides and chalcogenides (e.g., of Cu, Zn, Sn, Pb, As, Sb, Bi) at typical Venus surface temperatures, coupled with the altitude-dependent temperature gradient of approximately 8.5 K/km, is calculated to transport volatile metal vapors to the highlands of Venus, where condensation and accumulation will occur. The predicted geochemistry of volatile metals on Venus is supported by observations of CuCl in volcanic gases at Kilauea and Nyiragongo, and large enrichments of these and other volatile elements in terrestrial volcanic aerosols. A one-dimensional finite difference vapor transport model shows the diffusive migration of a thickness of 0.01 to greater than 10 microns/yr of moderately to highly volatile phases (e.g., metal halides and chalcogenides) from the hot lowlands (740 K) to the cold highlands (660 K) on Venus. The diffusive transport of volatile phases on Venus may explain the observed low emissivity of the Venusian highlands, hazes at 6-km altitude observed by two Pioneer Venus entry probes, and the Pioneer Venus entry probe anomalies at 12.5 km.
The effect of the hot oxygen corona on the interaction of the solar wind with Venus
NASA Technical Reports Server (NTRS)
Belotserkovskii, O. M.; Mitnitskii, V. IA.; Breus, T. K.; Krymskii, A. M.; Nagy, A. F.
1987-01-01
A numerical gasdynamic model, which includes the effects of mass loading of the shocked solar wind, was used to calculate the density and magnetic field variations in the magnetosheath of Venus. These calculations were carried out for conditions corresponding to a specific orbit of the Pioneer Venus Orbiter (PVO orbit 582). A comparison of the model predictions and the measured shock position, density and magnetic field values showed a reasonable agreement, indicating that a gasdynamic model that includes the effects of mass loading can be used to predict these parameters.
The effect of the hot oxygen corona on the interaction of the solar wind with Venus
NASA Astrophysics Data System (ADS)
Belotserkovskii, O. M.; Breus, T. K.; Krymskii, A. M.; Mitnitskii, V. Ya.; Nagey, A. F.; Gombosi, T. I.
1987-05-01
A numerical gas dynamic model, which includes the effects of mass loading of the shocked solar wind, was used to calculate the density and magnetic field variations in the magnetosheath of Venus. These calculations were carried out for conditions corresponding to a specific orbit of the Pioneer Venus Orbiter (PVO orbit 582). A comparison of the model predictions and the measured shock position, density and magnetic field values showed a reasonable agreement, indicating that a gas dynamic model that includes the effects of mass loading can be used to predict these parameters.
Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck
NASA Astrophysics Data System (ADS)
Jessup, Kandis Lea; Marcq, Emmanuel; Mills, Franklin; Mahieux, Arnaud; Limaye, Sanjay; Wilson, Colin; Allen, Mark; Bertaux, Jean-Loup; Markiewicz, Wojciech; Roman, Tony; Vandaele, Ann-Carine; Wilquet, Valerie; Yung, Yuk
2015-09-01
Hubble Space Telescope Imaging Spectrograph (HST/STIS) UV observations of Venus' upper cloud tops were obtained between 20N and 40S latitude on December 28, 2010; January 22, 2011 and January 27, 2011 in coordination with the Venus Express (VEx) mission. The high spectral (0.27 nm) and spatial (40-60 km/pixel) resolution HST/STIS data provide the first direct and simultaneous record of the latitude and local time distribution of Venus' 70-80 km SO and SO2 (SOx) gas density on Venus' morning quadrant. These data were obtained simultaneously with (a) VEx/SOIR occultation and/or ground-based James Clerk Maxwell Telescope sub-mm observations that record respectively, Venus' near-terminator SO2 and dayside SOx vertical profiles between ∼75 and 100 km; and (b) 0.36 μm VEx/VMC images of Venus' cloud-tops. Updating the (Marcq, E. et al. [2011]. Icarus 211, 58-69) radiative transfer model SO2 gas column densities of ∼2-10 μm-atm and ∼0.4-1.8 μm-atm are retrieved from the December 2010 and January 2011 HST observations, respectively on Venus' dayside (i.e., at solar zenith angles (SZA) < 60°); SO gas column densities of 0.1-0.11 μm-atm, 0.03-0.31 μm-atm and 0.01-0.13 μm-atm are also retrieved from the respective December 28, 2010, January 22, 2011 and January 27, 2011 HST observations. A decline in the observed low-latitude 0.24 and 0.36 μm cloud top brightness paralleled the declining SOx gas densities. On December 28, 2010 SO2 VMR values ∼280-290 ppb are retrieved between 74 and 81 km from the HST and SOIR data obtained near Venus' morning terminator (at SZAs equal to 70° and 90°, respectively); these values are 10× higher than the HST-retrieved January 2011 near terminator values. Thus, the cloud top SO2 gas abundance declined at all local times between the three HST observing dates. On all dates the average dayside SO2/SO ratio inferred from HST between 70 and 80 km is higher than that inferred from the sub-mm the JCMT data above 84 km confirming that SOx photolysis is more efficient at higher altitudes. The direct correlation of the SOx gases provides the first clear evidence that SOx photolysis is not the only source for Venus' 70-80 km sulfur reservoir. The cloud top SO2 gas density is dependent in part on the vertical transport of the gas from the lower atmosphere; and the 0.24 μm cloud top brightness levels are linked to the density of the sub-micron haze. Thus, the new results may suggest a correlation between Venus' cloud-top sub-micron haze density and the vertical transport rate. These new results must be considered in models designed to simulate and explore the relationship between Venus' sulfur chemistry cycle, H2SO4 cloud formation rate and climate evolution. Additionally, we present the first photochemical model that uniquely tracks the transition of the SO2 atmosphere from steady to non-steady state with increasing SZA, as function of altitude within Venus' mesosphere, showing the photochemical and dynamical basis for the factor of ∼2 enhancements in the SOx gas densities observed by HST near the terminator above that observed at smaller SZA. These results must also be considered when modeling the long-term evolution of Venus' atmospheric chemistry and dynamics.
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1988-01-01
Models for the viscous relaxation of impact crater topography are used to constrain the crustal thickness (H) and the mean lithospheric thermal gradient beneath the craters on Venus. A general formulation for gravity-driven flow in a linearly viscous fluid has been obtained which incorporates the densities and temperature-dependent effective viscosities of distinct crust and mantle layers. An upper limit to the crustal volume of Venus of 10 to the 10th cu km is obtained which implies either that the average rate of crustal generation has been much smaller on Venus than on earth or that some form of crustal recycling has occurred on Venus.
Rheology, tectonics, and the structure of the Venus lithosphere
NASA Technical Reports Server (NTRS)
Zuber, M. T.
1994-01-01
Given the absence of ground truth information on seismic structure, heat flow, and rock strength, or short wavelength gravity or magnetic data for Venus, information on the thermal, mechanical and compositional nature of the shallow interior must be obtained by indirect methods. Using pre-Magellan data, theoretical models constrained by the depths of impact craters and the length scales of tectonic features yielded estimates on the thickness of Venus' brittle-elastic lithosphere and the allowable range of crustal thickness and surface thermal gradient. The purpose of this study is to revisit the question of the shallow structure of Venus based on Magellan observations of the surface and recent experiments that address Venus' crustal rheology.
Coupled Photochemical and Condensation Model for the Venus Atmosphere
NASA Astrophysics Data System (ADS)
Bierson, Carver; Zhang, Xi; Mendonca, Joao; Liang, Mao-Chang
2017-10-01
Ground based and Venus Express observations have provided a wealth of information on the vertical and latitudinal distribution of many chemical species in the Venus atmosphere [1,2]. Previous 1D models have focused on the chemistry of either the lower [3] or middle atmosphere [4,5]. Photochemical models focusing on the sulfur gas chemistry have also been independent from models of the sulfuric acid haze and cloud formation [6,7]. In recent years sulfur-bearing particles have become important candidates for the observed SO2 inversion above 80 km [5]. To test this hypothesis it is import to create a self-consistent model that includes photochemistry, transport, and cloud condensation.In this work we extend the domain of the 1D chemistry model of Zhang et al. (2012) [5] to encompass the region between the surface to 110 km. This model includes a simple sulfuric acid condensation scheme with gravitational settling. It simultaneously solves for the chemistry and condensation allowing for self-consistent cloud formation. We compare the resulting chemical distributions to observations at all altitudes. We have also validated our model cloud mass against pioneer Venus observations [8]. This updated full atmosphere chemistry model is also being applied in our 2D solver (altitude and altitude). With this 2D model we can model how the latitudinal distribution of chemical species depends on the meridional circulation. This allows us to use the existing chemical observations to place constraints on Venus GCMs [9-11].References: [1] Arney et al., JGR:Planets, 2014 [2] Vandaele et al., Icarus 2017 (pt. 1 & 2) [3] Krasnopolsky, Icarus, 2007 [4] Krasnopolsky, Icarus, 2012 [5] Zhang et al., Icarus 2012 [6] Gao et al., Icarus, 2014 [7] Krasnopolsky, Icarus, 2015 [8] Knollenberg and Hunten, JGR:Space Physics, 1980 [9] Lee et al., JGR:Planets, 2007 [10] Lebonnois et al., Towards Understanding the Climate of Venus, 2013 [11] Mendoncca and Read, Planetary and Space Science, 2016
NASA Astrophysics Data System (ADS)
Lognonne, P. H.; Rolland, L.; Karakostas, F. G.; Garcia, R.; Mimoun, D.; Banerdt, W. B.; Smrekar, S. E.
2015-12-01
Earth, Venus and Mars are all planets in which infrasounds can propagate and interact with the solid surface. This leads to infrasound generation for internal sources (e.g. quakes) and to seismic waves generations for atmospheric sources (e.g. meteor, impactor explosions, boundary layer turbulences). Both the atmospheric profile, surface density, atmospheric wind and viscous/attenuation processes are however greatly different, including major differences between Mars/Venus and Earth due to the CO2 molecular relaxation. We present modeling results and compare the seismic/acoustic coupling strength for Earth, Mars and Venus. This modeling is made through normal modes modelling for models integrating the interior, atmosphere, both with realistic attenuation (intrinsic Q for solid part, viscosity and molecular relaxation for the atmosphere). We complete these modeling, made for spherical structure, by integration of wind, assuming the later to be homogeneous at the scale of the infrasound wavelength. This allows us to compute either the Seismic normal modes (e.g. Rayleigh surface waves), or the acoustic or the atmospheric gravity modes. Comparisons are done, for either a seismic source or an atmospheric source, on the amplitude of expected signals as a function of distance and frequency. Effects of local time are integrated in the modeling. We illustrate the Rayleigh waves modelling by Earth data (for large quakes and volcanoes eruptions). For Venus, very large coupling can occur at resonance frequencies between the solid part and atmospheric part of the planet through infrasounds/Rayleigh waves coupling. If the atmosphere reduced the Q (quality coefficient) of Rayleigh waves in general, the atmosphere at these resonance soffers better propagation than Venus crust and increases their Q. For Mars, Rayleigh waves excitations by atmospheric burst is shown and discussed for the typical yield of impacts. The new data of the Nasa INSIGHT mission which carry both seismic and infrasound sensors will offer a unique confirmation in 2016-2017. We conclude with the seismic/infrasounds coupling on Venus which make the detection from space of seismic waves possible through the perturbation of the infrared airglow by infrassounds. Detection threshold as low as Magnitude 5.5 can be reached with existing technologies.
String Fragmentation Model in Space Radiation Problems
NASA Technical Reports Server (NTRS)
Tang, Alfred; Johnson, Eloise (Editor); Norbury, John W.; Tripathi, R. K.
2002-01-01
String fragmentation models such as the Lund Model fit experimental particle production cross sections very well in the high-energy limit. This paper gives an introduction of the massless relativistic string in the Lund Model and shows how it can be modified with a simple assumption to produce formulas for meson production cross sections for space radiation research. The results of the string model are compared with inclusive pion production data from proton-proton collision experiments.
Croconic acid - An absorber in the Venus clouds?
NASA Technical Reports Server (NTRS)
Hartley, Karen K.; Wolff, Andrew R.; Travis, Larry D.
1989-01-01
The absorbing species responsible for the UV cloud features and pale yellow hue of the Venus clouds is presently suggested to be the carbon monoxide-polymer croconic acid, which strongly absorbs in the blue and near-UV. Laboratory absorption-coefficient measurements of a dilute solution of croconic acid in sulfuric acid are used as the bases of cloud-scattering models; the Venus planetary albedo's observed behavior in the blue and near-UV are noted to be qualitatively reproduced. Attention is given to a plausible croconic acid-production mechanism for the Venus cloudtop region.
Theoretical interpretation of the Venus 1.05-micron CO2 band and the Venus 0.8189-micron H2O line.
NASA Technical Reports Server (NTRS)
Regas, J. L.; Giver, L. P.; Boese, R. W.; Miller, J. H.
1972-01-01
The synthetic-spectrum technique was used in the analysis. The synthetic spectra were constructed with a model which takes into account both isotropic scattering and the inhomogeneity in the Venus atmosphere. The Potter-Hansen correction factor was used to correct for anisotropic scattering. The synthetic spectra obtained are, therefore, the first which contain all the essential physics of line formation. The results confirm Potter's conclusion that the Venus cloud tops resemble terrestrial cirrus or stratus clouds in their scattering properties.
The clouds of Venus. [physical and chemical properties
NASA Technical Reports Server (NTRS)
Young, A. T.
1975-01-01
The physical and chemical properties of the clouds of Venus are reviewed, with special emphasis on data that are related to cloud dynamics. None of the currently-popular interpretations of cloud phenomena on Venus is consistent with all the data. Either a considerable fraction of the observational evidence is faulty or has been misinterpreted, or the clouds of Venus are much more complex than the current simplistic models. Several lines of attack are suggested to resolve some of the contradictions. A sound understanding of the clouds appears to be several years in the future.
The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus
NASA Astrophysics Data System (ADS)
Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.
2017-12-01
The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.
Computer Center: BASIC String Models of Genetic Information Transfer.
ERIC Educational Resources Information Center
Spain, James D., Ed.
1984-01-01
Discusses some of the major genetic information processes which may be modeled by computer program string manipulation, focusing on replication and transcription. Also discusses instructional applications of using string models. (JN)
NASA Astrophysics Data System (ADS)
Cole, Ryan Kenneth; Schroeder, Paul James; Diego Draper, Anthony; Rieker, Gregory Brian
2018-06-01
Modelling absorption spectra in high pressure, high temperature environments is complicated by the increased relevance of higher order collisional phenomena (e.g. line mixing, collision-induced absorption, finite duration of collisions) that alter the spectral lineshape. Accurate reference spectroscopy in these conditions is of interest for mineralogy and radiative transfer studies of Venus as well as other dense planetary atmospheres. We present a new, high pressure, high temperature absorption spectroscopy facility at the University of Colorado Boulder. This facility employs a dual frequency comb absorption spectrometer to record broadband (500nm), high resolution (~0.002nm) spectra in conditions comparable to the Venus surface (730K, 90bar). Measurements of the near-infrared spectrum of carbon dioxide at high pressure and temperature will be compared to modeled spectra extrapolated from the HITRAN 2016 database as well as other published models that include additional collisional physics. This comparison gives insight into the effectiveness of existing absorption databases for modeling the lower Venus atmosphere as well as the need to expand absorption models to suit these conditions.
Evolution of cosmic string networks
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Turok, Neil
1989-01-01
A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.
Understanding the variation in the millimeter-wave emission of Venus
NASA Technical Reports Server (NTRS)
Fahd, Antoine K.; Steffes, Paul G.
1992-01-01
Recent observations of the millimeter-wave emission from Venus at 112 GHz (2.6 mm) have shown significant variations in the continuum flux emission that may be attributed to the variability in the abundances of absorbing constituents in the Venus atmosphere. Such constituents include gaseous H2SO4, SO2, and liquid sulfuric acid (cloud condensates). Recently, Fahd and Steffes have shown that the effects of liquid H, SO4, and gaseous SO2 cannot completely account for this measured variability in the millimeter-wave emission of Venus. Thus, it is necessary to study the effect of gaseous H2SO4 on the millimeter-wave emission of Venus. This requires knowledge of the millimeter-wavelength (MMW) opacity of gaseous H2SO4, which unfortunately has never been determined for Venus-like conditions. We have measured the opacity of gaseous H2SO4 in a CO2 atmosphere at 550, 570, and 590 K, at 1 and 2 atm total pressure, and at a frequency of 94.1 GHz. Our results, in addition to previous centimeter-wavelength results are used to verify a modeling formalism for calculating the expected opacity of this gaseous mixture at other frequencies. This formalism is incorporated into a radiative transfer model to study the effect of gaseous H2SO4 on the MMW emission of Venus.
NASA Astrophysics Data System (ADS)
Smrekar, Suzanne E.; Soloman, Sean C.
1992-12-01
Gravitational spreading is expected to lead to rapid relaxation of high relief due to the high surface temperature and associated weak crust on Venus. In this study, we use new Magellan radar and altimetry data to determine the extent of gravitational relaxation in Ishtar Terra, which contains the highest relief on Venus as well as areas of extremely high topographic slope. Within Ishtar Terra the only mountain belts found on Venus, Akna, Danu, Freyja, and Maxwell Montes, nearly encircle the smooth, high (3-4 km) plateau of Lakshmi Planum. Finite-element models of this process give expected timescales for relaxation of relief and failure at the surface. From these modeling results we attempt to constrain the strength of the crust and timescales of deformation in Ishtar Terra. Below we discuss observational evidence for gravitational spreading in Ishtar Terra, results from the finite-element modeling, independent age constraints, and implications for the rheology and timing of deformation.
The Latest on the Venus Thermospheric General Circulation Model: Capabilities and Simulations
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Parkinson, C. D.
2017-01-01
Venus has a complex and dynamic upper atmosphere. This has been observed many times by ground-based, orbiters, probes, and fly-by missions going to other planets. Two over-arching questions are generally asked when examining the Venus upper atmosphere: (1) what creates the complex structure in the atmosphere, and (2) what drives the varying dynamics. A great way to interpret and connect observations to address these questions utilizes numerical modeling; and in the case of the middle and upper atmosphere (above the cloud tops), a 3D hydrodynamic numerical model called the Venus Thermospheric General Circulation Model (VTGCM) can be used. The VTGCM can produce climatological averages of key features in comparison to observations (i.e. nightside temperature, O2 IR nightglow emission). More recently, the VTGCM has been expanded to include new chemical constituents and airglow emissions, as well as new parameterizations to address waves and their impact on the varying global circulation and corresponding airglow distributions.
NASA Technical Reports Server (NTRS)
Smrekar, Suzanne E.; Soloman, Sean C.
1992-01-01
Gravitational spreading is expected to lead to rapid relaxation of high relief due to the high surface temperature and associated weak crust on Venus. In this study, we use new Magellan radar and altimetry data to determine the extent of gravitational relaxation in Ishtar Terra, which contains the highest relief on Venus as well as areas of extremely high topographic slope. Within Ishtar Terra the only mountain belts found on Venus, Akna, Danu, Freyja, and Maxwell Montes, nearly encircle the smooth, high (3-4 km) plateau of Lakshmi Planum. Finite-element models of this process give expected timescales for relaxation of relief and failure at the surface. From these modeling results we attempt to constrain the strength of the crust and timescales of deformation in Ishtar Terra. Below we discuss observational evidence for gravitational spreading in Ishtar Terra, results from the finite-element modeling, independent age constraints, and implications for the rheology and timing of deformation.
Compression of strings with approximate repeats.
Allison, L; Edgoose, T; Dix, T I
1998-01-01
We describe a model for strings of characters that is loosely based on the Lempel Ziv model with the addition that a repeated substring can be an approximate match to the original substring; this is close to the situation of DNA, for example. Typically there are many explanations for a given string under the model, some optimal and many suboptimal. Rather than commit to one optimal explanation, we sum the probabilities over all explanations under the model because this gives the probability of the data under the model. The model has a small number of parameters and these can be estimated from the given string by an expectation-maximization (EM) algorithm. Each iteration of the EM algorithm takes O(n2) time and a few iterations are typically sufficient. O(n2) complexity is impractical for strings of more than a few tens of thousands of characters and a faster approximation algorithm is also given. The model is further extended to include approximate reverse complementary repeats when analyzing DNA strings. Tests include the recovery of parameter estimates from known sources and applications to real DNA strings.
NASA Astrophysics Data System (ADS)
Kryuchkov, V. P.
1996-03-01
Photogeologic mapping of 1:10M scale of the area of 37.5 degrees to 82.5 degrees N and 140 degrees to 260 degrees E have been made. The observed stratigraphic relations generally agree with the model of Venus stratigraphy of Basilevsky and Head (1995) but several contradictions with the model have been found (age relation between the ridge belts and densely fractured terrains). Important details of corona evolution have been revealed.
Venus: Mantle convection, hotspots, and tectonics
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1989-01-01
The putative paradigm that planets of the same size and mass have the same tectonic style led to the adaptation of the mechanisms of terrestrial plate tectonics as the a priori model of the way Venus should behave. Data acquired over the last decade by Pioneer Venus, Venera, and ground-based radar have modified this view sharply and have illuminated the lack of detailed understanding of the plate tectonic mechanism. For reference, terrestrial mechanisms are briefly reviewed. Venusian lithospheric divergence, hotspot model, and horizontal deformation theories are proposed and examined.
NASA Technical Reports Server (NTRS)
Huba, J. D.; Rowland, H. L.
1993-01-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
Studies of the chemistry of the nightside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Fox, J. L.
1991-01-01
A combination of numerical modeling and analysis of the Pioneer Venus UADS data base is studied, specifically data from the orbiter ion mass spectrometer (OIMS), orbiter neutral mass spectrometer (ONMS), and orbiter electron temperature probe (OETP). A one dimensional model of the Venus nightside ionosphere was set up in which downward fluxes of atomic ions are introduced at the upper boundary to simulate transport of ions from the dayside. The model shows that the densities of mass-28 ions, CO(+) + N(2+), resulting from an influx of atomic ions from the dayside are quite small, due to the high ionization potentials of CO and N2 that make chemical production difficult. A look at the data reveals that the actual densities of mass-28 ions are quite variable, from values near 10 to more than 10(exp 4) cm(exp -3). The excess mass-28 ions are assumed to be produced by electron precipitation and that the presence of high densities of mass-28 ions is a signature of auroral precipitation. A discussion of the atomic oxygen green line in the nightglow of Venus, which is produced mainly by dissociative recombination of O(2+), is presented. Original calculations of production rates of excited states for models based on Pioneer Venus data are also presented.
Quantitative characterization of the small-scale fracture patterns on the plains of Venus
NASA Technical Reports Server (NTRS)
Sammis, Charles G.; Bowman, David D.
1995-01-01
The objectives of this research project were to (1) compile a comprehensive database of the occurrence of regularly spaced kilometer scale lineations on the volcanic plains of Venus in an effort to verify the effectiveness of the shear-lag model developed by Banerdt and Sammis (1992), and (2) develop a model for the formation of irregular kilometer scale lineations such as typified in the gridded plains region of Guinevere Planitia. Attached to this report is the paper 'A Tectonic Model for the Formation of the Gridded Plains on Guinevere Planitia, Venus, and Implications for the Elastic Thickness of the Lithosphere'.
Studies of the aurorally-induced ultraviolet emissions on the nightside of Venus
NASA Technical Reports Server (NTRS)
Fox, J. L.
1986-01-01
The effect of a monoenergetic flux of electrons on a model atmosphere of the nightside thermosphere of Venus was examined. The neutral model chosen is that of Hedin for high solar activity and l65 degrees solar zenith angle. The model is based on measurements made by the Pioneer Venus Orbiter Neutral Mass Spectrometer. Four species were included in the calculation: CO2, O, CO, and N2. The numerical method that was chosen for energy deposition of the primary electrons is the continuous slowing down approximation. The secondary electron distribution was computed using the empirically determined shape of the differential cross section.
NASA Astrophysics Data System (ADS)
Bougher, S. W.; Rafkin, S.; Drossart, P.
2006-11-01
A consistent picture of the dynamics of the Venus upper atmosphere from ˜90 to 200 km has begun to emerge [e.g., Bougher, S.W., Alexander, M.J., Mayr, H.G., 1997. Upper Atmosphere Dynamics: Global Circulation and Gravity Waves. Venus II, CH. 2.4. University of Arizona Press, Tucson, pp. 259-292; Lellouch, E., Clancy, T., Crisp, D., Kliore, A., Titov, D., Bougher, S.W., 1997. Monitoring of Mesospheric Structure and Dynamics. Venus II, CH. 3.1. University of Arizona Press, Tucson, pp. 295-324]. The large-scale circulation of the Venus upper atmosphere (upper mesosphere and thermosphere) can be decomposed into two distinct flow patterns: (1) a relatively stable subsolar-to-antisolar (SS-AS) circulation cell driven by solar heating, and (2) a highly variable retrograde superrotating zonal (RSZ) flow. Wave-like perturbations have also been observed. However, the processes responsible for maintaining (and driving variations in) these SS-AS and RSZ winds are not well understood. Variations in winds are thought to result from gravity wave breaking and subsequent momentum and energy deposition in the upper atmosphere [Alexander, M.J., 1992. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207-2210; Zhang, S., Bougher, S.W., Alexander, M.J., 1996. The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195-23205]. However, existing data sets are limited in their spatial and temporal coverage, thereby restricting our understanding of these changing circulation patterns. One of the major goals of the Venus Express (VEX) mission is focused upon increasing our understanding of the circulation and dynamical processes of the Venus atmosphere up to the exobase [Titov, D.V., Lellouch, E., Taylor, F.W., 2001. Venus Express: Response to ESA's call for ideas for the re-use of the Mars Express platform. Proposal to European Space Agency, 1-74]. Several VEX instruments are slated to obtain remote measurements (2006-2008) that will complement those obtained earlier by the Pioneer Venus Orbiter (PVO) between 1978 and 1992. These VEX measurements will provide a more comprehensive investigation of the Venus upper atmosphere (90-200 km) structure and dynamics over another period in the solar cycle and for variable lower atmosphere conditions. An expanded climatology of Venus upper atmosphere structure and wind components will be developed. In addition, gravity wave parameters above the cloud tops will be measured (or inferred), and used to constrain gravity wave breaking models. In this manner, the gravity wave breaking mechanism (thought to regulate highly variable RSZ winds) can be tested using Venus general circulation models (GCMs).
A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations
NASA Technical Reports Server (NTRS)
Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.
2005-01-01
Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.
Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets
NASA Astrophysics Data System (ADS)
Cheung, Yeuk-Kwan E.; Xu, Feng
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.
Understanding the Venus flytrap through mathematical modelling.
Lehtinen, Sami
2018-05-07
Among carnivorous plants, the Venus flytrap is of particular interest for the rapid movement of its snap-traps and hypothesised prey selection, where small prey are allowed to escape from the traps. In this paper, we provide the first mathematical cost-benefit model for carnivory in the Venus flytrap. Specifically, we analyse the dynamics of prey capture; the costs and benefits of capturing and digesting its prey; and optimisation of trap size and prey selection. We fit the model to available data, making predictions regarding trap behaviour. In particular, we predict that non-prey sources, such as raindrops or wind, cause a large proportion of trap closures; only few trap closures result in a meal; most of the captured prey are allowed to escape; the closure mechanism of a trap is triggered about once every two days; and a trap has to wait more than a month for a meal. We also find that prey capture of traps of the Venus flytrap follows the Beddington-DeAngelis functional response. These predictions indicate that the Venus flytrap is highly selective in its prey capture. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Riddle, Bob
1997-01-01
Presents a science activity designed to introduce students to the geocentric and heliocentric models of the universe. Helps students discover why phase changes on Venus knocked Earth out of the center of the universe. (DKM)
Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability
NASA Astrophysics Data System (ADS)
Vandaele, A. C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Mahieux, A.; Marcq, E.; Mills, F. P.; Montmessin, F.; Parkinson, C. D.; Robert, S.; Roman, T.; Sandor, B.; Stolzenbach, A.; Wilson, C.; Wilquet, V.
2017-10-01
Recent observations of sulfur containing species (SO2, SO, OCS, and H2SO4) in Venus' mesosphere have generated controversy and great interest in the scientific community. These observations revealed unexpected spatial patterns and spatial/temporal variability that have not been satisfactorily explained by models. Sulfur oxide chemistry on Venus is closely linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. Sulfur oxide observations provide therefore important insight into the on-going chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism. This paper is the first of a series of two investigating the SO2 and SO variability in the Venus atmosphere. This first part of the study will focus on the vertical distribution of SO2, considering mostly observations performed by instruments and techniques providing accurate vertical information. This comprises instruments in space (SPICAV/SOIR suite on board Venus Express) and Earth-based instruments (JCMT). The most noticeable feature of the vertical profile of the SO2 abundance in the Venus atmosphere is the presence of an inversion layer located at about 70-75 km, with VMRs increasing above. The observations presented in this compilation indicate that at least one other significant sulfur reservoir (in addition to SO2 and SO) must be present throughout the 70-100 km altitude region to explain the inversion in the SO2 vertical profile. No photochemical model has an explanation for this behaviour. GCM modelling indicates that dynamics may play an important role in generating an inflection point at 75 km altitude but does not provide a definitive explanation of the source of the inflection at all local times or latitudes The current study has been carried out within the frame of the International Space Science Institute (ISSI) International Team entitled 'SO2 variability in the Venus atmosphere'.
NASA Astrophysics Data System (ADS)
Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.
1993-02-01
Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.
Minimal string theories and integrable hierarchies
NASA Astrophysics Data System (ADS)
Iyer, Ramakrishnan
Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context. We then present evidence that the conjectured type II theories have smooth non-perturbative solutions, connecting two perturbative asymptotic regimes, in a 't Hooft limit. Our technique also demonstrates evidence for new minimal string theories that are not apparent in a perturbative analysis.
Modeling and simulation performance of sucker rod beam pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aditsania, Annisa, E-mail: annisaaditsania@gmail.com; Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com
2015-09-30
Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption provedmore » non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.« less
Solar forcing - implications for the volatile inventory on Mars and Venus. (Invited)
NASA Astrophysics Data System (ADS)
Lundin, Rickard
2015-04-01
Planets in the solar system are exposed to a persistent solar forcing by solar irradiation and the solar wind. The forcing, most pronounced for the inner Earth-like planets, ionizes, heats, modifies chemically, and gradually erodes the upper atmosphere throughout the lifetime of the planets. Of the four inner planets, the Earth is at present the only one habitable. Our kin Venus and Mars have taken different evolutionary paths, the present lack of a hydrosphere being the most significant difference. However, there are ample evidence for that an early Noachian, water rich period existed on Mars. Similarly, arguments have been presented for an early water-rich period on Venus. The question is, what made Mars and Venus evolve in such a different way compared to the Earth? Under the assumption of similar initial conditions, the planets may have experienced different externally driven episodes (e.g. impacts) with time. Conversely, internal factors on Mars and Venus made them less resilient, unable to sustain solar forcing on an evolutionary time-scale. The latter has been quantified from simulations, combining atmospheric and ionospheric modeling and empiric data from solar-like stars (Sun in time). In a similar way, semi-empirical models based on experimental data were used to determine the mass-loss of volatiles back in time from Mars and Venus. This presentation will review further aspects of semi-empirical modeling based on ion and energetic neutral atom (ENA) escape data from Mars and Venus - on short term (days), mid-term (solar cycle proxies), long-term (Heliospheric flux proxies, 10 000 year), and on time scales corresponding to the solar evolution.
Effects of overlapping strings in pp collisions
Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; ...
2015-03-26
In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less
A numerical study of the string function using a primitive equation ocean model
NASA Astrophysics Data System (ADS)
Tyler, R. H.; Käse, R.
We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.
Progress report for a research program in theoretical high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.; Fried, H.M.; Jevicki, A.
This year's research has dealt with: superstrings in the early universe; the invisible axion emissions from SN1987A; quartic interaction in Witten's superstring field theory; W-boson associated multiplicity and the dual parton model; cosmic strings and galaxy formation; cosmic strings and baryogenesis; quark flavor mixing; p -- /bar p/ scattering at TeV energies; random surfaces; ordered exponentials and differential equations; initial value and back-reaction problems in quantum field theory; string field theory and Weyl invariance; the renormalization group and string field theory; the evolution of scalar fields in an inflationary universe, with and without the effects of gravitational perturbations; cosmic stringmore » catalysis of skyrmion decay; inflation and cosmic strings from dynamical symmetry breaking; the physic of flavor mixing; string-inspired cosmology; strings at high-energy densities and complex temperatures; the problem of non-locality in string theory; string statistical mechanics; large-scale structures with cosmic strings and neutrinos; the delta expansion for stochastic quantization; high-energy neutrino flux from ordinary cosmic strings; a physical picture of loop bremsstrahlung; cylindrically-symmetric solutions of four-dimensional sigma models; large-scale structure with hot dark matter and cosmic strings; the unitarization of the odderon; string thermodynamics and conservation laws; the dependence of inflationary-universe models on initial conditions; the delta expansion and local gauge invariance; particle physics and galaxy formation; chaotic inflation with metric and matter perturbations; grand-unified theories, galaxy formation, and large-scale structure; neutrino clustering in cosmic-string-induced wakes; and infrared approximations to nonlinear differential equations. 17 refs.« less
NASA Astrophysics Data System (ADS)
Parkinson, Christopher D.; Gao, Peter; Schulte, Rick; Bougher, Stephen W.; Yung, Yuk L.; Bardeen, Charles G.; Wilquet, Valérie; Vandaele, Ann Carine; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin
2015-08-01
Observations from Pioneer Venus and from SPICAV/SOIR aboard Venus Express (VEx) have shown the upper haze (UH) of Venus to be highly spatially and temporally variable, and populated by multiple particle size modes. Previous models of this system (e.g., Gao et al., 2014. Icarus 231, 83-98), using a typical temperature profile representative of the atmosphere (viz., equatorial VIRA profile), did not investigate the effect of temperature on the UH particle distributions. We show that the inclusion of latitude-dependent temperature profiles for both the morning and evening terminators of Venus helps to explain how the atmospheric aerosol distributions vary spatially. In this work we use temperature profiles obtained by two instruments onboard VEx, VeRa and SPICAV/SOIR, to represent the latitudinal temperature dependence. We find that there are no significant differences between results for the morning and evening terminators at any latitude and that the cloud base moves downwards as the latitude increases due to decreasing temperatures. The UH is not affected much by varying the temperature profiles; however, the haze does show some periodic differences, and is slightly thicker at the poles than at the equator. We also find that the sulphuric acid "rain" seen in previous models may be restricted to the equatorial regions of Venus, such that the particle size distribution is relatively stable at higher latitudes and at the poles.
Venus and Mars Obstacles in the Solar Wind
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Mitchell, D. L.; Acuna, M. H.; Russell, C. T.; Brecht, S. H.; Lyon, J. G.
2000-10-01
Comparisons of the magnetosheaths of Venus and Mars contrast the relative simplicity of the Venus solar wind interaction and the ``Jekyll and Hyde" nature of the Mars interaction. Magnetometer observations from Mars Global Surveyor during the elliptical science phasing orbits and Pioneer Venus Orbiter in its normally elliptical orbit are compared, with various models used to compensate for the different near-polar periapsis of MGS and near-equator periapsis of PVO. Gasdynamic or MHD fluid models of flow around a conducting sphere provide a remarkably good desciption of the Venus case, and the Mars case when the strong Martian crustal magnetic anomalies are in the flow wake. In the case of Venus, large magnetosheath field fluctuations can be reliably tied to occurrence of a subsolar quasiparallel bow shock resulting from a small interplanetary field cone angle (angle between flow and field) upstream. At Mars one must also contend with such large fluctuations from the bow shock, but also from unstable solar wind proton distributions due to finite ion gyroradius effects, and from the complicated obstacle presented to the solar wind when the crustal magnetic anomalies are on the ram face or terminator. We attempt to distinguish between these factors at Mars, which are important for interpretation of the upcoming NOZOMI and Mars Express mission measurements. The results also provide more insights into a uniquely complex type of solar system solar wind interaction involving crustal fields akin to the Moon's, combined with a Venus-like ionospheric obstacle.
Particulate matter in the Venus atmosphere
NASA Technical Reports Server (NTRS)
Ragent, B.; Esposito, L. W.; Tomasko, M. G.; Marov, M. IA.; Shari, V. P.
1985-01-01
The paper presents a summary of the data currently available (June 1984) describing the planet-enshrouding particulate matter in the Venus atmosphere. A description and discussion of the state of knowledge of the Venus clouds and hazes precedes the tables and plots. The tabular material includes a precis of upper haze and cloud-top properties, parameters for model-size distributions for particles and particulate layers, and columnar masses and mass loadings.
NASA Technical Reports Server (NTRS)
Keating, G. M.; Tolson, R. H.; Hinson, E. W.
1979-01-01
Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus I indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed densities are generally lower than given by theoretical models.
Carbon dioxide electron cooling rates in the atmospheres of Mars and Venus
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Rescigno, T. N.
2008-08-01
The cooling of electrons in collisions with carbon dioxide in the atmospheres of Venus and Mars is investigated. Calculations are performed with both previously accepted electron energy transfer rates and with new ones determined using more recent theoretical and experimental cross sections for electron impact on CO2. Emulation of a previous model for Venus confirms the validity of the current model and shows that use of the updated cross sections leads to cooling rates that are lower by one third. Application of the same model to the atmosphere of Mars gives more than double the previous cooling rates at altitudes where the electron temperature is very low.
Venus spherical harmonic gravity model to degree and order 60
NASA Technical Reports Server (NTRS)
Konopliv, Alex S.; Sjogren, William L.
1994-01-01
The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.
NASA Astrophysics Data System (ADS)
Parkinson, Chris; Yung, Yuk; Esposito, Larry; Gao, Peter; Bougher, Steve
2014-11-01
We use the JPL/Caltech 1-D KINETICS photochemical model to solve the continuity diffusion equation for the atmospheric constituent abundances and total number density as a function of radial distance from the planet Venus. The photochemistry of the Venus atmosphere from 58 to 112 km is modeled using an updated and expanded chemical scheme (Zhang et al., 2010; 2012), guided by the results of recent observations. We mainly follow Zhang et al. (2010; 2012) to guide our choice of boundary conditions for 40 species. We fit the SOIR Venus Express results of 1 ppm at 70-90 km (Bertaux et al (2007) by modeling water from between 10 - 35 ppm at our 58 km lower boundary and using an SO2 mixing ratio of 25 ppm as our nominal reference value. We then vary the SO2 mixing ratio at the lower boundary between 5 and 75 ppm and find that it can control the water distribution at higher altitudes.
Venus' Spectral Signatures and the Potential for Life in the Clouds.
Limaye, Sanjay S; Mogul, Rakesh; Smith, David J; Ansari, Arif H; Słowik, Grzegorz P; Vaishampayan, Parag
2018-03-30
The lower cloud layer of Venus (47.5-50.5 km) is an exceptional target for exploration due to the favorable conditions for microbial life, including moderate temperatures and pressures (∼60°C and 1 atm), and the presence of micron-sized sulfuric acid aerosols. Nearly a century after the ultraviolet (UV) contrasts of Venus' cloud layer were discovered with Earth-based photographs, the substances and mechanisms responsible for the changes in Venus' contrasts and albedo are still unknown. While current models include sulfur dioxide and iron chloride as the UV absorbers, the temporal and spatial changes in contrasts, and albedo, between 330 and 500 nm, remain to be fully explained. Within this context, we present a discussion regarding the potential for microorganisms to survive in Venus' lower clouds and contribute to the observed bulk spectra. In this article, we provide an overview of relevant Venus observations, compare the spectral and physical properties of Venus' clouds to terrestrial biological materials, review the potential for an iron- and sulfur-centered metabolism in the clouds, discuss conceivable mechanisms of transport from the surface toward a more habitable zone in the clouds, and identify spectral and biological experiments that could measure the habitability of Venus' clouds and terrestrial analogues. Together, our lines of reasoning suggest that particles in Venus' lower clouds contain sufficient mass balance to harbor microorganisms, water, and solutes, and potentially sufficient biomass to be detected by optical methods. As such, the comparisons presented in this article warrant further investigations into the prospect of biosignatures in Venus' clouds. Key Words: Venus-Clouds-Life-Habitability-Microorganism-Albedo-Spectroscopy-Biosignatures-Aerosol-Sulfuric Acid. Astrobiology 18, xxx-xxx.
Inhomogeneous models of the Venus clouds containing sulfur
NASA Technical Reports Server (NTRS)
Smith, S. M.; Pollack, J. B.; Giver, L. P.; Cuzzi, J. N.; Podolak, M.
1979-01-01
Based on the suggestion that elemental sulfur is responsible for the yellow color of Venus, calculations are compared at 3.4 microns of the reflectivity phase function of two sulfur containing inhomogeneous cloud models with that of a homogeneous model. Assuming reflectivity observations with 25% or less total error, comparison of the model calculations leads to a minimum detectable mass of sulfur equal to 7% of the mass of sulfuric acid for the inhomogeneous drop model. For the inhomogeneous cloud model the comparison leads to a minimum detectable mass of sulfur between 17% and 38% of the mass of the acid drops, depending upon the actual size of the large particles. It is concluded that moderately accurate 3.4 microns reflectivity observations are capable of detecting quite small amounts of elemental sulfur at the top of the Venus clouds.
Atmospheric Models for Aerocapture
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta L.; Keller, Vernon W.
2004-01-01
There are eight destinations in the solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithm, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan.
NASA Astrophysics Data System (ADS)
Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.
2017-09-01
The atmosphere of the Earth or Mars globally rotates with a speed similar to the rotation of the planet (approximately 24 h). The rotation of Venus is of about 243 days, much slower than the Earth, but when scientists measured the winds by tracking the clouds of Venus, they discovered that the atmosphere rotates 60 times faster! No one has explained yet what originates this "superrotation", and we do not know well what happens either above or below the clouds. The technique of "Doppler shift" has been used to measure winds above the clouds, but results are "chaotic" and different to interpret. Thanks to a worldwide collaboration in June 2007 between NASA (MESSENGER), ESA (Venus Express), and many observatories (VLT in Chile, JCMT in Hawaii, HHSMT in Arizona, or IRAM in Spain), the authors combined the different data to obtain, for the first time, the instantaneous 3-D structure of the winds on Venus at the clouds and also above, very important for new Venus models to start "forecasts" of the Venus weather with "data assimilation". We also discovered that the superrotation seems unexpectedly different on the night of Venus and that it varies its altitude depending on the day.
NASA Technical Reports Server (NTRS)
Hansen, J. E. (Editor)
1975-01-01
Topics considered at the conference included the dynamics, structure, chemistry, and evolution of the Venus atmosphere, as well as cloud physics and motion. Infrared, ultraviolet, and radio occultation methods of analysis are discussed, and atmospheric models are described.
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-04-01
Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.
Features on Venus generated by plate boundary processes
NASA Technical Reports Server (NTRS)
Mckenzie, Dan; Ford, Peter G.; Johnson, Catherine; Parsons, Barry; Sandwell, David; Saunders, Stephen; Solomon, Sean C.
1992-01-01
Various observations suggest that there are processes on Venus that produce features similar to those associated with plate boundaries on earth. Synthetic aperture radar images of Venus, taken with a radar whose wavelength is 12.6 cm, are compared with GLORIA images of active plate boundaries, obtained with a sound source whose wavelength is 23 cm. Features similar to transform faults and to abyssal hills on slow and fast spreading ridges can be recognized within the Artemis region of Venus but are not clearly visible elsewhere. The composition of the basalts measured by the Venera 13 and 14 and the Vega 2 spacecraft corresponds to that expected from adiabatic decompression, like that which occurs beneath spreading ridges on earth. Structures that resemble trenches are widespread on Venus and show the same curvature and asymmetry as they do on earth. These observations suggest that the same simple geophysical models that have been so successfully used to understand the tectonics of earth can also be applied to Venus.
Cold, warm, and composite (cool) cosmic string models
NASA Astrophysics Data System (ADS)
Carter, B.
1994-01-01
The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension T below the constant value, T = m2 say, that typifies a simple, longitudinally Lorentz invariant Goto-Nambu type string model, where m is a fixed mass scale determined by the internal structure of an underlying Nielsen-Olesen type vacuum vortex. Such a reduction of tension occurs in the standard ``warm'' cosmic string model in which the effect of thermal perturbations of a simple Goto-Nambu model is represented by an effective tension T given in terms of the corresponding effective temperature, Θ say, by T2 = m2(m2 - 1/3πΘ2). A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in ``cold'' conducting cosmic string models of the kind whose existence was first proposed by Witten, where the role of the temperature is played by an effective mass or chemical potential μ that is constructed as the scalar magnitude of the energy momentum covector obtained as the gradient of the phase ϕ of a bosonic condensate in the core of the vacuum vortex. The present article describes the construction and essential mechanical properties of a new category of composite ``cool'' cosmic string models that are intermediate between these ``warm'' and ``cold'' limit cases. These composite models are the string analogues of the standard Landau model for a two-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on the one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such ``cool'' cosmic strings may be of cosmologicl significance.
Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios
NASA Technical Reports Server (NTRS)
Stofan, E. R.; Glaze, L. S.; Grinspoon, D. H.
2011-01-01
When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus.
The implications of the COBE diffuse microwave radiation results for cosmic strings
NASA Technical Reports Server (NTRS)
Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.
1992-01-01
We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.
Coldspots or hotspots? The origin of plateau-shaped highlands on Venus
NASA Technical Reports Server (NTRS)
Bindschadler, D. L.
