Science.gov

Sample records for string-guided fast transport

  1. Fast atomic transport without vibrational heating

    SciTech Connect

    Torrontegui, E.; Ibanez, S.; Chen Xi; Ruschhaupt, A.; Guery-Odelin, D.; Muga, J. G.

    2011-01-15

    We use the dynamical invariants associated with the Hamiltonian of an atom in a one dimensional moving trap to inverse engineer the trap motion and perform fast atomic transport without final vibrational heating. The atom is driven nonadiabatically through a shortcut to the result of adiabatic, slow trap motion. For harmonic potentials this only requires designing appropriate trap trajectories, whereas perfect transport in anharmonic traps may be achieved by applying an extra field to compensate the forces in the rest frame of the trap. The results can be extended to atom stopping or launching. The limitations due to geometrical constraints, energies, and accelerations involved are analyzed along with the relation to previous approaches based on classical trajectories or ''fast-forward'' and ''bang-bang'' methods, which can be integrated in the invariant-based framework.

  2. Transport Simulations for Fast Ignition on NIF

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Tabak, M.; Grote, D. P.; Town, R. P. J.; Kemp, A. J.

    2009-11-01

    Calculations of the transport and deposition of a relativistic electron beam into fast-ignition fuel configurations are presented. The hybrid PIC code LSP is used, run in implicit mode and with fluid background particles. The electron beam distribution is chosen based on explicit PIC simulations of the short-pulse LPI. These generally display two hot-electron temperatures, one close to the ponderomotive scaling and one that is much lower. Fast-electron collisions utilize the formulae of J. R. Davies [S. Atzeni et al., Plasma Phys. Controlled Fusion 51 (2009)], and are done with a conservative, relativistic grid-based method similar to Lemons et al., J. Comput. Phys. 228 (2009). We include energy loss off both bound and free electrons in partially-ionized media (such as a gold cone), and have started to use realistic ionization and non-ideal EOS models. We have found the fractional energy coupling into the dense fuel is higher for CD than DT targets, due to the enhanced resistivity and resulting magnetic fields. The coupling enhancement due to magnetic fields and beam characteristics (such as angular spectrum) will be quantified.

  3. Fast axonal transport in early experimental disc edema.

    PubMed

    Radius, R L; Anderson, D R

    1980-02-01

    Previous work has documented impairment of slow axonal transport in papilledema, but the abnormalities in rapid transport were less certain. Therefore fast axonal transport was studied in 19 primate eyes subjected to ocular hypotony for 6 to 72 hr following surgical fistulization of the anterior chamber. Mild, irregular alterations in fast axonal transport were detected only after nerve head swelling was apparent. These changes in fast transport mechanisms in cases of nerve head edema occur after, and may be secondary to, impaired slow axoplasmic flow and the resultant axonal swelling. Furthermore, since prolonged complete interruption of axonal transport is theoretically inconsistent with the continued normal neuron function characteristic of papilledema and, moreover, since previous data shows a "slowdown" rather than complete blockade of axonal transport in papilledema, it is likely that in eyes with papilledema there does not exist a complete flock of axonal transport. Therefore we hypothesize that the swelling results when slow axoplasmic flow is locally slowed down but not totally stopped, with the axon distention producing secondary mild, irregular changes in fast axonal transport.

  4. Automated measurement of fast mitochondrial transport in neurons.

    PubMed

    Miller, Kyle E; Liu, Xin-An; Puthanveettil, Sathyanarayanan V

    2015-01-01

    There is growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However, a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here we describe methodologies for the automated analysis of fast mitochondrial transport from data acquired using a robotic microscope. We focused on addressing questions of measurement precision, speed, reliably, workflow ease, statistical processing, and presentation. We used optical flow and particle tracking algorithms, implemented in ImageJ, to measure mitochondrial movement in primary cultured cortical and hippocampal neurons. With it, we are able to generate complete descriptions of movement profiles in an automated fashion of hundreds of thousands of mitochondria with a processing time of approximately one hour. We describe the calibration of the parameters of the tracking algorithms and demonstrate that they are capable of measuring the fast transport of a single mitochondrion. We then show that the methods are capable of reliably measuring the inhibition of fast mitochondria transport induced by the disruption of microtubules with the drug nocodazole in both hippocampal and cortical neurons. This work lays the foundation for future large-scale screens designed to identify compounds that modulate mitochondrial motility.

  5. Fast Ignition Transport Simulations for NIF

    SciTech Connect

    Strozzi, D J; Grote, D P; Tabak, M; Cohen, B I; Town, R P; Kemp, A J

    2009-10-05

    This paper shows work at Lawrence Livermore National Lab (LLNL) devoted to modeling the propagation of, and heating by, a relativistic electron beam in a idealized dense fuel assembly for fast ignition. The implicit particle-in-cell (PIC) code LSP is used. Experiments planned on the National Ignition Facility (NIF) in the next few years using the Advanced Radiography Capability (ARC) short-pulse laser motivate this work. We demonstrate significant improvement in the heating of dense fuel due to magnetic forces, increased beam collimation, and insertion of a finite-radius carbon region between the beam excitation and fuel regions.

  6. Fast ignition transport simulations for NIF

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Grote, D. P.; Tabak, M.; Cohen, B. I.; Town, R. P. J.; Kemp, A. J.

    2010-08-01

    This paper shows work at Lawrence Livermore National Lab (LLNL) devoted to modeling the propagation of, and heating by, a relativistic electron beam in a idealized dense fuel assembly for fast ignition [1]. The implicit particle-in-cell (PIC) code LSP is used. Experiments planned on the National Ignition Facility (NIF) in the next few years using the Advanced Radiography Capability (ARC) short-pulse laser motivate this work. We demonstrate significant improvement in the heating of dense fuel due to magnetic forces, increased beam collimation, and insertion of a finite-radius carbon region between the beam excitation and fuel regions.

  7. Fast Ion Transport in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Capecchi, W.; Kim, J.; Sears, S. H.; Egedal, J.

    2016-10-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The magnetic topology of the RFP establishes guiding center drifts along flux surfaces, resulting in naturally well-confined fast ions. Past experiments reveal reduced confinement and a redistribution of fast ions with beam-driven instabilities or transition to a 3D equilibrium state. A fast ion transport model characterized by a temporally and spatially dependent diffusion profile describes the fast ion evolution. The diffusion coefficient varies as the square of the measured mode amplitude, and the width is inferred from comparison with correlated density fluctuations. In studying multiple interacting modes, the model reproduces the dynamic NPA-measured 20 % drop in core fast ion concentration. In the case of long-lived frequency chirping modes, there is a consistent time evolution of the fast ion distribution and measured mode frequency on a spatially varying Alfven continuum. Additional studies probe the dynamics of energetic particle modes (EPMs) during the growth of the core-localized kink mode and the rapid loss of fast ion confinement as a transition to a 3D equilibrium occurs. This research is supported by US DOE.

  8. Fast electron generation and transport in a turbulent, magnetized plasma

    SciTech Connect

    Stoneking, Matthew Randall

    1994-05-01

    The nature of fast electron generation and transport in the Madison Symmetric Torus (MST) reversed field pinch (RFP) is investigated using two electron energy analyzer (EEA) probes and a thermocouple calorimeter. The parallel velocity distribution of the fast electron population is well fit by a drifted Maxwellian distribution with temperature of about 100 eV and drift velocity of about 2 x 106 m/s. Cross-calibration of the EEA with the calorimeter provides a measurement of the fast electron perpendicular temperature of 30 eV, much lower than the parallel temperature, and is evidence that the kinetic dynamo mechanism (KDT) is not operative in MST. The fast electron current is found to match to the parallel current at the edge, and the fast electron density is about 4 x 1011 cm-3 independent of the ratio of the applied toroidal electric field to the critical electric field for runaways. First time measurements of magnetic fluctuation induced particle transport are reported. By correlating electron current fluctuations with radial magnetic fluctuations the transported flux of electrons is found to be negligible outside r/a~0.9, but rises the level of the expected total particle losses inside r/a~0.85. A comparison of the measured diffusion coefficient is made with the ausilinear stochastic diffusion coefficient. Evidence exists that the reduction of the transport is due to the presence of a radial ambipolar electric field of magnitude 500 V/m, that acts to equilibrate the ion and electron transport rates. The convective energy transport associated with the measured particle transport is large enough to account for the observed magnetic fluctuation induced energy transport in MST.

  9. Fast damping in mismatched high intensity beam transportation

    NASA Astrophysics Data System (ADS)

    Variale, V.

    2001-08-01

    A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571-1582 (1999) and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999), p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  10. Transport Simulations for Fast Ignition on NIF

    SciTech Connect

    Strozzi, D J; Tabak, M; Grote, D P; Cohen, B I; Shay, H D; Town, R J; Kemp, A J; Key, M

    2009-10-26

    We are designing a full hydro-scale cone-guided, indirect-drive FI coupling experiment, for NIF, with the ARC-FIDO short-pulse laser. Current rad-hydro designs with limited fuel jetting into cone tip are not yet adequate for ignition. Designs are improving. Electron beam transport simulations (implicit-PIC LSP) show: (1) Magnetic fields and smaller angular spreads increase coupling to ignition-relevant 'hot spot' (20 um radius); (2) Plastic CD (for a warm target) produces somewhat better coupling than pure D (cryogenic target) due to enhanced resistive B fields; and (3) The optimal T{sub hot} for this target is {approx} 1 MeV; coupling falls by 3x as T{sub hot} rises to 4 MeV.

  11. Stopping and transport of fast electrons in superdense matter

    SciTech Connect

    Okabayashi, A.; Habara, H.; Yabuuchi, T.; Iwawaki, T.; Tanaka, K. A.

    2013-08-15

    Studied is the stopping and transport of relativistic fast electrons in the vicinity of compressed dense plasma core relevant to fast ignition. Electromagnetic cascade Monte-Carlo is coupled to 2D-PIC simulation. The 2D PIC simulates input electron energy spectrum and angular dependence. The electron energy distributions after passing through the plasma core are calculated at different viewing angles, which well agree with the experiment below several MeV energy range. The implications of calculated results as to collisional damping on several MeV electrons are discussed with the theory based on the stopping power model. The spatial distribution of plasma temperature is also estimated via deposited energy by fast electrons, showing the strong heating at the core surface.

  12. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    SciTech Connect

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.

