Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge
NASA Astrophysics Data System (ADS)
Lee, Taejin
2018-01-01
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.
Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge
NASA Astrophysics Data System (ADS)
Lee, Taejin
2017-12-01
We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.
NASA Astrophysics Data System (ADS)
1995-04-01
The following topics were dealt with: string theory, gauge theory, quantum gravity, quantum geometry, black hole physics and information loss, second quantisation of the Wilson loop, 2D Yang-Mills theory, topological field theories, equivariant cohomology, superstring theory and fermion masses, supergravity, topological gravity, waves in string cosmology, superstring theories, 4D space-time.
Democratic Superstring Field Theory and Its Gauge Fixing
NASA Astrophysics Data System (ADS)
Kroyter, M.
This work is my contribution to the proceedings of the conference``SFT2010 -- the third international conference on string field theory and related topics'' and it reflects my talk there, which described the democratic string field theory and its gauge fixing. The democratic string field theory is the only fully RNS string field theory to date. It lives in the large Hilbert space and includes all picture numbers. Picture changing amounts in this formalism to a gauge transformation. We describe the theory and its properties and show that when partially gauge fixed it can be reduced to the modified theory and to the non-polynomial theory. In the latter case we can even include the Ramond sector in the picture-fixed action. We also show that another partial gauge-fixing leads to a new consistent string field theory at picture number -1.
Yang-Mills gauge conditions from Witten's open string field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Haidong; Siegel, Warren
2007-02-15
We construct the Zinn-Justin-Batalin-Vilkovisky action for tachyons and gauge bosons from Witten's 3-string vertex of the bosonic open string without gauge fixing. Through canonical transformations, we find the off-shell, local, gauge-covariant action up to 3-point terms, satisfying the usual field theory gauge transformations. Perturbatively, it can be extended to higher-point terms. It also gives a new gauge condition in field theory which corresponds to the Feynman-Siegel gauge on the world-sheet.
Double field theory at order α'
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Zwiebach, Barton
2014-11-01
We investigate α' corrections of bosonic strings in the framework of double field theory. The previously introduced "doubled α'-geometry" gives α'-deformed gauge transformations arising in the Green-Schwarz anomaly cancellation mechanism but does not apply to bosonic strings. These require a different deformation of the duality-covariantized Courant bracket which governs the gauge structure. This is revealed by examining the α' corrections in the gauge algebra of closed string field theory. We construct a four-derivative cubic double field theory action invariant under the deformed gauge transformations, giving a first glimpse of the gauge principle underlying bosonic string α' corrections. The usual metric and b-field are related to the duality covariant fields by non-covariant field redefinitions.
On the gauge chosen by the bosonic open string
NASA Astrophysics Data System (ADS)
Pesando, Igor
2017-05-01
String theory gives S matrix elements from which is not possible to read any gauge information. Using factorization we go off shell in the simplest and most naive way and we read which are the vertices suggested by string. To compare with the associated Effective Field Theory it is natural to use color ordered vertices. The α‧ = 0 color ordered vertices suggested by string theory are more efficient than the usual ones since the three gluon color ordered vertex has three terms instead of six and the four gluon one has one term instead of three. They are written in the so called Gervais-Neveu gauge. The full Effective Field Theory is in a generalization of the Gervais-Neveu gauge with α‧ corrections. Moreover a field redefinition is required to be mapped to the field used by string theory. We also give an intuitive way of understanding why string choose this gauge in terms of the minimal number of couplings necessary to reproduce the non-abelian amplitudes starting from color ordered ones.
Abelian gauge symmetries in F-theory and dual theories
NASA Astrophysics Data System (ADS)
Song, Peng
In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by constructing general F-theory compactifications with U(1) x U(1) x U(1) abelian gauge symmetry. In chapter 1 of this dissertation, I proved finiteness of a region of the string landscape in Type IIB compactifications. String compactifications give rise to a collection of effective low energy theories, known as the string landscape. In chapter 3 of this dissertation, I study abelian gauge symmetries in the duality between F-theory and E8 x E8 heterotic string theory. However, how abelian gauge symmetries can arise in the dual heterotic string theory has never been studied. The main goal of this chapter is to study exactly this. We start with F-theory compactifications with abelian gauge symmetry. With the help of a mathematical lemma as well as a computer code that I came up with, I was able to construct a rich list of specialized examples with specific abelian and nonabelian gauge groups on the F-theory side. (Abstract shortened by ProQuest.).
Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.
Andreev, Oleg
2009-05-29
We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature range.
NASA Astrophysics Data System (ADS)
Kim, Joonho; Kim, Seok; Lee, Kimyeong; Park, Jaemo; Vafa, Cumrun
2017-09-01
We study a family of 2d N=(0, 4) gauge theories which describes at low energy the dynamics of E-strings, the M2-branes suspended between a pair of M5 and M9 branes. The gauge theory is engineered using a duality with type IIA theory, leading to the D2-branes suspended between an NS5-brane and 8 D8-branes on an O8-plane. We compute the elliptic genus of this family of theories, and find agreement with the known results for single and two E-strings. The partition function can in principle be computed for arbitrary number of E-strings, and we compute them explicitly for low numbers. We test our predictions against the partially known results from topological strings, as well as from the instanton calculus of 5d Sp(1) gauge theory. Given the relation to topological strings, our computation provides the all genus partition function of the refined topological strings on the canonical bundle over 1/2K3.
Origin of gauge invariance in string theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
S-Duality, Deconstruction and Confinement for a Marginal Deformation of N=4 SUSY Yang-Mills
NASA Astrophysics Data System (ADS)
Dorey, Nick
2004-08-01
We study an exactly marginal deformation of Script N = 4 SUSY Yang-Mills with gauge group U(N) using field theory and string theory methods. The classical theory has a Higgs branch for rational values of the deformation parameter. We argue that the quantum theory also has an S-dual confining branch which cannot be seen classically. The low-energy effective theory on these branches is a six-dimensional non-commutative gauge theory with sixteen supercharges. Confinement of magnetic and electric charges, on the Higgs and confining branches respectively, occurs due to the formation of BPS-saturated strings in the low energy theory. The results also suggest a new way of deconstructing Little String Theory as a large-N limit of a confining gauge theory in four dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmark, Troels; Orselli, Marta
We match the Hagedorn/deconfinement temperature of planar N=4 super Yang-Mills (SYM) on RxS{sup 3} to the Hagedorn temperature of string theory on AdS{sub 5}xS{sup 5}. The match is done in a near-critical region where both gauge theory and string theory are weakly coupled. The near-critical region is near a point with zero temperature and critical chemical potential. On the gauge-theory side we are taking a decoupling limit found in Ref. 7 in which the physics of planar N=4 SYM is given exactly by the ferromagnetic XXX{sub 1/2} Heisenberg spin chain. We find moreover a general relation between the Hagedorn/deconfinement temperaturemore » and the thermodynamics of the Heisenberg spin chain and we use this to compute it in two distinct regimes. On the string-theory side, we identify the dual limit for which the string tension and string coupling go to zero. This limit is taken of string theory on a maximally supersymmetric pp-wave background with a flat direction, obtained from a Penrose limit of AdS{sub 5}xS{sup 5}. We compute the Hagedorn temperature of the string theory and find agreement with the Hagedorn/deconfinement temperature computed on the gauge-theory side.« less
NASA Astrophysics Data System (ADS)
Wang, Juven C.; Wen, Xiao-Gang
2015-01-01
String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.
String universality in ten dimensions.
Adams, Allan; Taylor, Washington; Dewolfe, Oliver
2010-08-13
We show that the N=1 supergravity theories in ten dimensions with gauge groups U(1){496} and E{8}×U(1){248} are not consistent quantum theories. Cancellation of anomalies cannot be made compatible with supersymmetry and Abelian gauge invariance. Thus, in ten dimensions all supersymmetric theories of gravity without known inconsistencies are realized in string theory.
Three-dimensional gauge theories and gravitational instantons from string theory
NASA Astrophysics Data System (ADS)
Cherkis, Sergey Alexander
Various realizations of gauge theories in string theory allow an identification of their spaces of vacua with gravitational instantons. Also, they provide a correspondence of vacua of gauge theories with nonabelian monopole configurations and solutions of a system of integrable equations called Nahm equations. These identifications make it possible to apply powerful techniques of differential and algebraic geometry to solve the gauge theories in question. In other words, it becomes possible to find the exact metrics on their moduli spaces of vacua with all quantum corrections included. As another outcome we obtain for the first time the description of a series of all Dk-type gravitational instantons.
Chern-Simons gauge theory on orbifolds: Open strings from three dimensions
NASA Astrophysics Data System (ADS)
Hořava, Petr
1996-12-01
Chern-Simons gauge theory is formulated on three-dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known to be related to two-dimensional (2D) conformal field theory (CFT) on closed-string surfaces; here it is shown that the theory on orbifolds is related to 2D CFT of unoriented closed- and open-string models, i.e. to worldsheet orbifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open-string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories.
Ambitwistor formulations of R 2 gravity and ( DF)2 gauge theories
NASA Astrophysics Data System (ADS)
Azevedo, Thales; Engelund, Oluf Tang
2017-11-01
We consider D-dimensional amplitudes in R 2 gravities (conformal gravity in D = 4) and in the recently introduced ( DF)2 gauge theory, from the perspective of the CHY formulae and ambitwistor string theory. These theories are related through the BCJ double-copy construction, and the ( DF)2 gauge theory obeys color-kinematics duality. We work out the worldsheet details of these theories and show that they admit a formulation as integrals on the support of the scattering equations, or alternatively, as ambitwistor string theories. For gravity, this generalizes the work done by Berkovits and Witten on conformal gravity to D dimensions. The ambitwistor is also interpreted as a D-dimensional generalization of Witten's twistor string (SYM + conformal supergravity). As part of our ambitwistor investigation, we discover another ( DF)2 gauge theory containing a photon that couples to Einstein gravity. This theory can provide an alternative KLT description of Einstein gravity compared to the usual Yang-Mills squared.
Loop Variables in String Theory
NASA Astrophysics Data System (ADS)
Sathiapalan, B.
The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space-time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.
M-theory through the looking glass: Tachyon condensation in the E8 heterotic string
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horava, Petr; Horava, Petr; Keeler, Cynthia A.
2007-09-20
We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing -- connecting the two E_8 boundaries by a throat -- are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E_8 gauge group and a singlet tachyon. We then use worldsheet methods to studymore » the tachyon condensation in the NSR formulation of this model, and show that it induces a worldsheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for worldsheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the worldsheet gravitino assimilates the goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R_\\xi gauges, and note the importance of logarithmic CFT in the context of tachyon condensation.« less
Negative branes, supergroups and the signature of spacetime
NASA Astrophysics Data System (ADS)
Dijkgraaf, Robbert; Heidenreich, Ben; Jefferson, Patrick; Vafa, Cumrun
2018-02-01
We study the realization of supergroup gauge theories using negative branes in string theory. We show that negative branes are intimately connected with the possibility of timelike compactification and exotic spacetime signatures previously studied by Hull. Isolated negative branes dynamically generate a change in spacetime signature near their worldvolumes, and are related by string dualities to a smooth M-theory geometry with closed timelike curves. Using negative D3-branes, we show that SU(0| N) supergroup theories are holographically dual to an exotic variant of type IIB string theory on {dS}_{3,2}× {\\overline{S}}^5 , for which the emergent dimensions are timelike. Using branes, mirror symmetry and Nekrasov's instanton calculus, all of which agree, we derive the Seiberg-Witten curve for N=2 SU( N | M ) gauge theories. Together with our exploration of holography and string dualities for negative branes, this suggests that supergroup gauge theories may be non-perturbatively well-defined objects, though several puzzles remain.
Strings on plane-waves and spin chains on orbifolds
NASA Astrophysics Data System (ADS)
Sadri, Darius
This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane-wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the "Penrose limit". In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T-duality are also studied, as are BPS Dp-branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of the three-sphere giant graviton, and place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, giving a two dimensional (worldsheet) description of giant gravitons. Chapter four presents some new ideas regarding the relation between super-conformal gauge theories and string theories with three-dimensional target spaces, possible relations of these systems to Hamiltonian lattice gauge theories, and integrable spin chains. We consider N = 1, D = 4 superconformal SU( N)px q Yang-Mills theories dual to AdS5 x S5/Zp x Zq orbifolds. We show that a specific sector of this dilatation operator can be thought of as the transfer matrix for a three-dimensional statistical mechanical system, which in turn is equivalent to a 2 + 1-dimensional string theory where the spatial slices are discretized on a triangular lattice, and comment on the integrability of this N = 1 gauge theory, its connection to three-dimensional lattice gauge theories, extensions to six-dimensional string theories, AdS/CFT type dualities and finally their construction via orbifolds and brane-box models. In the process we discover a new class of almost-BPS BMN type operators with large engineering dimensions but controllably small anomalous corrections.
Quark-antiquark potential in defect conformal field theory
NASA Astrophysics Data System (ADS)
Preti, Michelangelo; Trancanelli, Diego; Vescovi, Edoardo
2017-10-01
We consider antiparallel Wilson lines in N = 4 super Yang-Mills in the presence of a codimension-1 defect. We compute the Wilson lines' expectation value both at weak coupling, in the gauge theory, and at strong coupling, by finding the string configurations which are dual to this operator. These configurations display a Gross-Ooguri transition between a connected, U-shaped string phase and a phase in which the string breaks into two disconnected surfaces. We analyze in detail the critical configurations separating the two phases and compare the string result with the gauge theory one in a certain double scaling limit.
M theory through the looking glass: Tachyon condensation in the E{sub 8} heterotic string
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horava, Petr; Keeler, Cynthia A.
2008-03-15
We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing--connecting the two E{sub 8} boundaries by a throat--are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E{sub 8} gauge group and a singlet tachyon. We then use world sheet methods to study themore » tachyon condensation in the Neveu-Schwarz-Ramond formulation of this model, and show that it induces a world sheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for world sheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the world sheet gravitino assimilates the Goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R{sub {xi}} gauges, and note the importance of logarithmic conformal field theories in the context of tachyon condensation.« less
Marginal deformations of gauge theories and their dual description
NASA Astrophysics Data System (ADS)
Kulaxizi, Manuela
Holography and its realization in string theory as the AdS/CFT correspondence, offers an equivalence between gauge theories and gravity that provides a means to explore the otherwise inaccessible large N and strong coupling region of SU(N) gauge theories. While considerable progress has been made in this area, a concrete method for specifying the gravitational background dual to a given gauge theory is still lacking. This is the question addressed in this thesis in the context of exactly marginal deformations of N = 4 SYM. First, a precise relation between the deformation of the superpotential and transverse space noncommutativity is established. In particular, the appropriate noncommutativity matrix theta is determined, relying solely on data from the gauge theory lagrangian and basic notions of the AdS/CFT correspondence. The set ( G , theta) of open string parameters, with G the metric of the transverse space, is then understood as a way to encode information pertaining to the moduli space of the gauge theory. It seems thus natural to expect that it may be possible to obtain the corresponding gravitational solution by mapping the open string fields ( G , theta) to the closed string ones (g, B). This hints at a purely algebraic method for constructing gravity duals to given conformal gauge theories. The idea is tested within the context of the beta-deformed theory where the dual gravity description is known and then used to construct the background for the rho-deformed theory up to third order in the deformation parameter rho. Discrepancy of the higher order in rho terms in the latter case is traced to the nonassociativity of the noncommutative matrix theta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, I.Y.; Tirziu, A.; Tseytlin, A.A.
We consider circular strings rotating with equal spins S{sub 1}=S{sub 2}=S in two orthogonal planes in AdS{sub 5} and suggest that they may be dual to long gauge-theory operators built out of self-dual components of gauge field strength. As was found in hep-th/0404187, the one-loop anomalous dimensions of the such gauge-theory operators are described by an antiferromagnetic XXX{sub 1} spin chain and scale linearly with length L>>1. We find that in the case of rigid rotating string both the classical energy E{sub 0} and the 1-loop string correction E{sub 1} depend linearly on the spin S (within the stability regionmore » of the solution). This supports the identification of the rigid rotating string with the gauge-theory operator corresponding to the maximal-spin (ferromagnetic) state of the XXX{sub 1} spin chain. The energy of more general rotating and pulsating strings also happens to scale linearly with both the spin and the oscillation number. Such solutions should be dual to other lower-spin states of the spin chain, with the antiferromagnetic ground state presumably corresponding to the string pulsating in two planes with no rotation.« less
Existence of topological multi-string solutions in Abelian gauge field theories
NASA Astrophysics Data System (ADS)
Han, Jongmin; Sohn, Juhee
2017-11-01
In this paper, we consider a general form of self-dual equations arising from Abelian gauge field theories coupled with the Einstein equations. By applying the super/subsolution method, we prove that topological multi-string solutions exist for any coupling constant, which improves previously known results. We provide two examples for application: the self-dual Einstein-Maxwell-Higgs model and the gravitational Maxwell gauged O(3) sigma model.
Diffractive Scattering and Gauge/String Duality
Tan, Chung-I
2018-05-11
High-energy diffractive scattering will be discussed based on Gauge/String duality. As shown by Brower, Polchinski, Strassler and Tan, the ubiquitous Pomeron emerges naturally in gauge theories with string-theoretical descriptions. Its existence is intimately tied to gluons, and also to the energy-momentum tensor. With a confining dual background metric, the Pomeron can be interpreted as a 'massive graviton'. In a single unified step, both its infrared and ultraviolet properties are dealt with, reflecting confinement and conformal symmetry respectively. An effective field theory for high-energy scattering can be constructed. Applications based on this approach will also be described.
Probing the string winding sector
NASA Astrophysics Data System (ADS)
Aldazabal, Gerardo; Mayo, Martín; Nuñez, Carmen
2017-03-01
We probe a slice of the massive winding sector of bosonic string theory from toroidal compactifications of Double Field Theory (DFT). This string subsector corresponds to states containing one left and one right moving oscillators. We perform a generalized Kaluza Klein compactification of DFT on generic 2 n-dimensional toroidal constant backgrounds and show that, up to third order in fluctuations, the theory coincides with the corresponding effective theory of the bosonic string compactified on n-dimensional toroidal constant backgrounds, obtained from three-point amplitudes. The comparison between both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to fix generalized harmonic gauge conditions that help in identifying the physical degrees of freedom. These conditions manifest as conformal anomaly cancellation requirements on the string theory side. The explicit expression for the gauge invariant effective action containing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to towers of generalized Kaluza Klein massive states (corresponding to compact momentum and winding modes) is found. The action acquires a very compact form when written in terms of fields carrying O( n, n) indices, and is explicitly T-duality invariant. The global algebra associated to the generalized Kaluza Klein compactification is discussed.
On the spectrum of gauge/gravity duals with reduced supersymmetry
NASA Astrophysics Data System (ADS)
Solovyov, Alexander
The topic of the present thesis is the study of some examples in gauge/string duality. We carefully study the orbifold gauge theory and orbifold string theory and show that the known integrability in AdS/CFT extends to the general supersymmetric orbifolds of AdS5 x S5. There is an interesting interplay between the two descriptions of the orbifold gauge theory. Another interesting example is the Klebanov-Strassler (KS) background. We find the exhaustive list of the supergravity excitations in the I -odd sector of the KS theory. These comprise the three j = 1/2 massive supermultiplets each consisting of a (possibly pseudo) scalar, two fermions and a vector, and the two j = 1 supermultiplets whose bosonic content is a vector and a pseudovector. Surprisingly, the spectrum of the excitations which fit into the pure gauge sector strongly resembles the results obtained from the numeric studies in lattice gauge theory.
Gauge symmetries of the free bosonic string field theory
NASA Astrophysics Data System (ADS)
Neveu, A.; Schwarz, J.; West, P. C.
1985-12-01
The gauge covariant local formulations of free bosonic string theories that contained a finite number of supplementary fields are extended to include an infinite number of supplementary fields. These new formulations allow the generators of the Virasoro algebra to appear on a more equal footing. Permanent address: King's College, Physics Department, London WC2R 2LS, UK.
Cosmic superstrings: Observable remnants of brane inflation
NASA Astrophysics Data System (ADS)
Wyman, Mark Charles
Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).
Classical probes of string/gauge theory duality
NASA Astrophysics Data System (ADS)
Ishizeki, Riei
The AdS/CFT correspondence has played an important role in the recent development of string theory. The reason is that it proposes a description of certain gauge theories in terms of string theory. It is such that simple string theory computations give information about the strong coupling regime of the gauge theory. Vice versa, gauge theory computations give information about string theory and quantum gravity. Although much is known about AdS/CFT, the precise map between the two sides of the correspondence is not completely understood. In the unraveling of such map classical string solutions play a vital role. In this thesis, several classical string solutions are proposed to help understand the AdS/CFT duality. First, rigidly rotating strings on a two-sphere are studied. Taking special limits of such solutions leads to two cases: the already known giant magnon solution, and a new solution which we call the single spike solution. Next, we compute the scattering phase shift of the single spike solutions and compare the result with the giant magnon solutions. Intriguingly, the results are the same up to non-logarithmic terms, indicating that the single spike solution should have the same rich spin chain structure as the giant magnon solution. Afterward, we consider open string solutions ending on the boundary of AdS5. The lines traced by the ends of such open strings can be viewed as Wilson loops in N = 4 SYM theory. After applying an inversion transformation, the open Wilson loops become closed Wilson loops whose expectation value is consistent with previously conjectured results. Next, several Wilson loops for N = 4 SYM in an AdS5 pp-wave background are considered and translated to the pure AdS 5 background and their interpretation as forward quark-gluon scattering is suggested. In the last part of this thesis, a class of classical solutions for closed strings moving in AdS3 x S 1 ⊂ AdS5 x S5 with energy E and spin S in AdS3 and angular momentum J and winding m in S1 is explained. The relation between different limits of the spiky string solution with the Landau-Lifshitz model is of particular interest. The presented solutions provide new classes of string motion that are used to better understand the AdS/CFT correspondence, including the single spike solution and previously unknown examples of supersymmetric Wilson loops.
Hadronic density of states from string theory.
Pando Zayas, Leopoldo A; Vaman, Diana
2003-09-12
We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Free field theory as a string theory?
NASA Astrophysics Data System (ADS)
Gopakumar, Rajesh
2004-11-01
An approach to systematically implement open-closed string duality for free large N gauge theories is summarised. We show how the relevant closed string moduli space emerges from a reorganisation of the Feynman diagrams contributing to free field correlators. We also indicate why the resulting integrand on moduli space has the right features to be that of a string theory on AdS. To cite this article: R. Gopakumar, C. R. Physique 5 (2004).
Phases of QCD3 from non-SUSY Seiberg duality and brane dynamics
NASA Astrophysics Data System (ADS)
Armoni, Adi; Niarchos, Vasilis
2018-05-01
We consider a nonsupersymmetric USp Yang-Mills Chern-Simons gauge theory coupled to fundamental flavors. The theory is realised in type-IIB string theory via an embedding in a Hanany-Witten brane configuration which includes an orientifold and antibranes. We argue that the theory admits a magnetic Seiberg dual. Using the magnetic dual we identify dynamics in field theory and brane physics that correspond to various phases, obtaining a better understanding of three-dimensional bosonization and dynamical breaking of flavor symmetry in USp QCD3 theory. In field theory both phases correspond to magnetic "squark" condensation. In string theory, they correspond to open string tachyon condensation and brane reconnection. We also discuss other phases where the magnetic `squark' is massive. Finally, we briefly comment on the case of unitary gauge groups.
Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P
2012-10-26
Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.
Millicharged dark matter in quantum gravity and string theory.
Shiu, Gary; Soler, Pablo; Ye, Fang
2013-06-14
We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.
NASA Astrophysics Data System (ADS)
Kristjansen, C.; Staudacher, M.; Tseytlin, A.
2009-06-01
The AdS/CFT correspondence, proposed a little more than a decade ago, has become a major subject of contemporary theoretical physics. One reason is that it suggests the exact identity of a certain ten-dimensional superstring theory, and a specific supersymmetric four-dimensional gauge field theory. This indicates that string theory, often thought of as a generalization of quantum field theory, can also lead to an alternative and computationally advantageous reformulation of gauge theory. This establishes the direct, down-to-earth relevance of string theory beyond loftier ideas of finding a theory of everything. Put differently, strings definitely lead to a theory of something highly relevant: a non-abelian gauge theory in a physical number of dimensions! A second reason for recent excitement around AdS/CFT is that it uncovers surprising novel connections between otherwise increasingly separate subdisciplines of theoretical physics, such as high energy physics and condensed matter theory. This collection of review articles concerns precisely such a link. About six years ago evidence was discovered showing that the AdS/CFT string/gauge system might actually be an exactly integrable model, at least in the so-called planar limit. Its spectrum appears to be described by (a generalization of) a Bethe ansatz, first proposed as an exact solution for certain one-dimensional magnetic spin chains in the early days of quantum mechanics. The field has been developing very rapidly, and a collection of fine review articles is needed. This special issue is striving to provide precisely that. The first article of the present collection, by Nick Dorey, is a pedagogical introduction to the subject. The second article, by Adam Rej, based on the translation of the author's PhD thesis, describes important techniques for analysing and interpreting the integrable structure of AdS/CFT, mostly from the point of view of the gauge theory. The third contribution, by Gleb Arutyunov and Sergey Frolov, explains in great detail the state-of-the-art of quantizing the AdS5 × S5 string theory's sigma model, gathering evidence for the conjectured integrability from the string side of the correspondence. The ensuing article by Nikolay Gromov starts with the full set of conjectured asymptotic Bethe equations of the model, and indicates how they relate to the firmly established classical integrabiliity of the string sigma model. The article by Benjamin Basso and Gregory Korchemsky discusses the issue of non-perturbative corrections in strong-coupling expansion and connections to the O(6) sigma model. The final article, by Fernando Alday, provides a link between the main topic of this special issue—the integrability of the spectrum of AdS/CFT—and other important observables of the model, such as the set of gluon scattering amplitudes, which may also lead to an exactly solvable problem. We feel that the whole subject of AdS/CFT integrability is still in its infancy, and that much remains to be understood, proved, and extended. It is furthermore quite possible that the underlying structures will prove important for progress on cutting-edge problems in condensed matter theory. This collection of articles by experts in the field should serve as an important assessment of the incomplete status quo of the subject. As such, we hope it will inspire further research activity by ambitious theorists!
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-05-15
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.
Towards weakly constrained double field theory
NASA Astrophysics Data System (ADS)
Lee, Kanghoon
2016-08-01
We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Topological resolution of gauge theory singularities
NASA Astrophysics Data System (ADS)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-01
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Five-dimensional gauge theory and compactification on a torus
NASA Astrophysics Data System (ADS)
Haghighat, Babak; Vandoren, Stefan
2011-09-01
We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkähler equipped with a metric with modular transformation properties. We determine the one-loop corrections to the metric and show that they can be interpreted as worldsheet and D1-brane instantons in type IIB string theory. Furthermore, we analyze instanton corrections coming from the solitonic BPS magnetic string wrapped over the torus. In particular, we show how to compute the path-integral for the zero-modes from the partition function of the M5 brane, or, using a 2d/4d correspondence, from the partition function of N=4 SYM theory on a Hirzebruch surface.
NASA Astrophysics Data System (ADS)
Derendinger, J.-P.; Orlando, D.; Uranga, A.
2008-11-01
This special issue is devoted to the proceedings of the conference 'RTN Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, on the 21 25 January 2008. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous ones have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next one will again take place at CERN, in February 2009. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years is the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti-de Sitter spacetimes with gauge theories. The duality relates the weak coupling regime of one system to the strongly coupled regime of the other, and is therefore very non-trivial to test beyond the supersymmetry-protected BPS sector. One of the key ideas to quantitatively match several quantities on both sides is the use of integrability, both in the gauge theory and the string side. The lecture notes by Nick Dorey provide a pedagogical introduction to the fascinating topic of integrability in AdS/CFT. On the string theory side, progress has been limited by the difficulties of quantizing the worldsheet theory in the presence of RR backgrounds. There is increasing hope that these difficulties can be overcome, using the pure spinor formulation of string theory. The lectures by Yaron Oz overview the present status of this proposal. The gauge/gravity correspondence is already leading to important insights into questions of quantum gravity, like the entropy of black holes and its interpretation in terms of microstates. These questions can be addressed in string theory, for certain classes of supersymmetric black holes. The lectures by Vijay Balasubramanian, Jan de Boer, Sheer El-Showk and Ilies Messamah review recent progress in this direction. Throughout the years, formal developments in string theory have systematically led to improved understanding on how it may relate to nature. In this respect, the lectures by Henning Samtleben describe how the formal developments on gauged supergravities can be used to describe compactification vacua in string theory, and their implications for moduli stabilization and supersymmetry breaking. Indeed, softly broken supersymmetry is one of the leading proposals to describe particle physics at the TeV energy range, as described in the lectures by Gian Giudice (not covered in this issue). This connection with TeV scale physics is most appropriate and timely, given that this energy range will shortly become experimentally accessible in the LHC at CERN. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructure that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. Special thanks also go to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo
Light Z' in heterotic string standardlike models
NASA Astrophysics Data System (ADS)
Athanasopoulos, P.; Faraggi, A. E.; Mehta, V. M.
2014-05-01
The discovery of the Higgs boson at the LHC supports the hypothesis that the Standard Model provides an effective parametrization of all subatomic experimental data up to the Planck scale. String theory, which provides a viable perturbative approach to quantum gravity, requires for its consistency the existence of additional gauge symmetries beyond the Standard Model. The construction of heterotic string models with a viable light Z' is, however, highly constrained. We outline the construction of standardlike heterotic string models that allow for an additional Abelian gauge symmetry that may remain unbroken down to low scales. We present a string inspired model, consistent with the string constraints.
Spin chains and string theory.
Kruczenski, Martin
2004-10-15
Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.
NASA Astrophysics Data System (ADS)
Hwang, Jai-Chan; Noh, Hyerim
2005-03-01
We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein’s gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein’s gravity and others.
Topological resolution of gauge theory singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less
Singular gauge transformation and the Erler-Maccaferri solution in bosonic open string field theory
NASA Astrophysics Data System (ADS)
Miwa, Akitsugu; Sugita, Kazuhiro
2017-09-01
We study candidate multiple-brane solutions of bosonic open string field theory. They are constructed by performing a singular gauge transformation n times for the Erler-Maccaferri solution. We check the equation of motion in the strong sense, and find that it is satisfied only when we perform the gauge transformation once. We calculate the energy for that case and obtain a support that the solution is a multiple-brane solution. We also check the tachyon profile for a specific solution that we interpret as describing a D24-brane placed on a D25-brane.
Adventures in heterotic string phenomenology
NASA Astrophysics Data System (ADS)
Dundee, George Benjamin
In this Dissertation, we consider three topics in the study of effective field theories derived from orbifold compactifications of the heterotic string. In Chapter 2 we provide a primer for those interested in building models based on orbifold compactifications of the heterotic string. In Chapter 3, we analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective five dimensional orbifold GUT field theories. Our analysis assumes three fundamental scales, the string scale, M S, a compactification scale, MC, and a mass scale for some of the vector-like exotics, MEX; the other exotics are assumed to get mass at MS. In the particular models analyzed, we show that gauge coupling unification is not possible with MEX = M C and in fact we require MEX << MC ˜ 3 x 1016 GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension six gauge exchange) 1033 yr ≲ tau(p → pi0e+) ≲ 1036 yr, which is potentially observable by the next generation of proton decay experiments. 80% of the parameter space gives proton lifetimes below Super-K bounds. In Chapter 4, we examine the relationship between the string coupling constant, gSTRING, and the grand unified gauge coupling constant, alphaGUT, in the models of Chapter 3. We find that the requirement that the theory be perturbative provides a non-trivial constraint on these models. Interestingly, there is a correlation between the proton decay rate (due to dimension six operators) and the string coupling constant in this class of models. Finally, we make some comments concerning the extension of these models to the six (and higher) dimensional case. In Chapter 5, we discuss the issues of supersymmetry breaking and moduli stabilization within the context of E8 ⊗ E8 heterotic orbifold constructions and, in particular, we focus on the class of "mini-landscape" models. These theories contain a non-Abelian hidden gauge sector which generates a non-perturbative superpotential leading to supersymmetry breaking and moduli stabilization. We demonstrate this effect in a simple model which contains many of the features of the more general construction. In addition, we argue that once supersymmetry is broken in a restricted sector of the theory, then all moduli are stabilized by supergravity effects. Finally, we obtain the low energy superparticle spectrum resulting from this simple model.
Gauge symmetries of the free supersymmetric string field theories
NASA Astrophysics Data System (ADS)
Neveu, A.; West, P. C.
1985-12-01
The gauge covariant local formulations of the free supersymmetric strings that contained a finite number of supplementary fields are extended so as to place all the generators of the Ramond-Neveu-Schwarz algebra on a more equal footing. Permanent address: King's College, Mathematics Department, London WC2R 2LS, UK.
Amplitudes on plane waves from ambitwistor strings
NASA Astrophysics Data System (ADS)
Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan
2017-11-01
In marked contrast to conventional string theory, ambitwistor strings remain solvable worldsheet theories when coupled to curved background fields. We use this fact to consider the quantization of ambitwistor strings on plane wave metric and plane wave gauge field backgrounds. In each case, the worldsheet model is anomaly free as a consequence of the background satisfying the field equations. We derive vertex operators (in both fixed and descended picture numbers) for gravitons and gluons on these backgrounds from the worldsheet CFT, and study the 3-point functions of these vertex operators on the Riemann sphere. These worldsheet correlation functions reproduce the known results for 3-point scattering amplitudes of gravitons and gluons in gravitational and gauge theoretic plane wave backgrounds, respectively.
Fluxes, holography and twistors: String theory paths to four dimensions
NASA Astrophysics Data System (ADS)
Gao, Peng
2007-12-01
There are presently three popular paths to obtain four dimensional physics from string theory: compactification, holography and twistor space. We present results in this thesis on each of them, discussing the geometric structure of flux compactifications, the interplay between holography and S -duality in M-theory and the perturbative amplitudes of the marginally deformed super-Yang-Mills theory obtained from topological string theory on a supertwistor space. First we analyze supersymmetric flux compactifications of ten dimensional string theories to four dimensions. Back reaction of the fluxes on the six dimensional internal geometry is characterized by G-structures. In type IIB compactification on SU(3)-structure manifold with N = 1 supersymmetry, we solve the equations dictating the five components of intrinsic torsion. We find that the six dimensional manifold always retains an integrable almost complex structure compatible with supersymmetry. In terms of the various vacuum fields, the axion/dilaton is found to be generically non-holomorphic, and the four dimensional cosmological constant is nonvanishing only if the SU(3) structure group is reduced to SU(2). The equations are solved by one holomorphic function. Around the poles and zeros of the holomorphic function, the geometry locally looks like the well known type-A and type-B solutions. When this function is a constant, the geometry can be viewed as a holographic RG flow. After classifying the type IIB SU(3)-structure flux vacua, we analyze the effect of non-perturbative corrections on the moduli space of N = 2 flux compactifications. At energy below the Kaluza-Klein scale, the four dimensional effective theory is a gauged supergravity theory with vanishing cosmological constant. The gauging of isometries on the hyper-multiplet moduli space is induced by the fluxes. We show that instanton corrections which could potentially lift the gauged isometries are in fact prohibited both in the type IIA and heterotic string theories by the inclusion of flux. Hence gauged supergravity is a robust framework for studying flux vacua even when these stringy effects are taken into account. The mechanisms which protect the gauged isometries are different in the two theories. Then we switch to the understanding of SL(2, Z ) duality transformations in asymptotically AdS4 x S7 spacetime with an Abelian gauge theory. The bulk duality acts non-trivially on the three-dimensional SCFT of coincident M2-branes on the conformal boundary. We develop a systematic method to holographically obtain the deformations of the boundary CFT manifested by generalized boundary conditions and show how SL(2, Z ) duality relates different deformations of the conformal vacuum. We analyze in detail marginal deformations and deformations by dimension 4 operators. In the case of massive deformations, the RG flow induces a Legendre transform as well as S-duality. Correlation functions in the CFT are computed by differentiating with respect to magnetic bulk sources, whereas correlation functions in the Legendre dual CFT are computed using electric bulk sources. Under massive deformations, the boundary effective action is generically minimized by massive self-dual configurations of the U(1) gauge field. We show that a massive and self-dual boundary condition corresponds to the unique self-dual topologically massive gauge theory in three dimensions. Thus, self-duality in three dimensions can be understood as a consequence of SL(2, Z ) invariance in the bulk of AdS4. We discuss various implications for understanding the strongly interacting worldvolume theory of M2-branes and more general dualities of the maximally supersymmetric AdS4 supergravity theory. Finally we study the twistor string theory whose D-instanton expansion gives the perturbative expansion of marginally deformed N = 4 super-Yang-Mills theories. More precisely this string theory is a topological B-model with both open and closed string sectors with target space CP3|4 , a super-Calabi-Yau manifold. The tree-level amplitudes in the N = 1 beta-deformed field theory are exactly reproduced by introducing non-anticommutative star-products among the D1 and D5 open strings. A related star-product gives the tree-level amplitudes of the non-supersymmetric gamma-deformed conformal field theory. The non-anticommutativity arises essentially from the deformation of the supertwistor space which reduces the amount of superconformal symmetries realized by the supertwistor space. The tree-level gluonic amplitudes in more general marginally deformed field theories are also discussed using twistor string theory.
Gluon scattering amplitudes from gauge/string duality and integrability
NASA Astrophysics Data System (ADS)
Satoh, Yuji
2014-06-01
We discuss the gluon scattering amplitudes of the four-dimensional maximally supersymmetric Yang-Mills theory. By the gauge/string duality, the amplitudes at strong coupling are given by the area of the minimal surfaces in anti-de Sitter space, which can be analyzed by a set of integral equations of the thermodynamic Bethe ansatz (TBA) type. By using the two-dimensional integrable models and conformal field theories underlying the TBA system, we derive analytic expansions of the amplitudes around certain kinematic configurations.
Non-Abelian semilocal strings in N=2 supersymmetric QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300
2006-06-15
We consider a benchmark bulk theory in four dimensions: N=2 supersymmetric QCD with the gauge group U(N) and N{sub f} flavors of fundamental matter hypermultiplets (quarks). The nature of the Bogomol'nyi-Prasad-Sommerfield (BPS) strings in this benchmark theory crucially depends on N{sub f}. If N{sub f}{>=}N and all quark masses are equal, it supports non-Abelian BPS strings which have internal (orientational) moduli. If N{sub f}>N these strings become semilocal, developing additional moduli {rho} related to (unlimited) variations of their transverse size. Using the U(2) gauge group with N{sub f}=3, 4 as an example, we derive an effective low-energy theory on themore » (two-dimensional) string world sheet. Our derivation is field theoretic, direct and explicit: we first analyze the Bogomol'nyi equations for string-geometry solitons, suggest an ansatz, and solve it at large {rho}. Then we use this solution to obtain the world-sheet theory. In the semiclassical limit our result confirms the Hanany-Tong conjecture, which rests on brane-based arguments, that the world-sheet theory is an N=2 supersymmetric U(1) gauge theory with N positively and N{sub e}=N{sub f}-N negatively charged matter multiplets and the Fayet-Iliopoulos term determined by the four-dimensional coupling constant. We conclude that the Higgs branch of this model is not lifted by quantum effects. As a result, such strings cannot confine. Our analysis of infrared effects, not seen in the Hanany-Tong consideration, shows that, in fact, the derivative expansion can make sense only provided that the theory under consideration is regularized in the infrared, e.g. by the quark mass differences. The world-sheet action discussed in this paper becomes a bona fide low-energy effective action only if {delta}m{sub AB}{ne}0.« less
String scattering amplitudes and deformed cubic string field theory
NASA Astrophysics Data System (ADS)
Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi
2018-01-01
We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.
NASA Astrophysics Data System (ADS)
Uranga, A. M.
2009-11-01
This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other physical systems described by quantum field theory, for instance in the context of a condensed matter system. The lectures by S Hartnoll provided an introduction to this recent development with an emphasis on the dual holographic description of superconductivity. Finally, ideas inspired by the AdS/CFT correspondence are yielding deep insights into fundamental questions of quantum gravity, like the entropy of black holes and its interpretation in terms of microstates. The lectures by S Mathur reviewed the black hole entropy and information paradox, and the proposal for its resolution in terms of `fuzzball' microstates. Further sets of lectures, not included in this special section, by F Zwirner and V Mukhanov, covered phenomenological aspects of high energy physics beyond the Standard Model and of cosmology. The coming experimental data in these two fields are expected to foster new developments in connecting string theory to the real world. The conference was financially supported by CERN and partially by the Arnold Sommerfeld Center for Theoretical Physics of the Ludwig Maximilians University of Munich. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. A M Uranga CERN, Switzerland Guest Editor
Galileon string measure and other modified measure extended objects
NASA Astrophysics Data System (ADS)
Vulfs, T. O.; Guendelman, E. I.
2017-12-01
We show that it is possible to formulate string theory as a “Galileon string theory”. The Galileon field χ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of the sigma-model. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time, the theory satisfies all requirements of the Galileon higher derivative theory at the action level while the equations of motion are still of the second-order. A Galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also, we define the Galileon gauge transformations. Generalizations to branes with other modified measures are discussed.
Triality in little string theories
NASA Astrophysics Data System (ADS)
Bastian, Brice; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong
2018-02-01
We study a class of eight-supercharge little string theories (LSTs) on the world volume of N M5-branes with transverse space S1×(C2/ZM). These M-brane configurations compactified on a circle are dual to M D5-branes intersecting N NS5-branes on T2×R7 ,1 as well as to F-theory compactified on a toric Calabi-Yau threefold XN ,M. We argue that the Kähler cone of XN ,M admits three regions associated with weakly coupled quiver gauge theories of gauge groups [U (N )]M,[U (M )]N, and [U (N/M k )]k where k =gcd (N ,M ). These provide low-energy descriptions of different LSTs. The duality between the first two gauge theories is well known and is a consequence of the S-duality between D5- and NS5-branes or the T-duality of the LSTs. The triality involving the third gauge theory is new, and we demonstrate it using several examples. We also discuss implications of this triality for the W-algebras associated with the Alday-Gaiotto-Tachikawa dual theories.
Gauge coupling unification and light exotica in string theory.
Raby, Stuart; Wingerter, Akin
2007-08-03
In this Letter we consider the consequences for the CERN Large Hadron Collider of light vectorlike exotica with fractional electric charge. It is shown that such states are found in orbifold constructions of the heterotic string. Moreover, these exotica are consistent with gauge coupling unification at one loop, even though they do not come in complete multiplets of SU(5).