1992-01-01
A compelling question for the terrestrial planets is the origin of the highland regions on Venus. Data on the topography, gravity signature, and surface morphology returned by the Pioneer Venus, Venera 15/16, and Magellan spacecraft represent a basis for dividing these highlands into two distinct groups: volcanic rises and plateau-shaped highlands. Volcanic rises are generally thought to be due to mantle upwellings in the form of large mantle plumes and are thus similar in origin to terrestrial hotspots. There is less agreement as to the origin of plateau-shaped highlands (PSH). Coldspot mantle downwelling can lead to the formation of a highland region under Venus conditions, and previous to Magellan some PSH (particularly W. Ishtar Terra and Ovda and Thetis Regiones) were suggested to be compressionally deformed regions of thickened crust created by mantle downwelling. A hotspot model proposes that such regions are formed by magmatism and tectonism related to the near-surface ascent of either the diapir-shaped large mantle plume or a solitary disturbance propagating up a plume conduit. The characteristics of both volcanic rises and plateau-shaped highlands on Venus and the models for their formation are briefly reviewed, and tests that may help to make clear which model best explains the plateau-shaped highlands are considered.
Tensionless Strings and Supersymmetric Sigma Models: Aspects of the Target Space Geometry
NASA Astrophysics Data System (ADS)
Bredthauer, Andreas
2007-01-01
In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models. The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence. For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kaehler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.
Mapping Venus: Modeling the Magellan Mission.
ERIC Educational Resources Information Center
Richardson, Doug
1997-01-01
Provides details of an activity designed to help students understand the relationship between astronomy and geology. Applies concepts of space research and map-making technology to the construction of a topographic map of a simulated section of Venus. (DDR)
High-resolution gravity model of Venus
NASA Technical Reports Server (NTRS)
Reasenberg, R. D.; Goldberg, Z. M.
1992-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
The puzzling Venusian polar atmospheric structure reproduced by a general circulation model
Ando, Hiroki; Sugimoto, Norihiko; Takagi, Masahiro; Kashimura, Hiroki; Imamura, Takeshi; Matsuda, Yoshihisa
2016-01-01
Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the midlatitudes at cloud-top levels (∼65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ∼60° latitude, which is a unique feature called ‘cold collar' in the Venus atmosphere. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. Here we perform numerical simulations of the Venus atmospheric circulation using a general circulation model, and succeed in reproducing these puzzling features in close agreement with the observations. The cold collar and warm polar region are attributed to the residual mean meridional circulation enhanced by the thermal tide. The present results strongly suggest that the thermal tide is crucial for the structure of the Venus upper polar atmosphere at and above cloud levels. PMID:26832195
Geoid, topography, and convection-driven crustal deformation on Venus
NASA Technical Reports Server (NTRS)
Simons, Mark; Hager, Bradford H.; Solomon, Sean C.
1993-01-01
High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between the observed surface topography, crustal deformation, and the gravity field. Therefore, comparison of model results with observational data can help to constrain such parameters as crustal and thermal boundary layer thicknesses as well as the character of mantle flow below different Venusian features. We explore in this paper the effects of this coupling by means of a finite element modelling technique.
Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam
NASA Astrophysics Data System (ADS)
Mayo, L.
2017-12-01
Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.
NASA Astrophysics Data System (ADS)
Galland, Olivier; Polteau, Stephane; Werner, Stephanie C.
2013-04-01
Coronae on the surface of Venus are unique volcano-tectonic structures in the solar systems. Their circular morphology is associated with various topographic signatures, from bell-shape domes, flat-topped plateaus, to uplifted rings surrounding a subsided centre similar to caldera. Their extensive size and associated lava flows erupting from their periphery, indicate that they result from deep processes in the Venus mantle. Understanding their origin is thus essential for unraveling the dynamics of Venus through time. There are several scenarios explaining the formation of coronae, the most popular being the interaction between an upwelling mantle plume and the lithosphere, creating dynamic topography. In this contribution, we propose that coronae can result from the emplacement of giant magma intrusions below the Venus' lithosphere, on the basis of laboratory experiments. The experimental apparatus consists of a square box filled with compacted fine-grained silica flour (model crust), in which a low viscosity vegetable oil (model magma) is injected at constant flow rate. The initial conditions are such that magma initially flows horizontally, forming a sill-like body, to simulate magmatic underplating. During the experiments, oil injection triggers deformation of the model surface, which is monitored periodically using a moiré projection device, producing time series topographic maps of the model surface. Our results show that the surface evolution of the models follows three stages: (1) initial bell-shaped doming occurs above the injection inlet, producing radial open fractures at the model surfaces; (2) the bell-shape dome evolves to a flat-topped plateau, at the rim of which the oil erupts; (3) after the injection stops, the centre of the plateau subsides, and a positive topographic ring surrounding a depression, like a caldera, remains. The collapse of the plateau also generates concentric extensional fractures at the rims of the caldera. After the dynamic experiment, the oil solidifies and we extracted the intrusion, which exhibits a sill-shape, feeding outward circular inclined sheets at its external edges (i.e. a saucer-shaped sill). From a series of experiments in which the depth of injection h was varied, we show that the diameter of the intrusion and its associated topographic structure correlates linearly with h. The three evolutionary stages simulated in the experiments reproduce remarkably well (1) the three main corona morphologies observed on Venus, and (2) their established succession through time. In addition, the relationships between the structures and the oil flow in our experiments are also similar to those observed on Venus. Therefore, our experimental results suggest that corona structures are the result of giant magma intrusions in the lithosphere of Venus. In addition, our experiments suggest that the diameters of coronae are related to the depth of emplacement of the underlying intrusions, which might be controlled by the rheological architecture of the Venus' lithosphere. Therefore, the analysis of the dimensions and morphologies of coronae are likely to provide crucial information of the structure of the lithosphere of Venus.
NASA Astrophysics Data System (ADS)
Peralta, J.; López-Valverde, M. A.; Gilli, G.; Piccialli, A.
2016-01-01
In this work, we analysed nadir observations of atmospheric infrared emissions carried out by VIRTIS, a high-resolution spectrometer on board the European spacecraft Venus Express. We focused on the ro-vibrational band of CO2 at 4.3 μm on the dayside, whose fluorescence originates in the Venus upper mesosphere and above. This is the first time that a systematic sounding of these non-local thermodynamic equilibrium (NLTE) emissions has been carried out in Venus using this geometry. As many as 143,218 spectra have been analysed on the dayside during the period 14/05/2006 to 14/09/2009. We designed an inversion method to obtain the atmospheric temperature from these non-thermal observations, including a NLTE line-by-line forward model and a pre-computed set of spectra for a set of thermal structures and illumination conditions. Our measurements sound a broad region of the upper mesosphere and lower thermosphere of Venus ranging from 10-2-10-5 mb (which in the Venus International Reference Atmosphere, VIRA, is approximately 100-150 km during the daytime) and show a maximum around 195 ± 10 K in the subsolar region, decreasing with latitude and local time towards the terminator. This is in qualitative agreement with predictions by a Venus Thermospheric General Circulation Model (VTGCM) after a proper averaging of altitudes for meaningful comparisons, although our temperatures are colder than the model by about 25 K throughout. We estimate a thermal gradient of about 35 K between the subsolar and antisolar points when comparing our data with nightside temperatures measured at similar altitudes by SPICAV, another instrument on Venus Express (VEx). Our data show a stable temperature structure through five years of measurements, but we also found episodes of strong heating/cooling to occur in the subsolar region of less than two days. The table with numerical data and averaged temperatures displayed in Fig. 7A provided as a CSV data file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A53
NASA Astrophysics Data System (ADS)
Garate-Lopez, Itziar; Lebonnois, Sébastien
2017-04-01
A new simulation of Venus atmospheric circulation obtained with the LMD Venus GCM is described and the impact of cloud's latitudinal structure on the general circulation is analyzed. The model used here is based on that presented in Lebonnois et al. (2016). However, in the present simulation we consider the latitudinal variation of the cloud structure (Haus et al., 2014) both for the solar heating and to compute the infrared net-exchange rate matrix used in the radiative transfer module. The new cloud treatment affects mainly the balance in the angular momentum and the zonal wind distribution. Consequently, the agreement between the vertical profile of the modeled mean zonal wind and the profiles measured by different probes, is clearly improved from previous simulations in which zonal winds below the clouds were weak (roughly half the observed values). Moreover, the equatorial jet obtained at the base of the cloud deck is now more consistent with the observations. In Lebonnois et al. (2016) it was too strong compared to mid-latitudes, but in the present simulation the equatorial jet is less intense than the mid-latitude jets, in concordance with cloud-tracking measurements (Hueso et al., 2015). Since the atmospheric waves play a crucial role in the angular momentum budget of the Venus's atmospheric circulation, we analyze the wave activity by means of the Fast Fourier Transform technique studying the frequency spectrum of temperature, zonal and meridional wind fields. Modifications in the activity of the different types of waves present in the Venusian atmosphere compared to Lebonnois et al. (2016) are discussed, in terms of horizontal and vertical transport of the angular momentum by diurnal and semi-diurnal tides, barotropic and baroclinic waves, and Rossby and Kelvin type waves. Haus R., Kappel D. and Arnold G., 2014. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232, 232-248. Hueso R., Peralta J., Garate-Lopez I., et al., 2015. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus express. Planet. Space Sci. 113-114, 78-99. Lebonnois S., Sugimoto N., and Gilli G., 2016. Wave analysis in the atmosphere of Venus below 100km altitude, simulated by the LMD Venus GCM. Icarus 278, 38-51.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altsybeev, Igor
2016-01-22
In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif
In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less
String theory--the physics of string-bending and other electric guitar techniques.
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.
String Theory - The Physics of String-Bending and Other Electric Guitar Techniques
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880
Tidal constraints on the interior of Venus
NASA Astrophysics Data System (ADS)
Dumoulin, Caroline; Tobie, Gabriel; Verhoeven, Olivier; Rosenblatt, Pascal; Rambaux, Nicolas
2017-04-01
As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers and tidal lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. The potential Love number, k2, varies from 0.25 to 0.36. Viscoelasticity of the mantle strongly increases the Love number relative to previous elastic models : depending on mantle viscosity, k2 is increased by up to 25% using a liquid core. Moreover, once a viscoelastic rheology is assumed for the core, our calculations show that the estimation of k2 from tracking of Magellan and Pioneer Venus Orbiter does not rule out the possibility of a completely solid core. Except if the solid core has a high viscosity (≥ 1018 Pa.s), solutions with both liquid and solid cores are consistent with the present-day estimation of k2. More accurate estimation of the Love number together with estimation of tidal lag by future exploration mission are required to determine the state of Venus' core and to constrain the thermo-compositional evolution of the mantle.
NASA Technical Reports Server (NTRS)
Stahara, S. S.
1984-01-01
The investigations undertaken in this report relate to studies of various solar wind interaction phenomena with Venus, Earth, Mars, Jupiter and Saturn. A computational model is developed for the determination of the detailed plasma and magnetic field properties associated with various planetary obstacles throughout the solar system.
The Regulus occultation light curve and the real atmosphere of Venus
NASA Technical Reports Server (NTRS)
Veverka, J.; Wasserman, L.
1974-01-01
An inversion of the light curve observed during the July 7, 1959, occultation of Regulus by Venus leads to the conclusion that the light curve cannot be reconciled with models of the Venus atmosphere based on spacecraft observations. The event occurred in daylight and, under the subsequently difficult observation conditions, it seems likely that the Regulus occultation light curve is marred by a systematic errors in spite of the competence of the observers involved.
Characterization of binary string statistics for syntactic landmine detection
NASA Astrophysics Data System (ADS)
Nasif, Ahmed O.; Mark, Brian L.; Hintz, Kenneth J.
2011-06-01
Syntactic landmine detection has been proposed to detect and classify non-metallic landmines using ground penetrating radar (GPR). In this approach, the GPR return is processed to extract characteristic binary strings for landmine and clutter discrimination. In our previous work, we discussed the preprocessing methodology by which the amplitude information of the GPR A-scan signal can be effectively converted into binary strings, which identify the impedance discontinuities in the signal. In this work, we study the statistical properties of the binary string space. In particular, we develop a Markov chain model to characterize the observed bit sequence of the binary strings. The state is defined as the number of consecutive zeros between two ones in the binarized A-scans. Since the strings are highly sparse (the number of zeros is much greater than the number of ones), defining the state this way leads to fewer number of states compared to the case where each bit is defined as a state. The number of total states is further reduced by quantizing the number of consecutive zeros. In order to identify the correct order of the Markov model, the mean square difference (MSD) between the transition matrices of mine strings and non-mine strings is calculated up to order four using training data. The results show that order one or two maximizes this MSD. The specification of the transition probabilities of the chain can be used to compute the likelihood of any given string. Such a model can be used to identify characteristic landmine strings during the training phase. These developments on modeling and characterizing the string statistics can potentially be part of a real-time landmine detection algorithm that identifies landmine and clutter in an adaptive fashion.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.
Melting and differentiation in Venus with a cold start: A mechanism of the thin crust formation
NASA Technical Reports Server (NTRS)
Solomatov, Viatcheslav S.; Stevenson, David J.
1992-01-01
Recent works argue that the venusian crust is thin: less than 10-30 km. However, any convective model of Venus unavoidably predicts melting and a fast growth of the basaltic crust, up to its maximum thickness of about 70 km limited, by the gabbro-eclogite phase transition. The crust is highly buoyant due to both its composition and temperature and it is problematic to find a mechanism providing its effective recycling and thinning in the absence of plate tectonics. There are different ways to solve this contradiction. This study suggests that a thin crust can be produced during the entire evolution of Venus if Venus avoided giant impacts.
Pitch glide effect induced by a nonlinear string-barrier interaction
NASA Astrophysics Data System (ADS)
Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa
2015-10-01
Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.
Venus climate stability and volcanic resurfacing rates
NASA Technical Reports Server (NTRS)
Bullock, M. A.; Grinspoon, D. H.; Pollack, J. B.
1994-01-01
The climate of Venus is to a large degree controlled by the radiative properties of its massive atmosphere. In addition, outgassing due to volcanic activity, exospheric escape processes, and surface/atmosphere interactions may all be important in moderating the abundances of atmospheric CO2 and other volatiles. We have developed an evolutionary climate model for Venus using a systems approach that emphasizes feedbacks between elements in the climate system. Modules for atmospheric radiative transfer, surface/atmosphere interactions, tropospheric chemistry, and exospheric escape processes have so far been developed. Climate feedback loops result from interconnections between modules, in the form of the environmental parameters pressure, temperature, and atmospheric mixing ratios. The radiative transfer module has been implemented by using Rosseland mean opacities in a one dimensional grey radiative-convective model. The model has been solved for the static (time independent) case to determine climate equilibrium points. The dynamics of the model have also been explored by employing reaction/diffusion kinetics for possible surface atmosphere heterogeneous reactions over geologic timescales. It was found that under current conditions, the model predicts that the climate of Venus is at or near an unstable equilibrium point. The effects of constant rate volcanism and corresponding exsolution of volatiles on the stability of the climate model were also explored.
Non-hydrostatic general circulation model of the Venus atmosphere
NASA Astrophysics Data System (ADS)
Rodin, Alexander V.; Mingalev, Igor; Orlov, Konstantin; Ignatiev, Nikolay
We present the first non-hydrostatic global circulation model of the Venus atmosphere based on the complete set of gas dynamics equations. The model employs a spatially uniform triangular mesh that allows to avoid artificial damping of the dynamical processes in the polar regions, with altitude as a vertical coordinate. Energy conversion from the solar flux into atmospheric motion is described via explicitly specified heating and cooling rates or, alternatively, with help of the radiation block based on comprehensive treatment of the Venus atmosphere spectroscopy, including line mixing effects in CO2 far wing absorption. Momentum equations are integrated using the semi-Lagrangian explicit scheme that provides high accuracy of mass and energy conservation. Due to high vertical grid resolution required by gas dynamics calculations, the model is integrated on the short time step less than one second. The model reliably repro-duces zonal superrotation, smoothly extending far below the cloud layer, tidal patterns at the cloud level and above, and non-rotating, sun-synchronous global convective cell in the upper atmosphere. One of the most interesting features of the model is the development of the polar vortices resembling those observed by Venus Express' VIRTIS instrument. Initial analysis of the simulation results confirms the hypothesis that it is thermal tides that provides main driver for the superrotation.
Superrotation on Venus, on Titan, and Elsewhere
NASA Astrophysics Data System (ADS)
Read, Peter L.; Lebonnois, Sebastien
2018-05-01
The superrotation of the atmospheres of Venus and Titan has puzzled dynamicists for many years and seems to put these planets in a very different dynamical regime from most other planets. In this review, we consider how to define superrotation objectively and explore the constraints that determine its occurrence. Atmospheric superrotation also occurs elsewhere in the Solar System and beyond, and we compare Venus and Titan with Earth and other planets for which wind estimates are available. The extreme superrotation on Venus and Titan poses some difficult challenges for numerical models of atmospheric circulation, much more difficult than for more rapidly rotating planets such as Earth or Mars. We consider mechanisms for generating and maintaining a superrotating state, all of which involve a global meridional overturning circulation. The role of nonaxisymmetric eddies is crucial, however, but the detailed mechanisms may differ between Venus, Titan, and other planets.
Visual aid titled 'The Magellan Mission to Venus'
NASA Technical Reports Server (NTRS)
1988-01-01
Visual aid titled 'The Magellan Mission to Venus' describes data that will be collected and science objectives. Images and brightness temperatures will be obtained for 70-90% of the surface, with a radar resolution of 360 meters or better. The global gravity field model will be refined by combining Magellan and Pioneer-Venus doppler data. Altimetry data will be used to measure the topography of 70-90% of the surface with a vertical accuracy of 120-360 meters. Science objectives include: to improve the knowledge of the geological history of Venus by analysis of the surface morphology and electrical properties and the processes that control them; and to improve the knowledge of the geophysics of Venus, principally its density distribution and dynamics. Magellan, named for the 16th century Portuguese explorer, will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-30.
Future Drag Measurements from Venus Express
NASA Astrophysics Data System (ADS)
Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen
Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is Ingo Mueller-Wodarg. VExADE consists of two parts VExADE-ODA (Orbital Drag Analysis from radio tracking data) and VExADE-ACC (Accelerometer in situ atmospheric density measurements). Previous orbital decay measurements of the Venus thermosphere were obtained by Pioneer Venus from the 1970's into the 1990's and from Magellan in the 1990's. The major difference is that the Venus Express will provide measurements in the North Polar Region on the day and night sides, while the earlier measurements were obtained primarily near the equator. The periapsis will drift upwards in altitude similar to the earlier spacecraft and then be commanded down to its lower original values. This cycle in altitude will allow estimates of vertical structure and thus thermospheric temperatures in addition to atmospheric densities. The periapsis may eventually be lowered even further so that accelerometers can more accurately obtain density measurements of the polar atmosphere as a function of altitude, latitude, longitude, local solar time, pressure, Ls, solar activity, and solar wind on each pass. Bias in accelerometer measurements will be determined and corrected for by accelerometer measurements obtained above the discernable atmosphere on each pass. The second experiment, VExADE-ACC, is similar to the accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter that carried similar accelerometers in orbit around Mars. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects over the last 30 years. The Venus Express drag experiments will allow a global empirical model of the thermosphere to emerge. This new model will be a substantial improvement over the Venus International Reference Atmosphere, which was based principally on near equatorial measurements. General Circulation Models (GCM's) and other models will be generated that are in fair accord with the empirical models. The experiment may help us understand, on a global scale, tides, winds, gravity waves, planetary waves and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The observed global cooling from radiative effects of 15 micron excitation of CO2 by atomic oxygen should improve our understanding of global thermospheric cooling on Earth and Mars as well.
Formation of fold-and-thrust belts on Venus by thick-skinned deformation
NASA Astrophysics Data System (ADS)
Zuber, M. T.; Parmentier, E. M.
1995-10-01
ON Venus, fold-and-thrust belts—which accommodate large-scale horizontal crustal convergence—are often located at the margins of kilometre-high plateaux1-5. Such mountain belts, typically hundreds of kilometres long and tens to hundreds of kilometres wide, surround the Lakshmi Planum plateau in the Ishtar Terra highland (Fig. 1). In explaining the origin of fold-and-thrust belts, it is important to understand the relative importance of thick-skinned deformation of the whole lithosphere and thin-skinned, large-scale overthrusting of near-surface layers. Previous quantitative analyses of mountain belts on Venus have been restricted to thin-skinned models6-8, but this style of deformation does not account for the pronounced topographic highs at the plateau edge. We propose that the long-wavelength topography of these venusian fold-and-thrust belts is more readily explained by horizontal shortening of a laterally heterogeneous lithosphere. In this thick-skinned model, deformation within the mechanically strong outer layer of Venus controls mountain building. Our results suggest that lateral variations in either the thermal or mechanical structure of the interior provide a mechanism for focusing deformation due to convergent, global-scale forces on Venus.
Hot-spot tectonics of Eistla Regio, Venus: Results from Magellan images and Pioneer Venus gravity
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Phillips, Roger J.
1991-01-01
Eistla Regio (ER) is a broad, low, discontinuous topographic rise striking roughly EW at low northern latitudes of Venus. Some 2000 x 7000 km in dimensions, it is the third largest rise in planform on Venus after Aphrodite Terra and Beta Phoebe Regiones. These rises are the key physiographic elements in a hot spot model of global tectonics including transient plume behavior. Since ER is the first such rise viewed by Magellan and the latitude is very favorable for Pioneer Venus gravity studies, some of the predictions of a time dependent hot spot model are tested. Western ER is defined as the rise including Gula and Sif Mons and central ER as that including Sappho Patera. Superior conjunction prevented Magellan from returning data on eastern ER (Pavlova) during the first mapping cycle. It is concluded that the western and central portions of ER, while part of the same broad topographic rise and tectonic framework, have distinctly different surface ages and gravity signatures. The western rise, including Gula and Sif Mons, is the expression of deep seated uplift with volcanism limited to the individual large shields. The eastern portion has been widely resurfaced more recently by thermal anomalies in the mantle.
Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background
NASA Astrophysics Data System (ADS)
McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.
2017-12-01
Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.
Venus Surface Composition Constrained by Observation and Experiment
NASA Astrophysics Data System (ADS)
Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne
2017-11-01
New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to the rarity of wollastonite and instability of carbonate at the Venus surface. Sulfur in the Venus atmosphere has been shown experimentally to react with Ca in surface minerals to produce anhydrite. The extent of this SO2 buffer is constrained by the Ca content of surface rocks and sulfur content of the atmosphere, both of which are likely variable, perhaps due to active volcanism. Experimental work on a range of semiconductor and ferroelectric minerals is placing constraints on the cause(s) of Venus' anomalously radar bright highlands.
Evolution of the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Yung, Y. L.
1981-01-01
The photochemistry of the stratosphere of Venus was modeled using an updated and expanded chemical scheme, and the results of recent laboratory studies. The model satisfactorily accounts for the observations of CO, O2, (1) and SO2 in the stratosphere. Oxygen, derived from CO2 photolysis, is primarily consumed by CO2 recombination and oxidation of SO2 to H2SO4. Photolysis of HCl in the upper stratosphere provides a major source of odd hydrogen radicals essential for the catalytic oxidation of CO. Oxidation of SO2 by O occurs in the lower stratosphere, with the O-O bond broken by S + O2 and SO + HO2. The sensitivity of stratospheric chemistry to ambient H2 abundance was studied and the model prefers the high value (1 10 ppm) recently inferred from the Pioneer Venus ionospheric measurements. The importance of the photochemical production of S2O, (SO)2, S2, H2S2O2 and H2S2O3 is speculated. A number of previously unsuspected similarities between the chemistry of the stratospheres of Venus and the Earth, presented and discussed.
Impact crater densities on volcanoes and coronae on venus: implications for volcanic resurfacing.
Namiki, N; Solomon, S C
1994-08-12
The density of impact craters on large volcanoes on Venus is half the average crater density for the planet. The crater density on some classes of coronae is not significantly different from the global average density, but coronae with extensive associated volcanic deposits have lower crater densities. These results are inconsistent with both single-age and steady-state models for global resurfacing and suggest that volcanoes and coronae with associated volcanism have been active on Venus over the last 500 million years.
Radially fractured domes: A comparison of Venus and the Earth
NASA Technical Reports Server (NTRS)
Janes, Daniel M.; Squyres, Steven W.
1993-01-01
Radially fractured domes are large, tectonic and topographic features discovered on the surface of Venus by the Magellan spacecraft. They are thought to be due to uplift over mantle diapirism, and to date are known to occur only on Venus. Since Venus and the Earth are grossly similar in size, composition and structure, we seek to understand why these features have not been seen on the Earth. We model the uplift and fracturing over a mantle diapir as functions of lithospheric thickness and diapir size and depth. We find that lithospheres of the same thickness on the Earth and Venus should respond similarly to the same sized diapir, and that radially fractured domes should form most readily in thin oceanic lithospheres on Earth if diapiric activity is similar on the two planets. However, our current knowledge of the Earth's oceanic floors is insufficient to confirm or deny the presence of radially fractured domes. We compute the expected dimensions for these features on the Earth and suggest a search for them to determine whether mantle diapirism operates similarly on the Earth and Venus.
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Shields, D.; Liu, H.
2017-01-01
Venus has proven to have a very dynamic upper atmosphere. The upper atmosphere of Venus has been observed for many decades by multiple means of observation (e.g. ground-based, orbiters, probes, fly-by missions going to other planets). As of late, the European Space Agency Venus Express (VEX) orbiter has been a main observer of the Venusian atmosphere. Specifically, observations of Venus' O2 IR nightglow emission have been presented to show its variability. Nightglow emission is directly connected to Venus' circulation and is utilized as a tracer for the atmospheric global wind system. More recent observations are adding and augmenting temperature and density (e.g. CO, CO2, SO2) datasets. These additional datasets provide a means to begin analyzing the variability and study the potential drivers of the variability. A commonly discussed driver of variability is wave deposition. Evidence of waves has been observed, but these waves have not been completely analyzed to understand how and where they are important. A way to interpret the observations and test potential drivers is by utilizing numerical models.
Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude
NASA Astrophysics Data System (ADS)
Nielsen, H. B.; Ninomiya, M.
2018-02-01
We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.
The bispectrum of cosmic string temperature fluctuations including recombination effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk
2015-10-01
We calculate the cosmic microwave background temperature bispectrum from cosmic strings, including the contributions from the last scattering surface, using a well-established Gaussian model for the string energy-momentum correlation functions, and a simplified model for the cosmic fluid. We check our approximation for the integrated Sachs-Wolfe (ISW) contribution against the bispectrum obtained from the full sky map of the cosmic string ISW signal used by the Planck team, obtaining good agreement. We validate our model for the last scattering surface contribution by comparing the predicted temperature power spectrum with that obtained from a full Boltzmann code treatment applied to themore » Unconnected Segment Model of a string network. We find that including the last scattering contribution has only a small impact on the upper limit on the string tension resulting from the bispectrum at Planck resolutions, and argue that the bispectrum is unlikely to be competitive with the power spectrum at any resolution.« less
Composition and Chemistry of the Neutral Atmosphere of Venus
NASA Astrophysics Data System (ADS)
Marcq, Emmanuel; Mills, Franklin P.; Parkinson, Christopher D.; Vandaele, Ann Carine
2018-02-01
This paper deals with the composition and chemical processes occurring in the neutral atmosphere of Venus. Since the last synthesis, observers as well as modellers have emphasised the spatial and temporal variability of minor species, going beyond a static and uniform picture that may have prevailed in the past. The outline of this paper acknowledges this situation and follows closely the different dimensions along which variability in composition can be observed: vertical, latitudinal, longitudinal, temporal. The strong differences between the atmosphere below and above the cloud layers also dictate the structure of this paper. Observational constraints, obtained from both Earth and Venus Express, as well as 1D, 2D and 3D models results obtained since 1997 are also extensively referred and commented by the authors. An non-exhaustive list of topics included follows: modelled and observed latitudinal and vertical profiles of CO and OCS below the clouds of Venus; vertical profiles of CO and SO2 above the clouds as observed by solar occultation and modelled; temporal and spatial variability of sulphur oxides above the clouds. As a conclusion, open questions and topics of interest for further studies are discussed.
Solar wind interaction with Venus and Mars in a parallel hybrid code
NASA Astrophysics Data System (ADS)
Jarvinen, Riku; Sandroos, Arto
2013-04-01
We discuss the development and applications of a new parallel hybrid simulation, where ions are treated as particles and electrons as a charge-neutralizing fluid, for the interaction between the solar wind and Venus and Mars. The new simulation code under construction is based on the algorithm of the sequential global planetary hybrid model developed at the Finnish Meteorological Institute (FMI) and on the Corsair parallel simulation platform also developed at the FMI. The FMI's sequential hybrid model has been used for studies of plasma interactions of several unmagnetized and weakly magnetized celestial bodies for more than a decade. Especially, the model has been used to interpret in situ particle and magnetic field observations from plasma environments of Mars, Venus and Titan. Further, Corsair is an open source MPI (Message Passing Interface) particle and mesh simulation platform, mainly aimed for simulations of diffusive shock acceleration in solar corona and interplanetary space, but which is now also being extended for global planetary hybrid simulations. In this presentation we discuss challenges and strategies of parallelizing a legacy simulation code as well as possible applications and prospects of a scalable parallel hybrid model for the solar wind interactions of Venus and Mars.
The various contributions in Venus rotation rate and LOD
NASA Astrophysics Data System (ADS)
Cottereau, L.; Rambaux, N.; Lebonnois, S.; Souchay, J.
2011-07-01
Context. Thanks to the Venus Express Mission, new data on the properties of Venus could be obtained, in particular concerning its rotation. Aims: In view of these upcoming results, the purpose of this paper is to determine and compare the major physical processes influencing the rotation of Venus and, more particularly, the angular rotation rate. Methods: Applying models already used for Earth, the effect of the triaxiality of a rigid Venus on its period of rotation are computed. Then the variations of Venus rotation caused by the elasticity, the atmosphere, and the core of the planet are evaluated. Results: Although the largest irregularities in the rotation rate of the Earth on short time scales are caused by its atmosphere and elastic deformations, we show that the irregularities for Venus are dominated by the tidal torque exerted by the Sun on its solid body. Indeed, as Venus has a slow rotation, these effects have a large amplitude of two minutes of time (mn). These variations in the rotation rate are greater than the one induced by atmospheric wind variations that can reach 25-50 s of time (s), depending on the simulation used. The variations due to the core effects that vary with its size between 3 and 20 s are smaller. Compared to these effects, the influence of the elastic deformation caused by the zonal tidal potential is negligible. Conclusions: As the variations in the rotation of Venus reported here are close to 3 mn peak to peak, they should influence past, present, and future observations, thereby providing further constraints on the planet's internal structure and atmosphere.
Bianchi type-VIh string cloud cosmological models with bulk viscosity
NASA Astrophysics Data System (ADS)
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Yeuk-Kwan E.; Xu Feng, E-mail: cheung@nju.edu.cn
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter stringmore » model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.« less
NASA Astrophysics Data System (ADS)
Casali, Eduardo; Tourkine, Piotr
2018-03-01
Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.
Stochastic gravitational wave background from light cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePies, Matthew R.; Hogan, Craig J.
2007-06-15
Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less
CMB ISW-lensing bispectrum from cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: sendouda@cc.hirosaki-u.ac.jp, E-mail: keitaro@sci.kumamoto-u.ac.jp
2014-02-01
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation ofmore » the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.« less
CMB ISW-lensing bispectrum from cosmic strings
NASA Astrophysics Data System (ADS)
Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro
2014-02-01
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10-7, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
Space weather at planet Venus during the forthcoming BepiColombo flybys
NASA Astrophysics Data System (ADS)
McKenna-Lawlor, S.; Jackson, B.; Odstrcil, D.
2018-03-01
The BepiColombo (BC) Mission which will be launched in 2018, will include during its Cruise Phase two flybys of Venus and five Mercury flybys. It will then enter a one Earth year orbit about Mercury (with a possible one-year extension) during which two spacecraft, one provided by ESA (MPO) and one provided by JAXA (MMO), will perform both autonomous and coordinated observations of the Hermean environment at various separations. The measurements will take place during the minimum of solar cycle 24 and the rise of solar cycle 25. At the start of the minimum of solar cycle 23, four major flares, each associated with the production of MeV particle radiation and CME activity occurred. Predictions of the HAFv.2 model of the arrival of particle radiation and a travelling shock at Venus on 6 December 2006 were verified by in-situ measurements made aboard Venus Express (VEX) by the ASPERA 4 instrument. Interplanetary scintillation observations, as well as the ENLIL 3-D MHD model when employed separately or in combination, enable the making of predictions of the solar wind density and speed at various locations in the inner heliosphere. Both methods, which outdate HAFv.2, are utilized in the present paper to predict (retrospectively) the arrival of the flare related, interplanetary propagating shock recorded at Venus on 6 December 2006 aboard VEX with a view to putting in place the facility to make very reliable space weather predictions for BC during both its Cruise Phase and when in the Hermean environment itself. The successful matching of the December 2006 predictions with in-situ signatures recorded aboard Venus Express provide confidence that the predictive methodology to be adopted will be appropriate to provide space weather predictions for BepiColombo during its Venus flybys and throughout the mission.
Laboratory evidence for a key intermediate in the Venus atmosphere: Peroxychloroformyl radical
Pernice, Holger; Garcia, Placido; Willner, Helge; Francisco, Joseph S.; Mills, Franklin P.; Allen, Mark; Yung, Yuk L.
2004-01-01
For two decades, the peroxychloroformyl radical, ClC(O)OO, has played a central role in models of the chemical stability of the Venus atmosphere. No confirmation, however, has been possible in the absence of laboratory measurements for ClC(O)OO. We report the isolation of ClC(O)OO in a cryogenic matrix and its infrared and ultraviolet spectral signatures. These experiments show that ClC(O)OO is thermally and photolytically stable in the Venus atmosphere. These experimental discoveries validate the existence of ClC(O)OO, confirm several longstanding model assumptions, and provide a basis for the astronomical search for this important radical species. PMID:15375212
Laboratory Evidence for a Key Intermediate in the Venus Atmosphere: Peroxychloroformyl Radical
NASA Technical Reports Server (NTRS)
Pernice, Holger; Garcia, Placido; Willner, Helge; Francisco, Joseph S.; Mills, Franklin P.; Allen, Mark; Yung, Yuk L.
2004-01-01
For two decades, the peroxychloroformyl radical, ClC(O)OO, has played a central role in models of the chemical stability of the Venus atmosphere. No confirmation, however, has been possible in the absence of laboratory measurements for ClC(O)OO. We report the isolation of ClC(O)OO in a cryogenic matrix and its infrared and ultraviolet spectral signatures. These experiments show that ClC(O)OO is thermally and photolytically stable in the Venus atmosphere. These experimental discoveries validate the existence of ClC(O)OO, confirm several longstanding model assumptions, and provide a basis for the astronomical search for this important radical species.
Cosmic string catalysis of skyrmion decay
NASA Technical Reports Server (NTRS)
Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert
1988-01-01
The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.
Simulation of the Upper Clouds and Hazes of Venus Using a Microphysical Cloud Model
NASA Astrophysics Data System (ADS)
McGouldrick, K.
2012-12-01
Several different microphysical and chemical models of the clouds of Venus have been developed in attempts to reproduce the in situ observations of the Venus clouds made by Pioneer Venus, Venera, and Vega descent probes (Turco et al., 1983 (Icarus 53:18-25), James et al, 1997 (Icarus 129:147-171), Imamura and Hashimoto, 2001 (J. Atm. Sci. 58:3597-3612), and McGouldrick and Toon, 2007 (Icarus 191:1-24)). The model of McGouldrick and Toon has successfully reproduced observations within the condensational middle and lower cloud decks of Venus (between about 48 and 57 km altitude, experiencing conditions similar to Earth's troposphere) and it now being extended to also simulate the microphysics occurring in the upper cloud deck (between altitudes of about 57 km and 70 km, experiencing conditions similar to Earth's stratosphere). In the upper clouds, aerosols composed of a solution of sulfuric acid in water are generated from the reservoir of available water vapor and sulfuric acid vapor that is photochemically produced. The manner of particle creation (e.g., activation of cloud condensation nuclei, or homogeneous or heterogeneous nucleation) is still incompletely understood, and the atmospheric environment has been measured to be not inconsistent with frozen aerosol particles (either sulfuric acid monohydrate or water ice). The material phase, viscosity, and surface tension of the aerosols (which are strongly dependent up on the local temperature and water vapor concentration) can affect the coagulation efficiencies of the aerosol, leading to variations in the size distributions, and other microphysical and radiative properties. Here, I present recent work exploring the effects of nucleation rates and coalescence efficiencies on the simulated Venus upper clouds.
Venus tectonic styles and crustal differentiation
NASA Technical Reports Server (NTRS)
Kaula, W. M.; Lenardic, A.
1992-01-01
Two of the most important constraints are known from Pioneer Venus data: the lack of a system of spreading rises, indicating distributed deformation rather than plate tectonics; and the high gravity/topography ratio, indicating the absence of an asthenosphere. In addition, the high depth/diameter ratios of craters on Venus indicate that Venus probably has no more crust than Earth. The problems of the character of tectonics and crustal formation and recycling are closely coupled. Venus appears to lack a recycling mechanism as effective as subduction, but may also have a low rate of crustal differentiation because of a mantle convection pattern that is more distributed, less concentrated, than Earth's. Distributed convection, coupled with the nonlinear dependence of volcanism on heat flow, would lead to much less magmatism, despite only moderately less heat flow, compared to Earth. The plausible reason for this difference in convective style is the absence of water in the upper mantle of Venus. We have applied finite element modeling to problems of the interaction of mantle convection and crust on Venus. The main emphasis has been on the tectonic evolution of Ishtar Terra, as the consequence of convergent mantle flow. The early stage evolution is primarily mechanical, with crust being piled up on the down-stream side. Then the downflow migrates away from the center. In the later stages, after more than 100 m.y., thermal effects develop due to the insulating influence of the thickened crust. An important feature of this modeling is the entrainment of some crustal material in downflows. An important general theme in both convergent and divergent flows is that of mixing vs. stratification. Models of multicomponent solid-state flow obtain that lower-density crustal material can be entrained and recycled, provided that the ration of low-density to high-density material is small enough (as in subducted slabs on Earth). The same considerations should apply in upflows; a small percent of partial melt may be carried along with its matrix and never escape to the surface. Models that assume melt automatically rising to the crust and no entrainment or other mechanism of recycling lower-density material obtain oscillatory behavior, because it takes a long time for heat to build up enough to overcome a Mg-rich low-density residuum. However, these models develop much thicker crust than consistent with estimates from crater depth/diameter ratios.
Barotropic instability with divergence - Theory and applications to Venus
NASA Technical Reports Server (NTRS)
Dobrovolskis, Anthony R.; Diner, David J.
1990-01-01
IR images of Venus reveal a curious double-lobed hot spot in the polar region. Elson (1982) has suggested that this dipole represents a barotropic instability associated with a high-latitude jet. Unfortunately, the classical theory of barotropic instability cannot predict temperature variations. This paper generalizes the theory to include horizontal divergence, vertical motions, and temperature variations, and applies it to the stratosphere of Venus. The fastest-growing barotropic instability in the nominal model matches the observed dipole in period and horizontal temperature pattern. The accompanying wind variations are comparable to the speed of the mean jet, indicating strong nonlinear effects. It is concluded that the Venus dipole may represent the self-limited stage of a barotropic instability with divergence.
Energetic Neutral Atom Emissions From Venus: VEX Observations and Theoretical Modeling
NASA Technical Reports Server (NTRS)
Fok, M.-C.; Galli, A.; Tanaka, T.; Moore, T. E.; Wurz, P.; Holmstrom, M.
2007-01-01
Venus has almost no intrinsic magnetic field to shield itself from its surrounding environment. The solar wind thus directly interacts with the planetary ionosphere and atmosphere. One of the by-products of this close encounter is the production of energetic neutral atom (ENA) emissions. Theoretical studies have shown that significant amount of ENAs are emanated from the planet. The launch of the Venus Express (VEX) in 2005 provided the first light ever of the Venus ENA emissions. The observed ENA flux level and structure are in pretty good agreement with the theoretical studies. In this paper, we present VEX ENA data and the comparison with numerical simulations. We seek to understand the solar wind interaction with the planet and the impacts on its atmospheres.
NASA Technical Reports Server (NTRS)
Fimmel, Richard O.; Colin, Lawrence; Burgess, Eric
1983-01-01
Venus before Pioneer, the Pioneer Venus mission, Pioneer Venus spacecraft, scientific investigation, mission to Venus scientific results, and results of Soviet studies of Venus are addressed. A chronology of exploration of Venus from Earth before the Pioneer Venus mission and Venus nomenclature and mythology are provided.
Magnetic flux ropes in the Venus ionosphere - Observations and models
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Russell, C. T.
1983-01-01
Pioneer Venus Orbiter data are used as evidence of naturally occurring magnetic field filamentary structures which can be described by a flux rope model. The solar wind is interpreted as piling up a magnetic field on the Venus ionosphere, with the incident ram pressure being expressed as magnetic field pressure. Currents flowing at the ionopause shield out the field, allowing magnetic excursions to be observed with magnitudes of tens of nT over an interval of a few seconds. A quantitative assessment is made of the signature expected from a flux rope. It is noted that each excursion of the magnetic field detected by the Orbiter magnetometer was correlated with variations in the three components of the field. A coordinate system is devised which shows that the Venus data is indicative of the presence of flux ropes whose parameters are the coordinates of the system and would yield the excursions observed in the spacecraft crossings of the fields.
Quarks, Symmetries and Strings - a Symposium in Honor of Bunji Sakita's 60th Birthday
NASA Astrophysics Data System (ADS)
Kaku, M.; Jevicki, A.; Kikkawa, K.
1991-04-01
The Table of Contents for the full book PDF is as follows: * Preface * Evening Banquet Speech * I. Quarks and Phenomenology * From the SU(6) Model to Uniqueness in the Standard Model * A Model for Higgs Mechanism in the Standard Model * Quark Mass Generation in QCD * Neutrino Masses in the Standard Model * Solar Neutrino Puzzle, Horizontal Symmetry of Electroweak Interactions and Fermion Mass Hierarchies * State of Chiral Symmetry Breaking at High Temperatures * Approximate |ΔI| = 1/2 Rule from a Perspective of Light-Cone Frame Physics * Positronium (and Some Other Systems) in a Strong Magnetic Field * Bosonic Technicolor and the Flavor Problem * II. Strings * Supersymmetry in String Theory * Collective Field Theory and Schwinger-Dyson Equations in Matrix Models * Non-Perturbative String Theory * The Structure of Non-Perturbative Quantum Gravity in One and Two Dimensions * Noncritical Virasoro Algebra of d < 1 Matrix Model and Quantized String Field * Chaos in Matrix Models ? * On the Non-Commutative Symmetry of Quantum Gravity in Two Dimensions * Matrix Model Formulation of String Field Theory in One Dimension * Geometry of the N = 2 String Theory * Modular Invariance form Gauge Invariance in the Non-Polynomial String Field Theory * Stringy Symmetry and Off-Shell Ward Identities * q-Virasoro Algebra and q-Strings * Self-Tuning Fields and Resonant Correlations in 2d-Gravity * III. Field Theory Methods * Linear Momentum and Angular Momentum in Quaternionic Quantum Mechanics * Some Comments on Real Clifford Algebras * On the Quantum Group p-adics Connection * Gravitational Instantons Revisited * A Generalized BBGKY Hierarchy from the Classical Path-Integral * A Quantum Generated Symmetry: Group-Level Duality in Conformal and Topological Field Theory * Gauge Symmetries in Extended Objects * Hidden BRST Symmetry and Collective Coordinates * Towards Stochastically Quantizing Topological Actions * IV. Statistical Methods * A Brief Summary of the s-Channel Theory of Superconductivity * Neural Networks and Models for the Brain * Relativistic One-Body Equations for Planar Particles with Arbitrary Spin * Chiral Property of Quarks and Hadron Spectrum in Lattice QCD * Scalar Lattice QCD * Semi-Superconductivity of a Charged Anyon Gas * Two-Fermion Theory of Strongly Correlated Electrons and Charge-Spin Separation * Statistical Mechanics and Error-Correcting Codes * Quantum Statistics
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)
2008-01-01
Topics discussed include: Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series; Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report; Structural Maps of the V-17 Beta Regio Quadrangle, Venus; Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus; Renewed Mapping of the Nepthys Mons Quadrangle (V-54), Venus; Mapping the Sedna-Lavinia Region of Venus; Geologic Mapping of the Guinevere Planitia Quadrangle of Venus; Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons; Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean; Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training; Geologic Map of the V-1 Snegurochka Planitia Quadrangle: Progress Report; The Fredegonde (V-57) Quadrangle, Venus: Characterization of the Venus Midlands; Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping; Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism; Geologic Mapping of V-19, V-28, and V-53; Lunar Geologic Mapping Program: 2008 Update; Geologic Mapping of the Marius Quadrangle, the Moon; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report; New Geologic Map of the Argyre Region of Mars; Geologic Evolution of the Martian Highlands: MTMs -20002, -20007, -25002, and -25007; Mapping Hesperia Planum, Mars; Geologic Mapping of the Meridiani Region, Mars; Geology of Holden Crater and the Holden and Ladon Multi-Ring Impact Basins, Margaritifer Terra, Mars; Geologic Mapping of Athabasca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region of Mars; Geologic Mapping of the Martian Impact Crater Tooting; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: First Year Results and Second Year Plan; Mars Global Geologic Mapping: Amazonian Results; Recent Geologic Mapping Results for the Polar Regions of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars (MC-8 SE and MC-23 NW) and the Northern Lowlands of Venus (V-16 and V-15); Geologic Mapping of the Zal, Hi'iaka, and Shamshu Regions of Io; Global Geologic Map of Europa; Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M); and Global Geologic Mapping of Io: Preliminary Results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andronov, E.; Vechernin, V.