  13. Transportation fuels from biomass via fast pyrolysis and hydroprocessing

    SciTech Connect

    Elliott, Douglas C.

    2013-09-21

    Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

  14. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  15. Energy transport in ultra-fast eated solid targets

    NASA Astrophysics Data System (ADS)

    Sentoku, Yasuhiko; Johzaki, Tomoyuki; Kemp, Andreas

    2008-11-01

    We discuss hot electron generation in ultra intense laser interaction with initially non-ionized matter. Hot electron energy and the transport inside the target are strongly affected by collisional effects and ionization processes, especially in high-Z material. We have introduced an ionization model into our collisional particle-in-cell code, PICLS, to study hot electron transport in ultra-fast heated matter. Our description of collisional ionization is based on the Thomas-Fermi model, where a local average charge state is calculated from the bulk electron temperature and density. Field ionization is taken into account for ionization of low density plasmas. We have studied laser matter interaction under an irradiation of a laser with 10^20W/cm^2. A strong heat inhibition within a micron distance was observed in a gold target because of the large number of lower energy hot electrons produced at the steepened interface by the laser photon pressure. We will discuss the generation of hot electrons and their transport in ultra-fast heated solid targets of various materials.

  16. Modeling Fast Ion Transport in TAE Avalanches in NSTX

    SciTech Connect

    Fredrickson, E D; Bell, R E; Darrow, D; Gorelenkov, N N; Kramer, G; Kubota, S; Levinton, F M; Liu, D; Medley, S S; Podesta, M; Tritz, K

    2009-08-17

    Experiments on the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557 ] have found strong bursts of Toroidal Alfven Eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA [C. Z. Cheng, Phys. Reports 211, 1-51 (1992)] and ORBIT [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE were modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE were then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate. While these results represent our best attempts to find agreement, we believe that further refinements in both the simulation of the TAE structure and in the modeling of the fast ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  17. Design of a transportable high efficiency fast neutron spectrometer

    DOE PAGES

    Roecker, C.; Bernstein, A.; Bowden, N. S.; ...

    2016-04-12

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV andmore » a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.« less

  18. Design of a transportable high efficiency fast neutron spectrometer

    SciTech Connect

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-04-12

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  19. Design of a transportable high efficiency fast neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  20. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets

    NASA Astrophysics Data System (ADS)

    Jarrott, L. C.; Wei, M. S.; McGuffey, C.; Solodov, A. A.; Theobald, W.; Qiao, B.; Stoeckl, C.; Betti, R.; Chen, H.; Delettrez, J.; Döppner, T.; Giraldez, E. M.; Glebov, V. Y.; Habara, H.; Iwawaki, T.; Key, M. H.; Luo, R. W.; Marshall, F. J.; McLean, H. S.; Mileham, C.; Patel, P. K.; Santos, J. J.; Sawada, H.; Stephens, R. B.; Yabuuchi, T.; Beg, F. N.

    2016-05-01

    Recent progress in kilojoule-scale high-intensity lasers has opened up new areas of research in radiography, laboratory astrophysics, high-energy-density physics, and fast-ignition (FI) laser fusion. FI requires efficient heating of pre-compressed high-density fuel by an intense relativistic electron beam produced from laser-matter interaction. Understanding the details of electron beam generation and transport is crucial for FI. Here we report on the first visualization of fast electron spatial energy deposition in a laser-compressed cone-in-shell FI target, facilitated by doping the shell with copper and imaging the K-shell radiation. Multi-scale simulations accompanying the experiments clearly show the location of fast electrons and reveal key parameters affecting energy coupling. The approach provides a more direct way to infer energy coupling and guide experimental designs that significantly improve the laser-to-core coupling to 7%. Our findings lay the groundwork for further improving efficiency, with 15% energy coupling predicted in FI experiments using an existing megajoule-scale laser driver.

  1. Fast ion transport induced by saturated infernal mode

    SciTech Connect

    Marchenko, V. S.

    2014-05-15

    Tokamak discharges with extended weak-shear central core are known to suffer from infernal modes when the core safety factor approaches the mode ratio. These modes can cause an outward convection of the well-passing energetic ions deposited in the core by fusion reactions and/or neutral beam injection. Convection mechanism consists in collisional slowing down of energetic ions trapped in the Doppler-precession resonance with a finite-amplitude infernal mode. Convection velocity can reach a few m/s in modern spherical tori. Possible relation of this transport with the enhanced fast ion losses in the presence of “long lived modes” in the MAST tokamak [I. T. Chapman et al., Nucl. Fusion 50, 045007 (2010)] is discussed.

  2. Fast electron transport and spatial energy deposition in imploded fast ignition cone-in-shell targets

    NASA Astrophysics Data System (ADS)

    Jarrott, Leonard

    2014-10-01

    We report on the first experimental observation and model validation of the spatial energy deposition of fast electrons into the imploded, high-density core of integrated cone-in-shell fast ignition experiments on OMEGA. Spatial energy deposition was characterized via fast electron produced K α fluorescence from a Cu tracer added to the CD shell. 2-D images of the Cu K α fluorescence were obtained using a spherically bent Bragg crystal imager. 54 of the 60 OMEGA beams (18 kJ) were used for fuel assembly, and the high intensity EP beam (10 ps, 0.5--1.5 kJ, Ip >1019 W/cm2) , was focused onto the inner cone tip to produce fast electrons. Cu K α emission from a 300 μm region surrounding the cone tip correlated well with the predicted core size from radiation-hydrodynamic simulations of the shell implosion. The emission also emanated from as far back as 100 μm from the cone tip, indicative of an electron source position with a large standoff distance from the cone tip, consistent with the presence of an extended pre-plasma from the EP pre-pulse. We observed a simultaneous increase in both K α yield (up to 70%) and thermal neutron number (up to 2×) with increasing EP beam energy. K α yield data also show an improved energy coupling using the high contrast EP pulse. Comprehensive simulations of the electron production within the cone and subsequent transport into the imploded core have been performed using the implicit PIC code LSP and the hybrid-PIC code ZUMA. These simulations explain the observed K α shape and yield trends and identify parameters that constrain energy coupling into the compressed core. This work was performed under the auspices of U.S. DOE under Contracts DE-FC02-04ER54789 (FSC), DE-FG02-05ER54834 (ACE) and DE-NA0000854 (NLUF).

  3. Fast electron transport in lower-hybrid current drive

    SciTech Connect

    Kupfer, K.; Bers, A.

    1991-01-01

    We generalize the quasilinear-Fokker-Planck formulation for lower-hybrid current drive to include the wave induced radial transport of fast electrons. Toroidal ray tracing shows that the wave fields in the plasma develop a large poloidal component associated with the upshift in k1l and the filling of the "spectral gap". These fields lead to an enhanced radial E x B drift of resonant electrons. Two types of radial flows are obtained: an outward convective flow driven by the asymmetry in the poloidal wave spectrum, and a diffusive flow proportional to the width of the poloidal spectrum. Simulations of Alcator C and JT60, show that the radial convection velocity has a broad maximum of nearly 1 m/sec and is independent of the amplitude of fields. In both cases, the radial diffusion is found to be highly localized near the magnetic axis. For JT60, the peak of the diffusion profile can be quite large, nearly 1 m2/sec.

  4. Bifurcation of velocity distributions in cooperative transport of filaments by fast and slow motors.

    PubMed

    Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan

    2013-02-05

    Several intracellular processes are governed by two different species of molecular motors, fast and slow ones, that both move in the same direction along the filaments but with different velocities. The transport of filaments arising from the cooperative action of these motors has been recently studied by three in vitro experiments, in which the filament velocity was measured for varying fraction of the fast motors adsorbed onto substrate surfaces in a gliding assay. As the fast motor fraction was increased, two experiments found a smooth change whereas the third one observed an abrupt increase of the filament velocity. Here, we show that all of these experimental results reflect the competition between fast and slow motors and can be understood in terms of an underlying saddle-node bifurcation. The comparison between theory and experiment leads to predictions for the detachment forces of the two motor species. Our theoretical study shows the existence of three different motility regimes: 1), fast transport with a single velocity; 2), slow transport with a single velocity; and 3), bistable transport, where the filament velocity stochastically switches between fast and slow transport. We determine the parameter regions for these regimes in terms of motility diagrams as a function of the surface fraction of fast motors and microscopic single-motor parameters. An abrupt increase of the filament velocity for an increasing fraction of fast motors is associated with the occurrence of bistable transport.

  5. Bifurcation of Velocity Distributions in Cooperative Transport of Filaments by Fast and Slow Motors

    PubMed Central

    Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan

    2013-01-01

    Several intracellular processes are governed by two different species of molecular motors, fast and slow ones, that both move in the same direction along the filaments but with different velocities. The transport of filaments arising from the cooperative action of these motors has been recently studied by three in vitro experiments, in which the filament velocity was measured for varying fraction of the fast motors adsorbed onto substrate surfaces in a gliding assay. As the fast motor fraction was increased, two experiments found a smooth change whereas the third one observed an abrupt increase of the filament velocity. Here, we show that all of these experimental results reflect the competition between fast and slow motors and can be understood in terms of an underlying saddle-node bifurcation. The comparison between theory and experiment leads to predictions for the detachment forces of the two motor species. Our theoretical study shows the existence of three different motility regimes: 1), fast transport with a single velocity; 2), slow transport with a single velocity; and 3), bistable transport, where the filament velocity stochastically switches between fast and slow transport. We determine the parameter regions for these regimes in terms of motility diagrams as a function of the surface fraction of fast motors and microscopic single-motor parameters. An abrupt increase of the filament velocity for an increasing fraction of fast motors is associated with the occurrence of bistable transport. PMID:23442917

  6. Global anomalous transport of ICRH- and NBI-heated fast ions

    NASA Astrophysics Data System (ADS)

    Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.

    2017-04-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.

  7. Experimental investigation of the fast-ion transport in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Dux, Ralph; Ryter, Francois; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2013-10-01

    The radial transport of fast-ions is an active field of investigation in fusion devices. In particular, in the presence of MHD instabilities, fast-ions can be redistributed and even ejected from the plasma. This reduces the plasma heating and current drive efficiencies and must consequently be investigated and avoided in view of future fusion devices. In ASDEX Upgrade, sawtooth crashes in NBI heated plasmas have been observed to induce a very strong radial redistribution of the fast-ion population, as measured by fast-ion D-alpha (FIDA) spectroscopy. Modelling done with TRANSP assuming the Kadomstev sawtooth model very well reproduces the experimental measurements. In contrast to the strong anomalous fast-ion transport due to sawtooth crashes, the transport of the fast ions is found to be neo-classical in the absence of significant MHD activity. This is shown by the measurement of the redistributed fast-ions in the time interval following the crashes and by dedicated experiments with off-axis NBI deposition. All the measurements in MHD quiescent plasmas are well reproduced by the neo-classical fast-ion distribution functions from the TRANSP code.