Super Yang Mills, matrix models and geometric transitions
NASA Astrophysics Data System (ADS)
Ferrari, Frank
2005-03-01
I explain two applications of the relationship between four-dimensional N=1 supersymmetric gauge theories, zero-dimensional gauged matrix models, and geometric transitions in string theory. The first is related to the spectrum of BPS domain walls or BPS branes. It is shown that one can smoothly interpolate between a D-brane state, whose weak coupling tension scales as N˜1/g, and a closed string solitonic state, whose weak coupling tension scales as N˜1/gs2. This is part of a larger theory of N=1 quantum parameter spaces. The second is a new purely geometric approach to sum exactly over planar diagrams in zero dimension. It is an example of open/closed string duality. To cite this article: F. Ferrari, C. R. Physique 6 (2005).
Instantons on a non-commutative T4 from twisted (2,0) and little string theories
NASA Astrophysics Data System (ADS)
Cheung, Yeuk-Kwan E.; Ganor, Ori J.; Krogh, Morten; Mikhailov, Andrei Yu.
We show that the moduli space of the (2,0) and little-string theories compactified on T3 with R-symmetry twists is equal to the moduli space of U(1) instantons on a non-commutative T4. The moduli space of U( q) instantons on a non-commutative T4 is obtained from little-string theories of NS5-branes at Aq-1 singularities with twists. A large class of gauge theories with N=4 SUSY in 2+1D and N=2 SUSY in 3+1D are limiting cases of these theories. Hence, the moduli spaces of these gauge theories can be read off from the moduli spaces of instantons on non-commutative tori. We study the phase transitions in these theories and the action of T-duality. On the purely mathematical side, we give a prediction for the moduli space of two U(1) instantons on a non-commutative T4.
Non-Abelian black string solutions of N = (2,0) , d = 6 supergravity
NASA Astrophysics Data System (ADS)
Cano, Pablo A.; Ortín, Tomás; Santoli, Camilla
2016-12-01
We show that, when compactified on a circle, N = (2, 0), d = 6 supergravity coupled to 1 tensor multiplet and n V vector multiplets is dual to N = (2 , 0) , d = 6 supergravity coupled to just n T = n V + 1 tensor multiplets and no vector multiplets. Both theories reduce to the same models of N = 2 , d = 5 supergravity coupled to n V 5 = n V + 2 vector fields. We derive Buscher rules that relate solutions of these theories (and of the theory that one obtains by dualizing the 3-form field strength) admitting an isometry. Since the relations between the fields of N = 2 , d = 5 supergravity and those of the 6-dimensional theories are the same with or without gaugings, we construct supersymmetric non-Abelian solutions of the 6-dimensional gauged theories by uplifting the recently found 5-dimensional supersymmetric non-Abelian black-hole solutions. The solutions describe the usual superpositions of strings and waves supplemented by a BPST instanton in the transverse directions, similar to the gauge dyonic string of Duff, Lü and Pope. One of the solutions obtained interpolates smoothly between two AdS3× S3 geometries with different radii.
Quantum vacua of 2d maximally supersymmetric Yang-Mills theory
NASA Astrophysics Data System (ADS)
Koloğlu, Murat
2017-11-01
We analyze the classical and quantum vacua of 2d N=(8,8) supersymmetric Yang-Mills theory with SU( N) and U( N) gauge group, describing the worldvolume interactions of N parallel D1-branes with flat transverse directions {R}^8 . We claim that the IR limit of the SU( N) theory in the superselection sector labeled M (mod N) — identified with the internal dynamics of ( M, N)-string bound states of the Type IIB string theory — is described by the symmetric orbifold N=(8,8) sigma model into ({R}^8)^{D-1}/S_D when D = gcd( M, N) > 1, and by a single massive vacuum when D = 1, generalizing the conjectures of E. Witten and others. The full worldvolume theory of the D1-branes is the U( N) theory with an additional U(1) 2-form gauge field B coming from the string theory Kalb-Ramond field. This U( N) + B theory has generalized field configurations, labeled by the Z-valued generalized electric flux and an independent {Z}_N -valued 't Hooft flux. We argue that in the quantum mechanical theory, the ( M, N)-string sector with M units of electric flux has a {Z}_N -valued discrete θ angle specified by M (mod N) dual to the 't Hooft flux. Adding the brane center-of-mass degrees of freedom to the SU( N) theory, we claim that the IR limit of the U( N) + B theory in the sector with M bound F-strings is described by the N=(8,8) sigma model into {Sym}^D({R}^8) . We provide strong evidence for these claims by computing an N=(8,8) analog of the elliptic genus of the UV gauge theories and of their conjectured IR limit sigma models, and showing they agree. Agreement is established by noting that the elliptic genera are modular-invariant Abelian (multi-periodic and meromorphic) functions, which turns out to be very restrictive.
Remarks on entanglement entropy in string theory
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; Parrikar, Onkar
2018-03-01
Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.
Evolution equation in the field theory of strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marui, M.; Sugamoto, A.; Oda, I.
This paper reports on a stringy version of the Altarelli-Parisi equation given within the field theory of bosonic strings formulated in the light-cone gauge. Using this equation, the authors study the behavior of the decay function of strings under the change of reference scale, especially imposing an assumption of large transverse momentum. In some cases the n-th moment of the decay function behaves very differently from QCD.
A superstring field theory for supergravity
NASA Astrophysics Data System (ADS)
Reid-Edwards, R. A.; Riccombeni, D. A.
2017-09-01
A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.
String-theoretic breakdown of effective field theory near black hole horizons
NASA Astrophysics Data System (ADS)
Dodelson, Matthew; Silverstein, Eva
2017-09-01
We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.
Conformal twists, Yang–Baxter σ-models & holographic noncommutativity
NASA Astrophysics Data System (ADS)
Araujo, Thiago; Bakhmatov, Ilya; Colgáin, Eoin Ó.; Sakamoto, Jun-ichi; Sheikh-Jabbari, Mohammad M.; Yoshida, Kentaroh
2018-06-01
Expanding upon earlier results (Araujo et al 2017 Phys. Rev. D 95 105006), we present a compendium of σ-models associated with integrable deformations of AdS5 generated by solutions to homogenous classical Yang–Baxter equation. Each example we study from four viewpoints: conformal (Drinfeld) twists, closed string gravity backgrounds, open string parameters and proposed dual noncommutative (NC) gauge theory. Irrespective of whether the deformed background is a solution to supergravity or generalized supergravity, we show that the open string metric associated with each gravity background is undeformed AdS5 with constant open string coupling and the NC structure Θ is directly related to the conformal twist. One novel feature is that Θ exhibits ‘holographic noncommutativity’: while it may exhibit non-trivial dependence on the holographic direction, its value everywhere in the bulk is uniquely determined by its value at the boundary, thus facilitating introduction of a dual NC gauge theory. We show that the divergence of the NC structure Θ is directly related to the unimodularity of the twist. We discuss the implementation of an outer automorphism of the conformal algebra as a coordinate transformation in the AdS bulk and discuss its implications for Yang–Baxter σ-models and self-T-duality based on fermionic T-duality. Finally, we comment on implications of our results for the integrability of associated open strings and planar integrability of dual NC gauge theories.
General split helicity gluon tree amplitudes in open twistor string theory
NASA Astrophysics Data System (ADS)
Dolan, Louise; Goddard, Peter
2010-05-01
We evaluate all split helicity gluon tree amplitudes in open twistor string theory. We show that these amplitudes satisfy the BCFW recurrence relations restricted to the split helicity case and, hence, that these amplitudes agree with those of gauge theory. To do this we make a particular choice of the sextic constraints in the link variables that determine the poles contributing to the contour integral expression for the amplitudes. Using the residue theorem to re-express this integral in terms of contributions from poles at rational values of the link variables, which we determine, we evaluate the amplitudes explicitly, regaining the gauge theory results of Britto et al. [25].
Nonlattice simulation for supersymmetric gauge theories in one dimension.
Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo
2007-10-19
Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In particular, our method can be used to investigate the gauge-gravity duality from first principles, and to simulate M theory based on the matrix theory conjecture.
Cosmic strings and superconducting cosmic strings
NASA Technical Reports Server (NTRS)
Copeland, Edmund
1988-01-01
The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.
String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.
Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar
2015-08-28
We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4 N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory.
Deconfinement and the Hagedorn transition in string theory.
Chaudhuri, S
2001-03-05
We introduce a new definition of the thermal partition function in string theory. With this new definition, the thermal partition functions of all of the string theories obey thermal duality relations with self-dual Hagedorn temperature beta(2)(H) = 4pi(2)alpha('). A beta-->beta(2)(H)/beta transformation maps the type I theory into a new string theory (type I) with thermal D p-branes, spatial hypersurfaces supporting a p-dimensional finite temperature non-Abelian Higgs-gauge theory for p< or =9. We demonstrate a continuous phase transition in the behavior of the static heavy quark-antiquark potential for small separations r(2)(*)
SO(N) restricted Schur polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, Garreth, E-mail: garreth.kemp@students.wits.ac.za
2015-02-15
We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with AdS{sub 5}×RP{sup 5} geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restrictedmore » Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals.« less
Topological string, supersymmetric gauge theory and bps counting
NASA Astrophysics Data System (ADS)
Pan, Guang
In this thesis we study the Donaldson-Thomas theory on the local curve geometry, which arises in the context of geometric engineering of supersymmetric gauge theory from type IIA string compactification. The topological A-model amplitude gives the F-term interaction of the compactified theory. In particular, it is related to the instanton partition function via Nekrasov conjecture. We will introduce ADHM sheaves on curve, as an alternative description of local Donaldson-Thomas theory. We derive the wallcrossing of ADHM invariants and their refinements. We show that it is equivalent to the semi-primitive wallcrossing from supergravity, and the Kontsevich-Soibelman wallcrossing formula. As an application, we discuss the connection between ADHM moduli space with Hitchin system. In particular we give a recursive formula for the Poincare polynomial of Hitchin system in terms of instanton partition function, from refined wallcrossing. We also introduce higher rank generalization of Donaldson-Thomas invariant in the context of ADHM sheaves. We study their wallcrossing and discuss their physical interpretation via string duality.
Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories
NASA Astrophysics Data System (ADS)
Zemba, Guillermo Raul
A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
NASA Astrophysics Data System (ADS)
Krishnan, Chethan; Raju, Avinash
2017-08-01
We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.
Three dimensional finite temperature SU(3) gauge theory near the phase transition
NASA Astrophysics Data System (ADS)
Bialas, P.; Daniel, L.; Morel, A.; Petersson, B.
2013-06-01
We have measured the correlation function of Polyakov loops on the lattice in three dimensional SU(3) gauge theory near its finite temperature phase transition. Using a new and powerful application of finite size scaling, we furthermore extend the measurements of the critical couplings to considerably larger values of the lattice sizes, both in the temperature and space directions, than was investigated earlier in this theory. With the help of these measurements we perform a detailed finite size scaling analysis, showing that for the critical exponents of the two dimensional three state Potts model the mass and the susceptibility fall on unique scaling curves. This strongly supports the expectation that the gauge theory is in the same universality class. The Nambu-Goto string model on the other hand predicts that the exponent ν has the mean field value, which is quite different from the value in the abovementioned Potts model. Using our values of the critical couplings we also determine the continuum limit of the value of the critical temperature in terms of the square root of the zero temperature string tension. This value is very near to the prediction of the Nambu-Goto string model in spite of the different critical behaviour.
Unraveling strong dynamics with the fifth dimension
NASA Astrophysics Data System (ADS)
Batell, Brian Thomas
Theories with strong gauge dynamics, such as quantum chromodynamics and technicolor, have evaded analytic solutions despite more than thirty years of efforts on the part of elementary particle theorists. Holography refers to methods inspired by the AdS/CFT correspondence in string theory to understand gauge theories in the nonperturbative regime using extra dimensions. The studies presented in this thesis describe new applications of holography to models of electroweak symmetry breaking and quantum chromodynamics. The four-dimensional holographic description of the Randall-Sundrum model, or warped extra dimension, is a theory of electroweak symmetry breaking with strong gauge dynamics, similar to technicolor or composite Higgs theories. A new tool, the holographic basis, is presented that allows one to quantitatively characterize the mixing between the elementary and composite states in the holographic theory. An exploration of localized gauge fields in the Randall-Sundrum framework is detailed, focusing on both theoretical and phenomenological issues. The holographic dual interpretation of localized gauge bosons is also derived. Bottom-up holographic approaches to quantum chromodynamics, referred to as AdS/QCD, describe the observed properties of mesons reasonably well. In models with a soft infrared wall, Regge trajectories for high radial and spin states can also be obtained. A dynamical soft-wall AdS/QCD model is described, and the implications for top-down string constructions are discussed.
NASA Astrophysics Data System (ADS)
Suganuma, H.; Fukushima, M.; Toki, H.
The Table of Contents for the book is as follows: * Preface * Opening Address * Monopole Condensation and Quark Confinement * Dual QCD, Effective String Theory, and Regge Trajectories * Abelian Dominance and Monopole Condensation * Non-Abelian Stokes Theorem and Quark Confinement in QCD * Infrared Region of QCD and Confining Configurations * BRS Quartet Mechanism for Color Confinement * Color Confinement and Quartet Mechanism * Numerical Tests of the Kugo-Ojima Color Confinement Criterion * Monopoles and Confinement in Lattice QCD * SU(2) Lattice Gauge Theory at T > 0 in a Finite Box with Fixed Holonomy * Confining and Dirac Strings in Gluodynamics * Cooling, Monopoles, and Vortices in SU(2) Lattice Gauge Theory * Quark Confinement Physics from Lattice QCD * An (Almost) Perfect Lattice Action for SU(2) and SU(3) Gluodynamics * Vortices and Confinement in Lattice QCD * P-Vortices, Nexuses and Effects of Gribov Copies in the Center Gauges * Laplacian Center Vortices * Center Vortices at Strong Couplings and All Couplings * Simulations in SO(3) × Z(2) Lattice Gauge Theory * Exciting a Vortex - the Cost of Confinement * Instantons in QCD * Deformation of Instanton in External Color Fields * Field Strength Correlators in the Instanton Liquid * Instanton and Meron Physics in Lattice QCD * The Dual Ginzburg-Landau Theory for Confinement and the Role of Instantons * Lattice QCD for Quarks, Gluons and Hadrons * Hadronic Spectral Functions in QCD * Universality and Chaos in Quantum Field Theories * Lattice QCD Study of Three Quark Potential * Probing the QCD Vacuum with Flavour Singlet Objects : η' on the Lattice * Lattice Studies of Quarks and Gluons * Quarks and Hadrons in QCD * Supersymmetric Nonlinear Sigma Models * Chiral Transition and Baryon-number Susceptibility * Light Quark Masses in QCD * Chiral Symmetry of Baryons and Baryon Resonances * Confinement and Bound States in QCD * Parallel Session * Off-diagonal Gluon Mass Generation and Strong Randomness of Off-diagonal Gluon Phase in the Maximally Abelian Gauge * On the Colour Confinement and the Minimal Surface * Glueball Mass and String Tension of SU(2) Gluodynamics from Abelian Monopoles and Strings * Application of the Non-Perturbative Renormalization Group to the Nambu-Jona-Lasinio Model at Finite Temperature and Density * Confining Flux-Tube and Hadrons in QCD * Gauge Symmetry Breakdown due to Dynamical Higgs Scalar * Spatial Structure of Quark Cooper Pairs * New Approach to Axial Coupling Constants in the QCD Sum Rule and Instanton Effects * String Breaking on a Lattice * Bethe-Salpeter Approach for Mesons within the Dual Ginzburg-Landau Theory * Gauge Dependence and Matching Procedure of a Nonrelativistic QCD Boundstate Formalism * A Mathematical Approach to the SU(2)-Quark Confinement * Simulations of Odd Flavors QCD by Hybrid Monte Carlo * Non-Perturbative Renormalization Group Analysis of Dynamical Chiral Symmetry Breaking with Beyond Ladder Contributions * Charmonium Physics in Finite Temperature Lattice QCD * From Meson-Nucleon Scattering to Vector Mesons in Nuclear Matter * Symposium Program * List of Participants
Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.
Tourkine, Piotr; Vanhove, Pierre
2016-11-18
The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.
NASA Astrophysics Data System (ADS)
Marqués, Diego; Nuñez, Carmen A.
2015-10-01
We construct an O( d, d) invariant universal formulation of the first-order α'-corrections of the string effective actions involving the dilaton, metric and two-form fields. Two free parameters interpolate between four-derivative terms that are even and odd with respect to a Z 2-parity transformation that changes the sign of the two-form field. The Z 2-symmetric model reproduces the closed bosonic string, and the heterotic string effective action is obtained through a Z 2-parity-breaking choice of parameters. The theory is an extension of the generalized frame formulation of Double Field Theory, in which the gauge transformations are deformed by a first-order generalized Green-Schwarz transformation. This deformation defines a duality covariant gauge principle that requires and fixes the four-derivative terms. We discuss the O( d, d) structure of the theory and the (non-)covariance of the required field redefinitions.
Two-dimensional lattice gauge theories with superconducting quantum circuits
Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.
2014-01-01
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676
Purely cubic action for string field theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Worldsheet factorization for twistor-strings
NASA Astrophysics Data System (ADS)
Adamo, Tim
2014-04-01
We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for = 4 super-Yang-Mills coupled to = 4 conformal supergravity, and the Skinner twistor-string for = 8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner's twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner's theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.
NASA Astrophysics Data System (ADS)
Diaz, Victor Alfonzo; Giusti, Andrea
2018-03-01
The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.
Higgs compositeness in Sp(2N) gauge theories — The pure gauge model
NASA Astrophysics Data System (ADS)
Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2018-03-01
As a first step in the study of Sp(2N) composite Higgs models, we obtained a set of novel numerical results for the pure gauge Sp(4) lattice theory in 3+1 space-time dimensions. Results for the continuum extrapolations of the string tension and the glueball mass spectrum are presented and their values are compared with the same quantities in neighbouring SU(N) models.
Hidden simplicity of gauge theory amplitudes
NASA Astrophysics Data System (ADS)
Drummond, J. M.
2010-11-01
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Description of the heterotic string solutions in U(N) supersymmetric QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolokhov, P. A.; Theoretical Physics Department, St. Petersburg State University, Ulyanovskaya 1, Peterhof, St. Petersburg, 198504; Shifman, M.
2009-04-15
We continue the study of heterotic non-Abelian Bogomol'nyi-Prasad-Sommerfield-saturated flux tubes (strings). Previously, such solutions were obtained [M. Shifman and A. Yung, Phys. Rev. D 77, 125016 (2008).] in a particular U(2) gauge theory: N=2 supersymmetric QCD deformed by superpotential terms of a special type breaking N=2 supersymmetry down to N=1. Here we generalize the previous results to U(N) gauge theories. As was suggested by Edalati and Tong [M. Edalati and D. Tong, J. High Energy Phys. 05 (2007) 005.], the string world-sheet theory is a heterotic N=(0,2) sigma model, with the CP(N-1) target space for bosonic fields and an extramore » right-handed fermion which couples to the fermion fields of the N=(2,2) CP(N-1) model. We derive the heterotic N=(0,2) world-sheet model directly from the U(N) bulk theory. Parameters of the bulk theory are related to those of the world-sheet theory. Qualitatively this relation turns out to be the same as in the U(2) case.« less
Quarks, Symmetries and Strings - a Symposium in Honor of Bunji Sakita's 60th Birthday
NASA Astrophysics Data System (ADS)
Kaku, M.; Jevicki, A.; Kikkawa, K.
1991-04-01
The Table of Contents for the full book PDF is as follows: * Preface * Evening Banquet Speech * I. Quarks and Phenomenology * From the SU(6) Model to Uniqueness in the Standard Model * A Model for Higgs Mechanism in the Standard Model * Quark Mass Generation in QCD * Neutrino Masses in the Standard Model * Solar Neutrino Puzzle, Horizontal Symmetry of Electroweak Interactions and Fermion Mass Hierarchies * State of Chiral Symmetry Breaking at High Temperatures * Approximate |ΔI| = 1/2 Rule from a Perspective of Light-Cone Frame Physics * Positronium (and Some Other Systems) in a Strong Magnetic Field * Bosonic Technicolor and the Flavor Problem * II. Strings * Supersymmetry in String Theory * Collective Field Theory and Schwinger-Dyson Equations in Matrix Models * Non-Perturbative String Theory * The Structure of Non-Perturbative Quantum Gravity in One and Two Dimensions * Noncritical Virasoro Algebra of d < 1 Matrix Model and Quantized String Field * Chaos in Matrix Models ? * On the Non-Commutative Symmetry of Quantum Gravity in Two Dimensions * Matrix Model Formulation of String Field Theory in One Dimension * Geometry of the N = 2 String Theory * Modular Invariance form Gauge Invariance in the Non-Polynomial String Field Theory * Stringy Symmetry and Off-Shell Ward Identities * q-Virasoro Algebra and q-Strings * Self-Tuning Fields and Resonant Correlations in 2d-Gravity * III. Field Theory Methods * Linear Momentum and Angular Momentum in Quaternionic Quantum Mechanics * Some Comments on Real Clifford Algebras * On the Quantum Group p-adics Connection * Gravitational Instantons Revisited * A Generalized BBGKY Hierarchy from the Classical Path-Integral * A Quantum Generated Symmetry: Group-Level Duality in Conformal and Topological Field Theory * Gauge Symmetries in Extended Objects * Hidden BRST Symmetry and Collective Coordinates * Towards Stochastically Quantizing Topological Actions * IV. Statistical Methods * A Brief Summary of the s-Channel Theory of Superconductivity * Neural Networks and Models for the Brain * Relativistic One-Body Equations for Planar Particles with Arbitrary Spin * Chiral Property of Quarks and Hadron Spectrum in Lattice QCD * Scalar Lattice QCD * Semi-Superconductivity of a Charged Anyon Gas * Two-Fermion Theory of Strongly Correlated Electrons and Charge-Spin Separation * Statistical Mechanics and Error-Correcting Codes * Quantum Statistics
Deconstruction of the Maldacena Núñez compactification
NASA Astrophysics Data System (ADS)
Andrews, R. P.; Dorey, N.
2006-09-01
We demonstrate a classical equivalence between the large- N limit of the higgsed N=1 SUSY U(N) Yang-Mills theory and the Maldacena-Núñez twisted compactification of a six-dimensional gauge theory on a two-sphere. A direct comparison of the actions and spectra of the two theories reveals them to be identical. We also propose a gauge theory limit which should describe the corresponding spherical compactification of little string theory.
NASA Astrophysics Data System (ADS)
Ganor, Ori J.
2018-02-01
"Curvepole (2,0)-theory" is a deformation of the (2,0)-theory with nonlocal interactions. A curvepole is defined as a two-dimensional generalization of a dipole. It is an object of fixed two-dimensional shape of which the boundary is a charged curve that interacts with a 2-form gauge field. Curvepole theory was previously only defined indirectly via M-theory. Here, we propose a supersymmetric Lagrangian, constructed explicitly up to quartic terms, for an "Abelian" curvepole theory, which is an interacting deformation of the free (2,0) tensor multiplet. This theory contains fields of which the quanta are curvepoles (i.e., fixed-shape strings). Supersymmetry is preserved (at least up to quartic terms) if the shape of the curvepoles is (two-dimensional) planar. This nonlocal six-dimensional quantum field theory may also serve as a UV completion for certain (local) five-dimensional gauge theories.
String splitting and strong coupling meson decay.
Cotrone, A L; Martucci, L; Troost, W
2006-04-14
We study the decay of high spin mesons using the gauge-string theory correspondence. The rate of the process is calculated by studying the splitting of a macroscopic string intersecting a D-brane. The result is applied to the decay of mesons in N=4 super Yang-Mills theory with a small number of flavors and in a gravity dual of large N QCD. In QCD the decay of high spin mesons is found to be heavily suppressed in the regime of validity of the supergravity description.
The effective supergravity of little string theory
NASA Astrophysics Data System (ADS)
Antoniadis, Ignatios; Delgado, Antonio; Markou, Chrysoula; Pokorski, Stefan
2018-02-01
In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N=2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N=1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory.
Nonabelian noncommutative gauge theory via noncommutative extra dimensions
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter; Wess, Julius
2001-06-01
The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.
Numerical algebraic geometry: a new perspective on gauge and string theories
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.
2012-07-01
There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.
DIS off glueballs from string theory: the role of the chiral anomaly and the Chern-Simons term
NASA Astrophysics Data System (ADS)
Kovensky, Nicolas; Michalski, Gustavo; Schvellinger, Martin
2018-04-01
We calculate the structure function F 3( x, q 2) of the hadronic tensor of deep inelastic scattering (DIS) of charged leptons from glueballs of N=4 SYM theory at strong coupling and at small values of the Bjorken parameter in the gauge/string theory duality framework. This is done in terms of type IIB superstring theory scattering amplitudes. From the AdS5 perspective, the relevant part of the scattering amplitude comes from the five-dimensional non-Abelian Chern-Simons terms in the SU(4) gauged supergravity obtained from dimensional reduction on S 5. From type IIB superstring theory we derive an effective Lagrangian describing the four-point interaction in the local approximation. The exponentially small regime of the Bjorken parameter is investigated using Pomeron techniques.
Aspects of some dualities in string theory
NASA Astrophysics Data System (ADS)
Kim, Bom Soo
AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma CFT.
From fractals to wormholes via string theory
NASA Astrophysics Data System (ADS)
Felce, Andrew George
The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibits critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view. The thesis reports the results of an initial investigation of the free energy, N-point functions and boundary state for this type of critical theory. Although the primary goal is to study the magnetic field dependence of these quantities, some new results are presented which bear on the zero magnetic field case as well.
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
McAllister, Liam
2018-05-14
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-05-22
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-06-28
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-05-23
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2017-12-09
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
McAllister, Liam
2018-05-24
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
Sen, Ashoke
2018-04-27
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-05-23
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
Strings, boundary fermions and coincident D-branes
NASA Astrophysics Data System (ADS)
Wulff, Linus
2007-01-01
This thesis describes an attempt to write down covariant actions for coincident D-branes using so-called boundary fermions instead of matrices to describe the non-abelian fields. These fermions can be thought of as Chan-Paton degrees of freedom for the open string. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry when formulated on superspace. Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, a Penrose limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.
NASA Astrophysics Data System (ADS)
Derendinger, J.-P.; Scrucca, C. A.; Uranga, A.
2007-11-01
This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 15 to the 19 of January 2007. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous conferences have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next will again take place at CERN, in January 2008. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, the notes of which are published in the present proceedings, and seven working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. String theory is a compelling candidate for a theory of all interactions. A basic challenge in this field is therefore to explore the connection of string theory models and the laws of physics in different realms, like high-energy particle physics, early cosmology, or physics of strongly coupled gauge theories. Concerning the exploration of string theory compactifications leading to realistic models of particle physics, one of the main obstacles in this direction is the proper understanding of supersymmetry breaking. The lecture notes by Nathan Seiberg review the realization of spontaneous breaking of supersymmetry in field theory, including recent developments via the use of meta-stable long-lived vacua. It is possible that such an understanding proves crucial in the realization of supersymmetry breaking in string theory. A second long-standing obstacle, which is being tackled with recent techniques, is moduli stabilization, namely the removal of unwanted massless scalar fields from string models. The present status of this problem, and its prospects of solution via the introduction of general sets of fluxes in the compactification space, were covered in the lectures by Brian Wecht. Application of these ideas to connect string theory to particle physics will require a good understanding of the experimental situation at the forthcoming collider LHC at CERN, and the detection tools for signals of new physics, as reviewed in the lectures by Joe Lykken (not covered in the present issue). Along a different line, the role of moduli fields in string theory is expected to provide a natural explanation of models of inflation, and thus of the origin of the cosmological evolution of our universe. The lecture notes by Cliff Burgess provide a review of big bang cosmology, inflation, and its possible explanation in terms of string theory constructions, including some of the most recent results in the field (these notes also appear in the proceedings of two other schools held in the same period). A surprising recent application of string theory is the description, via the ideas of holography and duality between string theories and gauge theories, of physical properties of quantum chromodynamics at high temperature. Indeed experimental data on the physical properties of the quark gluon plasma, produced in heavy ion collision at the RHIC experiment in Brookhaven (and soon at the LHC at CERN) can be recovered, at a semi-quantitative level, from computations in a string theory dual of the system. These applications are reviewed in the lectures by David Mateos. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. A special acknowledgement also goes to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo
Background Independence and Duality Invariance in String Theory.
Hohm, Olaf
2017-03-31
Closed string theory exhibits an O(D,D) duality symmetry on tori, which in double field theory is manifest before compactification. I prove that to first order in α^{'} there is no manifestly background independent and duality invariant formulation of bosonic string theory in terms of a metric, b field, and dilaton. To this end I use O(D,D) invariant second order perturbation theory around flat space to show that the unique background independent candidate expression for the gauge algebra at order α^{'} is inconsistent with the Jacobi identity. A background independent formulation exists instead for frame variables subject to α^{'}-deformed frame transformations (generalized Green-Schwarz transformations). Potential applications for curved backgrounds, as in cosmology, are discussed.
On the curious spectrum of duality invariant higher-derivative gravity
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Naseer, Usman; Zwiebach, Barton
2016-08-01
We analyze the spectrum of the exactly duality and gauge invariant higher-derivative double field theory. While this theory is based on a chiral CFT and does not correspond to a standard string theory, our analysis illuminates a number of issues central in string theory. The full quadratic action is rewritten as a two-derivative theory with additional fields. This allows for a simple analysis of the spectrum, which contains two massive spin-2 ghosts and massive scalars, in addition to the massless fields. Moreover, in this formulation, the massless or tensionless limit α ' → ∞ is non-singular and leads to an enhanced gauge symmetry. We show that the massive modes can be integrated out exactly at the quadratic level, leading to an infinite series of higher-derivative corrections. Finally, we present a ghost-free massive extension of linearized double field theory, which employs a novel mass term for the dilaton and metric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGreevy, John Austen; /Stanford U., Phys. Dept.
This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry,more » both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe world-volume theories of point-like D-probes of various Calabi-Yau threefolds.« less
Critical string from non-Abelian vortex in four dimensions
Shifman, M.; Yung, A.
2015-09-25
In a class of non-Abelian solitonic vortex strings supported in certain N = 2 super-Yang–Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski–Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U(2) gauge group, the Fayet–Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size) moduli described by the weighted CP(2,2) model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. Lastly, we show that the world-sheet theory onmore » the vortex supported in this bulk model is the bona fide critical string.« less
An Alternative to the Gauge Theoretic Setting
NASA Astrophysics Data System (ADS)
Schroer, Bert
2011-10-01
The standard formulation of quantum gauge theories results from the Lagrangian (functional integral) quantization of classical gauge theories. A more intrinsic quantum theoretical access in the spirit of Wigner's representation theory shows that there is a fundamental clash between the pointlike localization of zero mass (vector, tensor) potentials and the Hilbert space (positivity, unitarity) structure of QT. The quantization approach has no other way than to stay with pointlike localization and sacrifice the Hilbert space whereas the approach built on the intrinsic quantum concept of modular localization keeps the Hilbert space and trades the conflict creating pointlike generation with the tightest consistent localization: semiinfinite spacelike string localization. Whereas these potentials in the presence of interactions stay quite close to associated pointlike field strengths, the interacting matter fields to which they are coupled bear the brunt of the nonlocal aspect in that they are string-generated in a way which cannot be undone by any differentiation. The new stringlike approach to gauge theory also revives the idea of a Schwinger-Higgs screening mechanism as a deeper and less metaphoric description of the Higgs spontaneous symmetry breaking and its accompanying tale about "God's particle" and its mass generation for all the other particles.
String theory of the Regge intercept.
Hellerman, S; Swanson, I
2015-03-20
Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.
A Lie based 4-dimensional higher Chern-Simons theory
NASA Astrophysics Data System (ADS)
Zucchini, Roberto
2016-05-01
We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.
NASA Astrophysics Data System (ADS)
Shifman, M.; Yung, A.
2018-03-01
Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U(N). We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial N dependence.
Cosmic Strings Stabilized by Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Weigel, H.
2017-03-01
Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
Deforming baryons into confining strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartnoll, Sean A.; Portugues, Ruben
2004-09-15
We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in N=1 gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G{sub 2} holonomy M theory background. The relation between these deformed baryons and confining strings is not as straightforward.
NASA Astrophysics Data System (ADS)
Cho, Gi-Chol; Hagiwara, Kaoru
1998-02-01
The string theory predicts the unification of the gauge couplings and gravity. The minimal supersymmetric Standard Model, however, gives the unification scale ~2x1016 GeV which is significantly smaller than the string scale ~5x1017 GeV of the weak coupling heterotic string theory. We study the unification scale of the non-supersymmetric minimal Standard Model quantitatively at the two-loop level. We find that the unification scale should be at most ~4x1016 GeV and the desired Kac-Moody level of the hyper-charge coupling should be 1.33<~kY<~1.35.
Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries
Braun, Volker; Cvetič, Mirjam; Donagi, Ron; ...
2017-07-26
Here, we provide the first explicit example of Type IIB string theory compactication on a globally defined Calabi-Yau threefold with torsion which results in a fourdimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of Z 2 X Z 2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of secondmore » cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the four-dimensional theory.« less
Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, Volker; Cvetič, Mirjam; Donagi, Ron
Here, we provide the first explicit example of Type IIB string theory compactication on a globally defined Calabi-Yau threefold with torsion which results in a fourdimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of Z 2 X Z 2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of secondmore » cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the four-dimensional theory.« less
Towards natural inflation from weakly coupled heterotic string theory
NASA Astrophysics Data System (ADS)
Abe, Hiroyuki; Kobayashi, Tatsuo; Otsuka, Hajime
2015-06-01
We propose natural inflation from the heterotic string theory on the "Swiss-Cheese" Calabi-Yau manifold with multiple U(1) magnetic fluxes. Such multiple U(1) magnetic fluxes stabilize the same number of the linear combination of the universal axion and Kähler axions, and one of the Kähler axions is identified as the inflaton. This axion decay constant can be determined by the size of one-loop corrections to the gauge kinetic function of the hidden gauge groups, which leads effectively to the trans-Planckian axion decay constant consistent with the Planck data. During the inflation, the real parts of the moduli are also stabilized by employing the nature of the "Swiss-Cheese" Calabi-Yau manifold.
Studying critical string emerging from non-Abelian vortex in four dimensions
Koroteev, P.; Shifman, M.; Yung, A.
2016-05-26
Recently a special vortex string was found in a class of soliton vortices supported in four-dimensional Yang–Mills theories that under certain conditions can become infinitely thin and can be interpreted as a critical ten-dimensional string. The appropriate bulk Yang–Mills theory has the U(2) gauge group and the Fayet–Iliopoulos term. It supports semilocal non-Abelian vortices with the world-sheet theory for orientational and size moduli described by the weighted CP(2,2) model. Here, the full target space ismore » $$\\mathbb R$$ 4 x Y 6 where is a non-compact Calabi–Yau space.« less
Notes on strings and higher spins
NASA Astrophysics Data System (ADS)
Sagnotti, A.
2013-05-01
This review is devoted to the intriguing and still largely unexplored links between string theory and higher spins, the types of excitations that lie behind their most cherished properties. A closer look at higher spin fields provides some further clues that string theory describes a broken phase of a higher spin gauge theory. Conversely, string amplitudes contain a wealth of information on higher spin interactions that can clarify long-standing issues related to their infrared behavior. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. Based on the lectures presented at the International School for Subnuclear Physics Searching for the Unexpected at LHC and Status of Our Knowledge (Erice, June 24-July 3 2011) and on the talks presented at Strings, Branes and Supergravity (Istanbul, 31 July -5 Aug 2011), at QTS’07: Quantum Theory and Symmetries (Prague, 7-13 Aug. 2011) and at FFP’12: Fundamental Fields and Particles (Udine, 21-23 Nov. 2011).
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
Sen, Ashoke
2017-12-18
Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-02-09
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-22
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less
New symmetries and ghost structure of covariant string theories
NASA Astrophysics Data System (ADS)
Neveu, A.; Nicolai, H.; West, P.
1986-02-01
It is shown that there exists an infinite set of new symmetries of the previously given covariant string formulations. These symmetries have themselves an infinite set of hidden local symmetries and so on. A new physically equivalent further extended string action is given in which the infinite set of symmetries is most easily displayed. A quantization involving gauge fixing and ghosts of the various covariant string actions is given. permanent address: Kings College, Mathematics Department, London WC2R 2LS, UK.
Roiban, Radu; Volovich, Anastasia
2004-09-24
It has recently been proposed that the D-instanton expansion of the open topological B model on P(3|4) is equivalent to the perturbative expansion of the maximally supersymmetric Yang-Mills theory in four dimensions. In this letter we show how to construct the gauge theory results for all n-point conjugate-maximal-helicity-violating amplitudes by computing the integral over the moduli space of curves of degree n-3 in P(3|4), providing strong support to the string theory construction.
Width and string tension of the flux tube in SU(2) lattice gauge theory at high temperature
NASA Astrophysics Data System (ADS)
Chagdaa, S.; Galsandorj, E.; Laermann, E.; Purev, B.
2018-02-01
We study the profiles of the flux tube between a static quark and an antiquark in quenched SU(2) lattice gauge theory at temperatures around the deconfinement phase transition. The physical width of the flux tube and the string tension have been determined from the transverse profiles and the q\\bar{q} potential, respectively. Exploiting the computational power of a GPU accelerator in our flux tube investigation, we achieve much higher statistics through which we can increase the signal to noise ratio of our observables in the simulation. This has allowed the investigation of larger lattices as well as larger separations between the quarks than in our previous work. The improved accuracy gives us better results for the width and the string tension. The physical width of the flux tube increases with the temperature up to around T c while keeping its increasing dependence on the q\\bar{q} separation. The string tension results are compared for two different sizes of the lattice. As the lattice becomes larger and finer together with the improved precision, the temperature dependent string tension tends to have a smaller value than the previous one.
Progress report for a research program in theoretical high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.; Fried, H.M.; Jevicki, A.
This year's research has dealt with: superstrings in the early universe; the invisible axion emissions from SN1987A; quartic interaction in Witten's superstring field theory; W-boson associated multiplicity and the dual parton model; cosmic strings and galaxy formation; cosmic strings and baryogenesis; quark flavor mixing; p -- /bar p/ scattering at TeV energies; random surfaces; ordered exponentials and differential equations; initial value and back-reaction problems in quantum field theory; string field theory and Weyl invariance; the renormalization group and string field theory; the evolution of scalar fields in an inflationary universe, with and without the effects of gravitational perturbations; cosmic stringmore » catalysis of skyrmion decay; inflation and cosmic strings from dynamical symmetry breaking; the physic of flavor mixing; string-inspired cosmology; strings at high-energy densities and complex temperatures; the problem of non-locality in string theory; string statistical mechanics; large-scale structures with cosmic strings and neutrinos; the delta expansion for stochastic quantization; high-energy neutrino flux from ordinary cosmic strings; a physical picture of loop bremsstrahlung; cylindrically-symmetric solutions of four-dimensional sigma models; large-scale structure with hot dark matter and cosmic strings; the unitarization of the odderon; string thermodynamics and conservation laws; the dependence of inflationary-universe models on initial conditions; the delta expansion and local gauge invariance; particle physics and galaxy formation; chaotic inflation with metric and matter perturbations; grand-unified theories, galaxy formation, and large-scale structure; neutrino clustering in cosmic-string-induced wakes; and infrared approximations to nonlinear differential equations. 17 refs.« less
NASA Astrophysics Data System (ADS)
Gorbatov, Elie
In the first part of the dissertation we study noncommutative field theories at finite temperature. We find evidence for winding states and observe the existence of a transition to a new phase where there is a reduction of the degrees of freedom in the non-planar sector of the theory. We emphasize that such a transition is generic and insensitive to the particulars of the UV definition of the theory. In the second part we investigate some aspects of M-theory compactifications on orbifolds. The heterotic E8 x E 8 string compactified on T4/ ZN has gauge group G x G˜ with massless states in the twisted sector charged under both factors. In the dual M-theory description on T4/ ZN x S1/Z 2 the two groups do not communicate with each other since they reside on the boundary of the eleven dimensional spacetime. This leads to a conundrum for the twisted states of the perturbative heterotic string for there does not seem to be local degrees of freedom which carry charges under both G and G˜. We propose a resolution of this apparent paradox by nonperturbative states in M-theory. In support of our argument we review the consideration of six-dimensional gauge couplings and verify the local anomaly cancellation. In order to understand the dynamical properties of these states we deform the orbifold geometry, find an equivalent string theory background, and brane engineer the low energy six-dimensional field theories. In the process we encounter many exotic and surprising phenomena which are intrinsically M-theoretic and completely invisible to the perturbative observer.
Comments on A, B, C chains of heterotic and Type II vacua
NASA Astrophysics Data System (ADS)
Candelas, Philip; Perevalov, Eugene; Rajesh, Govindan
1997-02-01
We construct, as hypersurfaces in toric varieties, Calabi-Yau manifolds corresponding to F-theory vacua dual to E8 × E8 heterotic strings compactified to six dimensions on K3 surfaces with non-semisimple gauge backgrounds. These vacua were studied in the recent work of Aldazabal, Font, Ibáñez and Uranga as well as by Klemm, Mayr and Vafa. We extend their results by constructing many more examples, corresponding to enhanced gauge symmetries, by noting that they can be obtained from previously known Calabi-Yau manifolds corresponding to K3 compactification of heterotic strings with simple gauge backgrounds by means of extremal transitions of the conifold type.
Aspects of the Antisymmetric Tensor Field
NASA Astrophysics Data System (ADS)
Lahiri, Amitabha
1991-02-01
With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.