2016-01-22
The long-range rapidity correlations between the multiplicities (n-n) and the transverse momentum and the multiplicity (pT-n) of charge particles are analyzed in the framework of the simple string inspired model with two types of sources. The sources of the first type correspond to the initial strings formed in a hadronic collision. The sources of the second type imitate the appearance of the emitters of a new kind resulting from interaction (fusion) of the initial strings. The model enabled to describe effectively the influence of the string fusion effects on the strength both the n-n and the pT-n correlations. It wasmore » found that in the region, where the process of string fusion comes into play, the calculation results predict the non-monotonic behaviour of the n-n and pT-n correlation coefficients with the growth of the mean number of initial strings, i.e. with the increase of the collision centrality. It was shown also that the increase of the event-by-event fluctuation in the number of primary strings leads to the change of the pT-n correlation sign from negative to positive. One can try to search these signatures of string collective phenomena in interactions of various nuclei at different energies varying the class of collision centrality and its width.« less
A cosmic book. [of physics of early universe
NASA Technical Reports Server (NTRS)
Peebles, P. J. E.; Silk, Joseph
1988-01-01
A system of assigning odds to the basic elements of cosmological theories is proposed in order to evaluate the strengths and weaknesses of the theories. A figure of merit for the theories is obtained by counting and weighing the plausibility of each of the basic elements that is not substantially supported by observation or mature fundamental theory. The magnetized strong model is found to be the most probable. In order of decreasing probability, the ranking for the rest of the models is: (1) the magnetized string model with no exotic matter and the baryon adiabatic model; (2) the hot dark matter model and the model of cosmic string loops; (3) the canonical cold dark matter model, the cosmic string loops model with hot dark matter, and the baryonic isocurvature model; and (4) the cosmic string loops model with no exotic matter.
Microphysical Model Studies of Venus Clouds
NASA Astrophysics Data System (ADS)
Meade, P. E.; Bullock, M. A.; Grinspoon, D. H.
2004-11-01
We have adapted a standard cloud microphysics model to construct a self-consistent microphysical model of Venus' cloud layer which reproduces and extends previous studies (e.g. James et al. 1997). Our model is based on the Community Aerosol and Radiation Model Atmosphere (CARMA), which is a widely used computer code for terrestrial cloud microphysics, derived from the work of Toon et al. (1988). The standard code has been adapted to treat H2O and H2SO4 as co-condensing vapor species onto aqueous H2SO4 cloud droplets, as well as the nucleation of condensation nuclei to droplets. Vapor condensation and evaporation follows the method of James et al. (1997). Microphysical processes included in this model include nucleation of condensation nuclei, condensation and evaporation of H2O and H2SO4 vapor, and droplet coagulation. Vertical transport occurs though advection, eddy diffusion, sedimentation for both droplets and condensation nuclei. The cloud model is used to explore the sensitivity of Venus' cloud layer to environmental changes. Observations of the Venus' lower cloud from the Pioneer Venus, Venera, and Galileo spacecraft have suggested that the properties of the lower cloud may be time-variable, and at times may be entirely absent (Carlson et al. 1993, Grinspoon et al. 1993, Esposito et al. 1997). Our model explores the dependence of such behavior on environment factors such as variations in water or SO2 abundance. We have also calculated the optical properties of the model atmosphere using both the conventional optical constants for H2SO4 (Palmer and Williams, 1975), and the new data of Tisdale et al. (1998). This work has been supported by NASA's Exobiology Program. References Carlson, R.W., et al., 1993. Planetary and Space Science, 41, 477-486. Esposito, L.W., et al., 1997. In Venus II, eds. S.W. Bougher et al., pp. 415-458, University of Arizona Press, Tucson. Grinspoon, D.H., et al., 1993. Planetary and Space Science, 41 (July 1993), 515-542. James, E. P., et al., 1997. Icarus, 129, 147-171. Palmer, K.F., and D. Williams, 1975. Applied Optics, 14, 208-219. Tisdale, R.T., et al., 1998. Journal of Geophysical Research, 103, 25,353-25,370. Toon , O. B., et al., 1988. J. Atmos. Sci., 45, 2123-2143.
The string prediction models as invariants of time series in the forex market
NASA Astrophysics Data System (ADS)
Pincak, R.
2013-12-01
In this paper we apply a new approach of string theory to the real financial market. The models are constructed with an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial and a financial time series. A brief overview of the results and analysis is given. The first model is based on the correlation function as invariant and the second one is an application based on the deviations from the closed string/pattern form (PMBCS). We found the difference between these two approaches. The first model cannot predict the behavior of the forex market with good efficiency in comparison with the second one which is, in addition, able to make relevant profit per year. The presented string models could be useful for portfolio creation and financial risk management in the banking sector as well as for a nonlinear statistical approach to data optimization.
NASA Technical Reports Server (NTRS)
Hunt, G. E.
1972-01-01
The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.
String model for the dynamics of glass-forming liquids
Pazmiño Betancourt, Beatriz A.; Douglas, Jack F.; Starr, Francis W.
2014-01-01
We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann “entropy crisis.” PMID:24880303
String model for the dynamics of glass-forming liquids.
Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W
2014-05-28
We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis."
NASA Technical Reports Server (NTRS)
Bennett, David P.
1988-01-01
Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.
The thermal field of the terminator mesosphere of Venus using solar transit data
NASA Astrophysics Data System (ADS)
Tanga, Paolo; Widemann, Thomas; Pere, Christophe; Babcock, Brice A.; Berthier, Jerome; Pasachoff, Jay M.; Roos-Serote, Maarten
2016-10-01
We exploit the solar transits of Venus in 2004 and 2012, to derive useful constraints on the mesosphere of the planet by the observation of the so-called "aureole" resulting from direct sunlight refraction. In 2012 we organized an extensive campaign, involving observations through both space- and ground- based telescopes. A specific design adapted from the Lyot coronograph was developed and replicated in several copies to improve the SNR in proximity of the solar disk (Venus Twilight Experiment).we report on the different data sets collected during the 2012 transit, and present lightcurve analyses based on imaging from NASA's Solar Dynamic Observatory (SDO), JAXA's Hinode, and by the instruments of the Venus Twilight Experiment.We explored different approaches to model the variation of the aureole brightness, ranging from simple isothermal modeling to multi-layer.Although less resolved than the local measurements obtained by Venus Express (SOIR experiment), aureole modeling has the advantage of being able to cover simultaneously a wide range of latitudes. We were able to compare the aureole-derived vertical refractivity profiles to density profiles obtained simultaneously by SOIR during the transit itself. Our inverse model, constraining the vertical temperature profiles at all latitudes, detects a cold layer (at ~86-94 km altitude on average) whose vertical extent depends on latitude (thicker towards the N pole than at the Equator), and a latitude-dependent aerosol slanted-opacity altitude (τ=1).Eventually our model shows that a relevant contribution to the aureole flux comes from deep layers where aerosol absorption cannot be neglected, allowing us to put some constraints on the scale height of aerosol dispersion.
Night OH In The Mesosphere Of Venus and Earth: A Comparative Planetology Perspective
NASA Astrophysics Data System (ADS)
Parkinson, Chris; Brecht, A.; Bougher, S.; Mills, F.; Yung, Y.
2009-09-01
Satellite measurements of the terrestrial nightside mesosphere from the MLS/Aura MLS instrument show a layer of OH near 82 km. This layer confirms earlier measurements by ground-based UVFTS. The MLS and UVFTS observations measure OH in the lowest vibrational state and are distinct, but related chemically, from vibrationally-excited emission from the OH Meinel bands in the near infrared. The Caltech 1-D KINETICS model has been extended to include vibrational dependence of OH reactions and shows good agreement with MLS OH data and with observations of the Meinel bands. The model shows a chemical lifetime of HOx that increases from less than a day at 80 km to over a month at 87 km. Above this altitude transport processes become an important part of HOx chemistry. The model predicts that ground state OH represents 99% of the total OH up to 84 km. Similarly, Venus airglow emissions detected at wave-lengths of 1.40-1.49 and 2.6-3.14 μm in limb obser-vations by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on the Venus Express space-craft are attributed to the OH (2-0) and (1-0) Meinel band transitions as well. The integrated emission rates for the OH (2-0) and (1-0) bands were measured to be 100±40 and 880±90 kR respectively, both peaking at an altitude of 96±2 km near midnight local time for the considered orbit. We use the same Caltech 1-D KINETICS model to model these observations for Venus as was used for the Earth and discuss the conclusions from a comparative planetology perspective, highlighting the similarities and differences between Venus and Earth.
Venus Clouds: A dirty hydrochloric acid model
NASA Technical Reports Server (NTRS)
Hapke, B.
1971-01-01
The spectral and polarization data for Venus are consistent with micron-sized, aerosol cloud particles of hydrochloric acid containing soluble and insoluble iron compounds, whose source could be volcanic or crustal dust. The ultraviolet features could arise from variations in the Fe-HCl concentration in the cloud particles.
Interaction with a field: a simple integrable model with backreaction
NASA Astrophysics Data System (ADS)
Mouchet, Amaury
2008-09-01
The classical model of an oscillator linearly coupled to a string captures, for a low price in technique, many general features of more realistic models for describing a particle interacting with a field or an atom in an electromagnetic cavity. The scattering matrix and the asymptotic in and out-waves on the string can be computed exactly and the phenomenon of resonant scattering can be introduced in the simplest way. The dissipation induced by the coupling of the oscillator to the string can be studied completely. In the case of a d'Alembert string, the backreaction leads to an Abraham-Lorentz-Dirac-like equation. In the case of a Klein-Gordon string, one can see explicitly how radiation governs the (meta)stability of the (quasi)bounded mode.
Confusing the heterotic string
NASA Astrophysics Data System (ADS)
Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.
1986-10-01
A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.
Fast spinning strings on η deformed AdS 5 × S 5
NASA Astrophysics Data System (ADS)
Banerjee, Aritra; Bhattacharyya, Arpan; Roychowdhury, Dibakar
2018-02-01
In this paper, considering the correspondence between spin chains and string sigma models, we explore the rotating string solutions over η deformed AdS 5 × S 5 in the so-called fast spinning limit. In our analysis, we focus only on the bosonic part of the full superstring action and compute the relevant limits on both ( R × S 3) η and ( R × S 5) η models. The resulting system reveals that in the fast spinning limit, the sigma model on η deformed S 5 could be approximately thought of as the continuum limit of anisotropic SU(3) Heisenberg spin chain model. We compute the energy for a certain class of spinning strings in deformed S 5 and we show that this energy can be mapped to that of a similar spinning string in the purely imaginary β deformed background.
Simulation of swimming strings immersed in a viscous fluid flow
NASA Astrophysics Data System (ADS)
Huang, Wei-Xi; Sung, Hyung Jin
2006-11-01
In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.
High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation
NASA Technical Reports Server (NTRS)
Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.
2015-01-01
A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.
Comparisons and Evaluations of JPL Ephemerides
NASA Astrophysics Data System (ADS)
Deng, X. M.; Fan, M.; Xie, Y.
2013-11-01
Since NASA's JPL (Jet Propulsion Laboratory) Ephemerides are widely used in deep space navigation and planetary exploration, it is necessary to compare their details, including the coverage, realization and maintenance. Focusing on Chinese Venus and Mars missions in the future, we take DE405, DE421, and DE423 as samples to analyze their dynamical models and observation data. By evaluating their accuracies and performances, we investigate their effects on an orbiter around Venus and Mars, and recommend that it is better to use DE423 for Venus missions and DE421/DE423 for Mars missions.
NASA Astrophysics Data System (ADS)
Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon
2007-03-01
We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension μ required to normalize to the WMAP 3-year data at multipole ℓ=10 is Gμ=[2.04±0.06(stat.)±0.12(sys.)]×10-6, where we have quoted statistical and systematic errors separately, and G is Newton’s constant. This is a factor 2 3 higher than values in current circulation.
Thermal buoyancy on Venus: Preliminary results of finite element modeling
NASA Technical Reports Server (NTRS)
Burt, J. D.; Head, James W., III
1992-01-01
Enhanced surface temperatures and a thinner lithosphere on Venus relative to Earth have been cited as leading to increased lithospheric buoyancy. This would limit or prevent subduction on Venus and favor the construction of thickened crust through underthrusting. In order to evaluate the conditions distinguishing between underthrusting and subduction, we have modeled the thermal and buoyancy consequences of the subduction end member. This study considers the fate of a slab from the time it starts to subduct, but bypasses the question of subduction initiation. Thermal changes in slabs subducting into a mantle having a range of initial geotherms are used to predict density changes and thus their overall buoyancy. Finite element modeling is then applied in a first approximation of the assessment of the relative rates of subduction as compared to the buoyant rise of the slab through a viscous mantle.
Intensities of the Venusian N2 electron-impact excited dayglow emissions
NASA Astrophysics Data System (ADS)
Fox, Jane L.; F. Hać, Nicholas E.
2013-12-01
Dayglow emissions are signatures of both the energy deposition into an atmosphere and the abundances of the species from which they arise. The first N2 dayglow emissions from Mars, the (0,5) and (0,6) bands of the N2 Vegard-Kaplan band system, were detected by the Spectroscopy for Investigations of the Characteristics of the Atmosphere of Mars (SPICAM) UV spectrometer on board the Mars Express spacecraft. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is populated by direct electron-impact excitation and by cascading from higher triplet states. The Venus UV dayglow is currently being probed by an instrument similar to SPICAM, the Spectroscopy for the Investigations of the Characteristics of the Atmosphere of Venus (SPICAV) UV spectrometer on Venus Express, but no N2 emissions have been detected. Because the N2 mixing ratios in the Venus thermosphere are larger than those in the thermosphere of Mars and the solar flux is greater at the orbit of Venus than that at Mars, we expect the Venus N2 emissions to be significantly more intense than those of Mars. A prediction of the intensities of various N2 emissions from Venus could be used to guide observations by the SPICAV and other instruments that are used to measure the Venus dayglow. Employing updated data, we here construct models of the low and high solar activity thermospheres of Venus, and we compute the integrated overhead intensities of 17 N2 band systems and limb profiles of the Vegard-Kaplan bands. The ratios of the predicted intensities of the various N2 bands at Venus to those at Mars are in the range 5.5-9.5.
NASA Technical Reports Server (NTRS)
Hunten, D. M.
1992-01-01
The old idea that Venus might possess surface conditions to those of an overcast earth has been thoroughly refuted by space-age measurements. Instead, the two planets may have started out similar, but diverged because of the greater solar flux at Venus. This cannot be proved, but is consistent with everything known. A runaway greenhouse effect could have evaporated an 'ocean'. The hydrogen would escape, and most of the oxygen would be incorporated into the crust. Without liquid water, CO2 would remain in the atmosphere. Chlorine atoms would catalyze the recombination of any free oxygen back to CO2. The same theories apply to the future of the earth, and to the explanation of the polar ozone holes; the analogies are striking. There is no likelihood that the earth will actually come to resemble Venus, but Venus serves both as a warning that major environmental effects can flow from seemingly small causes, and as a testbed for the predictive models of the earth.
Design of the Recovery Trajectory for JAXA Venus Orbiter Akatsuki
NASA Astrophysics Data System (ADS)
Campagnola, Stefano; Kawakatsu, Yasuhiro
2015-12-01
Akatsuki ("dawn" in Japanese) is the JAXA Venus orbiter that was scheduled to enter orbit around Venus on Dec. 7 th , 2010. Following the failure of the main engine during the orbit insertion maneuver, the spacecraft escaped Venus on a 200-day orbit around the Sun, only to return in early 2017. This paper presents the design and implementation of the recovery trajectory, which involves perihelion maneuvers to re-encounter Venus in late 2015. Relying only on the onboard propellant, the trajectory rescued the mission by (1) anticipating the beginning of the science phase within the nominal lifetime of the spacecraft, and (2) halving the Δ v requirements for the orbit insertion maneuver. Several trajectories are designed with an innovative use of a technique called non-tangent V-Infinity Leveraging Transfers (VILTs). Candidate solutions are then recomputed in higher fidelity models, and one solution is finally selected for its low Δv requirements and for programmatic reasons. The results of the perihelion maneuver campaign are also presented.
Composition and evolution of the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Donahue, Thomas (Principal Investigator)
1996-01-01
The contract year started by analyzing Jovian atmospheric data acquired by the Galileo Probe Mass Spectrometer (GPMS). Two Venus hydrogen projects got underway as well. The first study strives to understand how to reconcile the standard treatment of the evolution of the H2O and HDO resevoirs on Venus over 4.5 Gyr in the presence of H and D escape and injection by comets. The second study is calculating the charge exchange contribution to hydrogen loss rates, using realistic models for exospheric H, H(+), D, D(+), and ion temperature from PV data. This report includes the following papers as attachments and supporting data: 'The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere'; 'Chemical Composition Measurements of the Atmosphere of Jupiter with the Galileo Probe Mass Spectrometer'; 'Ion/Neutral Escape of Hydrogen and Deuterium: Evolution of Water'; 'Hydrogen and Deuterium in the Thermosphere of Venus: Solar Cycle Variations and Escape'; and 'Solar Cycle Variations in H(+) and D(+) Densities in the Venus Ionosphere: Implications for Escape'.
Advancing Venus Geophysics with the NF4 VOX Gravity Investigation.
NASA Astrophysics Data System (ADS)
Iess, L.; Mazarico, E.; Andrews-Hanna, J. C.; De Marchi, F.; Di Achille, G.; Di Benedetto, M.; Smrekar, S. E.
2017-12-01
The Venus Origins Explorer is a JPL-led New Frontiers 4 mission proposal to Venus to answer critical questions about the origin and evolution of Venus. Venus stands out among other planets as Earth's twin planet, and is a natural target to better understand our own planet's place, in our own Solar System but also among the ever-increasing number of exoplanetary systems. The VOX radio science investigation will make use of an innovative Ka-band transponder provided by the Italian Space Agency (ASI) to map the global gravity field of Venus to much finer resolution and accuracy than the current knowledge, based on the NASA Magellan mission. We will present the results of comprehensive simulations performed with the NASA GSFC orbit determination and geodetic parameter estimation software `GEODYN', based on a realistic mission scenario, tracking schedule, and high-fidelity Doppler tracking noise model. We will show how the achieved resolution and accuracy help fulfill the geophysical goals of the VOX mission, in particular through the mapping of subsurface crustal density or thickness variations that will inform the composition and origin of the tesserae and help ascertain the heat loss and importance of tectonism and subduction.
Tidal constraints on the interior of Venus
NASA Astrophysics Data System (ADS)
Dumoulin, C.; Tobie, G.; Verhoeven, O.; Rosenblatt, P.; Rambaux, N.
2017-06-01
As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers, and tide-induced phase lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. Viscoelasticity of the mantle strongly increases the potential Love number relative to previously published elastic models. Due to the anelasticity effects, we show that the possibility of a completely solid metal core inside Venus cannot be ruled out based on the available estimate of k2 from the Magellan mission (Konopliv and Yoder, 1996). A Love number k2 lower than 0.27 would indicate the presence of a fully solid iron core, while for larger values, solutions with an entirely or partially liquid core are possible. Precise determination of the Love numbers, k2 and h2, together with an estimate of the tidal phase lag, are required to determine the state and size of the core, as well as the composition and viscosity of the mantle.
Tidal constraints on the interior of Venus
NASA Astrophysics Data System (ADS)
Dumoulin, C.; Tobie, G.; Verhoeven, O.; Rosenblatt, P.; Rambaux, N.
2017-12-01
As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers, and tide-induced phase lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. Viscoelasticity of the mantle strongly increases the potential Love number relative to previously published elastic models. Due to the anelasticity effects, we show that the possibility of a completely solid metal core inside Venus cannot be ruled out based on the available estimate of k2 from the Magellan mission (Konopliv and Yoder, 1996). A Love number k2 lower than 0.27 would indicate the presence of a fully solid iron core, while for larger values, solutions with an entirely or partially liquid core are possible. Precise determination of the Love numbers, k2 and h2, together with an estimate of the tidal phase lag, are required to determine the state and size of the core, as well as the composition and viscosity of the mantle.
Atmospheric Models for Aerocapture
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duval, Aleta; Keller, Vernon W.
2003-01-01
There are eight destinations in the Solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Robe entry at Titan, are discussed. Recent updates to the Mars atmospheric model, in support of ongoing Mars aerocapture systems analysis studies, are also presented.
Wave granulation in the Venus' atmosphere
NASA Astrophysics Data System (ADS)
Kochemasov, G.
2007-08-01
In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance π1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and corresponding them wave granule sizes. (1/338 : 1/6)πR = πR/56.3 = 342 km. (1/338 x 1/6)πR = πR/2028 = 9.5 km. The larger granules as well arranged network were seen in the near IR Galileo image PIA00073 (several miles below the visible cloud tops). The smaller granules, hopefully, will be detected by the Venus Express cameras. So, the wave planetology applying wave methods to solid planetary bodies and to surrounding them gaseous envelopes shows their structural unity. This understanding may help to analyze and predict very complex behavior of atmospheric sells at Earth (anticyclones up to 5000 km across or πR/4), other planets and Titan. Long time ago known the solar supergranules about 30000 km across were never fully understood. The comparative wave planetology placing them together with wave features of planets and satellites throws light on their origin and behavior and thus expands into an area of the solar physics. In this respect it is interesting to note that rather typical for Sun radio emission in 1 meter diapason also was never properly explained. But applying modulation of the solar photosphere frequency 1/ 1month by the Galaxy frequency 1/ 200 000 000 y. one can obtain such short waves [5]. Radio emissions of planets of the solar system also can be related to this modulation by Galaxy rotation [5]. References: [1] Kochemasov G.G. (1992) Comparison of blob tectonics (Venus) and pair tectonics (Earth) // LPS XXIII, Houston, LPI, pt. 2, 703-704; [2] Kochemasov G.G. (2000) Orbiting frequency modulation in Solar system and its imprint in shapes and structures of celestial bodies // Vernadsky-Brown microsymposium 32 on Comparative planetology, Oct. 9-11, 2000, Moscow, Russia, Abstracs, 88-89; [3] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, (CD-ROM); [4] Kochemasov G.G. (2005) Cassini' lessons: square craters, shoulderto- shoulder even-size aligned and in grids craters having wave interference nature must be taken out of an impact craters statistics to make it real // Vernadsky-Brown microsymposium-42 "Topics in Comparative Planetology", Oct. 10-12, 2005, Vernadsky Inst., Moscow, Russia, Abstr. m42_31, CD-ROM; [5] Kochemasov G.G. (2001) Inertia-gravity waves of various scales on celestial bodies surfaces, in vertical section and their relation to radiowaves // 34thVernadsky-Brown microsymposium 'Topics in comparative planetology", Moscow, Vernadsky Inst., Abstr., CD-ROM.
Wave granulation in the Venus' atmosphere
NASA Astrophysics Data System (ADS)
Kochemasov, G.
2007-08-01
In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance ~1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and corresponding them wave granule sizes. (1/338 : 1/6)πR = πR/56.3 = 342 km. (1/338 x 1/6)πR = πR/2028 = 9.5 km. The larger granules as well arranged network were seen in the near IR Galileo image PIA00073 (several miles below the visible cloud tops). The smaller granules, hopefully, will be detected by the Venus Express cameras. So, the wave planetology applying wave methods to solid planetary bodies and to surrounding them gaseous envelopes shows their structural unity. This understanding may help to analyze and predict very complex behavior of atmospheric sells at Earth (anticyclones up to 5000 km across or πR/4), other planets and Titan. Long time ago known the solar supergranules about 30000 km across were never fully understood. The comparative wave planetology placing them together with wave features of planets and satellites throws light on their origin and behavior and thus expands into an area of the solar physics. In this respect it is interesting to note that rather typical for Sun radio emission in 1 meter diapason also was never properly explained. But applying modulation of the solar photosphere frequency 1/ 1month by the Galaxy frequency 1/ 200 000 000 y. one can obtain such short waves [5]. Radio emissions of planets of the solar system also can be related to this modulation by Galaxy rotation [5]. References: [1] Kochemasov G.G. (1992) Comparison of blob tectonics (Venus) and pair tectonics (Earth) // LPS XXIII, Houston, LPI, pt. 2, 703-704; [2] Kochemasov G.G. (2000) Orbiting frequency modulation in Solar system and its imprint in shapes and structures of celestial bodies // Vernadsky-Brown microsymposium 32 on Comparative planetology, Oct. 9-11, 2000, Moscow, Russia, Abstracs, 88-89; [3] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, (CD-ROM); [4] Kochemasov G.G. (2005) Cassini' lessons: square craters, shoulderto- shoulder even-size aligned and in grids craters having wave interference nature must be taken out of an impact craters statistics to make it real // Vernadsky-Brown microsymposium-42 "Topics in Comparative Planetology", Oct. 10-12, 2005, Vernadsky Inst., Moscow, Russia, Abstr. m42_31, CD-ROM; [5] Kochemasov G.G. (2001) Inertia-gravity waves of various scales on celestial bodies surfaces, in vertical section and their relation to radiowaves // 34thVernadsky-Brown microsymposium 'Topics in comparative planetology", Moscow, Vernadsky Inst., Abstr., CD-ROM.
Venus cloud bobber mission: A long term survey of the Venusian surface
NASA Technical Reports Server (NTRS)
Wai, James; Derengowski, Cheryl; Lautzenhiser, Russ; Emerson, Matt; Choi, Yongho
1994-01-01
We have examined the Venus Balloon concept in order to further develop the ideas and concepts behind it, and to creatively apply them to the design of the major Venus Balloon components. This report presents our models of the vertical path taken by the Venus Balloon and the entry into Venusian atmosphere. It also details our designs of the balloon, gondola, heat exchanger, power generator, and entry module. A vehicle is designed for a ballistic entry into the Venusian atmosphere, and an atmospheric model is created. The model is then used to set conditions. The shape and material of the vehicle are optimized, and the dimensions of the vehicle are then determined. Equipment is chosen and detailed that will be needed to collect and transmit information and control the mission. A gondola is designed that will enable this sensitive electronic equipment to survive in an atmosphere of very high temperature and pressure. This shape and the material of the shell are optimized, and the size is minimized. Insulation and supporting structures are designed to protect the payload equipment and to minimize mass. A method of cooling the gondola at upper altitudes was established. Power needs of the gondola equipment are determined. Power generation options are discussed and two separate thermoelectric generation models are outlined.
The red and green lines of atomic oxygen in the nightglow of Venus
NASA Technical Reports Server (NTRS)
Fox, J. L.
1990-01-01
O(1D) and O(1S), the excited states that give rise to the atomic oxygen red and green lines, are produced in the Venus nightglow in dissociative recombination of O2(+). The emissions should also be excited by precipitation of soft electrons, the suggested source of the 'auroral' emission features of atomic oxygen at 1304 and 1356 A, which have been reported from observations of the Pioneer Venus Orbiter Ultraviolet Spectrometer. No emisison at 6300 or 5577 A was detected, however, by the visible spectrophotometers on the Soviet spacecraft Veneras 9 and 10; upper limits have been placed on the intensities of these features. The constraints placed on models for the auroral production mechanism by the Venera upper limits by modeling the intensities of the red and green lines in the nightglow are evaluated, combining a model for the vibrational distribution of O2(+) on the nightside of Venus with rate coefficients recently computed by Guberman for production of O(1S) and O(1D) in dissociative recombination of O2(+) from different vibrational levels. The integrated overhead intensities are 1 - 2 R for the green line and about 46 R for the red line.
Topography, surface properties, and tectonic evolution. [of Venus and comparison with earth
NASA Technical Reports Server (NTRS)
Mcgill, G. E.; Warner, J. L.; Malin, M. C.; Arvidson, R. E.; Eliason, E.; Nozette, S.; Reasenberg, R. D.
1983-01-01
Differences in atmospheric composition, atmospheric and lithospheric temperature, and perhaps mantle composition, suggest that the rock cycle on Venus is not similar to the earth's. While radar data are not consistent with a thick, widespread and porous regolith like that of the moon, wind-transported regolith could be cemented into sedimentary rock that would be indistinguishable from other rocks in radar returns. The elevation spectrum of Venus is strongly unimodal, in contrast to the earth. Most topographic features of Venus remain enigmatic. Two types of tectonic model are proposed: a lithosphere too thick or buoyant to participate in convective flow, and a lithosphere which, in participating in convective flow, implies the existence of plate tectonics. Features consistent with earth-like plate tectonics have not been recognized.
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.
Unlocking the secrets of Venus surface mineralogy from orbit
NASA Astrophysics Data System (ADS)
Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Mueller, N. T.; Smrekar, S. E.; Koulen, J.
2016-12-01
The surface composition of a planet is a key to understand its interior and evolution. Proper interpretations of Venus surface observations in the near-infrared require a dedicated laboratory effort. The atmosphere of Venus dictates which spectral bands on the surface can be observed. This places severe constraints on the ability to identify rock-forming minerals. To complicate matters further, we cannot observe reflectance, as would be the standard at 1 mm. Observations are obtained on the night side where the thermal emission of the surface is measured directly. Finally, high surface temperatures are known to affect band positions of mineral spectra as expected from crystal field theory. Over the last year we have started at the Planetary Spectroscopy Laboratory (PSL) at DLR in Berlin, Germany to systematically build a spectral library for rocks and minerals under Venus thermal conditions. Using funding from the European Union as part of the EuroPlanet consortium we extended the spectral coverage for high temperature measurements down to 0.7 micron. The spectral library will be key in understanding and modeling differences in emissivity between ambient and Venus conditions, potentially enabling calibration transfer between datasets. We can show that the expected emissivity variation between felsic and mafic minerals would be observable even with the limited number of surface windows available. Furthermore the absolute emissivity derived from our laboratory measurements at Venus temperature match in situ reflectivity data from the Venera 9 and 10 landing sites in the same bands. Based on experience gained from using the VIRTIS instrument on Venus Express to observe the surface of Venus and the new high temperature laboratory experiments, we have developed the multi-spectral Venus Emissivity Mapper (VEM) to study the surface of Venus. VEM imposes minimal requirements on the spacecraft and mission design and can therefore be added to any future Venus mission. Ideally, the VEM instrument will be combined with a high-resolution radar mapper to provide accurate topographic information, as it will be the case for the proposed NASA Discovery VERITAS mission or the ESA EnVision M5 proposal.
Cosmic strings and galaxy formation
NASA Technical Reports Server (NTRS)
Bertschinger, Edmund
1989-01-01
The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.
Venus gravity and topography: 60th degree and order model
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Borderies, N. J.; Chodas, P. W.; Christensen, E. J.; Sjogren, W. L.; Williams, B. G.; Balmino, G.; Barriot, J. P.
1993-01-01
We have combined the most recent Pioneer Venus Orbiter (PVO) and Magellan (MGN) data with the earlier 1978-1982 PVO data set to obtain a new 60th degree and order spherical harmonic gravity model and a 120th degree and order spherical harmonic topography model. Free-air gravity maps are shown over regions where the most marked improvement has been obtained (Ishtar-Terra, Alpha, Bell and Artemis). Gravity versus topography relationships are presented as correlations per degree and axes orientation.
A first-order model for impact crater degradation on Venus
NASA Technical Reports Server (NTRS)
Izenberg, Noam R.; Arvidson, Raymond E.; Phillips, Roger J.
1993-01-01
A first-order impact crater aging model is presented based on observations of the global crater population of Venus. The total population consists of 879 craters found over the approximately 98 percent of the planet that has been mapped by the Magellan spacecraft during the first three cycles of its mission. The model is based upon three primary aspects of venusian impact craters: (1) extended ejecta deposits (EED's); (2) crater rims and continuous ejecta deposits; and (3) crater interiors and floors.
NASA Astrophysics Data System (ADS)
Rickles, Dean
Although ostensibly a festschrift for Gabriele Veneziano, this book also marks an important step in the historical study of string theory, featuring several excellent chapters on the earliest period of string theory, as it emerged from the study of strong interaction physics and dual resonance models. Veneziano is often crowned 'the father of string theory' since it was he who discovered the amplitude that led to the dual resonance models that then led to string theory in something like the form we know it today (though not immediately into a quantum theory of gravity). However, as the historical articles in this book make plain, Veneziano was but a small (albeit vital) component in the creation of string theory.
NASA Astrophysics Data System (ADS)
Cho, Gi-Chol; Hagiwara, Kaoru
1998-02-01
The string theory predicts the unification of the gauge couplings and gravity. The minimal supersymmetric Standard Model, however, gives the unification scale ~2x1016 GeV which is significantly smaller than the string scale ~5x1017 GeV of the weak coupling heterotic string theory. We study the unification scale of the non-supersymmetric minimal Standard Model quantitatively at the two-loop level. We find that the unification scale should be at most ~4x1016 GeV and the desired Kac-Moody level of the hyper-charge coupling should be 1.33<~kY<~1.35.
Transplanckian censorship and global cosmic strings
NASA Astrophysics Data System (ADS)
Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren
2017-04-01
Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f < M p and large winding numbers n > M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Steffes, P. G.
1992-01-01
Radio occultation experiments have been used to study various properties of planetary atmospheres, including pressure and temperature profiles, and the abundance profiles of absorbing constituents in those planetary atmospheres. However, the reduction of amplitude data from such experiments to determine abundance profiles requires the application of the inverse Abel transform (IAT) and numerical differentiation of experimental data. These two operations preferentially amplify measurement errors above the true signal underlying the data. A new technique for processing radio occultation data has been developed that greatly reduces the errors in the derived absorptivity and abundance profiles. This technique has been applied to datasets acquired from Pioneer Venus Orbiter radio occultation studies and more recently to experiments conducted with the Magellan spacecraft. While primarily designed for radar studies of the Venus surface, the high radiated power (EIRP) from the Magellan spacecraft makes it an ideal transmitter for measuring the refractivity and absorptivity of the Venus atmosphere by such experiments. The longevity of the Pioneer Venus Orbiter has made it possible to study long-term changes in the abundance and distribution of sulfuric acid vapor, H2SO4(g), in the Venus atmosphere between 1979 and 1992. The abundance of H2SO4(g) can be inferred from vertical profiles of 13-cm absorptivity profiles retrieved from radio occultation experiments. Data from 1979 and 1986-87 suggest that the abundance of H2SO4(g) at latitudes northward of 70 deg decreased over this time period. This change may be due to a period of active volcanism in the late 1970s followed by a relative quiescent period, or some other dynamic process in the Venus atmosphere. While the cause is not certain, such changes must be incorporated into dynamic models of the Venus atmosphere. Potentially, the Magellan spacecraft will extend the results of Pioneer Venus Orbiter and allow the continued monitoring of the abundance of distribution of H2SO4(g) in the Venus atmosphere, as well as other interesting atmospheric properties. Without such measurements it will be difficult to address other issues such as the short-term spatial variability of the abundance of H2SO4(g) at similar latitudes in Venus atmosphere, and the identities of particles responsible for large-scale variations observed in NIR images.
Matrix theory interpretation of discrete light cone quantization string worldsheets
Grignani; Orland; Paniak; Semenoff
2000-10-16
We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.
NASA Technical Reports Server (NTRS)
Giver, L. P.; Chackerian, C., Jr.; Spencer, N.; Brown, L. R.; Wattson, R. B.; Gore, Warren J. (Technical Monitor)
1995-01-01
Carbon dioxide is the major constituent of the atmospheres of both Mars and Venus. Correct interpretations of spectra of these atmospheres require accurate knowledge of a substantial number of absorption bands of this gas. This is especially true for Venus; many weak CO2 bands that are insignificant in the earth's atmosphere are prominent absorbers in Venus' hot, dense lower atmosphere. Yet, recent near-infrared spectra of Venus' nightside have discovered emission windows, which occur between CO2 absorption bands, at 4040-4550 cm(exp-1), 5700-5900 cm(exp-1), and several smaller ones between 7500 and 9400 cm(exp-1). This radiation is due to thermal emission from Venus' lower atmosphere, diminished by scattering and absorption within the sulfuric acid clouds on its way to space. Simulations of these data with radiative transfer models can provide improved information on the abundances of a number of constituents of the lower atmosphere (e.g. H2O, CO, HDO, HCl, HF, and OCS) and the optical properties of the clouds, whose spatial variation modulates the brightness of the emissions. However, the accuracy of these retrievals has been limited by insufficient knowledge of the opacity of some of the gas species, including CO2, at the large pathlengths and high temperatures and pressures that exist on Venus. In particular, modeling the emission spectrum did not produce a good fit for the emission window centered at 7830 cm(exp-1). In an ongoing effort to assist analyses of these Venus spectra, we have been making laboratory intensity measurements of several weak bands of CO2 which are significant absorbers in these Venus emission windows. The CO2 bands that are prominent in the 7830 cm(exp-1) region belong to the vibrational sequence 4v1+v3 and associated hot bands. Only 2 of the 5 bands of this sequence have been previously measured. Modeling Venus' emission spectrum in the 7830 cm(exp-1) region had to rely on calculated intensity values for the weak ground state band at 7921 cm-1 and the associated hot bands. Since the calculated intensities of ground state bands are known to have significant uncertainties, we decided to measure this (40 deg 1)I (left arrow) (00 deg 0) band with the Ames 25 meter multiple reflection absorption cell and Fourier transform spectrometer. We also measured the (40 deg 1) (sub IV) (left arrow) (00 deg 0) band at 7460 cm(exp-1), which also had not been previously measured. These measurements are reported in this article, and we also give our reanalysis of the prior measurements of the (40 deg 1) (sub III) (left arrow) (00 deg 0) bands. These measurements provide the basis for improving calculated intensities for related hot bands as well as simulations of Venus' spectrum.
Entanglement branes in a two-dimensional string theory
Donnelly, William; Wong, Gabriel
2017-09-20
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less
Discrete symmetries in the heterotic-string landscape
NASA Astrophysics Data System (ADS)
Athanasopoulos, P.
2015-07-01
We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ2 × ℤ2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories.
NASA Technical Reports Server (NTRS)
Ivanov, M. A.; Head, James W.
2008-01-01
Lakshmi Planum is a high-standing plateau (3.5-4.5 km above MPR) surrounded by the highest mountain ranges on Venus. Lakshmi represents a unique type of elevated region different from dome-shaped and rifted rises and tessera-bearing crustal plateaus. The unique characteristics of Lakshmi suggest that it formed by an unusual combination of processes and played an important role in Venus geologic history. Lakshmi was studied with Venera-15/16 and Magellan data, resulting in two classes of models, divergent and convergent, to explain its unusual topographic and morphologic characteristics. Divergent models explain Lakshmi as a site of mantle upwelling due to rising and subsequent collapse of a mantle diapir; such models explain emplacement of a lava plateau inside Lakshmi and, in some circumstances, formation of the mountain ranges. The convergent models consider Lakshmi as a locus of mantle downwelling, convergence, underthrusting, and possible subduction. Key features in these models are the mountain ranges, high topography of Lakshmi interior, and the large volcanic centers in the plateau center. These divergent and convergent models entail principally different mechanisms of formation and suggest different geodynamic regimes on Venus. Almost all models make either explicit or implicit predictions about the type and sequence of major events during formation and evolution of Lakshmi and thus detailed geological mapping can be used to test them. Here we present the results of such geological mapping (the V-7 quadrangle, 50-75degN, 300-360degE; scale 1:5M) that allows testing the proposed models for Lakshmi.
Solar wind flow past Venus - Theory and comparisons
NASA Technical Reports Server (NTRS)
Spreiter, J. R.; Stahara, S. S.
1980-01-01
Advanced computational procedures are applied to an improved model of solar wind flow past Venus to calculate the locations of the ionopause and bow wave and the properties of the flowing ionosheath plasma in the intervening region. The theoretical method is based on a single-fluid, steady, dissipationless, magneto-hydrodynamic continuum model and is appropriate for the calculation of axisymmetric supersonic, super-Alfvenic solar wind flow past a nonmagnetic planet possessing a sufficiently dense ionosphere to stand off the flowing plasma above the subsolar point and elsewhere. Determination of time histories of plasma and magnetic field properties along an arbitrary spacecraft trajectory and provision for an arbitrary oncoming direction of the interplanetary solar wind have been incorporated in the model. An outline is provided of the underlying theory and computational procedures, and sample comparisons of the results are presented with observations from the Pioneer Venus orbiter.
Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population
NASA Technical Reports Server (NTRS)
Herrick, Robert R.; Phillips, Roger J.
1994-01-01
The dense atmosphere on Venus prevents craters smaller than about 2 km in daimater from forming and also causes formation of several crater fields and multiple-floored craters (collectively referred to as multiple impacts). A model has been constructed that simulates the behavior of a meteoroid in a dense planetary atmosphere. This model was then combined with an assumed flux of incoming meteoroids in an effort to reproduce the size-frequency distribution of impact craters and several aspects of the population of the crater fields and multiple-floored craters on Venus. The modeling indicates that it is plausible that the observed rollover in the size-frequency curve for Venus is due entirely to atmospheric effects on incoming meteoroids. However, there must be substantial variation in the density and behavior of incoming meteoroids in the atmosphere. Lower-density meteoroids must be less likely to survive atmospheric passage than simple density differences can account for. Consequently, it is likely that the percentage of craters formed by high-density meteoroids is very high at small crater diameters, and this percentage decreases substantially with increasing crater diameter. Overall, high-density meteoroids created a disproportionately large percentage of the impact craters on Venus. Also, our results indicate that a process such as meteoroid flattening or atmospheric explosion of meteoroids must be invoked to prevent craters smaller than the observed minimum diameter (2 km) from forming. In terms of using the size-frequency distribution to age-date the surface, the model indicates that the observed population has at least 75% of the craters over 32 km in diameter that would be expected on an atmosphereless Venus; thus, this part of the curve is most suitable for comparison with calibrated curves for the Moon.
Plasma motion in the Venus ionosphere: Transition to supersonic flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitten, R.C.; Barnes, A.; McCormick, P.T.
1991-07-01
A remarkable feature of the ionosphere of Venus is the presence of nightward supersonic flows at high altitude near the terminator. In general the steady flow of an ideal gas admits a subsonic-supersonic transition only in the presence of special conditions, such as a convergence of the flow followed by divergence, or external forces. In this paper, the authors show that the relatively high pressure dayside plasma wells up slowly, and at high altitude it is accelerated horizontally through a relatively constricted region near the terminator toward the low-density nightside. In effect, the plasma flows through a nozzle that ismore » first converging, then diverging, permitting the transition to supersonic flow. Analysis of results from previously published models of the plasma flow in the upper ionosphere of Venus shows how such a nozzle is formed. The model plasma does indeed accelerate to supersonic speeds, reaching sonic speed just behind the terminator. The computed speeds prove to be close to those observed by the Pioneer Venus orbiter, and the ion transport rates are sufficient to produce and maintain the nightside ionosphere.« less
Gravitational spreading of Danu, Freyja and Maxwell Montes, Venus
NASA Astrophysics Data System (ADS)
Smrekar, Suzanne E.; Solomon, Sean C.
1991-06-01
The potential energy of elevated terrain tends to drive the collapse of the topography. This process of gravitational spreading is likely to be more important on Venus than on Earth because the higher surface temperature weakens the crust. The highest topography on Venus is Ishtar Terra. The high plateau of Lakshmi Planum has an average elevation of 3 km above mean planetary radius, and is surrounded by mountain belts. Freyja, Danu, and Maxwell Montes rise, on average, an additional 3, 0.5, and 5 km above the plateau, respectively. Recent high resolution Magellan radar images of this area, east of approx. 330 deg E, reveal widespread evidence for gravity spreading. Some observational evidence is described for gravity spreading and the implications are discussed in terms of simple mechanical models. Several simple models predict that gravity spreading should be an important process on Venus. One difficulty in using remote observations to infer interior properties is that the observed features may not have formed in response to stresses which are still active. Several causes of surface topography are briefly examined.
Evolution of a Coronal Mass Ejection from the Sun to Mercury, Venus, Earth and Beyond
NASA Astrophysics Data System (ADS)
Wang, Y.; Shen, C.; Liu, J.; Mengjiao, X.; Guo, J.
2017-12-01
A clear magnetic cloud was observed by Messenger at Mercury. By using coronagraph images from SOHO/LASCO and STEREO/COR and the in-situ data from Wind near the Earth, we estimated its propgation velocity and identified the possible CME candidate in the corona and its counterpart recorded by Venus Express near Venus. By applying the CME's DIPS (Deflection in InterPlanetary Space) model, we show that the CME's arrivals at the three different heliocentric distance can be well reproduced. By extending the trajectory of the CME to the orbitor of Mars, we predict the arrival of the CME at Mars, which is in agreement with a significant Forbush decrease observed by MSL. We use uniformly-twisted force-free flux rope model to fit the in-situ measurements at Mercury, Venus and the Earth to study the evolution of the magnetic flux rope, and find that both axial magnetic flux and twist significantly decreased, suggesting that a significant erosion process was on-going and might change the averaged twist of the magnetic flux rope.