  8. Simulations of Fuel Assembly and Fast-Electron Transport in Integrated Fast-Ignition Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Theobald, W.; Anderson, K. S.; Shvydky, A.; Epstein, R.; Betti, R.; Myatt, J. F.; Stoeckl, C.; Jarrott, L. C.; McGuffey, C.; Qiao, B.; Beg, F. N.; Wei, M. S.; Stephens, R. B.

    2013-10-01

    Integrated fast-ignition experiments on OMEGA benefit from improved performance of the OMEGA EP laser, including higher contrast, higher energy, and a smaller focus. Recent 8-keV, Cu-Kα flash radiography of cone-in-shell implosions and cone-tip breakout measurements showed good agreement with the 2-D radiation-hydrodynamic simulations using the code DRACO. DRACO simulations show that the fuel assembly can be further improved by optimizing the compression laser pulse, evacuating air from the shell, and by adjusting the material of the cone tip. This is found to delay the cone-tip breakout by ~220 ps and increase the core areal density from ~80 mg/cm2 in the current experiments to ~500 mg/cm2 at the time of the OMEGA EP beam arrival before the cone-tip breakout. Simulations using the code LSP of fast-electron transport in the recent integrated OMEGA experiments with Cu-doped shells will be presented. Cu-doping is added to probe the transport of fast electrons via their induced Cu K-shell fluorescent emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration DE-NA0001944 and the Office of Science under DE-FC02-04ER54789.

  9. Measurement of energetic-particle-driven core magnetic fluctuations and induced fast-ion transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J. A.; Anderson, J. K.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2013-03-01

    Internal fluctuations arising from energetic-particle-driven instabilities, including both density and radial magnetic field, are measured in a reversed-field-pinch plasma. The fluctuations peak near the core where fast ions reside and shift outward along the major radius as the instability transits from the n = 5 to n = 4 mode. During this transition, strong nonlinear three-wave interaction among multiple modes accompanied by enhanced fast-ion transport is observed.

  10. On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks

    SciTech Connect

    Samuel Bays; Ayodeji Alajo

    2010-05-01

    This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry “helium” and flooded “water” filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

  11. Nonlinear alfvénic fast particle transport and losses

    NASA Astrophysics Data System (ADS)

    Schneller, M.; Lauber, Ph; García-Muñoz, M.; Brüdgam, M.; Günter, S.

    2012-12-01

    Magnetohydrodynamic instabilities like Toroidal Alfvén Eigenmodes or core-localized modes such as Beta Induced Alfvén Eigenmodes and Reversed Shear Alfvén Eigenmodes driven by fast particles can lead to significant redistribution and losses in fusion devices. This is observed in many ASDEX Upgrade discharges. The present work aims to understand the underlying resonance mechanisms, especially in the presence of multiple modes with different frequencies. Resonant mode coupling mechanisms are investigated using the drift kinetic HAGIS code [Pinches 1998]. Simulations were performed for different plasma equilibria, in particular for different q profiles, employing the availability of improved experimental data. A study was carried out, investigating double-resonant mode coupling with respect to various overlapping scenarios. It was found that, depending on the radial mode distance, double-resonance is able to enhance growth rates as well as mode amplitudes significantly. Small radial mode distances, however can also lead to strong nonlinear mode stabilization of a linear dominant mode. With the extended version of HAGIS, losses were simulated and directly compared with experimental loss measurements. The losses' phase space distribution as well as their ejection signal is consistent with experimental data. Furthermore, it allowed to characterize them as prompt, resonant or stochastic. It was found that especially in multiple mode scenarios (with different mode frequencies), abundant incoherent losses occur in the lower energy range, due to a broad phase-space stochastization. The incoherent higher energetic losses are "prompt", i.e. their initial energy is too large for confined orbits.

  12. Tissue-Specific Expression of Monocarboxylate Transporters during Fasting in Mice

    PubMed Central

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I.; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  13. Tissue-specific expression of monocarboxylate transporters during fasting in mice.

    PubMed

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1-4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms.

  14. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  15. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pincha)

    NASA Astrophysics Data System (ADS)

    Lin, L.; Anderson, J. K.; Brower, D. L.; Capecchi, W.; Ding, W. X.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Liu, D.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.

    2014-05-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n =5 to n =6 while retaining the same poloidal mode number m =1. The transition occurs when the m =1, n =5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (qfi) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  16. Vehicle Emission Inspection and Maintenance (I/M) Provision in the Fixing America’s Surface Transportation (FAST) Act

    EPA Pesticide Factsheets

    This document is a memorandum regarding Vehicle Emission Inspection and Maintenance (I/M) Provision in Fixing America's Surface Transportation (FAST) Act, which provides long-term funding certainty for surface transportation infrastructure planning

  17. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function.

    PubMed

    Otero, Maria G; Alloatti, Matías; Cromberg, Lucas E; Almenar-Queralt, Angels; Encalada, Sandra E; Pozo Devoto, Victorio M; Bruno, Luciana; Goldstein, Lawrence S B; Falzone, Tomás L

    2014-04-01

    Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.

  18. MCNPX Monte Carlo simulations of particle transport in SiC semiconductor detectors of fast neutrons

    NASA Astrophysics Data System (ADS)

    Sedlačková, K.; Zat'ko, B.; Šagátová, A.; Pavlovič, M.; Nečas, V.; Stacho, M.

    2014-05-01

    The aim of this paper was to investigate particle transport properties of a fast neutron detector based on silicon carbide. MCNPX (Monte Carlo N-Particle eXtended) code was used in our study because it allows seamless particle transport, thus not only interacting neutrons can be inspected but also secondary particles can be banked for subsequent transport. Modelling of the fast-neutron response of a SiC detector was carried out for fast neutrons produced by 239Pu-Be source with the mean energy of about 4.3 MeV. Using the MCNPX code, the following quantities have been calculated: secondary particle flux densities, reaction rates of elastic/inelastic scattering and other nuclear reactions, distribution of residual ions, deposited energy and energy distribution of pulses. The values of reaction rates calculated for different types of reactions and resulting energy deposition values showed that the incident neutrons transfer part of the carried energy predominantly via elastic scattering on silicon and carbon atoms. Other fast-neutron induced reactions include inelastic scattering and nuclear reactions followed by production of α-particles and protons. Silicon and carbon recoil atoms, α-particles and protons are charged particles which contribute to the detector response. It was demonstrated that although the bare SiC material can register fast neutrons directly, its detection efficiency can be enlarged if it is covered by an appropriate conversion layer. Comparison of the simulation results with experimental data was successfully accomplished.

  19. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Lin, Liang

    2013-10-01

    Multiple bursty energetic-particle (EP) modes with fishbone-like structures are observed during 1 MW tangential neutral-beam injection into MST reversed field pinch (RFP) plasmas. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to large fast ion beta and stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of these instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport and interaction with global tearing modes. Internal magnetic field fluctuations associated with the EP modes are directly observed for the first time by Faraday-effect polarimetry (frequency ~ 90 kHz and amplitude ~ 2 G). Simultaneously measured density fluctuations exhibit a dynamically evolving and asymmetric spatial structure that peaks near the core where fast ions reside and shifts outward as the instability evolves. Furthermore, the EP mode frequencies appear at ~k∥VA , consistent with continuum modes destabilized by strong drive. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growing phase arising from the beam fueling followed by a rapid drop (~ 15 %) when the EP modes peak, indicating the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced (× 2) with the onset of multiple nonlinearly-interacting EP modes. The fast ions also impact global tearing modes, reducing their amplitudes by up to 65%. This mode reduction is lessened following the EP-bursts, further evidence for fast ion redistribution that weakens the suppression mechanism. Possible tearing mode suppression mechanisms will be discussed. Work supported by US DoE.

  20. Fast-ion transport and NBI current drive in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Weiland, Markus; Mlynek, Alexander; Dunne, Mike; Dux, Ralph; Fischer, Rainer; Hobirk, Joerg; Hopf, Christian; Reich, Matthias; Rittich, David; Ryter, Francois; Schneider, Philip; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2014-10-01

    Good confinement of fast ions is essential in fusion devices because these suprathermal particles are responsible for plasma heating, current drive and can, if poorly confined, damage surrounding walls. The degradation of the fast-ion confinement caused by large and small scale instabilities must consequently be investigated. In the ASDEX Upgrade tokamak, fast ions are generated by neutral beam injection (NBI) and their slowing down distribution can be studied using FIDA spectroscopy, neutral particle analyzers and neutron detectors. Neo-classical fast-ion transport is observed by these measurements in MHD-quiescent discharges with relatively weak heating power (less than 5 MW). The presence of sawtooth instabilities, in contrast, yields a strong internal fast-ion redistribution that can be modelled very well when assuming full reconnection of the helical magnetic field. The fast-ion current drive efficiency has been studied in discharges with up to 10 MW of heating power in which on-axis and off-axis NBI were exchanged. The radial shape of the fast-ion population, generated by the different NBIs, changes as predicted and a corresponding modification of the current profile is measured.

  1. A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting.

    PubMed

    Hugo, Sarah E; Cruz-Garcia, Lourdes; Karanth, Santhosh; Anderson, Ryan M; Stainier, Didier Y R; Schlegel, Amnon

    2012-02-01

    To find new genes that influence liver lipid mass, we performed a genetic screen for zebrafish mutants with hepatic steatosis, a pathological accumulation of fat. The red moon (rmn) mutant develops hepatic steatosis as maternally deposited yolk is depleted. Conversely, hepatic steatosis is suppressed in rmn mutants by adequate nutrition. Adult rmn mutants show increased liver neutral lipids and induction of hepatic lipid biosynthetic genes when fasted. Positional cloning of the rmn locus reveals a loss-of-function mutation in slc16a6a (solute carrier family 16a, member 6a), a gene that we show encodes a transporter of the major ketone body β-hydroxybutyrate. Restoring wild-type zebrafish slc16a6a expression or introducing human SLC16A6 in rmn mutant livers rescues the mutant phenotype. Radiotracer analysis confirms that loss of Slc16a6a function causes diversion of liver-trapped ketogenic precursors into triacylglycerol. Underscoring the importance of Slc16a6a to normal fasting physiology, previously fed rmn mutants are more sensitive to death by starvation than are wild-type larvae. Our unbiased, forward genetic approach has found a heretofore unrecognized critical step in fasting energy metabolism: hepatic ketone body transport. Since β-hydroxybutyrate is both a major fuel and a signaling molecule in fasting, the discovery of this transporter provides a new direction for modulating circulating levels of ketone bodies in metabolic diseases.