On the curious spectrum of duality invariant higher-derivative gravity
Hohm, Olaf; Naseer, Usman; Zwiebach, Barton
2016-08-31
Here, we analyze the spectrum of the exactly duality and gauge invariant higher-derivative double field theory. While this theory is based on a chiral CFT and does not correspond to a standard string theory, our analysis illuminates a number of issues central in string theory. The full quadratic action is rewritten as a two-derivative theory with additional fields. This allows for a simple analysis of the spectrum, which contains two massive spin-2 ghosts and massive scalars, in addition to the massless fields. Moreover, in this formulation, the massless or tensionless limit α' → ∞ is non-singular and leads to anmore » enhanced gauge symmetry. We show that the massive modes can be integrated out exactly at the quadratic level, leading to an infinite series of higher-derivative corrections. Lastly, we present a ghost-free massive extension of linearized double field theory, which employs a novel mass term for the dilaton and metric.« less
The B-field soft theorem and its unification with the graviton and dilaton
NASA Astrophysics Data System (ADS)
Di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin
2017-10-01
In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we fill the gap, and in turn formulate a unified soft theorem valid for gravitons, dilatons and B-fields in any tree-level scattering amplitude involving the three massless states. The new soft theorem is fixed by means of on-shell gauge invariance and enters at the subleading order of the graviton's soft theorem. In contrast to the subsubleading soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible to establish a gauge invariant decomposition of the amplitudes to any order in the soft expansion. We check explicitly the new soft theorem in the bosonic string and in Type II superstring theories, and furthermore demonstrate that, at the next order in the soft expansion, totally gauge invariant terms appear in both string theories which cannot be factorized into a soft theorem.
Reflection states in Ding-Iohara-Miki algebra and brane-web for D-type quiver
NASA Astrophysics Data System (ADS)
Bourgine, J.-E.; Fukuda, M.; Matsuo, Y.; Zhu, R.-D.
2017-12-01
Reflection states are introduced in the vertical and horizontal modules of the Ding-Iohara-Miki (DIM) algebra (quantum toroidal gl_1 ). Webs of DIM representations are in correspondence with ( p, q)-web diagrams of type IIB string theory, under the identification of the algebraic intertwiner of Awata, Feigin and Shiraishi with the refined topological vertex. Extending the correspondence to the vertical reflection states, it is possible to engineer the N=1 quiver gauge theory of D-type (with unitary gauge groups). In this way, the Nekrasov instanton partition function is reproduced from the evaluation of expectation values of intertwiners. This computation leads to the identification of the vertical reflection state with the orientifold plane of string theory. We also provide a translation of this construction in the Iqbal-Kozcaz-Vafa refined topological vertex formalism.
Brane boxes, anomalies, bending, and tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, R.G.; Rozali, M.
1999-01-01
Certain classes of chiral four-dimensional gauge theories may be obtained as the world volume theories of D5-branes are suspended between networks of NS5-branes, the so-called brane box models. In this paper, we derive the stringy consistency conditions placed on these models, and show that they are equivalent to an anomaly cancellation of the gauge theories. We derive these conditions in the orbifold theories which are {ital T} dual to the elliptic brane box models. Specifically, we show that the expression for tadpoles for unphysical twisted Ramond-Ramond 4-form fields in the orbifold theory are proportional to the gauge anomalies of themore » brane box theory. Thus string consistency is equivalent to world volume gauge anomaly cancellation. Furthermore, we find additional cylinder amplitudes which give the {beta} functions of the gauge theory. We show how these correspond to bending of the NS-branes in the brane box theory. {copyright} {ital 1998} {ital The American Physical Society}« less
Strong coupling in F-theory and geometrically non-Higgsable seven-branes
NASA Astrophysics Data System (ADS)
Halverson, James
2017-06-01
Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O (1) in the vicinity of the brane; that it sources nilpotent SL (2 , Z) monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU (3) and SU (2) seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany-Witten moves on (p , q) string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres-Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.
New Results in {mathcal {N}}=2 N = 2 Theories from Non-perturbative String
NASA Astrophysics Data System (ADS)
Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro
2018-03-01
We describe the magnetic phase of SU(N) $\\mathcal{N}=2$ Super Yang-Mills theories in the self-dual Omega background in terms of a new class of multi-cut matrix models. These arise from a non-perturbative completion of topological strings in the dual four dimensional limit which engineers the gauge theory in the strongly coupled magnetic frame. The corresponding spectral determinants provide natural candidates for the tau functions of isomonodromy problems for flat spectral connections associated to the Seiberg-Witten geometry.
Heavy quark free energy in QCD and in gauge theories with gravity duals
NASA Astrophysics Data System (ADS)
Noronha, Jorge
2010-09-01
Recent lattice results in pure glue SU(3) theory at high temperatures have shown that the expectation value of the renormalized Polyakov loop approaches its asymptotic limit at high temperatures from above. We show that this implies that the “heavy quark free energy” obtained from the renormalized loop computed on the lattice does not behave like a true thermodynamic free energy. While this should be expected to occur in asymptotically free gauge theories such as QCD, we use the gauge/string duality to show that in a large class of strongly coupled gauge theories with nontrivial UV fixed points the Polyakov loop reaches its asymptotic value from above only if the dimension of the relevant operator used to deform the conformal field theory is greater than or equal to 3.
NASA Astrophysics Data System (ADS)
Chakraborty, Somdeb; Roy, Shibaji
2012-02-01
A particular decoupling limit of the nonextremal (D1, D3) brane bound state system of type IIB string theory is known to give the gravity dual of space-space noncommutative Yang-Mills theory at finite temperature. We use a string probe in this background to compute the jet quenching parameter in a strongly coupled plasma of hot noncommutative Yang-Mills theory in (3+1) dimensions from gauge/gravity duality. We give expressions for the jet quenching parameter for both small and large noncommutativity. For small noncommutativity, we find that the value of the jet quenching parameter gets reduced from its commutative value. The reduction is enhanced with temperature as T7 for fixed noncommutativity and fixed ’t Hooft coupling. We also give an estimate of the correction due to noncommutativity at the present collider energies like in RHIC or in LHC and find it too small to be detected. We further generalize the results for noncommutative Yang-Mills theories in diverse dimensions.
Geometric low-energy effective action in a doubled spacetime
NASA Astrophysics Data System (ADS)
Ma, Chen-Te; Pezzella, Franco
2018-05-01
The ten-dimensional supergravity theory is a geometric low-energy effective theory and the equations of motion for its fields can be obtained from string theory by computing β functions. With d compact dimensions, an O (d , d ; Z) geometric structure can be added to it giving the supergravity theory with T-duality manifest. In this paper, this is constructed through the use of a suitable star product whose role is the one to implement the weak constraint on the fields and the gauge parameters in order to have a closed gauge symmetry algebra. The consistency of the action here proposed is based on the orthogonality of the momenta associated with fields in their triple star products in the cubic terms defined for d ≥ 1. This orthogonality holds also for an arbitrary number of star products of fields for d = 1. Finally, we extend our analysis to the double sigma model, non-commutative geometry and open string theory.
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.
2014-08-01
SU(Nc) gauge theories containing matter fields may be invariant under transformations of some subgroup of the ZNc center; the maximum such subgroup is Zp, with p depending on Nc and the representations of the various matter fields in the theory. Confining SU(Nc) gauge theories in either 3+1 or 2+1 space-time dimensions and with matter fields in any representation have string tensions for representation R given by σR=σfp/R(p -pR)g(pR(p-pR))(p -1)g(p-1) with pR=nRmod(p), where σf is the string tension for the fundamental representation, g is a positive finite function and nR is the n-ality of R. This implies that a necessary condition for a theory in this class to have an area law is invariance of the theory under a nontrivial subgroup of the center. Significantly, these results depend on p regardless of the value of Nc.
Mass and angular momentum of black holes in low-energy heterotic string theory
NASA Astrophysics Data System (ADS)
Peng, Jun-Jin
2016-04-01
We investigate conserved charges in the low-energy effective field theory describing heterotic string theory. Starting with a general Lagrangian that consists of a metric, a scalar field, a vector gauge field, together with a two-form potential, we derive off-shell Noether potentials of the Lagrangian and generalize the Abbott-Deser-Tekin (ADT) formalism to the off-shell level by establishing one-to-one correspondence between the ADT potential and the off-shell Noether potential. It is proved that the off-shell generalized ADT formalism is conformally invariant. Then, we apply the formulation to compute mass and angular momentum of the four-dimensional Kerr-Sen black hole and the five-dimensional rotating charged black string in the string frame without a necessity to transform the metrics into the Einstein frame.
NASA Astrophysics Data System (ADS)
Sciarappa, Antonio
2016-10-01
Bethe/Gauge correspondence as it is usually stated is ill-defined in five dimensions and needs a "non-perturbative" completion; a related problem also appears in three dimensions. It has been suggested that this problem, probably due to incompleteness of Omega background regularization in odd dimension, may be solved if we consider gauge theory on compact S 5 and S 3 geometries. We will develop this idea further by giving a full Bethe/Gauge correspondence dictionary on S 5 and S 3 focussing mainly on the eigenfunctions of (open and closed) relativistic 2-particle Toda chain and its quantized spectral curve: these are most properly written in terms of non-perturbatively completed NS open topological strings. A key ingredient is Faddeev's modular double structure which is naturally implemented by the S 5 and S 3 geometries.
Spinning particles, axion radiation, and the classical double copy
NASA Astrophysics Data System (ADS)
Goldberger, Walter D.; Li, Jingping; Prabhu, Siddharth G.
2018-05-01
We extend the perturbative double copy between radiating classical sources in gauge theory and gravity to the case of spinning particles. We construct, to linear order in spins, perturbative radiating solutions to the classical Yang-Mills equations sourced by a set of interacting color charges with chromomagnetic dipole spin couplings. Using a color-to-kinematics replacement rule proposed earlier by one of the authors, these solutions map onto radiation in a theory of interacting particles coupled to massless fields that include the graviton, a scalar (dilaton) ϕ and the Kalb-Ramond axion field Bμ ν. Consistency of the double copy imposes constraints on the parameters of the theory on both the gauge and gravity sides of the correspondence. In particular, the color charges carry a chromomagnetic interaction which, in d =4 , corresponds to a gyromagnetic ratio equal to Dirac's value g =2 . The color-to-kinematics map implies that on the gravity side, the bulk theory of the fields (ϕ ,gμ ν,Bμ ν) has interactions which match those of d -dimensional "string gravity," as is the case both in the BCJ double copy of pure gauge theory scattering amplitudes and the KLT relations between the tree-level S -matrix elements of open and closed string theory.
Spiky strings and single trace operators in gauge theories
NASA Astrophysics Data System (ADS)
Kruczenski, Martin
2005-08-01
We consider single trace operators of the form Script Ol1...ln = Tr D+l1F...D+lnF which are common to all gauge theories. We argue that, when all li are equal and large, they have a dual description as strings with cusps, or spikes, one for each field F. In the case of Script N = 4 SYM, we compute the energy as a function of angular momentum by finding the corresponding solutions in AdS5 and compare with a 1-loop calculation of the anomalous dimension. As in the case of two spikes (twist two operators), there is agreement in the functional form but not in the coupling constant dependence. After that, we analyze the system in more detail and find an effective classical mechanics describing the motion of the spikes. In the appropriate limit, it is the same (up to the coupling constant dependence) as the coherent state description of linear combinations of the operators Script Ol1...ln such that all li are equal on average. This agreement provides a map between the operators in the boundary and the position of the spikes in the bulk. We further suggest that moving the spikes in other directions should describe operators with derivatives other than D+ indicating that these ideas are quite generic and should help in unraveling the string description of the large-N limit of gauge theories.
Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories
NASA Astrophysics Data System (ADS)
Yonekura, Kazuya
2015-07-01
We consider general 5d SU( N ) quiver gauge theories whose nodes form an ADE Dynkin diagram of type G. Each node has SU( N i ) gauge group of general rank, Chern-Simons level κ i and additional w i fundamentals. When the total flavor number at each node is less than or equal to 2 N i - 2| κ i |, we give general rules under which the symmetries associated to instanton currents are enhanced to G × G or a subgroup of it in the UV 5d superconformal theory. When the total flavor number violates that condition at some of the nodes, further enhancement of flavor symmetries occurs. In particular we find a large class of gauge theories interpreted as S 1 compactification of 6d superconformal theories which are waiting for string/F-theory realization. We also consider hypermultiplets in (anti-)symmetric representation.
Thermodynamic limit of random partitions and dispersionless Toda hierarchy
NASA Astrophysics Data System (ADS)
Takasaki, Kanehisa; Nakatsu, Toshio
2012-01-01
We study the thermodynamic limit of random partition models for the instanton sum of 4D and 5D supersymmetric U(1) gauge theories deformed by some physical observables. The physical observables correspond to external potentials in the statistical model. The partition function is reformulated in terms of the density function of Maya diagrams. The thermodynamic limit is governed by a limit shape of Young diagrams associated with dominant terms in the partition function. The limit shape is characterized by a variational problem, which is further converted to a scalar-valued Riemann-Hilbert problem. This Riemann-Hilbert problem is solved with the aid of a complex curve, which may be thought of as the Seiberg-Witten curve of the deformed U(1) gauge theory. This solution of the Riemann-Hilbert problem is identified with a special solution of the dispersionless Toda hierarchy that satisfies a pair of generalized string equations. The generalized string equations for the 5D gauge theory are shown to be related to hidden symmetries of the statistical model. The prepotential and the Seiberg-Witten differential are also considered.
Strings with a confining core in a quark-gluon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layek, Biswanath; Mishra, Ananta P.; Srivastava, Ajit M.
2005-04-01
We consider the intersection of N different interfaces interpolating between different Z{sub N} vacua of an SU(N) gauge theory using the Polyakov loop order parameter. Topological arguments show that at such a stringlike junction, the order parameter should vanish, implying that the core of this string (i.e. the junction region of all the interfaces) is in the confining phase. Using the effective potential for the Polyakov loop proposed by Pisarski for QCD, we use numerical minimization technique and estimate the energy per unit length of the core of this string to be about 2.7 GeV/fm at a temperature about twicemore » the critical temperature. For the parameters used, the interface tension is obtained to be about 7 GeV/fm{sup 2}. Lattice simulation of pure gauge theories should be able to investigate properties of these strings. For QCD with quarks, it has been discussed in the literature that this Z{sub N} symmetry may still be meaningful, with quark contributions leading to explicit breaking of this Z{sub N} symmetry. With this interpretation, such quark-gluon plasma strings may play important role in the evolution of the quark-gluon plasma phase and in the dynamics of quark-hadron transition.« less
Topological vertex formalism with O5-plane
NASA Astrophysics Data System (ADS)
Kim, Sung-Soo; Yagi, Futoshi
2018-01-01
We propose a new topological vertex formalism for a type IIB (p ,q ) 5-brane web with an O5-plane. We apply our proposal to five-dimensional N =1 Sp(1) gauge theory with Nf=0 , 1, 8 flavors to compute the topological string partition functions and check the agreement with the known results. Especially for the Nf=8 case, which corresponds to E-string theory on a circle, we obtain a new, yet simple, expression of the partition function with a two Young diagram sum.
Holographic corrections to meson scattering amplitudes
NASA Astrophysics Data System (ADS)
Armoni, Adi; Ireson, Edwin
2017-06-01
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Quantum phases of a vortex string.
Auzzi, Roberto; Prem Kumar, S
2009-12-04
We argue that the world sheet dynamics of magnetic k strings in the Higgs phase of the mass-deformed N = 4 theory is controlled by a bosonic O(3) sigma model with anisotropy and a topological theta term. The theory interpolates between a massless O(2) symmetric regime, a massive O(3) symmetric phase, and another massive phase with a spontaneously broken Z(2) symmetry. The first two phases are separated by a Kosterlitz-Thouless transition. When theta = pi, the O(3) symmetric phase flows to an interacting fixed point; sigma model kinks and their dyonic partners become degenerate, mirroring the behavior of monopoles in the parent gauge theory. This leads to the identification of the kinks with monopoles confined on the string.
Gluons and gravitons at one loop from ambitwistor strings
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Monteiro, Ricardo
2018-03-01
We present new and explicit formulae for the one-loop integrands of scattering amplitudes in non-supersymmetric gauge theory and gravity, valid for any number of particles. The results exhibit the colour-kinematics duality in gauge theory and the double-copy relation to gravity, in a form that was recently observed in supersymmetric theories. The new formulae are expressed in a particular representation of the loop integrand, with only one quadratic propagator, which arises naturally from the framework of the loop-level scattering equations. The starting point in our work are the expressions based on the scattering equations that were recently derived from ambitwistor string theory. We turn these expressions into explicit formulae depending only on the loop momentum, the external momenta and the external polarisations. These formulae are valid in any number of spacetime dimensions for pure Yang-Mills theory (gluon) and its natural double copy, NS-NS gravity (graviton, dilaton, B-field), and we also present formulae in four spacetime dimensions for pure gravity (graviton). We perform several tests of our results, such as checking gauge invariance and directly matching our four-particle formulae to previously known expressions. While these tests would be elaborate in a Feynman-type representation of the loop integrand, they become straightforward in the representation we use.
Ambitwistor Strings in Four Dimensions
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel
2014-08-01
We develop ambitwistor string theories for four dimensions to obtain new formulas for tree-level gauge and gravity amplitudes with arbitrary amounts of supersymmetry. Ambitwistor space is the space of complex null geodesics in complexified Minkowski space, and in contrast to earlier ambitwistor strings, we use twistors rather than vectors to represent this space. Although superficially similar to the original twistor string theories of Witten, Berkovits, and Skinner, these theories differ in the assignment of world sheet spins of the fields, rely on both twistor and dual twistor representatives for the vertex operators, and use the ambitwistor procedure for calculating correlation functions. Our models are much more flexible, no longer requiring maximal supersymmetry, and the resulting formulas for amplitudes are simpler, having substantially reduced moduli. These are supported on the solutions to the scattering equations refined according to helicity and can be checked by comparison with corresponding formulas of Witten and of Cachazo and Skinner.
Towards an M5-brane model I: A 6d superconformal field theory
NASA Astrophysics Data System (ADS)
Sämann, Christian; Schmidt, Lennart
2018-04-01
We present an action for a six-dimensional superconformal field theory containing a non-abelian tensor multiplet. All of the ingredients of this action have been available in the literature. We bring these pieces together by choosing the string Lie 2-algebra as a gauge structure, which we motivated in previous work. The kinematical data contains a connection on a categorified principal bundle, which is the appropriate mathematical description of the parallel transport of self-dual strings. Our action can be written down for each of the simply laced Dynkin diagrams, and each case reduces to a four-dimensional supersymmetric Yang-Mills theory with corresponding gauge Lie algebra. Our action also reduces nicely to an M2-brane model which is a deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) model. While this action is certainly not the desired M5-brane model, we regard it as a key stepping stone towards a potential construction of the (2, 0)-theory.
Perturbative Quantum Gravity and its Relation to Gauge Theory.
Bern, Zvi
2002-01-01
In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on D -dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input the gravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
On the BV formalism of open superstring field theory in the large Hilbert space
NASA Astrophysics Data System (ADS)
Matsunaga, Hiroaki; Nomura, Mitsuru
2018-05-01
We construct several BV master actions for open superstring field theory in the large Hilbert space. First, we show that a naive use of the conventional BV approach breaks down at the third order of the antifield number expansion, although it enables us to define a simple "string antibracket" taking the Darboux form as spacetime antibrackets. This fact implies that in the large Hilbert space, "string fields-antifields" should be reassembled to obtain master actions in a simple manner. We determine the assembly of the string anti-fields on the basis of Berkovits' constrained BV approach, and give solutions to the master equation defined by Dirac antibrackets on the constrained string field-antifield space. It is expected that partial gauge-fixing enables us to relate superstring field theories based on the large and small Hilbert spaces directly: reassembling string fields-antifields is rather natural from this point of view. Finally, inspired by these results, we revisit the conventional BV approach and construct a BV master action based on the minimal set of string fields-antifields.
AdS/CFT beyond the N = 4 SYM paradigm
NASA Astrophysics Data System (ADS)
Pomoni, Elli
In this thesis we present studies in the AdS/CFT correspondence that intend to push the present knowledge beyond the N = 4 super Yang-Mills (SYM) paradigm. The first part is concerned with the study of non-supersymmetric deformations of N = 4 SYM (which still are in the N = 4 universality class). For non-supersymmetric CFT's at Large N we explore the correspondence between string theory tachyons in the bulk and instabilities on the boundary effective action. The operators dual to AdS tachyons have anomalous dimensions that are purely complex numbers. We give a prescription for calculating the mass of the tachyon from the field theory side. Moreover, we apply this general dictionary to the case of intersecting D7 flavor branes in AdS 5 x S5 and obtain the mass of the open string tachyon that is dual to the instability in the mesonic sector of the theory. In the second part we present work aiming at finding string theory duals for gauge theories beyond the N = 4 universality class, i.e. theories that have genuinely less supersymmetry and unquenched flavor. Arguably the next simplest example after N = 4 SYM is N = 2 SU(Nc) SYM coupled to Nf = 2Nc fundamental hypermultiplets. The theory admits a Veneziano expansion of large Nc and large Nf, with Nf/Nc and lambda = g2Nc kept fixed. The topological structure of large N diagrams invites a general conjecture: the flavor-singlet sector of a gauge theory in the Veneziano limit is dual to a closed string theory. We present the one-loop Hamiltonian for the scalar sector of N = 2 superconformal QCD and study this integrability of the theory. Furthermore, we explore the chiral spectrum of the protected operators of the theory using the one-loop anomalous dimensions and, additionally, by studying the index of the theory. We finally search for possible AdS dual trying to match the chiral spectrum. We conclude that the string dual is a sub-critical background containing both an AdS 5 and an S1 factor.
Interpolating the Coulomb phase of little string theory
Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; ...
2015-12-03
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less
Analytical Tools for Investigating and Modeling Agent-Based Systems
2005-06-01
of Black Holes Cluster 10 : Juan M. Maldacena (1924), Journal of High Energy Physics Field theory models for tachyon and gauge field string dy...namics; Super-Poincare Invariant Superstring Field The- ory; Level Four Approximation to the Tachyon Potential in Superstring Field Theory; SO(32) Spinors
Particle creation and reheating in a braneworld inflationary scenario
NASA Astrophysics Data System (ADS)
Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.
2017-10-01
We study the cosmological particle creation in the tachyon inflation based on the D-brane dynamics in the Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter modifies the warp factor which results in two effects: a modification of the RSII cosmology and a modification of the tachyon potential. Besides, a string theory D-brane supports among other fields a U(1) gauge field reflecting open strings attached to the brane. We demonstrate how the interaction of the tachyon with the U(1) gauge field drives cosmological creation of massless particles and estimate the resulting reheating at the end of inflation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.« less
Higher winding strings and confined monopoles in N=2 supersymmetric QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auzzi, R.; Bolognesi, S.; Shifman, M.
2010-04-15
We consider composite string solutions in N=2 SQCD with the gauge group U(N), the Fayet-Iliopoulos term {xi}{ne}0 and N (s)quark flavors. These bulk theories support non-Abelian strings and confined monopoles identified with kinks in the two-dimensional world-sheet theory. Similar and more complicated kinks (corresponding to composite confined monopoles) must exist in the world-sheet theories on composite strings. In a bid to detect them we analyze the Hanany-Tong (HT) model, focusing on a particular example of N=2. Unequal quark mass terms in the bulk theory result in the twisted masses in the N=(2,2) HT model. For spatially coinciding 2-strings, we findmore » three distinct minima of potential energy, corresponding to three different 2-strings. Then we find BPS-saturated kinks interpolating between each pair of vacua. Two kinks can be called elementary. They emanate one unit of the magnetic flux and have the same mass as the conventional 't Hooft-Polyakov monopole on the Coulomb branch of the bulk theory ({xi}=0). The third kink represents a composite bimonopole, with twice the minimal magnetic flux. Its mass is twice the mass of the elementary confined monopole. We find instantons in the HT model, and discuss quantum effects in composite strings at strong coupling. In addition, we study the renormalization group flow in this model.« less
Tensionless Strings and Supersymmetric Sigma Models: Aspects of the Target Space Geometry
NASA Astrophysics Data System (ADS)
Bredthauer, Andreas
2007-01-01
In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models. The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence. For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kaehler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svendsen, Harald G.
In this paper we study a solution of heterotic string theory corresponding to a rotating Kerr-Taub-NUT spacetime. It has an exact CFT description as a heterotic coset model, and a Lagrangian formulation as a gauged WZNW model. It is a generalization of a recently discussed stringy Taub-NUT solution, and is interesting as another laboratory for studying the fate of closed timelike curves and cosmological singularities in string theory. We extend the computation of the exact metric and dilaton to this rotating case, and then discuss some properties of the metric, with particular emphasis on the curvature singularities.
Cosmological density fluctuations produced by vacuum strings
NASA Astrophysics Data System (ADS)
Vilenkin, A.
1981-04-01
Consideration is given to the possible role of vacuum domain strings produced in the grand unification phase transition in the early universe in the generation of the density fluctuations giving rise to galaxies. The cosmological evolution of the strings formed in the grand unification phase transition is analyzed, with attention given to possible mechanisms for the damping out of oscillations produced by tension in convoluted strings and closed loops. The cosmological density fluctuations introduced by infinite strings and closed loops smaller than the horizon are then shown to be capable of giving rise to mass condensations on a scale of approximately 10 to the 9th solar masses at the time of the decoupling of radiation from matter, around which the galaxies condense. Differences between the present theory and that suggested by Zel'dovich (1980) are pointed out, and it is noted that string formation at the grand unification phase transition is possible only if the manifold of the degenerate vacua of the gauge theory is not simply connected.
Group theoretic approach to the perturbative string S-matrix
NASA Astrophysics Data System (ADS)
Neveu, A.; West, P.
1987-07-01
A new approach to the computation of string scattering is given. From duality, unitarity and a generic overlap property, we determine entirely the N-string amplitude, including the integration measure, and its gauge properties. The techniques do not use any oscillator algebra, but the computation is reduced to a straightforward exercise in conformal group theory. This can be applied to fermionic trees and multiloop diagrams, but in this paper it is demonstrated on the open bosonic tree. Permanent address: Mathematics Department, King's College, Strand, London WC2R 2LS, UK.
Accidental Kähler moduli inflation
NASA Astrophysics Data System (ADS)
Maharana, Anshuman; Rummel, Markus; Sumitomo, Yoske
2015-09-01
We study a model of accidental inflation in type IIB string theory where inflation occurs near the inflection point of a small Kähler modulus. A racetrack structure helps to alleviate the known concern that string-loop corrections may spoil Kähler Moduli Inflation unless having a significant suppression via the string coupling or a special brane setup. Also, the hierarchy of gauge group ranks required for the separation between moduli stabilization and inflationary dynamics is relaxed. The relaxation becomes more significant when we use the recently proposed D-term generated racetrack model.
Exciting gauge field and gravitons in brane-antibrane annihilation.
Mazumdar, Anupam; Stoica, Horace
2009-03-06
In this Letter we point out the inevitability of an explosive production of gauge field and gravity wave during an open string tachyon condensation in a cosmological setting, in an effective field theory model. We will be particularly studying a toy model of brane-antibrane inflation in a warped throat where inflation ends via tachyon condensation. We point out that a tachyonic instability helps fragmenting the homogeneous tachyon and excites gauge field and contributes to the stress-energy tensor which also feeds into the gravity waves.
Numerical solution of open string field theory in Schnabl gauge
NASA Astrophysics Data System (ADS)
Arroyo, E. Aldo; Fernandes-Silva, A.; Szitas, R.
2018-01-01
Using traditional Virasoro L 0 level-truncation computations, we evaluate the open bosonic string field theory action up to level (10 , 30). Extremizing this level-truncated potential, we construct a numerical solution for tachyon condensation in Schnabl gauge. We find that the energy associated to the numerical solution overshoots the expected value -1 at level L = 6. Extrapolating the level-truncation data for L ≤ 10 to estimate the vacuum energies for L > 10, we predict that the energy reaches a minimum value at L ˜ 12, and then turns back to approach -1 asymptotically as L → ∞. Furthermore, we analyze the tachyon vacuum expectation value (vev), for which by extrapolating its corresponding level-truncation data, we predict that the tachyon vev reaches a minimum value at L ˜ 26, and then turns back to approach the expected analytical result as L → ∞.
On pp wave limit for η deformed superstrings
NASA Astrophysics Data System (ADS)
Roychowdhury, Dibakar
2018-05-01
In this paper, based on the notion of plane wave string/gauge theory duality, we explore the pp wave limit associated with the bosonic sector of η deformed superstrings propagating in ( AdS 5 × S 5) η . Our analysis reveals that in the presence of NS-NS and RR fluxes, the pp wave limit associated to full ABF background satisfies type IIB equations in its standard form. However, the beta functions as well as the string Hamiltonian start receiving non trivial curvature corrections as one starts probing beyond pp wave limit which thereby takes solutions away from the standard type IIB form. Furthermore, using uniform gauge, we also explore the BMN dynamics associated with short strings and compute the corresponding Hamiltonian density. Finally, we explore the Penrose limit associated with the HT background and compute the corresponding stringy spectrum for the bosonic sector.
String tensions in deformed Yang-Mills theory
NASA Astrophysics Data System (ADS)
Poppitz, Erich; Shalchian T., M. Erfan
2018-01-01
We study k-strings in deformed Yang-Mills (dYM) with SU(N) gauge group in the semiclassically calculable regime on R^3× S^1 . Their tensions Tk are computed in two ways: numerically, for 2 ≤ N ≤ 10, and via an analytic approach using a re-summed perturbative expansion. The latter serves both as a consistency check on the numerical results and as a tool to analytically study the large-N limit. We find that dYM k-string ratios Tk/T1 do not obey the well-known sine- or Casimir-scaling laws. Instead, we show that the ratios Tk/T1 are bound above by a square root of Casimir scaling, previously found to hold for stringlike solutions of the MIT Bag Model. The reason behind this similarity is that dYM dynamically realizes, in a theoretically controlled setting, the main model assumptions of the Bag Model. We also compare confining strings in dYM and in other four-dimensional theories with abelian confinement, notably Seiberg-Witten theory, and show that the unbroken Z_N center symmetry in dYM leads to different properties of k-strings in the two theories; for example, a "baryon vertex" exists in dYM but not in softly-broken Seiberg-Witten theory. Our results also indicate that, at large values of N, k-strings in dYM do not become free.
Algorithmic universality in F-theory compactifications
NASA Astrophysics Data System (ADS)
Halverson, James; Long, Cody; Sung, Benjamin
2017-12-01
We study universality of geometric gauge sectors in the string landscape in the context of F-theory compactifications. A finite time construction algorithm is presented for 4/3 ×2.96 ×10755 F-theory geometries that are connected by a network of topological transitions in a connected moduli space. High probability geometric assumptions uncover universal structures in the ensemble without explicitly constructing it. For example, non-Higgsable clusters of seven-branes with intricate gauge sectors occur with a probability above 1 - 1.01 ×10-755 , and the geometric gauge group rank is above 160 with probability 0.999995. In the latter case there are at least 10 E8 factors, the structure of which fixes the gauge groups on certain nearby seven-branes. Visible sectors may arise from E6 or S U (3 ) seven-branes, which occur in certain random samples with probability ≃1 /200 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less
Sv-map between type I and heterotic sigma models
NASA Astrophysics Data System (ADS)
Fan, Wei; Fotopoulos, A.; Stieberger, S.; Taylor, T. R.
2018-05-01
The scattering amplitudes of gauge bosons in heterotic and open superstring theories are related by the single-valued projection which yields heterotic amplitudes by selecting a subset of multiple zeta value coefficients in the α‧ (string tension parameter) expansion of open string amplitudes. In the present work, we argue that this relation holds also at the level of low-energy expansions (or individual Feynman diagrams) of the respective effective actions, by investigating the beta functions of two-dimensional sigma models describing world-sheets of open and heterotic strings. We analyze the sigma model Feynman diagrams generating identical effective action terms in both theories and show that the heterotic coefficients are given by the single-valued projection of the open ones. The single-valued projection appears as a result of summing over all radial orderings of heterotic vertices on the complex plane representing string world-sheet.
Integration over families of Lagrangian submanifolds in BV formalism
NASA Astrophysics Data System (ADS)
Mikhailov, Andrei
2018-03-01
Gauge fixing is interpreted in BV formalism as a choice of Lagrangian submanifold in an odd symplectic manifold (the BV phase space). A natural construction defines an integration procedure on families of Lagrangian submanifolds. In string perturbation theory, the moduli space integrals of higher genus amplitudes can be interpreted in this way. We discuss the role of gauge symmetries in this construction. We derive the conditions which should be imposed on gauge symmetries for the consistency of our integration procedure. We explain how these conditions behave under the deformations of the worldsheet theory. In particular, we show that integrated vertex operator is actually an inhomogeneous differential form on the space of Lagrangian submanifolds.
Chern-Simons theory and Wilson loops in the Brillouin zone
NASA Astrophysics Data System (ADS)
Lian, Biao; Vafa, Cumrun; Vafa, Farzan; Zhang, Shou-Cheng
2017-03-01
Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3D) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the six-dimensional phase space, where the physical space defects play the role of topological D-branes.
Dynamical Chern-Simons Theory in the Brillouin Zone
NASA Astrophysics Data System (ADS)
Lian, Biao; Vafa, Cumrun; Vafa, Farzan; Zhang, Shou-Cheng
Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3d) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a dynamical fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the 6 dimensional phase space, where the physical space defects play the role of topological D-branes.
Higher derivative couplings in theories with sixteen supersymmetries
Lin, Ying -Hsuan; Shao, Shu -Heng; Yin, Xi; ...
2015-12-15
We give simple arguments for new non-renormalization theorems on higher derivative couplings of gauge theories to supergravity, with sixteen supersymmetries, by considerations of brane-bulk superamplitudes. This leads to some exact results on the effective coupling of D3-branes in type IIB string theory. As a result, we also derive exact results on higher dimensional operators in the torus compactification of the six dimensional (0, 2) superconformal theory.
Stringy Gravity: Solving the Dark Problems at `short' distance
NASA Astrophysics Data System (ADS)
Park, Jeong-Hyuck
2018-01-01
Dictated by Symmetry Principle, string theory predicts not General Relativity but its own gravity which assumes the entire closed string massless sector to be geometric and thus gravitational. In terms of R/(MG), i.e. the dimensionless radial variable normalized by mass, Stringy Gravity agrees with General Relativity toward infinity, but modifies it at short distance. At far short distance, gravitational force can be even repulsive. These may solve the dark matter and energy problems, as they arise essentially from small R/(MG) observations: long distance divided by much heavier mass. We address the pertinent differential geometry for Stringy Gravity, stringy Equivalence Principle, stringy geodesics and the minimal coupling to the Standard Model. We highlight the notion of `doubled-yet-gauged' coordinate system, in which a gauge orbit corresponds to a single physical point and proper distance is defined between two gauge orbits by a path integral.
Physics from geometry: Non-Kahler compactifications, black rings anddS/CFT
NASA Astrophysics Data System (ADS)
Cyrier, Michelle
The spectrum that arises in four dimensions from compactification of ten dimensional string theory onto six dimensional manifolds is determined entirely by the geometry of the compactification manifold. The massless spectrum for compactifications on Calabi-Yau threefolds, which are Kahler and have complex structure, is well understood. In chapter 2 of this thesis, We study the compactification of heterotic string theory on manifolds that are non-Kahler. Such manifolds arise as a solution for compactifications of heterotic string theory with nonzero H-flux. We begin the study of the massless spectrum arising from compactification using this construction by counting zero modes of the linearized equations of motion for the gaugino in the supergravity approximation. We rephrase the question in terms of a cohomology problem and show that for a trivial gauge bundle, this cohomology reduces to the Dolbeault cohomology of the 3-fold, which we then compute. Another check of string theory is to study the entropy of black holes made in string theory. In Chapter 3, We review the microstate counting of four dimensional black holes made from M theory. We then describe a new solution in five dimensions, the supersymmetric black ring, and describe its microscopic entropy using a similar counting. These agree with the semi-classical Bekenstein-Hawking entropy for these black holes. Finally, one powerful tool for quantum gravity is the holographic duality of string theory in an Anti de Sitter background and a theory living on its conformal boundary. Strominger conjectured a similar duality between quantum gravity in a de Sitter background and the corresponding theory on its boundary. In chapter 4 we examine issues with different representations of the conformal field theory on the boundary for a massive quantum field theory living in the bulk and try to write down a sensible CFT.
Cusp anomalous dimension and rotating open strings in AdS/CFT
NASA Astrophysics Data System (ADS)
Espíndola, R.; García, J. Antonio
2018-03-01
In the context of AdS/CFT we provide analytical support for the proposed duality between a Wilson loop with a cusp, the cusp anomalous dimension, and the meson model constructed from a rotating open string with high angular momentum. This duality was previously studied using numerical tools in [1]. Our result implies that the minimum of the profile function of the minimal area surface dual to the Wilson loop, is related to the inverse of the bulk penetration of the dual string that hangs from the quark-anti-quark pair (meson) in the gauge theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey
Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.« less
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; ...
2018-02-02
Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by theirmore » passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving “downward” into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.« less
NASA Astrophysics Data System (ADS)
Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke
2018-02-01
Some of the most important experimentally accessible probes of the quark- gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of sprays of energetic particles produced within a cone with a specified opening angle (jets) in a hard scattering are modified by their passage through the strongly coupled, liquid, QGP. We model an ensemble of back-to-back dijets for the purpose of gaining a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets in the ensemble are modified by their passage through an expanding cooling droplet of strongly coupled plasma, in the model in a holographic gauge theory that is dual to a 4+1-dimensional black-hole spacetime that is asymptotically anti-de Sitter (AdS). We build our model by constructing an ensemble of strings in the dual gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints are moving "downward" into the gravitational bulk spacetime with some fixed small angle, an angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one of the two model parameters such that the mean jet shape for the jets in the ensemble that we have built matches that measured in proton-proton collisions reasonably well. This is a novel way for hybridizing relevant inputs from perturbative QCD and a strongly coupled holographic gauge theory in the service of modeling jets in QGP. We send our ensemble of strings through an expanding cooling droplet of strongly coupled plasma, choosing the second model parameter so as to get a reasonable value for R AA jet , the suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to measurements from heavy ion collisions at the LHC.
A string realisation of Ω-deformed Abelian N =2* theory
NASA Astrophysics Data System (ADS)
Angelantonj, Carlo; Antoniadis, Ignatios; Samsonyan, Marine
2017-10-01
The N =2* supersymmetric gauge theory is a massive deformation of N = 4, in which the adjoint hypermultiplet gets a mass. We present a D-brane realisation of the (non-)Abelian N =2* theory, and compute suitable topological amplitudes, which are expressed as a double series expansion. The coefficients determine couplings of higher-dimensional operators in the effective supergravity action that involve powers of the anti-self-dual N = 2 chiral Weyl superfield and of self-dual gauge field strengths superpartners of the D5-brane coupling modulus. In the field theory limit, the result reproduces the Nekrasov partition function in the two-parameter Ω-background, in agreement with a recent proposal.
Critical non-Abelian vortex in four dimensions and little string theory
NASA Astrophysics Data System (ADS)
Shifman, M.; Yung, A.
2017-08-01
As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.
Moduli space potentials for heterotic non-Abelian flux tubes: Weak deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300
2010-09-15
We consider N=2 supersymmetric QCD with the U(N) gauge group (with no Fayet-Iliopoulos term) and N{sub f} flavors of massive quarks deformed by the mass term {mu} for the adjoint matter, W={mu}A{sup 2}, assuming that N{<=}N{sub f}<2N. This deformation breaks N=2 supersymmetry down to N=1. This theory supports non-Abelian flux tubes (strings) which are stabilized by W. They are referred to as F-term stabilized strings. We focus on the studies of such strings in the vacuum in which N squarks condense, at small {mu}, so that the Z{sub N} strings preserve, in a sense, their Bogomol'nyi-Prasad-Sommerfield nature. The (s)quark massesmore » are assumed to be nondegenerate. We calculate string tensions both in the classical and quantum regimes. Then we translate our results for the tensions in terms of the effective low-energy weighted CP(N{sub f}-1) model on the string world sheet. The bulk {mu} deformation makes this theory N=(0,2) supersymmetric heterotic weighted CP(N{sub f}-1) model in two dimensions. We find the deformation potential on the world sheet. This significantly expands the class of the heterotically deformed CP models emerging on the string world sheet compared to that suggested by Edalati and Tong. Among other things, we show that nonperturbative quantum effects in the bulk theory are exactly reproduced by the quantum effects in the world-sheet theory.« less
NASA Astrophysics Data System (ADS)
Vicedo, Benoit
2008-10-01
In view of one day proving the AdS/CFT correspondence, a deeper understanding of string theory on certain curved backgrounds such as AdS_5xS^5 is required. In this dissertation we make a step in this direction by focusing on RxS^3. It was discovered in recent years that string theory on AdS_5xS^5 admits a Lax formulation. However, the complete statement of integrability requires not only the existence of a Lax formulation, but also that the resulting integrals of motion are in pairwise involution. This idea is central to the first part of this thesis. Exploiting this integrability we apply algebro-geometric methods to string theory on RxS^3 and obtain the general finite-gap solution. The construction is based on an invariant algebraic curve previously found in the AdS_5xS^5 case. However, encoding the dynamics of the solution requires specification of additional marked points. By restricting the symplectic structure of the string to this algebro-geometric data we derive the action-angle variables of the system. We then perform a first-principle semiclassical quantisation of string theory on RxS^3 as a toy model for strings on AdS_5xS^5. The result is exactly what one expects from the dual gauge theory perspective, namely the underlying algebraic curve discretises in a natural way. We also derive a general formula for the fluctuation energies around the generic finite-gap solution. The ideas used can be generalised to AdS_5xS^5.
An infinite swampland of U(1) charge spectra in 6D supergravity theories
NASA Astrophysics Data System (ADS)
Taylor, Washington; Turner, Andrew P.
2018-06-01
We analyze the anomaly constraints on 6D supergravity theories with a single abelian U(1) gauge factor. For theories with charges restricted to q = ±1 , ±2 and no tensor multiplets, anomaly-free models match those models that can be realized from F-theory compactifications almost perfectly. For theories with tensor multiplets or with larger charges, the F-theory constraints are less well understood. We show, however, that there is an infinite class of distinct massless charge spectra in the "swampland" of theories that satisfy all known quantum consistency conditions but do not admit a realization through F-theory or any other known approach to string compactification. We also compare the spectra of charged matter in abelian theories with those that can be realized from breaking nonabelian SU(2) and higher rank gauge symmetries.
The toric SO(10) F-theory landscape
NASA Astrophysics Data System (ADS)
Buchmüller, W.; Dierigl, M.; Oehlmann, P.-K.; Rühle, F.