Higher winding strings and confined monopoles in N=2 supersymmetric QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auzzi, R.; Bolognesi, S.; Shifman, M.
2010-04-15
We consider composite string solutions in N=2 SQCD with the gauge group U(N), the Fayet-Iliopoulos term {xi}{ne}0 and N (s)quark flavors. These bulk theories support non-Abelian strings and confined monopoles identified with kinks in the two-dimensional world-sheet theory. Similar and more complicated kinks (corresponding to composite confined monopoles) must exist in the world-sheet theories on composite strings. In a bid to detect them we analyze the Hanany-Tong (HT) model, focusing on a particular example of N=2. Unequal quark mass terms in the bulk theory result in the twisted masses in the N=(2,2) HT model. For spatially coinciding 2-strings, we findmore » three distinct minima of potential energy, corresponding to three different 2-strings. Then we find BPS-saturated kinks interpolating between each pair of vacua. Two kinks can be called elementary. They emanate one unit of the magnetic flux and have the same mass as the conventional 't Hooft-Polyakov monopole on the Coulomb branch of the bulk theory ({xi}=0). The third kink represents a composite bimonopole, with twice the minimal magnetic flux. Its mass is twice the mass of the elementary confined monopole. We find instantons in the HT model, and discuss quantum effects in composite strings at strong coupling. In addition, we study the renormalization group flow in this model.« less
NASA Technical Reports Server (NTRS)
Fox, J. L.
1984-01-01
The vibrational distribution of O2(+) in the atmospheres of Venus and Mars was investigated to compare with analogous values in the Earth's atmosphere. The dipole moment of the Z(2) Pi sub u - X(2) Pi sub g transition of O2(+) is calculated as a function of internuclear distance. The band absorption oscillator strengths and band transition probabilities of the second negative system are derived. The vibrational distribution of O2(+) in the ionosphere of Venus is calculated for a model based on data from the Pioneer Venus neutral mass spectrometer.
Convection-driven tectonics on Venus
NASA Astrophysics Data System (ADS)
Phillips, R. J.
1990-02-01
An analysis is presented of convective stress coupling to an elastic lithosphere as applied to Venus. Theoretical solutions are introduced for the response of a mathematically thick elastic plate overlying a Newtonian viscous medium with an exponential depth dependence of viscosity, and a Green's function solution is obtained for the viscous flow driven by a harmonic density distribution at a specified depth. An elastic-plastic analysis is carried out for the deformation of a model Venus lithosphere. The results predict that dynamic uplift of Venusian topography must be accompanied by extensive brittle failure and viscous flow in the lithosphere.
Brittle strength of basaltic rock masses with applications to Venus
NASA Astrophysics Data System (ADS)
Schultz, R. A.
1993-06-01
Spacecraft images of surfaces with known or suspected basaltic composition on Venus (as well as on moon and Mars) indicate that these rocks have been deformed in the brittle regime to form faults and perhaps joints, in addition to folding and more distributed types of deformation. This paper presents results of detailed examinations and interpretations of Venus surface materials which show that the strengths of basaltic rocks on planetary surfaces and in the shallow subsurface are significantly different from strength values commonly used in tectonic modeling studies which assume properties of either intact rock samples or single planar shear surface.
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Parmentier, E. M.
1990-01-01
Venus lithospheric structure models are presently formulated in which regional isostatic elevation, d, and the spacing wavelength, lambda, of tectonic features formed due to horizontal extension and compression are functions of both surface thermal gradient and crustal thickness c. It is shown that, in areas of Venus where the upper mantle is stronger than the upper crust, the spacings of short-wavelength features should increase with increasing d, if that change in turn is due to increasing c, but should decrease with increasing d, if this change is in turn due to increasing surface thermal gradient.
The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings
NASA Astrophysics Data System (ADS)
Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat
2018-06-01
In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.
NASA Astrophysics Data System (ADS)
Richardson, Jacob; Connor, Charles; Malservisi, Rocco; Bleacher, Jacob; Connor, Laura
2014-05-01
Clusters of tens to thousands of small volcanoes (diameters generally <30 km) are common features on the surface of Mars, Venus, and the Earth. These clusters may be described as distributed-style volcanism. Better characterizing the magmatic plumbing system of these clusters can constrain magma ascent processes as well as the regional magma production budget and heat flux beneath each cluster. Unfortunately, directly observing the plumbing systems of volcano clusters on Mars and Venus eludes our current geologic abilities. Because erosion exposes such systems at the Earth's surface, a better understanding of magmatic processes and migration can be achieved via field analysis. The terrestrial plumbing system of an eroded volcanic field may be a valuable planetary analog for Venus and Mars clusters. The magmatic plumbing system of a Pliocene-aged monogenetic volcanic field, emplaced at 0.8 km depth, is currently exposed as a sill and dike swarm in the San Rafael Desert of Central Utah, USA. The mafic bodies in this region intruded into Mesozoic sedimentary units and now make up the most erosion resistant units as sills, dikes, and plug-like conduits. Light Detection and Ranging (LiDAR) can identify volcanic units (sills, dikes, and conduits) at high resolution, both geomorphologically and with near infrared return intensity values. Two Terrestrial LiDAR Surveys and an Airborne LiDAR Survey have been carried out over the San Rafael volcanic swarm, producing a three dimensional point cloud over approximately 36 sq. km. From the point clouds of these surveys, 1-meter DEMs are produced and volcanic intrusions have been mapped. Here we present reconstructions of the volcanic instrusions of the San Rafael Swarm. We create this reconstruction by extrapolating mapped intrustions from the LiDAR surveys into a 3D space around the current surface. We compare the estimated intrusive volume to the estimated conduit density and estimates of extrusive volume at volcano clusters of similar density. The extrapolated reconstruction and conduit mapping provide a first-order estimate of the final intrustive/extrusive volume ratio for the now eroded volcanic field. Earth, Venus and Mars clusters are compared using Kernel Density Estimation (KDE) , which objectively compares cluster area, complexity, and vent density per sq. km. We show that Martian clusters are less dense than Venus clusters, which in turn are less dense than those on Earth. KDE and previous models of intrusive morphology for Mars and Venus are here used to calibrate the San Rafael plumbing system model to clusters on the two planets. The results from the calibrated Mars and Venus plumbing system models can be compared to previous estimates of magma budget and intrusive/extrusive ratios on Venus and Mars.
Accurate free and forced rotational motions of rigid Venus
NASA Astrophysics Data System (ADS)
Cottereau, L.; Souchay, J.; Aljbaae, S.
2010-06-01
Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.
Effects of a Weak Planetary Field on a Model Venus Ionosphere
NASA Astrophysics Data System (ADS)
Luhmann, Janet G.; Ma, Yingjuan; Villarreal, Michaela
2014-05-01
There are a number of attributes of the near-Venus space environment and upper atmosphere that remain mysterious, including occasional large polar magnetic field stuctures seen on VEX and nightside ionospheric holes seen on PVO. We have been exploring the consequences of a weak global dipole magnetic field of Venus using results of BATS-R-US MHD simulations. An advantage of these models is that they include the effects on a realistic ionosphere. We compare some of the weak magnetosphere's ionospheric properties with the typical unmagnetized ionsphere case. The results show the differences can be quite subtle for dipole fields less than ~10 nT at the equator, as might be expected. Nevertheless the dipole fields do produce distinctive details, especially in the upper regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, William; Wong, Gabriel
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less
Gravitational waves and cosmic strings
NASA Astrophysics Data System (ADS)
Siemens, Xavier
2002-08-01
Cosmic strings are potential candidates for a variety of interesting cosmological phenomena such as gamma ray bursts, gravitational wave bursts and ultra high energy cosmic rays. The predictions of cosmic string models, however, depend sensitively on the so far unresolved question of the size of the small-scale structure. This thesis deals largely with this problem. First, I present a gravitational back-reaction model that assumes the interaction between all Fourier modes that make up a given perturbation on a long cosmic string. This calculation leads to the generally accepted value of the small scale structure cutoff. It also, however, leads to paradoxical behaviour when applied to two oppositely moving modes: As one of the modes is stretched conformally the gravitational power radiated approaches a constant. This result is in contradiction with our expectation for the straight string limit in which no power is radiated. A more careful investigation of this problem reveals that, in the case of two oppositely moving modes, the gravitational power is exponentially suppressed when the wavelengths of the modes are sufficiently different. I use this result to construct an improved gravitational back-reaction model in which modes of very different wavelengths do not interact. This model leads to a new small scale structure cutoff which is sensitive to the initial spectrum of perturbations present on the string. I also tentatively examine the consequences of this result for the evolution of cosmic string loops. Finally, I investigate the effect of the presence of small scale structure on the gravitational wave-bursts produced at cosmic string cusps.
Impact-induced atmospheres and oceans on earth and Venus
NASA Technical Reports Server (NTRS)
Matsui, T.; Abe, Y.
1986-01-01
The effects of planetesimal-impact induced atmosphere formation on the earth and Venus are modeled to gain an indication why the two planets, at relatively equal distances from the sun, evolved so differently. Both planets gained approximately 10 to the 21 kg of water from the impacts. The water mass of the accreting planetesimals would have remained, initially, as a hot atmosphere. A two-stream approximation is defined for the temperature profile of a plane parallel atmosphere in radiative equilibrium. It is shown that the Venus atmosphere did not, as happened on earth, condense into a hot ocean after the impact epoch. Instead, the greenhouse effect caused the Venus equilibrium thermal structure to remain higher than the vapor pressure, keepinig the atmosphere in a vapor phase until the vapor dissociated and H2 atoms eventually escaped into space.
NASA Technical Reports Server (NTRS)
Fahd, Antoine K.; Steffes, Paul G.
1992-01-01
Laboratory measurements have been conducted of the opacity of gaseous SO2 in a CO2 atmosphere at 12.3 cm, 1.32 cm, and 0.32 cm, with a view to the effects of this gas on the mm-wave emission of the Venus atmosphere. Close agreement is noted between the results obtained and the absorptivity predicted from a Van Vleck-Weisskopf formalism at the two shortest wavelengths, but not at the longest. These results have been incorporated into a radiative transfer model in order to infer an abundance profile for gaseous SO2 in Venus' middle atmosphere, and are also used to ascertain the effects of a SO2/CO2 gaseous mixture on the mm-wavelength spectrum of Venus.
Lithospheric Subduction on Earth and Venus?
NASA Astrophysics Data System (ADS)
Sandwell, D. T.; Garcia, E.; Stegman, D. R.; Schubert, G.
2016-12-01
There are three mechanisms by which terrestrial planets can shed excess heat: conduction across a surface thermal boundary layer; advection of heat through volcanic pipes; and mobile plates/subduction. On the Earth about 30% is released by conduction and 70% by subduction. The dominant mode of heat transport on Venus is largely unknown. Plate flexure models rule out significant heat loss by conduction and the resurfacing from active volcanism is in discordance with a surface age of 600 Ma. There are 9000 km of trenches on Venus that may have been subduction sites but they do not appear active today and are only 25% of the length of the subduction zones on the Earth. Turcotte and others have proposed an episodic recycling model that has short bursts ( 150 Ma) of plate tectonic activity followed by long periods ( 450 Ma) of stagnant lid convection. This talk will review the arguments for and against subduction zones on Venus and discuss possible new satellite observations that could help resolve the subduction issue. Figure Caption. (a) Global mosaic of Magellan SAR imagery. (b) Zoom of area along the Artemis trench, which has similar topography and fracture patterns as the Aleutian subduction zone on Earth. Trench and outer rise lines were digitized from the matching topography image (not shown). The Magellan SAR imagery and topography, displayed on Google Earth, can be downloaded at http://topex.ucsd.edu/venus/index.html
String junction as a baryonic constituent
NASA Astrophysics Data System (ADS)
Kalashnikova, Yu. S.; Nefediev, A. V.
1996-02-01
We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction. We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.
Diffusion of massive particles around an Abelian-Higgs string
NASA Astrophysics Data System (ADS)
Saha, Abhisek; Sanyal, Soma
2018-03-01
We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.
Wilsonian dark matter in string derived Z' model
NASA Astrophysics Data System (ADS)
Delle Rose, L.; Faraggi, A. E.; Marzo, C.; Rizos, J.
2017-09-01
The dark matter issue is among the most perplexing in contemporary physics. The problem is more enigmatic due to the wide range of possible solutions, ranging from the ultralight to the supermassive. String theory gives rise to plausible dark matter candidates due to the breaking of the non-Abelian grand unified theory (GUT) symmetries by Wilson lines. The physical spectrum then contains states that do not satisfy the quantization conditions of the unbroken GUT symmetry. Given that the Standard Model states are identified with broken GUT representations, and provided that any ensuing symmetry breakings are induced by components of GUT states, a remnant discrete symmetry remains that forbids the decay of the Wilsonian states. A class of such states are obtained in a heterotic-string-derived Z' model. The model exploits the spinor-vector duality symmetry, observed in the fermionic Z2×Z2 heterotic-string orbifolds, to generate a Z'∈E6 symmetry that may remain unbroken down to low energies. The E6 symmetry is broken at the string level with discrete Wilson lines. The Wilsonian dark matter candidates in the string-derived model are S O (10 ), and hence Standard Model, singlets and possess non-E6 U(1)Z' charges. Depending on the U(1)Z' breaking scale and the reheating temperature they give rise to different scenarios for the relic abundance, and are in accordance with the cosmological constraints.
Retrieval of Venus' cloud parameters from VIRTIS nightside spectra in the latitude band 25°-55°N
NASA Astrophysics Data System (ADS)
Magurno, Davide; Maestri, Tiziano; Grassi, Davide; Piccioni, Giuseppe; Sindoni, Giuseppe
2017-09-01
Two years of data from the M-channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS), on board the European Space Agency mission Venus Express operating around the planet Venus, are analysed. Nocturnal data from a nadir viewpoint in the latitude band 25°N-55°N are selected for their configuration advantages and maximisation of the scene homogeneity. A reference model, and radiance spectrum, is defined based on average accepted values of the Venus main atmospheric and cloud parameters found in the literature. Extensive radiative transfer simulations are performed to provide a synthetic database of more than 10 000 VIRTIS radiances representing the natural variability of the system parameters (atmospheric temperature profile, cloud H2Osbnd H2SO4 solution concentration and vertical distribution, particle size distribution density and modal radius). A simulated-observed fitting algorithm of spectral radiances in window channels, based on a weighting procedure accounting for the latitudinal observed radiance variations, is used to derive the best atmosphere-cloud configuration for each observation. Results show that the reference Venus model does not adequately reproduce the observed VIRTIS spectra. In particular, the model accounting for a constant sulphuric acid concentration along the vertical extent of the clouds is never selected as a best fit. The 75%/96% and 84%/96% concentrations (the first values refer to the upper cloud layers and the second values to the lower ones) are the most commonly retrieved models representing more than 85% of the retrieved cases for any latitudinal band considered. It is shown that the assumption of stratified concentration of aqueous sulphuric acid allows to adequately fit the observed radiance, in particular the peak at 1.74 μm and around 4 μm. The analysis of the results concerning the microphysics suggests larger radii for the upper cloud layers in conjunction with a large reduction of their number density with respect to the reference standard. Considerable variation of the particle concentration in the Venus' atmosphere is retrieved for altitudes between 60 and 70 km. The retrieved models also suggest that lower cloud layers have smaller particle radii and larger number density than expected from the reference model. Latitudinal variations of microphysical and chemical parameters are also analysed.
Non-perturbative effects and wall-crossing from topological strings
NASA Astrophysics Data System (ADS)
Collinucci, Andrés; Soler, Pablo; Uranga, Angel M.
2009-11-01
We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d Script N = 2 IIB models. We also discuss the reduction to 4d Script N = 1 by fluxes and/or orientifolds and/or D-branes, and the prospects to resum brane instanton contributions to non-perturbative superpotentials. We argue that the connection between non-perturbative effects and the topological string underlies the continuity of non-perturbative effects across lines of BPS stability. We also confirm this statement in mirror B-model matrix model examples, relating matrix model instantons to non-perturbative D-brane instantons. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, reminiscent of that involved in the physical derivation of the Kontsevich-Soibelmann wall-crossing formula.
The SPICAV-SOIR instrument probing the atmosphere of Venus: an overview
NASA Astrophysics Data System (ADS)
Trompet, Loïc; Mahieux, Arnaud; Wilquet, Valérie; Robert, Séverine; Chamberlain, Sarah; Thomas, Ian; Carine Vandaele, Ann; Bertaux, Jean-Loup
2016-04-01
The Solar Occultation in the Infrared (SOIR) channel mounted on top of the SPICAV instrument of the ESA's Venus Express mission has observed the atmosphere of Venus during more than eight years. This IR spectrometer (2.2-4.3 μm) with a high spectral resolution (0.12 cm-1) combined an echelle grating with an acousto-optic tunable filter for order selection. SOIR performed more than 1500 solar occultation measurements leading to about two millions spectra. The Royal Belgian Institute for Space Aeronomy (BIRA-IASB) was in charge of SOIR's development and operations as well as its data pipeline. BIRA-IASB carried out several studies on the composition of Venus mesosphere and lower thermosphere: carbon dioxide, carbon monoxide, hydrogen halide (HF, HCl, DF, DCl), sulfur dioxide, water (H2O, HDO) as well as sulphuric acid aerosols in the upper haze of Venus. Density and temperature profiles of the upper atmosphere of Venus (60 km to 170 km) at the terminator have been retrieved from SOIR's spectra using different assumptions, wherein the hydrostatic equilibrium and the local thermodynamical equilibrium in the radiative transfer calculations. These results allow us to produce an Atmospheric model of Venus called Venus Atmosphere from SOIR measurements at the Terminator (VAST). Data obtained by SOIR will also contribute to update the Venus International Reference Atmosphere (VIRA). Recently, the treatment of the raw data to transmittance has been optimized, and a new dataset of spectra has been produced. All raw spectra (PSA level 2) as well as calibrated spectra (PSA level 3) have been delivered to ESA's Planetary Science Archive (PDSPSA). Consequently the re-analysis of all spectra has been undergone. We will briefly present the improvements implemented in the data pipeline. We will also show a compilation of results obtained by the instrument considering the complete mission duration.
Venus' Chasmata and Earth's Spreading Centers: A Topographic Comparison
NASA Astrophysics Data System (ADS)
Stoddard, P. R.; Jurdy, D. M.
2008-12-01
Like the Earth, Venus has a global rift system, which has been cited as evidence of tectonic activity, despite the apparent lack of Earth-style plate tectonics. Both systems are marked by large ridges, usually with central grabens. On Earth, the topography of the rifts can be modeled well by a cooling half-space and the spreading of two divergent plates. The origin of the topographic signature on Venus, however, remains enigmatic. Venus' rift zones (termed "chasmata") can be fit by four great circle arcs extending 1000s of kilometers. The Venus chasmata system measures 54,464 km, which when corrected for the smaller size of the planet, nearly matches the 59,200-km total length of the spreading ridges determined for Earth. As on Earth, the chasmata with the greatest relief (7 km in just a 30-km run for Venus) represent the most recent tectonic activity. We use topographic profiles to look for well-understood terrestrial analogs to Venusian features. Focusing on mid-ocean ridge systems on Earth, we examine the variation along individual ridges, or rises, due to the gradual change in spreading rate (and thus cooling times). We then analyze the difference between fast and slow ridges, and propose that this technique may also be used to pick plate boundaries along spreading centers (SAM/AFR vs. NAM/AFR, e.g.). These profiles are then compared to those for Venus' rifts. Topographic profiles are based on the Magellan (Venus) and ETOPO5 (Earth) data sets. Long wavelength features appear similar to spreading systems on Earth, suggesting a deep, thermal cause. Short wavelength features, such as rift troughs and constructional edifices, are quite different, however, as expected from the vastly different surface conditions. Comparison of topographic profiles from Venus and Earth may lend insight into tectonic features and activity on our sister planet.
Volatile Element Geochemistry in the Lower Atmosphere of Venus
NASA Technical Reports Server (NTRS)
Schaefer, L.; Fegley, B., Jr.
2004-01-01
We computed equilibrium abundances of volatile element compounds as a function of altitude in Venus lower atmosphere. The elements included are generally found in volcanic gases and sublimates on Earth and may be emitted in volcanic gases on Venus or volatilized from its hot surface. We predict: 1) PbS, Bi2S3, or possibly a Pb-Bi sulfosalt are the radar bright heavy metal frost in the Venusian highlands; 2) It should be possible to determine Venus' age by Pb-Pb dating of PbS condensed in the Venusian highlands, which should be a representative sample of Venusian lead; 3) The gases HBr, PbCl2, PbBr2, As4O6, As4S4, Sb4O6, BiSe, InBr, InCl, Hg, TlCl, TlBr, SeS, Se2-7, HI, I, I2, ZnCl2, and S2O have abundances greater than 0.1 ppbv in our nominal model and may be spectroscopically observable; 4) Cu, Ag, Au, Zn, Cd, Ge, and Sn are approx. 100 % condensed at the 740 K (0 km) level on Venus.
Radio Sounding of the Martian and Venusian Ionospheres
NASA Astrophysics Data System (ADS)
Paetzold, M.; Haeusler, B.; Bird, M. K.; Peter, K.; Tellmann, S.; Tyler, G. L.; Withers, P.
2011-12-01
The Mars Express Radio Science Experiment MaRS and the radio science experiment Vera on Venus Express sound the ionospheres of Mars and Venus, respectively, at two frequencies in the microwave band and cover altitudes from the base of the ionosphere at 80 km (100 km at Venus) to the ionopause at altitudes between 300 km and 600 km. In general, both ionospheres consists of a lower layer M1 (V1 at Venus) at about 110 km (115 km), and the main layer M2 (V2) at about 135 km (145 km) altitude, both formed mainly by solar radiation at X-ray and EUV, respectively. The specific derivation and interpretation of the vertical electron density profiles at two radio frequencies from radio sounding is demonstrated in detail. Cases of quiet and disturbed ionospheric electron density profiles and cases of potential misinterpretations are presented. The behavior of the peak densities and peak altitudes of both ionospheres as a function of solar zenith angle and phase of the solar cycle as seen with Mars Express and Venus Express will be compared with past observations, models and conclusions.
NASA Technical Reports Server (NTRS)
Head, James W.; Parmentier, E. M.; Hess, P. C.
1993-01-01
Observations from Magellan show that: (1) the surface of Venus is generally geologically young, (2) there is no evidence for widespread recent crustal spreading or subduction, (3) the crater population permits the hypothesis that the surface is in production, and (4) relatively few impact craters appear to be embayed by volcanic deposits suggesting that the volcanic flux has drastically decreased as a function of time. These observations have led to consideration of hypotheses suggesting that the geological history of Venus may have changed dramatically as a function of time due to general thermal evolution, and/or thermal and chemical evolution of a depleted mantle layer, perhaps punctuated by catastrophic overturn of upper layers or episodic plate tectonics. We have previously examined the geological implications of some of these models, and here we review the predictions associated with two periods of Venus history. Stationary thick lithosphere and depleted mantle layer, and development of regional to global development of regional to global instabilities, and compare these predictions to the geological characteristics of Venus revealed by Magellan.
Windblown Features on Venus and Geological Mapping
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
The objectives of this study were to: 1) develop a global data base of aeolian features by searching Magellan coverage for possible time-variable wind streaks, 2) analyze the data base to characterize aeolian features and processes on Venus, 3) apply the analysis to assessments of wind patterns near the surface and for comparisons with atmospheric circulation models, 4) analyze shuttle radar data acquired for aeolian features on Earth to determine their radar characteristics, and 5) conduct geological mapping of two quadrangles. Wind, or aeolian, features are observed on Venus and aeolian processes play a role in modifying its surface. Analysis of features resulting from aeolian processes provides insight into characteristics of both the atmosphere and the surface. Wind related features identified on Venus include erosional landforms (yardangs), depositional dune fields, and features resulting from the interaction of the atmosphere and crater ejecta at the time of impact. The most abundant aeolian features are various wind streaks. Their discovery on Venus afforded the opportunity to learn about the interaction of the atmosphere and surface, both for the identification of sediments and in mapping near-surface winds.
Modeling Harpsichord Plucking: The Plectrum and the String
NASA Astrophysics Data System (ADS)
Perng, Jack; Rossing, Thomas; Smith, Julius
2011-11-01
The harpsichord is a plucked string keyboard instrument that was popular during the Renaissance and Baroque music eras. Although it was later replaced by the more expressive piano, it has mounted a comeback due to the early music movement today. A physical model of the harpsichord's plucking mechanism is presented, detailing the plectrum-string interaction which illustrates many aspects of the harpsichord's characteristic sound.
Background heatflow on hotspot planets - Io and Venus
NASA Technical Reports Server (NTRS)
Stevenson, David J.; Mcnamara, Sean C.
1988-01-01
It is suggested that there is no simple relationship between lithospheric thickness and heatflow on planets where volcanism dominates the heatflow. This applies locally and globally, even away from regions of volcanic activity. This indicates that there is no basis for the assumption that the Io heatflow is as low as (or lower than) the hotspot component alone would suggest. A model is presented to describe the heatflow on hotspot planets. The model is applied to Io and Venus.
Note on tachyon moduli and closed strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro da Cunha, Bruno
2008-07-15
The collective behavior of the SL(2,R) covariant brane states of noncritical c=1 string theory, found in a previous work, is studied in the Fermi liquid approximation. It is found that such states mimic the coset WZW model, whereas only by further restrictions one recovers the double-scaling limit which was purported to be equivalent to closed string models. Another limit is proposed, inspired by the tachyon condensation ideas, where the spectrum is the same of two-dimensional string theory. We close by noting some strange connections between vacuum states of the theory in their different interpretations.
{Γ}-Convergence Analysis of a Generalized XY Model: Fractional Vortices and String Defects
NASA Astrophysics Data System (ADS)
Badal, Rufat; Cicalese, Marco; De Luca, Lucia; Ponsiglione, Marcello
2018-03-01
We propose and analyze a generalized two dimensional XY model, whose interaction potential has n weighted wells, describing corresponding symmetries of the system. As the lattice spacing vanishes, we derive by {Γ}-convergence the discrete-to-continuum limit of this model. In the energy regime we deal with, the asymptotic ground states exhibit fractional vortices, connected by string defects. The {Γ}-limit takes into account both contributions, through a renormalized energy, depending on the configuration of fractional vortices, and a surface energy, proportional to the length of the strings. Our model describes in a simple way several topological singularities arising in Physics and Materials Science. Among them, disclinations and string defects in liquid crystals, fractional vortices and domain walls in micromagnetics, partial dislocations and stacking faults in crystal plasticity.
Investigating the Geophysics of Venus: Result of the post-Alpbach Summer School 2014
NASA Astrophysics Data System (ADS)
Koopmans, Robert-Jan; Łosiak, Anna; Białek, Agata; Donohoe, Anthony; Fernández Jiménez, María; Frasl, Barbara; Gurciullo, Antonio; Kleinschneider, Andreas; Mannel, Thurid; Muñoz Elorza, Iñigo; Nilsson, Daniel; Oliveira, Marta; Sørensen-Clark, Paul; Timoney, Ryan; van Zelst, Iris
2015-04-01
Venus has been investigated by only five dedicated mission programs since the beginning of space flight. This relatively low level of interest is remarkable when considering that mass and radius of Venus are very similar to Earth's, while at the same time characteristics such as spin rate, atmospheric composition, pressure and temperature, make Venus a very different, inhabitable world. The underlying causes of these differences are not well understood. Apprehending Venus' tectonics and internal structure would not only shed light on the question why those two planets evolved so differently, but also help refining current models of planetary systems formation. In order to answer the question about reasons for differences in evolution of those two planets a group of 15 young scientists and engineers designed a mission to Venus during a follow-up of the Alpbach Summer School 2014. The primary objective of this mission is to learn whether Venus is tectonically active and on what time scale. In order to accomplish this goal the mission will determine the crustal structure of Venus, the current activity and distribution of active volcanoes and the movement of continental plates. The secondary objective is to further constrain the models of Venus' internal structure and composition. To achieve this, the mission will investigate the size, state and composition of the core as well as the state and composition of the mantle. The proposed mission consists of an orbiter in a near-polar circular orbit around Venus and a balloon for in-situ measurements operating during the initial phase of the mission. The balloon carries a nephelometer, a magnetometer, a mass spectrometer and stereo microphones and meteorological package. The orbiter carries a gradiometer for determining the gravity field, a synthetic aperture radar for investigating small changes in surface topography and mapping microwave signals from the surface and an IR and UV spectrometer and IR camera for monitoring heat signatures from volcanoes. By using the previous landers as reference points it will also be possible to accurately determine the spin rate with the radar. The nominal mission duration is planned to be five years starting from the release of the balloon. The balloon will operate for 25 days during which it oscillates vertically in the atmosphere between an altitude of 40 and 60 kilometres in a period of about six hours. At the same time, due to prevailing wind directions on Venus, it will gradually spiral from the equator towards higher latitudes. During the balloon science phase the orbiter will be in an elliptical orbit to maximise the time of visibility of the balloon with the orbiter. After this phase, the orbiter will be brought into a circular orbit at an altitude of 250 kilometres. To save fuel, apoapsis lowering will be achieved by aerobreaking in Venus' atmosphere. In the presentation further details about the mission timeline will be given. Particular engineering problems such as thermal control and data communication and the proposed solutions will be presented.
Present Status of Janaese Venus Climate Orbiter
NASA Astrophysics Data System (ADS)
Nakamura, M.; Imamura, T.; Ishii, N.; Satoh, T.; Abe, T.; Ueno, M.; Suzuki, M.; Yamazaki, A.
2007-08-01
The start of the Japanese Venus Exploration program was in 2001, and last year (2006) we moved it to Phase C after PDR in August.We would like to report the present status of our Venus Climate Orbiter. Planet-C is the project name in ISAS/JAXA. The launch vehicle is changed from M-V to H-IIA. It will be launched from Tanegashima Space Center (TNSC) in Kagoshima. With this modification, we changed some minor design of the spacecraft and the total weight is slightly heavier than before, but the basic design has not been modified. The launch window will be kept in summer in 2010 and it will arrive at Venus in December 2010. The spacecraft will be directly put into the interplanetary orbit. Now we are preparing the Mechanical and Thermal engineering Model (MTM) which will end in middle of 2007 and will shake it and do the thermal vacuum test. Later this model will be modified to the flight model and the final integration test will be in 2009 which takes 1 year. Development of all the science instruments are going well. The first integration test of science instruments will be in August this year. We can report the results of it in the meeting.
Spontaneous knotting of an agitated string.
Raymer, Dorian M; Smith, Douglas E
2007-10-16
It is well known that a jostled string tends to become knotted; yet the factors governing the "spontaneous" formation of various knots are unclear. We performed experiments in which a string was tumbled inside a box and found that complex knots often form within seconds. We used mathematical knot theory to analyze the knots. Above a critical string length, the probability P of knotting at first increased sharply with length but then saturated below 100%. This behavior differs from that of mathematical self-avoiding random walks, where P has been proven to approach 100%. Finite agitation time and jamming of the string due to its stiffness result in lower probability, but P approaches 100% with long, flexible strings. We analyzed the knots by calculating their Jones polynomials via computer analysis of digital photos of the string. Remarkably, almost all were identified as prime knots: 120 different types, having minimum crossing numbers up to 11, were observed in 3,415 trials. All prime knots with up to seven crossings were observed. The relative probability of forming a knot decreased exponentially with minimum crossing number and Möbius energy, mathematical measures of knot complexity. Based on the observation that long, stiff strings tend to form a coiled structure when confined, we propose a simple model to describe the knot formation based on random "braid moves" of the string end. Our model can qualitatively account for the observed distribution of knots and dependence on agitation time and string length.
Study of Venus' cloud layers by polarimetry using SPICAV/VEx
NASA Astrophysics Data System (ADS)
Rossi, Loïc; Marcq, Emmanuel; Montmessin, Franck; Bertaux, Jean-Loup; Korablev, Oleg; Fedorova, Anna
2013-04-01
The study of Venus's cloud layers is important in order to understand the structure, radiative balance and dynamics of the Venusian atmosphere. The main cloud layers between 50 and 70km are thought to consist in ~ 1μm radius droplets of a H2SO4-H2O solution. Nevertheless, the composition and the size distribution of the droplets are difficult to constrain more precisely. The polarization measurements have given great results in the determination of the constituents of the haze. In the early 1980s, Kawabata et al.(1980) used the polarization data from the OCPP instrument on the spacecraft Pioneer Venus to constrain the properties of the haze. They obtained a refractive index of 1.45 ± 0.04 at ? = 550nm and an effective radius of 0.23 ± 0.04μm, with a normalized size distribution variance of 0.18 ± 0.1. Our work aims to reproduce the method used by Kawabata et al. by writing a Lorentz-Mie scattering model and apply it to the so far unexploited polarization data of the SPICAV-IR instrument on-board ESA's Venus Express in order to better constrain haze and cloud particles at the top of Venus's clouds, as well as their spatial and temporal variability. We introduce here the model we developed, based on the BH-MIE scattering model. Taking into account the same size distribution of droplets as Kawabata et al., we obtained the polarization degree after a single Mie scattering by a haze at all phase angles given the effective radius and variance of the distribution and the refractive index of the droplets. Our model seems consistent as it reproduces the polarization degree modeled by Kawabata et al. We also present the first application of our model to the SPICAV-IR data under the single scattering assumption. Hence we can confirm the mean constraints on the size and refractive index of the haze and cloud droplets. In the near future, we then aim to extend our study of the polarization data by integrating our model into a radiative transfer model which will take into account the multiple scattering. Having more recent observations in wavelengths ranging from 650 to 1625nm, will put better constraints on the properties of both cloud and haze particles, with a primary focus on the cloud droplets characterization. Bibliography: BOHREN, C. F. AND HUMAN, D.R., in Absorption and Scattering of light by small particles, Wiley, 1983 KAWABATA, K. et al., Cloud and haze properties from Pioneer Venus Polarimetry, JGR, 1980
Venus as a laboratory for studying planetary surface, interior, and atmospheric evolution
NASA Astrophysics Data System (ADS)
Smrekar, S. E.; Hensley, S.; Helbert, J.
2013-12-01
As Earth's twin, Venus offers a laboratory for understanding what makes our home planet unique in our solar system. The Decadal Survey points to the role of Venus in answering questions such as the supply of water and its role in atmospheric evolution, its availability to support life, and the role of geology and dynamics in controlling volatiles and climate. On Earth, the mechanism of plate tectonics drives the deformation and volcanism that allows volatiles to escape from the interior to the atmosphere and be recycled into the interior. Magellan revealed that Venus lacks plate tectonics. The number and distribution of impact craters lead to the idea Venus resurfaced very rapidly, and inspired numerous models of lithospheric foundering and episodic plate tectonics. However we have no evidence that Venus ever experienced a plate tectonic regime. How is surface deformation affected if no volatiles are recycled into the interior? Although Venus is considered a ';stagnant' lid planet (lacking plate motion) today, we have evidence for recent volcanism. The VIRTIS instrument on Venus Express mapped the southern hemisphere at 1.02 microns, revealing areas likely to be unweathered, recent volcanic flows. Additionally, numerous studies have shown that the crater population is consistent with ongoing, regional resurfacing. How does deformation and volcanism occur in the absence of plates? At what rate is the planet resurfacing and thus outgassing? Does lithospheric recycling occur with plate tectonics? In the 25 years since Magellan, the design of Synthetic Aperture Radar has advanced tremendously, allowing order of magnitude improvements in altimetry and imaging. With these advanced tools, we can explore Venus' past and current tectonic states. Tesserae are highly deformed plateaus, thought to be possible remnants of Venus' earlier tectonic state. How did they form? Are they low in silica, like Earth's continents, indicating the presence of abundant water? Does the plains volcanism cover an earlier tectonic surface, or perhaps cover ancient impact basins? Was there an abrupt transition in tectonic style, perhaps due to degassing of the crust or a more gradual shift? What is the nature of Venus' modern tectonics? Is the lithosphere still deforming? Is there recent or active volcanism? Is volcanism confined to hotspots, areas above mantle plumes? Has plains volcanism ceased? What are the implications for volatile history? These questions can be addressed via a combination of high resolution altimetry, imaging, and surface emissivity mapping.
Zörnig, Peter
2015-08-01
We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.
Scaling properties of cosmic (super)string networks
NASA Astrophysics Data System (ADS)
Martins, C. J. A. P.
2014-10-01
I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.
Charged string loops in Reissner-Nordström black hole background
NASA Astrophysics Data System (ADS)
Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk
2018-03-01
We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.
First LIGO search for gravitational wave bursts from cosmic (super)strings
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.; Robinet, F.
2009-09-01
We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models. Many grand unified theory-scale models (with string tension Gμ/c2≈10-6) can be ruled out at 90% confidence for reconnection probabilities p≤10-3 if loop sizes are set by gravitational back reaction.
Constraints on cosmic strings using data from the first Advanced LIGO observing run
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steer, D. A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-05-01
Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension G μ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.
Global hybrid simulation of the solar wind interaction with the dayside of Venus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K.R.; Thomas, V.A.; McComas, D.J.
1991-05-01
The authors present a 3-dimensional global hybrid simulation of the interaction of the solar wind with the entire dayside of Venus. The model obstacle is half the size of Venus, and planetary ion mass loading is included self-consistently. Results are compared to observations as well as to results from gasdynamic convected field modeling. Magnetic field magnitudes and bulk flow speeds along the planet-Sun line are comparable in both models, but only the hybrid model reproduces the experimentally observed magnetic barrier proton density depletions. The finite gyroradius of the planetary pickup ions causes a number density asymmetry in the direction ofmore » the convective ({minus}V {times} B) electric field, as predicted and observed. Mass addition consistent with photoionization of the planetary neutral hot oxygen corona has little effect on the geometry of the shock, including the subsolar and terminator shock altitudes. Mass addition rates well in excess of likely values are required to significantly affect the model shock geometry. The hybrid model results imply that oxygen ions originating deep within the dayside Venus magnetic barrier are nearly fluidlike while oxygen ions produced higher on the dayside, at much lower densities, behave more as test particles. Gasdynamic modeling incorporating both fluid and test particle mass addition reproduces the O{sup +} terminator escape flux (a few times 10{sup 24} s{sup {minus}1}) found in the hybrid model and inferred from observations, but underestimates the escape region spatial extent. The hybrid model predictions include a shock asymmetry dependent on the upstream IMF orientation, asymmetries in the magnetic barrier position and field magnitude, an asymmetry in pickup ion speed altitude profiles, and a finite gyroradius effect asymmetry in pickup ion number density caused by field draping.« less
Power suppression at large scales in string inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflationmore » is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.« less
Power suppression at large scales in string inflation
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.
Kliore, A J; Woo, R; Armstrong, J W; Patel, I R; Croft, T A
1979-02-23
Fourteen profiles of electron density in the ionosphere of Venus were obtainecd by the dual-frequency radio occulation method with the Pioneer Venus orbiter between 5 and 30 December 1978. The solar zenith angles for these measurements were between about 85 degrees and 92 degrees , and the latitudes ranged from about 81 degrees to 88 degrees (ecliptic north). In addition to the expected decreasein peak electron density from about 1.5 x 10(3) to 0.5 x 10(3) per cubic centimeter with increasing solar zenith angle, a region of almost constant electron density above about 250 kilometers was observed. The ionopause height varies from about 300 to 700 kilometers and seems to be influenced by diurnal changes in solar wind conditions. The structures of the profiles are consistent with models in which O(2)(+) dominates near the ionization peak and is replaced by O(+) at higher altitudes.
Ion dynamics in the Venus ionosphere
NASA Astrophysics Data System (ADS)
Miller, K. L.; Whitten, R. C.
1991-02-01
Measurement data on the ion velocity in the Venus ionosphere (mainly from the Pioneer Venus Orbiter Retarding Potential Analyzer) are summarized, and theoretical models developed to explain them are reviewed. Data and theoretical predictions are compared in extensive graphs and diagrams and discussed in detail. It is shown that the predominant flow is away from the subsolar point, at up to 3 km/sec in the terminator region. A model of axisymmetric flow based on momentum, energy, and mass conservation laws is found to reproduce the observed ion velocities at solar zenith angles less than about 140 deg, but not the high velocities and chaotic behavior seen near the antisolar point. Also discussed are significant differences between the flow above and below about 400 km and the effects of changes in the dynamic pressure of the solar wind.
The brightness temperature of Venus and the absolute flux-density scale at 608 MHz.
NASA Technical Reports Server (NTRS)
Muhleman, D. O.; Berge, G. L.; Orton, G. S.
1973-01-01
The disk temperature of Venus was measured at 608 MHz near the inferior conjunction of 1972, and a value of 498 plus or minus 33 K was obtained using a nominal CKL flux-density scale. The result is consistent with earlier measurements, but has a much smaller uncertainty. Our theoretical model prediction is larger by a factor of 1.21 plus or minus 0.09. This discrepancy has been noticed previously for frequencies below 1400 MHz, but was generally disregarded because of the large observational uncertainties. No way could be found to change the model to produce agreement without causing a conflict with well-established properties of Venus. Thus it is suggested that the flux-density scale may require an upward revision, at least near this frequency, in excess of what has previously been considered likely.
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Klenke, D.; Trudinger, B. C.; Spreiter, J. R.
1980-01-01
Computational procedures are developed and applied to the prediction of solar wind interaction with nonmagnetic terrestrial planet atmospheres, with particular emphasis to Venus. The theoretical method is based on a single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of axisymmetric, supersonic, super-Alfvenic solar wind flow past terrestrial planets. The procedures, which consist of finite difference codes to determine the gasdynamic properties and a variety of special purpose codes to determine the frozen magnetic field, streamlines, contours, plots, etc. of the flow, are organized into one computational program. Theoretical results based upon these procedures are reported for a wide variety of solar wind conditions and ionopause obstacle shapes. Plasma and magnetic field comparisons in the ionosheath are also provided with actual spacecraft data obtained by the Pioneer Venus Orbiter.
The Hubble Web: The Dark Matter Problem and Cosmic Strings
NASA Astrophysics Data System (ADS)
Alexander, Stephon
2009-07-01
I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.
NASA Astrophysics Data System (ADS)
Limaye, Sanjay S.; Lebonnois, Sebastien; Mahieux, Arnaud; Pätzold, Martin; Bougher, Steven; Bruinsma, Sean; Chamberlain, Sarah; Clancy, R. Todd; Gérard, Jean-Claude; Gilli, Gabriella; Grassi, Davide; Haus, Rainer; Herrmann, Maren; Imamura, Takeshi; Kohler, Erika; Krause, Pia; Migliorini, Alessandra; Montmessin, Franck; Pere, Christophe; Persson, Moa; Piccialli, Arianna; Rengel, Miriam; Rodin, Alexander; Sandor, Brad; Sornig, Manuela; Svedhem, Håkan; Tellmann, Silvia; Tanga, Paolo; Vandaele, Ann C.; Widemann, Thomas; Wilson, Colin F.; Müller-Wodarg, Ingo; Zasova, Ludmila
2017-09-01
The Venus International Reference Atmosphere (VIRA) model contains tabulated values of temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express orbiter mission generated a significant amount of new observational data on the vertical and horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 to November 2014. Many ground based experiments have provided data on the upper atmosphere (90-130 km) temperature structure since the publication of VIRA in 1985. The "Thermal Structure of the Venus Atmosphere" Team was supported by the International Space Studies Institute (ISSI), Bern, Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and the VEx observations of the thermal structure as a first step towards generating an updated VIRA model. Results of this comparison are presented in five latitude bins and three local time bins by assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides for the first time a consistent picture of the temperature and density structure in the 40 km-180 km altitude range. The Venus Express observations have considerably increased our knowledge of the Venus atmospheric thermal structure above ∼40 km and provided new information above 100 km. There are, however, still observational gaps in latitude and local time above certain regions. Considerable variability in the temperatures and densities is seen above 100 km but certain features appear to be systematically present, such as a succession of warm and cool layers. Preliminary modeling studies support the existence of such layers in agreement with a global scale circulation. The intercomparison focuses on average profiles but some VEx experiments provide sufficient global coverage to identify solar thermal tidal components. The differences between the VEx temperature profiles and the VIRA below 0.1 mbar/95 km are small. There is, however, a clear discrepancy at high latitudes in the 10-30 mbar (70-80 km) range. The VEx observations will also allow the improvement of the empirical models (VTS3 by Hedin et al., 1983 and VIRA by Keating et al., 1985) above 0.03 mbar/100 km, in particular the 100-150 km region where a sufficient observational coverage was previously missing. The next steps in order to define the updated VIRA temperature structure up to 150 km altitude are (1) define the grid on which this database may be provided, (2) fill what is possible with the results of the data intercomparison, and (3) fill the observational gaps. An interpolation between the datasets may be performed by using available General Circulation Models as guidelines. An improved spatial coverage of observations is still necessary at all altitudes, in latitude-longitude and at all local solar times for a complete description of the atmospheric thermal structure, in particular on the dayside above 100 km. New in-situ observations in the atmosphere below 40 km are missing, an altitude region that cannot be accessed by occultation experiments. All these questions need to be addressed by future missions.
Design Considerations for a Stopped-Rotor Cyclocopter for Venus Exploration
NASA Technical Reports Server (NTRS)
Husseyin, S.; Warmbrodt, William G.