  2. Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.

    2012-01-01

    The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.

  3. Effect of MSH/ACTH peptides on fast axonal transport in intact and regenerating sciatic nerves

    SciTech Connect

    Crescitelli, L.A.

    1985-01-01

    Fast axonal transport was examined in intact rats treated with ACTH 4-10 or ACTH 4-9 (ORG 2766), hypophysectomized rats, adrenalectomized rats, and in ACTH 4-10 treated rats with crushed regenerating sciatic nerves by injecting /sup 3/H-leucine into the ventral horn region of the spinal cord. The distance traveled by the transported activity along the sciatic nerve and the rate of fast axonal transport were not significantly altered as a result of treatment with ACTH 4-10, ACTH 4-9 (ORG 2766), hypophysectomy, or adrenalectomy. Treatment with ACTH 4-9 (ORG 2766) at concentrations of 1 ..mu..g/Kg /day and 10 ..mu..g/Kg/day caused significant reductions (62% and 64% respectively) in the crest height of the fast axonal transport curve as compared to 0.9% saline treated control animals. No significant differences were found in comparing the distance, rate, slope, or crest height of ACTH 4-10 treated animals with crushed regenerating (7 or 14d) sciatic nerves to control animals. In the group of animals in days, the amount of radiolabeled activity was significantly increased in the ACTH 4-10 treated animals as compared to control animals. The results indicate that during regeneration the peptide acts to prolong the initially high levels of synthetic activity which occur in regenerating axons.

  4. Identification of an Axonal Kinesin-3 Motor for Fast Anterograde Vesicle Transport that Facilitates Retrograde Transport of Neuropeptides

    PubMed Central

    Barkus, Rosemarie V.; Klyachko, Olga; Horiuchi, Dai; Dickson, Barry J.

    2008-01-01

    A screen for genes required in Drosophila eye development identified an UNC-104/Kif1 related kinesin-3 microtubule motor. Analysis of mutants suggested that Drosophila Unc-104 has neuronal functions that are distinct from those of the classic anterograde axonal motor, kinesin-1. In particular, unc-104 mutations did not cause the distal paralysis and focal axonal swellings characteristic of kinesin-1 (Khc) mutations. However, like Khc mutations, unc-104 mutations caused motoneuron terminal atrophy. The distributions and transport behaviors of green fluorescent protein-tagged organelles in motor axons indicate that Unc-104 is a major contributor to the anterograde fast transport of neuropeptide-filled vesicles, that it also contributes to anterograde transport of synaptotagmin-bearing vesicles, and that it contributes little or nothing to anterograde transport of mitochondria, which are transported primarily by Khc. Remarkably, unc-104 mutations inhibited retrograde runs by neurosecretory vesicles but not by the other two organelles. This suggests that Unc-104, a member of an anterograde kinesin subfamily, contributes to an organelle-specific dynein-driven retrograde transport mechanism. PMID:17989365

  5. Integrated Kinetic Simulation of Laser-Plasma Interactions, Fast-Electron Generation and Transport in Fast Ignition

    SciTech Connect

    Kemp, A; Cohen, B; Divol, L

    2009-11-16

    We present new results on the physics of short-pulse laser-matter interaction of kilojoule-picosecond pulses at full spatial and temporal scale, using a new approach that combines a 3D collisional electromagnetic Particle-in-Cell code with an MHD-hybrid model of high-density plasma. In the latter, collisions damp out plasma waves, and an Ohm's law with electron inertia effects neglected determines the electric field. In addition to yielding orders of magnitude in speed-up while avoiding numerical instabilities, this allows us to model the whole problem in a single unified framework: the laser-plasma interaction at sub-critical densities, energy deposition at relativistic critical densities, and fast-electron transport in solid densities. Key questions such as the multi-picosecond temporal evolution of the laser energy conversion into hot electrons, the impact of return currents on the laser-plasma interaction, and the effect of self-generated electric and magnetic fields on electron transport will be addressed. We will report applications to current experiments.

  6. Integrated kinetic simulation of laser-plasma interactions, fast-electron generation, and transport in fast ignition

    SciTech Connect

    Kemp, A. J.; Cohen, B. I.; Divol, L.

    2010-05-15

    We present new results on the physics of short-pulse laser-matter interaction of kilojoule-picosecond pulses at full spatial and temporal scale using a new approach that combines a three-dimensional collisional electromagnetic particle-in-cell code with a magnetohydrodynamic-hybrid model of high-density plasma. In the latter, collisions damp out plasma waves, and an Ohm's law with electron inertia effects neglected determines the electric field. In addition to yielding orders of magnitude in speed-up while avoiding numerical instabilities, this allows us to model the whole problem in a single unified framework: the laser-plasma interaction at subcritical densities, energy deposition at relativistic critical densities, and fast- electron transport in solid densities. Key questions such as the multipicosecond temporal evolution of the laser energy conversion into hot electrons, the impact of return currents on the laser-plasma interaction, and the effect of self-generated electric and magnetic fields on electron transport will be addressed. We will report applications to current experiments.

  7. Optic nerve fast axonal transport abnormalities in primates. Occurrence after short posterior ciliary artery occlusion.

    PubMed

    Radius, R L

    1980-11-01

    Fast axonal transport abnormalities in primate (Aotus trivirgatus) optic nerve were studied in ten eyes at various intervals after occlusion of the lateral short posterior ciliary circulation. Evidence of focal axonal ischemia, as indicated by swelling of mitochondria and dissolution of cytoplasmic detail, was noted as early as one hour after occlusion. Accumulation of mitochondria, microvesicles, and dense bodies, indicating focal interruption of axonal transport mechanisms, was noted in eyes examined at 2, 4, and 6 hours. This accumulation of organelles was limited to the region of the lamina cribrosa. Nerve head abnormalities were not seen in two eyes studied at two weeks.

  8. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  9. A Fast Fourier transform stochastic analysis of the contaminant transport problem

    USGS Publications Warehouse

    Deng, F.W.; Cushman, J.H.; Delleur, J.W.

    1993-01-01

    A three-dimensional stochastic analysis of the contaminant transport problem is developed in the spirit of Naff (1990). The new derivation is more general and simpler than previous analysis. The fast Fourier transformation is used extensively to obtain numerical estimates of the mean concentration and various spatial moments. Data from both the Borden and Cape Cod experiments are used to test the methodology. Results are comparable to results obtained by other methods, and to the experiments themselves.

  10. Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF

    SciTech Connect

    Ma, Tammy Yee Wing

    2010-01-01

    The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

  11. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    SciTech Connect

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.

    1995-07-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutrons is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: Fast-Neutron Transmission Spectroscopy (FNTS) and Pulsed Fast-Neutron Analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ratio is greater than about 0.01. The Monte-Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projection angles and modest (2 cm) resolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and these reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte-Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA techniques are presented.

  12. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    NASA Astrophysics Data System (ADS)

    Micklich, Bradley J.; Fink, Charles L.; Sagalovsky, Leonid

    1995-09-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutron is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: fast-neutron transmission spectroscopy (FNTS) and pulsed fast-neutron analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ration is greater than about 0.01. The Monte Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projections angles and modest (2 cm) reolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and the reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA technqiues are presented.

  13. Redistribution of proteins of fast axonal transport following administration of beta,beta'-iminodipropionitrile: a quantitative autoradiographic study

    PubMed Central

    1982-01-01

    Beta,beta'-iminodipropionitrile (IDPN) produces a rearrangement of axoplasmic organelles with displacement of microtubules, smooth endoplasmic reticulum, and mitochondria toward the center and of neurofilaments toward the periphery of the axon, whereas the rate of the fast component of axonal transport is unchanged. Separation of microtubules and neurofilaments makes the IDPN axons an excellent model for study of the role of these two organelles in axonal transport. The cross-sectional distribution of [3H]-labeled proteins moving with the front of the fast transport was analyzed by quantitative electron microscopic autoradiography in sciatic nerves of IDPN-treated and control rats, 6 h after injection of a 1:1 mixture of [3H]-proline and [3H]-lysine into lumbar ventral horns. In IDPN axons most of the transported [3H] proteins were located in the central region with microtubules, smooth endoplasmic reticulum and mitochondria, whereas few or none were in the periphery with neurofilaments. In control axons the [3H]-labeled proteins were uniformly distributed within the axoplasm. It is concluded that in fast axonal transport: (a) neurofilaments play no primary role; (b) the normal architecture of the axonal cytoskeleton and the normal cross-sectional distribution of transported materials are not indispensable for the maintenance of a normal rate of transport. The present findings are consistent with the models of fast transport that envision microtubules as the key organelles in providing directionality and propulsive force to the fast component of axonal transport. PMID:6183280

  14. A fast low-pressure transport route to large black phosphorus single crystals

    SciTech Connect

    Nilges, Tom Kersting, Marcel; Pfeifer, Thorben

    2008-08-15

    Black phosphorus, a promising candidate for lithium battery electrodes, can be prepared by a low-pressure transport reaction route representing the first effective and scalable access to this element modification. Crystal sizes larger than 1 cm were obtained at low-pressure conditions in silica ampoules. X-ray phase analyses, EDX, ICP-MS and optical microscopy were applied to characterize the resulting black phosphorus. The present method drastically improves the traditional preparation ways like mercury catalysis, bismuth-flux or high-pressure techniques and represents an easy, non-toxic, fast and highly efficient method to achieve black phosphorus. In contrast to a previously reported low-pressure route the present transport reaction allows an up-scaling to higher masses of starting materials, a larger black phosphorus yield and faster reaction time under retention of the high product crystallinity. - Graphical abstract: A low-pressure transport reaction route representing the first effective and scalable access to black phosphorus.