2017-12-01
Supergravity theories in more than four dimensions with grand unified gauge symmetries are an important intermediate step towards the ultraviolet completion of the Standard Model in string theory. Using toric geometry, we classify and analyze six-dimensional F-theory vacua with gauge group SO(10) taking into account Mordell-Weil U(1) and discrete gauge factors. We determine the full matter spectrum of these models, including charged and neutral SO(10) singlets. Based solely on the geometry, we compute all matter multiplicities and confirm the cancellation of gauge and gravitational anomalies independent of the base space. Particular emphasis is put on symmetry enhancements at the loci of matter fields and to the frequent appearance of superconformal points. They are linked to non-toric Kähler deformations which contribute to the counting of degrees of freedom. We compute the anomaly coefficients for these theories as well by using a base-independent blow-up procedure and superconformal matter transitions. Finally, we identify six-dimensional supergravity models which can yield the Standard Model with high-scale supersymmetry by further compactification to four dimensions in an Abelian flux background.
Observations on the T lnR term in the quark-antiquark free energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiskis, J.
1986-06-15
Consider the response of a pure gauge theory at temperature T to an external quark-antiquark pair separated by R. In the confining phase, the leading term in the free energy at large R is sigmaR. A string-model calculation has given T lnR for the next-to-leading term. In this paper, the origin of the T lnR term is considered in a more general context that includes the analog spin model and the lattice gauge theory at strong coupling. The connection with transverse fluctuations is emphasized.
Stringy horizons and generalized FZZ duality in perturbation theory
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2017-02-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Black hole attractors and gauge theories
NASA Astrophysics Data System (ADS)
Huang, Lisa Li Fang
2007-12-01
This thesis is devoted to the study of supersymmetric black holes that arise from string compactifications. We begin by studying the R 2 corrections to the entropy of two solutions of five dimensional supergravity, the supersymmetric black ring and the spinning black hole. Using Wald's formula we compute the R2 corrections to the entropy of the black ring and BMPV black hole. We study N D4-branes wrapping a 4 cycle and M DO-branes on the quintic. For N D4-branes, we resolve the naive mismatch between the moduli space of the Higgs branch of the gauge theory and the moduli of a degree N hypersurface which the D4-brane wraps. The degree N surface must admit a holomorphic divisor and is a determinantal variety. Adding a single DO brane to probe the deformed geometry, we recover the determinant equation from F and D flatness condition which was previously discovered from a classical geometry approach. We next generalize the qunitic story for Calabi-Yau manifolds arising from complete intersections in toric varieties. We recover the moduli space of N D4-branes in terms of the moduli space of a U( N) x U(N) gauge theory with bi-fundamentals com ing from a D6 - D6 system. We also recast the tachyon condensation of the D6 - D6 system in the language of open string gauged linear sigma model. We obtain the determinant equation from F-term constraints arising from a boundary coupling. We set out to understand the Ooguri-Strominger-Vafa conjecture directly in the D4-DO black hole attractor geometry. We show that the lift to the euclidean IIA attractor geometry gives a complexified M-theory geometry whose asymptotic boundary is a torus. Employing AdS3/CFT 2 duality, we argue that the string partition function computes the elliptic genus of the Maldacena-Strominger-Witten conformal field theory. We evaluate the IIA partition function using the Green-Schwarz formalism and show that it gives ZtopZ top, coming from instantons and anti-instantons respectively. Finally, we determine the spectrum of free, large N, SU( N) Yang Mills theory on S3 by decomposing its thermal partition function into characters of the irreducible representations of the conformal group SO(4, 2).
Higgsing the stringy higher spin symmetry
Gaberdiel, Matthias R.; Peng, Cheng; Zadeh, Ida G.
2015-10-01
It has recently been argued that the symmetric orbifold theory of T 4 is dual to string theory on AdS 3 × S 3 × T 4 at the tensionless point. At this point in moduli space, the theory possesses a very large symmetry algebra that includes, in particular, a W ∞ algebra capturing the gauge fields of a dual higher spin theory. Using conformal perturbation theory, we study the behaviour of the symmetry generators of the symmetric orbifold theory under the deformation that corresponds to switching on the string tension. We show that the generators fall nicely into Reggemore » trajectories, with the higher spin fields corresponding to the leading Regge trajectory. We also estimate the form of the Regge trajectories for large spin, and find evidence for the familiar logarithmic behaviour, thereby suggesting that the symmetric orbifold theory is dual to an AdS background with pure RR flux.« less
Stiff self-interacting strings at high temperature QCD
NASA Astrophysics Data System (ADS)
S Bakry, A.; Chen, X.; Deliyergiyev, M.; Galal, A.; Khalaf, A.; M Pengming, P.
2018-03-01
We investigate the implications of Nambu-Goto (NG), Lüscher Weisz (LW) and Polyakov-Kleinert (PK) effective string actions for the Casimir energy and the width of the quantum delocalization of the string in 4-dim pure SU(3) Yang-Mills lattice gauge theory. At a temperature closer to the critical point T/Tc=0.9, we found that the next to leading-order (NLO) contributions from the expansion of the NG string in addition to the boundary terms in LW action to decrease the deviations from the lattice data in the intermediate distance scales for both the quark-antiquark QQ̅ potential and broadening of the color tube compared to the free string approximation. We conjecture possible stiffness of the QCD string through studying the effects of extrinsic curvature term in PK action and find a good fitting behavior for the lattice Monte-Carlo data at both long and intermediate quark separations regions.
Symmetries and mass splittings QCD 2 coupled to adjoint fermions
NASA Astrophysics Data System (ADS)
Boorstein, Joshua; Kutasov, David
1994-06-01
Two-dimensional QCD coupled to fermions in the adjoint representation of the gauge group SU( N), a useful toy model of QCD strings, is supersymmetric for a certain ratio of quark mass and gauge coupling constant. Here we study the theory in the vicinity of the supersymmetric point; in particular we exhibit the algebraic structure of the model and show that the mass splittings as one moves away from the supersymmetric point obey a universal relation of the form Mi2(B)- Mi2(F) = Miδm + O( δm3). We discuss the connection of this relation to string and quark model expectations and verify it numerically for large N. At least for low lying states the O( δm3) corrections are extremely small. We also discuss a natural generalization of QCD 2 with an infinite number of couplings, which preserves SUSY. This leads to a Landau-Ginzburg description of the theory, and may be useful for defining a scaling limit in which smooth worldsheets appear.
T-duality constraints on higher derivatives revisited
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Zwiebach, Barton
2016-04-01
We ask to what extent are the higher-derivative corrections of string theory constrained by T-duality. The seminal early work by Meissner tests T-duality by reduction to one dimension using a distinguished choice of field variables in which the bosonic string action takes a Gauss-Bonnet-type form. By analyzing all field redefinitions that may or may not be duality covariant and may or may not be gauge covariant we extend the procedure to test T-duality starting from an action expressed in arbitrary field variables. We illustrate the method by showing that it determines uniquely the first-order α' corrections of the bosonic string, up to terms that vanish in one dimension. We also use the method to glean information about the O({α}^' 2}) corrections in the double field theory with Green-Schwarz deformation.
Higher-spin theory and holography
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias; Vasiliev, Mikhail
2013-05-01
This special issue of Journal of Physics A: Mathematical and Theoretical reviews recent developments in higher-spin gauge theories and their applications to holographic dualities. The analysis of higher-spin theories has a very long history, but it took until the mid 1980s for the first consistent higher-spin interactions to be constructed by Bengtsson, Bengtsson and Brink [1] and Berends, Burgers and van Dam [2]. Somewhat later it was shown by Fradkin and Vasiliev [3] that consistent higher-spin gauge theories that involve gravity should necessarily be defined on a curved background. The first consistent interacting higher-spin theories were then formulated at the classical level by Vasiliev in the early 1990s [4]. These higher-spin theories involve an infinite number of massless higher-spin fields that support higher-spin gauge symmetries, and indeed, are largely characterized by this underlying gauge symmetry. The simplest examples are provided by higher-spin theories on (anti)-de Sitter spaces, and in a sense, this anticipated the AdS/CFT correspondence. Indeed, in the tensionless limit of string theory, the massive excitations of string theory become massless, and hence define higher-spin gauge fields. On the other hand, from the dual gauge theory perspective, this is the limit in which the field theory becomes free, and therefore has many conserved higher-spin currents. By the usual AdS/CFT dictionary, these are dual to the higher-spin gauge symmetries of the bulk description. Following this line of argument, Sundborg [5] and Witten [6] suggested in 2001 that a duality relating a higher-spin theory on AdSd to a weakly coupled (d - 1)-dimensional conformal field theory should exist. A concrete proposal was then made by Klebanov and Polyakov [7] who conjectured that the simplest version of a higher-spin gauge theory on AdS4 should be dual to the 3d O(N ) vector model. Recently, much support for this conjecture was obtained by Giombi and Yin [8], and in turn, this has triggered a significant amount of activity in this general area. Among other things, the constraints that are implied by the higher-spin symmetries were analysed (see the paper by Maldacena and Zhiboedov in this issue [9]), and a fairly concrete proposal for how higher-spin theories are related to string theory was made (see the paper by Chang, Minwalla, Sharma and Yin in this issue [10]). Furthermore, a lower dimensional version of the conjecture was put forward by Gaberdiel and Gopakumar [11] that was subsequently also checked in some detail. These dualities hold the promise of offering insights into the inner workings of the AdS/CFT correspondence since they are complex enough to capture the essence of the duality, while at the same time being sufficiently simple in order to allow for a detailed analysis. Moreover, the methods specifically developed in higher-spin theory may be useful for understanding a general mechanism underlying holography, both in higher-spin models and beyond (see the paper by Vasiliev in this issue [12]). Another fascinating aspect of these higher-spin theories lies in the fact that the higher-spin symmetries mix generically fields of different spin, and in particular, the spin-2 metric and higher-spin excitations are related to one another by gauge transformations. As a result, higher-spin theories require a modification of the standard framework of Riemannian geometry since the usual diffeomorphism-invariant tensors are not gauge invariant any longer. In particular, higher-spin theories may therefore open the way towards understanding fundamental concepts of space-time geometry; for example, they may well have key lessons in store for how string theory resolves space-time singularities. In this issue we have collected together a number of review papers, summarizing the aforementioned recent developments, as well as research papers indicating current directions of interest in the study of higher-spin gauge theories. We hope that it will be useful, both for beginners interested in an introduction to the subject, and for experts already working in the field. Three of the reviews deal with the holographic dualities mentioned above: the paper by Giombi and Yin [13] reviews the situation for AdS4/CFT3, while the review by Gaberdiel and Gopakumar [14] deals with the lower-dimensional AdS3/CFT2 version. In addition, the review by Jevicki, Jin and Ye [15] explains a possible way of proving the duality using collective fields. There are two reviews on the construction of black holes in higher-spin gauge theories: the review by Iazeolla and Sundell [16] reviews the situation for 4d higher-spin theories, while the review by Ammon, Gutperle, Kraus and Perlmutter [17] deals with the three-dimensional case for which much progress has been made recently. Finally, the review of Sagnotti [18] explains various general aspects of higher-spin gauge theories. The research papers deal with different aspects of current developments; some are concerned with the holographic duality, while others develop the general theory of higher-spin fields. References [1] Bengtsson A K H, Bengtsson I and Brink L 1983 Cubic interaction terms for arbitrarily extended supermultiplets Nucl. Phys. B 227 41 [2] Berends F A, Burgers G J H Van Dam H 1984 On spin three self interactions Z. Phys. C 24 247 [3] Fradkin E S Vasiliev M A 1987 On the gravitational interaction of massless higher-spin fields Phys. Lett. B 189 89 [4] Vasiliev M A 1992 More on equations of motion for interacting massless fields of all spins in 3+1 dimensions Phys. Lett. B 285 225 [5] Sundborg B 2001 Stringy gravity, interacting tensionless strings and massless higher spins Nucl. Phys. Proc. Suppl. 102 113 (arXiv:hep-th/0103247) [6] Witten E 2001 Spacetime reconstruction Talk at the John Schwarz 60th Birthday Symp. (http://theory.caltech.edu/jhs60/witten/1.html) [7] Klebanov I R Polyakov A M 2002 AdS dual of the critical O (N ) vector model Phys. Lett. B 550 213 (arXiv:hep-th/0210114) [8] Giombi S Yin X 2010 Higher spin gauge theory and holography: the three-point functions J. High Energy Phys. JHEP09(2010)115 (arXiv:0912.3462 [hep-th]) [9] Maldacena J Zhiboedov A 2013 Constraining conformal field theories with a higher spin symmetry J. Phys. A: Math. Theor. 46 214011 (arXiv:1204.3882 [hep-th]) [10] Chang C-M, Minwalla A, Sharma T Yin X 2013 ABJ triality: from higher spin fields to strings J. Phys. A: Math. Theor. 46 214009 (arXiv:1207.4485 [hep-th]) [11] Gaberdiel M R Gopakumar R 2011 An AdS3 dual for minimal model CFTs Phys. Rev. D 83 066007 (arXiv:1011.2986 [hep-th]) [12] Vasiliev M A 2013 Holography, unfolding and higher-spin theory J. Phys. A: Math. Theor. 46 214013 (arXiv:1203.5554 [hep-th]) [13] Giombi S Yin X 2013 The higher spin/vector model duality J. Phys. A: Math. Theor. 46 214003 (arXiv:1208.4036 [hep-th]) [14] Gaberdiel M R Gopakumar R 2013 Minimal model holography J. Phys. A: Math. Theor. 46 214002 (arXiv:1207.6697 [hep-th]) [15] Jevicki A, Jin K Ye Q 2013 Perturbative and non-perturbative aspects in vector model/higher spin duality J. Phys. A: Math. Theor. 46 214005 (arXiv:1212.5215 [hep-th]) [16] Iazeolla C Sundell P 2013 Biaxially symmetric solutions to 4D higher-spin gravity J. Phys. A: Math. Theor. 46 214004 (arXiv:1208.4077 [hep-th]) [17] Ammon M, Gutperle M, Kraus P Perlmutter E 2013 Black holes in three dimensional higher spin gravity: a review J. Phys. A: Math. Theor. 46 214001 (arXiv:1208.5182 [hep-th]) [18] Sagnotti A 2013 Notes on strings and higher spins J. Phys. A: Math. Theor. 46 214006 (arXiv:1112.4285 [hep-th])
State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter
Bhardwaj, Lakshya; Gaiotto, Davide; Kapustin, Anton
2017-04-18
It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic “shadow” theories, which are obtained from the original theory by “gauging fermionic parity”. Furthemore, the fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. Here, we describe the group structure of fermionic SPT phases protected by Z 2f × G. The quaternion group makesmore » a surprise appearance.« less
Hanada, Masanori; Miwa, Akitsugu; Nishimura, Jun; Takeuchi, Shingo
2009-05-08
In the string-gauge duality it is important to understand how the space-time geometry is encoded in gauge theory observables. We address this issue in the case of the D0-brane system at finite temperature T. Based on the duality, the temporal Wilson loop W in gauge theory is expected to contain the information of the Schwarzschild radius RSch of the dual black hole geometry as log(W)=RSch/(2pialpha'T). This translates to the power-law behavior log(W)=1.89(T/lambda 1/3)-3/5, where lambda is the 't Hooft coupling constant. We calculate the Wilson loop on the gauge theory side in the strongly coupled regime by performing Monte Carlo simulations of supersymmetric matrix quantum mechanics with 16 supercharges. The results reproduce the expected power-law behavior up to a constant shift, which is explainable as alpha' corrections on the gravity side. Our conclusion also demonstrates manifestly the fuzzball picture of black holes.
Bootstrapping non-commutative gauge theories from L∞ algebras
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter
2018-05-01
Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.
NASA Astrophysics Data System (ADS)
Barger, V.; Jiang, Jing; Langacker, Paul; Li, Tianjun
We use a new approach to study string scale gauge coupling unification systematically, allowing both the possibility of noncanonical U(1)Y normalization and the existence of vector-like particles whose quantum numbers are the same as those of the Standard Model (SM) fermions and their Hermitian conjugates and the SM adjoint particles. We first give all the independent sets (Yi) of particles that can be employed to achieve SU(3)C and SU(2)L string scale gauge coupling unification and calculate their masses. Second, for a noncanonical U(1)Y normalization, we obtain string scale SU(3)C ×SU(2)L ×U(1)Y gauge coupling unification by choosing suitable U(1)Y normalizations for each of the Yi sets. Alternatively, for the canonical U(1)Y normalization, we achieve string scale gauge coupling unification by considering suitable combinations of the Yi sets or by introducing additional independent sets (Zi), that do not affect the SU(3)C ×SU(2)L unification at tree level, and then choosing suitable combinations, one from the Yi sets and one from the Zi sets. We also briefly discuss string scale gauge coupling unification in models with higher Kac-Moody levels for SU(2)L or SU(3)C.
Charged black holes and the AdS/CFT correspondence
NASA Astrophysics Data System (ADS)
Tesileanu, Tiberiu
The AdS/CFT duality is an equivalence between string theory and gauge theory. The duality allows one to use calculations done in classical gravity to derive results in strongly-coupled field theories. This thesis explores several applications of the duality that have some relevance to condensed matter physics. In the first of these applications, it is shown that a large class of strongly-coupled (3 + 1)-dimensional conformal field theories undergo a superfluid phase transition in which a certain chiral primary operator develops a non-zero expectation value at low temperatures. A suggestion is made for the identity of the condensing operator in the field theory. In a different application, the conifold theory, an SU(N) x SU(N) gauge theory, is studied at nonzero chemical potential for baryon number density. In the low-temperature limit, the near-horizon geometry of the dual supergravity solution becomes a warped product AdS 2 x R3 x T1,1, with logarithmic warp factors. This encodes a type of emergent quantum near-criticality in the field theory. A similar construction is analyzed in the context of M theory. This construction is based on branes wrapped around topologically nontrivial cycles of the geometry. Several non-supersymmetric solutions are found, which pass a number of stability checks. Reducing one of the solutions to type IIA string theory, and T-dualizing to type IIB yields a product of a squashed Sasaki-Einstein manifold with an extremal BTZ black hole. Possible field theory interpretations are discussed.
BPS Z{sub N} string tensions, sine law and Casimir scaling, and integrable field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kneipp, Marco A. C.; International Centre for Theoretical Physics
We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G{yields}U(1){sup r}{yields}C{sub G}, with C{sub G} being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, wemore » show that for each of the two vacua the ratio of the tensions of the BPS Z{sub N} strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K{sub ij} and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories.« less
Morse homotopy and Chern-Simons perturbation theory
NASA Astrophysics Data System (ADS)
Fukaya, Kenji
1996-11-01
We define and invariant of a three manifold equipped with a flat bundle with vanishing homology. The construction is based on Morse theory using several Morse functions simultaneously and is regarded as a higher loop analogue of various product operations in algebraic topology. There is a heuristic argument that this invariant is related to perturbative Chern-Simons Gauge theory by Axelrod-Singer, etc. There is also a theorem which gives a relation of the construction to open string theory on the cotangent bundle.
Observation of a Coulomb flux tube
NASA Astrophysics Data System (ADS)
Greensite, Jeff; Chung, Kristian
2018-03-01
In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.
Yang-Baxter σ -models, conformal twists, and noncommutative Yang-Mills theory
NASA Astrophysics Data System (ADS)
Araujo, T.; Bakhmatov, I.; Colgáin, E. Ó.; Sakamoto, J.; Sheikh-Jabbari, M. M.; Yoshida, K.
2017-05-01
The Yang-Baxter σ -model is a systematic way to generate integrable deformations of AdS5×S5 . We recast the deformations as seen by open strings, where the metric is undeformed AdS5×S5 with constant string coupling, and all information about the deformation is encoded in the noncommutative (NC) parameter Θ . We identify the deformations of AdS5 as twists of the conformal algebra, thus explaining the noncommutativity. We show that the unimodularity condition on r -matrices for supergravity solutions translates into Θ being divergence-free. Integrability of the σ -model for unimodular r -matrices implies the existence and planar integrability of the dual NC gauge theory.
NASA Astrophysics Data System (ADS)
McAllister, Liam; Schwaller, Pedro; Servant, Geraldine; Stout, John; Westphal, Alexander
2018-02-01
We examine the relaxion mechanism in string theory. An essential feature is that an axion winds over N ≫ 1 fundamental periods. In string theory realizations via axion monodromy, this winding number corresponds to a physical charge carried by branes or fluxes. We show that — in the context of NS5-brane axion monodromy — this charge backreacts on the compact space, ruining the structure of the relaxion action. In particular, the barriers generated by strong gauge dynamics have height ∝ e - N , so the relaxion does not stop when the Higgs acquires a vev. Backreaction of monodromy charge can therefore spoil the relaxion mechanism. We comment on the limitations of technical naturalness arguments in this context.
Relativistic harmonic oscillator revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bars, Itzhak
2009-02-15
The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approachmore » that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.« less
NASA Astrophysics Data System (ADS)
Pomoni, Elli; Rastelli, Leonardo
2012-10-01
We consider an instance of the AdS/CFT duality where the bulk theory contains an open string tachyon, and study the instability from the viewpoint of the boundary field theory. We focus on the specific example of the AdS5 × S 5 background with two probe D7 branes intersecting at general angles. For generic angles supersymmetry is completely broken and there is an open string tachyon between the branes. The field theory action for this system is obtained by coupling to {N}=4 super Yang-Mills two {N}=2 hyper multiplets in the fundamental representation of the SU( N) gauge group, but with different choices of embedding of the two {N}=2 subalgebras into {N}=4 . On the field theory side we find a one-loop Coleman-Weinberg instability in the effective potential for the fundamental scalars. We identify a mesonic operator as the dual of the open string tachyon. By AdS/CFT, we predict the tachyon mass for small 't Hooft coupling (large bulk curvature) and confirm that it violates the AdS stability bound.
Closed-string tachyon condensation and the worldsheet super-higgs effect.
Horava, Petr; Keeler, Cynthia A
2008-02-08
Alternative gauge choices for worldsheet supersymmetry can elucidate dynamical phenomena obscured in the usual superconformal gauge. In the particular example of the tachyonic E8 heterotic string, we use a judicious gauge choice to show that the process of closed-string tachyon condensation can be understood in terms of a worldsheet super-Higgs effect. The worldsheet gravitino assimilates the goldstino and becomes a dynamical propagating field. Conformal, but not superconformal, invariance is maintained throughout.
Outstanding junior investigator program. [Final technical report, 8/1/92-10/31/97
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, Lisa; Rosenberg, Leslie
1999-12-18
Much of the authors work over the past five years has been aimed at bridging the gap between the exactly supersymmetric world of string theories and the world that is actually observed. Her report discusses the following subjects: (1) supersymmetry breaking; related work on the mass hierarchy and the relation between supersymmetry and grand unified theories; distinguishing between supersymmetric models; and the fundamental question of how gauge theories arise from D-branes.
'Black universe' epoch in string cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchel, Alex; Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9; Kofman, Lev
2008-10-15
String theory compactification involves manifolds with multiple warp factors. For cosmological applications, we often introduce a short, high-energy inflationary throat, and a long, low-energy standard model (SM) throat. It is assumed that at the end of inflation, the excited Kaluza-Klein modes from the inflationary throat tunnel to the SM throat and reheat standard model degrees of freedom, which are attached to probe brane(s). However, the huge hierarchy of energy scales can result in a highly dynamic transition of the throat geometry. We point out that in such a cosmological scenario the standard model throat (together with SM brane) will bemore » cloaked by a Schwarzschild horizon, produced by the Kaluza-Klein modes tunneling from the short throat. The black brane formation is dual to the first order chiral phase transition of the cascading gauge theory. We calculate the critical energy density corresponding the formation of the black hole (BH) horizon in the long throat. We discuss the duality between 'black universe' cosmology and an expanding universe driven by the hot gauge theory radiation. We address the new problem of the hierarchical multiple-throat scenarios: SM brane disappearance after the decay of the BH horizon.« less
NASA Astrophysics Data System (ADS)
Derendinger, J.-P.; Scrucca, C. A.; Uranga, A. M.
2006-11-01
This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 16 to the 20 of January 2006. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools which have become a traditional rendezvous for young researchers of the community. The previous one was held at SISSA, in Trieste, Italy, in February 2005, and the next one will take place again at CERN, in January 2007. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of five general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximately 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress and to the open problems in string theory. String theory is expected to provide insights into the description of systems where the role of gravity is crucial. One prominent example of such systems are time-dependent backgrounds with big bang singularities, whose status in string theory is reviewed in the lecture notes by Ben Craps. In another main problem in quantum gravity, string theory gives a fascinating microscopic description of black holes and their properties. The lectures by Shiraz Minwalla review the thermal properties of black holes from their microscopic description in terms of a holographically dual large N field theory. Progress in the description of black hole microstates, and its interplay with the macroscopic description in terms of supergravity solutions via the attractor mechanism, are covered by the lectures by Atish Dabholkar and Boris Pioline. A final important mainstream topic in string theory, being a higher-dimensional theory, is its compactification to four dimensions, and the computation of four-dimensional physical properties in terms of the properties of the internal space. The lectures by Mariana Graña review recent progress in the classification of the most general supersymmetric backgrounds describing the compactified dimensions, and their role in determining the number of massless scalar moduli fields in four dimensions. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the services and infrastructure that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. Special thanks go finally to Denis Frank for his very valuable help in preparing the conference web pages, and to J Rostant, A-M Perrin and M-S Vascotto for their continuous and very reliable assistance.
Statistical effects in large N supersymmetric gauge theories
NASA Astrophysics Data System (ADS)
Czech, Bartlomiej Stanislaw
This thesis discusses statistical simplifications arising in supersymmetric gauge theories in the limit of large rank. Applications involve the physics of black holes and the problem of predicting the low energy effective theory from a landscape of string vacua. The first part of this work uses the AdS/CFT correspondence to explain properties of black holes. We establish that in the large charge sector of toric quiver gauge theories there exists a typical state whose structure is closely mimicked by almost all other states. Then, working in the settings of the half-BPS sector of N = 4 super-Yang-Mills theory, we show that in the dual gravity theory semiclassical observations cannot distinguish a pair of geometries corresponding to two generic heavy states. Finally, we argue on general grounds that these conclusions are exponentially enhanced in quantum cosmological settings. The results establish that one may consistently account for the entropy of a black hole with heavy states in the dual field theory and suggest that the usual properties of black holes arise as artifacts of imposing a semiclassical description on a quantum system. In the second half we develop new tools to determine the infrared behavior of quiver gauge theories in a certain class. We apply the dynamical results to a toy model of the landscape of effective field theories defined at some high energy scale, and derive firm statistical predictions for the low energy effective theory.
Mass deformations of 5d SCFTs via holography
NASA Astrophysics Data System (ADS)
Gutperle, Michael; Kaidi, Justin; Raj, Himanshu
2018-02-01
Using six-dimensional Euclidean F (4) gauged supergravity we construct a holographic renormalization group flow for a CFT on S 5. Numerical solutions to the BPS equations are obtained and the free energy of the theory on S 5 is determined holographically by calculation of the renormalized on-shell supergravity action. In the process, we deal with subtle issues such as holographic renormalization and addition of finite counterterms. We then propose a candidate field theory dual to these solutions. This tentative dual is a supersymmetry-preserving deformation of the strongly-coupled non-Lagrangian SCFT derived from the D4-D8 system in string theory. In the IR, this theory is a mass deformation of a USp(2 N ) gauge theory. A localization calculation of the free energy is performed for this IR theory, which for reasonably small values of the deformation parameter is found to have the same qualitative behaviour as the holographic free energy.
Abelian Higgs cosmic strings: Small-scale structure and loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil
2009-06-15
Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less
BOOK REVIEW: String Theory in a Nutshell
NASA Astrophysics Data System (ADS)
Skenderis, Kostas
2007-11-01
The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to the literature. In all, the book contains nearly five hundred exercises for the graduate-level student, which are useful both in teaching courses on string theory and for those who are studying by themselves. A nice feature of this book is that references are made to specific pages earlier in the book, rather than to chapters, which is helpful for students working through the book on their own. In summary,'String Theory in a Nutshell'is a valuable addition to the existing string theory textbooks; it is complementary to the previous books and gives a good treatment of subsequent developments. It is likely to become a staple reference on the subject, used both by students and researchers.
Dangerous angular Kaluza-Klein/glueball relics in string theory cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufaux, J. F.; CITA, University of Toronto, 60 St. George st., Toronto, ON M5S 3H8; Kofman, L.
2008-07-15
The presence of Kaluza-Klein (KK) particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra isometries,more » massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact Calabi-Yau (CY) manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived nonrelativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.« less
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
NASA Astrophysics Data System (ADS)
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)
Quantum chromodynamics near the confinement limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigg, C.
1985-09-01
These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means formore » going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment.« less
Type 0 open string amplitudes and the tensionless limit
NASA Astrophysics Data System (ADS)
Rojas, Francisco
2014-12-01
The sum over planar multiloop diagrams in the NS + sector of type 0 open strings in flat spacetime has been proposed by Thorn as a candidate to resolve nonperturbative issues of gauge theories in the large N limit. With S U (N ) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N →∞ with N gs2 held fixed. By including only planar diagrams in the sum the usual mechanism for the cancellation of loop divergences (which occurs, for example, among the planar and Möbius strip diagrams by choosing a specific gauge group) is not available and a renormalization procedure is needed. In this article the renormalization is achieved by suspending total momentum conservation by an amount p ≡∑ i n ki≠0 at the level of the integrands in the integrals over the moduli and analytically continuing them to p =0 at the very end. This procedure has been successfully tested for the 2 and 3 gluon planar loop amplitudes by Thorn. Gauge invariance is respected and the correct running of the coupling in the limiting gauge field theory was also correctly obtained. In this article we extend those results in two directions. First, we generalize the renormalization method to an arbitrary n -gluon planar loop amplitude giving full details for the 4-point case. One of our main results is to provide a fully renormalized amplitude which is free of both UV and the usual spurious divergences leaving only the physical singularities in it. Second, using the complete renormalized amplitude, we extract the high-energy scattering regime at fixed angle (tensionless limit). Apart from obtaining the usual exponential falloff at high energies, we compute the full dependence on the scattering angle which shows the existence of a smooth connection between the Regge and hard scattering regimes.
An uplifting discussion of T-duality
NASA Astrophysics Data System (ADS)
Harvey, Jeffrey A.; Moore, Gregory W.
2018-05-01
It is well known that string theory has a T-duality symmetry relating circle compactifications of large and small radius. This symmetry plays a foundational role in string theory. We note here that while T-duality is order two acting on the moduli space of compactifications, it is order four in its action on the conformal field theory state space. More generally, involutions in the Weyl group W ( G) which act at points of enhanced G symmetry have canonical lifts to order four elements of G, a phenomenon first investigated by J. Tits in the mathematical literature on Lie groups and generalized here to conformal field theory. This simple fact has a number of interesting consequences. One consequence is a reevaluation of a mod two condition appearing in asymmetric orbifold constructions. We also briefly discuss the implications for the idea that T-duality and its generalizations should be thought of as discrete gauge symmetries in spacetime.
Supersymmetric tools in Yang-Mills theories at strong coupling: The beginning of a long journey
NASA Astrophysics Data System (ADS)
Shifman, Mikhail
2018-04-01
Development of holomorphy-based methods in super-Yang-Mills theories started in the early 1980s and lead to a number of breakthrough results. I review some results in which I participated. The discovery of Seiberg’s duality and the Seiberg-Witten solution of 𝒩 = 2 Yang-Mills were the milestones in the long journey of which, I assume, much will be said in other talks. I will focus on the discovery (2003) of non-Abelian vortex strings with various degrees of supersymmetry, supported in some four-dimensional Yang-Mills theories and some intriguing implications of this discovery. One of the recent results is the observation of a soliton string in the bulk 𝒩 = 2 theory with the U(2) gauge group and four flavors, which can become critical in a certain limit. This is the case of a “reverse holography,” with a very transparent physical meaning.
Holographic repulsion and confinement in gauge theory
NASA Astrophysics Data System (ADS)
Husain, Viqar; Kothawala, Dawood
2013-02-01
We show that for asymptotically anti-de Sitter (AdS) backgrounds with negative energy, such as the AdS soliton and regulated negative-mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (q \\bar{q}) potential can be interpreted as affine time along null geodesics on the minimal string worldsheet and that its intrinsic curvature provides a signature of transition to confinement phase. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity. Communicated by P R L V Moniz
Phase transitions in Yang-Mills theories and their gravity duals
NASA Astrophysics Data System (ADS)
Marsano, Joseph Daniel
This thesis is a study of the thermal phase structure of systems that admit dual gauge theory and string theory descriptions. In a pair of examples, we explore the connection between perturbative Yang-Mills and gravitational thermodynamics which arises from the fact that these descriptions probe different corners of a single phase diagram. The structure that emerges from a detailed study of these isolated regions generally suggests a natural conjecture how they may be connected to one another within the full phase diagram. This permits the identification of interesting phenomena in the gauge and gravity regimes under a continuous change in parameters. We begin by studying the AdS5/CFT 4 system which, when the supergravity description is valid, exhibits a first order Hawking-Page phase transition as a function of temperature from a thermal gas of gravitons to a large black hole. In the perturbative Yang-Mills regime, we find that the free theory exhibits a weakly first order deconfinement transition whose precise nature at small nonzero coupling depends on the result of a nontrivial perturbative computation. It is conjectured that this deconfinement transition is continuously connected in the full phase diagram to the Hawking-Page transition at strong coupling, with the confined phase identified with the graviton gas and the deconfined phase identified with the black hole. We then turn to the study of Gregory-Laflamme (GL) black hole/black string transitions in supergravity and their realization in a setup that admits a dual description via the maximally supersymmetric Yang-Mills theory on T2. The thermodynamics of Yang-Mills theories on low dimensional tori is studied in detail revealing an intricate structure of which the GL transition at strong coupling is a small piece. We are led to conjecture that GL physics is continuously connected to deconfinement in maximally supersymmetric 0 + 1-dimensional gauged matrix quantum mechanics. This identification will then permit us to probe GL transitions from the gauge theory point of view and comment on some puzzles regarding their precise nature.
SO(32) heterotic line bundle models
NASA Astrophysics Data System (ADS)
Otsuka, Hajime
2018-05-01
We search for the three-generation standard-like and/or Pati-Salam models from the SO(32) heterotic string theory on smooth, quotient complete intersection Calabi-Yau threefolds with multiple line bundles, each with structure group U(1). These models are S- and T-dual to intersecting D-brane models in type IIA string theory. We find that the stable line bundles and Wilson lines lead to the standard model gauge group with an extra U(1) B-L via a Pati-Salam-like symmetry and the obtained spectrum consists of three chiral generations of quarks and leptons, and vector-like particles. Green-Schwarz anomalous U(1) symmetries control not only the Yukawa couplings of the quarks and leptons but also the higher-dimensional operators causing the proton decay.
Dualities and Topological Field Theories from Twisted Geometries
NASA Astrophysics Data System (ADS)
Markov, Ruza
I will present three studies of string theory on twisted geometries. In the first calculation included in this dissertation we use gauge/gravity duality to study the Coulomb branch of an unusual type of nonlocal field theory, called Puff Field Theory. On the gravity side, this theory is given in terms of D3-branes in type IIB string theory with a geometric twist. While the field theory description, available in the IR limit, is a deformation of Yang-Mills gauge theory by an order seven operator which we here compute. In the rest of this dissertation we explore N = 4 super Yang-Mills (SYM) theory compactied on a circle with S-duality and R-symmetry twists that preserve N = 6 supersymmetry in 2 + 1D. It was shown that abelian theory on a flat manifold gives Chern-Simons theory in the low-energy limit and here we are interested in the non-abelian counterpart. To that end, we introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a two-torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory. The last result discussed in this dissertation demonstrates a connection between gravitational Chern-Simons theory and N = 4 four-dimensional SYM theory compactified on a circle twisted by S-duality where the remaining three-manifold is not flat starting with the explicit geometric realization of S-duality in terms of (2, 0) theory.
BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields
NASA Astrophysics Data System (ADS)
Dai, Jialiang; Fan, Engui
2018-04-01
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.
Machine learning in the string landscape
NASA Astrophysics Data System (ADS)
Carifio, Jonathan; Halverson, James; Krioukov, Dmitri; Nelson, Brent D.
2017-09-01
We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of 4/3× 2.96× {10}^{755} F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.
The dyon spectra of finite gauge theories
NASA Astrophysics Data System (ADS)
Ferrari, Frank
1997-02-01
It is shown that all the ( p, q) dyon bound states exist and are unique in N = 4 and N = 2 with four massless flavor supersymmetric SU(2) Yang-Mills theories, where p and q are any relatively prime integers. The proof can be understood in the context of field theory alone, and does not rely on any duality assumption. We also give a general physical argument showing that these theories should have at least an exact Γ(2) duality symmetry, and then deduce in particular the existence of the (2 p,2 q) vector multiplets in the Nf = 4 theory. The corresponding massive theories are studied in parallel, and it is shown that though in these cases the spectrum is no longer self-dual at a given point on the moduli space, it is still in perfect agreement with an exact S duality. We also discuss the interplay between our results and both the semiclassical quantization and the heterotic-type II string-string duality conjecture.
NASA Astrophysics Data System (ADS)
Parameswaran, S. L.; Tasinato, G.; Zavala, I.
2006-03-01
We present a novel supersymmetric solution to a nonlinear sigma model coupled to supergravity. The solution represents a static, supersymmetric, codimension-two object, which is different to the familiar cosmic strings. In particular, we consider 6D chiral gauged supergravity, whose spectrum contains a number of hypermultiplets. The scalar components of the hypermultiplet are charged under a gauge field, and supersymmetry implies that they experience a simple paraboloid-like (or 2D infinite well) potential, which is minimised when they vanish. Unlike conventional vortices, the energy density of our configuration is not localized to a string-like core. The solutions have two timelike singularities in the internal manifold, which provide the necessary boundary conditions to ensure that the scalars do not lie at the minimum of their potential. The 4D spacetime is flat, and the solution is a continuous deformation of the so-called "rugby ball" solution, which has been studied in the context of the cosmological constant problem. It represents an unexpected class of supersymmetric solutions to the 6D theory, which have gravity, gauge fluxes and hyperscalars all active in the background.
Chiral primordial blue tensor spectra from the axion-gauge couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obata, Ippei, E-mail: obata@tap.scphys.kyoto-u.ac.jp
We suggest the new feature of primordial gravitational waves sourced by the axion-gauge couplings, whose forms are motivated by the dimensional reduction of the form field in the string theory. In our inflationary model, as an inflaton we adopt two types of axion, dubbed the model-independent axion and the model-dependent axion, which couple with two gauge groups with different sign combination each other. Due to these forms both polarization modes of gauge fields are amplified and enhance both helicies of tensor modes during inflation. We point out the possibility that a primordial blue-tilted tensor power spectra with small chirality aremore » provided by the combination of these axion-gauge couplings, intriguingly both amplitudes and chirality are potentially testable by future space-based gravitational wave interferometers such as DECIGO and BBO project.« less
From free fields to AdS space. II
NASA Astrophysics Data System (ADS)
Gopakumar, Rajesh
2004-07-01
We continue with the program of paper I [Phys. Rev. D 70, 025009 (2004)] to implement open-closed string duality on free gauge field theory (in the large-N limit). In this paper we consider correlators such as <∏ni=1TrΦJi(xi)>. The Schwinger parametrization of this n-point function exhibits a partial gluing up into a set of basic skeleton graphs. We argue that the moduli space of the planar skeleton graphs is exactly the same as the moduli space of genus zero Riemann surfaces with n holes. In other words, we can explicitly rewrite the n-point (planar) free-field correlator as an integral over the moduli space of a sphere with n holes. A preliminary study of the integrand also indicates compatibility with a string theory on AdS space. The details of our argument are quite insensitive to the specific form of the operators and generalize to diagrams of a higher genus as well. We take this as evidence of the field theory’s ability to reorganize itself into a string theory.
No-Ghost Theorem for Neveu-Schwarz String in 0-Picture
NASA Astrophysics Data System (ADS)
Kohriki, M.; Kunitomo, H.; Murata, M.
2010-12-01
The no-ghost theorem for Neveu-Schwarz string is directly proved in 0-picture. The one-to-one correspondence between physical states in 0-picture and in the conventional (-1)-picture is confirmed. It is shown that a nontrivial metric consistent with the BRST cohomology is needed to define a positive semidefinite norm in the physical Hilbert space. As a by-product, we find a new inverse picture-changing operator, which is noncovariant but has a nonsingular operator product with itself. A possibility to construct a new gauge-invariant superstring field theory is discussed.
Cascading gauge theory on dS4 and String Theory landscape
NASA Astrophysics Data System (ADS)
Buchel, Alex; Galante, Damián A.
2014-06-01
Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e., there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes. First, turning on fluxes on Calabi-Yau compactifications of type IIB string theory produces highly warped geometry with stabilized complex structure (but not Kähler) moduli of the compactification [3]; Next, including non-perturbative effects (which are under control given the unbroken supersymmetry), one obtains anti-de Sitter (AdS4) vacua with all moduli fixed; Finally, one uses anti-D3 branes of type IIB string theory to uplift AdS4 to de Sitter (dS4) vacua. As the last step of the construction completely breaks supersymmetry, it is much less controlled. In fact, in [4-7] it was argued that putting anti-D3 branes at the tip of the Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked singularity. Whether or not the resulting singularity is physical is subject to debates. When M4=dS4 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is always positive, as long as ln H2Λ2/P2g0 ⩾-0.4. When M4=dS4 and the chiral symmetry is broken, the D3 brane charge at the tip of the conifold is always zero; we managed to construct geometries of this type for ln H2Λ2/P2g0⩾-0.03. Comparing effective potential of the gauge theory in broken Veffb and unbroken Veffs phases we establish that in all cases, when we can construct the phase with spontaneously broken chiral symmetry, Veffb>Veffs, when ln H2Λ2/P2g0⩾-0.03, i.e., spontaneous symmetry breaking does not happen for given values of the gauge theory parameters. To put these parameters in perspective, note that the (first-order) confinement/deconfinement and chiral symmetry breaking phase transition in cascading gauge theory plasma occurs at temperature T such that [16] ln Tdeconfinement,χSB2Λ2/P2g0=0.2571(2), and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs for compactification scale μ3≡ℓ3-1 such that [21] ln μ3,χSB2Λ2/P2g0=0.4309(8). When M4=R×S3 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is negative when ln μ32Λ2/P2g0
Supersymmetry: Compactification, flavor, and dualities
NASA Astrophysics Data System (ADS)
Heidenreich, Benjamin Jones
We describe several new research directions in the area of supersymmetry. In the context of low-energy supersymmetry, we show that the assumption of R-parity can be replaced with the minimal flavor violation hypothesis, solving the issue of nucleon decay and the new physics flavor problem in one stroke. The assumption of minimal flavor violation uniquely fixes the form of the baryon number violating vertex, leading to testable predictions. The NLSP is unstable, and decays promptly to jets, evading stringent bounds on vanilla supersymmetry from LHC searches, whereas the gravitino is long-lived, and can be a dark matter component. In the case of a sbottom LSP, neutral mesinos can form and undergo oscillations before decaying, leading to same sign tops, and allowing us to place constraints on the model in this case. We show that this well-motivated phenomenology can be naturally explained by spontaneously breaking a gauged flavor symmetry at a high scale in the presence of additional vector-like quarks, leading to mass mixings which simultaneously generate the flavor structure of the baryon-number violating vertex and the Standard Model Yukawa couplings, explaining their minimal flavor violating structure. We construct a model which is robust against Planck suppressed corrections and which also solves the mu problem. In the context of flux compactifications, we begin a study of the local geometry near a stack of D7 branes supporting a gaugino condensate, an integral component of the KKLT scenario for Kahler moduli stabilization. We obtain an exact solution for the geometry in a certain limit using reasonable assumptions about symmetries, and argue that this solution exhibits BPS domain walls, as expected from field theory arguments. We also begin a larger program of understanding general supersymmetric compactifications of type IIB string theory, reformulating previous results in an SL(2, R ) covariant fashion. Finally, we present extensive evidence for a new class of N = 1 gauge theory dualities relating different world-volume gauge theories of D3 branes probing an orientifold singularity. We argue that these dualities originate from the S-duality of type IIB string theory, much like electromagnetic dualities of N = 4 gauge theories.
Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi; Sasago, Takaaki; Shinohara, Toru; Shibata, Akihiro; Kato, Seikou
2017-12-01
First, we give a gauge-independent definition of chromomagnetic monopoles in SU(N) Yang-Mills theory which is derived through a non-Abelian Stokes theorem for the Wilson loop operator. Then we discuss how such magnetic monopoles can give a nontrivial contribution to the Wilson loop operator for understanding the area law of the Wilson loop average. Next, we discuss how the magnetic monopole condensation picture are compatible with the vortex condensation picture as another promising scenario for quark confinement. We analyze the profile function of the magnetic flux tube as the non-Abelian vortex solution of U(N) gauge-Higgs model, which is to be compared with numerical simulations of the SU(N) Yang-Mills theory on a lattice. This analysis gives an estimate of the string tension based on the vortex condensation picture, and possible interactions between two non-Abelian vortices.
A note on the WGC, effective field theory and clockwork within string theory
NASA Astrophysics Data System (ADS)
Ibáñez, Luis E.; Montero, Miguel
2018-02-01
It has been recently argued that Higgsing of theories with U(1) n gauge interactions consistent with the Weak Gravity Conjecture (WGC) may lead to effective field theories parametrically violating WGC constraints. The minimal examples typically involve Higgs scalars with a large charge with respect to a U(1) (e.g. charges ( Z, 1) in U(1)2 with Z ≫ 1). This type of Higgs multiplets play also a key role in clockwork U(1) theories. We study these issues in the context of heterotic string theory and find that, even if there is no new physics at the standard magnetic WGC scale Λ ˜ g IR M P , the string scale is just slightly above, at a scale ˜ √{k_{IR}}Λ. Here k IR is the level of the IR U(1) worldsheet current. We show that, unlike the standard magnetic cutoff, this bound is insensitive to subsequent Higgsing. One may argue that this constraint gives rise to no bound at the effective field theory level since k IR is model dependent and in general unknown. However there is an additional constraint to be taken into account, which is that the Higgsing scalars with large charge Z should be part of the string massless spectrum, which becomes an upper bound k IR ≤ k 0 2 , where k 0 is the level of the UV currents. Thus, for fixed k 0, Z cannot be made parametrically large. The upper bound on the charges Z leads to limitations on the size and structure of hierarchies in an iterated U(1) clockwork mechanism.
Infrared dynamics of minimal walking technicolor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino
2010-07-01
We study the gauge sector of minimal walking technicolor, which is an SU(2) gauge theory with n{sub f}=2 flavors of Wilson fermions in the adjoint representation. Numerical simulations are performed on lattices N{sub t}xN{sub s}{sup 3}, with N{sub s} ranging from 8 to 16 and N{sub t}=2N{sub s}, at fixed {beta}=2.25, and varying the fermion bare mass m{sub 0}, so that our numerical results cover the full range of fermion masses from the quenched region to the chiral limit. We present results for the string tension and the glueball spectrum. A comparison of mesonic and gluonic observables leads to themore » conclusion that the infrared dynamics is given by an SU(2) pure Yang-Mills theory with a typical energy scale for the spectrum sliding to zero with the fermion mass. The typical mesonic mass scale is proportional to and much larger than this gluonic scale. Our findings are compatible with a scenario in which the massless theory is conformal in the infrared. An analysis of the scaling of the string tension with the fermion mass toward the massless limit allows us to extract the chiral condensate anomalous dimension {gamma}{sub *}, which is found to be {gamma}{sub *}=0.22{+-}0.06.« less
Chern-Simons improved Hamiltonians for strings in three space dimensions
NASA Astrophysics Data System (ADS)
Gordeli, Ivan; Melnikov, Dmitry; Niemi, Antti J.; Sedrakyan, Ara
2016-07-01
In the case of a structureless string the extrinsic curvature and torsion determine uniquely its shape in three-dimensional ambient space, by way of solution of the Frenet equation. In many physical scenarios there are in addition symmetries that constrain the functional form of the ensuing energy function. For example, the energy of a structureless string should be independent of the way the string is framed in the Frenet equation. Thus the energy should only involve the curvature and torsion as dynamical variables, in a manner that resembles the Hamiltonian of the Abelian Higgs model. Here we investigate the effect of symmetry principles in the construction of Hamiltonians for structureless strings. We deduce from the concept of frame independence that in addition to extrinsic curvature and torsion, the string can also engage a three-dimensional Abelian bulk gauge field as a dynamical variable. We find that the presence of a bulk gauge field gives rise to a long-range interaction between different strings. Moreover, when this gauge field is subject to Chern-Simons self-interaction, it becomes plausible that interacting strings are subject to fractional statistics in three space dimensions.
NASA Astrophysics Data System (ADS)
Alexandrov, Sergei; Pioline, Boris
2012-08-01
In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space {{M}_H} must carry an isometric action of the modular group SL(2 , {Z} ), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of {{M}_H} , and construct a general class of SL(2 , {Z} )-invariant quaternion-Kähler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include {{M}_H} corrected by D3-D1-D(-1)-instantons (with five-brane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional {N} = {2} gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.
Compact, singular G 2-holonomy manifolds and M/heterotic/F-theory duality
NASA Astrophysics Data System (ADS)
Braun, Andreas P.; Schäfer-Nameki, Sakura
2018-04-01
We study the duality between M-theory on compact holonomy G 2-manifolds and the heterotic string on Calabi-Yau three-folds. The duality is studied for K3-fibered G 2-manifolds, called twisted connected sums, which lend themselves to an application of fiber-wise M-theory/Heterotic Duality. For a large class of such G 2-manifolds we are able to identify the dual heterotic as well as F-theory realizations. First we establish this chain of dualities for smooth G 2-manifolds. This has a natural generalization to situations with non-abelian gauge groups, which correspond to singular G 2-manifolds, where each of the K3-fibers degenerates. We argue for their existence through the chain of dualities, supported by non-trivial checks of the spectra. The corresponding 4d gauge groups can be both Higgsable and non-Higgsable, and we provide several explicit examples of the general construction.
NASA Astrophysics Data System (ADS)
McReynolds, Sean
Five-dimensional N = 2 Yang-Mills-Einstein supergravity and its couplings to hyper and tensor multiplets are considered on an orbifold spacetime of the form M4 x S1/Gamma, where Gamma is a discrete group. As is well known in such cases, supersymmetry is broken to N = 1 on the orbifold fixed planes, and chiral 4D theories can be obtained from bulk hypermultiplets (or from the coupling of fixed-plane supported fields). Five-dimensional gauge symmetries are broken by boundary conditions for the fields, which are equivalent to some set of Gamma-parity assignments in the orbifold theory, allowing for arbitrary rank reduction. Furthermore, Wilson lines looping from one boundary to the other can break bulk gauge groups, or give rise to vacuum expectation values for scalars on the boundaries, which can result in spontaneous breaking of boundary gauge groups. The broken gauge symmetries do not survive as global symmetries of the low energy theories below the compactification scale due to 4 D minimal couplings to gauge fields. Axionic fields are a generic feature, just as in any compactification of M-theory (or string theory for that matter), and we exhibit the form of this field and its role as the QCD axion, capable of resolving the strong CP problem. The main motivation for the orbifold theories here is taken to be orbifold-GUTS, wherein a unified gauge group is sought in higher dimensions while allowing the orbifold reduction to handle problems such as rapid proton decay, exotic matter, mass hierarchies, etc. To that end, we discuss the allowable minimal SU(5), SO(10) and E6 GUT theories with all fields living in five dimensions. It is argued that, within the class of homogeneous quaternionic scalar manifolds characterizing the hypermultiplet couplings in 5D, supergravity admits a restricted set of theories that yield minimal phenomenological field content. In addition, non-compact gaugings are a novel feature of supergravity theories, and in particular we consider the example of an SU(5,1) YMESGT in which all of the fields of the theory are connected by local (susy and gauge) transformations that are symmetries of the Lagrangian. Such non-compact gaugings allow a novel type of gauge-Higgs unification in higher dimensions. The possibility of boundary-localized fields is considered only via anomaly arguments. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Hiramatsu, Takashi; Sendouda, Yuuiti; Takahashi, Keitaro; Yamauchi, Daisuke; Yoo, Chul-Moon
2013-10-01
We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter β, the ratio between the masses of the scalar field and the gauge field, namely, β=mφ2/mA2. In particular, if we take the cosmic expansion into account, the network becomes densest in the comoving box for a specific value of β for β<1.
Sequestered gravity in gauge mediation.
Antoniadis, Ignatios; Benakli, Karim; Quiros, Mariano
2016-01-01
We present a novel mechanism of supersymmetry breaking embeddable in string theory and simultaneously sharing the main advantages of (sequestered) gravity and gauge mediation. It is driven by a Scherk-Schwarz deformation along a compact extra dimension, transverse to a brane stack supporting the supersymmetric extension of the Standard Model. This fixes the magnitude of the gravitino mass, together with that of the gauginos of a bulk gauge group, at a scale as high as [Formula: see text] GeV. Supersymmetry breaking is mediated to the observable sector dominantly by gauge interactions using massive messengers transforming non-trivially under the bulk and Standard Model gauge groups and leading to a neutralino LSP as dark matter candidate. The Higgsino mass [Formula: see text] and soft Higgs-bilinear [Formula: see text] term could be generated at the same order of magnitude as the other soft terms by effective supergravity couplings as in the Giudice-Masiero mechanism.
Topics in Cosmic String Physics and Vacuum Stability of Field Theories
NASA Astrophysics Data System (ADS)
Dasgupta, Indranil
1998-01-01
In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first order phase transition. I then indicate possible phenomenological applications of this effect and develop simple approximation techniques for computing the rate of seeded tunneling.
Introduction to the AdS/CFT Correspondence
NASA Astrophysics Data System (ADS)
Nąstase, Horaǧiu
2015-09-01
Preface; Introduction; Part I. Background: 1. Elements of quantum field theory and gauge theory; 2. Basics of general relativity. Anti-de Sitter space; 3. Basics of supersymmetry; 4. Basics of supergravity; 5. Kaluza-Klein dimensional reduction; 6. Black holes and p-branes; 7. String theory actions and spectra; 8. Elements of conformal field theory; 9. D-branes; Part II. Basics of AdS/CFT for N = 4 SYM vs AdS5 × S5: 10. The AdS/CFT correspondence: motivation, definition and spectra; 11. Witten prescription and 3-point correlator calculations; 12. Holography in Lorentzian signature: Poincaré and global; 13. Solitonic objects in AdS/CFT; 14. Quarks and the Wilson loop; 15. Finite temperature and N = 4 SYM plasmas; 16. Scattering processes and gravitational shockwave limit; 17. The pp-wave correspondence; 18. Spin chains; Part III. AdS/CFT Developments and Gauge-Gravity Dualities: 19. Other conformal cases; 20. The 3 dimensional ABJM model vs. AdS4 × CP3; 21. Gravity duals; 22. Holographic renormalization; 23. RG flow between fixed points; 24. Phenomenological gauge-gravity duality I: AdS/QCD; 25. Phenomenological gauge-gravity duality II: AdS/CMT; 26. Gluon scattering: the Alday-Maldacena prescription; 27. Holographic entanglement entropy: the Ryu-Takayanagi prescription.
Intersecting branes, Higgs sector, and chirality from N = 4 SYM with soft SUSY breaking
NASA Astrophysics Data System (ADS)
Sperling, Marcus; Steinacker, Harold C.
2018-04-01
We consider SU( N ) N = 4 super Yang-Mills with cubic and quadratic soft SUSY breaking potential, such that the global SU(4) R is broken to SU(3) or further. As shown recently, this set-up supports a rich set of non-trivial vacua with the geometry of self-intersecting SU(3) branes in 6 extra dimensions. The zero modes on these branes can be interpreted as 3 generations of bosonic and chiral fermionic strings connecting the branes at their intersections. Here, we uncover a large class of exact solutions consisting of branes connected by Higgs condensates, leading to Yukawa couplings between the chiral fermionic zero modes. Under certain decoupling conditions, the backreaction of the Higgs on the branes vanishes exactly. The resulting physics is that of a spontaneously broken chiral gauge theory on branes with fluxes. In particular, we identify combined brane plus Higgs configurations which lead to gauge fields that couple to chiral fermions at low energy. This turns out to be quite close to the Standard Model and its constructions via branes in string theory. As a by-product, we construct a G 2-brane solution corresponding to a squashed fuzzy coadjoint orbit of G 2.
Supersymmetric attractors, topological strings, and the M5-brane CFT
NASA Astrophysics Data System (ADS)
Guica, Monica M.
One of the purposes of this thesis is to present the consistent and unifying picture that emerges in string and M-theory with eight supercharges. On one hand, this involves classifying and relating supersymmetric objects that occur in N = 2 compactifications of string and M-theory on a Calabi-Yau manifold. These come in a surprisingly wide variety of four and five-dimensional black holes, black rings and their sometimes very complicated bound states. On the other hand, the topological string also makes its appearance in theories with eight supercharges, and turns out to compute certain black hole degeneracies. We dedicate the introduction and the first chapter to summarizing and reviewing the beautiful relationships between black holes, black rings, their dual conformal field theory and the topological string, and we also outline the remaining puzzles and issues. Some of the black holes in question can be obtained by multiply-wrapping an M-theory M5-brane on a self-intersecting four-cycle in the Calabi-Yau manifold. Their dual microscopic description is known, and consists of a two-dimensional conformal field theory (CFT) which is the low-energy limit of the gauge theory that resides on the worldvolume of the M5 brane. We show that in a certain limit the M5-brane CFT is - perhaps surprisingly - able to reproduce the entropy of a completely different type of black holes, those obtained from wrapped M2-branes, whose microscopic description has not yet been understood. We also argue that certain black hole bound states should also be described by the same CFT, which suggests a unifying description of the various black objects in eight-supercharge supergravity theories. Finally, we describe and present a proof of the so-called OSV conjecture, which states that the mixed partition function of N = 2 four-dimensional BPS black holes equals the modulus square of the type A topological string partition function. We also attempt to use this relationship to better understand corrections to the entropy of supersymmetric black holes and rings in five dimensions.
String-inspired special grand unification
NASA Astrophysics Data System (ADS)
Yamatsu, Naoki
2017-10-01
We discuss a grand unified theory (GUT) based on an SO(32) GUT gauge group broken to its subgroups including a special subgroup. In the SO(32) GUT on the six-dimensional (6D) orbifold space M^4× T^2/\\mathbb{Z}_2, one generation of the standard model fermions can be embedded into a 6D bulk Weyl fermion in the SO(32) vector representation. We show that for a three-generation model, all the 6D and 4D gauge anomalies in the bulk and on the fixed points are canceled out without exotic chiral fermions at low energies.
Gauge theories with time dependent couplings and their cosmological duals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awad, Adel; Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P.O. Box 43; Das, Sumit R.
2009-02-15
We consider the N=4 super Yang-Mills theory in flat 3+1-dimensional space-time with a time dependent coupling constant which vanishes at t=0, like g{sub YM}{sup 2}=t{sup p}. In an analogous quantum mechanics toy model we find that the response is singular. The energy diverges at t=0, for a generic state. In addition, if p>1 the phase of the wave function has a wildly oscillating behavior, which does not allow it to be continued past t=0. A similar effect would make the gauge theory singular as well, though nontrivial effects of renormalization could tame this singularity and allow a smooth continuation beyondmore » t=0. The gravity dual in some cases is known to be a time dependent cosmology which exhibits a spacelike singularity at t=0. Our results, if applicable in the gauge theory for the case of the vanishing coupling, imply that the singularity is a genuine sickness and does not admit a meaningful continuation. When the coupling remains nonzero and becomes small at t=0, the curvature in the bulk becomes of order string scale. The gauge theory now admits a time evolution beyond this point. In this case, a finite amount of energy is produced which possibly thermalizes and leads to a black hole in the bulk.« less
Star products on graded manifolds and α′-corrections to Courant algebroids from string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deser, Andreas, E-mail: andreas.deser@itp.uni-hannover.de
2015-09-15
Courant algebroids, originally used to study integrability conditions for Dirac structures, have turned out to be of central importance to study the effective supergravity limit of string theory. The search for a geometric description of T-duality leads to Double Field Theory (DFT), whose gauge algebra is governed by the C-bracket, a generalization of the Courant bracket in the sense that it reduces to the latter by solving a specific constraint. Recently, in DFT deformations of the C-bracket and O(d, d)-invariant bilinear form to first order in the closed string sigma model coupling, α′ were derived by analyzing the transformation propertiesmore » of the Neveu-Schwarz B-field. By choosing a particular Poisson structure on the Drinfel’d double corresponding to the Courant algebroid structure of the generalized tangent bundle, we are able to interpret the C-bracket and bilinear form in terms of Poisson brackets. As a result, we reproduce the α′-deformations for a specific solution to the strong constraint of DFT as expansion of a graded version of the Moyal-Weyl star product.« less
Final Project Report for DOE Grant NO.: DE-SC0010534 Period: Sept 2013-March 31, 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunaydin, Murat
2016-08-01
Higher spin theories has been an active area of research in recent years. One of the main research activities of the PI Murat Gunaydin over the period of this grant has been the application of quasiconformal methods to construct and study higher spin (HS) algebras and superalgebras in various dimensions. Over the past decade work on amplitudes in gauge theories, supergravity and string theories has been a very active area of research. Enormous progress has been made in the understanding of the structure of amplitudes in these theories. The novel methods and results obtained have made it possible to domore » calculations in gauge theories and supergravity theories that go well beyond the calculations one can do using the old-fashioned Feynman diagram techniques. Work on amplitudes in matter-coupled supergravity theories has been the second main focus of the PI during the funding period. The previous work of the PI on supergravity theories has played a fundamentally important role in the current work on amplitudes.« less
On D-brane -anti D-brane effective actions and their all order bulk singularity structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatefi, Ehsan; Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna
All four point functions of brane anti brane system including their correct all order α{sup ′} corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR,more » gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of u-channel gauge field and (u+s{sup ′}+t{sup ′})-channel scalar bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effective field theory that involve the mixing term of Chern-Simons coupling (with C-potential field) and a covariant derivative of the scalar field that comes from the pull-back of brane. Eventually we explore their all order α{sup ′} corrections in the presence of brane anti brane system where various remarks will be also pointed out.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAllister, Liam
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAllister, Liam
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Ashoke
Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five seriesmore » of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions";. This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Ashoke
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.« less
Large field inflation from axion mixing
NASA Astrophysics Data System (ADS)
Shiu, Gary; Staessens, Wieland; Ye, Fang
2015-06-01
We study the general multi-axion systems, focusing on the possibility of large field inflation driven by axions. We find that through axion mixing from a non-diagonal metric on the moduli space and/or from Stückelberg coupling to a U(1) gauge field, an effectively super-Planckian decay constant can be generated without the need of "alignment" in the axion decay constants. We also investigate the consistency conditions related to the gauge symmetries in the multi-axion systems, such as vanishing gauge anomalies and the potential presence of generalized Chern-Simons terms. Our scenario applies generally to field theory models whose axion periodicities are intrinsically sub-Planckian, but it is most naturally realized in string theory. The types of axion mixings invoked in our scenario appear quite commonly in D-brane models, and we present its implementation in type II superstring theory. Explicit stringy models exhibiting all the characteristics of our ideas are constructed within the frameworks of Type IIA intersecting D6-brane models on and Type IIB intersecting D7-brane models on Swiss-Cheese Calabi-Yau orientifolds.
String Theory on five dimensional Anti de Sitter space-times: Fundamental aspects and applications
NASA Astrophysics Data System (ADS)
Hofman, Diego M.
2009-12-01
In this thesis we study basic properties and applications of String Theory on AdS5 backgrounds. We do this in the framework of the AdS/CFT Correspondence and use our results to learn about four dimensional Conformal Field Theories. The first part of this work deals fundamentally with the problem of solving the exact spectrum of anomalous dimensions of planar N = 4 Super Yang Mills theory for all values of the 't Hooft coupling lambda. We study the problem for operators of large SO(6) charge J and identify the string configurations dual to magnons in the spin chain picture of the gauge theory. We name these states Giant Magnons. Furthermore we study their interactions and discuss the implications of the spectrum of states on the analytic structure of the exact scattering matrix of the theory. It is found that BPS states account for all the poles present in the full S-matrix. We also study the spectrum of Giant Magnons attached to D3-branes (Giant Gravitons). The dual operators in N = 4 SYM are long strings of SO(6) scalars connected to baryonic operators constructed of order N fields. The problem turns out to be mapped to solving the mulitparticle spectrum of a spin chain with non trivial boundary conditions. We study the properties of the boundary reflection matrix in detail and write equations that determine the associated phase factor. The second part of this work deals with applications of this type of string theories to the collider physics of conformal theories. We study infrared safe observables in the CFT given by energy correlation functions. We discuss the short distance behavior of these objects and explain that this physics is controlled by non local light ray operators. We find the dual String Theory description of these observables and use these results to study the strong coupling physics of conformal theories. We also describe the precise string states dual to the light ray operators. We argue that the energy operators that account for the energy measured at a calorimeter in a collider experiment should always be positive in any UV complete Quantum Field Theory. This fact has consequences in the higher derivative terms in the gravity action of the dual description. Finally, we discuss a proposed bound for the central charges of CFTs that is a consequence of the energy positivity condition.
On non-homogeneous tachyon condensation in closed string theory
NASA Astrophysics Data System (ADS)
Giribet, Gaston; Rado, Laura
2017-08-01
Lorentzian continuation of the Sine-Liouville model describes non-homogeneous rolling closed string tachyon. Via T-duality, this relates to the gauged H + 3 Wess-Zumino-Witten model at subcritical level. This model is exactly solvable. We give a closed formula for the 3-point correlation functions for the model at level k within the range 0 < k < 2, which relates to the analogous quantity for k > 2 in a similar way as how the Harlow-Maltz-Witten 3-point function of timelike Liouville field theory relates to the analytic continuation of the Dorn-Otto-Zamolodchikov-Zamolodchikov structure constants: we find that the ratio between both 3-point functions can be written in terms of quotients of Jacobi's θ-functions, while their product exhibits remarkable cancellations and eventually factorizes. Our formula is consistent with previous proposals made in the literature.
From 6D superconformal field theories to dynamic gauged linear sigma models
NASA Astrophysics Data System (ADS)
Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.
2017-09-01
Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.
Strings in bubbling geometries and dual Wilson loop correlators
NASA Astrophysics Data System (ADS)
Aguilera-Damia, Jeremías; Correa, Diego H.; Fucito, Francesco; Giraldo-Rivera, Victor I.; Morales, Jose F.; Pando Zayas, Leopoldo A.
2017-12-01
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU( N) gauge group in N=4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry, explicitly. We also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a "small" one in the fundamental, totally symmetric or totally antisymmetric representation.
(2,2) and (0,4) supersymmetric boundary conditions in 3d N =4 theories and type IIB branes
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Okazaki, Tadashi
2017-10-01
The half-BPS boundary conditions preserving N =(2 ,2 ) and N =(0 ,4 ) supersymmetry in 3d N =4 supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Nahm-like equations arise in the vector multiplet BPS boundary condition preserving N =(0 ,4 ) supersymmetry, and Robin-type boundary conditions appear for the hypermultiplet coupled to the vector multiplet when N =(2 ,2 ) supersymmetry is preserved. The half-BPS boundary conditions are realized in the brane configurations of type IIB string theory.
String Theory Methods for Condensed Matter Physics
NASA Astrophysics Data System (ADS)
Nastase, Horatiu
2017-09-01
Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger symmetries and their gravity duals; 33. Finite temperature and black holes; 34. Hot plasma equilibrium thermodynamics: entropy, charge density and chemical potential of strongly coupled theories; 35. Spectral functions and transport properties; 36. Dynamic and nonequilibrium properties of plasmas: electric transport, Langevin diffusion and thermalization via black hole quasi-normal modes; 37. The holographic superconductor; 38. The fluid-gravity correspondence: conformal relativistic fluids from black hole horizons; 39. Nonrelativistic fluids: from Einstein to Navier-Stokes and back; Part IV. Advanced Applications: 40. Fermi gas and liquid in AdS/CFT; 41. Quantum Hall effect from string theory; 42. Quantum critical systems and AdS/CFT; 43. Particle-vortex duality and ABJM vs. AdS4 X CP3 duality; 44. Topology and non-standard statistics from AdS/CFT; 45. DBI scalar model for QGP/black hole hydro- and thermo-dynamics; 46. Holographic entanglement entropy in condensed matter; 47. Holographic insulators; 48. Holographic strange metals and the Kondo problem; References; Index.
BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory
NASA Astrophysics Data System (ADS)
Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid
It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.
Emerging geometry from maximally super-symmetric Yang-Mills theory
NASA Astrophysics Data System (ADS)
Vazquez, Samuel Enrique
In this thesis, we explore the emergence of space-time geometry, and string theory physics from N = 4 supersymmetric Yang-Mills (SYM) theory with gauge group U(N). This is done in the context of the anti-de-Sitter/conformal field theory correspondence (AdS/CFT). The main results of this thesis are the following. First, we study single trace perturbations around generic 1/2 BPS states of the theory. We do this in the large N limit, and at one-loop in the 't-Hooft coupling. We show how these states can be mapped to dynamical lattices with boson statistics and periodic boundary conditions. By dynamical, we mean that the total boson occupation number is not conserved in general. Then, we show how to derive an effective sigma model for these systems which coincides with the Polyakov action of a probe string on a 1/2 BPS geometry (in the fast string limit). Secondly, we study non-supersymmetric perturbations of the vacuum which give rise to bosonic lattices with open boundary conditions. We also do this in the large N limit, and at one-loop in the 't-Hooft coupling. We show that these states are dual to open strings on D3-branes known as "Giant Gravitons". These lattice systems are also dynamical, but in some special cases, we show that we get an integrable spin chain with open boundary conditions. Next, we study single trace perturbations at strong coupling. We do this by taking a "dilute gas" approximation. We derive an all-loop result for the dispersion relation of the "magnons" which coincides with previous conjectures in the literature. What is more, we derive the geometrical picture of the so-called "giant magnon" string solution of Hofman and Maldacena, directly from the field theory. Finally, we explore the question of classical integrability of open strings on D-branes. In particular, we study the case of the giant gravitons, and compare the integrable structures on both sides of the AdS/CFT correspondence.
Gerbes, M5-Brane Anomalies and E8 Gauge Theory
NASA Astrophysics Data System (ADS)
Aschieri, Paolo; Jurco, Branislav
2004-10-01
Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general tilde OmegaE8, the central extension of the E8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.
Emergent dimensions and branes from large-N confinement
NASA Astrophysics Data System (ADS)
Cherman, Aleksey; Poppitz, Erich
2016-12-01
N =1 S U (N ) super-Yang-Mills theory on R3×S1 is believed to have a smooth dependence on the circle size L . Making L small leads to calculable nonperturbative color confinement, mass gap, and string tensions. For finite N , the small-L low-energy dynamics is described by a three-dimensional effective theory. The large-N limit, however, reveals surprises: the infrared dual description is in terms of a theory with an emergent fourth dimension, curiously reminiscent of T-duality in string theory. Here, however, the emergent dimension is a lattice, with momenta related to the S1-winding of the gauge field holonomy, which takes values in ZN. Furthermore, the low-energy description is given by a nontrivial gapless theory, with a space-like z =2 Lifshitz scale invariance and operators that pick up anomalous dimensions as L is increased. Supersymmetry-breaking deformations leave the long-distance theory scale-invariant, but change the Lifshitz scaling exponent to z =1 , and lead to an emergent Lorentz symmetry at small L . Adding a small number of fundamental fermion fields leads to matter localized on three-dimensional branes in the emergent four-dimensional theory.
Unifying Type-II Strings by Exceptional Groups
NASA Astrophysics Data System (ADS)
Arvanitakis, Alex S.; Blair, Chris D. A.
2018-05-01
We construct the exceptional sigma model: a two-dimensional sigma model coupled to a supergravity background in a manifestly (formally) ED (D )-covariant manner. This formulation of the background is provided by exceptional field theory (EFT), which unites the metric and form fields of supergravity in ED (D ) multiplets before compactification. The realization of the symmetries of EFT on the world sheet uniquely fixes the Weyl-invariant Lagrangian and allows us to relate our action to the usual type-IIA fundamental string action and a form of the type-IIB (m , n ) action. This uniqueness "predicts" the correct form of the couplings to gauge fields in both Neveu-Schwarz and Ramond sectors, without invoking supersymmetry.
Open superstring field theory based on the supermoduli space
NASA Astrophysics Data System (ADS)
Ohmori, Kantaro; Okawa, Yuji
2018-04-01
We present a new approach to formulating open superstring field theory based on the covering of the supermoduli space of super-Riemann surfaces and explicitly construct a gauge-invariant action in the Neveu-Schwarz sector up to quartic interactions. The cubic interaction takes a form of an integral over an odd modulus of disks with three punctures and the associated ghost is inserted. The quartic interaction takes a form of an integral over one even modulus and two odd moduli, and it can be interpreted as the integral over the region of the supermoduli space of disks with four punctures which is not covered by Feynman diagrams with two cubic vertices and one propagator. As our approach is based on the covering of the supermoduli space, the resulting theory naturally realizes an A ∞ structure, and the two-string product and the three-string product used in defining the cubic and quartic interactions are constructed to satisfy the A ∞ relations to this order.
Strong Coupling Gauge Theories in LHC ERA
NASA Astrophysics Data System (ADS)
Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.
2011-01-01
AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal Higgs, or techni-dilaton - composite Higgs near conformality / Koichi Yamawaki -- Phase diagram of strongly interacting theories / Francesco Sannino -- Resizing conformal windows / O. Antipin and K. Tuominen -- Nearly conformal gauge theories on the lattice / Zoltan Fodor ... [et al.] -- Going beyond QCD in lattice gauge theory / G. T. Fleming -- Phases of QCD from small to large N[symbol]: (some) lattice results / A. Deuzeman, E. Pallante and M. P. Lombardo -- Lattice gauge theory and (quasi)-conformal technicolor / D. K. Sinclair and J. B. Kogut -- Study of the running coupling constant in 10-flavor QCD with the Schrodinger functional method / N. Yamada ... [et al.] -- Study of the running coupling in twisted Polyakov scheme / T. Aoyama ... [et al.].Running coupling in strong gauge theories via the lattice / Zoltan Fodor ... [et al.] -- Higgsinoless supersymmetry and hidden gravity / Michael L. Graesser, Ryuichiro Kitano and Masafumi Kurachi -- The latest status of LHC and the EWSB physics / S. Asai -- Continuum superpartners from supersymmetric unparticles / Hsin-Chia Cheng -- Review of minimal flavor constraints for technicolor / Hidenori S. Fukano and Francesco Sannino -- Standard model and high energy Lorentz violation / Damiano Anselmi -- Dynamical electroweak symmetry breaking and fourth family / Michio Hashimoto -- Holmorphic supersymmetric Nambu-Jona-Lasino model and dynamical electroweak symmetry breaking / Dong-Won Jung, Otto C. W. Kong and Jae Sik Lee -- Ratchet model of Baryogenesis / Tatsu Takeuchi, Azusa Minamizaki and Akio Sugamoto -- Classical solutions of field equations in Einstein Gauss-Bonnet gravity / P. Suranyi, C. Vaz and L. C. R. Wijewardhana -- Black holes constitute all dark matter / Paul H. Frampton -- Electroweak precision test and Z [symbol] in the three site Higgsless model / Tomohiro Abe -- Chiral symmetry and BRST symmetry breaking, quaternion reality and the lattice simulation / Sadataka Furui -- Holographic techni-dilaton, or conformal Higgs / Kazumoto Haba, Shinya Matsuzaki and Koichi Yamawaki -- Phase structure of topologically massive gauge theory with fermion / Yuichi Hoshino -- New regularization in extra dimensional model and renormalization group flow of the cosmological constant / Shoichi Ichinose -- Spectral analysis of dense two-color QCD / T. Kanazawa, T. Wettig and N. Yamamoto -- NJL model with dimensional regularization at finite temperature / T. Fujihara ... [et al.] -- A new method of evaluating the dynamical chiral symmetry breaking scale and the chiral restoration temperature in general gauge theories by using the non-perturbative renormalization group analyses with general 4-Fermi effective interaction space / Ken-Ichi Aoki, Daisuke Sato and Kazuhiro Miyashita -- The effective chiral Lagrangian with vector mesons and hadronic [symbol] decays / D. Kimura ... [et al.] -- Spontaneous SUSY breaking with anomalous U(1) symmetry in metastable vacua and moduli stabilization / Hiroyuki Nishino -- A new description of the lattice Yang-Mills theory and non-abelian magnetic monopole dominance in the string tension / Akihiro Shibata -- Thermodynamics with unbroken center symmetry in two-flavor QCD / S. Takemoto, M. Harada and C. Sasaki -- Masses of vector bosons in two-color QCD based on the hidden local symmetry / T. Yamaoka, M. Harada and C. Nonaka -- Walking dynamics from string duals / Maurizio Piai -- The quark mass dependence of the nucleon mass in AdS/QCD / Hyo Chul Ahn -- Structure of thermal quasi-fermion in QED/QCD from the Dyson-Schwinger equation / Hisao Nakkagawa -- Critical behaviors of sigma-mode and pion in holographic superconductors / Cheonsoo Park.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Partha
2007-06-01
We discuss a universality property of any covariant field theory in space-time expanded around pp-wave backgrounds. According to this property the space-time lagrangian density evaluated on a restricted set of field configurations, called universal sector, turns out to be same around all the pp-waves, even off-shell, with same transverse space and same profiles for the background scalars. In this paper we restrict our discussion to tensorial fields only. In the context of bosonic string theory we consider on-shell pp-waves and argue that universality requires the existence of a universal sector of world-sheet operators whose correlation functions are insensitive to the pp-wave nature of the metric and the background gauge flux. Such results can also be reproduced using the world-sheet conformal field theory. We also study such pp-waves in non-polynomial closed string field theory (CSFT). In particular, we argue that for an off-shell pp-wave ansatz with flat transverse space and dilaton independent of transverse coordinates the field redefinition relating the low energy effective field theory and CSFT with all the massive modes integrated out is at most quadratic in fields. Because of this simplification it is expected that the off-shell pp-waves can be identified on the two sides. Furthermore, given the massless pp-wave field configurations, an iterative method for computing the higher massive modes using the CSFT equations of motion has been discussed. All our bosonic string theory analyses can be generalised to the common Neveu-Schwarz sector of superstrings.
On non-BPS effective actions of string theory
NASA Astrophysics Data System (ADS)
Hatefi, Ehsan
2018-05-01
We discuss some physical prospective of the non-BPS effective actions of type IIA and IIB superstring theories. By dealing with all complete three and four point functions, including a closed Ramond-Ramond string (in terms of both its field strength and its potential), gauge (scalar) fields as well as a real tachyon and under symmetry structures, we find various restricted world volume and bulk Bianchi identities. The complete forms of the non-BPS scattering amplitudes including their Chan-Paton factors are elaborated. All the singularity structures of the non-BPS amplitudes, their all order α ' higher-derivative corrections, their contact terms and various modified Bianchi identities are derived. Finally, we show that scattering amplitudes computed in different super-ghost pictures are compatible when suitable Bianchi identities are imposed on the Ramond-Ramond fields. Moreover, we argue that the higher-derivative expansion in powers of the momenta of the tachyon is universal.
Strings in bubbling geometries and dual Wilson loop correlators
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco; ...
2017-12-20
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
Strings in bubbling geometries and dual Wilson loop correlators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
Vectorlike chiral fourth family to explain muon anomalies
NASA Astrophysics Data System (ADS)
Raby, Stuart; Trautner, Andreas
2018-05-01
The Standard Model (SM) is amended by one generation of quarks and leptons which are vectorlike (VL) under the SM gauge group but chiral with respect to a new U(1 ) 3 -4 gauge symmetry. We show that this model can simultaneously explain the deviation of the muon g -2 as well as the observed anomalies in b →s μ+μ- transitions without conflicting with the data on Higgs decays, lepton flavor violation, or Bs-B¯s mixing. The model is string theory motivated and Grand Unified Theory compatible, i.e. UV complete, and fits the data predicting VL quarks, leptons, and a massive Z' at the TeV scale, as well as τ →3 μ and τ →μ γ within reach of future experiments. The Higgs couplings to SM generations are automatically aligned in flavor space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher. This video is Part 11 in the series.« less
Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets
NASA Astrophysics Data System (ADS)
Cheung, Yeuk-Kwan E.; Xu, Feng
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.
Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik
Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less
Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy
Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...
2017-07-03
Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less
R 4 couplings in M- and type II theories on Calabi-Yau spaces
NASA Astrophysics Data System (ADS)
Antoniadis, I.; Feffara, S.; Minasian, R.; Narain, K. S.
1997-02-01
We discuss several implications of R 4 couplings in M-theory when compactified on Calabi-Yau (CY) manifolds. In particular, these couplings can be predicted by supersymmetry from the mixed gauge-gravitational Chem-Simons couplings in five dimensions and are related to the one-loop holomorphic anomaly in four-dimensional N = 2 theories. We find a new contribution to the Einstein term in five dimensions proportional to the Euler number of the internal CY threefold, which corresponds to a one-loop correction of the hypermultiplet geometry. This correction is reproduced by a direct computation in type 11 string theories. Finally, we discuss a universal non-perturbative correction to the type IIB hyper-metric.
Witten index for noncompact dynamics
NASA Astrophysics Data System (ADS)
Lee, Seung-Joo; Yi, Piljin
2016-06-01
Among gauged dynamics motivated by string theory, we find many with gapless asymptotic directions. Although the natural boundary condition for ground states is L 2, one often turns on chemical potentials or supersymmetric mass terms to regulate the infrared issues, instead, and computes the twisted partition function. We point out how this procedure generically fails to capture physical L 2 Witten index with often misleading results. We also explore how, nevertheless, the Witten index is sometimes intricately embedded in such twisted partition functions. For d = 1 theories with gapless continuum sector from gauge multiplets, such as non-primitive quivers and pure Yang-Mills, a further subtlety exists, leading to fractional expressions. Quite unexpectedly, however, the integral L 2 Witten index can be extracted directly and easily from the twisted partition function of such theories. This phenomenon is tied to the notion of the rational invariant that appears naturally in the wall-crossing formulae, and offers a general mechanism of reading off Witten index directly from the twisted partition function. Along the way, we correct early numerical results for some of mathcal{N} = 4 , 8 , 16 pure Yang-Mills quantum mechanics, and count threshold bound states for general gauge groups beyond SU( N ).
Isometries, gaugings and {N} = 2 supergravity decoupling
NASA Astrophysics Data System (ADS)
Antoniadis, Ignatios; Derendinger, Jean-Pierre; Petropoulos, P. Marios; Siampos, Konstantinos
2016-11-01
We study off-shell rigid limits for the kinetic and scalar-potential terms of a single {N} = 2 hypermultiplet. In the kinetic term, these rigid limits establish relations between four-dimensional quaternion-Kähler and hyper-Kähler target spaces with symmetry. The scalar potential is obtained by gauging the graviphoton along an isometry of the quaternion-Kähler space. The rigid limits unveil two distinct cases. A rigid {N} = 2 theory on Minkowski or on AdS4 spacetime, depending on whether the isometry is translational or rotational respectively. We apply these results to the quaternion-Kähler space with Heisenberg ⋉ U(1) isometry, which describes the universal hypermultiplet at type-II string one-loop.
Living without supersymmetry—the conformal alternative and a dynamical Higgs boson
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2017-11-01
We show that the key results of supersymmetry can be achieved via conformal symmetry instead. We propose that the Higgs boson be a dynamical fermion-antifermion bound state rather than an elementary scalar field, so that there is then no quadratically divergent self-energy problem for it and thus no need to invoke supersymmetry to resolve the problem. To obtain such a dynamical Higgs boson we study a conformal invariant gauge theory of interacting fermions and gauge bosons. The conformal invariance of the theory is realized via scaling with anomalous dimensions in the ultraviolet, and by a dynamical symmetry breaking via fermion bilinear condensates in the infrared, a breaking in which the dynamical dimension of the composite operator \\bar{\\psi }\\psi is reduced from three to two. With this reduction in dimension we can augment the gauge theory with a four-fermion interaction made renormalizable by this reduction, and can reinterpret the theory as a renormalizable version of the Nambu-Jona-Lasinio (NJL) model, with the gauge theory sector with its now massive fermion being a mean-field theory and the four-fermion interaction being the residual interaction. It is this residual interaction and not the mean field that then generates dynamical Goldstone and Higgs states, states that, as noted by Baker and Johnson, the gauge theory sector itself does not possess. The Higgs boson is found to be a narrow resonance just above threshold, with its width potentially being a diagnostic that could distinguish a dynamical Higgs boson from an elementary one. We couple the theory to a gravity theory, conformal gravity, that is equally conformal invariant, with the interplay between conformal gravity and the four-fermion interaction taking care of the vacuum energy problem. With conformal gravity being a unitary and renormalizable quantum theory of gravity there is no need for string theory with its supersymmetric underpinnings. With the vacuum energy problem being resolved and with conformal gravity fits to phenomena such as galactic rotation curves and the accelerating universe not needing dark matter, there is no need to introduce supersymmetry for either the vacuum energy problem or to provide a potential dark matter candidate. We propose that it is conformal symmetry rather than supersymmetry that is fundamental, with the theory of nature being a locally conformal, locally gauge invariant, non-Abelian NJL theory.