2016-01-01
This paper considers the use of a cycloidal blade system as a means of providing lift and propulsive thrust as well as combined with a stopped rotor system, to create a stopped-rotor cyclocopter vehicle, during a mission to Venus. This stopped-rotor cyclocopter will be capable of flying at all atmospheric levels of Venus as well as landing on the surface for scientific investigation. Three reference conceptual designs with different stopped-rotor cyclocopter yaw angles are tested in RotCFD as well as a model of a hovering cyclorotor for comparison with past work in the literature and innovative study for future projects.
Venusian k(sub 2) Tidal Love Number from Magellan and PVO Tracking Data
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Yoder, C. F.
1996-01-01
The k(sub 2) potential ove number which scales the tidal deformation of Venus by the Sun has been estimated from Doppler tracking of Magellan and Pioneer Venus Orbiter (PVO) spacecraft data. The nominal range for k(sub 2) from theoretical models is 0.23(less than or equal to)k(sub 2)(less than or equal to)0.29 for a liquid iron core and about 0.17 if the iron core has solidified. Our best estimate of this parameter is k(sub 2) = 0.295 +/- 0.662 (2X formal {delta}) and supports the hypothesis that Venus core is solid.
A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Wu, D.; Shinagawa, H.
1990-01-01
The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.
The importance of being Florentine: a journey around the world for wax anatomical Venuses.
de Ceglia, Francesco Paolo
2011-01-01
This article reconstructs the 19th century history of events regarding a few female wax anatomical models made in Florence. More or less faithful copies of those housed in Florence's Museum of Physics and Natural History, these models were destined for display in temporary exhibitions. In their travels through Europe and the United States, they transformed the expression "Florentine Venus" into a sort of brand name used to label and offer respectability to pieces of widely varying quality.
NASA Astrophysics Data System (ADS)
Tackley, Paul
2014-05-01
Here we extend the models of [1]. Numerical convection models of the thermochemical evolution of Venus are compared to present-day topography and geoid, recent resurfacing history and surface deformation. The models include melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that in stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick, cold crust, inconsistent with observations. Partitioning of heat-producing elements into the crust helps but does not help enough. Episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ˜150 Myr, initiating in one place and then spreading globally. During quiescent periods convection keeps the lithosphere thin. Magmatism keeps the mantle temperature constant over Venus's history. Crustal recycling occurs by entrainment in stagnant lid convection, and by lid overturn in episodic mode. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. The basalt density inversion below the olivine-perovskite transition causes compositional stratification around 730 km; breakdown of this layering increases episodicity but far less than episodic lid overturn. The classical stagnant lid mode with interior temperature approximately a rheological temperature scale lower than T_CMB is not reached because mantle temperature is controlled by magmatism while the core cools slowly from a superheated start. Core heat flow decreases with time, possibly shutting off the dynamo, particularly in episodic cases. Here we extend [1] by considering intrusive magmatism as an alternative to the purely extrusive magmatism assumed in [1]. Intrusive magmatism warms and weakens the crust, resulting in substantial surface deformation and a thinner crust. This is further enhanced by using a basaltic rheology for the crust instead of assuming the same rheological parameters as for the mantle. Here we quantitatively analyse the resulting surface deformation and other signatures, and compare to observations in order to constrain the likely ratio of intrusive to extrusive magmatism. [1] Armann, M., and P. J. Tackley (2012), Simulating the thermochemical magmatic and tectonic evo- lution of Venus's mantle and lithosphere: Two-dimensional models, J. Geophys. Res., 117, E12003, doi:10.1029/2012JE004231.
NASA Astrophysics Data System (ADS)
Werner, K.; Liu, F. M.; Ostapchenko, S.; Pierog, T.
2004-11-01
After discussing conceptual problems with the conventional string model, we present a new approach, based on a theoretically consistent multiple scattering formalism. First results for proton-proton scattering at 158 GeV are discussed.
The structural dynamics of the American five-string banjo
NASA Astrophysics Data System (ADS)
Dickey, Joe
2003-11-01
The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems (strings, and a circular membrane) and therefore more amenable to analysis and modeling than most other musical instruments (e.g., the violin). Such an analysis is presented here. The model is a harmonically driven string which excites the other strings and a membrane under tension, causing the membrane to radiate sound. Three figures-of-merit, FOMs, are assumed. They are loudness, brightness, and decay of the sound. The effects of a number of parameters on the proposed FOMs are investigated. Among these are the loss factor and tension of the membrane, the mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices.
Monte Carlo computer simulations of Venus equilibrium and global resurfacing models
NASA Technical Reports Server (NTRS)
Dawson, D. D.; Strom, R. G.; Schaber, G. G.
1992-01-01
Two models have been proposed for the resurfacing history of Venus: (1) equilibrium resurfacing and (2) global resurfacing. The equilibrium model consists of two cases: in case 1, areas less than or equal to 0.03 percent of the planet are spatially randomly resurfaced at intervals of less than or greater than 150,000 yr to produce the observed spatially random distribution of impact craters and average surface age of about 500 m.y.; and in case 2, areas greater than or equal to 10 percent of the planet are resurfaced at intervals of greater than or equal to 50 m.y. The global resurfacing model proposes that the entire planet was resurfaced about 500 m.y. ago, destroying the preexisting crater population and followed by significantly reduced volcanism and tectonism. The present crater population has accumulated since then with only 4 percent of the observed craters having been embayed by more recent lavas. To test the equilibrium resurfacing model we have run several Monte Carlo computer simulations for the two proposed cases. It is shown that the equilibrium resurfacing model is not a valid model for an explanation of the observed crater population characteristics or Venus' resurfacing history. The global resurfacing model is the most likely explanation for the characteristics of Venus' cratering record. The amount of resurfacing since that event, some 500 m.y. ago, can be estimated by a different type of Monte Carolo simulation. To date, our initial simulation has only considered the easiest case to implement. In this case, the volcanic events are randomly distributed across the entire planet and, therefore, contrary to observation, the flooded craters are also randomly distributed across the planet.
Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops
NASA Technical Reports Server (NTRS)
Caldwell, R. R.; Gates, Evalyn
1993-01-01
The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.
NASA Astrophysics Data System (ADS)
Mc Leod, Roger David; Mc Leod, David M.
2007-10-01
Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.
NASA Astrophysics Data System (ADS)
Steffes, Paul G.; Shahan, Patrick; Christopher Barisich, G.; Bellotti, Amadeo
2015-01-01
In the past two decades, multiple observations of Venus have been made at X-Band (3.6 cm) using the Jansky Very Large Array (VLA), and maps have been created of the 3.6 cm emission from Venus (see, e.g., Devaraj, K. [2011]. The Centimeter- and Millimeter-Wavelength Ammonia Absorption Spectra under Jovian Conditions. PhD Thesis, Georgia Institute of Technology, Atlanta, GA). Since the emission morphology is related both to surface features and to deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler, B.J., Steffes, P.G., Suleiman, S.H., Kolodner, M.A., Jenkins, J.M. [2001]. Icarus 154, 226-238), knowledge of the microwave absorption properties of sulfur dioxide in a carbon dioxide atmosphere under conditions for the deep atmosphere of Venus is required for proper interpretation. Except for a single measurement campaign conducted at a single wavelength (3.2 cm) over 40 years ago (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), no measurements of the centimeter-wavelength properties of any Venus atmospheric constituent have been conducted under conditions characteristic of the deep atmosphere (pressures from 10 to 92 bars and temperatures from 400 to 700 K). New measurements of the microwave properties of SO2 and CO2 at wavelengths from 3.7 to 20 cm have been conducted under simulated conditions for the deep atmosphere of Venus, using a new high-pressure system. Results from this measurement campaign conducted at temperatures from 430 K to 560 K and at pressures up to 92 bars are presented. Results indicate that the model for the centimeter-wavelength opacity from pure CO2 (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), is valid over the entire centimeter-wavelength range under simulated conditions for the deep atmosphere of Venus. Additionally, the laboratory results indicate that both of the models for the centimeter-wavelength opacity of SO2 in a CO2 atmosphere from Suleiman et al. (Suleiman, S.H., Kolodner, M.A., Steffes, P.G. [1996]. J. Geophys. Res. 101, 4623-4635) and from Fahd and Steffes (Fahd, A.K., Steffes, P.G. [1992]. Icarus 97, 200-210) can reliably be used under conditions of the deep atmosphere of Venus.
NASA Technical Reports Server (NTRS)
Head, James W.; Parmentier, E. M.; Hess, P. C.
1994-01-01
Models for the vertical accretion of a basaltic crust and depleted mantle layer on Venus over geologic time predict the eventual development of a net negatively buoyant depleted mantle layer, its foundering and its remixing with the underlying mantle. The consequences of the development of this layer, its loss, and the aftermath are investigated and compared to the geologic record of Venus revealed by Magellan. The young average age of the surface of Venus (several hundred million years), the formation of the heavily deformed tessera regions, the subsequent emplacement of widespread volcanic plains, the presently low rate of volcanic activity, and impact crater population that cannot be distinguished from a completely spatially random distribution, and the small number of impact craters embayed by volcanism, are all consistent with the development of a depleted mantle layer, its relatively rapid loss followed by large-scale volcanic flooding, and its subsequent reestablishment. We outline a 'catastrophic' tectonic resurfacing model in which the foundering of the depleted mantle layer several hundred million years ago caused globally extensive tectonic deformation and obliteration of the cratering record, accompanied by upwelling of warm fertile mantle and its pressure-release melting to produce extensive surface volcanism in the following period. Venus presently appears to be characterized by a relatively thick depleted mantle layer and lithosphere reestablished over the last several hundred million years following the previous instability event inferred to have produced the tessera terrain.
The structure and microphysical properties of the clouds of Venus
NASA Technical Reports Server (NTRS)
Marov, M. Y.
1979-01-01
Results are presented from the processing and interpretation of measurement data in the descent capsules of the automatic stations Venera-9 and Venera-10 for the characteristics of light scattering in the atmosphere of Venus by means of onboard nephelometers. A model for the aerosol component in the planet's atmosphere in the altitude range 62-14 km is proposed.
An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth
NASA Technical Reports Server (NTRS)
Brian, A. W.; Smrekar, S. E.; Stofan, E. R.
2004-01-01
Estimates of the thickness of the venusian crust and elastic lithosphere are important in determining the rheological and thermal properties of Venus. These estimates offer insights into what conditions are needed for certain features, such as large volcanoes and coronae, to form. Lithospheric properties for much of the large volcano population on Venus are not well known. Previous studies of elastic thickness (Te) have concentrated on individual or small groups of edifices, or have used volcano models and fixed values of Te to match with observations of volcano morphologies. In addition, previous studies use different methods to estimate lithospheric parameters meaning it is difficult to compare their results. Following recent global studies of the admittance signatures exhibited by the venusian corona population, we performed a similar survey into large volcanoes in an effort to determine the range of lithospheric parameters shown by these features. This survey of the entire large volcano population used the same method throughout so that all estimates could be directly compared. By analysing a large number of edifices and comparing our results to observations of their morphology and models of volcano formation, we can help determine the controlling parameters that govern volcano growth on Venus.
Noncommutative-geometry model for closed bosonic strings
NASA Technical Reports Server (NTRS)
Sen, Siddhartha; Holman, R.
1987-01-01
It is shown how Witten's (1986) noncommutative geometry may be extended to describe the closed bosonic string. For closed strings, an explicit representation is provided of the integral operator needed to construct an action and of an associative product on string fields. The proper choice of the action of the integral operator and the associative product in order to give rise to a reasonable theory is explained, and the consequences of such a choice are discussed. It is shown that the ghost numbers of the operator and associative product can be chosen arbitrarily for both open and closed strings, and that this construct can be used as an action for interacting closed bosonic strings.
Episodic plate tectonics on Venus
NASA Technical Reports Server (NTRS)
Turcotte, Donald
1992-01-01
Studies of impact craters on Venus from the Magellan images have placed important constraints on surface volcanism. Some 840 impact craters have been identified with diameters ranging from 2 to 280 km. Correlations of this impact flux with craters on the Moon, Earth, and Mars indicate a mean surface age of 0.5 +/- 0.3 Ga. Another important observation is that 52 percent of the craters are slightly fractured and only 4.5 percent are embayed by lava flows. These observations led researchers to hypothesize that a pervasive resurfacing event occurred about 500 m.y. ago and that relatively little surface volcanism has occurred since. Other researchers have pointed out that a global resurfacing event that ceased about 500 MYBP is consistent with the results given by a recent study. These authors carried out a series of numerical calculations of mantle convection in Venus yielding thermal evolution results. Their model considered crustal recycling and gave rapid planetary cooling. They, in fact, suggested that prior to 500 MYBP plate tectonics was active in Venus and since 500 MYBP the lithosphere has stabilized and only hot-spot volcanism has reached the surface. We propose an alternative hypothesis for the inferred cessation of surface volcanism on Venus. We hypothesize that plate tectonics on Venus is episodic. Periods of rapid plate tectonics result in high rates of subduction that cool the interior resulting in more sluggish mantle convection.
NASA Astrophysics Data System (ADS)
Bell, Peter M.
Calculations that used Pioneer-Venus measurements of atmosphere composition, temperature profiles, and radiative heating predicted Venus' surface temperature ‘very precisely,’ says the Ames Research Center. The calculations predict not only Venus' surface temperature but agree with temperatures measured at various altitudes above the surface by the four Pioneer Venus atmosphere probe craft.Using Pioneer-Venus spacecraft data, a research team has virtually proved that the searing 482° C surface temperature of Venus is due to an atmospheric greenhouse effect. Until now the Venus greenhouse effect has been largely a theory.
NASA Astrophysics Data System (ADS)
Greenwald, Jared
Any good physical theory must resolve current experimental data as well as offer predictions for potential searches in the future. The Standard Model of particle physics, Grand Unied Theories, Minimal Supersymmetric Models and Supergravity are all attempts to provide such a framework. However, they all lack the ability to predict many of the parameters that each of the theories utilize. String theory may yield a solution to this naturalness (or self-predictiveness) problem as well as offer a unifed theory of gravity. Studies in particle physics phenomenology based on perturbative low energy analysis of various string theories can help determine the candidacy of such models. After a review of principles and problems leading up to our current understanding of the universe, we will discuss some of the best particle physics model building techniques that have been developed using string theory. This will culminate in the introduction of a novel approach to a computational, systematic analysis of the various physical phenomena that arise from these string models. We focus on the necessary assumptions, complexity and open questions that arise while making a fully-automated at direction analysis program.
String tightening as a self-organizing phenomenon.
Banerjee, Bonny
2007-09-01
The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper.
Abelian Higgs cosmic strings: Small-scale structure and loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil
2009-06-15
Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less
Venus nightside ionosphere - A model with KeV electron impact ionization
NASA Technical Reports Server (NTRS)
Kumar, S.
1982-01-01
The impact of keV electrons is proposed as the strongest source of ionization in a full-up Venus nightside ionosphere model for the equatorial midnight region. The electron impacts lead to a peak ion density of 100,000/cu cm, which was observed by the PV-OIMS experiment on several occasions. In addition, the observed altitude profiles of CO2(+), O(+), O2(+), H(+), and H2(+) can be reproduced by the model on condition that the available keV electron flux is approximated by a reasonable extrapolation from fluxes observed at lower energies.
Extended atmospheres of outer planet satellites and comets
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1985-01-01
Model analysis of the extended atmospheres of outer planet satellites and comets are discussed. Understanding the neutral hydrogen distribution in the Saturn system concentrated on assessing the spatial dependence of the lifetime of hydrogen atoms and on obtaining appropriately sorted Lyman ALPHA data from the Voyager 1 UVS instrument. Progress in the area of the extended cometary atmospheres included analysis of Pioneer Venus Layman alpha observations of Comet P/Encke with the fully refined hydrogen cloud model, development of the basic carbon and oxygen models, and planning for the Pioneer Venus UVS observations of Comets P/Giacobini-Zinner and P/Halley.
Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)
NASA Astrophysics Data System (ADS)
Keating, G.; Theriot, M.; Bougher, S.
2008-09-01
From drag measurements obtained by Pioneer Venus and Magellan, the Venus upper atmosphere was discovered to be much colder than Earth's, even though Venus is much closer to the Sun than the Earth. On the dayside, exospheric temperatures are near 300K compared to Earth's of near 1200K [1]. This is thought to result principally from 15 micron excitation of carbon dioxide by atomic oxygen resulting in very strong 15 micron emission to space, cooling off the upper atmosphere [2]. On the nightside the Venus upper atmosphere is near 100K [3], compared to Earth where temperatures are near 900K. The nightside Venus temperatures drop with altitude contrary to a thermosphere where temperatures rise with altitude. As a result, the very cold nightside is called a "cryosphere" rather than a thermosphere. This is the first cryosphere discovered in the solar system [1]. Temperatures sharply drop near the terminator. Apparently, heat is somehow blocked near the terminator from being significantly transported to the nightside [4]. Recently, drag studies were performed on a number of Earth satellites to establish whether the rise of carbon dioxide on Earth was cooling the Earth's thermosphere similar to the dayside of Venus. Keating et al. [5] discovered that a 10 percent drop in density near 350km at solar minimum occurred globally over a period of 20 years with a 10 per cent rise in carbon dioxide. This should result in about a factor of 2 decline in density from 1976 values, by the end of the 21st century brought on by thermospheric cooling. Subsequent studies have confirmed these results. Thus we are beginning to see the cooling of Earth's upper atmosphere apparently from the same process cooling the Venus thermosphere. Fig. 1 VIRA Exospheric Temperatures Atmospheric drag data from the Pioneer Venus Orbiter and Magellan were combined to generate an improved version of the Venus International Reference Atmosphere (VIRA) [6], [7]. A "fountain effect" was discovered where the atmosphere rises on the dayside producing adiabatic cooling and drops on the nightside producing some adiabatic heating. (See figure 1). The thermosphere was discovered from drag measurements to respond to the near 27-day period of the rotating Sun, for which regions of maximum solar activity reappear every 27 days. The increased euv emission from active regions increased temperatures and thermospheric density, (See Figure 2). Fig. 2 Exospheric Temperatures Compared to 10.7cm Solar Index Second diurnal survey (12/5/79 - 3/6/80) Pioneer Venus Orbiter measurements (OAD) 11 day running means [2] Estimates were also made of the response to the 11- year Solar Cycle by combining the Pioneer Venus and Magellan data. Dayside exospheric temperatures changed about 80K over the solar cycle, [8]. Earlier estimates of temperature change gave 70K based on Lyman alpha measurements. The responses to solar variability were much weaker than on Earth due apparently to the much stronger O/CO2 cooling on Venus which tended to act as a thermostat on thermospheric temperatures. Another discovery from drag measurements was the 4 to 5 day oscillation of the Venus thermosphere [3], (See figure 3). These oscillations are interpreted as resulting from the 4-day super-rotation of the atmosphere near the cloud tops. Other indications of the super-rotation of the thermosphere come from displacement of the helium bulge and atomic hydrogen bulge from midnight to near 4AM. Fig. 3 Four to Five Day Oscillations in Thermospheric Densities Magellan 1992. During 2008, the Venus Express periapsis will be dropped from 250km down to approximately 180km to allow drag measurements to be made in the North Polar Region, [9]. Drag measurements above 200km have already been obtained from both Pioneer Venus and Magellan so measurements near 180km should be accurate. In 2009, the periapsis may be decreased to a lower altitude allowing accelerometer measurements to be obtained of drag as a function of altitude, to determine density, scale height, inferred temperature, pressure, and other parameters as a function of altitude. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects in over 30 years. The Venus Express accelerometer drag experiment is very similar to accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter which orbit Mars. The Venus Express drag measurements of the polar region will allow a global empirical model of the thermosphere to emerge. Previous drag measurements have been made principally near the equator. The experiment may help us understand on a global scale, tides, winds, gravity waves, planetary waves, and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The rotating vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The super-rotation may affect escape rates and the evolution of the atmosphere. References: [1] Keating, G. M., et al: Venus Thermosphere and Exosphere: First Satellite Drag Measurements of an Extraterrestrial Atmosphere. Science, Vol. 203, No. 4382, 772-774, Feb. 23, 1979. [2] Keating, G. M. and Bougher, S.W.: Isolation of Major Venus Cooling Mechanism and Implications for Earth and Mars, Journal of Geophysical Research, Vol. 97, 4189-4197, 1992. [3] Keating, G.M.; Taylor, F.W.; Nicholson, J. V. II; and Hinson, E.W. : Short-Term Cyclic Variations and Diurnal Variations of the Venus Upper Atmosphere, Science, Vol. 205, No. 4401, 62-64, July 6, 1979. [4] Bougher, S. W.; Dickinson, R. E.; Ridley, E. C.; Roble, R. G.; Nagy, A. F.; and Cravens, T. E.: Venus mesosphere and thermosphere, II, Global circulation, temperature, and density variations, Icarus, Vol. 68, 284-312, 1986. [5] Keating, G. M. et al.: Evidence of Long-Term Global Decline in the Earth's Thermospheric Densities Apparently Related to Anthropogenic Effects, Geophysical Research Letters, Vol. 27, No. 10, 1522-1526, 2000. [6] Keating, G. M. et al.: Models of Venus Neutral Upper Atmosphere Structure and Composition: The Venus International Reference Atmosphere (Edited by A. L. Kliore, V. I. Moros, and G. M. Keating) Advances in Space Research, Vol. 5, No. 11, 117-171,1985. [7] Keating, G. M.; Hsu, N.C., and Lyu, J.: Improved Thermospheric Model for the Venus International Reference Atmosphere, Proceedings of the 31st Scientific Assembly of COSPAR, Birmingham, England, 139, 1996 (Invited) [8] Keating, G. M. and Hsu, N. C.: The Venus Atmospheric Response to Solar Cycle Variations, Geophysical Research Letters, Vol. 20, 2751-2754, 1993. [9] Keating, G.M. et al: Future drag measurements from Venus Express. Adv
Adventures in heterotic string phenomenology
NASA Astrophysics Data System (ADS)
Dundee, George Benjamin
In this Dissertation, we consider three topics in the study of effective field theories derived from orbifold compactifications of the heterotic string. In Chapter 2 we provide a primer for those interested in building models based on orbifold compactifications of the heterotic string. In Chapter 3, we analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective five dimensional orbifold GUT field theories. Our analysis assumes three fundamental scales, the string scale, M S, a compactification scale, MC, and a mass scale for some of the vector-like exotics, MEX; the other exotics are assumed to get mass at MS. In the particular models analyzed, we show that gauge coupling unification is not possible with MEX = M C and in fact we require MEX << MC ˜ 3 x 1016 GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension six gauge exchange) 1033 yr ≲ tau(p → pi0e+) ≲ 1036 yr, which is potentially observable by the next generation of proton decay experiments. 80% of the parameter space gives proton lifetimes below Super-K bounds. In Chapter 4, we examine the relationship between the string coupling constant, gSTRING, and the grand unified gauge coupling constant, alphaGUT, in the models of Chapter 3. We find that the requirement that the theory be perturbative provides a non-trivial constraint on these models. Interestingly, there is a correlation between the proton decay rate (due to dimension six operators) and the string coupling constant in this class of models. Finally, we make some comments concerning the extension of these models to the six (and higher) dimensional case. In Chapter 5, we discuss the issues of supersymmetry breaking and moduli stabilization within the context of E8 ⊗ E8 heterotic orbifold constructions and, in particular, we focus on the class of "mini-landscape" models. These theories contain a non-Abelian hidden gauge sector which generates a non-perturbative superpotential leading to supersymmetry breaking and moduli stabilization. We demonstrate this effect in a simple model which contains many of the features of the more general construction. In addition, we argue that once supersymmetry is broken in a restricted sector of the theory, then all moduli are stabilized by supergravity effects. Finally, we obtain the low energy superparticle spectrum resulting from this simple model.
``SO what Will you do if String Theory is WRONG?''
NASA Astrophysics Data System (ADS)
Emam, Moataz H.
2008-07-01
I briefly discuss the accomplishments of string theory that would survive a complete falsification of the theory as a model of nature and argue the possibility that such a survival may necessarily mean that string theory would become its own discipline, independently of both physics and mathematics.
NASA Astrophysics Data System (ADS)
Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.
2017-04-01
Even though many missions have explored the Venus atmospheric circulation, its instantaneous state is poorly characterized. In situ measurements vertically sampling the atmosphere exist for limited locations and dates, while remote sensing observations provide only global averages of winds at altitudes of the clouds: 47, 60, and 70 km. We present a three-dimensional global view of Venus's atmospheric circulation from data obtained in June 2007 by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express spacecrafts, together with ground-based observations. Winds and temperatures were measured for heights 47-110 km from multiwavelength images and spectra covering 40°N-80°S and local times 12 h-21 h. Dayside westward winds exhibit day-to-day changes, with maximum speeds ranging 97-143 m/s and peaking at variable altitudes within 75-90 km, while on the nightside these peak below cloud tops at ˜60 km. Our results support past reports of strong variability of the westward zonal superrotation in the transition region, and good agreement is found above the clouds with results from the Laboratoire de Météorologie Dynamique (LMD) Venus general circulation model.
Effects of Planetary Thermal Structure on the Ascent and Cooling of Magma on Venus
NASA Technical Reports Server (NTRS)
Sakimoto, Susan E. H.; Zuber, Maria T.
1995-01-01
Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.
Absolute wind velocities in the lower thermosphere of Venus using infrared heterodyne spectroscopy
NASA Technical Reports Server (NTRS)
Goldstein, Jeffrey J.; Mumma, Michael J.; Kostiuk, Theodor; Deming, Drake; Espenak, Fred; Zipoy, David
1991-01-01
NASA's IR Telescope Facility and the McMath Solar Telescope have yielded absolute wind velocities in the Venus thermosphere for December 1985 to March 1987 with sufficient spatial resolution for circulation model discrimination. A qualitative analysis of beam-integrated winds indicates subsolar-to-antisolar circulation in the lower thermosphere; horizontal wind velocity was derived from a two-parameter model wind field of subsolar-antisolar and zonal components. A unique model fit common to all observing periods possessed 120 m/sec subsolar-antisolar and 25 m/sec zonal retrograde components, consistent with the Bougher et al. (1986, 1988) hydrodynamical models for 110 km.
Evolution of cosmic string networks
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Turok, Neil
1989-01-01
Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.
Effects of topography on the spin-up of a Venus atmospheric model
NASA Astrophysics Data System (ADS)
Herrnstein, A.; Dowling, T. E.
2007-04-01
We study how topography affects the spin-up from rest of a model of the atmosphere of Venus. The simulations are performed with the EPIC model using its isentropic, terrain-following hybrid vertical coordinate, and are forced with the Newtonian-cooling profile used to achieve superrotation in a Venus model with no topography by Lee et al. (2005). We are able to reproduce their results with our model, which was developed independently and uses a different vertical coordinate. Both groups use a horizontal resolution of 5°, which is dictated by the need for reasonable computer runtime and is not a claim of numerical convergence. We find that the addition of topography substantially changes both the evolution and end state of the model's spin-up: the magnitude of the superrotation is diminished from 55 ms-1 to 35 ms-1, and it reaches steady state faster, in a few years instead of a few decades. A large, stationary eddy associated with Ishtar Terra forms that has a local horizontal temperature anomaly of order 2 K at the 0.7 bar level; such a feature may be observable in high-resolution infrared images.
Asteroids and Meteorites from Venus? Only the Earth Goddess Knows
NASA Astrophysics Data System (ADS)
Dones, Henry; Zahnle, Kevin J.; Alvarellos, José L.
2018-04-01
No meteorites from Venus have been found; indeed, some find theirexistence unlikely because of the perceived difficulty of launchingrocks at speeds above 10 km/s and traversing the planet's 93 baratmosphere. [1] Nonetheless, we keep hope alive, since cosmochemistssay they can identify Cytherean meteorites, should candidates be found[2]. Gladman et al. [3] modeled the exchange of impact ejecta betweenthe terrestrial planets, but did not consider meteorites launched fromVenus in any detail. At the time of Gladman's work, no asteroids thatremained entirely within Earth's orbit were known. 14 suchEarth-interior objects with good orbits have now been discovered, andare known as Atiras, for the Pawnee goddess of the Earth. The largestknown member of the class is 163693 Atira, a binary whose componentshave diameters of approximately 4.8 and 1 km. Discovery of Atiras isvery incomplete because they can only be seen at small solarelongations [4]. Greenstreet et al. [5] modeled the orbitaldistribution of Atiras from main-belt asteroidal and cometary sourceregions, while Ribeiro et al. [6] mapped the stability region ofhypothetical Atiras and integrated the orbits of clones of 12 realAtiras for 1 million years. 97% of the clones survived for 1 Myrimpact with Venus was the most common fate of those that met theirends. We have performed orbital integrations of 1000 clones of each ofthe known Atiras, and of hypothetical ejecta that escape Venus afterasteroid impacts, for 10-100 Myr. The latter calculations usetechniques like those of Alvarellos et al. [7] and Zahnle et al. [8]for transfer amongst Jupiter's galilean satellites. Our goals are toestimate the fraction of Atiras that are ejecta launched from Venus,the time spent in space by hypothetical meteorites from Venus, and therate at which such meteorites strike the Earth.[1] Gilmore M., et al (2017). Space Sci. Rev. 212, 1511. [2] JourdanF., Eroglu E. (2017). MAPS 52, 884. [3] Gladman B.J., etal. (1996). Science 271, 1387. [4] Masi G. (2003). Icarus 163,389. [5] Greenstreet S., Ngo H., Gladman B. (2012). Icarus 217,355. [6] Ribeiro A.O., et al. (2016). MNRAS 458, 4471. [7] Alvarellos,J.L., et al. (2008). Icarus 194, 636. [8] Zahnle, K., etal. (2008). Icarus 194, 660.
Observations of the 10-micron natural laser emission from the mesospheres of Mars and Venus
NASA Technical Reports Server (NTRS)
Espenak, F.; Deming, D.; Jennings, D.; Kostiuk, T.; Mumma, M.; Zipoy, D.
1983-01-01
Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74 percent of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K.
Testing of the DPMJET and VENUS hadronic interaction models with help of the atmospheric muons
NASA Astrophysics Data System (ADS)
Dedenko, L. G.; Lukyashin, A. V.; Roganova, T. M.; Fedorova, G. F.
2017-01-01
The more accurate original calculations of the atmospheric vertical muon energy spectra at energies 102 - 105 GeV have been carried out in terms of DPMJET and VENUS models. The Gaisser-Honda approximations of the measured energy spectra of primary protons, helium and nitrogen nuclei have been used. The package CORSIKA has been used to simulate cascades in the standard atmosphere induced by different primary particles with various fixed energies E. Statistics of simulated cascades for secondary particles with energies (0.01-1)·E was increased up to 106. It has been shown that predictions of the DPMJET and VENUS models for these muon fluxes are below the data of the classical experiments L3 + Cosmic, MACRO and LVD by factors of ˜ 1.6-1.95 at energies above 102 GeV. It has been concluded that these tested models underestimate the production of the most energetic secondary particles, namely, π-mesons and K-mesons, in interactions of the primary protons and other primary nuclei with nuclei in the atmosphere by the same factors.
Observations of the 10 micrometer natural laser emission from the mesospheres of Mars and Venus
NASA Technical Reports Server (NTRS)
Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M. J.
1983-01-01
Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74% of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K.
An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Cloutier, P. A.; Tascione, T. F.; Danieli, R. E., Jr.
1981-01-01
The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.
Factorization of chiral string amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less
Factorization of chiral string amplitudes
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-16
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less
Bifurcation analysis and phase diagram of a spin-string model with buckled states.
Ruiz-Garcia, M; Bonilla, L L; Prados, A
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Bifurcation analysis and phase diagram of a spin-string model with buckled states
NASA Astrophysics Data System (ADS)
Ruiz-Garcia, M.; Bonilla, L. L.; Prados, A.
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn
NASA Astrophysics Data System (ADS)
Pérez-Invernón, F. J.; Luque, A.; Gordillo-Vázquez, F. J.
2017-07-01
While lightning activity in Venus is still controversial, its existence in Jupiter and Saturn was first detected by the Voyager missions and later on confirmed by Cassini and New Horizons optical recordings in the case of Jupiter, and recently by Cassini on Saturn in 2009. Based on a recently developed 3-D model, we investigate the influence of lightning-emitted electromagnetic pulses on the upper atmosphere of Venus, Saturn, and Jupiter. We explore how different lightning properties such as total energy released and orientation (vertical, horizontal, and oblique) can produce mesospheric transient optical emissions of different shapes, sizes, and intensities. Moreover, we show that the relatively strong background magnetic field of Saturn can enhance the lightning-induced quasi-electrostatic and inductive electric field components above 1000 km of altitude producing stronger transient optical emissions that could be detected from orbital probes.
Constraints on the thermal evolution of Venus inferred from Magellan data
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Schaber, G. G.; Strom, R. G.
1993-03-01
One interpretation of the Magellan data suggests that the cratering record on Venus was erased by a global resurfacing event, or events, the latest ending about 500 m.y. ago. In this global-resurfacing model the resurfacing was followed by minor volcanism and tectonism that has been concentrated primarily in the equatorial highland regions characterized by extensive fracture belts and rifts. A thermal evolution model of Venus that can explain these observations is one in which a deformable lithosphere, capable of being incorporated in mantle circulations, provides an almost stress-free condition at the surface. Mantle convection with an almost stress-free boundary at the surface cools the interior more efficiently. Rapid cooling decreases the Rayleigh number of mantle convection below a transition value required for oscillatory convection, and the vigor of convection diminishes as the mantle changes to a quasi-steady circulation after about 500 m.y. ago.
On the nature and rate of resurfacing of Venus
NASA Technical Reports Server (NTRS)
Arvidson, Raymond E.; Grimm, Robert E.; Phillips, Roger J.; Schaber, Gerald G.; Shoemaker, Eugene M.
1990-01-01
Crrater production and obliteration are modeled for the plains of Venus, using (1) the observed distribution of Venus-crossing asteroids and comets; (2) viscous relaxation of crater topography; and (3) erosion and burial by atmospheric, volcanic, and tectonic processes. Crater lifetimes are assumed to be proportional to crater depths for both classes of obliterative processes although the individual criteria vary. An average crater retention age between 0.4 to 2.0 Gyr is estimated for plains, under the assumption that craters are produced and not removed. The range is driven by uncertainty in identifying degraded impact as opposed to volcanic craters. On the other hand, crater retention ages greater than about 1.6 Gyr are unlikely if viscous relaxation operates without loading of crater floor by burial. The preferred model has plains subject to crater production and obliteration processes that vary over both space and time.
A mechanism for crustal recycling on Venus
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.; Bindschadler, D. L.
1993-01-01
Entrainment of lower crust by convective mantle downflows is proposed as a crustal recycling mechanism on Venus. The mechanism is characterized by thin sheets of crust being pulled into the mantle by viscous flow stresses. Finite element models of crust/mantle interaction are used to explore tectonic conditions under which crustal entrainment may occur. The recycling scenarios suggested by the numerical models are analogous to previously studied problems for which analytic and experimental relationships assessing entrainment rates have been derived. We use these relationships to estimate crustal recycling rates on Venus. Estimated rates are largely determined by (1) strain rate at the crust/mantle interface (higher strain rate leads to greater entrainment); and (2) effective viscosity of the lower crust (viscosity closer to that of mantle lithosphere leads to greater entrainment). Reasonable geologic strain rates and available crustal flow laws suggest entrainment can recycle approximately equal 1 cu km of crust per year under favorable conditions.
NASA Astrophysics Data System (ADS)
2012-06-01
TRANSIT Early risers in the UK have the opportunity to see the final stages of the last transit of Venus for more than a century. TRANSIT Researchers interested in the atmosphere of Venus will be using the Hubble Space Telescope and the Moon to examine sunlight passing through the atmosphere during the transit of Venus this month. The technique is the same as that used to determine atmospheric constituents of transiting exoplanets. The Met Office is expanding its services to include operational space-weather forecasts for the UK, working with the research community to expand existing climate models. Further collaborative work will apply the enhanced model to extrasolar planets. The ESO and the STFC are organizing a Europe-wide competition for the very best in astronomy journalism in print, online or broadcast. The winner gets a trip to ESO's Very Large Telescope in Chile.
Objectives of the Mariner Venus Microwave Radiometer Experiment
NASA Technical Reports Server (NTRS)
Barrett, A. H.; Copeland, J.; Jones, D. E.; Lilley, A. E.
1961-01-01
At present, there are several models involving the surface, atmosphere (and ionosphere), and cloud conditions of the planet Venus which attempt to account for the observed high brightness temperature of 600 degrees Kelvin in the microwave temperature region. None of these models can be definitely accepted or rejected on the basis of presently available data, and it is the goal of the microwave radiometer experiment planned for the Mariner Venus mission to determine which of the proposed models most nearly approximates Venusian conditions. The disc of the planet will be scanned at 4 wavelengths - 4, 8, 13.5 and 19 millimeters - to measure the temperature distribution across the planet. Measurement accuracy is expected to be to within 2 percent. In addition to the study of gross thermal characteristics of surface and atmosphere (or ionosphere), some information regarding the fine-scale thermal variations will be obtained. Since Venus appears to be continuously covered by clouds, it is obvious that only in the microwave region can one be sure of penetrating clear to the solid surface. Because of the absorbing characteristics of the Earth's atmosphere, and because of the relatively poor resolution obtainable in this region of the spectrum, one is forced to utilize the platform afforded by a planetary flyby or orbiter in order to conduct a reliable high resolution study of the planet. To do so from Earth (neglecting terrestrial atmospheric attenuation ) would require colossal radio telescopes.
Higher dimensional strange quark matter solutions in self creation cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şen, R., E-mail: ramazansen-1991@hotmail.com; Aygün, S., E-mail: saygun@comu.edu.tr
In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.
State of the Venus Atmosphere from Venus Express at the time of MESSENGER FLy- By
NASA Astrophysics Data System (ADS)
Limaye, S. S.; Markiewicz, W. J.; Titov, D.; Piccione, G.; Baines, K. H.; Robinson, M.
2007-12-01
The Venus Monitoring Camera (VMC) and the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instruments on Venus Express spacecraft have been observing Venus since orbit insertion in April 2006. The state of the atmosphere in 2006 was in the form of a hemispheric vortex centered over the south pole, and presumably, another one in the northen hemisphere. The VMC and VIRTIS data have been used to determine cloud motions as well as the structure and organization of the atmospheric circulation from the the data collected since June 2006. In June 2007, the MESSENGER spacecraft flew-past Venus and also observed Venus on approach and departure from Venus. We report on the atmosphere of Venus as it appeared during this period.
Simulation of Venus polar vortices with the non-hydrostatic general circulation model
NASA Astrophysics Data System (ADS)
Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin
2012-07-01
The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending from low latitude to the circumpolar vortex. Qualitatively this pattern suggest that the dynamics of the polar Venus atmosphere resembles that of terrestrial hurricanes, but is characterized with preferentially poleward and downwelling motions.
Hybrid simulations of Venus' ionospheric magnetization states
NASA Astrophysics Data System (ADS)
Wiehle, Stefan; Motschmann, Uwe; Fränz, Markus
2013-04-01
The solar wind interaction with the plasma environment of Venus is studied with focus on ionospheric magnetization states using a 3D hybrid simulation code. The plasma environment of Venus was investigated mainly by Pioneer Venus Orbiter (PVO) and the still ongoing Venus Express (VEX) mission. Unlike many other planets, Venus' ionosphere is not shielded by a strong magnetosphere. Hence, data measured by spacecraft like PVO and VEX close to the planet are highly sensitive to solar wind and IMF upstream conditions, which cannot be measured while the spacecraft is inside the magnetosheath region about one hour before and after the closest approach. However, solar wind and IMF are known to change within minutes; ionospheric magnetization states, found by PVO and VEX, are highly dependent on the solar wind upstream pressure and also the magnetic field direction may change rapidly in case of a magnetic sector boundary crossing. When these solar wind induced transition effects occur, the causal change in the solar wind cannot be determined from ionospheric in-situ data. Additionally, with an orbital period of 24 hours, measuring transition timescales of solar wind triggered events is not possible. Our self-consistent simulations aim to provide a global picture of the solar wind interaction with Venus focusing on the effects of upstream fluctuations to the magnetic field in the vicinity of the planet. We use the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) 3D hybrid simulation code to model the entire Venus plasma environment. The simulation grid is refined within the ionosphere in order to resolve strong small-scale gradients of the magnetic field and ion density, a necessity to describe the magnetic field depletion inside the Venus' ionosphere. In contrast to other simulation studies, we apply no boundary conditions for the magnetic field at the planetary surface. Furthermore, we include varying upstream conditions like solar wind velocity and density as well as IMF strength and direction by adjusting these parameters after a first, quasi-stationary state has been reached. This allows for a simulation of dynamic processes like the transition between the magnetized and unmagnetized ionospheric state and fossil fields.
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
NASA Astrophysics Data System (ADS)
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)
The Age of the Surface of Venus
NASA Technical Reports Server (NTRS)
Zahnle, K. J.; McKinnon, William B.; Young, Richard E. (Technical Monitor)
1997-01-01
Impact craters on Venus appear to be uniformly and randomly scattered over a once, but no longer, geologically active planet. To first approximation, the planet shows a single surface of a single age. Here we use Monte Carlo cratering simulations to estimate the age of the surface of Venus. The simulations are based on the present populations of Earth-approaching asteroids, Jupiter-family, Halley-family, and long period comets; they use standard Schmidt-Housen crater scalings in the gravity regime; and they describe interaction with the atmosphere using a semi-analytic 'pancake' model that is calibrated to detailed numerical simulations of impactors striking Venus. The lunar and terrestrial cratering records are also simulated. Both of these records suffer from poor statistics. The Moon has few young large craters and fewer still whose ages are known, and the record is biased because small craters tend to look old and large craters tend to look young. The craters of the Earth provide the only reliable ages, but these craters are few, eroded, of uncertain diameter, and statistically incomplete. Together the three cratering records can be inverted to constrain the flux of impacting bodies, crater diameters given impact parameters, and the calibration of atmospheric interactions. The surface age of Venus that results is relatively young. Alternatively, we can use our best estimates for these three input parameters to derive a best estimate for the age of the surface of Venus. Our tentative conclusions are that comets are unimportant, that the lunar and terrestrial crater records are both subject to strong biases, that there is no strong evidence for an increasing cratering flux in recent years, and that that the nominal age of the surface of Venus is about 600 Ma, although the uncertainty is about a factor of two. The chief difference between our estimate and earlier, somewhat younger estimates is that we find that the venusian atmosphere is less permeable to impacting bodies than supposed by earlier studies. An older surface increases the likelihood that Venus is dead.
String limit of the isotropic Heisenberg chain in the four-particle sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, A. G., E-mail: aga2@csa.ru; Komarov, I. V., E-mail: ivkoma@rambler.r
2008-05-15
The quantum method of variable separation is applied to the spectral problem of the isotropic Heisenberg model. The Baxter difference equation is resolved by means of a special quasiclassical asymptotic expansion. States are identified by multiplicities of limiting values of the Bethe parameters. The string limit of the four-particle sector is investigated. String solutions are singled out and classified. It is shown that only a minor fraction of solutions demonstrate string behavior.
Cosmic Strings Stabilized by Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Weigel, H.
2017-03-01
Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
CMB temperature trispectrum of cosmic strings
NASA Astrophysics Data System (ADS)
Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki
2010-03-01
We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent ℓ-ρ with 6<ρ<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite and trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.
Galileon string measure and other modified measure extended objects
NASA Astrophysics Data System (ADS)
Vulfs, T. O.; Guendelman, E. I.
2017-12-01
We show that it is possible to formulate string theory as a “Galileon string theory”. The Galileon field χ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of the sigma-model. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time, the theory satisfies all requirements of the Galileon higher derivative theory at the action level while the equations of motion are still of the second-order. A Galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also, we define the Galileon gauge transformations. Generalizations to branes with other modified measures are discussed.
Venus - Global gravity and topography
NASA Technical Reports Server (NTRS)
Mcnamee, J. B.; Borderies, N. J.; Sjogren, W. L.