  15. Urban transportation of Beijing in a fast expansion based on the resident satisfaction survey

    NASA Astrophysics Data System (ADS)

    Li, Xiuwei; Zhang, Wenzhong; Jin, Fengjun; Hong, Min; Wang, Chengjin

    2008-10-01

    This study examines the satisfaction degree of the transportation convenient level by the questionnaire survey and the spatial characteristics by the method of spatial autocorrelation in order to reveal the transportation problems as a consequence of rapid urban development in the city of Beijing. The results demonstrated that the satisfaction degree of traffic congestion was the lowest and the satisfaction degree of transportation convenient level in suburb was lower than it in central city. The supply of traffic facilities, the pattern of resident traffic mode, the road system organization, and the land-use type in a fast expansion were the important causes. According to the research, three major reasons of urban expansion issues are detected. The first reason is lack of comprehensive development planning mechanism to associate the land use with urban transit system which resulted in the lack of transportation facilities. Secondly, Beijing's ring-road structure cannot afford rapid traffic growth and become a main reason to cause traffic congestion. Thirdly, land-use type is deep cause of transportation problems. This study also gave some suggestion in order to minimize the negative aspects: "control" and "regulation" are the two ways to solve the traffic problem; urban spatial expansion oriented by the public transportation and service is the efficient pattern of spatial expansion.

  16. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.

    PubMed

    Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B

    2016-03-04

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  17. Fast-ion studies in the National Spherical Torus Experiment: Transport by instabilities and acceleration by high harmonic fast waves

    NASA Astrophysics Data System (ADS)

    Liu, Deyong

    2009-12-01

    An extensive set of fast-ion diagnostics, including neutron detectors, a E∣∣B type neutral particle analyzer (NPA) and the newly built four-chord solid state neutral particle analyzer array (SSNPA) and a 16-channel Fast-ion D-alpha (FIDA) diagnostic, provides a good test-bed to study fast ion physics in the National Spherical Torus Experiment (NSTX). During combined neutral beam injection (NBI) and High-Harmonic Fast-Wave (HHFW) heating, the acceleration of fast ions is evident in all fast ion diagnostics. The neutron rate is about three times larger during the HHFW heating. A fast-ion tail above the beam injection is observed in the NPA, SSNPA and FIDA diagnostics. It is also shown that the accelerated fast ions observed by the NPA and SSNPA diagnostics mainly come from passive charge exchange reactions at the edge due to the NPA/SSNPA localization in phase space. The spatial profile of accelerated fast ions that is measured by the FIDA diagnostic is much broader than in conventional tokamaks because of the multiple resonance layers and large orbits in NSTX. The fast-ion distribution function calculated by the CQL3D Fokker-Planck code differs from the measured spatial profile, presumably because the current version of CQL3D uses a zero-banana-width model. In addition, the effects of bursting instabilities on the fast ion distribution in neutral beam heated plasmas are examined. Fishbone events generally have a minor effect on the fast ion distribution and no clear correlation is observed in the NPA and SSNPA diagnostics. However, sawteeth or the combinations of fishbones and CAEs always cause neutron rate drops up to 25% and bursts at outer chords of the SSNPA, which indicate fast ion loss. It is also observed that high energy fast ions respond earlier than low energy fast ions.

  18. A fast Monte Carlo code for proton transport in radiation therapy based on MCNPX.

    PubMed

    Jabbari, Keyvan; Seuntjens, Jan

    2014-07-01

    An important requirement for proton therapy is a software for dose calculation. Monte Carlo is the most accurate method for dose calculation, but it is very slow. In this work, a method is developed to improve the speed of dose calculation. The method is based on pre-generated tracks for particle transport. The MCNPX code has been used for generation of tracks. A set of data including the track of the particle was produced in each particular material (water, air, lung tissue, bone, and soft tissue). This code can transport protons in wide range of energies (up to 200 MeV for proton). The validity of the fast Monte Carlo (MC) code is evaluated with data MCNPX as a reference code. While analytical pencil beam algorithm transport shows great errors (up to 10%) near small high density heterogeneities, there was less than 2% deviation of MCNPX results in our dose calculation and isodose distribution. In terms of speed, the code runs 200 times faster than MCNPX. In the Fast MC code which is developed in this work, it takes the system less than 2 minutes to calculate dose for 10(6) particles in an Intel Core 2 Duo 2.66 GHZ desktop computer.

  19. A fast Monte Carlo code for proton transport in radiation therapy based on MCNPX

    PubMed Central

    Jabbari, Keyvan; Seuntjens, Jan

    2014-01-01

    An important requirement for proton therapy is a software for dose calculation. Monte Carlo is the most accurate method for dose calculation, but it is very slow. In this work, a method is developed to improve the speed of dose calculation. The method is based on pre-generated tracks for particle transport. The MCNPX code has been used for generation of tracks. A set of data including the track of the particle was produced in each particular material (water, air, lung tissue, bone, and soft tissue). This code can transport protons in wide range of energies (up to 200 MeV for proton). The validity of the fast Monte Carlo (MC) code is evaluated with data MCNPX as a reference code. While analytical pencil beam algorithm transport shows great errors (up to 10%) near small high density heterogeneities, there was less than 2% deviation of MCNPX results in our dose calculation and isodose distribution. In terms of speed, the code runs 200 times faster than MCNPX. In the Fast MC code which is developed in this work, it takes the system less than 2 minutes to calculate dose for 106 particles in an Intel Core 2 Duo 2.66 GHZ desktop computer. PMID:25190994

  20. Study of fast electron transport and ionization in isochorically heated solid foil

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Sentoku, Yasuhiko; Pandit, Rishi; Yabuuchi, Toshinori; Zastrau, Ulf; Foerster, Eckhart; Beg, Farhat; McLean, Harry; Chen, Hui; Park, J.-B.; Patel, Prav; Link, Anthony; Ping, Yuan

    2016-10-01

    Interaction of a high-power, short-pulse laser with a solid target generates a significant number of relativistic MeV electrons, subsequently heating the target isochorically in the transport process. Fast electron driven ionization of a solid titanium foil was studied by measuring Ti K-alpha x-rays and performing 2-D particle-in-cell simulations. The experiment was performed using the 50 TW Leopard short-pulse laser at UNR's Nevada Terawatt Facility. The 15 J, 0.35 ps laser was tightly focused on to a various sized, 2- μm thick Ti foil within a 8 μm spot to achieve the peak intensity of 2×1019 W/cm2. The transport of the fast electrons produced 4.51 keV Ti K-alpha x-rays. The yields and 2-D monochromatic images were recorded with a Bragg crystal spectrometer and a spherically bent crystal imager. The ionization degree of the heated foil was determined to be 15 from the ionized K-alpha lines and the missing emission in the images. 2-D PIC simulations using a PICLS code with a radiation transport module were performed to calculate the K-alpha profiles and spectra. Details of the experiment and comparison will be presented.

  1. High effective cytosolic H+ buffering in mouse cortical astrocytes attributable to fast bicarbonate transport.

    PubMed

    Theparambil, Shefeeq M; Deitmer, Joachim W

    2015-09-01

    Cytosolic H(+) buffering plays a major role for shaping intracellular H(+) shifts and hence for the availability of H(+) for biochemical reactions and acid/base-coupled transport processes. H(+) buffering is one of the prime means to protect the cell from large acid/base shifts. We have used the H(+) indicator dye BCECF and confocal microscopy to monitor the cytosolic H(+) concentration, [H(+)]i, in cultured cortical astrocytes of wild-type mice and of mice deficient in sodium/bicarbonate cotransporter NBCe1 (NBCe1-KO) or in carbonic anhydrase isoform II (CAII-KO). The steady-state buffer strength was calculated from the amplitude of [H(+)]i transients as evoked by CO2/HCO3(-) and by butyric acid in the presence and absence of CO2/HCO3(-). We tested the hypotheses if, in addition to instantaneous physicochemical H(+) buffering, rapid acid/base transport across the cell membrane contributes to the total, "effective" cytosolic H(+) buffering. In the presence of 5% CO2/26 mM HCO3(-), H(+) buffer strength in astrocytes was increased 4-6 fold, as compared with that in non-bicarbonate, HEPES-buffered solution, which was largely attributable to fast HCO3 (-) transport into the cells via NBCe1, supported by CAII activity. Our results show that within the time frame of determining physiological H(+) buffering in cells, fast transport and equilibration of CO2/H(+)/HCO3(-) can make a major contribution to the total "effective" H(+) buffer strength. Thus, "effective" cellular H(+) buffering is, to a large extent, attributable to membrane transport of base equivalents rather than a purely passive physicochemical process, and can be much larger than reported so far. Not only physicochemical H(+) buffering, but also rapid import of HCO3(-) via the electrogenic sodium-bicarbonate cotransporter NBCe1, supported by carbonic anhydrase II (CA II), was identified to enhance cytosolic H(+) buffer strength substantially.

  2. Quantum transport in neutron-irradiated modulation-doped heterojunctions. I. Fast neutrons

    SciTech Connect

    Jin, W.; Zhou, J.; Huang, Y.; Cai, L.

    1988-12-15

    We have investigated the characteristics of low-temperature quantum transport in Al/sub x/Ga/sub 1-//sub x/As/GaAs modulation-doped heterojunctions irradiated by fast neutrons of about 14 MeV energy. The concentration and the mobility of the two-dimensional electron gas (2D EG) under low magnetic fields decrease with increase in the concentrations of scatterers, such as ionized impurities, lattice defects, and interface roughness. On the other hand, under strong magnetic fields, the Hall plateau broadening associated with the Landau localized states, and the Shubnikov--de Hass (SdH) oscillation enhancement associated with the Landau extended states, increase markedly after fast-neutron irradiation.

  3. Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes

    NASA Astrophysics Data System (ADS)

    Montessori, A.; Amadei, C. A.; Falcucci, G.; Sega, M.; Vecitis, C. D.; Succi, S.

    2016-12-01

    The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle zero-temperature (noiseless) Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.