Black holes from large N singlet models
NASA Astrophysics Data System (ADS)
Amado, Irene; Sundborg, Bo; Thorlacius, Larus; Wintergerst, Nico
2018-03-01
The emergent nature of spacetime geometry and black holes can be directly probed in simple holographic duals of higher spin gravity and tensionless string theory. To this end, we study time dependent thermal correlation functions of gauge invariant observables in suitably chosen free large N gauge theories. At low temperature and on short time scales the correlation functions encode propagation through an approximate AdS spacetime while interesting departures emerge at high temperature and on longer time scales. This includes the existence of evanescent modes and the exponential decay of time dependent boundary correlations, both of which are well known indicators of bulk black holes in AdS/CFT. In addition, a new time scale emerges after which the correlation functions return to a bulk thermal AdS form up to an overall temperature dependent normalization. A corresponding length scale was seen in equal time correlation functions in the same models in our earlier work.
NASA Astrophysics Data System (ADS)
Sundin, Per
2010-04-01
We perform a detailed study of the type IIA superstring in {text{Ad}}{{text{S}}_4} × mathbb{C}{mathbb{P}_3} . After introducing suitable bosonic light-cone and fermionic kappa worldsheet gauges we derive the pure boson and fermion SU(2|2)×U(1) covariant light-cone Hamiltonian up to quartic order in fields. As a first application of our derivation we calculate energy shifts for string configurations in a closed fermionic subsector and successfully match these with a set of light-cone Bethe equations. We then turn to investigate the mismatch between the degrees of freedom of scattering states and oscillatory string modes. Since only light string modes appear as fundamental Bethe roots in the scattering theory, the physical role of the remaining 4 F + 4 B massive oscillators is rather unclear. By continuing a line of research initiated by Zarembo, we shed light on this question by calculating quantum corrections for the propagators of the bosonic massive fields. We show that, once loop corrections are incorporated, the massive coordinates dissolve in a continuum state of two light particles.
Toward holographic reconstruction of bulk geometry from lattice simulations
NASA Astrophysics Data System (ADS)
Rinaldi, Enrico; Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan; Vranas, Pavlos
2018-02-01
A black hole described in SU( N ) gauge theory consists of N D-branes. By separating one of the D-branes from others and studying the interaction between them, the black hole geometry can be probed. In order to obtain quantitative results, we employ the lattice Monte Carlo simulation. As a proof of the concept, we perform an explicit calculation in the matrix model dual to the black zero-brane in type IIA string theory. We demonstrate this method actually works in the high temperature region, where the stringy correction is large. We argue possible dual gravity interpretations.
Toward holographic reconstruction of bulk geometry from lattice simulations
Rinaldi, Enrico; Berkowitz, Evan; Hanada, Masanori; ...
2018-02-07
A black hole described in SU(N ) gauge theory consists of N D-branes. By separating one of the D-branes from others and studying the interaction between them, the black hole geometry can be probed. In order to obtain quantitative results, we employ the lattice Monte Carlo simulation. As a proof of the concept, we perform an explicit calculation in the matrix model dual to the black zero-brane in type IIA string theory. We demonstrate this method actually works in the high temperature region, where the stringy correction is large. We argue possible dual gravity interpretations.
The AdS/CFT Correspondence: Classical, Quantum, and Thermodynamical Aspects
NASA Astrophysics Data System (ADS)
Young, Donovan
2007-06-01
Certain aspects of the AdS/CFT correspondence are studied in detail. We investigate the one-loop mass shift to certain two-impurity string states in light-cone string field theory on a plane wave background. We find that there exist logarithmic divergences in the sums over intermediate mode numbers which cancel between the cubic Hamiltonian and quartic "contact term". We argue that generically, every order in intermediate state impurities contributes to the mass shift at leading perturbative order. The same mass shift is also computed using an improved 3-string vertex proposed by Dobashi and Yoneya. The result is found to agree with gauge theory at leading order and is close but not quite in agreement at subleading order. We extend the analysis to include discrete light-cone quantization, considering states with up to three units of p+. We study the (apparently) first-order phase transition in the weakly coupled plane-wave matrix model at finite temperature. We analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator to three loop order. We show that the phase transition is indeed of first order. We also compute the 2-loop correction to the Hagedorn temperature. Finally, correlation functions of 1/4 BPS Wilson loops with the infinite family of 1/2 BPS chiral primary operators are computed in N=4 super Yang-Mills theory by summing planar ladder diagrams. The correlation functions are also computed in the strong-coupling limit using string theory; the result is found to agree with the extrapolation of the planar ladders. The result is related to similar correlators of 1/2 BPS loops by a simple re-scaling of the coupling constant, discovered by Drukker for the case of the 1/4 BPS loop VEV.
The Future of Theoretical Physics and Cosmology
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.
2009-08-01
Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space: 31. Adventures in de Sitter space Raphael Bousso; 32. de Sitter space in non-critical string theory Andrew Strominger; 33. Supergravity, M theory and cosmology Renata Kallosh; Part VIII. Quantum Cosmology: 34. The state of the universe James B. Hartle; 35. Quantum cosmology Don Page; 36. Quantum cosmology and eternal inflation A. Vilenkin; 37. Probability in the deterministic theory known as quantum mechanics Bryce de Witt; 38. The interpretation of quantum cosmology and the problem of time J. Halliwell; 39. What local supersymmetry can do for quantum cosmology Peter D'Eath; Part IX. Cosmology: 40. Inflation and cosmological perturbations Alan Guth; 41. The future of cosmology: observational and computational prospects Paul Shellard; 42. The ekpyrotic universe and its cyclic extension Neil Turok; 43. Inflationary theory versus the ekpyrotic/cyclic scenario Andrei Linde; 44. Brane (new) worlds Pierre Binetruy; 45. Publications of Stephen Hawking; Index.
On anthropic solutions of the cosmological constant problem
NASA Astrophysics Data System (ADS)
Banks, Tom; Dine, Michael; Motl, Lubos
2001-01-01
Motivated by recent work of Bousso and Polchinski (BP), we study theories which explain the small value of the cosmological constant using the anthropic principle. We argue that simultaneous solution of the gauge hierarchy problem is a strong constraint on any such theory. We exhibit three classes of models which satisfy these constraints. The first is a version of the BP model with precisely two large dimensions. The second involves 6-branes and antibranes wrapped on supersymmetric 3-cycles of Calabi-Yau manifolds, and the third is a version of the irrational axion model. All of them have possible problems in explaining the size of microwave background fluctuations. We also find that most models of this type predict that all constants in the low energy lagrangian, as well as the gauge groups and representation content, are chosen from an ensemble and cannot be uniquely determined from the fundamental theory. In our opinion, this significantly reduces the appeal of this kind of solution of the cosmological constant problem. On the other hand, we argue that the vacuum selection problem of string theory might plausibly have an anthropic, cosmological solution.
NASA Astrophysics Data System (ADS)
Suzuki, Tsuneo
2018-02-01
Blockspin transformation of topological defects is applied to the violation of the non-Abelian Bianchi identity (VNABI) on lattice defined as Abelian monopoles. To get rid of lattice artifacts, we introduce (1) smooth gauge fixings such as the maximal center gauge (MCG), (2) blockspin transformations and (3) the tadpole-improved gauge action. The effective action can be determined by adopting the inverse Monte Carlo method. The coupling constants F (i ) of the effective action depend on the coupling of the lattice action β and the number of the blocking step n . But it is found that F (i ) satisfies a beautiful scaling; that is, they are a function of the product b =n a (β ) alone for lattice coupling constants 3.0 ≤β ≤3.9 and the steps of blocking 1 ≤n ≤12 . The effective action showing the scaling behavior can be regarded as an almost perfect action corresponding to the continuum limit, since a →0 as n →∞ for fixed b . The infrared effective monopole action keeps the global color invariance when smooth gauges such as MCG keeping the invariance are adopted. The almost perfect action showing the scaling is found to be independent of the smooth gauges adopted here as naturally expected from the gauge invariance of the continuum theory. Then we compare the results with those obtained by the analytic blocking method of topological defects from the continuum, assuming local two-point interactions are dominant as the infrared effective action. The action is formulated in the continuum limit while the couplings of these actions can be derived from simple observables calculated numerically on lattices with a finite lattice spacing. When use is made of Berezinskii-Kosterlitz-Thouless (BKT) transformation, the infrared monopole action can be transformed into that of the string model. Since large b =n a (β ) corresponds to the strong-coupling region in the string model, the physical string tension and the lowest glueball mass can be evaluated analytically with the use of the strong-coupling expansion of the string model. The almost perfect action gives us √{σ }≃1.3 √{σphys } for b ≥1.0 (σphys-1 /2) , whereas the scalar glueball mass is kept to be near M (0++)˜3.7 √{σphys } . In addition, using the effective action composed of 10 simple quadratic interactions alone, we can almost explain analytically the scaling function of the squared monopole density determined numerically for a large b region when b >1.2 (σphys-1 /2).
A group theoretic method for string loop diagram
NASA Astrophysics Data System (ADS)
Neveu, A.; West, P.
1987-08-01
The new approach to arbitrary string scattering proposed by the authors is used to compute the planar tadpole operator, including its measure, for the open bosonic string. The Virasoro gauge identities play a crucial role and are found to contain in general anomalous terms for open strings. Permanent address: Mathematics Department, King's College, London WC2R 2LS, UK.
NASA Astrophysics Data System (ADS)
Jeon, Imtak; Lambert, Neil; Richmond, Paul
2012-11-01
We consider periodic arrays of M2-branes in the ABJM model in the spirit of a circle compactification to D2-branes in type IIA string theory. The result is a curious formulation of three-dimensional maximally supersymmetric Yang-Mills theory in terms of fermions, seven transverse scalars, a non-dynamical gauge field and an additional scalar `dual gluon'. Upon further T-duality on a transverse torus we obtain a non-manifest- Lorentz-invariant description of five-dimensional maximally supersymmetric Yang-Mills. Here the additional scalar field can be thought of as the components of a two-form along the torus. This action can be viewed as an M-theory description of M5-branes on {{{T}}^3}.
Asymptotic One-Point Functions in Gauge-String Duality with Defects.
Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias
2017-12-29
We take the first step in extending the integrability approach to one-point functions in AdS/dCFT to higher loop orders. More precisely, we argue that the formula encoding all tree-level one-point functions of SU(2) operators in the defect version of N=4 supersymmetric Yang-Mills theory, dual to the D5-D3 probe-brane system with flux, has a natural asymptotic generalization to higher loop orders. The asymptotic formula correctly encodes the information about the one-loop correction to the one-point functions of nonprotected operators once dressed by a simple flux-dependent factor, as we demonstrate by an explicit computation involving a novel object denoted as an amputated matrix product state. Furthermore, when applied to the Berenstein-Maldacena-Nastase vacuum state, the asymptotic formula gives a result for the one-point function which in a certain double-scaling limit agrees with that obtained in the dual string theory up to wrapping order.
NASA Astrophysics Data System (ADS)
Ganor, Ori J.; Moore, Nathan P.; Sun, Hao-Yu; Torres-Chicon, Nesty R.
2014-07-01
We develop an equivalence between two Hilbert spaces: (i) the space of states of U(1) n Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants (with corners) on T 2; and (ii) the space of ground states of strings on an associated mapping torus with T 2 fiber. The equivalence is deduced by studying the space of ground states of SL(2, ℤ)-twisted circle compactifications of U(1) gauge theory, connected with a Janus configuration, and further compactified on T 2. The equality of dimensions of the two Hilbert spaces (i) and (ii) is equivalent to a known identity on determinants of tridiagonal matrices with corners. The equivalence of operator algebras acting on the two Hilbert spaces follows from a relation between the Smith normal form of the Chern-Simons coupling constant matrix and the isometry group of the mapping torus, as well as the torsion part of its first homology group.
Kibble-Zurek scaling and string-net coarsening in topologically ordered systems.
Chandran, Anushya; Burnell, F J; Khemani, Vedika; Sondhi, S L
2013-10-09
We consider the non-equilibrium dynamics of topologically ordered systems driven across a continuous phase transition into proximate phases with no, or reduced, topological order. This dynamics exhibits scaling in the spirit of Kibble and Zurek but now without the presence of symmetry breaking and a local order parameter. The late stages of the process are seen to exhibit a slow, coarsening dynamics for the string-net that underlies the physics of the topological phase, a potentially interesting signature of topological order. We illustrate these phenomena in the context of particular phase transitions out of the Abelian Z2 topologically ordered phase of the toric code/Z2 gauge theory, and the non-Abelian SU(2)k ordered phases of the relevant Levin-Wen models.
New variables for classical and quantum gravity in all dimensions: I. Hamiltonian analysis
NASA Astrophysics Data System (ADS)
Bodendorfer, N.; Thiemann, T.; Thurn, A.
2013-02-01
Loop quantum gravity (LQG) relies heavily on a connection formulation of general relativity such that (1) the connection Poisson commutes with itself and (2) the corresponding gauge group is compact. This can be achieved starting from the Palatini or Holst action when imposing the time gauge. Unfortunately, this method is restricted to D + 1 = 4 spacetime dimensions. However, interesting string theories and supergravity theories require higher dimensions and it would therefore be desirable to have higher dimensional supergravity loop quantizations at one’s disposal in order to compare these approaches. In this series of papers we take first steps toward this goal. The present first paper develops a classical canonical platform for a higher dimensional connection formulation of the purely gravitational sector. The new ingredient is a different extension of the ADM phase space than the one used in LQG which does not require the time gauge and which generalizes to any dimension D > 1. The result is a Yang-Mills theory phase space subject to Gauß, spatial diffeomorphism and Hamiltonian constraint as well as one additional constraint, called the simplicity constraint. The structure group can be chosen to be SO(1, D) or SO(D + 1) and the latter choice is preferred for purposes of quantization.
Unification of the Poincaré group with BRST and Parisi-Sourlas supersymmetries
NASA Astrophysics Data System (ADS)
Neveu, A.; West, P.
1986-12-01
The principles of quantum mechanics are used to derive the second-quantized field theory from the classical point particle. The fields of the field theory inevitably depend on two extra bosonic and two extra anticommuting coordinates. Previous treatments have used incorrect choices to fix the gauge for reprametrization invariance. The second-quantized BRST action is invariant under the supergroup IOSp(D, 2/2) which contains the Poincaré group as well as Parisi-Sourlas supersymmetries. One of the extra bosonic coordinates is the remnant for the point particle of a string length. Permanent address: King's College, Strand, London WC2R 2LS, UK.
Kemp, Jonathan A
2017-01-01
The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don't alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch).
CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Yeuk-Kwan E.; Xu Feng, E-mail: cheung@nju.edu.cn
2013-09-01
We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter stringmore » model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.« less
NASA Astrophysics Data System (ADS)
Addazi, Andrea
2018-05-01
In companion papers (A. Addazi, Nuovo Cim. C, 38(1): 21 (2015); A. Addazi, Z. Berezhiani, and Y. Kamyshkov, arXiv:1607.00348), we have discussed current bounds on a new super-light baryo-photon, associated with a U(1) B-L gauge, from current neutron-antineutron data, which are competitive with Eötvös-type experiments. Here, we discuss the implications of possible baryo-photon detection in string theory and quantum gravity. The discovery of a very light gauge boson should imply violation of the weak gravity conjecture, carrying deep consequences for our understanding of holography, quantum gravity and black holes. We also show how the detection of a baryo-photon would exclude the generation of all B–L violating operators from exotic stringy instantons. We will argue against the common statement in the literature that neutron-antineutron data may indirectly test at least the 300–1000 TeV scale. Searches for baryo-photons can provide indirect information on the Planck (or string) scale (quantum black holes, holography and non-perturbative stringy effects). This strongly motivates new neutron-antineutron experiments with adjustable magnetic fields dedicated to the detection of super-light baryo-photons.
Supersymmetrizing the Gorsky-Shifman-Yung soliton
NASA Astrophysics Data System (ADS)
Ireson, E.; Shifman, M.; Yung, A.
2018-05-01
We supersymmetrize the Hopfion studied by Gorsky et al. [Phys. Rev. D 88, 045026 (2013)., 10.1103/PhysRevD.88.045026]. This soliton represents a closed semilocal vortex string in U(1) gauge theory. It carries nonzero Hopf number due to the additional winding of a phase modulus as one moves along the closed string. We study this solution in N =2 supersymmetric QED with two flavors. As a preliminary exercise, we compactify one space dimension and consider a straight vortex with periodic boundary conditions. It turns out to be 1 /2 -BPS saturated. An additional winding along the string can be introduced and it does not spoil the BPS nature of the object. Next, we consider a ringlike vortex in a non-compact space and show that the circumference of the ring L can be stabilized once the previously mentioned winding along the string is introduced. Of course, the ringlike vortex is not BPS but its energy becomes close to the BPS bound if L is large, which can be guaranteed in the case that we have a large value of the angular momentum J . Thus we arrive at the concept of asymptotically BPS-saturated solitons. BPS saturation is achieved in the limit J →∞ .
Yang-Mills theory and the ABC conjecture
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Hu, Zhi; Probst, Malte; Read, James
2018-05-01
We establish a precise correspondence between the ABC Conjecture and 𝒩 = 4 super-Yang-Mills theory. This is achieved by combining three ingredients: (i) Elkies’ method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings; (ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and (iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d’enfant in the sense of Grothendieck. We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of 𝒩 = 4 SYM.
NASA Astrophysics Data System (ADS)
Honda, Masazumi; Pang, Yi; Zhu, Yaodong
2017-11-01
We study physical consequences of adding orientifolds to the ABJ triality, which is among 3d N=6 superconformal Chern-Simons theory known as ABJ theory, type IIA string in AdS 4 × ℂℙ3 and N=6 supersymmetric (SUSY) Vasiliev higher spin theory in AdS 4. After adding the orientifolds, it is known that the gauge group of the ABJ theory becomes O( N 1) × USp(2 N 2) while the background of the string theory is replaced by AdS 4 × ℂℙ3/ Z 2, and the supersymmetries in the both theories reduce to N=5 . We propose that adding the orientifolds to the N=6 Vasiliev theory leads to N=5 SUSY Vasiliev theory. It turns out that the N=5 case is more involved because there are two formulations of the N=5 Vasiliev theory with either O or USp internal symmetry. We show that the two N=5 Vasiliev theories can be understood as certain projections of the N=6 Vasiliev theory, which we identify with the orientifold projections in the Vasiliev theory. We conjecture that the O( N 1) × USp(2 N 2) ABJ theory has the two vector model like limits: N 2 ≫ N 1 and N 1 ≫ N 2 which correspond to the semi-classical N=5 Vasiliev theories with O( N 1) and USp(2 N 2) internal symmetries respectively. These correspondences together with the standard AdS/CFT correspondence comprise the ABJ quadrality among the N=5 ABJ theory, string/M-theory and two N=5 Vasliev theories. We provide a precise holographic dictionary for the correspondences by comparing correlation functions of stress tensor and flavor currents. Our conjecture is supported by various evidence such as agreements of the spectra, one-loop free energies and SUSY enhancement on the both sides. We also predict the leading free energy of the N=5 Vasiliev theory from the CFT side. As a byproduct, we give a derivation of the relation between the parity violating phase in the N=6 Vasiliev theory and the parameters in the N=6 ABJ theory, which was conjectured in [1].
The minimal SUSY B - L model: simultaneous Wilson lines and string thresholds
Deen, Rehan; Ovrut, Burt A.; Purves, Austin
2016-07-08
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B - L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two Z 3×Z 3 Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional “left-right” sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an “average unification” mass U >. The present analysismore » is 1) more “natural” than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from U > to the electroweak scale — being subjected, sequentially, to the requirement of radiative B - L and electroweak symmetry breaking, the present experimental lower bounds on the B - L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ~125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.« less
Bethe Ansatz solutions for highest states in Script N = 4 SYM and AdS/CFT duality
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; DelDebbio, Luigi
2006-09-01
We consider the operators with highest anomalous dimension Δ in the compact rank-one sectors fraktur sfraktur u(1|1) and fraktur sfraktur u(2) of Script N = 4 super Yang-Mills. We study the flow of Δ from weak to strong 't Hooft coupling λ by solving (i) the all-loop gauge Bethe Ansatz, (ii) the quantum string Bethe Ansatz. The two calculations are carefully compared in the strong coupling limit and exhibit different exponents ν in the leading order expansion Δ ~ λν. We find ν = 1/2 and ν = 1/4 for the gauge or string solution. This strong coupling discrepancy is not unexpected, and it provides an explicit example where the gauge Bethe Ansatz solution cannot be trusted at large λ. Instead, the string solution perfectly reproduces the Gubser-Klebanov-Polyakov law Δ = 2n1/2 λ1/4. In particular, we provide an analytic expression for the integer level n as a function of the U(1) charge in both sectors.
The B - L/electroweak Hierarchy in Smooth Heterotic Compactifications
NASA Astrophysics Data System (ADS)
Ambroso, Michael; Ovrut, Burt A.
E8 × E8 heterotic string and M-theory, when appropriately compactified, can give rise to realistic, N = 1 supersymmetric particle physics. In particular, the exact matter spectrum of the MSSM, including three right-handed neutrino supermultiplets, one per family, and one pair of Higgs-Higgs conjugate superfields is obtained by compactifying on Calabi-Yau manifolds admitting specific SU(4) vector bundles. These "heterotic standard models" have the SU(3)C × SU(2)L × U(1)Y gauge group of the standard model augmented by an additional gauged U(1)B - L. Their minimal content requires that the B - L gauge symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed sneutrino. In a previous paper, we presented the results of a renormalization group analysis showing that B - L gauge symmetry is indeed radiatively broken with a B - L/electroweak hierarchy of { O}(10) to { O}(102). In this paper, we present the details of that analysis, extending the results to include higher order terms in tan β-1 and the explicit spectrum of all squarks and sleptons.
Charting the landscape of supercritical string theory.
Hellerman, Simeon; Swanson, Ian
2007-10-26
Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.
The mass spectra, hierarchy and cosmology of B-L MSSM heterotic compactifications
Ambroso, Michael; Ovrut, Burt A.
2011-04-10
The matter spectrum of the MSSM, including three right-handed neutrino supermultiplets and one pair of Higgs-Higgs conjugate superfields, can be obtained by compactifying the E₈ x E₈ heterotic string and M-theory on Calabi-Yau manifolds with specific SU(4) vector bundles. These theories have the standard model gauge group augmented by an additional gauged U(1) B-L. Their minimal content requires that the B-L gauge symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed neutrino. In previous papers, we presented the results of a quasi-analytic renormalization group analysis showing that B-L gauge symmetry is indeed radiatively broken withmore » an appropriate B-L/electroweak hierarchy. In this paper, we extend these results by 1) enlarging the initial parameter space and 2) explicitly calculating all renormalization group equations numerically. The regions of the initial parameter space leading to realistic vacua are presented and the B-L/electroweak hierarchy computed over these regimes. At representative points, the mass spectrum for all particles and Higgs fields is calculated and shown to be consistent with present experimental bounds. Some fundamental phenomenological signatures of a non-zero right-handed neutrino expectation value are discussed, particularly the cosmology and proton lifetime arising from induced lepton and baryon number violating interactions.« less
E(lementary)-strings in six-dimensional heterotic F-theory
NASA Astrophysics Data System (ADS)
Choi, Kang-Sin; Rey, Soo-Jong
2017-09-01
Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small instantons generate most of known six-dimensional superconformal theories, their affinizations and little string theories. Taking account of global structure of compact internal geometry, we also show that special combinations of E-strings play an important role in constructing six-dimensional theories of D- and E-types. We check global consistency conditions from anomaly cancellation conditions, both from five-branes and strings, and show that they are given in terms of elementary E-string combinations.
NASA Astrophysics Data System (ADS)
Wang, Juven; Ohmori, Kantaro; Putrov, Pavel; Zheng, Yunqin; Wan, Zheyan; Guo, Meng; Lin, Hai; Gao, Peng; Yau, Shing-Tung
2018-05-01
Distinct quantum vacua of topologically ordered states can be tunneled into each other via extended operators. The possible applications include condensed matter and quantum cosmology. We present a straightforward approach to calculate the partition function on various manifolds and ground state degeneracy (GSD), mainly based on continuum/cochain topological quantum field theories (TQFTs), in any dimension. This information can be related to the counting of extended operators of bosonic/fermionic TQFTs. On the lattice scale, anyonic particles/strings live at the ends of line/surface operators. Certain systems in different dimensions are related to each other through dimensional reduction schemes, analogous to (de)categorification. Examples include spin TQFTs derived from gauging the interacting fermionic symmetry-protected topological states (with fermion parity {Z}_2^f) of symmetry groups {Z}_4× {Z}_2 and ({Z}_4)^2 in 3+1D, also {Z}_2 and ({Z}_2)^2 in 2+1D. Gauging the last three cases begets non-Abelian spin TQFTs (fermionic topological order). We consider situations where a TQFT lives on (1) a closed spacetime or (2) a spacetime with a boundary, such that the bulk and boundary are fully gapped and short- or long-range entangled (SRE/LRE). Anyonic excitations can be deconfined on the boundary. We introduce new exotic topological interfaces on which neither particle nor string excitations alone condense, but only fuzzy-composite objects of extended operators can end (e.g., a string-like composite object formed by a set of particles can end on a special 2+1D boundary of 3+1D bulk). We explore the relations between group extension constructions and partially breaking constructions (e.g., 0-form/higher-form/"composite" breaking) of topological boundaries, after gauging. We comment on the implications of entanglement entropy for some such LRE systems.
Consistent compactification of double field theory on non-geometric flux backgrounds
NASA Astrophysics Data System (ADS)
Hassler, Falk; Lüst, Dieter
2014-05-01
In this paper, we construct non-trivial solutions to the 2 D-dimensional field equations of Double Field Theory (DFT) by using a consistent Scherk-Schwarz ansatz. The ansatz identifies 2( D - d) internal directions with a twist U M N which is directly connected to the covariant fluxes ABC . It exhibits 2( D - d) linear independent generalized Killing vectors K I J and gives rise to a gauged supergravity in d dimensions. We analyze the covariant fluxes and the corresponding gauged supergravity with a Minkowski vacuum. We calculate fluctuations around such vacua and show how they gives rise to massive scalars field and vectors field with a non-abelian gauge algebra. Because DFT is a background independent theory, these fields should directly correspond the string excitations in the corresponding background. For ( D - d) = 3 we perform a complete scan of all allowed covariant fluxes and find two different kinds of backgrounds: the single and the double elliptic case. The later is not T-dual to a geometric background and cannot be transformed to a geometric setting by a field redefinition either. While this background fulfills the strong constraint, it is still consistent with the Killing vectors depending on the coordinates and the winding coordinates, thereby giving a non-geometric patching. This background can therefore not be described in Supergravity or Generalized Geometry.
Antisymmetric Wilson loops in N = 4 SYM beyond the planar limit
NASA Astrophysics Data System (ADS)
Gordon, James
2018-01-01
We study the 1/2 -BPS circular Wilson loop in the totally antisymmetric representation of the gauge group in N = 4 supersymmetric Yang-Mills. This observable is captured by a Gaussian matrix model with appropriate insertion. We compute the first 1 /N correction at leading order in 't Hooft coupling by means of the matrix model loop equations. Disagreement with the 1-loop effective action of the holographically dual D5-brane suggests the need to account for gravitational backreaction on the string theory side.
d-Brane Instantons in Type II Orientifolds
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Cvetič, Mirjam; Kachru, Shamit; Weigand, Timo
2009-11-01
We review recent progress in determining the effects of d-brane instantons in [Formula: see text] supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract d-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function, and higher fermionic F-terms, and we briefly discuss the implications of background fluxes for the instanton sector. We then summarize the concrete consequences of stringy d-brane instantons for the construction of semirealistic models of particle physics or supersymmetry breaking in compact and noncompact geometries.
2017-01-01
The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don’t alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch). PMID:28934268
String solutions in spherically-symmetric f(R) gravity vacuum
NASA Astrophysics Data System (ADS)
Dil, Emre
Dynamical evolution of the cosmic string in a spherically symmetric f(R) gravity vacuum is studied for a closed and straight string. We first set the background spacetime metric for a constant curvature scalar R = R0, and obtain the Killing fields for it. Using the standard gauge coordinates and constraints for both closed and straight strings, we present the equation of motions and find the solutions of them. We then analyze the dynamics of the string by studying the behavior of the string radius and periastron radius, with respect to both proper time and azimuthal angle, for various values of f(R) functions. Consequently, we conclude that the value of f(R) dramatically affects the closed string collapse time and the straight string angular deviation.
Integrability in dipole-deformed \\boldsymbol{N=4} super Yang-Mills
NASA Astrophysics Data System (ADS)
Guica, Monica; Levkovich Maslyuk, Fedor; Zarembo, Konstantin
2017-09-01
We study the null dipole deformation of N=4 super Yang-Mills theory, which is an example of a potentially solvable ‘dipole CFT’: a theory that is non-local along a null direction, has non-relativistic conformal invariance along the remaining ones, and is holographically dual to a Schrödinger space-time. We initiate the field-theoretical study of the spectrum in this model by using integrability inherited from the parent theory. The dipole deformation corresponds to a nondiagonal Drinfeld-Reshetikhin twist in the spin chain picture, which renders the traditional Bethe ansatz inapplicable from the very beginning. We use instead the Baxter equation supplemented with nontrivial asymptotics, which gives the full 1-loop spectrum in the sl(2) sector. We show that anomalous dimensions of long gauge theory operators perfectly match the string theory prediction, providing a quantitative test of Schrödinger holography. Dedicated to the memory of Petr Petrovich Kulish.
NASA Astrophysics Data System (ADS)
Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-04-01
Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in Cambridge: personal recollections C. Montonen; Part VI. The Superstring: 35. Introduction to Part VI; 36. Supersymmetry in string theory F. Gliozzi; 37. Gravity from strings: personal reminiscences of early developments T. Yoneya; 38. From the Nambu-Goto to the σ-model action L. Brink; 39. Locally supersymmetric action for superstring P. Di Vecchia; 40. Personal recollections E. Cremmer; 41. The scientific contributions of Joël Scherk J. H. Schwarz; Part VII. Preparing the String Renaissance: 42. Introduction to Part VII; 43. From strings to superstrings: a personal perspective M. B. Green; 44. Quarks, strings and beyond A. M. Polyakov; 45. The rise of the superstring theory A. Cappelli and F. Colomo; Appendices; Index.
The F-theory geometry with most flux vacua
Taylor, Washington; Wang, Yi -Nan
2015-12-28
Applying the Ashok-Denef-Douglas estimation method to elliptic Calabi-Yau fourfolds suggests that a single elliptic fourfold M max gives rise to O(10 272,000) F-theory flux vacua, and that the sum total of the numbers of flux vacua from all other F-theory geometries is suppressed by a relative factor of O(10 –3000). The fourfold M max arises from a generic elliptic fibration over a specific toric threefold base B max, and gives a geometrically non-Higgsable gauge group of E 8 9 × F 4 8 × (G 2 × SU(2)) 16, of which we expect some factors to be broken by G-fluxmore » to smaller groups. It is not possible to tune an SU(5) GUT group on any further divisors in M max, or even an SU(2) or SU(3), so the standard model gauge group appears to arise in this context only from a broken E 8 factor. Furthermore, the results of this paper can either be interpreted as providing a framework for predicting how the standard model arises most naturally in F-theory and the types of dark matter to be found in a typical F-theory compactification, or as a challenge to string theorists to explain why other choices of vacua are not exponentially unlikely compared to F-theory compactifications on M max.« less
The F-theory geometry with most flux vacua
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Washington; Wang, Yi -Nan
Applying the Ashok-Denef-Douglas estimation method to elliptic Calabi-Yau fourfolds suggests that a single elliptic fourfold M max gives rise to O(10 272,000) F-theory flux vacua, and that the sum total of the numbers of flux vacua from all other F-theory geometries is suppressed by a relative factor of O(10 –3000). The fourfold M max arises from a generic elliptic fibration over a specific toric threefold base B max, and gives a geometrically non-Higgsable gauge group of E 8 9 × F 4 8 × (G 2 × SU(2)) 16, of which we expect some factors to be broken by G-fluxmore » to smaller groups. It is not possible to tune an SU(5) GUT group on any further divisors in M max, or even an SU(2) or SU(3), so the standard model gauge group appears to arise in this context only from a broken E 8 factor. Furthermore, the results of this paper can either be interpreted as providing a framework for predicting how the standard model arises most naturally in F-theory and the types of dark matter to be found in a typical F-theory compactification, or as a challenge to string theorists to explain why other choices of vacua are not exponentially unlikely compared to F-theory compactifications on M max.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergshoeff, E.A.; Kallosh, R.; Ortin, T.
1993-06-15
We present plane-wave-type solutions of the lowest-order superstring effective action which have unbroken space-time supersymmetries. They are given by a stringy generalization of the Brinkmann metric, dialton, axion, and gauge fields. Some conspiracy between the metric and the axion field is required. The [alpha][prime] stringy corrections to the effective on-shell action, to the equations of motion (and therefore to the solutions themselves), and to the supersymmetry transformations are shown to vanish for a special class of these solutions that we call supersymmetric string waves (SSW's). In the SSW solutions, there exists a conspiracy not only between the metric and themore » axion field, but also between the gauge fields and the metric, since the embedding of the spin connection in the gauge group is required.« less
Noncommutative Field Theories and (super)string Field Theories
NASA Astrophysics Data System (ADS)
Aref'eva, I. Ya.; Belov, D. M.; Giryavets, A. A.; Koshelev, A. S.; Medvedev, P. B.
2002-11-01
In this lecture notes we explain and discuss some ideas concerning noncommutative geometry in general, as well as noncommutative field theories and string field theories. We consider noncommutative quantum field theories emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's conjectures on open string tachyon condensation and their application to the D-brane physics have led to wide investigations of the covariant string field theory proposed by Witten about 15 years ago. We review main ingredients of cubic (super)string field theories using various formulations: functional, operator, conformal and the half string formalisms. The main technical tools that are used to study conjectured D-brane decay into closed string vacuum through the tachyon condensation are presented. We describe also methods which are used to study the cubic open string field theory around the tachyon vacuum: construction of the sliver state, "comma" and matrix representations of vertices.
Further Development of HS Field Theory
NASA Astrophysics Data System (ADS)
Abdurrahman, Abdulmajeed; Faridani, Jacqueline; Gassem, Mahmoud
2006-04-01
We present a systematic treatment of the HS Field theory of the open bosonic string and discuss its relationship to other full string field theories of the open bosonic string such as Witten's theory and the CVS theory. In the development of the HS field theory we encounter infinite dimensional matrices arising from the change of representation between the two theories, i.e., the HS field theory and the full string field theory. We give a general procedure of how to invert these gigantic matrices. The inversion of these matrices involves the computation of many infinite sums. We give the values of these sums and state their generalizations arising from considering higher order vertices (i.e., more than three strings) in string field theory. Moreover, we give a general procedure, on how to evaluate the generalized sums, that can be extended to many generic sums of similar properties. We also discuss the conformal operator connecting the HS field theory to that of the CVS string field theory.
NASA Astrophysics Data System (ADS)
Jejjala, Vishnumohan
2002-01-01
This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model makes falsifiable predictions about TeV scale physics. Susskind has proposed that the fractional quantum Hall system can be realized through an Abelian Chern-Simons theory with a Moyal product. Susskind's Chern-Simons field is a hydrodynamical quantity. Lopez and Fradkin have an alternate Chern-Simons description couched in terms of a statistical gauge field. We show that this statistical Chern-Simons theory also possesses a non-commutative structure and develop the dictionary between the two Chern-Simons pictures.
Matter field Kähler metric in heterotic string theory from localisation
NASA Astrophysics Data System (ADS)
Blesneag, Ştefan; Buchbinder, Evgeny I.; Constantin, Andrei; Lukas, Andre; Palti, Eran
2018-04-01
We propose an analytic method to calculate the matter field Kähler metric in heterotic compactifications on smooth Calabi-Yau three-folds with Abelian internal gauge fields. The matter field Kähler metric determines the normalisations of the N = 1 chiral superfields, which enter the computation of the physical Yukawa couplings. We first derive the general formula for this Kähler metric by a dimensional reduction of the relevant supergravity theory and find that its T-moduli dependence can be determined in general. It turns out that, due to large internal gauge flux, the remaining integrals localise around certain points on the compactification manifold and can, hence, be calculated approximately without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold. The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in P^1× P^3 and we obtain an explicit result for the matter field Kähler metric in this case.
Minimal string theories and integrable hierarchies
NASA Astrophysics Data System (ADS)
Iyer, Ramakrishnan
Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context. We then present evidence that the conjectured type II theories have smooth non-perturbative solutions, connecting two perturbative asymptotic regimes, in a 't Hooft limit. Our technique also demonstrates evidence for new minimal string theories that are not apparent in a perturbative analysis.
Bell's Inequalities, Superquantum Correlations, and String Theory
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; ...
2011-01-01
We offermore » an interpretation of superquantum correlations in terms of a “doubly” quantum theory. We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension α ' , and the string coupling constant g s , is such a superquantum theory that transgresses the usual quantum violations of Bell's inequalities. We also discuss the ℏ → ∞ limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.« less
Entanglement branes in a two-dimensional string theory
Donnelly, William; Wong, Gabriel
2017-09-20
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less
AdS/CFT duality at strong coupling
NASA Astrophysics Data System (ADS)
Beccaria, M.; Ortix, C.
2007-08-01
We study the strong-coupling limit of the AdS/CFT correspondence in the framework of a recently proposed fermionic formulation of the Bethe ansatz equations governing the gauge theory anomalous dimensions. We give examples of states that do not follow the Gubser-Klebanov-Polyakov law at a large ’t Hooft coupling λ, in contrast to recent results on the quantum string Bethe equations that are valid in that regime. This result indicates that the fermionic construction cannot be trusted at large λ, although it remains an efficient tool for computing the weak-coupling expansion of anomalous dimensions.
Dual gauge field theory of quantum liquid crystals in three dimensions
NASA Astrophysics Data System (ADS)
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan
2017-10-01
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. We also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.
Small massless excitations against a nontrivial background
NASA Astrophysics Data System (ADS)
Khariton, N. G.; Svetovoy, V. B.
1994-03-01
We propose a systematic approach for finding bosonic zero modes of nontrivial classical solutions in a gauge theory. The method allows us to find all the modes connected with the broken space-time and gauge symmetries. The ground state is supposed to be dependent on some space coordinates yα and independent of the rest of the coordinates xi. The main problem which is solved is how to construct the zero modes corresponding to the broken xiyα rotations in vacuum and which boundary conditions specify them. It is found that the rotational modes are typically singular at the origin or at infinity, but their energy remains finite. They behave as massless vector fields in x space. We analyze local and global symmetries affecting the zero modes. An algorithm for constructing the zero mode excitations is formulated. The main results are illustrated in the Abelian Higgs model with the string background.
Tree-level disk amplitude of three closed strings
NASA Astrophysics Data System (ADS)
Mousavi, Sepideh; Velni, Komeil Babaei
2018-05-01
It has been shown that the disk-level S-matrix elements of one Ramond-Ramond (RR) and two Neveu-Schwarz-Neveu-Schwarz (NSNS) states could be found by applying the Ward identity associated with the string duality and the gauge symmetry on a given component of the S matrix. These amplitudes have appeared as the components of six different T-dual multiplets. It is predicted in the literature that there are some nonzero disk-level scattering amplitudes, such as one RR (p -1 ) form with zero transverse index and two N S N S states, could not be captured by the T-dual Ward identity. We explicitly find this amplitude in terms of a minimal context of the integral functions by the insertion of one closed string RR vertex operator and two NSNS vertex operators. From the amplitude invariance under the Ward identity associated with the NSNS gauge transformations and T-duality, we also find some integral identities.
The Weak Gravity Conjecture and the axionic black hole paradox
NASA Astrophysics Data System (ADS)
Hebecker, Arthur; Soler, Pablo
2017-09-01
In theories with a perturbatively massless 2-form (dual to an axion), a paradox may arise in the process of black hole evaporation. Schwarzschild black holes can support a non-trivial Wilson-line-type field, the integral of the 2-form around their horizon. After such an `axionic black hole' evaporates, the Wilson line must be supported by the corresponding 3-form field strength in the region formerly occupied by the black hole. In the limit of small axion decay-constant f, the energy required for this field configuration is too large. Thus, energy cannot be conserved in the process of black hole evaporation. The natural resolution of this paradox is through the presence of light strings, which allow the black hole to "shed" its axionic hair sufficiently early. This gives rise to a new Weak-Gravity-type argument in the 2-form context: small coupling, in this case f , enforces the presence of light strings or a low cutoff. We also discuss how this argument may be modified in situations where the weak coupling regime is achieved in the low-energy effective theory through an appropriate gauging of a model with a vector field and two 2-forms.