1993-01-01
A new gravity field determination that has been produced combines both the Pioneer Venus Orbiter (PVO) and the Magellan Doppler radio data. Comparisonsbetween this estimate, a spherical harmonic model of degree and order 21, and previous models show that significant improvements have been made. Results are displayed as gravity contours overlaying a topographic map. We also calculate a new spherical harmonic model of topography based on Magellan altimetry, with PVO altimetry included where gaps exist in the Magellan data. This model is also of degree and order 21, so in conjunction with the gravity model, Bouguer and isostatic anomaly maps can be produced. These results are very consistent with previous results, but reveal more spatial resolution in the higher latitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lizarraga, Joanes; Urrestilla, Jon; Daverio, David
We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck . We obtain revised constraints on the cosmic string tension parameter G μ. For example, in the ΛCDM model with the addition of strings and no primordial tensor perturbations, we find G μ < 2.0 × 10{sup −7} at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. The increased computational volume also makes it possible to simulate fully themore » physical equations of motion, in which the string cores shrink in comoving coordinates. We find however that this, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%. The main cause of the stronger constraints on G μ is instead an improved treatment of the string evolution across the radiation-matter transition.« less
Modeling the clouds on Venus: model development and improvement of a nucleation parameterization
NASA Astrophysics Data System (ADS)
Määttänen, Anni; Bekki, Slimane; Vehkamäki, Hanna; Julin, Jan; Montmessin, Franck; Ortega, Ismael K.; Lebonnois, Sébastien
2014-05-01
As both the clouds of Venus and aerosols in the Earth's stratosphere are composed of sulfuric acid droplets, we use the 1-D version of a model [1,4] developed for stratospheric aerosols and clouds to study the clouds on Venus. We have removed processes and compounds related to the stratospheric clouds so that the only species remaining are water and sulfuric acid, corresponding to the stratospheric sulfate aerosols, and we have added some key processes. The model describes microphysical processes including condensation/evaporation, and sedimentation. Coagulation, turbulent diffusion, and a parameterization for two-component nucleation [8] of water and sulfuric acid have been added in the model. Since the model describes explicitly the size distribution with a large number of size bins (50-500), it can handle multiple particle modes. The validity ranges of the existing nucleation parameterization [7] have been improved to cover a larger temperature range, and the very low relative humidity (RH) and high sulfuric acid concentrations found in the atmosphere of Venus. We have made several modifications to improve the 2002 nucleation parameterization [7], most notably ensuring that the two-component nucleation model behaves as predicted by the analytical studies at the one-component limit reached at extremely low RH. We have also chosen to use a self-consistent cluster distribution [9], constrained by scaling it to recent quantum chemistry calculations [3]. First tests of the cloud model have been carried out with temperature profiles from VIRA [2] and from the LMD Venus GCM [5], and with a compilation of water vapor and sulfuric acid profiles, as in [6]. The temperature and pressure profiles do not evolve with time, but the vapour profiles naturally change with the cloud. However, no chemistry is included for the moment, so the vapor concentrations are only dependent on the microphysical processes. The model has been run for several hundreds of Earth days to reach a steady state. Preliminary results are evaluated against observations. [1] Jumelet et al., JGR, 2009. [2] Kliore et al., 1986. [3] Kurtén et al., BER, 2007 [4] Larsen et al., JGR, 2000. [5] Lebonnois et al. JGR, 2010. [6] McGouldrick and Toon, Icarus 191, 2007. [7] Vehkamäki et al. JGR, 2002 [9] Wilemski and Wyslouzil, J.Chem.Phys. 1995.
Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient
Rodriguez-Diaz, Alice; Toyama, Yusuke; Abravanel, Daniel L.; Wiemann, John M.; Wells, Adrienne R.; Tulu, U. Serdar; Edwards, Glenn S.; Kiehart, Daniel P.
2008-01-01
Dorsal closure in Drosophila is a model system for cell sheet morphogenesis and wound healing. During closure two sheets of lateral epidermis move dorsally to close over the amnioserosa and form a continuous epidermis. Forces from the amnioserosa and actomyosin-rich, supracellular purse strings at the leading edges of these lateral epidermal sheets drive closure. Purse strings generate the largest force for closure and occur during development and wound healing throughout phylogeny. We use laser microsurgery to remove some or all of the purse strings from developing embryos. Free edges produced by surgery undergo characteristic responses as follows. Intact cells in the free edges, which previously had no purse string, recoil away from the incision and rapidly assemble new, secondary purse strings. Next, recoil slows, then pauses at a turning point. Following a brief delay, closure resumes and is powered to completion by the secondary purse strings. We confirm that the assembly of the secondary purse strings requires RhoA. We show that α-actinin alternates with nonmuscle myosin II along purse strings and requires nonmuscle myosin II for its localization. Together our data demonstrate that purse strings are renewable resources that contribute to the robust and resilient nature of closure. PMID:19404432
Observations of Altitude Dependence and Temporal Variation of ClO in the Venus Mesosphere
NASA Astrophysics Data System (ADS)
Sandor, Brad J.; Clancy, R. Todd
2015-11-01
Analysis of the first observations of ClO in the Venus mesosphere indicate ClO is present above 85 +/-3 km altitude and not below. The retrieved nightside mean abundances show a factor of 2 decrease between observation dates Oct. 23 and Nov. 11, 2015, with change between the two dates evident at more than two sigma confidence. Abundances and altitude distributions are retrieved from submm spectroscopic observations of the 352.88 GHz line of 35ClO (made with the James Clerk Maxwell Telescope - JCMT - located an Mauna Kea, Hawaii).Detection of ClO in the Venus atmosphere confirms a theory put forward by Yung and DeMore (1982) that the Venus atmosphere is stabilized as CO2 due to chlorine catalytic recombination of CO and O. (Without some form of catalysis, the Venus atmosphere would have 10s of percent CO and O2, but it is in fact 97% CO2 and 3% N2, with only trace amounts of CO and O2.) Detailed retrieval of ClO abundances and altitude distributions (the focus of this talk) provides greater insight to the catalytic process, and to other aspects of Venus atmospheric chlorine chemistry. We compare findings of our quantitave retrieval with predictions of photochemical models, and discuss the implications for chlorine photochemisty of the Venus atmosphere. We also discuss retrieved ClO temporal variation with that of upper mesospheric HCl (Sandor and Clancy, 2012).[We acknowledge funding of this project by NASA grants NNX10AB33G, NNX12AI32G, and NNX14AK05G, as well as NSF grant AST-1312985.
Linear stiff string vibrations in musical acoustics: Assessment and comparison of models.
Ducceschi, Michele; Bilbao, Stefan
2016-10-01
Strings are amongst the most common elements found in musical instruments and an appropriate physical description of string dynamics is essential to modelling, analysis, and simulation. For linear vibration in a single polarisation, the most common model is based on the Euler-Bernoulli beam equation under tension. In spite of its simple form, such a model gives unbounded phase and group velocities at large wavenumbers, and such behaviour may be interpreted as unphysical. The Timoshenko model has, therefore, been employed in more recent works to overcome such shortcoming. This paper presents a third model based on the shear beam equations. The three models are here assessed and compared with regard to the perceptual considerations in musical acoustics.
Moduli space potentials for heterotic non-Abelian flux tubes: Weak deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300
2010-09-15
We consider N=2 supersymmetric QCD with the U(N) gauge group (with no Fayet-Iliopoulos term) and N{sub f} flavors of massive quarks deformed by the mass term {mu} for the adjoint matter, W={mu}A{sup 2}, assuming that N{<=}N{sub f}<2N. This deformation breaks N=2 supersymmetry down to N=1. This theory supports non-Abelian flux tubes (strings) which are stabilized by W. They are referred to as F-term stabilized strings. We focus on the studies of such strings in the vacuum in which N squarks condense, at small {mu}, so that the Z{sub N} strings preserve, in a sense, their Bogomol'nyi-Prasad-Sommerfield nature. The (s)quark massesmore » are assumed to be nondegenerate. We calculate string tensions both in the classical and quantum regimes. Then we translate our results for the tensions in terms of the effective low-energy weighted CP(N{sub f}-1) model on the string world sheet. The bulk {mu} deformation makes this theory N=(0,2) supersymmetric heterotic weighted CP(N{sub f}-1) model in two dimensions. We find the deformation potential on the world sheet. This significantly expands the class of the heterotically deformed CP models emerging on the string world sheet compared to that suggested by Edalati and Tong. Among other things, we show that nonperturbative quantum effects in the bulk theory are exactly reproduced by the quantum effects in the world-sheet theory.« less
Planets of the solar system. [Jupiter and Venus
NASA Technical Reports Server (NTRS)
Kondratyev, K. Y.; Moskalenko, N. I.
1978-01-01
Venera and Mariner spacecraft and ground based radio astronomy and spectroscopic observations of the atmosphere and surface of venus are examined. The composition and structural parameters of the atmosphere are discussed as the basis for development of models and theories of the vertical structure of the atmosphere, the greenhouse effect, atmospheric circulation and cloud cover. Recommendations for further meteorological studies are given. Ground based and Pioneer satellite observation data on Jupiter are explored as well as calculations and models of the cloud structure, atmospheric circulation and thermal emission field of Jupiter.
Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Yigit, Erdal
2018-01-01
The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).
Coldspots and hotspots - Global tectonics and mantle dynamics of Venus
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Schubert, Gerald; Kaula, William M.
1992-01-01
Based on geologic observations provided by Magellan's first cycle of data collection and recent models of mantle convection in spherical shells and crustal deformation, the major topographic and geologic features of Venus are incorporated into a model of global mantle dynamics. Consideration is given to volcanic rises, such as Beta Regio and Atla Regio, plateau-shaped highlands dominated by complex ridged terrain (e.g., Ovda Regio and Alpha Regio), and circular lowland regions, such as Atalanta Planitia. Each of these features is related to either mantle plumes (hotspots) or mantle downwellings (coldspots).
Cosmic strings and the large-scale structure
NASA Technical Reports Server (NTRS)
Stebbins, Albert
1988-01-01
A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.
Nonlinearity of the forward-backward correlation function in the model with string fusion
NASA Astrophysics Data System (ADS)
Vechernin, Vladimir
2017-12-01
The behavior of the forward-backward correlation functions and the corresponding correlation coefficients between multiplicities and transverse momenta of particles produced in high energy hadronic interactions is analyzed by analytical and MC calculations in the models with and without string fusion. The string fusion is taking into account in simplified form by introducing the lattice in the transverse plane. The results obtained with two alternative definitions of the forward-backward correlation coefficient are compared. It is shown that the nonlinearity of correlation functions increases with the width of observation windows, leading at small string density to a strong dependence of correlation coefficient value on the definition. The results of the modeling enable qualitatively to explain the experimentally observed features in the behavior of the correlation functions between multiplicities and mean transverse momenta at small and large multiplicities.
NASA Astrophysics Data System (ADS)
Persson, Daniel; Volpato, Roberto
2018-04-01
We define a very general class of CHL-models associated with any string theory S (bosonic or supersymmetric) compactified on an internal CFT C× Td . We take the orbifold by a pair (g, δ) , where g is a (possibly non-geometric) symmetry of C and δ is a translation along T n . We analyze the T-dualities of these models and show that in general they contain Atkin–Lehner type symmetries. This generalizes our previous work on N=4 CHL-models based on heterotic string theory on T 6 or type II on K3× T2 , as well as the ‘monstrous’ CHL-models based on a compactification of heterotic string theory on the Frenkel–Lepowsky–Meurman CFT V\
Non-perturbative String Theory from Water Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theoriesmore » coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.« less
Modeling Venus-like Worlds Through Time and Implications for the Habitable Zone
NASA Astrophysics Data System (ADS)
Way, M.; Del Genio, A. D.; Amundsen, D. S.; Sohl, L. E.; Kiang, N. Y.; Aleinov, I. D.; Kelley, M.
2017-12-01
In recent work [1] we demonstrated that the climatic history of Venus may have allowed for surface liquid water to exist for several billion years using a 3D GCM [2]. Model resolution was 4x5 latitude x longitude, 20 atmospheric layers and a 13 layer fully coupled ocean. Several assumptions were made based on what data we have for early Venus: a.) Used a solar spectrum from 2.9 billion years ago, and 715 million years ago for the incident radiation. b.) Assumed Venus had the same slow modern retrograde rotation throughout the 2.9 to 0.715 Gya history explored, although one simulation at faster rotation rate was shown not to be in the HZ. c.) Used atmospheric constituents similar to modern Earth: 1 bar N2, 400ppmv CO2, 1ppmv CH4. d.) Gave the planet a shallow 310m deep ocean constrained by published D/H ratio observations. e.) Used present day Venus topography and one run with Earth topography.In all cases except the faster rotating one the planet was able to maintain surface liquid water. We have now inserted the SOCRATES [3] radiation scheme into our 3D GCM to more accurately calculate heating fluxes for different atmospheric constituents. Using SOCRATES we have explored a number of other possible early histories for Venus including: f.) An aquaplanet configuration at 2.9Gya with present day rotation period.g.) A Land planet configuration at 2.9Gya with the equivalent of 10m of water in soil and lakes. h.) A synchronously rotating version of a, f, and g (supported by recent work of [4] and older work of [5]) i.) A Venus topography with a 310m ocean, but using present day insolation (1.9 x Earth). j.) Versions of most of the worlds above but with solar insolations >1.9 to explore more Venus-like exoplanetary worlds around G-type stars. In these additional cases the planet still resides in the liquid water habitable zone. Studies such as these should help Astronomers better understand whether exoplanets found in the Venus zone [6] are capable of hosting liquid water on their surfaces and whether significant resources should be directed at their characterization in the future. [1] Way, M.J. et al. (2016) GRL, 43, 8376 [2] Way, M.J. et al. (2017) ApJS, 231, 1[3] Edwards, J.M., Slingo, A. (1996) Q. J. Royal. Met. Soc. 122, 689[4] Barnes, R. (2017) Cel Mech Dyn Ast, in Press[5] Dobrovolskis & Ingersoll (1980), Icarus, 41, 1[6] Kane et al. (2013), ApJL 794, 5
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1991-01-01
Laboratory measurements of microwave and millimeter wave properties of the simulated atmosphere of the outer planets and their satellites has continued. One of the focuses is on the development of a radiative transfer model of the Jovian atmosphere at wavelengths from 1 mm to 10 cm. This modeling effort led to laboratory measurements of the millimeter wave opacity of hydrogen sulfide (H2S) under simulated Jovian conditions. Descriptions of the modeling effort, the Laboratory experiment, and the observations are presented. Correlative studies of measurements with Pioneer-Venus radio occultation measurements with longer wavelength emission measurements have provided new ways for characterizing temporal and spatial variations in the abundance of both gases H2SO4 and SO2, and for modeling their roles in the subcloud atmosphere. Laboratory measurements were conducted on 1.35 cm (and 13 cm) opacity of gaseous SO2 and absorptivity of gaseous SO2 at the 3.2 mm wavelength under simulated Venus conditions. Laboratory measurements were completed on millimeter wave dielectric properties of liquid H2SO4, in order to model the effects of the opacity of the clouds of Venus onto millimeter wave emission spectrum.
Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III
2009-01-01
The BAT province is of particular interest with respect to evaluating Venus geologic, tectonic, and volcanic history and provides tests of global paradigms regarding her thermal evolution. The BAT is "ringed" by volcano-tectonic troughs (Parga, Hecate, and Devana Chasmata), has an anomalously high-density of volcanic features with concentrations 2-4 times the global average [1], and is spatially coincident with "young terrain" as illustrated by Average Surface Model Ages [2, 3]. The BAT province is key to understanding Venus current volcanic and tectonic modes, which may provide insight for evaluating Venus historical record. Several quadrangles, two 1:5,000,000 scale - Isabella (V-50) Quadrangle and Devana Chasma (V-29) Quadrangle and two 1:10,000,000 scale - Helen Planitia (I-2477) and Guinevere Planitia (I-2457), are in various stages of production (Figure 1). This abstract will report on their levels of completion as well as highlight some current results and outstanding issues.
NASA Technical Reports Server (NTRS)
Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin
2015-01-01
We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.
Near-infrared oxygen airglow from the Venus nightside
NASA Technical Reports Server (NTRS)
Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.
1992-01-01
Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.
Walking tree heuristics for biological string alignment, gene location, and phylogenies
NASA Astrophysics Data System (ADS)
Cull, P.; Holloway, J. L.; Cavener, J. D.
1999-03-01
Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.
VIRTIS on Venus Express: retrieval of real surface emissivity on global scales
NASA Astrophysics Data System (ADS)
Arnold, Gabriele E.; Kappel, David; Haus, Rainer; Telléz Pedroza, Laura; Piccioni, Giuseppe; Drossart, Pierre
2015-09-01
The extraction of surface emissivity data provides the data base for surface composition analyses and enables to evaluate Venus' geology. The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express mission measured, inter alia, the nightside thermal emission of Venus in the near infrared atmospheric windows between 1.0 and 1.2 μm. These data can be used to determine information about surface properties on global scales. This requires a sophisticated approach to understand and consider the effects and interferences of different atmospheric and surface parameters influencing the retrieved values. In the present work, results of a new technique for retrieval of the 1.0 - 1.2 μm - surface emissivity are summarized. It includes a Multi-Window Retrieval Technique, a Multi-Spectrum Retrieval technique (MSR), and a detailed reliability analysis. The MWT bases on a detailed radiative transfer model making simultaneous use of information from different atmospheric windows of an individual spectrum. MSR regularizes the retrieval by incorporating available a priori mean values, standard deviations as well as spatial-temporal correlations of parameters to be retrieved. The capability of this method is shown for a selected surface target area. Implications for geologic investigations are discussed. Based on these results, the work draws conclusions for future Venus surface composition analyses on global scales using spectral remote sensing techniques. In that context, requirements for observational scenarios and instrumental performances are investigated, and recommendations are derived to optimize spectral measurements for Venus' surface studies.
The rate of chemical weathering of pyrite on the surface of Venus
NASA Technical Reports Server (NTRS)
Fegley, B., Jr.; Lodders, K.
1993-01-01
This abstract reports results of an experimental study of the chemical weathering of pyrite (FeS2) under Venus-like conditions. This work, which extends the earlier study by Fegley and Treiman, is part of a long range research program to experimentally measure the rates of thermochemical gas-solid reactions important in the atmospheric-lithospheric sulfur cycle on Venus. The objectives of this research are (1) to measure the kinetics of thermochemical gas-solid reactions responsible for both the production (e.g., anhydrite formation) and destruction (e.g., pyrrhotite oxidation) of sulfur-bearing minerals on the surface of Venus and (2) to incorporate these and other constraints into holistic models of the chemical interactions between the atmosphere and surface of Venus. Experiments were done with single crystal cubes of natural pyrite (Navajun, Logrono, Spain) that were cut and polished into slices of known weight and surface area. The slices were isothermally heated at atmospheric pressure in 99.99 percent CO2 (Coleman Instrument Grade) at either 412 C (685 K) or 465 C (738 K) for time periods up to 10 days. These two isotherms correspond to temperatures at about 6 km and 0 km altitude, respectively, on Venus. The reaction rate was determined by measuring the weight loss of the reacted slices after removal from the furnace. The reaction products were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy on the SEM.
Ion Escape from the Ionosphere of Titan
NASA Technical Reports Server (NTRS)
Hartle, R.; Sittler, E.; Lipatov, A.
2008-01-01
Ions have been observed to flow away from Titan along its induced magnetic tail by the Plasma Science Instrument (PLS) on Voyager 1 and the Cassini Plasma Spectrometer (CAPS) on Cassini. In both cases, the ions have been inferred to be of ionospheric origin. Recent plasma measurements made at another unmagnetized body, Venus, have also observed similar flow in its magnetic tail. Much earlier, the possibility of such flow was inferred when ionospheric measurements made from the Pioneer Venus Orbiter (PVO) were used to derive upward flow and acceleration of H(+), D(+) and O(+) within the nightside ionosphere of Venus. The measurements revealed that the polarization electric field in the ionosphere produced the principal upward force on these light ions. The resulting vertical flow of H(+) and D(+) was found to be the dominant escape mechanism of hydrogen and deuterium, corresponding to loss rates consistent with large oceans in early Venus. Other electrodynamic forces were unimportant because the plasma beta in the nightside ionosphere of Venus is much greater than one. Although the plasma beta is also greater than one on Titan, ion acceleration is expected to be more complex, especially because the subsolar point and the subflow points can be 180 degrees apart. Following what we learned at Venus, upward acceleration of light ions by the polarization electric field opposing gravity in the ionosphere of Titan will be described. Additional electrodynamic forces resulting from the interaction of Saturn's magnetosphere with Titan's ionosphere will be examined using a recent hybrid model.
Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2008-09-01
We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.
On the iron chloride aerosol in the clouds of Venus
NASA Astrophysics Data System (ADS)
Krasnopolsky, Vladimir A.
2017-04-01
Iron chloride in the Venus clouds is under discussion for three decades, and the saturated vapor pressure of this species is of crucial importance for its modeling. There is a great scatter in the published data, and the preferable results are by Rustad and Gregory (1983, J. Chem. Eng. Data 28, 151-155) and those based on thermodynamic parameters by Chase (1998, J. Phys. Chem. Ref. Data Monograph 9). Using these data, loss by coagulation with sulfuric acid, transport by eddy diffusion, and the Stokes precipitation, the model confirms conclusions of our early study (Krasnopolsky 1985, Planet. Space Sci. 33, 109-117) that FeCl3 in the Venus clouds (1) agrees with the near UV and blue reflectivity of Venus (Zasova et al. 1981, Adv. Space Res. 1, #9, 13-16), (2) was observed by the direct X-ray fluorescent spectroscopy, (3) explains the altitude profiles of the mode 1 aerosol in the middle and lower cloud layers and (4) the decrease in the NUV absorption below 60 km. Here we add to these conclusions that (5) the delivery of FeCl3 into the upper cloud layer and the production of sulfuric acid are just in proportion of 1: 100 by mass that is required to fit the observed NUV albedo. Furthermore, (6) the mode 1 and 2 particle sizes fit this proportion as well. Finally, (7) the required Fe2Cl6 mixing ratio is 17 ppbv in the atmosphere and the FeCl3 mole fraction is 19 ppbv in the Venus surface rocks.
Venus EPIC Model Spinup Results
NASA Astrophysics Data System (ADS)
Dowling, Timothy E.; Herrnstein, A.
2006-09-01
We describe the new Venus EPIC model, including its hybrid isentropic/terrain-following vertical coordinate, and explore how topography affects atmospheric spinup from rest. We force the model with the Newtonian cooling used by Lee, Lewis, and Read (2005, Adv. Space Res. 36, 2142-2145) to generate a substantial superrotation in a Venus model without topography, achieving approximately half the desired wind speed. With topography, the Eliassen-Palm flux divergence, a diagnostic tool that maps where eddies have a net effect on the zonal wind, is more steady in time and strongly enhanced at high latitudes in the northern hemisphere by the presence of Ishtar Terra, compared to the case of no topography. In general, the mountains cause the model to achieve a dynamical steady state in a matter of years rather than decades, the northern polar jet to be weaker than its southern counterpart, and the overall magnitude of superrotation to be weaker. Since adding mountains has moved the model superrotation farther below the target, the next step will be to employ more realistic forcing, with attention paid to exactly how the mountains shape the eddy structure, which in turn drives the model's superrotation. This research is funded by the NSF Planetary Astronomy Program and the NASA Planetary Atmospheres Program.
CMB temperature trispectrum of cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki
2010-03-15
We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent l{sup -{rho}}with 6<{rho}<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite andmore » trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.« less
Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars
NASA Astrophysics Data System (ADS)
Nagy, A. F.; Kim, J.; Cravens, T. E.
1990-04-01
Optical observations of hot atoms in the atmospheres of Venus and Mars are briefly reviewed. A summary of hot hydrogen and oxygen production and loss processes is given. Results of some recent model calculations as well as a number of new results of the hot hydrogen and oxygen populations are presented and their implication in terms of solar wind interaction processes is discussed.
Love Kills:. Simulations in Penna Ageing Model
NASA Astrophysics Data System (ADS)
Stauffer, Dietrich; Cebrat, Stanisław; Penna, T. J. P.; Sousa, A. O.
The standard Penna ageing model with sexual reproduction is enlarged by adding additional bit-strings for love: Marriage happens only if the male love strings are sufficiently different from the female ones. We simulate at what level of required difference the population dies out.
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
1988-01-01
The geological evolution of distinctly different kinds of solar system objects is addressed. Venus has been observed over the past decade by orbital radars on both American and Soviet spacecraft. These surface measurements provide clues to the structure and evolution of the lithosphere. The parent bodies of chondritic meteorites, thought to resemble asteroids, represent the other end of the size spectrum of terrestrial objects. Their early thermal and collisional histories may be constrained by the chemical and textural record preserved in meteorite samples. Impact craters on Venus have been observed by the Soviet Venera 15/16 spacecraft. A formalism is presented by which the size-frequency distribution of impact craters may be used to estimate upper bounds on the mean global rates of volcanic resurfacing and lithospheric recycling on that planet over the past several hundred million years. The impact crater density reported from Venera observations, if valid for the entire Venus surface, indicates a mean volcanic flux no greater than 2 cu km/y, corresponding to a maximum average rate of resurfacing of about 4 km/b.y. For the lowest estimated mean crater retention age of the surface of Venus imaged by Venera 15/16, the rate of lithospheric recycling on Venus does not exceed 1.5 sq km/y. Ordinary chondrite meteorites show textural and chemical patterns indicative of varying intensities of thermal metamorphism. The conventional onion-shell model, which envisions highly metamorphosed material in the core and less intensely heated rocks near the surface, predicts an inverse relation between peak temperature and cooking rate, but none has been observed. A metamorphosed-planetesimal model is devised to explain this discrepancy, whereby heating occurs in planetesimals a few kilometers in radius which then accrete to form 100-km-radius parent bodies. Cooling rates are then randomly controlled by burial depth. Thermal and collisional constraints are examined, and the model is found to be applicable only to highly insulating Al-26-rich planetesimals that remain closely aggregated upon accretion. An alternative model is presented, in which onion-shell parent bodies are collisionally fragmented during metamorphism and then gravitationally reassembled. If reassembly times are short, then cooling rates would be determined by burial depth in the reaccreted parent body. This model, unlike previous ones, can explain both coherent and incoherent cooling of Breccia clasts by collisions during or after metamorphism, respectively.
A simple model for the evolution of a non-Abelian cosmic string network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cella, G.; Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr
2016-06-01
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argumentmore » to justify the lack of scaling for the residual cases.« less
A simple spectral model of the dynamics of the Venus ionosphere
NASA Technical Reports Server (NTRS)
Singhal, R. P.; Whitten, R. C.
1987-01-01
A two-dimensional model of the ionosphere of Venus has been constructed by expanding pertinent quantities in Legendre polynomials. The model is simplified by including only a single ion species, O(+). Horizontal plasma flow velocity and plasma density have been calculated as a coupled system. The calculated plasma flow velocity is found to be in good agreement with observations and the results of earlier studies. Solar zenith angle dependence of plasma density, particularly on the nightside, shows some features which differ from results of earlier studies and observed values. Effects of raising or lowering the ionopause height and changing the nightside neutral atmosphere have been discussed.
A ferroelectric model for the low emissivity highlands on Venus
NASA Technical Reports Server (NTRS)
Shepard, Michael K.; Arvidson, Raymond E.; Brackett, Robert A.; Fegley, Bruce, Jr.
1994-01-01
A model to explain the low emissivity venusian highlands is proposed utilizing the temperature-dependent dielectric constant of ferroelectric minerals. Ferroelectric minerals are known to occur in alkaline and carbonite rocks, both of which are plausible for Venus. Ferroelectric minerals possess extremely high dielectric constants (10(exp 5)) over small temperature intervals and are only required in minor (much less than 1%) abundances to explain the observed emissivities. The ferroelectric model can account for: (1) the observed reduction in emissivity with increased altitude, (2) the abrupt return to normal emissivities at highest elevations, and (3) the variations in the critical elevation observed from region to region.
Thermal stabilization of superconducting sigma strings and their drum vortons
NASA Astrophysics Data System (ADS)
Carter, Brandon; Brandenberger, Robert H.; Davis, Anne-Christine
2002-05-01
We discuss various issues related to stabilized embedded strings in a thermal background. In particular, we demonstrate that such strings will generically become superconducting at moderately low temperatures, thus enhancing their stability. We then present a new class of defects-drum vortons-which arise when a small symmetry breaking term is added to the potential. We display these points within the context of the O(4) sigma model, relevant for hadrodynamics below the QCD scale. This model admits ``embedded defects'' (topological defect configurations of a simpler-in this case O(2) symmetric-model obtained by imposing an embedding constraint) that are unstable in the full model at zero temperature, but that can be stabilized (by electromagnetic coupling to photons) in a thermal gas at moderately high termperatures. It is shown here that below the embedded defect stabilization threshold, there will still be stabilized cosmic string defects. However, they will not be of the symmetric embedded vortex type, but of an ``asymmetric'' vortex type, and are automatically superconducting. In the presence of weak symmetry breaking terms, such as arise naturally when using the O(4) model for hadrodynamics, the strings become the boundary of a new kind of cosmic sigma membrane, with tension given by the pion mass. The string current would then make it possible for a loop to attain a (classically) stable equilibrium state that differs from an ``ordinary'' vorton state by the presence of a sigma membrane stretched across it in a drum-like configuration. Such defects will however be entirely destabilized if the symmetry breaking is too strong, as is found to be the case-due to the rather large value of the pion mass-in the hadronic application of the O(4) sigma model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey
Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.« less
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; ...
2018-02-02
Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.« less
NASA Astrophysics Data System (ADS)
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke
2018-02-01
Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by their passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving "downward" into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.
NASA Technical Reports Server (NTRS)
Williams, David R.; Gaddis, Lisa
1991-01-01
The tectonics of the Tellus Region highland on Venus is examined using the altimetry and gravity data collected by Pioneer Venus, which were incorporated into a thin elastic shell model to calculate both the global (long-wavelength) and the regional (short-wavelength) stresses for various assumed values of crust, lithosphere, and mantle thickness and modes of compensation. The resultant stress fields were compared to the surface morphology observed in the Venera 15/16 radar images and interpreted in terms of stress history of Tellus Regio. The best fitting parameters were found to be consistent with minor amounts of lithospheric flexure being necessary to produce the observed surface features of this region.
(abstract) Venus Gravity Field
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Sjogren, W. L.
1995-01-01
A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.
The D/H ratio and the evolution of water in the terrestrial planets.
de Bergh, C
1993-02-01
The presence of liquid water at the surface of the Earth has played a major role in the biological evolution of the Earth. None of the other terrestrial planets--Mercury, Venus and Mars--has liquid water at its surface. However, it has been suggested, since the early seventies, from both geological and atmospheric arguments that, although Venus and Mars are presently devoid of liquid water, their surfaces could have been partially or completely covered by water at some time of their evolution. There are many possible diagnostics of the long-term evolution of the planets, either from the present characteristics of their surfaces or from their present atmospheric compositions. Among them, the present value of the D/H ratio is of particular interest, although its significance in terms of long term evolution has been challenged by some authors. Recent progress has been made in this field. We now have evidence for higher D/H ratios on Mars and Venus than on Earth, with an enrichment factor of the order of 5 on Mars, and about 100 on Venus. Any scenario for the evolution of these planets must take this into The most recent models on the evolution of Mars and Venus are reviewed in light of these new measurements.
Axions, Inflation and String Theory
NASA Astrophysics Data System (ADS)
Mack, Katherine J.; Steinhardt, P. J.
2009-01-01
The QCD axion is the leading contender to rid the standard model of the strong-CP problem. If the Peccei-Quinn symmetry breaking occurs before inflation, which is likely in string theory models, axions manifest themselves cosmologically as a form of cold dark matter with a density determined by the axion's initial conditions and by the energy scale of inflation. Constraints on the dark matter density and on the amplitude of CMB isocurvature perturbations currently demand an exponential degree of fine-tuning of both axion and inflationary parameters beyond what is required for particle physics. String theory models generally produce large numbers of axion-like fields; the prospect that any of these fields exist at scales close to that of the QCD axion makes the problem drastically worse. I will discuss the challenge of accommodating string-theoretic axions in standard inflationary cosmology and show that the fine-tuning problems cannot be fully addressed by anthropic principle arguments.
Sv-map between type I and heterotic sigma models
NASA Astrophysics Data System (ADS)
Fan, Wei; Fotopoulos, A.; Stieberger, S.; Taylor, T. R.
2018-05-01
The scattering amplitudes of gauge bosons in heterotic and open superstring theories are related by the single-valued projection which yields heterotic amplitudes by selecting a subset of multiple zeta value coefficients in the α‧ (string tension parameter) expansion of open string amplitudes. In the present work, we argue that this relation holds also at the level of low-energy expansions (or individual Feynman diagrams) of the respective effective actions, by investigating the beta functions of two-dimensional sigma models describing world-sheets of open and heterotic strings. We analyze the sigma model Feynman diagrams generating identical effective action terms in both theories and show that the heterotic coefficients are given by the single-valued projection of the open ones. The single-valued projection appears as a result of summing over all radial orderings of heterotic vertices on the complex plane representing string world-sheet.
Venus' center of figure-center of mass offset
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Schubert, Gerald; Ford, Peter G.
1994-01-01
Magellan altimetry data reveal that the center of figure (CF) of Venus is displaced approximately 280 m from its center of mass (CM) toward 4.4 deg S, 135.8 deg E, a location in Aphrodite Terra. This offset is smaller than those of other terrestrial planets but larger than the estimated error, which is no more than a few tens of meters. We examine the possibility that the CF-CM offset is related to specific geologic provinces on Venus by deriving three simple models for the offset: a thick-crust model, a hotspot model, and a thick-lithosphere model. The offset caused by a region of thick crust depends upon the region's extent, the crust-mantle density contrast, and the thickness of excess crust. A hotspot-related offset depends on the extent of the thermally anomalous region and the magnitude of the thermal anomaly. Offset due to a region of thick lithosphere depends upon the extent of the region, the average temperature contrast across the lithosphere, and the amount of excess lithosphere. We apply the three models to Venus plateau-shaped highlands, volcanic rises, and lowlands, respectively, in an attempt to match the observed CF-CM offset location and magnitude. The influence of most volcanic rises and of Ishtar Terra on the CF-CM offset must be quite small if we are to explain the direction of the observed offset. The lack of influence of volcanic rises can be explained if the related thermal anomalies are limited to a few hundred degrees or less and are plume-shaped (i.e., characterized by a flattened sublithospheric `head' with a narrow cylindrical feeder `tail'). The unimportance of Ishtar Terra is most easily explained if it lies atop a significant mantle downwelling.
Structure of the middle atmosphere of Venus
NASA Astrophysics Data System (ADS)
Zasova, Ludmila
Middle atmosphere of Venus (55-100 km), its mesosphere, is the important layer of atmosphere, where 70 % of the solar energy is absorbed. Most of this absorption takes place in the upper clouds in the altitude range 58-68 km in the spectral range 0.32-0.5 µm. It leads to generation of the thermal tides, playing important role in support of the superrotation. In the frame of COSPAR model VIRA (ASR, 11,1985) the model of the thermal structure of the middle atmosphere was constructed for 5 latitude ranges, based mainly on the Pioneer Venus ORO and OIR data. Using Venera-15 Fourier Spectrometry data, which allow to retrieve the temperature and aerosol profiles in a self consistent way from each spectrum, we enable to update the model of the middle atmosphere, including the local time variation of the temperature for VIRA latitude ranges (Cosmic Research, 44, 4, 2006). From Venera-15 data it was shown that variation of temperature in the middle atmosphere is well described by thermal tides with harmonics 1, 1/2, 1/3, 1/4 Venusian day, the amplitudes and phases of which depend on latitude and altitude. The model of the upper clouds (VIRA) may also be updated using Venera-15 data. It was shown that the main latitude trend is the decreasing of the upper cloud boundary from 68 km at low latitudes to 60-62 km at high latitudes. Local time variation has a solar related dependence: 1 and 1/2 day components were revealed. Venus Express continues to obtain a lot of data, which may be used for the improvement of the model of the middle atmosphere and the clouds.
Models of the global cloud structure on Venus derived from Venus Express observations
NASA Astrophysics Data System (ADS)
Barstow, J. K.; Tsang, C. C. C.; Wilson, C. F.; Irwin, P. G. J.; Taylor, F. W.; McGouldrick, K.; Drossart, P.; Piccioni, G.; Tellmann, S.
2012-02-01
Spatially-resolved near-infrared spectra from the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on Venus Express have been used to derive improved models of the vertical structure and global distribution of cloud properties in the southern hemisphere of Venus. VIRTIS achieved the first systematic, global mapping of Venus at wavelengths within transparency windows in the 1.6-2.6 μm range, which are sensitive on the nightside to absorption by the lower and middle cloud layers of thermally-emitted radiation from the hot lower atmosphere ( Taylor, F.W., Crisp, D., Bézard, B. [1997]. Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, pp. 325-351). The cloud model used to interpret the spectra is based on previous work by Pollack et al. (Pollack, J., Dalton, J., Grinspoon, D., Wattson, R., Freedman, R., Crisp, D., Allen, D., Bézard, B., de Bergh, C., Giver, L. [1993]. Icarus 103, 1-42), Grinspoon et al. (Grinspoon, D.H., Pollack, J.B., Sitton, B.R., Carlson, R.W., Kamp, L.W., Baines, K.H., Encrenaz, T., Taylor, F.W. [1993]. Planet. Space Sci. 41, 515-542) and Crisp (Crisp, D. [1986]. Icarus 67, 484-514), and assumes a composition for the cloud particles of sulfuric acid and water, with acid concentration as a free parameter to be determined. Other retrieved parameters are the average size of the particles and the altitude of the cloud base in the model. Latitudinal variation in the atmospheric temperature structure was incorporated using data from the Venus Radio Science experiment (VeRa). Values are estimated initially using wavelength pairs selected for their unique sensitivity to each parameter, and then validated by comparing measured to calculated spectra over the entire wavelength range, the latter generated using the NEMESIS radiative transfer and retrieval code (Irwin, P.G.J., Teanby, N.A., de Kok, R., Fletcher, L.N., Howett, C.J.A., Tsang, C.C.C., Wilson, C.F., Calcutt, S.B., Nixon, C.A., Parrish, P.D. [2008]. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150). The sulfuric acid concentration in the cloud particles is found to be higher in regions of optically thick cloud. The cloud base altitude shows a dependence on latitude, reaching a maximum height near -50°. The increased average particle size near the pole found by Wilson et al. (Wilson, C.F., Guerlet, S., Irwin, P.G.J., Tsang, C.C.C., Taylor, F.W., Carlson, R.W., Drossart, P., Piccioni, G. [2008]. J. Geophys. Res. (Planets) 113, E12) and the finding of spatially variable water vapor abundance at35-40 km altitude first reported by Tsang et al. (Tsang, C.C.C., Wilson, C.F., Barstow, J.K., Irwin, P.G.J., Taylor, F.W., McGouldrick, K., Piccioni, G., Drossart, P., Svedhem, H. [2010]. Geophys. Res. Lett. 37, L02202) are both confirmed. The implications of these improved descriptions of cloud structure and variability for the chemistry, meteorology, and radiative energy balance on Venus are briefly discussed.
Reconstruction of piano hammer force from string velocity.
Chaigne, Antoine
2016-11-01
A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurya, D. Ch., E-mail: dcmaurya563@gmail.com; Zia, R., E-mail: rashidzya@gmail.com; Pradhan, A., E-mail: pradhan.anirudh@gmail.com
We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans–Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kB{sup m}, where k and m are constants. With these assumptions and also assuming a variable scale factor a = a(t), we find solutions of the Brans–Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage ofmore » the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.« less
The effects of Venus' thermal structure on buoyant magma ascent
NASA Technical Reports Server (NTRS)
Sakimoto, S. E. H.; Zuber, M. T.
1992-01-01
The recent Magellan images have revealed a broad spatial distribution of surface volcanism on Venus. Previous work in modeling the ascent of magma on both Venus and Earth has indicated that the planetary thermal structure significantly influences the magmatic cooling rates and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of the thermal structure have the greatest influence on the cooling of ascending magma, we have constructed magma cooling curves for both plutonic and crack buoyant ascent mechanisms, and evaluated the curves for variations in the planetary mantle temperature, thermal gradient curvature with depth, surface temperature gradient, and surface temperature. The planetary thermal structure is modeled as T/T(sub 0) = 1-tau(1-Z/Z(sub 0)(exp n), where T is the temperature, T(sub 0) is the source depth temperature, tau = 1-(T(sub s)/T(sub 0)) where T(sub s) is the planetary surface temperature, Z is the depth, Z(sub 0) is the source depth, and n is a constant that controls thermal gradient curvature with depth. The equation is used both for mathematical convenience and flexibility, as well as its fit to the thermal gradients predicted by the cooling half-space models. We assume a constant velocity buoyant ascent, body-averaged magma temperatures and properties, an initially crystal-free magma, and the same liquidus and solidus for both Venus and Earth.
Connecting the ambitwistor and the sectorized heterotic strings
NASA Astrophysics Data System (ADS)
Azevedo, Thales; Jusinskas, Renann Lipinski
2017-10-01
The sectorized description of the (chiral) heterotic string using pure spinors has been misleadingly viewed as an infinite tension string. One evidence for this fact comes from the tree level 3-point graviton amplitude, which we show to contain the usual Einstein term plus a higher curvature contribution. After reintroducing a dimensionful parameter ℓ in the theory, we demonstrate that the heterotic model is in fact two-fold, depending on the choice of the supersymmetric sector, and that the spectrum also contains one massive (open string like) multiplet. By taking the limit ℓ → ∞, we finally show that the ambitwistor string is recovered, reproducing the unexpected heterotic state in Mason and Skinner's RNS description.
String tensions in deformed Yang-Mills theory
NASA Astrophysics Data System (ADS)
Poppitz, Erich; Shalchian T., M. Erfan
2018-01-01
We study k-strings in deformed Yang-Mills (dYM) with SU(N) gauge group in the semiclassically calculable regime on R^3× S^1 . Their tensions Tk are computed in two ways: numerically, for 2 ≤ N ≤ 10, and via an analytic approach using a re-summed perturbative expansion. The latter serves both as a consistency check on the numerical results and as a tool to analytically study the large-N limit. We find that dYM k-string ratios Tk/T1 do not obey the well-known sine- or Casimir-scaling laws. Instead, we show that the ratios Tk/T1 are bound above by a square root of Casimir scaling, previously found to hold for stringlike solutions of the MIT Bag Model. The reason behind this similarity is that dYM dynamically realizes, in a theoretically controlled setting, the main model assumptions of the Bag Model. We also compare confining strings in dYM and in other four-dimensional theories with abelian confinement, notably Seiberg-Witten theory, and show that the unbroken Z_N center symmetry in dYM leads to different properties of k-strings in the two theories; for example, a "baryon vertex" exists in dYM but not in softly-broken Seiberg-Witten theory. Our results also indicate that, at large values of N, k-strings in dYM do not become free.
Accidental Kähler moduli inflation
NASA Astrophysics Data System (ADS)
Maharana, Anshuman; Rummel, Markus; Sumitomo, Yoske
2015-09-01
We study a model of accidental inflation in type IIB string theory where inflation occurs near the inflection point of a small Kähler modulus. A racetrack structure helps to alleviate the known concern that string-loop corrections may spoil Kähler Moduli Inflation unless having a significant suppression via the string coupling or a special brane setup. Also, the hierarchy of gauge group ranks required for the separation between moduli stabilization and inflationary dynamics is relaxed. The relaxation becomes more significant when we use the recently proposed D-term generated racetrack model.
Segmented strings coupled to a B-field
NASA Astrophysics Data System (ADS)
Vegh, David
2018-04-01
In this paper we study segmented strings in AdS3 coupled to a background two-form whose field strength is proportional to the volume form. By changing the coupling, the theory interpolates between the Nambu-Goto string and the SL(2, ℝ) Wess-Zumino-Witten model. In terms of the kink momentum vectors, the action is independent of the coupling and the classical theory reduces to a single discrete-time Toda-type theory. The WZW model is a singular point in coupling space where the map into Toda variables degenerates.
NASA Astrophysics Data System (ADS)
Fegley, B., Jr.
Venus is Earth's nearest planetary neighbor and has fascinated mankind since the dawn of history. Venus' clouds reflect most of the sunlight shining on the planet and make it the brightest object in the sky after the Sun and Moon. Venus is visible with the naked eye as an evening star until a few hours after sunset or as a morning star shortly before sunrise. Many ancient civilizations observed and worshipped Venus, which had a different name in each society, for example, Ishtar to the Babylonians, Aphrodite to the Greeks, Tai'pei to the Chinese, and Venus to the Romans. Venus has continued to play an important role in myth, literature, and science throughout history.
NASA Astrophysics Data System (ADS)
Sharma, N. K.; Singh, J. K.
2014-12-01
The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of scale-covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39, 429, 1977). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento 74, 182, 1983) string cosmological model is obtained in this theory. We use the power law relation between scalar field ϕ and scale factor R to find the solutions. Some physical and kinematical properties of the model are also discussed.
NASA Astrophysics Data System (ADS)
Venkateswarlu, R.; Sreenivas, K.
2014-06-01
The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.
Effects of cosmic string velocities and the origin of globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert, E-mail: ling.lin2@mail.mcgill.ca, E-mail: shoma.yamanouchi@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca
2015-12-01
With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milkymore » Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.« less
Coupling of transverse and longitudinal waves in piano strings.
Etchenique, Nikki; Collin, Samantha R; Moore, Thomas R
2015-04-01
The existence of longitudinal waves in vibrating piano strings has been previously established, as has their importance in producing the characteristic sound of the piano. Modeling of the coupling between the transverse and longitudinal motion of strings indicates that the amplitude of the longitudinal waves are quadratically related to the transverse displacement of the string, however, experimental verification of this relationship is lacking. In the work reported here this relationship is tested by driving the transverse motion of a piano string at only two frequencies, which simplifies the task of unambiguously identifying the constituent signals. The results indicate that the generally accepted relationship between the transverse motion and the longitudinal motion is valid. It is further shown that this dependence on transverse displacement is a good approximation when a string is excited by the impact of the hammer during normal play.
The confining baryonic Y-strings on the lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakry, Ahmed S.; Chen, Xurong; Zhang, Peng-Ming
2016-01-22
In a string picture, the nucleon is conjectured as consisting of a Y-shaped gluonic string ended by constituent quarks. In this proceeding, we summarize our results on revealing the signature of the confining Y-bosonic string in the gluonic profile due to a system of three static quarks on the lattice at finite temperature. The analysis of the action density unveils a background of a filled-Δ distribution. However, we found that these Δ-shaped profiles are comprised of three Y-shaped Gaussian-like flux tubes. The length of the revealed Y-string-like distribution is maximum near the deconfinement point and approaches the geometrical minimal nearmore » the end of the QCD plateau. The action density width profile returns good fits to a baryonic string model for the junction fluctuations at large quark source separation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Periwal, V.