  4. Fast Responsive and Controllable Liquid Transport on a Magnetic Fluid/Nanoarray Composite Interface.

    PubMed

    Tian, Dongliang; Zhang, Na; Zheng, Xi; Hou, Guanglei; Tian, Ye; Du, Yi; Jiang, Lei; Dou, Shi Xue

    2016-06-28

    Controllable liquid transport on surface is expected to occur by manipulating the gradient of surface tension/Laplace pressure and external stimuli, which has been intensively studied on solid or liquid interface. However, it still faces challenges of slow response rate, and uncontrollable transport speed and direction. Here, we demonstrate fast responsive and controllable liquid transport on a smart magnetic fluid/nanoarray interface, i.e., a composite interface, via modulation of an external magnetic field. The wettability of the composite interface to water instantaneously responds to gradient magnetic field due to the magnetically driven composite interface gradient roughness transition that takes place within a millisecond, which is at least 1 order of magnitude faster than that of other responsive surfaces. A water droplet can follow the motion of the gradient composite interface structure as it responds to the gradient magnetic field motion. Moreover, the water droplet transport direction can be controlled by modulating the motion direction of the gradient magnetic field. The composite interface can be used as a pump for the transport of immiscible liquids and other objects in the microchannel, which suggests a way to design smart interface materials and microfluidic devices.

  5. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  6. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  7. Fast electron temperature, MHD and transport measurements on NSTX using a multi-energy SXR array

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L. F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Bell, R.; Hosea, J.; Kaye, S.; Leblanc, B.; Sabbagh, S.

    2007-11-01

    A compact multi-energy soft X-ray array has been developed for fast (<=0.1 ms) time and space-resolved electron temperature, MHD and transport measurements on the National Spherical Torus Experiment (NSTX). The electron temperature is obtained by modeling the slope of the continuum radiation from ratios of the Abel inverted radial emissivity profiles in three energy ranges [1]. The applicability of this diagnostic technique to radio frequency electron heating and current drive experiments, perturbative electron and impurity transport studies, as well as an analysis of the impact of several types of MHD activity such as NTMs, RWMs, ELMs and Fishbones will be discussed. This work supported by U.S. DoE Contract No. DE-AC02-76CH03073 DoE and grant No. DE-FG02-99ER5452 at The Johns Hopkins University. [1] L. F. Delgado-Aparicio, et al., Plasma Phys. Controlled Fusion, 49, 1245 (2007).

  8. Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak

    SciTech Connect

    Van Zeeland, M; Heidbrink, W; Nazikian, R; Austin, M; Berk, H; Gorelenkov, N; Holcomb, C; Kramer, G; Lohr, J; Luo, Y; Makowski, M; McKee, G; Petty, C; Prater, R; Solomon, W; White, R

    2008-10-14

    Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including Toroidicity and Ellipticity induced Alfven Eigenmodes (TAE/EAE, respectively) and Reversed Shear Alfven Eigenmodes (RSAE) as well as their spatial coupling. These modes are typically studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. During this same time period Fast-Ion D{sub {alpha}} (FIDA) spectroscopy shows that the central fast ion profile is flattened, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. To simulate the observed neutral beam ion redistribution, NOVA calculations of the 3D eigenmode structures are matched with experimental measurements and used in combination with the ORBIT guiding center following code. For fixed frequency eigenmodes, it is found that ORBIT calculations cannot explain the observed beam ion transport with experimentally measured mode amplitudes. Possible explanations are considered including recent simulation results incorporating eigenmodes with time dependent frequencies.

  9. Modeling fast-ion transport during toroidal Alfven eigenmode avalanches in National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, E. D.; Bell, R. E.; Darrow, D. S.; Gorelenkov, N. N.; Kramer, G. J.; Medley, S. S.; White, R. B.; Crocker, N. A.; Kubota, S.; Levinton, F. M.; Yuh, H.; Liu, D.; Podesta, M.; Tritz, K.

    2009-12-15

    Experiments on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] found strong bursts of toroidal Alfven eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA[C. Z. Cheng, Phys. Rep. 211, 1 (1992)] and ORBIT[R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE was modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE was then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate, however, further refinements in both the simulation of the TAE structure and in the modeling of the fast-ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  10. Divergent mechanisms for the insulin resistant and hyperresponsive glucose transport in adipose cells from fasted and refed rats. Alterations in both glucose transporter number and intrinsic activity.

    PubMed Central

    Kahn, B B; Simpson, I A; Cushman, S W

    1988-01-01

    The effects of fasting and refeeding on the glucose transport response to insulin in isolated rat adipose cells have been examined using 3-O-methylglucose transport in intact cells and cytochalasin B binding and Western blotting in subcellular membrane fractions. After a 72-h fast, basal glucose transport activity decreases slightly and insulin-stimulated activity decreases greater than 85%. Following 48 h of fasting, insulin-stimulated glucose transport activity is diminished from 3.9 +/- 0.5 to 1.3 +/- 0.3 fmol/cell per min (mean +/- SEM). Similarly, the concentrations of glucose transporters are reduced with fasting in both the plasma membranes from insulin-stimulated cells from 38 +/- 5 to 18 +/- 3 pmol/mg of membrane protein and the low density microsomes from basal cells from 68 +/- 8 to 34 +/- 9 pmol/mg of membrane protein. Ad lib. refeeding for 6 d after a 48-h fast results in up to twofold greater maximally insulin-stimulated glucose transport activity compared with the control level (7.1 +/- 0.4 vs. 4.5 +/- 0.2 fmol/cell per min), before returning to baseline at 10 d. However, the corresponding concentration of glucose transporters in the plasma membranes is restored only to the control level (45 +/- 5 vs. 50 +/- 5 pmol/mg of membrane protein). Although the concentration of glucose transporters in the low density microsomes of basal cells remains decreased, the total number is restored to the control level due to an increase in low density microsomal protein. Thus, the insulin-resistant glucose transport in adipose cells from fasted rats can be explained by a decreased translocation of glucose transporters to the plasma membrane due to a depleted intracellular pool. In contrast, the insulin hyperresponsive glucose transport observed with refeeding appears to result from (a) a restored translocation of glucose transporters to the plasma membrane from a repleted intracellular pool and (b) enhanced plasma membrane glucose transporter intrinsic activity

  11. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha.

    PubMed

    Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas

    2007-09-01

    Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.

  12. Fast axonal transport in isolated axoplasm from the squid giant axon.

    PubMed

    Song, Yuyu; Kang, Minsu; Morfini, Gerardo; Brady, Scott T

    2016-01-01

    The giant axon of the squid provides a unique cell biological model for analyzing the biochemistry and cell biology of the axon. These axons may exceed 500 μm in diameter and can be readily dissected. Once the surrounding small axons and connective tissue are removed, the axoplasm can be extruded as an intact cylinder of isolated cytoplasm. This isolated axoplasm is morphologically indistinguishable from the intact axon, but without permeability barriers. Fast axonal transport will continue for more than 4 h after extrusion and can be visualized in real time. By perfusing defined concentrations of proteins and/or reagents into the axoplasm, this preparation represents a powerful model for study of intracellular trafficking and its underlying molecular mechanisms.

  13. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction.

    PubMed

    Falk, Kerstin; Sedlmeier, Felix; Joly, Laurent; Netz, Roland R; Bocquet, Lydéric

    2010-10-13

    In this paper, we study the interfacial friction of water at graphitic interfaces with various topologies, water between planar graphene sheets, inside and outside carbon nanotubes, with the goal to disentangle confinement and curvature effects on friction. We show that the friction coefficient exhibits a strong curvature dependence; while friction is independent of confinement for the graphene slab, it decreases with carbon nanotube radius for water inside, but increases for water outside. As a paradigm the friction coefficient is found to vanish below a threshold diameter for armchair nanotubes. Using a statistical description of the interfacial friction, we highlight here a structural origin of this curvature dependence, mainly associated with a curvature-induced incommensurability between the water and carbon structures. These results support the recent experiments reporting fast transport of water in nanometric carbon nanotube membranes.

  14. Fast transport in phase space due to nonlinear wave-particle interaction in the radiation belts.

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton; Vasiliev, Alexii; Mourenas, Didier; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Boscher, Daniel; Rolland, Guy

    2014-05-01

    We present an analytical, simplified formulation accounting for the fast transport of particles in phase space, in the presence of nonlinear wave-particle resonant interactions in an inhomogeneous magnetic field representative of the radiation belts. We show that the general approach for the description of the evolution of the particle velocity distribution based on the Fokker-Plank equation can be modified to consider the process of nonlinear wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed approach is illustrated by considering the acceleration of relativistic electrons by strongly oblique whistler waves. We determine the typical variation of electron phase-density due to nonlinear wave-particle interaction and compare this variation with pitch-angle/energy diffusion due to quasi-linear electron scattering. We show that relation between nonlinear and quasi-linear effects is controlled by the distribution of wave-amplitudes. When this distribution has a heavy tail, nonlinear effects can become dominant in the formation of the electron energy distribution.

  15. Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscle.

    PubMed

    Tunstall, Rebecca J; Mehan, Kate A; Hargreaves, Mark; Spriet, Lawrence L; Cameron-Smith, David

    2002-06-07

    Fasting triggers a complex array of adaptive metabolic and hormonal responses including an augmentation in the capacity for mitochondrial fatty acid (FA) oxidation in skeletal muscle. This study hypothesized that this adaptive response is mediated by increased mRNA of key genes central to the regulation of fat oxidation in human skeletal muscle. Fasting dramatically increased UCP3 gene expression, by 5-fold at 15 h and 10-fold at 40 h. However the expression of key genes responsible for the uptake, transport, oxidation, and re-esterification of FA remained unchanged following 15 and 40 h of fasting. Likewise there was no change in the mRNA abundance of transcription factors. This suggests a unique role for UCP3 in the regulation of FA homeostasis during fasting as adaptation to 40 h of fasting does not require alterations in the expression of other genes necessary for lipid metabolism.

  16. Development and evaluation of a transportable fast gas chromatograph for the monitoring of organic vapors in air

    SciTech Connect

    Gonzalez, J.A.; Levine, S.P.; Berkley, R.E.

    1993-01-01

    Gas chromatography has the potential to be a real-time or near real-time monitoring method for organics in air. A transportable fast GC with FID/ECD and PID/ECD configurations has been developed. Preliminary evaluation has shown that all design features and improvements of the instrument worked successfully.

  17. Experimental studies on fast-ion transport by Alfven wave avalanches on the National Spherical Torus Experiment

    SciTech Connect

    Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.; Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.; Crocker, N. A.; Kubota, S.; Yuh, H.

    2009-05-15

    Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono et al., Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory.

  18. Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D

    DOE PAGES

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...

    2015-05-22

    The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reducesmore » the absorbed neutral beam heating power and current drive and limits the achievable βN. Conversely similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less

  19. Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D

    SciTech Connect

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Solomon, W. M.; Gong, X.; Mueller, D.; Grierson, B.; Bass, E. M.; Collins, C.; Park, J. M.; Kim, K.; Luce, T. C.; Turco, F.; Pace, D. C.; Ren, Q.; Podesta, M.