Beyond Aztec Castles: Toric Cascades in the dP 3 Quiver
NASA Astrophysics Data System (ADS)
Lai, Tri; Musiker, Gregg
2017-12-01
Given one of an infinite class of supersymmetric quiver gauge theories, string theorists can associate a corresponding toric variety (which is a Calabi-Yau 3-fold) as well as an associated combinatorial model known as a brane tiling. In combinatorial language, a brane tiling is a bipartite graph on a torus and its perfect matchings are of interest to both combinatorialists and physicists alike. A cluster algebra may also be associated to such quivers and in this paper we study the generators of this algebra, known as cluster variables, for the quiver associated to the cone over the del Pezzo surface d P 3. In particular, mutation sequences involving mutations exclusively at vertices with two in-coming arrows and two out-going arrows are referred to as toric cascades in the string theory literature. Such toric cascades give rise to interesting discrete integrable systems on the level of cluster variable dynamics. We provide an explicit algebraic formula for all cluster variables that are reachable by toric cascades as well as a combinatorial interpretation involving perfect matchings of subgraphs of the d P 3 brane tiling for these formulas in most cases.
q-Poincaré supersymmetry in AdS5/CFT4
NASA Astrophysics Data System (ADS)
Borsato, Riccardo; Torrielli, Alessandro
2018-03-01
We consider the exact S-matrix governing the planar spectral problem for strings on AdS5 ×S5 and N = 4 super Yang-Mills, and we show that it is invariant under a novel "boost" symmetry, which acts as a differentiation with respect to the particle momentum. This generator leads us also to reinterpret the usual centrally extended psu (2 | 2) symmetry, and to conclude that the S-matrix is invariant under a q-Poincaré supersymmetry algebra, where the deformation parameter is related to the 't Hooft coupling. We determine the two-particle action (coproduct) that turns out to be non-local, and study the property of the new symmetry under crossing transformations. We look at both the strong-coupling (large tension in the string theory) and weak-coupling (spin-chain description of the gauge theory) limits; in the former regime we calculate the cobracket utilising the universal classical r-matrix of Beisert and Spill. In the eventuality that the boost has higher partners, we also construct a quantum affine version of 2D Poincaré symmetry, by contraction of the quantum affine algebra Uq (sl2 ˆ) in Drinfeld's second realisation.
Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude
NASA Astrophysics Data System (ADS)
Nielsen, H. B.; Ninomiya, M.
2018-02-01
We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.
QCD PHASE TRANSITIONS-VOLUME 15.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SCHAFER,T.
1998-11-04
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theoristsmore » working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.« less
QCD Phase Transitions, Volume 15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, T.; Shuryak, E.
1999-03-20
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theoristsmore » working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.« less
Towards realistic string vacua from branes at singularities
NASA Astrophysics Data System (ADS)
Conlon, Joseph P.; Maharana, Anshuman; Quevedo, Fernando
2009-05-01
We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo n (dPn) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.
Equivariant Verlinde Formula from Fivebranes and Vortices
NASA Astrophysics Data System (ADS)
Gukov, Sergei; Pei, Du
2017-10-01
We study complex Chern-Simons theory on a Seifert manifold M 3 by embedding it into string theory. We show that complex Chern-Simons theory on M 3 is equivalent to a topologically twisted supersymmetric theory and its partition function can be naturally regularized by turning on a mass parameter. We find that the dimensional reduction of this theory to 2d gives the low energy dynamics of vortices in four-dimensional gauge theory, the fact apparently overlooked in the vortex literature. We also generalize the relations between (1) the Verlinde algebra, (2) quantum cohomology of the Grassmannian, (3) Chern-Simons theory on {Σ× S^1} and (4) index of a spin c Dirac operator on the moduli space of flat connections to a new set of relations between (1) the "equivariant Verlinde algebra" for a complex group, (2) the equivariant quantum K-theory of the vortex moduli space, (3) complex Chern-Simons theory on {Σ × S^1} and (4) the equivariant index of a spin c Dirac operator on the moduli space of Higgs bundles.
D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.
Rocher, Jonathan; Sakellariadou, Mairi
2005-01-14
Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.
Holographic complexity and noncommutative gauge theory
NASA Astrophysics Data System (ADS)
Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei
2018-03-01
We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.
Study of. lambda. parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigemitsu, J; Kogut, J B
1981-01-01
The spin system analogues of recent studies of the string tension and ..lambda.. parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the ..lambda.. parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the ..lambda.. parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are donemore » for all N and the constants of proportionality between the gap and the ..lambda.. parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N ..-->.. infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models.« less
NASA Astrophysics Data System (ADS)
Kim, Jihn E.; Kyae, Bumseok; Nam, Soonkeon
2017-12-01
In string compactifications, frequently the anomalous U(1) gauge symmetry appears which belongs to E_8 × E_8' of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale (≈ 10^{18 } {GeV}) by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank antisymmetric tensor field B_{MN}. Below the compactification scale a global symmetry U(1)_{anom} results whose charge Q_anom is the original gauge U(1) charge. This is the most natural global symmetry, realizing the "invisible" axion. This global symmetry U(1)_{anom} is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, all the low energy parameters are calculated in terms of the vacuum expectation values of the standard model singlets.
PhD Thesis: String theory in the early universe
NASA Astrophysics Data System (ADS)
Gwyn, Rhiannon
2009-11-01
The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, William; Wong, Gabriel
What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Jakob; Yeom, Dong-han, E-mail: hansen@kisti.re.kr, E-mail: innocent.yeom@gmail.com
2015-09-01
We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no massmore » inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Jakob; Yeom, Dong-han
2015-09-07
We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no massmore » inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.« less
K-theoretic aspects of string theory dualities
NASA Astrophysics Data System (ADS)
Mendez-Diez, Stefan Milo
String theory is a a physical field theory in which point particles are replaced by 1-manifolds propagating in time, called strings. The 2-manifold representing the time evolution of a string is called the string worldsheet. Strings can be either closed (meaning their worldsheets are closed surfaces) or open (meaning their worldsheets have boundary). A D-brane is a submanifold of the spacetime manifold on which string endpoints are constrained to lie. There are five different string theories that have supersymmetry, and they are all related by various dualities. This dissertation will review how D-branes are classified by K-theory. We will then explore the K-theoretic aspects of a hypothesized duality between the type I theory compactified on a 4-torus and the type IIA theory compactified on a K3 surface, by looking at a certain blow down of the singular limit of K3. This dissertation concludes by classifying D-branes on the type II orientifold Tn/Z2 when the Z2 action is multiplication by -1 and the H-flux is trivial. We find that classifying D-branes on the singular limit of K3, T4/Z2 by equivariant K-theory agrees with the classification of D-branes on a smooth K3 surface by ordinary K-theory.
Excited cosmic strings with superconducting currents
NASA Astrophysics Data System (ADS)
Hartmann, Betti; Michel, Florent; Peter, Patrick
2017-12-01
We present a detailed analysis of excited cosmic string solutions that possess superconducting currents. These currents can be excited inside the string core, and—if the condensate is large enough—can lead to the excitations of the Higgs field. Next to the case with global unbroken symmetry, we discuss also the effects of the gauging of this symmetry and show that excited condensates persist when coupled to an electromagnetic field. The space-time of such strings is also constructed by solving the Einstein equations numerically and we show how the local scalar curvature is modified by the excitation. We consider the relevance of our results on the cosmic string network evolution as well as observations of primordial gravitational waves and cosmic rays.
One-Loop One-Point Functions in Gauge-Gravity Dualities with Defects.
Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias
2016-12-02
We initiate the calculation of loop corrections to correlation functions in 4D defect conformal field theories (dCFTs). More precisely, we consider N=4 SYM theory with a codimension-one defect separating two regions of space, x_{3}>0 and x_{3}<0, where the gauge group is SU(N) and SU(N-k), respectively. This setup is made possible by some of the real scalar fields acquiring a nonvanishing and x_{3}-dependent vacuum expectation value for x_{3}>0. The holographic dual is the D3-D5 probe brane system where the D5-brane geometry is AdS_{4}×S^{2} and a background gauge field has k units of flux through the S^{2}. We diagonalize the mass matrix of the dCFT making use of fuzzy-sphere coordinates and we handle the x_{3} dependence of the mass terms in the 4D Minkowski space propagators by reformulating these as standard massive AdS_{4} propagators. Furthermore, we show that only two Feynman diagrams contribute to the one-loop correction to the one-point function of any single-trace operator and we explicitly calculate this correction in the planar limit for the simplest chiral primary. The result of this calculation is compared to an earlier string-theory computation in a certain double scaling limit and perfect agreement is found. Finally, we discuss how to generalize our calculation to any single-trace operator, to finite N, and to other types of observables such as Wilson loops.
NASA Astrophysics Data System (ADS)
Martinetti, P.; Wallet, J.-C.; Amelino-Camelia, G.
2015-08-01
The conference Conceptual and Technical Challenges for Quantum Gravity at Sapienza University of Rome, from 8 to 12 September 2014, has provided a beautiful opportunity for an encounter between different approaches and different perspectives on the quantum-gravity problem. It contributed to a higher level of shared knowledge among the quantum-gravity communities pursuing each specific research program. There were plenary talks on many different approaches, including in particular string theory, loop quantum gravity, spacetime noncommutativity, causal dynamical triangulations, asymptotic safety and causal sets. Contributions from the perspective of philosophy of science were also welcomed. In addition several parallel sessions were organized. The present volume collects contributions from the Noncommutative Geometry and Quantum Gravity parallel session4, with additional invited contributions from specialists in the field. Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: • from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, • from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, • from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. This volume provides an overview of these various topics, interesting for the specialist as well as accessible to the newcomer. 4partially funded by CNRS PEPS /PTI ''Metric aspect of noncommutative geometry: from Monge to Higgs''
A note on closed-string interactions a la witten
NASA Astrophysics Data System (ADS)
Romans, L. J.
1987-08-01
We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by ``stuttering'' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed. Address after August 1, 1987: Department of Physics, University of Southern California, Los Angeles, CA 90089, USA.
Calabi-Yau Geometries: Algorithms, Databases and Physics
NASA Astrophysics Data System (ADS)
He, Yang-Hui
2013-08-01
With a bird's-eye view, we survey the landscape of Calabi-Yau threefolds, compact and noncompact, smooth and singular. Emphasis will be placed on the algorithms and databases which have been established over the years, and how they have been useful in the interaction between the physics and the mathematics, especially in string and gauge theories. A skein which runs through this review will be algorithmic and computational algebraic geometry and how, implementing its principles on powerful computers and experimenting with the vast mathematical data, new physics can be learnt. It is hoped that this interdisciplinary glimpse will be of some use to the beginning student.
Dark solitons, D-branes and noncommutative tachyon field theory
NASA Astrophysics Data System (ADS)
Giaccari, Stefano; Nian, Jun
2017-11-01
In this paper we discuss the boson/vortex duality by mapping the (3+1)D Gross-Pitaevskii theory into an effective string theory in the presence of boundaries. Via the effective string theory, we find the Seiberg-Witten map between the commutative and the noncommutative tachyon field theories, and consequently identify their soliton solutions with D-branes in the effective string theory. We perform various checks of the duality map and the identification of soliton solutions. This new insight between the Gross-Pitaevskii theory and the effective string theory explains the similarity of these two systems at quantitative level.
NASA Astrophysics Data System (ADS)
Rickles, Dean
Although ostensibly a festschrift for Gabriele Veneziano, this book also marks an important step in the historical study of string theory, featuring several excellent chapters on the earliest period of string theory, as it emerged from the study of strong interaction physics and dual resonance models. Veneziano is often crowned 'the father of string theory' since it was he who discovered the amplitude that led to the dual resonance models that then led to string theory in something like the form we know it today (though not immediately into a quantum theory of gravity). However, as the historical articles in this book make plain, Veneziano was but a small (albeit vital) component in the creation of string theory.
Non-perturbative String Theory from Water Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theoriesmore » coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.« less
NASA Astrophysics Data System (ADS)
Renner, Timothy
2011-12-01
A C++ framework was constructed with the explicit purpose of systematically generating string models using the Weakly Coupled Free Fermionic Heterotic String (WCFFHS) method. The software, optimized for speed, generality, and ease of use, has been used to conduct preliminary systematic investigations of WCFFHS vacua. Documentation for this framework is provided in the Appendix. After an introduction to theoretical and computational aspects of WCFFHS model building, a study of ten-dimensional WCFFHS models is presented. Degeneracies among equivalent expressions of each of the known models are investigated and classified. A study of more phenomenologically realistic four-dimensional models based on the well known "NAHE" set is then presented, with statistics being reported on gauge content, matter representations, and space-time supersymmetries. The final study is a parallel to the NAHE study in which a variation of the NAHE set is systematically extended and examined statistically. Special attention is paid to models with "mirroring"---identical observable and hidden sector gauge groups and matter representations.
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru
2015-05-01
The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark confinement. The Wilson loop average is calculated according to the new reformulation written in terms of new field variables obtained from the original Yang-Mills field based on change of variables. The Maximally Abelian gauge in the original Yang-Mills theory is also reproduced by taking a specific gauge fixing in the reformulated Yang-Mills theory. This observation justifies the preceding results obtained in the maximal Abelian gauge at least for gauge-invariant quantities for SU(2) gauge group, which eliminates the criticism of gauge artifact raised for the Abelian projection. The claim has been confirmed based on the numerical simulations. However, for SU(N) (N ≥ 3), such a gauge-invariant reformulation is not unique, although the extension along the line proposed by Cho, Faddeev and Niemi is possible. In fact, we have found that there are a number of possible options of the reformulations, which are discriminated by the maximal stability group H ˜ of G, while there is a unique option of H ˜ = U(1) for G = SU(2) . The maximal stability group depends on the representation of the gauge group, to that the quark source belongs. For the fundamental quark for SU(3) , the maximal stability group is U(2) , which is different from the maximal torus group U(1) × U(1) suggested from the Abelian projection. Therefore, the chromomagnetic monopole inherent in the Wilson loop operator responsible for confinement of quarks in the fundamental representation for SU(3) is the non-Abelian magnetic monopole, which is distinct from the Abelian magnetic monopole for the SU(2) case. Therefore, we claim that the mechanism for quark confinement for SU(N) (N ≥ 3) is the non-Abelian dual superconductivity caused by condensation of non-Abelian magnetic monopoles. We give some theoretical considerations and numerical results supporting this picture. Finally, we discuss some issues to be investigated in future studies.
Holography and noncommutative yang-mills theory
Li; Wu
2000-03-06
In this Letter a recently proposed gravity dual of noncommutative Yang-Mills theory is derived from the relations between closed string moduli and open string moduli recently suggested by Seiberg and Witten. The only new input one needs is a simple form of the running string tension as a function of energy. This derivation provides convincing evidence that string theory integrates with the holographical principle and demonstrates a direct link between noncommutative Yang-Mills theory and holography.
Eventful horizons: String theory in de Sitter and anti-de Sitter
NASA Astrophysics Data System (ADS)
Kleban, Matthew Benjamin
String theory purports to be a theory of quantum gravity. As such, it should have much to say about the deep mysteries surrounding the very early stages of our universe. For this reason, although the theory is notoriously difficult to directly test, data from experimental cosmology may provide a way to probe the high energy physics of string theory. In the first part of this thesis, I will address the important issue of the testability of string theory using observations of the cosmic microwave background radiation. In the second part, I will study some formal difficulties that arise in attempting to understand string theory in de Sitter spacetime. In the third part, I will study the singularity of an eternal anti de Sitter Schwarzschild black hole, using the AdS/CFT correspondence.
``SO what Will you do if String Theory is WRONG?''
NASA Astrophysics Data System (ADS)
Emam, Moataz H.
2008-07-01
I briefly discuss the accomplishments of string theory that would survive a complete falsification of the theory as a model of nature and argue the possibility that such a survival may necessarily mean that string theory would become its own discipline, independently of both physics and mathematics.
Formal and physical equivalence in two cases in contemporary quantum physics
NASA Astrophysics Data System (ADS)
Fraser, Doreen
2017-08-01
The application of analytic continuation in quantum field theory (QFT) is juxtaposed to T-duality and mirror symmetry in string theory. Analytic continuation-a mathematical transformation that takes the time variable t to negative imaginary time-it-was initially used as a mathematical technique for solving perturbative Feynman diagrams, and was subsequently the basis for the Euclidean approaches within mainstream QFT (e.g., Wilsonian renormalization group methods, lattice gauge theories) and the Euclidean field theory program for rigorously constructing non-perturbative models of interacting QFTs. A crucial difference between theories related by duality transformations and those related by analytic continuation is that the former are judged to be physically equivalent while the latter are regarded as physically inequivalent. There are other similarities between the two cases that make comparing and contrasting them a useful exercise for clarifying the type of argument that is needed to support the conclusion that dual theories are physically equivalent. In particular, T-duality and analytic continuation in QFT share the criterion for predictive equivalence that two theories agree on the complete set of expectation values and the mass spectra and the criterion for formal equivalence that there is a "translation manual" between the physically significant algebras of observables and sets of states in the two theories. The analytic continuation case study illustrates how predictive and formal equivalence are compatible with physical inequivalence, but not in the manner of standard underdetermination cases. Arguments for the physical equivalence of dual theories must cite considerations beyond predictive and formal equivalence. The analytic continuation case study is an instance of the strategy of developing a physical theory by extending the formal or mathematical equivalence with another physical theory as far as possible. That this strategy has resulted in developments in pure mathematics as well as theoretical physics is another feature that this case study has in common with dualities in string theory.
String Theory: Big Problem for Small Size
ERIC Educational Resources Information Center
Sahoo, S.
2009-01-01
String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…
6d, Coulomb branch anomaly matching
NASA Astrophysics Data System (ADS)
Intriligator, Kenneth
2014-10-01
6d QFTs are constrained by the analog of 't Hooft anomaly matching: all anomalies for global symmetries and metric backgrounds are constants of RG flows, and for all vacua in moduli spaces. We discuss an anomaly matching mechanism for 6d theories on their Coulomb branch. It is a global symmetry analog of Green-Schwarz-West-Sagnotti anomaly cancellation, and requires the apparent anomaly mismatch to be a perfect square, . Then Δ I 8 is cancelled by making X 4 an electric/magnetic source for the tensor multiplet, so background gauge field instantons yield charged strings. This requires the coefficients in X 4 to be integrally quantized. We illustrate this for theories. We also consider the SCFTs from N small E8 instantons, verifying that the recent result for its anomaly polynomial fits with the anomaly matching mechanism.
Mechanism of Tennis Racket Spin Performance
NASA Astrophysics Data System (ADS)
Kawazoe, Yoshihiko; Okimoto, Kenji; Okimoto, Keiko
Players often say that some strings provide a better grip and more spin than others, but ball spin did not depend on string type, gauge, or tension in pervious laboratory experiments. There was no research work on spin to uncover what is really happening during an actual tennis impact because of the difficulty of performing the appropriate experiments. The present paper clarified the mechanism of top spin and its improvement by lubrication of strings through the use of high-speed video analysis. It also provided a more detailed explanation of spin behavior by comparing a racket with lubricated strings with the famous “spaghetti” strung racket, which was banned in 1978 by the International Tennis Federation because it used plastic spaghetti tubing over the strings to reduce friction, resulting in excessive ball spin. As the main strings stretch and slide sideways more, the ball is given additional spin due to the restoring force parallel to the string face when the main strings spring back and the ball is released from the strings. Herein, we also showed that the additional spin results in a reduction of shock vibrations of the wrist joint during impact.
p-adic string theories provide lattice Discretization to the ordinary string worldsheet.
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
p-adic String Theories Provide Lattice Discretization to the Ordinary String Worldsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p{yields}1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
[ital N]-string vertices in string field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordes, J.; Abdurrahman, A.; Anton, F.
1994-03-15
We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the comma'' representation of string field theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of [ital N] strings, for any arbitrary [ital N], is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.
NASA Astrophysics Data System (ADS)
1999-04-01
The following topics are discussed: Black hole formation by canonical dynamics of gravitating shells; canonical quantum gravity; Vassiliev invariants; midisuperspace models; quantum spacetime; large-N limit of superconformal field theories and supergravity; world-volume fields and background coupling of branes; gauge enhancement and chirality changes in nonperturbative orbifold models; chiral p-forms; formally renormalizable gravitationally self-interacting string models; gauge supergravities for all odd dimensions; black hole radiation and S-matrix; primordial black holes; fluctuations in a thermal field and dissipation of a black hole spacetime in far-field limit; adiabatic interpretation of particle creation in a de Sitter universe; nonequilibrium dynamics of quantum fields in inflationary cosmology; magnetic fields in the early Universe; classical regime of a quantum universe obtained through a functional method; decoherence and correlations in semiclassical cosmology; fluid of primordial fluctuations; causal statistical mechanics calculation of initial cosmic entropy and quantum gravity prospects and black hole-D-brane correspondence.
Dual gauge field theory of quantum liquid crystals in three dimensions
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; ...
2017-10-09
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emergemore » whenever translational symmetry is restored. Lastly, we also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.« less
Dual gauge field theory of quantum liquid crystals in three dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emergemore » whenever translational symmetry is restored. Lastly, we also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.« less
Navigating around the algebraic jungle of QCD: efficient evaluation of loop helicity amplitudes
NASA Astrophysics Data System (ADS)
Lam, C. S.
1993-05-01
A method is developed whereby spinor helicity techniques can be used to simlify the calculation of loop amplitudes. This is achieved by using the Feynman-parameter representation where the offending off-shell loop momenta do not appear. Other shortcuts motivated by the Bern-Kosower one-loop string calculations can be incorporated into the formalism. This includes color reorganization into Chan-Paton factors and the use of background Feynman gauge. This method is applicable to any Feynman diagram with any number of loops as long as the external masses can be ignored. In order to minimize the very considerable algebra encountered in non-abelian gauge theories, graphical methods are developed for most of the calculations. This enables the large number of terms encountered to be organized implicitly in the Feynman diagram without the necessity of writing down any of them algebraically. A one-loop four-gluon amplitude in a particular helicity configuration is computed explicitly to illustrate the method.
Relativistic strings - From soap films to a grand unified theory
NASA Astrophysics Data System (ADS)
Nesterenko, V. V.
1986-11-01
The concept of relativistic strings is considered in connection with the theory of minimal surfaces (e.g., soap films stretched onto closed wire contours). The role of relativistic strings in hadron physics is discussed. Attention is then given to the creation of a grand unified theory on the basis of the superstring concept. Finally, the role of relativistic strings in cosmology is examined.
Quantum space foam and string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekrasov, Nikita
2006-11-03
String theory is originally defined as a modification of the Feynman rules in perturbation theory. It contains gravity in its perturbative spectrum. We review some recent developments which demonstrate that nonperturbative effects of quantum gravity, such as spacetime foam, arise in string theory as well.Prepared for the proceedings of 'Albert Einstein Century Conference' , Paris July 2005.
Quantum spectral curve for the η-deformed AdS5 × S5 superstring
NASA Astrophysics Data System (ADS)
Klabbers, Rob; van Tongeren, Stijn J.
2017-12-01
The spectral problem for the AdS5 ×S5 superstring and its dual planar maximally supersymmetric Yang-Mills theory can be efficiently solved through a set of functional equations known as the quantum spectral curve. We discuss how the same concepts apply to the η-deformed AdS5 ×S5 superstring, an integrable deformation of the AdS5 ×S5 superstring with quantum group symmetry. This model can be viewed as a trigonometric version of the AdS5 ×S5 superstring, like the relation between the XXZ and XXX spin chains, or the sausage and the S2 sigma models for instance. We derive the quantum spectral curve for the η-deformed string by reformulating the corresponding ground-state thermodynamic Bethe ansatz equations as an analytic Y system, and map this to an analytic T system which upon suitable gauge fixing leads to a Pμ system - the quantum spectral curve. We then discuss constraints on the asymptotics of this system to single out particular excited states. At the spectral level the η-deformed string and its quantum spectral curve interpolate between the AdS5 ×S5 superstring and a superstring on "mirror" AdS5 ×S5, reflecting a more general relationship between the spectral and thermodynamic data of the η-deformed string. In particular, the spectral problem of the mirror AdS5 ×S5 string, and the thermodynamics of the undeformed AdS5 ×S5 string, are described by a second rational limit of our trigonometric quantum spectral curve, distinct from the regular undeformed limit.
Dark matter as ultralight axion-like particle in E6 × U(1)X GUT with QCD axion
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Frampton, Paul H.
2018-07-01
Axion-like fields are naturally generated by a mechanism of anomaly cancellation of one or more anomalous gauge abelian symmetries at the Planck scale, emerging as duals of a two-form from the massless bosonic sector of string theory. This suggests an analogy of the Green-Schwarz mechanism of anomaly cancellation, at field theory level, which results in one or more Stueckelberg pseudoscalars. In the case of a single Stueckelberg pseudoscalar b, vacuum misalignments at phase transitions in the early Universe at the GUT scale provide a small mass - due to instanton suppression of the periodic potential - for a component of b, denoted as χ and termed the "axi-Higgs", which is a physical axion-like particle. The coupling of the axi-Higgs to the gauge sector via Wess-Zumino terms is suppressed by the Planck mass, which guarantees its decoupling, while its angle of misalignment is related to MGUT. We build a gauged E6 × U (1) model with anomalous U (1). It contains both an automatic invisible QCD axion and an ultra-light axi-Higgs. The invisible axion present in the model solves the strong CP problem and has mass in the conventional range while the axi-Higgs, which can act as dark matter, is sufficiently light (10-22 eV
String model for the dynamics of glass-forming liquids
Pazmiño Betancourt, Beatriz A.; Douglas, Jack F.; Starr, Francis W.
2014-01-01
We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann “entropy crisis.” PMID:24880303
String model for the dynamics of glass-forming liquids.
Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W
2014-05-28
We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis."
REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry
Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities:more » I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research interests of Mark Wise span particle physics, cosmology and nuclear physics. His recent work has centered on extensions of the standard model where baryon number and lepton number are gauged and extensions of the standard model that have novel sources of baryon number violation and new sources of charged lepton flavor violation« less
Note on tachyon actions in string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Headrick, Matthew
2009-02-15
A number of spacetime fields in string theory (notably the metric, dilaton, bosonic and type 0 bulk closed-string tachyon, and bosonic open-string tachyon) have the following property: whenever the spacetime field configuration factorizes in an appropriate sense, the matter sector of the world-sheet theory factorizes into a tensor product of two decoupled theories. Since the beta functions for such a product theory necessarily also factorize, this property strongly constrains the form of the spacetime action encoding those beta functions. We show that this constraint alone--without needing actually to compute any of the beta functions--is sufficient to fix the form ofmore » the two-derivative action for the metric-dilaton system, as well as the potential for the bosonic open-string tachyon. We also show that no action consistent with this constraint exists for the closed-string tachyon coupled to the metric and dilaton.« less
Gödel universes in string theory
NASA Astrophysics Data System (ADS)
Barrow, John D.; Dabrowski, Mariusz P.
1998-11-01
We show that homogeneous Gödel spacetimes need not contain closed timelike curves in low-energy-effective string theories. We find exact solutions for the Gödel metric in string theory for the full O(α') action including both dilaton and axion fields. The results are valid for bosonic, heterotic and super-strings. To first order in the inverse string tension α', these solutions display a simple relation between the angular velocity of the Gödel universe, Ω, and the inverse string tension of the form α'=1/Ω2 in the absence of the axion field. The generalization of this relationship is also found when the axion field is present.
Continuous Advances in QCD 2008
NASA Astrophysics Data System (ADS)
Peloso, Marco M.
2008-12-01
1. High-order calculations in QCD and in general gauge theories. NLO evolution of color dipoles / I. Balitsky. Recent perturbative results on heavy quark decays / J. H. Piclum, M. Dowling, A. Pak. Leading and non-leading singularities in gauge theory hard scattering / G. Sterman. The space-cone gauge, Lorentz invariance and on-shell recursion for one-loop Yang-Mills amplitudes / D. Vaman, Y.-P. Yao -- 2. Heavy flavor physics. Exotic cc¯ mesons / E. Braaten. Search for new physics in B[symbol]-mixing / A. J. Lenz. Implications of D[symbol]-D[symbol] mixing for new physics / A. A. Petrov. Precise determinations of the charm quark mass / M. Steinhauser -- 3. Quark-gluon dynamics at high density and/or high temperature. Crystalline condensate in the chiral Gross-Neveu model / G. V. Dunne, G. Basar. The strong coupling constant at low and high energies / J. H. Kühn. Quarkyonic matter and the phase diagram of QCD / L. McLerran. Statistical QCD with non-positive measure / J. C. Osborn, K. Splittorff, J. J. M. Verbaarschot. From equilibrium to transport properties of strongly correlated fermi liquids / T. Schäfer. Lessons from random matrix theory for QCD at finite density / K. Splittorff, J. J. M. Verbaarschot -- 4. Methods and models of holographic correspondence. Soft-wall dynamics in AdS/QCD / B. Batell. Holographic QCD / N. Evans, E. Threlfall. QCD glueball sum rules and vacuum topology / H. Forkel. The pion form factor in AdS/QCD / H. J. Kwee, R. F. Lebed. The fast life of holographic mesons / R. C. Myers, A. Sinha. Properties of Baryons from D-branes and instantons / S. Sugimoto. The master space of N = 1 quiver gauge theories: counting BPS operators / A. Zaffaroni. Topological field congurations. Skyrmions in theories with massless adjoint quarks / R. Auzzi. Domain walls, localization and confinement: what binds strings inside walls / S. Bolognesi. Static interactions of non-abelian vortices / M. Eto. Vortices which do not abelianize dynamically: semi-classical origin of non-abelian monopoles / K. Konishi. A generalized construction for lumps and non-abelian vortices / W. Vinci -- 6. Dynamics in supersymmetric theories. Cusp anomalous dimension in planar maximally supersymmetric Yang-Mills theory / B. Basso. SO(2M) and USp(2M) (hyper)Kähler quotients and lumps / S. B. Gudnason -- 7. Other developments. Gluinos condensing at the CCNI: 4096 CPUs weigh in / J. Giedt ... [et al.]. Baryon Regge trajectories and the 1/N[symbol] expansion / J. L. Goity, N. Matagne. Infrared behavior of the fermion propagator in unquenched QED[symbol] with finite threshold effects / Y. Hoshino. Gauge fields in accelerated frames / F. Lenz. QCD at complex coupling, large order in perturbation theory and the gluon condensate / Y. Meurice. 511 KeV line and other diffuse emissions as a trace of the dark matter / A. R. Zhitnitsky -- 8. Glimpses of the conference.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang
2017-05-01
We propose a generic construction of exactly soluble local bosonic models that realize various topological orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a (3+1)-dimensional [(3+1)D] Z2-gauge theory with emergent fermionic Kramers doublet. We show that the emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without pin+ structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z2 topological orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that some Z2 SET orders have stringlike excitations that carry anomalous (nononsite) Z2 symmetry, which can be viewed as a fractionalization of Z2 symmetry on strings. Our construction is based on cochains and cocycles in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory beyond the twisted gauge theory.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.
Confined phase in the real time formalism and the fate of the world behind the horizon
NASA Astrophysics Data System (ADS)
Furuuchi, Kazuyuki
2006-02-01
In the real time formulation of finite temperature field theories, one introduces an additional set of fields (type-2 fields) associated to each field in the original theory (type-1 field). In [J. M. Maldacena, J. High Energy Phys., JHEPFG, 1029-8479 04 (2003) 021., 10.1088/1126-6708/2003/04/021], in the context of the anti-de Sitter (AdS)-conformal field theories (CFT) correspondence, Maldacena interpreted type-2 fields as living on a boundary behind the black hole horizon. However, below the Hawking-Page transition temperature, the thermodynamically preferred configuration is the thermal AdS without a black hole, and hence there are no horizon and boundary behind it. This means that when the dual gauge theory is in confined phase, the type-2 fields cannot be associated with the degrees of freedom behind the black hole horizon. I argue that in this case the role of the type-2 fields is to make up bulk type-2 fields of classical closed string field theory on AdS at finite temperature in the real time formalism.
Supersymmetric gauge theory with space-time-dependent couplings
NASA Astrophysics Data System (ADS)
Choi, Jaewang; Fernández-Melgarejo, José J.; Sugimoto, Shigeki
2018-01-01
We study deformations of N=4 supersymmetric Yang-Mills theory with couplings and masses depending on space-time. The conditions to preserve part of the supersymmetry are derived and a lot of solutions of these conditions are found. The main example is the case with ISO(1,1)× SO(3)× SO(3) symmetry, in which couplings, as well as masses and the theta parameter, can depend on two spatial coordinates. In the case in which ISO(1,1) is enhanced to ISO(1,2), it reproduces the supersymmetric Janus configuration found by Gaiotto and Witten [J. High Energy Phys. 06, 097 (2010)]. When SO(3)× SO(3) is enhanced to SO(6), it agrees with the world-volume theory of D3-branes embedded in F-theory (a background with 7-branes in type IIB string theory). We have also found the general solution of the supersymmetry conditions for the cases with ISO(1,1)× SO(2)× SO(4) symmetry. Cases with time-dependent couplings and/or masses are also considered.
Minimal left-right symmetric intersecting D-brane model
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Antoniadis, Ignatios; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Taylor, Tomasz R.
2017-01-01
We investigate left-right symmetric extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. The left-handed and right-handed fermions transform as doublets under S p (1 )L and S p (1 )R, and so their masses must be generated by the introduction of Higgs fields in a bifundamental (2 ,2 ) representation under the two S p (1 ) gauge groups. For such D-brane configurations the left-right symmetry must be broken by Higgs fields in the doublet representation of S p (1 )R and therefore Majorana mass terms are suppressed by some higher physics scale. The left-handed and right-handed neutrinos pair up to form Dirac fermions which control the decay widths of the right-handed W' boson to yield comparable branching fractions into dilepton and dijet channels. Using the most recent searches at LHC13 Run II with 2016 data we constrain the (gR,mW') parameter space. Our analysis indicates that independent of the coupling strength gR, gauge bosons with masses mW'≳3.5 TeV are not ruled out. As the LHC is just beginning to probe the TeV scale, significant room for W' discovery remains.
Elliptic CY3folds and non-perturbative modular transformation
NASA Astrophysics Data System (ADS)
Iqbal, Amer; Shabbir, Khurram
2016-03-01
We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections.
Complete spectrum of long operators in Script N = 4 SYM at one loop
NASA Astrophysics Data System (ADS)
Beisert, Niklas; Kazakov, Vladimir A.; Sakai, Kazuhiro; Zarembo, Konstantin
2005-07-01
We construct the complete spectral curve for an arbitrary local operator, including fermions and covariant derivatives, of one-loop Script N = 4 gauge theory in the thermodynamic limit. This curve perfectly reproduces the Frolov-Tseytlin limit of the full spectral curve of classical strings on AdS5 × S5 derived in [64]. To complete the comparison we introduce stacks, novel bound states of roots of different flavors which arise in the thermodynamic limit of the corresponding Bethe ansatz equations. We furthermore show the equivalence of various types of Bethe equations for the underlying fraktur sfraktur u(2,2|4) superalgebra, in particular of the type ``Beauty'' and ``Beast''.
Generalized Knizhnik-Zamolodchikov equation for Ding-Iohara-Miki algebra
NASA Astrophysics Data System (ADS)
Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor
2017-07-01
We derive the generalization of the Knizhnik-Zamolodchikov equation (KZE) associated with the Ding-Iohara-Miki algebra Uq ,t(gl^ ^ 1) . We demonstrate that certain refined topological string amplitudes satisfy these equations and find that the braiding transformations are performed by the R matrix of Uq ,t(gl^ ^ 1) . The resulting system is the uplifting of the u^1 Wess-Zumino-Witten model. The solutions to the (q ,t ) KZE are identified with the (spectral dual of) building blocks of the Nekrasov partition function for five-dimensional linear quiver gauge theories. We also construct an elliptic version of the KZE and discuss its modular and monodromy properties, the latter being related to a dual version of the KZE.
Transmogrifying fuzzy vortices
NASA Astrophysics Data System (ADS)
Murugan, Jeff; Millner, Antony
2004-04-01
We show that the construction of vortex solitons of the noncommutative abelian-Higgs model can be extended to a critically coupled gauged linear sigma model with Fayet-Illiopolous D-terms. Like its commutative counterpart, this fuzzy linear sigma model has a rich spectrum of BPS solutions. We offer an explicit construction of the degree-k static semilocal vortex and study in some detail the infinite coupling limit in which it descends to a degree-k Bbb CBbb PkN instanton. This relation between the fuzzy vortex and noncommutative lump is used to suggest an interpretation of the noncommutative sigma model soliton as tilted D-strings stretched between an NS5-brane and a stack of D3-branes in type-IIB superstring theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baguet, A.; Pope, Christopher N.; Samtleben, H.
We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less
NASA Astrophysics Data System (ADS)
Casali, Eduardo; Tourkine, Piotr
2018-03-01
Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.
Whiteheadian Actual Entitities and String Theory
NASA Astrophysics Data System (ADS)
Bracken, Joseph A.
2012-06-01
In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.
String Theory, the Crisis in Particle Physics and the Ascent of Metaphoric Arguments
NASA Astrophysics Data System (ADS)
Schroer, Bert
This essay presents a critical evaluation of the concepts of string theory and its impact on particle physics. The point of departure is a historical review of four decades of string theory within the broader context of six decades of failed attempts at an autonomous S matrix approach to particle theory. The central message, contained in Secs. 5 and 6, is that string theory is not what its name suggests, namely a theory of objects in space-time whose localization is string-instead of pointlike. Contrary to popular opinion, the oscillators corresponding to the Fourier models of a quantum-mechanical string do not become embedded in space-time and neither does the "range space" of a chiral conformal QFT acquire the interpretation of stringlike-localized quantum matter. Rather, string theory represents a solution to a problem which enjoyed some popularity in the 1960s: find a principle which, similar to the SO(4,2) group in the case of the hydrogen spectrum, determines an infinite component wave function with a (realistic) mass/spin spectrum. Instead of the group theory used in the old failed attempts, it creates this mass/spin spectrum by combining an internal oscillator quantum mechanics with a pointlike-localized quantum-field-theoretic object, i.e. the mass/spin tower "sits" over one point and does not arise from a wiggling string in space-time. The widespread acceptance of a theory whose interpretation has been based on metaphoric reasoning had a corroding influence on particle theory, a point which will be illustrated in the last section with some remarks of a more sociological nature. These remarks also lend additional support to observations on connections between the discourse in particle physics and the present Zeitgeist of the post-Cold War period that are made in the introduction.
Volume weighting the measure of the universe from classical slow-roll expansion
NASA Astrophysics Data System (ADS)
Sloan, David; Silk, Joseph
2016-05-01
One of the most frustrating issues in early universe cosmology centers on how to reconcile the vast choice of universes in string theory and in its most plausible high energy sibling, eternal inflation, which jointly generate the string landscape with the fine-tuned and hence relatively small number of universes that have undergone a large expansion and can accommodate observers and, in particular, galaxies. We show that such observations are highly favored for any system whereby physical parameters are distributed at a high energy scale, due to the conservation of the Liouville measure and the gauge nature of volume, asymptotically approaching a period of large isotropic expansion characterized by w =-1 . Our interpretation predicts that all observational probes for deviations from w =-1 in the foreseeable future are doomed to failure. The purpose of this paper is not to introduce a new measure for the multiverse, but rather to show how what is perhaps the most natural and well-known measure, volume weighting, arises as a consequence of the conservation of the Liouville measure on phase space during the classical slow-roll expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dijkgraaf, Robbert; Gopakumar, Rajesh; Ooguri, Hirosi
We argue that the holographic description of four-dimensional Bogomol'nyi-Prasad-Sommerfield black holes naturally includes multicenter solutions. This suggests that the holographic dual to the gauge theory is not a single AdS{sub 2}xS{sup 2} but a coherent ensemble of them. We verify this in a particular class of examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that O(e{sup -N}) nonperturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave function of the multicenter black holes gets mapped to the Hartle-Hawkingmore » wave function of baby universes. This provides a concrete realization, within string theory, of effects that can be interpreted as the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to a loss of quantum coherence, in accord with general arguments.« less
On the structure of quantum L∞ algebras
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias
2017-10-01
It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.
Julius Edgar Lilienfeld Prize Lecture: The Higgs Boson, String Theory, and the Real World
NASA Astrophysics Data System (ADS)
Kane, Gordon
2012-03-01
In this talk I'll describe how string theory is exciting because it can address most, perhaps all, of the questions we hope to understand about our world: why quarks and leptons make up our world, what forces form our world, cosmology, parity violation, and much more. I'll explain why string theory is testable in basically the same ways as the rest of physics, and why much of what is written about that is misleading. String theory is already or soon being tested in several ways, including correctly predicting the recently observed Higgs boson properties and mass, and predictions for dark matter, LHC physics, cosmological history, and more, from work in the increasingly active subfield ``string phenomenology.''
Factorization of chiral string amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less
Factorization of chiral string amplitudes
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-16
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less
Ghost vertices for the bosonic string using the group-theoretic approach to string theory
NASA Astrophysics Data System (ADS)
Freeman, M. D.; West, P.
1988-04-01
The N-string tree-level scattering vertices for the bosonic string are extended to include anticommuting (ghost) oscillators. These vertices behave correctly under the action of the BRST charge Q and reproduce the known results for the scattering of physical states. This work is an application of the group-theoretic approach to string theory. Permanent address: Mathematics Department, King's College, Strand, London WC2R 2LS, UK.
Aspects of T-Dually Extended Superspaces
NASA Astrophysics Data System (ADS)
Polacek, Martin
This dissertation is divided into three main parts where we derive various properties of the T-dually extended superspaces. In the first part we reformulate the manifestly T-dual description of the massless sector of the closed bosonic string, directly from the geometry associated with the (left and right) affine Lie algebra of the coset space Poincare/Lorentz. This construction initially doubles not only the (space-time) coordinates for translations but also those for Lorentz transformations (and their "dual"). As a result, the Lorentz connection couples directly to the string (as does the vielbein), rather than being introduced indirectly through covariant derivatives as previously. This not only reproduces the old definition of T-dual torsion, but automatically gives a general, covariant definition of T-dual curvature (but still with some undetermined connections). In the second part we give the manifestly T-dual formulation of the massless sector of the classical 3D Type II superstring in off-shell 3D N = 2 superspace, including the action. It has a simple relation to the known superspace of 4D N = 1 supergravity in 4D M-theory via 5D F-theory. The pre-potential appears as part of the vielbein, without derivatives. In the last and the most involved part we find the pre-potential in the superspace with AdS5 x S5 background. The pre-potential appears as part of the vielbeins, without derivatives. In both subspaces (AdS5 and S 5) we use Poincare coordinates. We pick one bulk coordinate in AdS5 and one bulk coordinate in S 5 to define the space-cone gauge. Such space-cone gauge destroys the bulk Lorentz covariance. However, it still preserves boundary Lorentz covariance (and gives projective superspace) SO ( 3, 1) ⊗ SO (4) and so symmetries of boundary CFT are manifest.