1988-01-01
The author proves that bosonic string perturbation theory diverges and is not Borel summable. This is an indication of a non-perturbative instability of the bosonic string vacuum. He formulates two-dimensional sigma models in terms of algebras of functions. He extends this formulation to general C* algebras. He illustrates the utility of these algebraic notions by calculating some determinants of interest in the study of string propagation in orbifold backgrounds. He studies the geometry of spaces of field theories and show that the vanishing of the curvature of the natural Gel'fand-Naimark-Segal metric on such spaces is exactly the strong associativity conditionmore » of the operator product expansion.He shows that string scattering amplitudes arise as invariants of renormalization, when he formulates renormalization in terms of rescalings of the metric on the string world-sheet.« less
Dynamics of a distributed drill string system: Characteristic parameters and stability maps
NASA Astrophysics Data System (ADS)
Aarsnes, Ulf Jakob F.; van de Wouw, Nathan
2018-03-01
This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.
Saylor, Karen L.; Anver, Miriam R.; Salomon, David S.; Golubeva, Yelena G.
2016-01-01
Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM. PMID:27077656
NASA Astrophysics Data System (ADS)
Golubovic, Leonardo; Knudsen, Steven
2017-01-01
We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.
NASA Astrophysics Data System (ADS)
Hiramatsu, Takashi; Sendouda, Yuuiti; Takahashi, Keitaro; Yamauchi, Daisuke; Yoo, Chul-Moon
2013-10-01
We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter β, the ratio between the masses of the scalar field and the gauge field, namely, β=mφ2/mA2. In particular, if we take the cosmic expansion into account, the network becomes densest in the comoving box for a specific value of β for β<1.
Venus: The case for a wet origin and a runaway greenhouse
NASA Technical Reports Server (NTRS)
Kasting, J. F.
1992-01-01
To one interested in atmospheric evolution, the most intriguing aspect of our neighboring planet Venus is its lack of water. Measurements made by Pioneer Venus and by Several Venera spacecraft indicate that the present water abundance in Venus' lower atmosphere is of the order of 20 to 200 ppmv, or 3 x 10( exp -6) to 3 x 10 (exp -5) of the amount of water in Earth's oceans. The exact depletion factor is uncertain, in part because of an unexplained vertical gradient in H2O concentration in the lowest 10 km of the venusian atmosphere, but the general scarcity of water is well established. The interesting question, then, is: Was venus deficient in water when it formed and, if not, where did its water go? The conclusion that Venus was originally wet is consistent with its large endowment of other volatiles and with the enhanced D/H ratio in the present atmosphere. The most likely mechanism by which Venus could have lost its water is by the development of a runaway or moist greenhouse atmosphere followed by photodissociation of water vapor and escape of hydrogen to space. Climate model calculations that neglect cloud albedo feedback predict the existence of two critical transitions in atmospheric behavior at high solar fluxes: (1) at a solar flux of approximately 1.1 times the value at Earth's orbit, S(o), the abundance of stratospheric water vapor increases dramatically, permitting rapid escape of hydrogen to space (termed a moist greenhouse) and (2) at a solar flux of approximately 1.4 S(o), the oceans vaporize entirely, creating a true runaway greenhouse. If cloudiness increases at high surface temperatures, as seems likely, and if the dominant effect of clouds is to cool the planet by reflecting incident solar radiation, the actual solar flux required to create moist or runaway conditions would be higher than the values quoted above. Early in solar system history, solar luminosity was about 25 percent to 30 percent less than today, putting the flux at Venus' orbit in the range of 1.34 S(o) to 1.43 S(o). Thus, it is possible that Venus had liquid water on its surface for several hundred million years following its formation. Paradoxically, this might have facilitated water loss by sequestering atmospheric CO2 in carbonate rocks and by providing an effective medium for surface oxidation.
Second Venus spacecraft set for launch
NASA Technical Reports Server (NTRS)
1978-01-01
The launch phase of the Pioneer Venus Multiprobe spacecraft and cruise phases of both the Pioneer Venus Orbiter and the Multiprobe spacecraft are covered. Material pertinent to the Venus encounter is included.
Kuiper Prize Lecture - Present and past climates of the terrestrial planets
NASA Technical Reports Server (NTRS)
Pollack, James B.
1991-01-01
An evaluation is undertaken of the current understanding of factors shaping the current climates of Venus, Mars, and the earth, in conjunction with the ways in which these planetary climates may have been different in the past. Attention is given to modeling approaches of various levels of sophistication which both characterize current climates and elucidate prior climatic epochs; these are assessed in light of observational data in order to judge degrees of success thus far and formulate major remaining questions for future investigations. Venus is noted to offer excellent opportunities for modeling the greenhouse effect.
Holographic hierarchy in the Gaussian matrix model via the fuzzy sphere
NASA Astrophysics Data System (ADS)
Garner, David; Ramgoolam, Sanjaye
2013-10-01
The Gaussian Hermitian matrix model was recently proposed to have a dual string description with worldsheets mapping to a sphere target space. The correlators were written as sums over holomorphic (Belyi) maps from worldsheets to the two-dimensional sphere, branched over three points. We express the matrix model correlators by using the fuzzy sphere construction of matrix algebras, which can be interpreted as a string field theory description of the Belyi strings. This gives the correlators in terms of trivalent ribbon graphs that represent the couplings of irreducible representations of su(2), which can be evaluated in terms of 3j and 6j symbols. The Gaussian model perturbed by a cubic potential is then recognised as a generating function for Ponzano-Regge partition functions for 3-manifolds having the worldsheet as boundary, and equipped with boundary data determined by the ribbon graphs. This can be viewed as a holographic extension of the Belyi string worldsheets to membrane worldvolumes, forming part of a holographic hierarchy linking, via the large N expansion, the zero-dimensional QFT of the Matrix model to 2D strings and 3D membranes. Note that if, after removing the white vertices, the graph contains a blue edge connecting to the same black vertex at both ends, then the triangulation generated from the black edges will contain faces that resemble cut discs. These faces are triangles with two of the edges identified.
Impact craters and Venus resurfacing history
NASA Technical Reports Server (NTRS)
Phillips, Roger J.; Raubertas, Richard F.; Arvidson, Raymond E.; Sarkar, Ila C.; Herrick, Robert R.; Izenberg, Noam; Grimm, Robert E.
1992-01-01
The history of resurfacing by tectonism and volcanism on Venus is reconstructed by means of an analysis of Venusian impact crater size-frequency distributions, locations, and preservation states. An atmospheric transit model for meteoroids demonstrates that for craters larger than about 30 km, the size-frequency distribution is close to the atmosphere-free case. An age of cessation of rapid resurfacing of about 500 Ma is obtained. It is inferred that a range of surface ages are recorded by the impact crater population; e.g., the Aphrodite zone is relatively young. An end-member model is developed to quantify resurfacing scenarios. It is argued that Venus has been resurfacing at an average rate of about 1 sq km/yr. Numerical simulations of resurfacing showed that there are two solution branches that satisfy the completely spatially random location restraint for Venusian craters: a is less than 0.0003 (4 deg diameter circle) and a is greater than 0.1 (74 deg diameter circle).
The solar cycle dependence of the location and shape of the Venus bow shock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, T.L.; Luhmann, J.G.; Russell, C.T.
1990-09-01
From initial Pioneer Venus observations during the maximum of solar cycle 21 it was evident that the position of the Venus bow shock varies with solar activity. The bow shock radius in the terminator plane changed from 2.4 R{sub v} to 2.1 R{sub v} as solar activity went from maximum to minimum and, as activity has increased in cycle 22, it has increased again. The recent studies of the subsolar region show that the altitude of the nose of the bow shock varies from 1,600 km at solar minimum to 2,200 km at intermediate solar activity in concert with themore » terminator altitude so that the shape remains constant and only the size varies during the solar cycle. Using a gas dynamic model and the observed bow shock location, the authors infer the variation in the size of the effective obstacle during the solar cycle. At solar maximum, the effective obstacle is larger than the ionopause as if a magnetic barrier exists in the inner magnetosheath. This magnetic barrier acts as the effective obstacle deflecting the magnetosheath plasma about 500 km above the surface of Venus. However, at solar minimum the effective obstacle is well below the subsolar ionopause, and some absorption of the solar wind plasma by the Venus neutral atmosphere is suggested by these observations. The dependence of the solar cycle variation of the shock position on the orientation of the interplanetary magnetic field reinforces the idea that planetary ion pickup is important in the interaction of the solar wind with Venus.« less
Critical string from non-Abelian vortex in four dimensions
Shifman, M.; Yung, A.
2015-09-25
In a class of non-Abelian solitonic vortex strings supported in certain N = 2 super-Yang–Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski–Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U(2) gauge group, the Fayet–Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size) moduli described by the weighted CP(2,2) model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. Lastly, we show that the world-sheet theory onmore » the vortex supported in this bulk model is the bona fide critical string.« less
Topography of Venus and earth - A test for the presence of plate tectonics
NASA Technical Reports Server (NTRS)
Head, J. W.; Yuter, S. E.; Solomon, S. C.
1981-01-01
Comparisons of earth and Venus topography by use of Pioneer/Venus radar altimetry are examined. Approximately 93% of the Venus surface has been mapped with a horizontal resolution of 200 km and a vertical resolution of 200 m. Tectonic troughs have been indicated in plains regions which cover 65% of Venus, and hypsometric comparisons between the two planets' elevation distributions revealed that while the earth has a bimodal height distribution, Venus displays a unimodal configuration, with 60% of the planet surface within 500 m of the modal planet radius. The effects of mapping the earth at the same resolution as the Venus observations were explored. Continents and oceans were apparent, and although folded mountains appeared as high spots, no indications of tectonic activity were discernible. A NASA Venus Orbiting Imaging radar is outlined, which is designed to detect volcanoes, folded mountain ranges, craters, and faults, and thereby allow definition of possible plate-tectonic activity on Venus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer
2009-04-24
Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline,more » the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.« less
Observations of Venus at 1-meter wavelength
NASA Astrophysics Data System (ADS)
Butler, Bryan J.
2014-11-01
Radio wavelength observations of Venus (including from the Magellan spacecraft) have been a powerful method of probing its surface and atmosphere since the 1950's. The emission is generally understood to come from a combination of emission and absorption in the subsurface, surface, and atmosphere at cm and shorter wavelengths [1]. There is, however, a long-standing mystery regarding the long wavelength emission from Venus. First discovered at wavelengths of 50 cm and greater [2], the effect was later confirmed to extend to wavelengths as short as 13 cm [1,3]. The brightness temperatures are depressed significantly 50 K around 10-20 cm, increasing to as much as 200 K around 1 m) from what one would expect from a "normal" surface (e.g., similar to the Moon or Earth) [1-3].No simple surface and subsurface model of Venus can reproduce these large depressions in the long wavelength emission [1-3]. Simple atmospheric and ionospheric models fail similarly. In an attempt to constrain the brightness temperature spectrum more fully, new observations have been made at wavelengths that cover the range 60 cm to 1.3 m at the Very Large Array, using the newly available low-band receiving systems there [4]. The new observations were made over a very wide wavelength range and at several Venus phases, with that wide parameter space coverage potentially allowing us to pinpoint the cause of the phenomenon. The observations and potential interpretations will be presented and discussed.[1] Butler et al. 2001, Icarus, 154, 226. [2] Schloerb et al. 1976, Icarus, 29, 329; Muhleman et al. 1973, ApJ, 183, 1081; Condon et al. 1973, ApJ, 183, 1075; Kuzmin 1965, Radiophysics. [3] Butler & Sault 2003, IAUSS, 1E, 17B. [4] Intema et al. 2014, BASI, 1.
Chemistry of the surface and lower atmosphere of Venus
NASA Technical Reports Server (NTRS)
Fegley, B., Jr.; Treiman, A.
1992-01-01
A comprehensive overview of the chemical interactions between the atmosphere and surface of Venus is presented. Earth-based, earth-orbital, and spacecraft data on the composition of the atmosphere and surface of Venus are presented and applied to quantitative evaluations of the chemical interactions between carbon, hydrogen, sulfur, chlorine, fluorine, and nitrogen-containing gases and possible minerals on the Venus surface. The calculation results are used to predict stable minerals and mineral assemblages on the Venus surface to determine which, if any, atmospheric gases are buffered by mineral assemblages on the surface, and to critically review and assess prior work on atmosphere-surface chemistry on Venus. It is concluded that the CO2 pressure on Venus is comparable to the CO2 equilibrium partial pressure developed by the calcite + wollastonite + quartz assemblage at the mean Venus surface temperature of 740 K.
NASA Astrophysics Data System (ADS)
Clegg, S. M.; Wiens, R. C.; Newell, R. T.; DeCroix, D. S.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Anderson, R. B.; Angel, S. M.; Martinez, R.; McInroy, R.
2016-12-01
The extreme Venus surface temperature ( 740 K) and atmospheric pressure ( 93 atm) create a challenging environment for surface geochemical and mineralogical investigations. Such investigations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS spectrometer (RLS) is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. [1], Sharma et al. [2] and Clegg et al. [3] demonstrated that both analytical techniques can be integrated into a single instrument similar to the SuperCam instrument selected for the Mars 2020 rover. The focus of this paper is to explore the capability to probe geologic samples by Raman and LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of determining both the mineralogical and geochemical composition of Venus surface samples. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from the Venera and VEGA landers [4]. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, samples were chosen to constitute a Venus-analog suite for this study. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. The Raman experiments have been conducted under supercritical CO2 involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. These experiments involve a new RLS prototype similar to the SuperCam instrument as well a new 2 m long pressure chamber capable of simulating the Venus surface temperature and pressure. Results of these combined Raman-LIBS investigations will be presented and discussed. [1] Wiens R.C., et al. (2005) Spect. Acta A 61, 2324; [2] Sharma, S. K. et al. (2007) Spect. Acta A, 68 , 1036 (2007); [3] Clegg, S.M. et al. (2014) Appl. Spec. 68, 925; [4] Barsukov VL (1992) In Venus Geology, Geochemistry, and Geophysics, Univ. Arizona Press, pp. 165.
Spectral flow as a map between N = (2 , 0)-models
NASA Astrophysics Data System (ADS)
Athanasopoulos, P.; Faraggi, A. E.; Gepner, D.
2014-07-01
The space of (2 , 0) models is of particular interest among all heterotic-string models because it includes the models with the minimal SO (10) unification structure, which is well motivated by the Standard Model of particle physics data. The fermionic Z2 ×Z2 heterotic-string models revealed the existence of a new symmetry in the space of string configurations under the exchange of spinors and vectors of the SO (10) GUT group, dubbed spinor-vector duality. In this paper we generalize this idea to arbitrary internal rational conformal field theories (RCFTs). We explain how the spectral flow operator normally acting within a general (2 , 2) theory can be used as a map between (2 , 0) models. We describe the details, give an example and propose more simple currents that can be used in a similar way.
NASA Astrophysics Data System (ADS)
Limaye, Sanjay
Venus has been the target of exploration for half a century, before the successful Mariner 2 fly-by in December 1962. The decade after that was marked by growing sophistication in the instruments and spacecraft. During the second decade of Venus exploration (1972 - 1981) the instruments and spacecraft had advanced to make the first detailed survey of the planet and image the surface. During the third decade Venus was explored with more advanced instruments such as synthetic aperture radar and by balloons - the only balloons in another atmosphere ever flown till present. Then came a long pause until 2005 when ESA launched Venus Express, which is still orbiting the planet and returning data. The nearly two-dozen missions flown to Venus have painted a puzzling picture of Venus - we still do not have answers to some key questions. The foremost is why did Venus evolve so differently from Earth? International space agencies and scientists have been considering various approaches to exploring Venus through small and large missions. The Venus Exploration Analysis Group (NASA) has developed a Venus Exploration Roadmap and a comprehensive list of goals, objectives and investigations (www.lpi.usra.edu/vexag), but an international coordinated, comprehensive plan to explore Venus is needed. To fill this void, the COSPAR International Venus Exploration Working Group (IVEWG) has been active in fostering dialog and discussions among the space faring agencies. One small step in the future exploration of Venus is the formation of a joint Science Definition Team (SDT) (NASA and Roscosmos/IKI) for Russia’s Venera-D mission in early 2014. The team is expected to submit a report to respective agencies in early 2015. Towards identifying key surface regions and atmospheric regions of Venus, a workshop is being held in May 2014 by VEXAG to seek community input. It is likely that calls for proposals for missions will also be announced under the M class by ESA and under the Discovery Program by NASA during 2014. Given that the science questions about Venus are many - ranging from the surface and interior and extending into the atmosphere to 120 km and beyond, it is likely that there will be opportunities for other efforts to contribute to the comprehensive exploration of Venus. If undertaken in a coordinated and collaborative manner, we may make substantial progress in understanding Venus, why and/or how it evolved differently from Earth. This knowledge will help us understand Earth-like rocky planets around other stars that are being discovered at a rapid pace now.
Mellin transforming the minimal model CFTs: AdS/CFT at strong curvature
Lowe, David A.
2016-07-14
Mack has conjectured that all conformal field theories are equivalent to string theories. Here, we explore the example of the two-dimensional minimal model CFTs and confirm that the Mellin transformed amplitudes have the desired properties of string theory in three-dimensional anti-de Sitter spacetime.
Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity
NASA Astrophysics Data System (ADS)
Saadi, Maha
1991-01-01
The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Variations in lithospheric thickness on Venus
NASA Technical Reports Server (NTRS)
Johnson, C. L.; Sandwell, David T.
1992-01-01
Recent analyses of Magellan data have indicated many regions exhibiting topograhic flexure. On Venus, flexure is associated predominantly with coronae and the chasmata with Aphrodite Terra. Modeling of these flexural signatures allows the elastic and mechanical thickness of the lithosphere to be estimated. In areas where the lithosphere is flexed beyond its elastic limit the saturation moment provides information on the strength of the lithosphere. Modeling of 12 flexural features on Venus has indicated lithospheric thicknesses comparable with terrestrial values. This has important implications for the venusian heat budget. Flexure of a thin elastic plate due simultaneously to a line load on a continuous plate and a bending moment applied to the end of a broken plate is considered. The mean radius and regional topographic gradient are also included in the model. Features with a large radius of curvature were selected so that a two-dimensional approximation could be used. Comparisons with an axisymmetric model were made for some features to check the validity of the two-dimensional assumption. The best-fit elastic thickness was found for each profile crossing a given flexural feature. In addition, the surface stress and bending moment at the first zero crossing of each profile were also calculated. Flexural amplitudes and elastic thicknesses obtained for 12 features vary significantly. Three examples of the model fitting procedures are discussed.
Topics in Cosmic String Physics and Vacuum Stability of Field Theories
NASA Astrophysics Data System (ADS)
Dasgupta, Indranil
1998-01-01
In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first order phase transition. I then indicate possible phenomenological applications of this effect and develop simple approximation techniques for computing the rate of seeded tunneling.
NASA Astrophysics Data System (ADS)
Collins, Cheri D.
Is it possible for students to achieve better tone quality from even their factory-made violins? All violins, regardless of cost, have a common capacity for good tone in certain frequencies. These signature modes outline the first position range of a violin (196-600 hertz). To activate this basic capacity of all violins, the string must fully vibrate. To accomplish this the bow must be pulled across the string with enough pressure (relative to its speed and contact point) for the horsehairs to catch. This friction permits the string to vibrate in Helmholtz Motion, which produces a corner that travels along the edge of the string between the bridge and the nut. Creating this corner is the most fundamental technique for achieving good tone. The findings of celebrated scientists Ernest Chladni, Hermann von Helmholtz, and John Schelleng will be discussed and the tone-production pedagogy of master teachers Carl Flesch, Ivan Galamian, Robert Gerle, and Simon Fischer will be investigated. Important connections between the insights of these scientists and master teachers are evident. Integrating science and art can provide teachers with a better understanding of the characteristics of good tone. This can help their students achieve the best possible sound from their instruments. In the private studio the master teacher may not use the words "Helmholtz Motion." Yet through modeling and listening students are able to understand and create a quality tone. Music teachers without experience in string performance may be assigned to teach strings in classroom and ensembles settings. As a result modeling good tone is not always possible. However, all teachers and conductors can understand the fundamental behavior of string vibration and adapt their instruction strategies towards student success. Better tonal quality for any string instrument is ultimately achieved. Mastery and use of the Helmholtz Motion benefits teachers and students alike. Simple practice exercises for teaching and conducting, based on student discovery rather than modeling, are presented in Appendix A: Application. This approach to teaching good tone can be applied successfully in all string settings and levels.
libFLASM: a software library for fixed-length approximate string matching.
Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad
2016-11-10
Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.
Swapping Rocks: Ejection and Exchange of Surface Material Among the Terrestrial Planets
NASA Astrophysics Data System (ADS)
Melosh, H. J.; Tonks, W. B.
1993-07-01
The discovery of meteorites originating from both the Moon and Mars has led to the realization that major impacts can eject material from planetary-sized objects. Although there is not yet any direct proof, there appears to be no reason why such impacts cannot eject material from the surfaces of Earth and Venus as well. Because of this possibility, and in view of the implications of such exchange for biological evolution, we examined the orbital evolution and ultimate fate of ejecta from each of the terrestrial planets. This work employed an Opik-type orbital evolution model in which both planets and ejected particles follow elliptical orbits about the Sun, with uniformly precessing arguments of perihelion and ascending nodes. An encounter takes place when the particle passes within the sphere of influence of the planet. When this occurs, the encounter is treated as a two-body scattering event, with a randomly chosen impact parameter within the sphere of influence. If the impact parameter is less than the planet's radius, an impact is scored. Otherwise, the scattered particle either takes up a new Keplerian orbit or is ejected from the solar system. We incorporated several different space erosion models and examined the full matrix of possible outcomes of ejection from each planet in random directions with velocities at great distance from the planet of 0.5, 2.5, and 5.0 km/s. Each run analyzed the evolution of 5000 particles to achieve sufficient statistical resolution. Both the ultimate fate and median transit times of particles was recorded. The results show very little dependence on velocity of ejection. Mercury ejecta is nearly all reaccreted by Mercury or eroded in space--very little ever evolves to cross the orbits of the other planets (a few percent impact Venus). The median time between ejection and reimpact is about 30 m.y. for all erosion models. Venus ejecta is mostly reaccreted by Venus, but a significant fraction (about 30%) falls on the Earth with a median transit time of 12 m.y. Of the remainder, a few percent strike Mars and a larger fraction (about 20%) are ejected from the solar system by Jupiter. Earth ejecta is also mainly reaccreted by the Earth, but about 30% strike Venus within 15 m.y. and 5% strike Mars within 150 m.y. Again, about 20% of Earth ejecta is thrown out of the solar system by Jupiter. Mars ejecta is more equitably distributed: Nearly equal fractions fall on Earth and Venus, slightly more are accreted to Mars, and a few percent strike Mercury. About 20% of Mars ejecta is thrown out of the solar system by Jupiter. The larger terrestrial planets, Venus and Earth, thus readily exchange ejecta. Mars ejecta largely falls on Venus and Earth, but Mars only receives a small fraction of their ejecta. A substantial fraction of ejecta from all the terrestrial planets (except Mercury) is thrown out of the solar system by Jupiter, a fact that may have some implications for the panspermia mechanism of spreading life through the galaxy. From the standpoint of collecting meteorites on Earth, in addition to martian and lunar meteorites, we should expect someday to find meteorites from Earth itself (Earth rocks that have spent a median time of 5 m.y. in space before falling again on the Earth) and from Venus.
Prior familiarity with components enhances unconscious learning of relations.
Scott, Ryan B; Dienes, Zoltan
2010-03-01
The influence of prior familiarity with components on the implicit learning of relations was examined using artificial grammar learning. Prior to training on grammar strings, participants were familiarized with either the novel symbols used to construct the strings or with irrelevant geometric shapes. Participants familiarized with the relevant symbols showed greater accuracy when judging the correctness of new grammar strings. Familiarity with elemental components did not increase conscious awareness of the basis for discriminations (structural knowledge) but increased accuracy even in its absence. The subjective familiarity of test strings predicted grammaticality judgments. However, prior exposure to relevant symbols did not increase overall test string familiarity or reliance on familiarity when making grammaticality judgments. Familiarity with the symbols increased the learning of relations between them (bigrams and trigrams) thus resulting in greater familiarity for grammatical versus ungrammatical strings. The results have important implications for models of implicit learning.
NASA Astrophysics Data System (ADS)
Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.
2002-10-01
Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.
Exploring Venus: the Venus Exploration Analysis Group (VEXAG)
NASA Astrophysics Data System (ADS)
Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.
In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology
String duality transformations in f(R) gravity from Noether symmetry approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr
2016-01-01
We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians aremore » shown in cases where the duality transformation becomes a parity inversion.« less
Differentiation of magma oceans and the thickness of the depleted layer on Venus
NASA Technical Reports Server (NTRS)
Solomatov, V. S.; Stevenson, D. J.
1993-01-01
Various arguments suggest that Venus probably has no asthenosphere, and it is likely that beneath the crust there is a highly depleted and highly viscous mantle layer which was probably formed in the early history of the planet when it was partially or completely molten. Models of crystallization of magma oceans suggest that just after crystallization of a hypothetical magma ocean, the internal structure of Venus consists of a crust up to about 70 km thickness, a depleted layer up to about 500 km, and an enriched lower layer which probably consists of an undepleted 'lower mantle' and heavy enriched accumulates near the core-mantle boundary. Partial or even complete melting of Venus due to large impacts during the formation period eventually results in differentiation. However, the final result of such a differentiation can vary from a completely differentiated mantle to an almost completely preserved homogeneous mantle depending on competition between convection and differentiation: between low viscosity ('liquid') convection and crystal settling at small crystal fractions, or between high viscosity ('solid') convection and percolation at large crystal fractions.
NASA Astrophysics Data System (ADS)
Gao, P.; Carlson, R. W.; Robinson, T. D.; Crisp, D.; Lyons, J. R.; Yung, Y. L.
2016-12-01
A mystery that has continued to plague our sister planet, Venus, for nearly a century is the nature of the brightness contrasts observed crisscrossing its disk in near-ultraviolet wavelength images. These contrasts - specifically the dark regions - have been attributed to the actions of an unknown UV absorber, knowing the identity of which is integral to understanding the Venus atmosphere due to the high rates of mesospheric heating attributed to the absorption of solar UV. One possible candidate for the UV absorber is polysulfur, which form from polymerization of elemental sulfur arising from SO2 photolysis at the Venus cloud tops under low O2 conditions. In this work we investigate the microphysics of condensed polysulfur and its interaction with the sulfuric acid clouds. We consider the "gumdrop model", where sulfur is allowed to condense onto sulfuric acid cloud particles. We explore the possibility that S2 vapor may condense faster than its loss to gas phase reactions that produce higher allotropes, leading to solid state polymerization to S8. This process may explain the ephemeral and variable nature of the UV absorption.
1978-03-20
Graphic Art Venus - Day - Night drawing showing solar wind, bow shock, magnetosheath, clouds and streamers Pioneer Venus SP-461 fig 6-28 Interaction of the solar wind with the atmosphere of Venus as termined from Pioner Venus experiments and observations
Venus Atmospheric Exploration by Solar Aircraft
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; LaMarre, C.; Colozza, A.
2002-01-01
The Venus atmosphere is a favorable environment for flying powered aircraft. The atmospheric pressure makes flight much easier than on planets such as Mars. Above the clouds, solar energy is available in abundance on Venus, and the slow rotation of Venus allows a solar airplane to be designed for flight within continuous sunlight. The atmosphere between 50 km and 75 km on Venus is one of the most dynamic and interesting regions of the planet. The challenge for a Venus aircraft will be the fierce winds and caustic atmosphere. In order to remain on the sunlit side of Venus, an exploration aircraft will have to be capable of sustained flight at or above the wind speed. An aircraft would be a powerful tool for exploration. By learning how Venus can be so similar to Earth, and yet so different, we will learn to better understand the climate and geological history of the Earth.
Critical non-Abelian vortex in four dimensions and little string theory
NASA Astrophysics Data System (ADS)
Shifman, M.; Yung, A.
2017-08-01
As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.
Venus Express is a step toward the surface of the planet
NASA Astrophysics Data System (ADS)
Gilmore, M. S.
2005-12-01
The Venus atmosphere makes it extremely challenging to mimic the steps of the successful Mars Exploration Program, namely orbital reconnaissance, followed by targeted in situ landers, rovers and sample return. Thus, many fundamental questions about the Venus surface remain unanswered, the most important of which is composition. We must measure the composition of the crust to constrain the thermal, volatile and geochemical evolution of the planet. In addition to measurement of recent processes, the crustal composition may contain clues to the first 80% of the history of this planet. This need has been recognized by the scientific community who has placed Venus in situ science as a high priority mission in the Decadal Survey and the Solar System Roadmap. Consider VEX as a helpful step in a Venus Exploration Program that includes a New Frontiers to Flagship class mission to the surface in the coming decade. How can VEX drive landing site selection? The VIRTIS instrument will provide a new map of the Venus surface at several wavelengths, including the atmospheric window at ~1 micron. Hashimoto and Sugita (2003 JGR E9) contend that observations in the NIR will allow the distinction of emissivity differences between mafic and felsic materials. Certainly the spatial resolution of VIRTIS will allow comparison of tessera plateaus to plains and potentially lava flow fields as well. Such a first order compositional map, in the context of the Venera measurements and Magellan observations, may reveal areas of special attention including: compositional contacts, regions of unique or unusual compositions (ala the Opportunity landing site on Mars), and thermal aberrations that may be related to volcanic activity. The emissivity data will improve understanding of the thermal environment of potential landing sites. A model Venus sample return mission (Sweetser et al. 1999 IEEEAC; Rodgers et al. 2000 IEEEAC) will be described as an example of the long term goal of this prototype program.
Upstream proton cyclotron waves at Venus near solar maximum
NASA Astrophysics Data System (ADS)
Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.
2015-01-01
magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of observable proton cyclotron waves near solar maximum.
Kenzig, Allison R; Butler, James R; Priddy, Lauren B; Lacy, Kristen R; Elder, Steven H
2017-07-13
Fracture of the ilium is common orthopedic injury that often requires surgical stabilization in canine patients. Of the various methods of surgical stabilization available, application of a lateral bone plate to the ilium is the most common method of fixation. Many plating options are available, each having its own advantages and disadvantages. The purpose of this study was to evaluate the biomechanical properties of a 3.5 mm String-of-Pearls™ plate and a 3.5 mm dynamic compression plate in a cadaveric canine ilial fracture model. Hemipelves were tested in cantilever bending to failure and construct stiffness, yield load, displacement at yield, ultimate load, and mode of failure were compared. The mean stiffness of dynamic compression plate (116 ± 47 N/mm) and String-of-Pearls™ plate (107 ± 18 N/mm) constructs, mean yield load of dynamic compression plate (793 ± 333 N) and String-of-Pearls™ plate (860 ± 207 N) constructs, mean displacement at yield of dynamic compression plate (8.6 ± 3.0 mm) and String-of-Pearls™ plate (10.2 ± 2.8 mm) constructs, and ultimate load at failure of dynamic compression plate (936 ± 320 N) and String-of-Pearls™ plate (939 ± 191 N) constructs were not significantly different. No differences were found between constructs with respect to mode of failure. No significant biomechanical differences were found between String-of-Pearls™ plate and dynamic compression plate constructs in this simplified cadaveric canine ilial fracture model.
Atmospheric Models for Aeroentry and Aeroassist
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2005-01-01
Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA's systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.
NASA Astrophysics Data System (ADS)
Glaze, L. S.; Garvin, J. B.
2017-12-01
Venus provides a natural laboratory to explore an example of terrestrial planet evolution that may be cosmically ubiquitous. By better understanding the composition of the Venus atmosphere and surface, we can better constrain the efficiency of the Venusian greenhouse. VICI is a proposed NASA New Frontiers mission that delivers two landers to Venus on two separate Venus fly-bys. Following six orbital remote sensing missions to Venus (since 1978), VICI would be the first mission to land on the Venus surface since 1985, and the first U.S. mission to enter the Venus atmosphere in 49 years. The four major VICI science objectives are: Atmospheric origin and evolution: Understand the origin of the Venus atmosphere, how it has evolved, including how recently Venus lost its oceans, and how and why it is different from the atmospheres of Earth and Mars, through in situ measurements of key noble gases, nitrogen, and hydrogen. Atmospheric composition and structure: Reveal the unknown chemical processes and structure in Venus' deepest atmosphere that dominate the current climate through two comprehensive, in situ vertical profiles. Surface properties and geologic evolution: For the first time ever, explore the tessera from the surface, specifically to test hypotheses of ancient content-building cycles, erosion, and links to past climates using multi-point mineralogy, elemental chemistry, imaging and topography. Surface-atmosphere interactions: Characterize Venus' surface weathering environment and provide insight into the sulfur cycle at the surface-atmosphere interface by integrating rich atmospheric composition and structure datasets with imaging, surface mineralogy, and elemental rock composition. VICI is designed to study Venus' climate history through detailed atmospheric composition measurements not possible on earlier missions. In addition, VICI images the tessera surface during descent enabling detailed topography to be generated. Finally, VICI makes multiple elemental chemistry measurements, including depth profiles through the weathering rind and subsurface, and the first ever direct mineralogy measurements on the Venus surface. VICI's payloads build on the success of the Mars Science Laboratory (MSL) by carrying the same instrumentation that has delivered high-impact science results on Mars.
Resurrecting hot dark matter - Large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1988-01-01
These are the results of a numerical simulation of the formation of large-scale structure from cosmic-string loops in a universe dominated by massive neutrinos (hot dark matter). This model has several desirable features. The final matter distribution contains isolated density peaks embedded in a smooth background, producing a natural bias in the distribution of luminous matter. Because baryons can accrete onto the cosmic strings before the neutrinos, the galaxies will have baryon cores and dark neutrino halos. Galaxy formation in this model begins much earlier than in random-phase models. On large scales the distribution of clustered matter visually resembles the CfA survey, with large voids and filaments.
ESA to present the latest Venus Express results to the media
NASA Astrophysics Data System (ADS)
2007-11-01
The launch of Venus Express back in November 2005 represented a major milestone in the exploration of Venus — a planet unvisited by any dedicated spacecraft since the early 1990s. One of the fundamental questions being addressed by the Venus Express mission is why a world so similar to Earth in mass and size has evolved so differently, to become the noxious and inhospitable planet it is today. Since it started its scientific observations in July 2006, Venus Express has been making the most detailed study of the planet’s thick and complex atmosphere to date. The latest findings not only highlight the features that make Venus unique in the solar system but also provide fresh clues as to how the planet is — despite everything — a more Earth-like planetary neighbour than one could have imagined. The results will appear in a special section of the 29 November issue of the journal Nature containing nine individual papers devoted to Venus Express science activities. Media organisations interested in attending the press conference are invited to register via the form attached below. Media that cannot attend will have the opportunity to follow the press conference via the following phone line: +33 1 58 99 57 42 (listening-mode only).The results presented at the press conference are embargoed until 28 November 19:00 CET. For more information ESA Media Relations Office Tel: +33 1 5369 7299 Fax: +33 1 5369 7690 Media event programme ‘Venus: a more Earth-like planetary neighbour’ Latest results from Venus Express 28 November 2007, 15:00, room 137 ESA Headquarters, 8-10 rue Mario-Nikis, Paris 15:00 Introduction, by Håkan Svedhem, ESA Venus Express Project Scientist 15:07 Venus: What we knew before, by Fred Taylor, Venus Express Interdisciplinary Scientist 15:15 Temperatures in the atmosphere of Venus, by Jean-Loup Bertaux, SPICAV Principal Investigator 15:25 The dynamic atmosphere of Venus, by Giuseppe Piccioni, VIRTIS Principal Investigator 15:40 Venus’s atmosphere and the solar wind, by Stas Barabash, ASPERA Principal Investigator 15:50 Climate and evolution, by David Grinspoon, Venus Express Interdisciplinary Scientist 16:00 Conclusion, by Dmitri Titov, Venus Express Science Coordinator and VMC scientist 16:05 Questions and Answers 16:25 Individual interviews 17:30 End of event
Robotic Technology for Exploration of Venus
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2003-01-01
Venus, the "greenhouse planet", is a scientifically fascinating place. A huge number of important scientific questions remain to be answered. Venus is sometimes called Earth's "sister planet" due to the fact that it is closest to the Earth in distance and similar to Earth in size. Despite its similarity to Earth, however, the climate of Venus is vastly different from Earth's. Understanding the atmosphere, climate, geology, and history of Venus could shed considerable light on our understanding of our own home planet. The surface of Venus is a hostile environment, with an atmosperic pressure of over 90 bar of carbon dioxide, temperature of 450 C, and shrouded in sulphuric-acid clouds. Venus has been explored by a number of missions from Earth, including the Russian Venera missions which landed probes on the surface, the American Pioneer missions which flew both orbiters and atmospheric probes to Venus, the Russian "Vega" mission, which floated balloons in the atmosphere of Venus, and most recently the American Magellan mission which mapped the surface by radar imaging. While these missions have answered basic questions about Venus, telling us the surface temperature and pressure, the elevations and topography of the continents, and the composition of the atmosphere and clouds, scientific mysteries still abound. Venus is of considerable interest to terrestrial atmospheric science, since of all the planets in the solar system, it is the closest analogue to the Earth in terms of atmosphere. Yet Venus' atmosphere is an example of "runaway greenhouse effect." Understanding the history and the dynamics of Venus' atmosphere could tell us considerable insight about the workings of the atmosphere of the Earth. It also has some interest to astrobiology-- could life have existed on Venus in an earlier, pre-greenhouse-effect phase? Could life still be possible in the temperate middle-atmosphere of Venus? The geology of Venus also has interest in the study of Earth. surface robot will require new technologies; specifically, it will require electronics, scientific instruments, power supplies, and mechanical linkages designed to operate at a temperature above 450 C-hot enough to melt the solder on a standard electronic circuit board. This will require devices made from advanced semiconductor materials, such as silicon carbide, or even new approaches, such as micro-vacuum tube electronics. Such materials are now being developed in the laboratory.
HAVOC: High Altitude Venus Operational Concept - An Exploration Strategy for Venus
NASA Technical Reports Server (NTRS)
Arney, Dale; Jones, Chris
2015-01-01
The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A lighter-than-air vehicle can carry either a host of instruments and probes, or a habitat and ascent vehicle for a crew of two astronauts to explore Venus for up to a month. The mission requires less time to complete than a crewed Mars mission, and the environment at 50 km is relatively benign, with similar pressure, density, gravity, and radiation protection to the surface of Earth. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30 day crewed mission into Venus's atmosphere. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. With advances in technology and further refinement of the concept, missions to the Venusian atmosphere can expand humanity's future in space.
Knowledge, Models and Tools in Support of Advanced Distance Learning
2006-06-01
including " Dodger Blue", "Indian Red", and "Light Slate Gray" as well as such conventional colors as "Blue" and "Yellow". Which color names are supported...Format String: 1 1 S I 1 1 3 Either one string or an array of 3 numbers Legal Params: (" Dodger Blue") ([0.0235, 0.38, 1.0]) Format String: * *l* Any number...specifying the values of the red, green, and blue components of the color) or a string that names a predefined color. E.g., makeColor (" Dodger Blue
Paradigm lost: Venus crater depths and the role of gravity in crater modification
NASA Technical Reports Server (NTRS)
Sharpton, Virgil L.
1992-01-01
Previous to Magellan, a convincing case had been assembled that predicted that complex impact craters on Venus were considerably shallower than their counterparts on Mars, Mercury, the Moon, and perhaps even Earth. This was fueled primarily by the morphometric observation that, for a given diameter (D), crater depth (d) seems to scale inversely with surface gravity for the other planets in the inner solar system. The unpredicted depth of fresh impact craters on Venus argues against a simple inverse relationship between surface gravity and crater depth. Factors that could contribute to deep craters on Venus include (1) more efficient excavation on Venus, possibly reflecting rheological effects of the hot venusian environment; (2) more melting and efficient removal of melt from the crater cavity; and (3) enhanced ejection of material out of the crater, possibly as a result of entrainment in an atmosphere set in motion by the passage of the projectile. The broader issue raised by the venusian crater depths is whether surface gravity is the predominant influence on crater depths on any planet. While inverse gravity scaling of crater depths has been a useful paradigm in planetary cratering, the venusian data do not support this model and the terrestrial data are equivocal at best. The hypothesis that planetary gravity is the primary influence over crater depths and the paradigm that terrestrial craters are shallow should be reevaluated.
Mapping the circumsolar dust ring near the orbit of Venus
NASA Astrophysics Data System (ADS)
Jones, M. H.; Bewsher, D.; Brown, D. S.
2017-05-01
Synoptic images obtained from the HI-2 instrument on STEREO-A and -B between 2007 and 2014 have been used to further investigate the circumsolar dust ring at the orbit of Venus that was reported by Jones et al. (2013). The analysis is based on high signal-to-noise ratio photometry of the zodiacal light, using data acquired over 10-day intervals, followed by a process of extracting spatial variability on scales up to about 6.5°. The resulting images provide information about the structure of the ring at the location where it is viewed tangentially. We identify 65 usable data sets that comprise about 11% of the available HI-2 data. Analysis of these images show that the orientation of the ring appears to be different to that of the orbit of Venus, with an inclination of 2.1° and longitude of ascending node of 68.5°. We map the variation of ring density parameters in a frame of reference that is co-rotating with Venus and find a pattern suggestive of dust in a 3: 2 orbital resonance. However, the location of the maxima of dust densities is not as expected from theoretical models, and there is some evidence that the dust density distribution in the ring has a pattern speed that differs from the mean motion of Venus.
Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
2012-01-01
The feasibility of a Stirling engine powered airship for the near surface exploration of Venus was evaluated. The heat source for the Stirling engine was limited to 10 general purpose heat source (GPHS) blocks. The baseline airship utilized hydrogen as the lifting gas and the electronics and payload were enclosed in a cooled insulated pressure vessel to maintain the internal temperature at 320 K and 1 Bar pressure. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the Venus surface based on the available thermal power. The atmospheric conditions on Venus were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Venus surface. From this baseline design additional trades were made to see how other factors affected the design such as the internal temperature of the payload chamber and the flight altitude. In addition other lifting methods were evaluated such as an evacuated chamber, heated atmospheric gas and augmented heated lifting gas. However none of these methods proved viable.
Stationary waves and slowly moving features in the night upper clouds of Venus
NASA Astrophysics Data System (ADS)
Peralta, J.; Hueso, R.; Sánchez-Lavega, A.; Lee, Y. J.; Muñoz, A. García; Kouyama, T.; Sagawa, H.; Sato, T. M.; Piccioni, G.; Tellmann, S.; Imamura, T.; Satoh, T.
2017-08-01
At the cloud top level of Venus (65-70 km altitude) the atmosphere rotates 60 times faster than the underlying surface—a phenomenon known as superrotation1,2. Whereas on Venus's dayside the cloud top motions are well determined3,4,5,6 and Venus general circulation models predict the mean zonal flow at the upper clouds to be similar on both the day and nightside2, the nightside circulation remains poorly studied except for the polar region7,8. Here, we report global measurements of the nightside circulation at the upper cloud level. We tracked individual features in thermal emission images at 3.8 and 5.0 μm obtained between 2006 and 2008 by the Visible and Infrared Thermal Imaging Spectrometer-Mapper onboard Venus Express and in 2015 by ground-based measurements with the Medium-Resolution 0.8-5.5 Micron Spectrograph and Imager at the National Aeronautics and Space Administration Infrared Telescope Facility. The zonal motions range from -110 to -60 m s-1, which is consistent with those found for the dayside but with larger dispersion6. Slow motions (-50 to -20 m s-1) were also found and remain unexplained. In addition, abundant stationary wave patterns with zonal speeds from -10 to +10 m s-1 dominate the night upper clouds and concentrate over the regions of higher surface elevation.
Plans of lightning and airglow measurements with LAC/Akatsuki
NASA Astrophysics Data System (ADS)
Takahashi, Yukihiro; Hoshino, Naoya; Sato, Mitsuteru; Yair, Yoav; Galand, Marina; Fukuhara, Tetsuya
Though there are extensive researches on the existence of lightning discharge in Venus over few decades, this issue is still under controversial. Recently it is reported that the magnetometer on board Venus Express detected whistler mode waves whose source could be lightning discharge occurring well below the spacecraft. However, it is too early to determine the origin of these waves. On the other hand, night airglow is expected to provide essential information on the atmospheric circulation in the upper atmosphere of Venus. But the number of consecutive images of airglow obtained by spacecraft is limited and even the variations of most enhanced location is still unknown. In order to identify the discharge phenomena in the atmosphere of Venus separating from noises and to know the daily variation of airglow distribution in night-side disk, we plan to observe the lightning and airglow optical emissions with high-speed and high-sensitivity optical detector with narrow-band filters on board Akatsuki. We are ready to launch the flight model of lightning and airglow detector, LAC (Lightning and Airglow Camera). Main difference from other previous equipments which have provided evidences of lightning existence in Venus is the high-speed sampling rate at 32 us interval for each pixel, enabling us to distinguish the optical lightning flash from other pulsing noises. In this presentation the observation strategies, including ground-based support with optical telescopes, are shown and discussed.
Non-Abelian cosmic string in the Starobinsky model of gravity
NASA Astrophysics Data System (ADS)
Morais Graça, J. P.; de Pádua Santos, A.; Bezerra de Mello, Eugênio R.; Bezerra, V. B.