    2015-05-22

    The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing βN and the noninductive current drive. However, in scenarios with qmin>2 that target the typical range of q95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable βN. Conversely similar plasmas except with qmin just above 1 have approximately classical fast-ion transport. Experiments that take qmin>3 plasmas to higher βP with q95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-qmin scenario, the high βP cases have shorter slowing-down time and lower ∇βfast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, βN, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q95, high-qmin plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.

  20. Deterministic and Monte Carlo Neutron Transport Calculations of the Dounreay Fast Breeder Reactor

    SciTech Connect

    Ziver, A. Kemal; Shahdatullah, Sabu; Eaton, Matthew D.; Oliviera, Cassiano R.E. de; Ackroyd, Ron T.; Umpleby, Adrian P.; Pain, Christopher C.; Goddard, Antony J. H.; Fitzpatrick, James

    2004-12-15

    A homogenized whole-reactor cylindrical model of the Dounreay Fast Reactor has been constructed using both deterministic and Monte Carlo codes to determine neutron flux distributions inside the core and at various out-of-core components. The principal aim is to predict neutron-induced activation levels using both methods and make comparisons against the measured thermal reaction rates. Neutron transport calculations have been performed for a fixed source using a spatially lumped fission neutron distribution, which has been derived from measurements. The deterministic code used is based on the finite element approximation to the multigroup second-order even-parity neutron transport equation, which is implemented in the EVENT code. The Monte Carlo solutions were obtained using the MCNP4C code, in which neutron cross sections are represented in pointwise (or continuous) form. We have compared neutron spectra at various locations not only to show differences between using multigroup deterministic and continuous energy (point nuclear data) Monte Carlo methods but also to assess neutron-induced activation levels calculated using the spectra obtained from both methods. Results were also compared against experiments that were carried out to determine neutron-induced reaction rates. To determine activation levels, we employed the European Activation Code System FISPACT. We have found that the neutron spectra calculated at various in-core and out-of-core components show some differences, which mainly reflect the use of multigroup and point energy nuclear data libraries and methods employed, but these differences have not resulted in large errors on the calculated activation levels of materials that are important (such as steel components) for decommissioning studies of the reactor. The agreement of calculated reaction rates of thermal neutron detectors such as the {sup 55}Mn(n,{gamma}){sup 56}Mn against measurements was satisfactory.

  1. Hybrid Simulation of Laser-Plasma Interactions and Fast Electron Transport in Inhomogeneous Plasma

    SciTech Connect

    Cohen, B I; Kemp, A; Divol, L

    2009-05-27

    A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogenous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.

  2. Using the transportable, computer-operated, liquid-scintillator fast-neutron spectrometer system

    SciTech Connect

    Thorngate, J.H.

    1988-11-01

    When a detailed energy spectrum is needed for radiation-protection measurements from approximately 1 MeV up to several tens of MeV, organic-liquid scintillators make good neutron spectrometers. However, such a spectrometer requires a sophisticated electronics system and a computer to reduce the spectrum from the recorded data. Recently, we added a Nuclear Instrument Module (NIM) multichannel analyzer and a lap-top computer to the NIM electronics we have used for several years. The result is a transportable fast-neutron spectrometer system. The computer was programmed to guide the user through setting up the system, calibrating the spectrometer, measuring the spectrum, and reducing the data. Measurements can be made over three energy ranges, 0.6--2 MeV, 1.1--8 MeV, or 1.6--16 MeV, with the spectrum presented in 0.1-MeV increments. Results can be stored on a disk, presented in a table, and shown in graphical form. 5 refs., 51 figs.

  3. Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase

    PubMed Central

    Morfini, Gerardo A.; Bosco, Daryl A.; Brown, Hannah; Gatto, Rodolfo; Kaminska, Agnieszka; Song, Yuyu; Molla, Linda; Baker, Lisa; Marangoni, M. Natalia; Berth, Sarah; Tavassoli, Ehsan; Bagnato, Carolina; Tiwari, Ashutosh; Hayward, Lawrence J.; Pigino, Gustavo F.; Watterson, D. Martin; Huang, Chun-Fang; Banker, Gary; Brown, Robert H.; Brady, Scott T.

    2013-01-01

    Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS. PMID:23776455

  4. Magnetic field measurements for study of fast electron transport in magnetized HED plasma

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Griffin, Brandon; Presura, Radu; Haque, Showera; Sentoku, Yasuhiko

    2014-10-01

    Interaction of megagauss magnetic fields with high energy density (HED) plasma is of great interest in the field of magnetized plasma. The field changes fundamental properties of the HED plasma such as thermal and magnetic diffusion. A coupled capability utilizing the 1.0 MA Zebra pulsed power generator and the 50 TW Leopard laser at Nevada Terawatt Facility enables to create such a condition for studies of magnetized plasma properties. We have conducted an experiment to measure magnetic fields generated by a 1.0 MA, 100 ns Zebra pulsed current in stainless steel coils. Using a 532 nm continuous laser from a single longitudinal mode laser system, the temporal change in the magnetic field was measured with the Faraday rotation in F2 glass. The probe laser passing through the 1.5 mm in radius and 1.75 mm thick glass placed in the vicinity of the inductive coils was split with a Glan-Taylor prism to measure vertical and horizontal polarization components with photodiodes. We will present the analysis of the experimental result and a design of a coupled experiment for study of fast electron transport in the magnetized plasma.

  5. Simulation of laser-plasma interactions and fast-electron transport in inhomogeneous plasma

    SciTech Connect

    Cohen, B.I. Kemp, A.J.; Divol, L.

    2010-06-20

    A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogeneous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.

  6. Mass transport induced by internal Kelvin waves beneath shore-fast ice

    NASA Astrophysics Data System (ADS)

    StøYlen, Eivind; Weber, Jan Erik H.

    2010-03-01

    A one-layer reduced-gravity model is used to investigate the wave-induced mass flux in internal Kelvin waves along a straight coast beneath shore-fast ice. The waves are generated by barotropic tidal pumping at narrow sounds, and the ice lid introduces a no-slip condition for the horizontal wave motion. The mean Lagrangian fluxes to second order in wave steepness are obtained by integrating the equations of momentum and mass between the material interface and the surface. The mean flow is forced by the conventional radiation stress for internal wave motion, the mean pressure gradient due to the sloping surface, and the frictional drag at the boundaries. The equations that govern the mean fluxes are expressed in terms of mean Eulerian variables, while the wave forcing terms are given by the horizontal divergence of the Stokes flux. Analytical results show that the effect of friction induces a mean Eulerian flux along the coast that is comparable to the Stokes flux. In addition, the horizontal divergence of the total mean flux along the coast induces a small mass flux in the cross-shore direction. This flux changes the mean thickness of the upper layer outside the trapping region and may facilitate geostrophically balanced boundary currents in enclosed basins. This is indeed demonstrated by numerical solutions of the flux equations for confined areas larger than the trapping region. Application of the theory to Arctic waters is discussed, with emphasis on the transport of biological material and pollutants in nearshore regions.

  7. Numerical modeling for energy transport and isochoric heating in ultra-fast heated high Z target

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Sentoku, Yasuhiko; Hakel, Peter; Mancini, Roberto C.

    2010-11-01

    Collisional Particle-in-Cell (PIC) code is an effective tool to study extreme energy density conditions achieved in intense laser-solid interactions. In the continuous process of developing PIC code, we have recently implemented models to incorporate dynamic ionizations, namely Saha and Thomas Fermi, and radiation cooling (due to Bremsstrahlung and line emissions). We have also revised the existing collision model to take into account bounded electrons in dynamically ionizing target (partially ionized target). One-dimensional PIC simulation of a gold target with new collision model shows strong local heating in a micron distance due to shorter stopping range of fast electrons, which reflects the increased collision frequency due to bound electrons. The peak temperature in the heated region drops significantly due to the radiation cooling to a level of a few hundred eV from keV. We also discuss the target Z dependence on radiation loss and two-dimensional effects such as the resistive magnetic fields in the hot electron transport in metal targets.

  8. HIV Glycoprotein Gp120 Impairs Fast Axonal Transport by Activating Tak1 Signaling Pathways

    PubMed Central

    Berth, Sarah H.; Mesnard-Hoaglin, Nichole; Wang, Bin; Kim, Hajwa; Song, Yuyu; Sapar, Maria; Morfini, Gerardo

    2016-01-01

    Sensory neuropathies are the most common neurological complication of HIV. Of these, distal sensory polyneuropathy (DSP) is directly caused by HIV infection and characterized by length-dependent axonal degeneration of dorsal root ganglion (DRG) neurons. Mechanisms for axonal degeneration in DSP remain unclear, but recent experiments revealed that the HIV glycoprotein gp120 is internalized and localized within axons of DRG neurons. Based on these findings, we investigated whether intra-axonal gp120 might impair fast axonal transport (FAT), a cellular process critical for appropriate maintenance of the axonal compartment. Significantly, we found that gp120 severely impaired both anterograde and retrograde FAT. Providing a mechanistic basis for these effects, pharmacological experiments revealed an involvement of various phosphotransferases in this toxic effect, including members of mitogen-activated protein kinase pathways (Tak-1, p38, and c-Jun N-terminal Kinase (JNK)), inhibitor of kappa-B-kinase 2 (IKK2), and PP1. Biochemical experiments and axonal outgrowth assays in cell lines and primary cultures extended these findings. Impairments in neurite outgrowth in DRG neurons by gp120 were rescued using a Tak-1 inhibitor, implicating a Tak-1 mitogen-activated protein kinase pathway in gp120 neurotoxicity. Taken together, these observations indicate that kinase-based impairments in FAT represent a novel mechanism underlying gp120 neurotoxicity consistent with the dying-back degeneration seen in DSP. Targeting gp120-based impairments in FAT with specific kinase inhibitors might provide a novel therapeutic strategy to prevent axonal degeneration in DSP. PMID:27872270

  9. Intense femtosecond laser driven collimated fast electron transport in a dielectric medium-role of intensity contrast.