The role of heuristic appraisal in conflicting assessments of string theory
NASA Astrophysics Data System (ADS)
Camilleri, Kristian; Ritson, Sophie
2015-08-01
Over the last three decades, string theory has emerged as one of the leading hopes for a consistent theory of quantum gravity that unifies particle physics with general relativity. Despite the fact that string theory has been a thriving research program for the better part of three decades, it has been subjected to extensive criticism from a number of prominent physicists. The aim of this paper is to obtain a clearer picture of where the conflict lies in competing assessments of string theory, through a close reading of the argumentative strategies employed by protagonists on both sides. Although it has become commonplace to construe this debate as stemming from different attitudes to the absence of testable predictions, we argue that this presents an overly simplified view of the controversy, which ignores the critical role of heuristic appraisal. While string theorists and their defenders see the theoretical achievements of the string theory program as providing strong indication that it is 'on the right track', critics have challenged such claims, by calling into question the status of certain 'solved problems' and its purported 'explanatory coherence'. The debates over string theory are therefore particularly instructive from a philosophical point of view, not only because they offer important insights into the nature of heuristic appraisal and theoretical progress, but also because they raise deep questions about what constitutes a solved problem and an explanation in fundamental physics.
Flavour fields in steady state: stress tensor and free energy
NASA Astrophysics Data System (ADS)
Banerjee, Avik; Kundu, Arnab; Kundu, Sandipan
2016-02-01
The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS d+1-background, for d = 2, 4, and is related to conformal anomaly. For the special case of d = 2, the universal factor has a striking resemblance to the well-known heat current formula in (1 + 1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d = 6.
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Shoorvazi, Somayyeh
In this paper, we will consider the birth and evolution of fields during formation of N-dimensional manifolds from joining point-like ones. We will show that at the beginning, only there are point-like manifolds which some strings are attached to them. By joining these manifolds, 1-dimensional manifolds are appeared and gravity, fermion, and gauge fields are emerged. By coupling these manifolds, higher dimensional manifolds are produced and higher orders of fermion, gauge fields and gravity are emerged. By decaying N-dimensional manifold, two child manifolds and a Chern-Simons one are born and anomaly is emerged. The Chern-Simons manifold connects two child manifolds and leads to the energy transmission from the bulk to manifolds and their expansion. We show that F-gravity can be emerged during the formation of N-dimensional manifold from point-like manifolds. This type of F-gravity includes both type of fermionic and bosonic gravity. G-fields and also C-fields which are produced by fermionic strings produce extra energy and change the gravity.
Behavior of Tachyon in String Cosmology Based on Gauged WZW Model
NASA Astrophysics Data System (ADS)
Lee, Sunggeun; Nam, Soonkeon
We investigate a string theoretic cosmological model in the context of the gauged Wess-Zumino-Witten model. Our model is based on a product of non-compact coset space and a spectator flat space; [SL(2, R)/U(1)]k × ℝ2. We extend the formerly studied semiclassical consideration with infinite Kac-Moody level k to a finite one. In this case, the tachyon field appears in the effective action, and we solve the Einstein equation to determine the behavior of tachyon as a function of time. We find that tachyon field dominates over dilaton field in early times. In particular, we consider the energy conditions of the matter fields consisting of the dilaton and the tachyon which affect the initial singularity. We find that not only the strong energy but also the null energy condition is violated.
NASA Astrophysics Data System (ADS)
Choi, Nari; Han, Jongmin
2018-04-01
In this paper, we study an elliptic equation arising from the self-dual Maxwell gauged O (3) sigma model coupled with gravity. When the parameter τ equals 1 and there is only one singular source, we consider radially symmetric solutions. There appear three important constants: a positive parameter a representing a scaled gravitational constant, a nonnegative integer N1 representing the total string number, and a nonnegative integer N2 representing the total anti-string number. The values of the products aN1 , aN2 ∈ [ 0 , ∞) play a crucial role in classifying radial solutions. By using the decay rates of solutions at infinity, we provide a complete classification of solutions for all possible values of aN1 and aN2. This improves previously known results.
Linear Sigma Model Toolshed for D-brane Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellerman, Simeon
Building on earlier work, we construct linear sigma models for strings on curved spaces in the presence of branes. Our models include an extremely general class of brane-worldvolume gauge field configurations. We explain in an accessible manner the mathematical ideas which suggest appropriate worldsheet interactions for generating a given open string background. This construction provides an explanation for the appearance of the derived category in D-brane physic complementary to that of recent work of Douglas.
On the Minimal Length Uncertainty Relation and the Foundations of String Theory
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; ...
2011-01-01
We review our work on the minimal length uncertainty relation as suggested by perturbative string theory. We discuss simple phenomenological implications of the minimal length uncertainty relation and then argue that the combination of the principles of quantum theory and general relativity allow for a dynamical energy-momentum space. We discuss the implication of this for the problem of vacuum energy and the foundations of nonperturbative string theory.
Solvability of a Nonlinear Integral Equation in Dynamical String Theory
NASA Astrophysics Data System (ADS)
Khachatryan, A. Kh.; Khachatryan, Kh. A.
2018-04-01
We investigate an integral equation of the convolution type with a cubic nonlinearity on the entire real line. This equation has a direct application in open-string field theory and in p-adic string theory and describes nonlocal interactions. We prove that there exists a one-parameter family of bounded monotonic solutions and calculate the limits of solutions constructed at infinity.
Gauge-independent Abelian mechanism of color confinement in gluodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Tsuneo; Ishiguro, Katsuya; Sekido, Toru
Abelian mechanism of non-Abelian color confinement is observed in a gauge-independent way by high precision lattice Monte Carlo simulations in gluodynamics. An Abelian gauge field is extracted with no gauge fixing. Then we decompose the Abelian field into regular photon and singular monopole parts using the Hodge decomposition. We find that only the monopole part is responsible for the string tension. The investigation of the flux-tube profile then shows that an Abelian electric field defined in an arbitrary color direction is squeezed by the monopole supercurrent with the same color direction, and the quantitative features of flux squeezing are consistentmore » with those observed previously after Abelian projections with gauge fixing. Non-Abelian color confinement is explained in the framework of the gauge-independent Abelian dual Meissner effect.« less
Matrix theory interpretation of discrete light cone quantization string worldsheets
Grignani; Orland; Paniak; Semenoff
2000-10-16
We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.
Geometry, topology, and string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadarajan, Uday
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
NASA Astrophysics Data System (ADS)
Li, Tianjun; Nanopoulos, Dimitri V.; Walker, Joel W.
2010-10-01
We consider proton decay in the testable flipped SU(5)×U(1)X models with TeV-scale vector-like particles which can be realized in free fermionic string constructions and F-theory model building. We significantly improve upon the determination of light threshold effects from prior studies, and perform a fresh calculation of the second loop for the process p→eπ from the heavy gauge boson exchange. The cumulative result is comparatively fast proton decay, with a majority of the most plausible parameter space within reach of the future Hyper-Kamiokande and DUSEL experiments. Because the TeV-scale vector-like particles can be produced at the LHC, we predict a strong correlation between the most exciting particle physics experiments of the coming decade.
Consistent Pauli reduction on group manifolds
Baguet, A.; Pope, Christopher N.; Samtleben, H.
2016-01-01
We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less
Perturbation theory from automorphic forms
NASA Astrophysics Data System (ADS)
Lambert, Neil; West, Peter
2010-05-01
Using our previous construction of Eisenstein-like automorphic forms we derive formulae for the perturbative and non-perturbative parts for any group and representation. The result is written in terms of the weights of the representation and the derivation is largely group theoretical. Specialising to the E n+1 groups relevant to type II string theory and the representation associated with node n + 1 of the E n+1 Dynkin diagram we explicitly find the perturbative part in terms of String Theory variables, such as the string coupling g d and volume V n . For dimensions seven and higher we find that the perturbation theory involves only two terms. In six dimensions we construct the SO(5, 5) automorphic form using the vector representation. Although these automorphic forms are generally compatible with String Theory, the one relevant to R 4 involves terms with g d -6 and so is problematic. We then study a constrained SO(5, 5) automorphic form, obtained by summing over null vectors, and compute its perturbative part. We find that it is consistent with String Theory and makes precise predictions for the perturbative results. We also study the unconstrained automorphic forms for E 6 in the 27 representation and E 7 in the 133 representation, giving their perturbative part and commenting on their role in String Theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlén, Olof, E-mail: olof.ahlen@aei.mpg.de
2015-12-17
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
NASA Astrophysics Data System (ADS)
Greenwald, Jared
Any good physical theory must resolve current experimental data as well as offer predictions for potential searches in the future. The Standard Model of particle physics, Grand Unied Theories, Minimal Supersymmetric Models and Supergravity are all attempts to provide such a framework. However, they all lack the ability to predict many of the parameters that each of the theories utilize. String theory may yield a solution to this naturalness (or self-predictiveness) problem as well as offer a unifed theory of gravity. Studies in particle physics phenomenology based on perturbative low energy analysis of various string theories can help determine the candidacy of such models. After a review of principles and problems leading up to our current understanding of the universe, we will discuss some of the best particle physics model building techniques that have been developed using string theory. This will culminate in the introduction of a novel approach to a computational, systematic analysis of the various physical phenomena that arise from these string models. We focus on the necessary assumptions, complexity and open questions that arise while making a fully-automated at direction analysis program.
Tensor modes on the string theory landscape
NASA Astrophysics Data System (ADS)
Westphal, Alexander
2013-04-01
We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.
String duality transformations in f(R) gravity from Noether symmetry approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr
2016-01-01
We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians aremore » shown in cases where the duality transformation becomes a parity inversion.« less
Note on tachyon moduli and closed strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro da Cunha, Bruno
2008-07-15
The collective behavior of the SL(2,R) covariant brane states of noncritical c=1 string theory, found in a previous work, is studied in the Fermi liquid approximation. It is found that such states mimic the coset WZW model, whereas only by further restrictions one recovers the double-scaling limit which was purported to be equivalent to closed string models. Another limit is proposed, inspired by the tachyon condensation ideas, where the spectrum is the same of two-dimensional string theory. We close by noting some strange connections between vacuum states of the theory in their different interpretations.
Highly symmetric D-brane-anti-D-brane effective actions
NASA Astrophysics Data System (ADS)
Hatefi, Ehsan
2017-09-01
The entire S-matrix elements of four, five and six point functions of D-brane-anti D-brane system are explored. To deal with symmetries of string amplitudes as well as their all order α ' corrections we first address a four point function of one closed string Ramond-Ramond (RR) and two real tachyons on the world volume of brane-anti brane system. We then focus on symmetries of string theory as well as universal tachyon expansion to achieve both string and effective field theory of an RR and three tachyons where the complete algebraic analysis for the whole S-matrix < {V}_{C^{-1}}{V}_{T^{-1}}{V}_{T^0}{V}_{T^0}> was also revealed. Lastly, we employ all the conformal field theory techniques to < {V}_{C^{-1}}{V}_{T^{-1}}{V}_{T^0}{V}_{T^0}{V}_{T^0}> , working out with symmetries of theory and find out the expansion for the amplitude to be able to precisely discover all order singularity structures of D-brane-anti-D-brane effective actions of string theory. Various remarks about the so called generalized Veneziano amplitude and new string couplings are elaborated as well.
Flux compactification of M-theory on compact manifolds with spin(7) holonomy
NASA Astrophysics Data System (ADS)
Constantin, Dragos Eugeniu
2005-11-01
At the leading order, M-theory admits minimal supersymmetric compactifications if the internal manifold has exceptional holonomy. The inclusion of non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory, which depends on the fluxes. In this work, we check the conjectured form of this superpotential in the case of warped M-theory compactifications on Spin (7) holonomy manifolds. We perform a Kaluza-Klein reduction of the eleven-dimensional supersymmetry transformation for the gravitino and we find by direct comparison the superpotential expression. We check the conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well. The conjecture can be checked indirectly by inspecting the scalar potential obtained after the compactification of M-theory on Spin (7) holonomy manifolds with non-vanishing fluxes. The scalar potential can be written in terms of the superpotential and we show that this potential stabilizes all the moduli fields describing deformations of the metric except for the radial modulus. All the above analyses require the knowledge of the minimal supergravity action in three dimensions. Therefore we calculate the most general causal N = 1 three-dimensional, gauge invariant action coupled to matter in superspace and derive its component form using Ectoplasmic integration theory. We also show that the three-dimensional theory which results from the compactification is in agreement with the more general supergravity construction. The compactification procedure takes into account higher order quantum correction terms in the low energy effective action. We analyze the properties of these terms on a Spin (7) background. We derive a perturbative set of solutions which emerges from a warped compactification on a Spin (7) holonomy manifold with non-vanishing flux for the M-theory field strength and we show that in general the Ricci flatness of the internal manifold is lost, which means that the supergravity vacua are deformed away from the exceptional holonomy. Using the superpotential form we identify the supersymmetric vacua out of this general set of solutions.
Detection of low tension cosmic superstrings
NASA Astrophysics Data System (ADS)
Chernoff, David F.; Tye, S.-H. Henry
2018-05-01
Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).
GUT Model Hierarchies from Intersecting Branes
NASA Astrophysics Data System (ADS)
Kokorelis, Christos
2002-08-01
By employing D6-branes intersecting at angles in D = 4 type I strings, we construct the first examples of three generation string GUT models (PS-A class), that contain at low energy exactly the standard model spectrum with no extra matter and/or extra gauge group factors. They are based on the group SU(4)C × SU(2)L × SU(2)R. The models are non-supersymmetric, even though SUSY is unbroken in the bulk. Baryon number is gauged and its anomalies are cancelled through a generalized Green-Schwarz mechanism. We also discuss models (PS-B class) which at low energy have the standard model augmented by an anomaly free U(1) symmetry and show that multibrane wrappings correspond to a trivial redefinition of the surviving global U(1) at low energies. There are no colour triplet couplings to mediate proton decay and proton is stable. The models are compatible with a low string scale of energy less that 650 GeV and are directly testable at present or future accelerators as they predict the existence of light left handed weak fermion doublets at energies between 90 and 246 GeV. The neutrinos get a mass through an unconventional see-saw mechanism. The mass relation me = md at the GUT scale is recovered. Imposing supersymmetry at particular intersections generates non-zero Majorana masses for right handed neutrinos as well providing the necessary singlets needed to break the surviving anomaly free U(1), thus suggesting a gauge symmetry breaking method that can be applied in general left-right symmetric models.
FAST TRACK COMMUNICATION Single-charge rotating black holes in four-dimensional gauged supergravity
NASA Astrophysics Data System (ADS)
Chow, David D. K.
2011-02-01
We consider four-dimensional U(1)4 gauged supergravity, and obtain asymptotically AdS4, non-extremal, charged, rotating black holes with one non-zero U(1) charge. The thermodynamic quantities are computed. We obtain a generalization that includes a NUT parameter. The general solution has a discrete symmetry involving inversion of the rotation parameter, and has a string frame metric that admits a rank-2 Killing-Stäckel tensor.
Topological defects in open string field theory
NASA Astrophysics Data System (ADS)
Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin
2018-04-01
We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.
Holographic entropy and real-time dynamics of quarkonium dissociation in non-Abelian plasma
Iatrakis, Ioannis; Kharzeev, Dmitri E.
2016-04-26
The peak of the heavy quark pair entropy at the deconfinement transition, observed in lattice QCD, suggests that the transition is effectively driven by the increase of the entropy of bound states. The growth of the entropy with the interquark distance leads to the emergent entropic force that induces dissociation of quarkonium states. Since the quark-gluon plasma around the transition point is a strongly coupled system, we use the gauge-gravity duality to study the entropy of heavy quarkonium and the real-time dynamics of its dissociation. In particular, we employ the improved holographic QCD model as a dual description of largemore » N c Yang-Mills theory. Studying the dynamics of the fundamental string between the quarks placed on the boundary, we find that the entropy peaks at the transition point. We also study the real-time dynamics of the system by considering the holographic string falling in the black hole horizon where it equilibrates. As a result, in the vicinity of the deconfinement transition, the dissociation time is found to be less than a fermi, suggesting that the entropic destruction is the dominant dissociation mechanism in this temperature region.« less
London equation for monodromy inflation
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja; Lawrence, Albion
2017-03-01
We focus on the massive gauge theory formulation of axion monodromy inflation. We argue that a gauge symmetry hidden in these models is the key mechanism protecting inflation from dangerous field theory and quantum gravity corrections. The effective theory of large-field inflation is dual to a massive U (1 ) 4-form gauge theory, which is similar to a massive gauge theory description of superconductivity. The gauge theory explicitly realizes the old Julia-Toulouse proposal for a low-energy description of a gauge theory in a defect condensate. While we work mostly with the example of quadratic axion potential induced by flux monodromy, we discuss how other types of potentials can arise from the inclusion of gauge-invariant corrections to the theory.
Classical theory of radiating strings
NASA Technical Reports Server (NTRS)
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Dark matter cosmic string in the gravitational field of a black hole
NASA Astrophysics Data System (ADS)
Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek
2018-03-01
We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.
Surface operators from M -strings
NASA Astrophysics Data System (ADS)
Mori, Hironori; Sugimoto, Yuji
2017-01-01
It has been found that surface operators have a significant role in Alday-Gaiotto-Tachikawa (AGT) relation. This duality is an outstanding consequence of M -theory, but it is actually encoded into the brane web for which the topological string can work. From this viewpoint, the surface defect in AGT relation is geometrically engineered as a toric brane realization. Also, there is a class of the brane configuration in M -theory called M -strings which can be translated into the language of the topological string. In this work, we propose a new M -string configuration which can realize AGT relation in the presence of the surface defect by utilizing the geometric transition in the refined topological string.
Exploring the spectrum of regularized bosonic string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambjørn, J., E-mail: ambjorn@nbi.dk; Makeenko, Y., E-mail: makeenko@nbi.dk
2015-03-15
We implement a UV regularization of the bosonic string by truncating its mode expansion and keeping the regularized theory “as diffeomorphism invariant as possible.” We compute the regularized determinant of the 2d Laplacian for the closed string winding around a compact dimension, obtaining the effective action in this way. The minimization of the effective action reliably determines the energy of the string ground state for a long string and/or for a large number of space-time dimensions. We discuss the possibility of a scaling limit when the cutoff is taken to infinity.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Brane inflation and cosmic string tension in superstring theory
NASA Astrophysics Data System (ADS)
Firouzjahi, Hassan; Tye, S.-H. Henry
2005-03-01
In a simple reanalysis of the KKLMMT scenario, we argue that the slow roll condition in the D3-overline {D}3 -brane inflationary scenario in superstring theory requires no more than a moderate tuning. The cosmic string tension is very sensitive to the conformal coupling: with less fine-tuning, the cosmic string tension (as well as the ratio of tensor to scalar perturbation mode) increases rapidly and can easily saturate the present observational bound. In a multi-throat brane inflationary scenario, this feature substantially improves the chance of detecting and measuring the properties of the cosmic strings as a window to the superstring theory and our pre-inflationary universe.
Janiszewski, Stefan; Karch, Andreas
2013-02-22
We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.
Electromagnetic interaction in the theory of straight strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, I.N.; Pron`ko, G.P.
1995-06-01
A scheme is proposed for including electromagnetic interaction into the theories of stretched relativistic objects. In the theory of the straight string, the operator of electromagnetic interaction is constructed, and form factors of electromagnetic transitions are calculated. 6 refs., 1 fig.
Massive quiver matrix models for massive charged particles in AdS
Asplund, Curtis T.; Denef, Frederik; Dzienkowski, Eric
2016-01-11
Here, we present a new class of N = 4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can bemore » obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.« less
Is the Orthographic/Phonological Onset a Single Unit in Reading Aloud?
ERIC Educational Resources Information Center
Mousikou, Petroula; Coltheart, Max; Saunders, Steven; Yen, Lisa
2010-01-01
Two main theories of visual word recognition have been developed regarding the way orthographic units in printed words map onto phonological units in spoken words. One theory suggests that a string of single letters or letter clusters corresponds to a string of phonemes (Coltheart, 1978; Venezky, 1970), while the other suggests that a string of…
ξ /ξ2 n d ratio as a tool to refine effective Polyakov loop models
NASA Astrophysics Data System (ADS)
Caselle, Michele; Nada, Alessandro
2017-10-01
Effective Polyakov line actions are a powerful tool to study the finite temperature behavior of lattice gauge theories. They are much simpler to simulate than the original lattice model and are affected by a milder sign problem, but it is not clear to which extent they really capture the rich spectrum of the original theories. We propose here a simple way to address this issue based on the so-called second moment correlation length ξ2 n d . The ratio ξ /ξ2 n d between the exponential correlation length and the second moment one is equal to 1 if only a single mass is present in the spectrum, and it becomes larger and larger as the complexity of the spectrum increases. Since both ξ and ξ2 n d are easy to measure on the lattice, this is a cheap and efficient way to keep track of the spectrum of the theory. As an example of the information one can obtain with this tool, we study the behavior of ξ /ξ2 n d in the confining phase of the (D =3 +1 ) SU(2) gauge theory and show that it is compatible with 1 near the deconfinement transition, but it increases dramatically as the temperature decreases. We also show that this increase can be well understood in the framework of an effective string description of the Polyakov loop correlator. This nontrivial behavior should be reproduced by the Polyakov loop effective action; thus, it represents a stringent and challenging test of existing proposals, and it may be used to fine-tune the couplings and to identify the range of validity of the approximations involved in their construction.
Width of the confining string in Yang-Mills theory.
Gliozzi, F; Pepe, M; Wiese, U-J
2010-06-11
We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.
Hot string soup: Thermodynamics of strings near the Hagedorn transition
NASA Astrophysics Data System (ADS)
Lowe, David A.; Thorlacius, Lárus
1995-01-01
Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The averge total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.
Noncommutative gauge theory for Poisson manifolds
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter; Wess, Julius
2000-09-01
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.
NASA Astrophysics Data System (ADS)
Kane, Gordon
2015-12-01
String/M-theory is an exciting framework within which we try to understand our universe and its properties. Compactified string/M-theories address and offer solutions to almost every important question and issue in particle physics and particle cosmology. But earlier goals of finding a top-down “vacuum selection” principle and deriving the 4D theory have not yet been realized. Does that mean we should stop trying, as nearly all string theorists have? Or can we proceed in the historical way to make a few generic, robust assumptions not closely related to observables, and follow where they lead to testable predictions and explanations? Making only very generic assumptions is a significant issue. I discuss how to try to proceed with this approach, particularly in M-theory compactified on a 7D manifold of G2 holonomy. One goal is to understand our universe as a string/M-theory vacuum for its own sake, in the long tradition of trying to understand our world, and what that implies. In addition, understanding our vacuum may be a prelude to understanding its connection to the multiverse.
Rail passenger equipment collision tests : analysis of structural measurements
DOT National Transportation Integrated Search
2000-11-01
A two-car full-scale collision test was conducted on April 4, 2000. Two coupled rail passenger cars impacted a rigid wall at 26 mph. The cars were instrumented with strain gauges, accelerometers, and string potentiometers, to measure the deformation ...
Conformal versus confining scenario in SU(2) with adjoint fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Debbio, L.; Pica, C.; Lucini, B.
2009-10-01
The masses of the lowest-lying states in the meson and in the gluonic sector of an SU(2) gauge theory with two Dirac flavors in the adjoint representation are measured on the lattice at a fixed value of the lattice coupling {beta}=4/g{sub 0}{sup 2}=2.25 for values of the bare fermion mass m{sub 0} that span a range between the quenched regime and the massless limit, and for various lattice volumes. Even for light constituent fermions the lightest glueballs are found to be lighter than the lightest mesons. Moreover, the string tension between two static fundamental sources strongly depends on the massmore » of the dynamical fermions and becomes of the order of the inverse squared lattice linear size before the chiral limit is reached. The implications of these findings for the phase of the theory in the massless limit are discussed and a strategy for discriminating between the (near-)conformal and the confining scenario is outlined.« less
Materials Processing in Magnetic Fields
NASA Astrophysics Data System (ADS)
Schneider-Muntau, Hans J.; Wada, Hitoshi
The latest in lattice QCD -- Quark-gluon plasma physics -- String theory and exact results in quantum field theory -- The status of local supersymmetry.Supersymmetry in nuclei -- Inflation, dark matter, dark energy -- How many dimensions are really compactified? -- Horizons -- Neutrino oscillations physics -- Fundamental constants and their possible time dependence.Highlights from BNL. new phenomena at RHIC -- Highlights from BABAR -- Diffraction studied with a hard scale at HERA -- The large hadron collider: a status report -- Status of non-LHC experiments at CERN -- Highlights from Gran Sass.Fast automatic systems for nuclear emulsion scanning: technique and experiments -- Probing the QGP with charm at ALICE-LHC -- magnetic screening length in hot QCD -- Non-supersymmetric deformation of the Klebanov-Strassler model and the related plane wave theory -- Holographic renormalization made simple: an example -- The kamLAND impact on neutrino oscillations -- Particle identification with the ALIC TOF detector at very high multiplicity -- Superpotentials of N = 1 SUSY gauge theories -- Measurement of the proton structure function F2 in QED compton scattering at HERA -- Yang-Mills effective action at high temperature -- The time of flight (TOF) system of the ALICE experiment -- Almost product manifolds as the low energy geometry of Dirichlet Brane.
On SYM theory and all order bulk singularity structures of BPS strings in type II theory
NASA Astrophysics Data System (ADS)
Hatefi, Ehsan
2018-06-01
The complete forms of the S-matrix elements of a transverse scalar field, two world volume gauge fields, and a Potential Cn-1 Ramond-Ramond (RR) form field are investigated. In order to find an infinite number of t , s , (t + s + u)-channel bulk singularity structures of this particular mixed open-closed amplitude, we employ all the conformal field theory techniques to
Chaos in the gauge/gravity correspondence
NASA Astrophysics Data System (ADS)
Pando Zayas, Leopoldo A.; Terrero-Escalante, César A.
2010-09-01
We study the motion of a string in the background of the Schwarzschild black hole in AdS 5 by applying the standard arsenal of dynamical systems. Our description of the phase space includes: the power spectrum, the largest Lyapunov exponent, Poincare sections and basins of attractions. We find convincing evidence that the motion is chaotic. We discuss the implications of some of the quantities associated with chaotic systems for aspects of the gauge/gravity correspondence. In particular, we suggest some potential relevance for the information loss paradox.
Large-D gravity and low-D strings.
Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro
2013-06-21
We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.
Chiral phase transition from string theory.
Parnachev, Andrei; Sahakyan, David A
2006-09-15
The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.
Anomaly of strings of 6d {N}=(1,0) theories
NASA Astrophysics Data System (ADS)
Shimizu, Hiroyuki; Tachikawa, Yuji
2016-11-01
We obtain the anomaly polynomial of strings of general 6d {N}=(1,0) theories in terms of anomaly inflow. Our computation sheds some light on the reason why the simplest 6d {N}=(1,0) theory has E 8 flavor symmetry, and also partially explains a curious numerology in F-theory.
Dual little strings from F-theory and flop transitions
NASA Astrophysics Data System (ADS)
Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong
2017-07-01
A particular two-parameter class of little string theories can be described by M parallel M5-branes probing a transverse affine A N - 1 singularity. We previously discussed the duality between the theories labelled by ( N, M) and ( M, N). In this work, we propose that these two are in fact only part of a larger web of dual theories. We provide evidence that the theories labelled by ( N, M) and (NM/k,k) are dual to each other, where k = gcd( N, M). To argue for this duality, we use a geometric realization of these little string theories in terms of F-theory compactifications on toric, non-compact Calabi-Yau threefolds X N, M which have a double elliptic fibration structure. We show explicitly for a number of examples that X NM/ k, k is part of the extended moduli space of X N, M , i.e. the two are related through symmetry transformations and flop transitions. By working out the full duality map, we provide a simple check at the level of the free energy of little string theories.
NASA Technical Reports Server (NTRS)
Bennett, David P.
1988-01-01
Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
2016-11-07
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
Gauge Theory on a Space with Linear Lie Type Fuzziness
NASA Astrophysics Data System (ADS)
Khorrami, Mohammad; Fatollahi, Amir H.; Shariati, Ahmad
2013-03-01
The U(1) gauge theory on a space with Lie type noncommutativity is constructed. The construction is based on the group of translations in Fourier space, which in contrast to space itself is commutative. In analogy with lattice gauge theory, the object playing the role of flux of field strength per plaquette, as well as the action, is constructed. It is observed that the theory, in comparison with ordinary U(1) gauge theory, has an extra gauge field component. This phenomena is reminiscent of similar ones in formulation of SU(N) gauge theory in space with canonical noncommutativity, and also appearance of gauge field component in discrete direction of Connes' construction of the Standard Model.
Blueprints of the no-scale multiverse at the LHC
NASA Astrophysics Data System (ADS)
Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.
2011-09-01
We present a contemporary perspective on the String Landscape and the Multiverse of plausible string, M- and F-theory vacua. In contrast to traditional statistical classifications and capitulation to the anthropic principle, we seek only to demonstrate the existence of a nonzero probability for a universe matching our own observed physics within the solution ensemble. We argue for the importance of No-Scale Supergravity as an essential common underpinning for the spontaneous emergence of a cosmologically flat universe from the quantum “nothingness.” Concretely, we continue to probe the phenomenology of a specific model which is testable at the LHC and Tevatron. Dubbed No-Scale F-SU(5), it represents the intersection of the Flipped SU(5) Grand Unified Theory (GUT) with extra TeV-Scale vectorlike multiplets derived out of F-theory, and the dynamics of No-Scale Supergravity, which in turn imply a very restricted set of high-energy boundary conditions. By secondarily minimizing the minimum of the scalar Higgs potential, we dynamically determine the ratio tanβ≃15-20 of up- to down-type Higgs vacuum expectation values (VEVs), the universal gaugino boundary mass M1/2≃450GeV, and, consequently, also the total magnitude of the GUT-scale Higgs VEVs, while constraining the low-energy standard model gauge couplings. In particular, this local minimum minimorum lies within the previously described “golden strip,” satisfying all current experimental constraints. We emphasize, however, that the overarching goal is not to establish why our own particular universe possesses any number of specific characteristics, but rather to tease out what generic principles might govern the superset of all possible universes.
A cosmic book. [of physics of early universe
NASA Technical Reports Server (NTRS)
Peebles, P. J. E.; Silk, Joseph
1988-01-01
A system of assigning odds to the basic elements of cosmological theories is proposed in order to evaluate the strengths and weaknesses of the theories. A figure of merit for the theories is obtained by counting and weighing the plausibility of each of the basic elements that is not substantially supported by observation or mature fundamental theory. The magnetized strong model is found to be the most probable. In order of decreasing probability, the ranking for the rest of the models is: (1) the magnetized string model with no exotic matter and the baryon adiabatic model; (2) the hot dark matter model and the model of cosmic string loops; (3) the canonical cold dark matter model, the cosmic string loops model with hot dark matter, and the baryonic isocurvature model; and (4) the cosmic string loops model with no exotic matter.
New dimensions for wound strings: The modular transformation of geometry to topology
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGreevy, John; Silverstein, Eva; Starr, David
2007-02-15
We show, using a theorem of Milnor and Margulis, that string theory on compact negatively curved spaces grows new effective dimensions as the space shrinks, generalizing and contextualizing the results in E. Silverstein, Phys. Rev. D 73, 086004 (2006).. Milnor's theorem relates negative sectional curvature on a compact Riemannian manifold to exponential growth of its fundamental group, which translates in string theory to a higher effective central charge arising from winding strings. This exponential density of winding modes is related by modular invariance to the infrared small perturbation spectrum. Using self-consistent approximations valid at large radius, we analyze this correspondencemore » explicitly in a broad set of time-dependent solutions, finding precise agreement between the effective central charge and the corresponding infrared small perturbation spectrum. This indicates a basic relation between geometry, topology, and dimensionality in string theory.« less
String-theoretic deformation of the Parke-Taylor factor
NASA Astrophysics Data System (ADS)
Mizera, Sebastian; Zhang, Guojun
2017-09-01
Scattering amplitudes in a range of quantum field theories can be computed using the Cachazo-He-Yuan (CHY) formalism. In theories with color ordering, the key ingredient is the so-called Parke-Taylor factor. In this paper we give a fully SL (2 ,C )-covariant definition and study the properties of a new integrand called the "string Parke-Taylor" factor. It has an α' expansion whose leading coefficient is the field-theoretic Parke-Taylor factor. Its main application is that it leads to a CHY formulation of open string tree-level amplitudes. In fact, the definition of the string Parke-Taylor factor was motivated by trying to extend the compact formula for the first α' correction found by He and Zhang, while the main ingredient in its definition is a determinant of a matrix introduced in the context of string theory by Stieberger and Taylor.
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter; Vysoký, Jan
2014-06-01
We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model.
The large N limit of superconformal field theories and supergravity
NASA Astrophysics Data System (ADS)
Maldacena, Juan
1999-07-01
We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 3+1N=4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.
Carving out the end of the world or (superconformal bootstrap in six dimensions)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chi-Ming; Lin, Ying-Hsuan
We bootstrap N=(1,0) superconformal field theories in six dimensions, by analyzing the four-point function of flavor current multiplets. By assuming E 8 flavor group, we present universal bounds on the central charge C T and the flavor central charge C J. Based on the numerical data, we conjecture that the rank-one E-string theory saturates the universal lower bound on C J , and numerically determine the spectrum of long multiplets in the rank-one E-string theory. We comment on the possibility of solving the higher-rank E-string theories by bootstrap and thereby probing M-theory on AdS 7×S 4/Z 2 .
Carving out the end of the world or (superconformal bootstrap in six dimensions)
Chang, Chi-Ming; Lin, Ying-Hsuan
2017-08-29
We bootstrap N=(1,0) superconformal field theories in six dimensions, by analyzing the four-point function of flavor current multiplets. By assuming E 8 flavor group, we present universal bounds on the central charge C T and the flavor central charge C J. Based on the numerical data, we conjecture that the rank-one E-string theory saturates the universal lower bound on C J , and numerically determine the spectrum of long multiplets in the rank-one E-string theory. We comment on the possibility of solving the higher-rank E-string theories by bootstrap and thereby probing M-theory on AdS 7×S 4/Z 2 .
New 5-adic Cantor sets and fractal string.
Kumar, Ashish; Rani, Mamta; Chugh, Renu
2013-01-01
In the year (1879-1884), George Cantor coined few problems and consequences in the field of set theory. One of them was the Cantor ternary set as a classical example of fractals. In this paper, 5-adic Cantor one-fifth set as an example of fractal string have been introduced. Moreover, the applications of 5-adic Cantor one-fifth set in string theory have also been studied.
Breakdown of String Perturbation Theory for Many External Particles.
Ghosh, Sudip; Raju, Suvrat
2017-03-31
We consider massless string scattering amplitudes in a limit where the number of external particles becomes very large, while the energy of each particle remains small. Using the growth of the volume of the relevant moduli space, and by means of independent numerical evidence, we argue that string perturbation theory breaks down in this limit. We discuss some remarkable implications for the information paradox.
Democratic superstring field theory: gauge fixing
NASA Astrophysics Data System (ADS)
Kroyter, Michael
2011-03-01
We show that a partial gauge fixing of the NS sector of the democratic-picture superstring field theory leads to the non-polynomial theory. Moreover, by partially gauge fixing the Ramond sector we obtain a non-polynomial fully RNS theory at pictures 0 and 1/2 . Within the democratic theory and in the partially gauge fixed theory the equations of motion of both sectors are derived from an action. We also discuss a representation of the non-polynomial theory analogous to a manifestly two-dimensional representation of WZW theory and the action of bosonic pure-gauge solutions. We further demonstrate that one can consistently gauge fix the NS sector of the democratic theory at picture number -1. The resulting theory is new. It is a {mathbb{Z}_2} dual of the modified cubic theory. We construct analytical solutions of this theory and show that they possess the desired properties.
Mellin transforming the minimal model CFTs: AdS/CFT at strong curvature
Lowe, David A.
2016-07-14
Mack has conjectured that all conformal field theories are equivalent to string theories. Here, we explore the example of the two-dimensional minimal model CFTs and confirm that the Mellin transformed amplitudes have the desired properties of string theory in three-dimensional anti-de Sitter spacetime.
NASA Technical Reports Server (NTRS)
Turok, Neil
1988-01-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.
A new class of N=2 topological amplitudes
NASA Astrophysics Data System (ADS)
Antoniadis, I.; Hohenegger, S.; Narain, K. S.; Sokatchev, E.
2009-12-01
We describe a new class of N=2 topological amplitudes that compute a particular class of BPS terms in the low energy effective supergravity action. Specifically they compute the coupling F(( where F, λ and ϕ are gauge field strengths, gaugino and holomorphic vector multiplet scalars. The novel feature of these terms is that they depend both on the vector and hypermultiplet moduli. The BPS nature of these terms implies that they satisfy a holomorphicity condition with respect to vector moduli and a harmonicity condition as well as a second order differential equation with respect to hypermultiplet moduli. We study these conditions explicitly in heterotic string theory and show that they are indeed satisfied up to anomalous boundary terms in the world-sheet moduli space. We also analyze the boundary terms in the holomorphicity and harmonicity equations at a generic point in the vector and hyper moduli space. In particular we show that the obstruction to the holomorphicity arises from the one loop threshold correction to the gauge couplings and we argue that this is due to the contribution of non-holomorphic couplings to the connected graphs via elimination of the auxiliary fields.
High energy physics, past, present and future
NASA Astrophysics Data System (ADS)
Sugawara, Hirotaka
2017-03-01
At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.
Polarized deep inelastic scattering off the neutron from gauge/string duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Jianhua; Mou Zonggang; Department of Physics, Shandong University, Jinan, Shandong, 250100
2010-05-01
We investigate deep inelastic scattering off the polarized 'neutron' using gauge/string duality. The 'neutron' corresponds to a supergravity mode of the neutral dilatino. Through introducing the Pauli interaction term into the action in AdS{sub 5} space, we calculate the polarized deep inelastic structure functions of the 'neutron' in supergravity approximation at large t' Hooft coupling {lambda} and finite x with {lambda}{sup -1/2}<
A class of exact classical solutions to string theory.
Coley, A A
2002-12-31
We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.
Non-polynomial closed string field theory: loops and conformal maps
NASA Astrophysics Data System (ADS)
Hua, Long; Kaku, Michio
1990-11-01
Recently, we proposed the complete classical action for the non-polynomial closed string field theory, which succesfully reproduced all closed string tree amplitudes. (The action was simultaneously proposed by the Kyoto group). In this paper, we analyze the structure of the theory. We (a) compute the explicit conformal map for all g-loop, p-puncture diagrams, (b) compute all one-loop, two-puncture maps in terms of hyper-elliptic functions, and (c) analyze their modular structure. We analyze, but do not resolve, the question of modular invariance.
Dienes, Keith
2018-01-10
We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called "string landscape", physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.
Segmented strings coupled to a B-field
NASA Astrophysics Data System (ADS)
Vegh, David
2018-04-01
In this paper we study segmented strings in AdS3 coupled to a background two-form whose field strength is proportional to the volume form. By changing the coupling, the theory interpolates between the Nambu-Goto string and the SL(2, ℝ) Wess-Zumino-Witten model. In terms of the kink momentum vectors, the action is independent of the coupling and the classical theory reduces to a single discrete-time Toda-type theory. The WZW model is a singular point in coupling space where the map into Toda variables degenerates.
Instability of black strings in the third-order Lovelock theory
NASA Astrophysics Data System (ADS)
Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo
2016-05-01
We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.
Behavior of boundary string field theory associated with integrable massless flow.
Fujii, A; Itoyama, H
2001-06-04
We put forward an idea that the boundary entropy associated with integrable massless flow of thermodynamic Bethe ansatz (TBA) is identified with tachyon action of boundary string field theory. We show that the temperature parametrizing a massless flow in the TBA formalism can be identified with tachyon energy for the classical action at least near the ultraviolet fixed point, i.e., the open string vacuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Periwal, V.
1988-01-01
The author proves that bosonic string perturbation theory diverges and is not Borel summable. This is an indication of a non-perturbative instability of the bosonic string vacuum. He formulates two-dimensional sigma models in terms of algebras of functions. He extends this formulation to general C* algebras. He illustrates the utility of these algebraic notions by calculating some determinants of interest in the study of string propagation in orbifold backgrounds. He studies the geometry of spaces of field theories and show that the vanishing of the curvature of the natural Gel'fand-Naimark-Segal metric on such spaces is exactly the strong associativity conditionmore » of the operator product expansion.He shows that string scattering amplitudes arise as invariants of renormalization, when he formulates renormalization in terms of rescalings of the metric on the string world-sheet.« less
5-brane webs for 5d N = 1 G 2 gauge theories
NASA Astrophysics Data System (ADS)
Hayashi, Hirotaka; Kim, Sung-Soo; Lee, Kimyeong; Yagi, Futoshi
2018-03-01
We propose 5-brane webs for 5d N = 1 G 2 gauge theories. From a Higgsing of the SO(7) gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure G 2 gauge theory using an O5-plane or an \\tilde{O5} -plane. Adding flavors to the 5-brane web for the pure G 2 gauge theory is also discussed. Based on the obtained 5-brane webs, we compute the partition functions for the 5d G 2 gauge theories using the recently suggested topological vertex formulation with an O5-plane, and we find agreement with known results.
Confinement with Perturbation Theory, After All?
NASA Astrophysics Data System (ADS)
Hoyer, Paul
2015-09-01
I call attention to the possibility that QCD bound states (hadrons) could be derived using rigorous Hamiltonian, perturbative methods. Solving Gauss' law for A 0 with a non-vanishing boundary condition at spatial infinity gives an linear potential for color singlet and qqq states. These states are Poincaré and gauge covariant and thus can serve as initial states of a perturbative expansion, replacing the conventional free in and out states. The coupling freezes at , allowing reasonable convergence. The bound states have a sea of pairs, while transverse gluons contribute only at . Pair creation in the linear A 0 potential leads to string breaking and hadron loop corrections. These corrections give finite widths to excited states, as required by unitarity. Several of these features have been verified analytically in D = 1 + 1 dimensions, and some in D = 3 + 1.
Problems in particle theory. Technical report - 1993--1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, S.L.; Wilczek, F.
This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed abovemore » (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space.« less
Hashimoto, Koji; Ho, Pei-Ming; Wang, John E
2003-04-11
We derive effective actions for "spacelike branes" (S-branes) and find a solution describing the formation of fundamental strings in the rolling tachyon background. The S-brane action is a Dirac-Born-Infeld action for Euclidean world volumes defined in the context of time-dependent tachyon condensation of non-BPS (Bogomol'nyi-Prasad-Sommerfield) branes. It includes gauge fields and, in particular, a scalar field associated with translation along the time direction. We show that the BIon spike solutions constructed in this system correspond to the production of a confined electric flux tube (a fundamental string) at late time of the rolling tachyon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witten, Edward
2015-10-21
The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.