In this paper, we analyze numerically the behavior of the solutions corresponding to a non-Abelian cosmic string in the framework of the Starobinsky model, i.e. where f(R) = R + ζR2. We perform the calculations for both an asymptotically flat and asymptotically (anti)-de Sitter spacetimes. We found that the angular deficit generated by the string decreases as the parameter ζ increases, in the case of a null cosmological constant. For a positive cosmological constant, we found that the cosmic horizon is affected in a nontrivial way by the parameter ζ.
Chern-Simons improved Hamiltonians for strings in three space dimensions
NASA Astrophysics Data System (ADS)
Gordeli, Ivan; Melnikov, Dmitry; Niemi, Antti J.; Sedrakyan, Ara
2016-07-01
In the case of a structureless string the extrinsic curvature and torsion determine uniquely its shape in three-dimensional ambient space, by way of solution of the Frenet equation. In many physical scenarios there are in addition symmetries that constrain the functional form of the ensuing energy function. For example, the energy of a structureless string should be independent of the way the string is framed in the Frenet equation. Thus the energy should only involve the curvature and torsion as dynamical variables, in a manner that resembles the Hamiltonian of the Abelian Higgs model. Here we investigate the effect of symmetry principles in the construction of Hamiltonians for structureless strings. We deduce from the concept of frame independence that in addition to extrinsic curvature and torsion, the string can also engage a three-dimensional Abelian bulk gauge field as a dynamical variable. We find that the presence of a bulk gauge field gives rise to a long-range interaction between different strings. Moreover, when this gauge field is subject to Chern-Simons self-interaction, it becomes plausible that interacting strings are subject to fractional statistics in three space dimensions.
Cosmic R-string, R-tube and vacuum instability
NASA Astrophysics Data System (ADS)
Eto, Minoru; Hamada, Yuta; Kamada, Kohei; Kobayashi, Tatsuo; Ohashi, Keisuke; Ookouchi, Yutaka
2013-03-01
We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition
NASA Astrophysics Data System (ADS)
Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.
2010-10-01
We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.
Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.
2010-10-01
We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less
The waiting time problem in a model hominin population.
Sanford, John; Brewer, Wesley; Smith, Franzine; Baumgardner, John
2015-09-17
Functional information is normally communicated using specific, context-dependent strings of symbolic characters. This is true within the human realm (texts and computer programs), and also within the biological realm (nucleic acids and proteins). In biology, strings of nucleotides encode much of the information within living cells. How do such information-bearing nucleotide strings arise and become established? This paper uses comprehensive numerical simulation to understand what types of nucleotide strings can realistically be established via the mutation/selection process, given a reasonable timeframe. The program Mendel's Accountant realistically simulates the mutation/selection process, and was modified so that a starting string of nucleotides could be specified, and a corresponding target string of nucleotides could be specified. We simulated a classic pre-human hominin population of at least 10,000 individuals, with a generation time of 20 years, and with very strong selection (50% selective elimination). Random point mutations were generated within the starting string. Whenever an instance of the target string arose, all individuals carrying the target string were assigned a specified reproductive advantage. When natural selection had successfully amplified an instance of the target string to the point of fixation, the experiment was halted, and the waiting time statistics were tabulated. Using this methodology we tested the effect of mutation rate, string length, fitness benefit, and population size on waiting time to fixation. Biologically realistic numerical simulations revealed that a population of this type required inordinately long waiting times to establish even the shortest nucleotide strings. To establish a string of two nucleotides required on average 84 million years. To establish a string of five nucleotides required on average 2 billion years. We found that waiting times were reduced by higher mutation rates, stronger fitness benefits, and larger population sizes. However, even using the most generous feasible parameters settings, the waiting time required to establish any specific nucleotide string within this type of population was consistently prohibitive. We show that the waiting time problem is a significant constraint on the macroevolution of the classic hominin population. Routine establishment of specific beneficial strings of two or more nucleotides becomes very problematic.
Venus Cloud Tops Viewed by Hubble
1999-05-18
Venus Cloud Tops Viewed by Hubble. This is a NASA Hubble Space Telescope ultraviolet-light image of the planet Venus, taken on January 24 1995, when Venus was at a distance of 70.6 million miles 113.6 million kilometers from Earth.
Diurnal observations of HCl altitude variation in the 70-100 km mesosphere of Venus
NASA Astrophysics Data System (ADS)
Sandor, Brad J.; Todd Clancy, R.
2017-07-01
First submm spectroscopic observations of the 625.9 GHz H35Cl absorption lines of the Venus dayside atmosphere were obtained with the James Clerk Maxwell Telescope (JCMT) on March 2, 2013. These data, which support retrieval of HCl altitude distributions in the Venus mesosphere (70-100 km), are presented here and compared with previously reported JCMT observations of Venus nightside HCl (Sandor et al., 2012). The measured dayside profile agrees with that of the nightside, indicating no diurnal variation is present. More specifically, the nightside spectra revealed a secular decrease of upper mesospheric HCl between observations one month apart, at fixed latitude and local time. The dayside profile reported here presents upper mesospheric abundances that are bracketed by the two previously measured nightside profiles, indicating that if diurnal variation is present, it must be weaker than the secular variations occurring at fixed local time. The previous study, which measured nightside HCl abundances above 85 km to be much smaller than predicted from photochemical modeling, suggested a dynamical explanation for the disagreement wherein nightside downwelling associated with the SubSolar to AntiSolar (SSAS) atmospheric circulation might suppress upper mesospheric abundances predicted purely from photochemistry. However a straightforward prediction from the proposed mechanism is that HCl abundance on the dayside, where the SSAS drives upward rather than downward transport should at least agree with, and perhaps exceed that of the photochemical model. The finding that dayside HCl abundance agrees with that of the nightside, hence also is much smaller than that of the model shows the SSAS hypothesis to be incorrect.
NASA Astrophysics Data System (ADS)
McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.
2017-12-01
Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.
Pioneer Venus large probe neutral mass spectrometer
NASA Technical Reports Server (NTRS)
Hoffman, J.
1982-01-01
The deuterium hydrogen abundance ratio in the Venus atmosphere was measured while the inlets to the Pioneer Venus large probe mass spectrometer were coated with sulfuric acid from Venus' clouds. The ratio is (1.6 + or - 0.2) x 10 to the minus two power. It was found that the 100 fold enrichment of deuterium means that Venus outgassed at least 0.3% of a terrestrial ocean and possibly more.
Exploring Venus by Solar Airplane
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2001-01-01
A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars, and the slow rotation of Venus allows an airplane to be designed for continuous sunlight, with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.
NASA Astrophysics Data System (ADS)
Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.
2013-12-01
Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of topography and gravity, in which the INITIAL loading by topography retains the Matern form but the FINAL topography and gravity are the result of flexural compensation. In our modeling, we pay explicit attention to finite-field spectral estimation effects (and their remedy via tapering), and to the implementation of statistical tests (for anisotropy, for initial-loading process correlation, to ascertain the proper density contrasts and interface depth in a two-layer model), robustness assessment and uncertainty quantification, as well as to algorithmic intricacies related to low-dimensional but poorly scaled maximum-likelihood inversions. We conclude that Venusian geomorphic terrains are well described by their 2-D topographic and gravity (cross-)power spectra, and the spectral properties of distinct geologic provinces on Venus are worth quantifying via maximum-likelihood-based methods under idealized three-parameter Matern distributions. Analysis of fitted parameters and the fitted-data residuals reveals natural variability in the (sub)surface properties on Venus, as well as some directional anisotropy. Geologic regions tend to cluster according to terrain type in our parameter space, which we analyze to confirm their shared geologic histories and utilize for guidance in ongoing mapping efforts of Venus and other terrestrial bodies.
Blue spectra of Kalb-Ramond axions and fully anisotropic string cosmologies
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
1999-03-01
The inhomogeneities associated with massless Kalb-Ramond axions can be amplified not only in isotropic (four-dimensional) string cosmological models but also in the fully anisotropic case. If the background geometry is isotropic, the axions (which are not part of the homogeneous background) develop outside the horizon, the growing modes leading, ultimately, to logarithmic energy spectra which are ``red'' in frequency and increase at large distance scales. We show that this conclusion can be avoided not only in the case of higher dimensional backgrounds with contracting internal dimensions but also in the case of string cosmological scenarios which are completely anisotropic in four dimensions. In this case the logarithmic energy spectra turn out to be ``blue'' in frequency and, consequently, decreasing at large distance scales. We elaborate on anisotropic dilaton-driven models and we argue that, incidentally, the background models leading to blue (or flat) logarithmic energy spectra for axionic fluctuations are likely to be isotropized by the effect of string tension corrections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalenko, V. N.; Vechernin, V. V.
2016-01-22
The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity.more » In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data.« less
Neutral atmosphere composition from SOIR measurements on board Venus Express
NASA Astrophysics Data System (ADS)
Mahieux, A.; Drummond, R.; Wilquet, V.; Vandaele, A. C.; Federova, A.; Belyaev, D.; Korablev, O.; Villard, E.; Montmessin, F.; Bertaux, J.-L.
2009-04-01
The SOIR instrument performs solar occultation measurements in the IR region (2.2 - 4.3 m) at a resolution of 0.12 cm-1, the highest on board Venus Express. It combines an echelle spectrometer and an AOTF (Acousto-Optical Tunable Filter) for the order selection [1,2]. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of the gases. Measurements of HDO, H2O, HCl, HF, CO and CO2 vertical profiles have been routinely performed, as well as those of their isotopologues [3,4]. We will discuss the improvements introduced in the analysis algorithm of the SOIR spectra. This discussion will be illustrated by presenting new results of retrievals of minor constituents of the Venus mesosphere, in terms of vertical profiles and geographical distribution. CO2 is the major constituent of the Venus atmosphere and was therefore observed in many solar occultations, leading to a good geographical coverage, although limited by the geometry of the orbit. Depending on the abundance of the absorbing isotopologue and on the intensity of the band measured, we will show that the SOIR instrument is able to furnish CO2 vertical profiles ranging typically from 65 to 150 km, reaching in some conditions 185 km altitude. This information is important in the frame of compiling, in collaboration with other teams, a new Venus Atmosphere Model. 1. A. Mahieux, S. Berkenbosch, R. Clairquin, D. Fussen, N. Mateshvili, E. Neefs, D. Nevejans, B. Ristic, A. C. Vandaele, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, E. Villard, F. Montmessin and J.-L. Bertaux, "In-Flight performance and calibration of SPICAV SOIR on board Venus Express", Applied Optics 47 (13), 2252-65 (2008). 2. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois and E. Villard, "Compact high-resolution space-borne echelle grating spectrometer with AOTF based on order sorting for the infrared domain from 2.2 to 4.3 micrometer", Applied Optics 45 (21), 5191-5206 (2006). 3. A. Fedorova, O. Korablev, A. C. Vandaele, J.-L. Bertaux, D. Belyaev, A. Mahieux, E. Neefs, V. Wilquet, R. Drummond, F. Montmessin and E. Villard, "HDO and H2O vertical distribution and isotopic ratio in the Venus mesosphere by SOIR spectrometer on board Venus Express", JGR, doi:10.1029/2008JE003146 (2008). 4. A. C. Vandaele, M. De Mazière, R. Drummond, A. Mahieux, E. Neefs, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, F. Montmessin and J.-L. Bertaux, "Composition of the Venus mesosphere measured by SOIR on board Venus Express", J. Geophysic. Res., doi:10.1029/2008JE003140 (2008).
Topographic Comparisons of Uplift Features on Venus and Earth
NASA Astrophysics Data System (ADS)
Stoddard, P. R.; Jurdy, D. M.
2009-12-01
Earth and Venus, nearly twins, have very different resurfacing histories. Like the Earth, Venus has a global rift system, often cited as evidence of tectonic activity, despite the apparent lack of Earth-style plate tectonics. Both systems are marked by large ridges, usually with central grabens. On Earth, the topography of the rifts can be modeled well by a cooling half-space and the spreading of two divergent plates. The origin of the topographic signature on Venus, however, remains enigmatic. Venus and Earth also both have regions of apparent upwelling: hotspots on Earth, and regiones on Venus. Both are marked by broad topographic and geoid highs as well as evidence of volcanic activity. We use topographic profiles to compare well-understood terrestrial analogs to venusian features. Specifically, we cross-correlate average profiles for terrestrial rifts (slow, fast, incipient and extinct) and hotspots (oceanic and continental) with those for venusian chasmata and regiones. We perform a principal component analysis to objectively assess degrees of similarity and differences to draw inferences as to the processes responsible for shaping Venus' surface. We analyze profiles of the Labrador Ridge, East African Rift, slow-spreading Mid-Atlantic Ridge and the fast-spreading East Pacific Rise for comparison with profiles for several venusian chasmata in different settings. For upwelling regions, we look at the Hawaii, Iceland, Reunion, and Yellowstone hotspots and Atla, Beta, and W. Eistla regiones on Venus. For ridge features, we take profiles perpendicular to the ridge trend every half-degree or so. For uplift features, we take 36 radial profiles through the center of the feature at 10 degree intervals. We use profiles from 800 to 1200 km long. For each feature, we average all profiles, then cross-correlate the individual profiles with the resulting average. Next, we cross-correlate the average profiles of each feature with those of the other features. Thus we obtain a correlation matrix. Not surprisingly, the most closely-related features (the MAR and EPR spreading rifts on Earth; Atla, Beta, and W. Eistla regiones on Venus) have the highest cross-correlations. Next highest are the correlations between the venusian and terrestrial rifts, and the correlation between the Yellowstone hotspot and Atla and Beta regiones. Yellowstone correlated only moderately well with the oceanic hotspots and Veuns' W. Eistla. Correlations with Iceland are probably somewhat poorer than might be expected, due to Iceland's proximity to Greenland. Interestingly, using shorter profile lengths, we have found that Atla and Beta most closely correlate with Earth's spreading rifts, in agreement with these regiones being recognized as the most rift-dominated on Venus. The topography of the more local constructs of the regiones is dominated by rifting, but the longer wavelength profiles reflect the larger-area upwelling processes. These correlations of topography can provide useful tools for a quantitative comparison of planetary features, and to infer tectonic and volcanic processes on Venus.
Late Veneer consequences on Venus' long term evolution
NASA Astrophysics Data System (ADS)
Gillmann, C.; Golabek, G.; Tackley, P. J.; Raymond, S. N.
2017-12-01
Modelling of Venus' evolution is able to produce scenarios consistent with present-day observation. These results are however heavily dependent on atmosphere escape and initial volatile inventory. This primordial history (the first 500 Myr) is heavily influenced by collisions. We investigate how Late Veneer impacts change the initial state of Venus and their consequences on its coupled mantle/atmosphere evolution. We focus on volatile fluxes: atmospheric escape and mantle degassing. Mantle dynamics is simulated using the StagYY code. Atmosphere escape covers both thermal and non-thermal processes. Surface conditions are calculated with a radiative-convective model. Feedback of the atmosphere on the mantle through surface temperature is included. Large impacts are capable of contributing to atmospheric escape, volatile replenishment and energy transfer. We use the SOVA hydrocode to take into account volatile loss and deposition during a collision. Large impacts are not numerous enough to substantially erode Venus' atmosphere. Single impacts don't have enough eroding power. Swarms of small bodies (<50km radius) might be a better candidate for this process. The amount of volatiles brought by large ordinary chondrite impactors is superior to losses and comparable to the degassing caused by the impact. Carbonaceous chondrite impactors are unlikely: they release too many volatiles, causing surface temperature to stay above 900K up to present-day. Mantle dynamics can also be modified by the heating caused by impacts. Heated material propagates by spreading across the upper mantle due to its buoyancy. Old crust is destroyed or remixed in the mantle. A large part of the upper mantle melts, leading to its depletion and degassing. With enough evenly distributed high energy impacts, the mantle can be depleted by more than 90% of its volatiles during Late Veneer. This drastically cuts down degassing in the late history of the planet and leads to lower present-day surface temperatures. Total depletion of the mantle seems unlikely, meaning either few large impacts (1 to 4) or low energy (slow, grazing…) collisions. Combined with the lack of plate tectonics and volatile recycling in the interior of Venus, Late Veneer collisions could help explain why Venus seems dry today.
Empirical models of the electron temperature and density in the nightside venus ionosphere.
Brace, L H; Theis, R F; Niemann, H B; Mayr, H G; Hoegy, W R; Nagy, A F
1979-07-06
Empirical models of the electron temperature and electron density of the late afternoon and nightside Venus ionosphere have been derived from Pioneer Venus measurements acquired between 10 December 1978 and 23 March 1979. The models describe the average ionosphere conditions near 18 degrees N latitude between 150 and 700 kilometers altitude for solar zenith angles of 80 degrees to 180 degrees . The average index of solar flux was 200. A major feature of the density model is the factor of 10 decrease beyond 90 degrees followed by a very gradual decrease between 120 degrees and 180 degrees . The density at 150 degrees is about five times greater than observed by Venera 9 and 10 at solar minimum (solar flux approximately 80), a difference that is probably related to the effects of increased solar activity on the processes that maintain the nightside ionosphere. The nightside electron density profile from the model (above 150 kilometers) can be reproduced theoretically either by transport of 0(+) ions from the dayside or by precipitation of low-energy electrons. The ion transport process would require a horizontal flow velocity of about 300 meters per second, a value that is consistent with other Pioneer Venus observations. Although currently available energetic electron data do not yet permit the role of precipitation to be evaluated quantitatively, this process is clearly involved to some extent in the formation of the nightside ionosphere. Perhaps the most surprising feature of the temperature model is that the electron temperature remains high throughout the nightside ionosphere. These high nocturnal temperatures and the existence of a well-defined nightside ionopause suggest that energetic processes occur across the top of the entire nightside ionosphere, maintaining elevated temperatures. A heat flux of 2 x 10(10) electron volts per square centimeter per second, introduced at the ionopause, is consistent with the average electron temperature profile on the nightside at a solar zenith angle of 140 degrees .
NASA Astrophysics Data System (ADS)
Barger, V.; Jiang, Jing; Langacker, Paul; Li, Tianjun
We use a new approach to study string scale gauge coupling unification systematically, allowing both the possibility of noncanonical U(1)Y normalization and the existence of vector-like particles whose quantum numbers are the same as those of the Standard Model (SM) fermions and their Hermitian conjugates and the SM adjoint particles. We first give all the independent sets (Yi) of particles that can be employed to achieve SU(3)C and SU(2)L string scale gauge coupling unification and calculate their masses. Second, for a noncanonical U(1)Y normalization, we obtain string scale SU(3)C ×SU(2)L ×U(1)Y gauge coupling unification by choosing suitable U(1)Y normalizations for each of the Yi sets. Alternatively, for the canonical U(1)Y normalization, we achieve string scale gauge coupling unification by considering suitable combinations of the Yi sets or by introducing additional independent sets (Zi), that do not affect the SU(3)C ×SU(2)L unification at tree level, and then choosing suitable combinations, one from the Yi sets and one from the Zi sets. We also briefly discuss string scale gauge coupling unification in models with higher Kac-Moody levels for SU(2)L or SU(3)C.
Venus Express - the First European Mission to Venus
NASA Astrophysics Data System (ADS)
Titov, D. V.; Svedhem, H.; Venus Express Team
2005-08-01
The ESA Venus Express mission is based on reuse of the Mars Express spacecraft and the payload available from the Mars Express and Rosetta missions. In less than 3 years the spacecraft was rebuilt with modifications to cope with harsh environment at Venus and fully tested. The Venus Express will be launched in the end of October 2005 from Baykonur (Kazakhstan) by the Russian Sojuz-Fregat rocket. In the beginning of April 2006 the spacecraft will be inserted in a polar orbit around Venus with pericenter of 250 km and apocentre of 66,000 km and a period of 24 hours. The planned mission duration is two Venus sidereal days ( 500 Earth days) with possibility to extend the mission for two more Venus days. The Venus Express aims at a global investigation of the Venus atmosphere and the plasma environment, and addresses some important aspects of the surface physics. The science goals comprise investigation of the atmospheric structure and composition, cloud layer and hazes, global circulation and radiative balance, plasma and escape processes, and surface properties. These topics will be addressed by seven instruments onboard the satellite: Analyzer of Space Plasma (ASPERA), Magnetometer (MAG), IR Fourier spectrometer (PFS), spectrometer for solar and stellar occultation (SPICAV), radio science experiment (VeRa), visible and IR imaging spectrometer (VIRTIS), and Venus Monitoring Camera (VMC). Scientific operations will include observations in pericentre, off-pericentre and apocentre sessions, limb scans, solar and stellar occultation, radio occultation, bi-static radar, and solar corona sounding.
From the currency rate quotations onto strings and brane world scenarios
NASA Astrophysics Data System (ADS)
Horváth, D.; Pincak, R.
2012-11-01
In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.
PIONEER VENUS 2 MULTI PROBE IS ENCAPSULATED IN PROTECTIVE SHROUD
NASA Technical Reports Server (NTRS)
1978-01-01
Encapsulation of the Pioneer Venus Multiprobe in its protective nose fairing is closely monitored by technicians in Hangar AO. The 2,000-pound spacecraft is one of two being launched toward the planet Venus. The Multiprobe is scheduled for launch aboard an Atlas Centaur rocket on August 7. Flying a direct path to the cloud-shrouded planet, the Multiprobe will reach Venus five days after the arrival of its sister spacecraft, the Pioneer Venus Orbiter, which was launched May 20, 1978. Three weeks before the Multiprobe reaches Venus, its four heavily instrumented scientific probes (seen on top of the spacecraft's main body or ''bus'') will be released and will impact at various points on the planet's surface. Together, the two spacecraft will conduct a thorough scientific exploration of the planet Venus.
Chandra Captures Venus In A Whole New Light
NASA Astrophysics Data System (ADS)
2001-11-01
Scientists have captured the first X-ray view of Venus using NASA's Chandra X-ray Observatory. The observations provide new information about the atmosphere of Venus and open a new window for examining Earth's sister planet. Venus in X-rays looks similar to Venus in visible light, but there are important differences. The optically visible Venus is due to the reflection of sunlight and, for the relative positions of Venus, Earth and Sun during these observations, shows a uniform half-crescent that is brightest toward the middle. The X-ray Venus is slightly less than a half-crescent and brighter on the limbs. The differences are due to the processes by which Venus shines in visible and X-ray light. The X-rays from Venus are produced by fluorescence, rather than reflection. Solar X-rays bombard the atmosphere of Venus, knock electrons out of the inner parts of the atoms, and excite the atoms to a higher energy level. The atoms almost immediately return to their lower energy state with the emission of a fluorescent X-ray. A similar process involving ultraviolet light produces the visible light from fluorescent lamps. For Venus, most of the fluorescent X-rays come from oxygen and carbon atoms between 120 and 140 kilometers (74 to 87 miles) above the planet's surface. In contrast, the optical light is reflected from clouds at a height of 50 to 70 kilometers (31 to 43 miles). As a result, Venus' Sun-lit hemisphere appears surrounded by an almost-transparent luminous shell in X-rays. Venus looks brightest at the limb since more luminous material is there. Venus X-ray/Optical Composite of Venus Credit: Xray: NASA/CXC/MPE/K.Dennerl et al., Optical: Konrad Dennerl "This opens up the exciting possibility of using X-ray observations to study regions of the atmosphere of Venus that are difficult to investigate by other means," said Konrad Dennerl of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, leader of an international team of scientists that conducted the research. The Chandra observation of Venus was also a technological tour de force. The angular separation of Venus from the Sun, as seen from Earth, never exceeds 48 degrees. This relative proximity has prevented star trackers and cameras on other X-ray astronomy satellites from locking onto guide stars and pointing steadily in the direction of Venus to perform such an observation. Venus was observed on Jan. 10, 2001, with the Advanced CCD Imaging Spectrometer (ACIS) detector plus the Low Energy Transmission Grating and on Jan. 13, 2001, with the ACIS alone. Other members of the team were Vadim Burwitz and Jakob Engelhauser, Max Planck Institute; Carey Lisse, University of Maryland, College Park; and Scott Wolk, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. These results were presented at this week's "New Visions of X-ray universe in the XMM-Newton and Chandra Era" symposium in Noordwijk, Netherlands. The Low Energy Transmission Grating was built by the Space Research Organization of the Netherlands and the Max Planck Institute, and the ACIS instrument was developed for NASA by The Pennsylvania State University, University Park, and the Massachusetts Institute of Technology (MIT), Cambridge. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
Constraints on the thermal evolution of Venus inferred from Magellan data
NASA Technical Reports Server (NTRS)
Arkani-Hamed, Jafar; Schaber, G. G.; Strom, R. G.
1992-01-01
The impact craters with diameters from 1.5 to 280 km compiled from Magellan observations indicate that the crater population on Venus has a completely spatially random distribution and the size/density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population with an age of 500 plus or minus 250 m.y. The similarity in size distribution from area to area indicates that the crater distribution is independent of crater size. Also, the forms of the modified craters are virtually identical to those of the pristine craters. These observations imply that Venus reset its cratering record by global resurfacing 500 m.y. ago, and resurfacing declined relatively fast. The fact that less than 40 percent of all craters have been modified and that the few volcanically embayed craters are located on localized tectonic regions indicate that only minor and localized volcanism and tectonism have occurred since the latest vigorous resurfacing event approximately 500 m.y. ago and the interior of Venus has been solid and possibly colder than Earth's. This is because the high-temperature lithosphere of Venus would facilitate upward ascending of mantle plumes and result in extensive volcanism if the venusian upper mantle were as hot as or hotter than Earth's. Therefore, the present surface morphology of Venus may provide useful constraints on the pattern of that vigorous convection, and possibly on the thermal state of the venusian mantle. We examine this possibility through numerical calculations of three-dimensional thermal convection models in a spherical shell with temperature- and pressure-dependent Newtonian viscosity, temperature-dependent thermal diffusivity, pressure-dependent thermal expansion coefficient, and time-dependent internal heat production rate solar magnitude.
Venus magmatic and tectonic evolution
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Hansen, V. L.
1993-01-01
Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.
NASA Technical Reports Server (NTRS)
Smrekar, S. E.; Anderson, F. S.
2005-01-01
We have calculated admittance spectra using the spatio-spectral method [14] for Venus by moving the central location of the spectrum over a 1 grid, create 360x180 admittance spectra. We invert the observed admittance using top-loading (TL), hot spot (HS), and bottom loading (BL) models, resulting in elastic, crustal, and lithospheric thickness estimates (Te, Zc, and Zl) [0]. The result is a global map for interpreting subsurface structure. Estimated values of Te and Zc concur with previous TL local admittance results, but BL estimates indicate larger values than previously suspected.
Propagation of cosmic rays through the atmosphere in the quark-gluon strings model
NASA Technical Reports Server (NTRS)
Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.
1985-01-01
The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.
NASA Astrophysics Data System (ADS)
Suleymanov, Michael; Horwitz, Lawrence; Yahalom, Asher
2017-06-01
A relativistic 4D string is described in the framework of the covariant quantum theory first introduced by Stueckelberg [ Helv. Phys. Acta 14, 588 (1941)], and further developed by Horwitz and Piron [ Helv. Phys. Acta 46, 316 (1973)], and discussed at length in the book of Horwitz [Relativistic Quantum Mechanics, Springer (2015)]. We describe the space-time string using the solutions of relativistic harmonic oscillator [ J. Math. Phys. 30, 66 (1989)]. We first study the problem of the discrete string, both classically and quantum mechanically, and then turn to a study of the continuum limit, which contains a basically new formalism for the quantization of an extended system. The mass and energy spectrum are derived. Some comparison is made with known string models.
Pyroclastic Deposits on Venus as Indicators of the Youngest Volcanism
NASA Technical Reports Server (NTRS)
Campbell, B. A.; Morgan, G. A.; Whitten, J. L.; Carter, L. M.; Glaze, L. S.; Campbell, D. B.
2017-01-01
While most of the surface of Venus formed by effusive volcanic processes, deposits suggesting eruption styles that distribute airfall debris over large areas, or ground-hugging flows from plume collapse, are not common. Prior work notes radar-bright units with diffuse margins, generally consistent with a plume collapse emplacement model, in Eistla Regio, Dione Regio, and near Sappho Patera. We examine these deposits, and map additional occurrences, using Magellan data and Earth-based polarimetric radar maps from 1988, 2012, and 2015 observations.
Extended atmospheres of outer planet satellites and comets
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1984-01-01
The cometary hydrogen particle-trajectory model was used successfully to analyze observations of Comet P/Encke. The Pioneer Venus Orbiter Ultraviolet Spectrometer observed the comet at 1216A (hydrogen Lyman-alpha) on 15 April 1984, when the comet was .58 AU from the Sun and 1.02 AU from Venus. The analysis implies a production rate at .58 AU of 3.3 x 10 to the 28th power/sec of the water molecules which photodissociate to produce the observed hydrogen.
Collisional plateaus. [in earth and Venus lithospheres
NASA Technical Reports Server (NTRS)
Morgan, P.; Burke, K.
1985-01-01
Aspects of the geology of collisional plateaus formed by the thickening of continental crust are briefly reviewed. The history of studies of collisional plateaus is summarized, and igneous activity in collisional plateaus is discussed. Isostatic considerations pertaining to these plateaus are addressed, developing models of isostatic support of topography which illustrate the importance of compressional tectonics in the creation of high altitude plateaus. Possible analogous environments on Venus are considered. Finally, the paradox of extension associated with compression in the plateaus is discussed.
Cratering mechanics on Venus - Pressure enhancement by the atmospheric 'ocean'
NASA Technical Reports Server (NTRS)
Brackett, Robert A.; Mckinnon, William B.
1992-01-01
The impedance match technique and EOSs of equations of state (EOSs) of geologically relevant materials are used to investigate cratering mechanics on Venus, specifically, the coupling of impactor kinetic energy and momentum into the target surface. These EOSs are modified to account for multiple shocks. Peak impact pressures from both first reflection and later reverberations are determined. These are compared to values obtained using an atmosphereless model, and the differences between and implications for atmosphere-affected and atmosphereless impacts are discussed.
Effects of selective fusion on the thermal history of the Moon, Mars, and Venus
Lee, W.H.K.
1968-01-01
A comparative study on the thermal history of the Moon, Mars, and Venus was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects on selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. ?? 1968.
Energetic particles at venus: galileo results.
Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G
1991-09-27
At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.
Low energy trajectories to Mars via gravity assist from Venus to earth
NASA Technical Reports Server (NTRS)
Williams, S. N.; Longuski, J. M.
1991-01-01
The analytical determination of launch dates and proposed trajectories is reviewed with respect to the search for a low-energy trajectory to Mars with gravitational assist from Venus for the years 1995-2024. Both Ballistic and Venus-Earth gravity assist (VEGA) trajectories are calculated with an automated design tool by the authors (1990). The trajectories are modeled as conic sections from one gravitating body to the next, and gravity assist is considered to act impulsively. VEGA trajectories to Mars require similar launch energies for 6 years listed and have moderate arrival C3s, with the lowest C3 requirement in 2015. The flight time and arrival energies of the trajectories are found to be larger than those of ballistic trajectories, but the low-energy launch window makes them desirable for unmanned Mars missions, in particular.
Rheological decoupling at the Moho and implication to Venusian tectonics.
Azuma, Shintaro; Katayama, Ikuo; Nakakuki, Tomoeki
2014-03-18
Plate tectonics is largely responsible for material and heat circulation in Earth, but for unknown reasons it does not exist on Venus. The strength of planetary materials is a key control on plate tectonics because physical properties, such as temperature, pressure, stress, and chemical composition, result in strong rheological layering and convection in planetary interiors. Our deformation experiments show that crustal plagioclase is much weaker than mantle olivine at conditions corresponding to the Moho in Venus. Consequently, this strength contrast may produce a mechanical decoupling between the Venusian crust and interior mantle convection. One-dimensional numerical modeling using our experimental data confirms that this large strength contrast at the Moho impedes the surface motion of the Venusian crust and, as such, is an important factor in explaining the absence of plate tectonics on Venus.
Rheological decoupling at the Moho and implication to Venusian tectonics
Azuma, Shintaro; Katayama, Ikuo; Nakakuki, Tomoeki
2014-01-01
Plate tectonics is largely responsible for material and heat circulation in Earth, but for unknown reasons it does not exist on Venus. The strength of planetary materials is a key control on plate tectonics because physical properties, such as temperature, pressure, stress, and chemical composition, result in strong rheological layering and convection in planetary interiors. Our deformation experiments show that crustal plagioclase is much weaker than mantle olivine at conditions corresponding to the Moho in Venus. Consequently, this strength contrast may produce a mechanical decoupling between the Venusian crust and interior mantle convection. One-dimensional numerical modeling using our experimental data confirms that this large strength contrast at the Moho impedes the surface motion of the Venusian crust and, as such, is an important factor in explaining the absence of plate tectonics on Venus. PMID:24638113
Net thermal radiation in the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Revercomb, H. E.; Sromovsky, L. A.; Suomi, V. E.; Boese, R. W.
1985-01-01
Estimates of the true atmospheric net fluxes at the four Pioneer Venus entry sites are presently obtained through corrections of measured values that are relatively small for the case of the clouds, but generally large deeper in the atmosphere. The correction procedure for both the small and large probe fluxes used model results near 14 km to establish the size of the correction. The thermal net fluxes obtained imply that the contribution of mode 3 particles to the IR opacity of the middle and lower clouds is smaller than indicated by the Pioneer Venus cloud particle spectrometer measurements, and the day probe results favor a reduction of only about 50 percent. The fluxes at all sites imply that a yet-undetermined source of considerable opacity is present in the upper cloud. Beneath the clouds, the thermal net fluxes generally increase with increasing latitude.
Atmospheric Models for Aeroentry and Aeroassist
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2004-01-01
Eight destinations in the Solar System have sufficient atmosphere for aeroentry, aeroassist, or aerobraking/aerocapture: Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune, plus Saturn's moon Titan. Engineering-level atmospheric models for Earth, Mars, Titan, and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications. Development has begun on a similar atmospheric model for Venus. An important capability of these models is simulation of quasi-random perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design. Characteristics of these atmospheric models are compared, and example applications for aerocapture are presented. Recent Titan atmospheric model updates are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan. Recent and planned updates to the Mars atmospheric model, in support of future Mars aerocapture systems analysis studies, are also presented.
Tests of crustal divergence models for Aphrodite Terra, Venus
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1989-01-01
This paper discusses the characteristics of Aphrodite Terra, the highland region of Venus which is considered to be a likely site of mantle upwelling, active volcanism, and extensional tectonics, and examines the relation of these features to three alternative kinematic models for the interaction of mantle convection with the surface. These the 'vertical tectonics' model, in which little horizontal surface displacement results from mantle flow; the 'plate divergence' model, in which shear strain from large horizontal displacements is accommodated only in narrow zones of deformation; and the 'distributed deformation' model, in which strain from large horizontal motions is broadly accommodated. No convincing observational evidence was found to support the rigid-plate divergence, while the evidence of large-scale horizontal motions of Aphrodite argues against purely vertical tectonics. A model is proposed, involving a broad disruption of a thin lithosphere. In such a model, lineaments are considered to be surface manifestations of mantle convective flow.
Magnetic Bianchi type II string cosmological model in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Rikhvitsky, Victor; Saha, Bijan; Visinescu, Mihai
2014-07-01
The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.
Inhomogeneous Einstein-Rosen string cosmology
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-08-01
Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edsjö, J.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Savage, C.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Scott, P.; Seckel, D.; Seunarine, S.; Silverwood, H.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Te{š}ić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.
2016-04-01
We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.
Large-scale structure from cosmic-string loops in a baryon-dominated universe
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1988-01-01
The results are presented of a numerical simulation of the formation of large-scale structure in a universe with Omega(0) = 0.2 and h = 0.5 dominated by baryons in which cosmic strings provide the initial density perturbations. The numerical model yields a power spectrum. Nonlinear evolution confirms that the model can account for 700 km/s bulk flows and a strong cluster-cluster correlation, but does rather poorly on smaller scales. There is no visual 'filamentary' structure, and the two-point correlation has too steep a logarithmic slope. The value of G mu = 4 x 10 to the -6th is significantly lower than previous estimates for the value of G mu in baryon-dominated cosmic string models.
Massless spinning particle and null-string on AdS d : projective-space approach
NASA Astrophysics Data System (ADS)
Uvarov, D. V.
2018-07-01
The massless spinning particle and the tensionless string models on an AdS d background in the projective-space realization are proposed as constrained Hamiltonian systems. Various forms of particle and string Lagrangians are derived and classical mechanics is studied including the Lax-type representation of the equations of motion. After that, the transition to the quantum theory is discussed. The analysis of potential anomalies in the tensionless string model necessitates the introduction of ghosts and BRST charge. It is shown that a quantum BRST charge is nilpotent for any d if coordinate-momentum ordering for the phase-space bosonic variables, Weyl ordering for the fermions and cb () ordering for the ghosts is chosen, while conformal reparametrizations and space-time dilatations turn out to be anomalous for ordering in terms of positive and negative Fourier modes of the phase-space variables and ghosts.
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.; Nybakken, G. H.
1972-01-01
The string theory was evaluated for predicting lateral tire dynamic properties as obtained from scaled model tests. The experimental data and string theory predictions are in generally good agreement using lateral stiffness and relaxation length values obtained from the static or slowly rolling tire. The results indicate that lateral forces and self-aligning torques are linearly proportional to tire lateral stiffness and to the amplitude of either steer or lateral displacement. In addition, the results show that the ratio of input excitation frequency to road speed is the proper independent variable by which frequency should be measured.
NASA Technical Reports Server (NTRS)
Suleiman, Shady H.; Kolodner, Marc A.; Steffes, Paul G.
1996-01-01
High-accuracy laboratory measurements of the temperature dependence of the opacity from gaseous sulfur dioxide (SO2) in a carbon dioxide (CO2) atmosphere at temperatures from 290 to 505 K and at pressures from 1 to 4 atm have been conducted at frequencies of 2.25 GHz (13.3 cm), 8.5 GHz (3.5 cm), and 21.7 GHz (1.4 cm). Based on these absorptivity measurements, a Ben-Reuven (BR) line shape model has been developed that provides a more accurate characterization of the microwave absorption of gaseous S02 in the Venus atmosphere as compared with other formalisms. The developed BR formalism is incorporated into a radiative transfer model. The resulting microwave emission spectrum of Venus is then used to set an upper limit on the disk-averaged abundance of gaseous S02 below the main cloud layer. It is found that gaseous S02 has an upper limit of 150 ppm, which compares well with previous spacecraft in situ measurements and Earth-based radio astronomical observations.
An investigation of solar wind effects on the evolution of the Martian atmosphere
NASA Technical Reports Server (NTRS)
Luhmann, Janet G.
1994-01-01
This investigation concentrated on the question of how atmosphere escape, related to both photochemistry and the Mars solar wind interaction, may have affected the evolution of Mars' atmosphere over time. The principal investigator and postdoctoral researcher adopted the premise that contemporary escape processes have dominated the losses to space over the past 3.5 billion years, but that the associated loss rates have been modified by solar evolution. A model was constructed for the contemporary escape scenario based on knowledge gained from both Venus in-situ measurements from Pioneer Venus Orbiter and Mars measurements from Phobos-2. Venus provided a valuable second example of a weakly magnetized planet having a similar solar wind interaction where we have more knowledge from observations. The model included photochemical losses from recombining ionospheric molecular ions, scavenging Martian upper atmosphere ('pickup') ions by the solar wind, and sputtering of the atmosphere by reentering pickup ions. The existence of the latter mechanism was realized during the course of the supported investigation, and is now thought by Jakosky and Pepin to explain some of the Martian noble gas isotope ratios.
Bounds on Lithospheric Thickness on Venus from Magellan Gravity and Topography Data
NASA Technical Reports Server (NTRS)
Johnson, Catherine L.; Sandwell, David
1997-01-01
The primary objective of the work executed under NAGW-4784 is to provide constraints on the thermal and tectonic evolution of Venus. Establishing thermal and tectonic evolution models requires not only geological, but geophysical constraints, in particular the nature of temporal and spatial variations in crustal and lithospheric thickness. The major topics of study completed under NAGW-4784 (described more fully below) are: (1) detailed analyses of the resolution of Magellan Line-Of-Site (LOS) Doppler data to establish the minimum resolvable wavelength in the gravity data; (2) calculations of the global strain field in the venusian lithosphere and comparisons with global strain patterns from geological mapping; (3) study of the geological history of coronae at E. Eistla Regio; (4) estimation of crustal and lithospheric thickness by modeling of topography at asymmetric and symmetric rift-like chasmata; (5) preliminary investigations of spatial versus temporal variations in lithospheric thickness. Both the PI and Co-I have presented papers based on these topics at national and international meetings (American Geophysical Union Meetings, Lunar and Planetary Science Conferences, Chapman Conference on the Geodynamics of Venus).
NASA Technical Reports Server (NTRS)
vandenBerg, M. L.; Falkner, P.; Phipps, A.; Underwood, J. C.; Lingard, J. S.; Moorhouse, J.; Kraft, S.; Peacock, A.
2005-01-01
The Venus Entry Probe is one of ESA s Technology Reference Studies (TRS). The purpose of the Technology Reference Studies is to provide a focus for the development of strategically important technologies that are of likely relevance for future scientific missions. The aim of the Venus Entry Probe TRS is to study approaches for low cost in-situ exploration of Venus and other planetary bodies with a significant atmosphere. In this paper, the mission objectives and an outline of the mission concept of the Venus Entry Probe TRS are presented.
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2003-01-01
Although the surface of Venus is an extremely hostile environment, at about 50 kilometers above the surface the atmosphere of Venus is the most earthlike environment (other than Earth itself) in the solar system. It is proposed here that in the near term, human exploration of Venus could take place from aerostat vehicles in the atmosphere, and that in the long term, permanent settlements could be made in the form of cities designed to float at about fifty kilometer altitude in the atmosphere of Venus.
NASA Astrophysics Data System (ADS)
Trompet, L.; Geunes, Y.; Ooms, T.; Mahieux, A.; Wilquet, V.; Chamberlain, S.; Robert, S.; Thomas, I. R.; Erard, S.; Cecconi, B.; Le Sidaner, P.; Vandaele, A. C.
2018-01-01
Venus Express SOIR profiles of pressure, temperature and number densities of different constituents of the mesosphere and lower thermosphere of Venus are the only experimental data covering the 60 km to 220 km range of altitudes at the terminator of Venus. This unique dataset is now available in the open access VESPA infrastructure. This paper describes the content of these data products and provides some use cases.
Venus Aerobot Multisonde Mission
NASA Technical Reports Server (NTRS)
Cutts, James A.; Kerzhanovich, Viktor; Balaram, J. Bob; Campbell, Bruce; Gershaman, Robert; Greeley, Ronald; Hall, Jeffery L.; Cameron, Jonathan; Klaasen, Kenneth; Hansen, David M.
1999-01-01
Robotic exploration of Venus presents many challenges because of the thick atmosphere and the high surface temperatures. The Venus Aerobot Multisonde mission concept addresses these challenges by using a robotic balloon or aerobot to deploy a number of short lifetime probes or sondes to acquire images of the surface. A Venus aerobot is not only a good platform for precision deployment of sondes but is very effective at recovering high rate data. This paper describes the Venus Aerobot Multisonde concept and discusses a proposal to NASA's Discovery program using the concept for a Venus Exploration of Volcanoes and Atmosphere (VEVA). The status of the balloon deployment and inflation, balloon envelope, communications, thermal control and sonde deployment technologies are also reviewed.
NASA Astrophysics Data System (ADS)
Hultgrien, Lynn Kerrell
Basalt is the most common surface rock on the terrestrial planets. Understanding the emplacement mechanisms for basaltic lava flows facilitates study of the geologic history of a planet and in volcanic hazards assessment. Lava flow cooling is examined through two different models, one applicable to aa and the second to pahoehoe. Occurrence of these basaltic flow types is evaluated in an extensive global survey of lava flows on Venus using Magellan data. First, a basic heat balance model is considered for as flow cooling with terms for conduction, radiation, viscous dissipation and entrainment of cooler material. Pahoehoe cooling is modeled through three different analytic solutions to the one-dimensional, time-dependent heat conduction equation, with constant surface temperature, linear heat transfer at the surface, and surface radiation. The models are compared with thermal data from the Hawaiian 1984 Mauna Loa and 1990 Puu Oo-Kupaianaha, Kilauea eruptions, for as and pahoehoe, respectively. Although commonly omitted in other models, heat conduction is found here to be important in the cooling of both aa and pahoehoe. Equally important is entrainment in as flows and both radiation and atmospheric convection for pahoehoe cooling. Morphology measurements and surface properties are determined for ninety individual lava flows from forty-four volcanic features on Venus. Radar backscatter and rms slope values, relative to terrestrial studies, indicate Venusian lavas are predominately pahoehoe. Emissivities and dielectric constants are consistent with basalt as the principal lithology. Effusion rates and flow velocities, determined using Earth-calibrated parametric relationships, and lava flow dimensions are greater than those found on Earth. Modeling lava flows on the terrestrial planets should involve careful consideration of the type of lava flow being studied. This investigation finds that heat conduction is an important limitation in the ability of a basalt flow to cool. Some models underestimate cooling time and flow dimensions because of their failure to include such effects. Pahoehoe and aa flows are emplaced by different mechanisms and require individualized models. The prevalence of pahoehoe lava flows on both Earth and Venus is a major element for deciphering the past evolution of each planet.