    PubMed

    Dey, Indranuj; Adak, Amitava; Singh, Prashant Kumar; Shaikh, Moniruzzaman; Chatterjee, Gourab; Sarkar, Deep; Lad, Amit D; Kumar, G Ravindra

    2016-12-12

    Ultra-high intensity (> 1018 W/cm2), femtosecond (~30 fs) laser induced fast electron transport in a transparent dielectric has been studied for two laser systems having three orders of magnitude different peak to pedestal intensity contrast, using ultrafast time-resolved shadowgraphy. Use of a 400 nm femtosecond pulse as a probe enables the exclusive visualization of the dynamics of highest density electrons (> 7 × 1021 cm-3) observed so far. High picosecond contrast (~109) results in greater coupling of peak laser energy to the plasma electrons, enabling long (~1 mm), collimated (divergence angle ~2°) transport of fast electrons inside the dielectric medium at relativistic speeds (~0.66c). In comparison, the laser system with a contrast of ~106 has a large pre-plasma, limiting the coupling of laser energy to the solid and yielding limited fast electron injection into the dielectric. In the lower contrast case, bulk of the electrons expand as a cloud inside the medium with an order of magnitude lower speed than that of the fast electrons obtained with the high contrast laser. The expansion speed of the plasma towards vacuum is similar for the two contrasts.

  10. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team

    2016-11-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.

  11. Fast electron transport and induced heating in solid targets from rear-side interferometry imaging.

    PubMed

    Malka, G; Nicolaï, Ph; Brambrink, E; Santos, J J; Aléonard, M M; Amthor, K; Audebert, P; Breil, J; Claverie, G; Gerbaux, M; Gobet, F; Hannachi, F; Méot, V; Morel, P; Scheurer, J N; Tarisien, M; Tikhonchuk, V

    2008-02-01

    Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion. The main parameters of the suprathermal electrons (number, temperature, and divergence) have been deduced from these observations.

  12. Fast electron transport and induced heating in solid targets from rear-side interferometry imaging

    SciTech Connect

    Malka, G.; Aleonard, M. M.; Claverie, G.; Gerbaux, M.; Gobet, F.; Hannachi, F.; Scheurer, J. N.; Tarisien, M.; Brambrink, E.; Audebert, P.; Amthor, K.; Meot, V.; Morel, P.

    2008-02-15

    Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion. The main parameters of the suprathermal electrons (number, temperature, and divergence) have been deduced from these observations.

  13. Experimental Study on Fast Electrons Transport in Ultra-intense Laser Irradiated Solid Targets by Transition Radiation

    NASA Astrophysics Data System (ADS)

    Zhijian, Zheng; Guangcan, Wang; Yuqiu, Gu

    2008-11-01

    The experiment was performed with SILEX laser facility(Ti-saphhire) at LFRC in China. The SILEX parameter: wavelength 0.8μm, duration 35fs, output power 280TW, contrast 5*105, The focal spot φ10μm(F/1.7), intensity on target surface 1*10^19W/cm^2(F/3). The main diagnostic equipments are the electron spectrometer, OMA spectrometer, optical streak camera. Some experimental results are given: The spectrum of optical emission from rear surface is rather narrow around some particular frequencies(1φ, 2φ, 3φ), We ascribe and confirm that the spike-like spectral line that is coherent transition radiation; The coherent light is also seen on time-integrated image with ring-patter due to Weibel instability of the fast electron transport; Obtained experimental cure of target thickness vs OTR image intensity is relative to mean free path of fast electron; The measuring optical transition radiation(OTR) duration of 171ps much longer than 1ps duration of fast electron transport target, the possible explanation is that the OTR duration to be determined magnetic diffusion time.

  14. Distribution of pressure-induced fast axonal transport abnormalities in primate optic nerve. An autoradiographic study.

    PubMed

    Radius, R L

    1981-07-01

    The distribution of transport abnormalities in primate optic nerve from eyes subjected to five hours of pressure elevation (perfusion pressure of 35 mm Hg) was studied. Tissue autoradiography and electron microscopy were used to localize regions of the lamina cribrosa with increased transport interruption. A preferential involvement by this transport abnormality involved the superior, temporal, and inferior portions, to the exclusion of the nasal portion, of the optic nerve head. This observation supports the hypothesis that transport interruption seen in this model may be pertinent to the study of clinical glaucomatous neuropathy.

  15. Parametric Dependence Of Fast-ion Transport Events On The National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, Erik; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.

    2014-03-31

    Neutral-beam heated tokamak plasmas commonly have more than one third of the plasma kinetic energy in the non-thermal energetic beam ion population. This population of fast ions heats the plasma, provides some of the current drive, and can affect the stability (positively or negatively) of magnetohydrodynamic instabilities. This population of energetic ions is not in thermodynamic equilibrium, thus there is free-energy available to drive instabilities, which may lead to redistribution of the fast ion population. Understanding under what conditions beam-driven instabilities arise, and the extent of the resulting perturbation to the fast ion population, is important for predicting and eventually demonstrating non-inductive current ramp-up and sustainment in NSTX-U, as well as the performance of future fusion plasma experiments such as ITER. This paper presents an empirical approach towards characterizing the stability boundaries for some common energetic-ion-driven instabilities seen on NSTX.

  16. Influence of Ramadan-type fasting on carbohydrate metabolism, brush border membrane enzymes and phosphate transport in rat kidney used as a model.

    PubMed

    Salim, Samina; Farooq, Neelam; Priyamvada, Shubha; Asghar, Mohammad; Khundmiri, Syed Jalal; Khan, Samia; Khan, Farah; Yusufi, Ahad Noor Khan

    2007-11-01

    Ramadan fasting is a unique model of fasting in which Muslims the world over abstain from food and water from dawn to sunset for 1 month. We hypothesized that this model of prolonged intermittent fasting would result in specific adaptive alterations in rat kidney to keep a positive balance of metabolites and inorganic phosphate (Pi). The effect of Ramadan-type fasting was studied on enzymes of carbohydrate metabolism and brush border membrane (BBM) and BBM uptake of 32Pi in different renal tissue zones in the rat model. Rats were fasted (12 h) and then re-fed (12 h) daily for 30 d similar to human Ramadan fasting. Ramadan-type fasting resulted in increased serum Pi and phospholipids, whereas Pi clearance decreased. Serum creatinine and its clearance were not affected. Fasting caused a significant decrease in the activities of lactate and malate dehydrogenases, glucose-6-phosphatase and fructose-1,6-bisphosphatase, both in the renal cortex and medulla. However, the activity of glucose-6-phosphate dehydrogenase profoundly increased but that of malic enzyme decreased. The activities of alkaline phosphatase and gamma-glutamyl transpeptidase in BBM decreased, whereas transport of 32Pi significantly increased. The decrease in enzyme activities and increase in 32Pi transport were due to alterations of both maximal velocities and relative affinities. The results indicate that Ramadan-type fasting caused specific metabolic alterations with enhanced Pi conservation in different kidney tissues in a rat model used for Ramadan fasting in man.

  17. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    DOE PAGES

    Van Zeeland, Michael A.; Ferraro, N. M.; Grierson, Brian A.; ...

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotatingmore » $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $$\\rho >0.7$$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion $${{\\text{D}}_{\\alpha}}$$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile

  18. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    SciTech Connect

    Van Zeeland, Michael A.; Ferraro, N. M.; Grierson, Brian A.; Heidbrink, W. W.; Kramer, G. J.; Lasnier, C. J.; Pace, David C.; Allen, Steve L.; Chen, X.; Evans, T. E.; García-Muñoz, M.; Hanson, J. M.; Lanctot, M. J.; Lao, L. L.; Meyer, W. H.; Moyer, R. A.; Nazikian, R.; Orlov, D. M.; Paz-Soldan, C.; Wingen, A.

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotating $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $\\rho >0.7$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion ${{\\text{D}}_{\\alpha}}$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed

  19. Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments

    DOE PAGES

    Heidbrink, W. W.; Austin, M. E.; Collins, C. S.; ...

    2015-07-21

    We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36±0.27 tomore » 2.6±0.5 MW/m-2.« less

  20. Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments

    SciTech Connect

    Heidbrink, W. W.; Austin, M. E.; Collins, C. S.; Gray, T.; Grierson, B. A.; Kramer, G. J.; Lanctot, M.; Pace, D. C.; Van Zeeland, M. A.; Mclean, A. G.

    2015-07-21

    We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36±0.27 to 2.6±0.5 MW/m-2.

  1. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  2. Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity

    SciTech Connect

    Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

    2012-05-04

    An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

  3. Very low density lipoproteins in intestinal lymph: origin, composition, and role in lipid transport in the fasting state

    PubMed Central

    Ockner, Robert K.; Hughes, Faith B.; Isselbacher, Kurt J.

    1969-01-01

    The transport of endogenous lipids in the lipoproteins of mesenteric lymph was studied in fasting rats with mesenteric lymph fistulas. The lymph was found to contain, in addition to chylomicrons (Sf >400), a significant amount of another, more dense, triglyceride-rich fraction, the very low density lipoproteins (VLDL), which showed a peak Sf of 102. The VLDL differed from chylomicrons not only in flotation, but also in per cent lipid composition and electrophoretic mobility in agarose gel. The VLDL fraction was found to contain 47% of the triglyceride and 54% of the cholesterol of fasting lymph and, in the fasting state, was the major lipoprotein species present. When cholestyramine resin was administered intraduodenally, or bile flow was acutely diverted from the intestine, it was demonstrated that the lipids in lymph VLDL, like those in chylomicrons, were derived from the intestine and bile. These data indicate that the VLDL in intestinal lymph are not derived from the plasma but are of intestinal origin. Because certain properties of lymph VLDL were similar to those reported for plasma VLDL (per cent lipid composition, flotation coefficient, and continuing entry into plasma in the fasting state), additional comparisons between these fractions were made. Although lymph VLDL moved to the α2 region in agarose gel, when they were mixed with VLDL-free serum immediately before electrophoresis they showed the α2 mobility of rat serum VLDL. Furthermore, immunoelectrophoretic comparison of partially delipidated lymph and serum VLDL revealed that these fractions shared in common their major apoprotein, and possibly others as well. The fatty acid composition of lymph and serum triglycerides, as determined by gas-liquid chromatography, revealed that although they were generally similar, differences existed which most likely reflected the presence in serum of triglycerides of hepatic origin. These experiments demonstrate the importance of intestinal VLDL in the transport

  4. A CFD-based wind solver for a fast response transport and dispersion model

    SciTech Connect

    Gowardhan, Akshay A; Brown, Michael J; Pardyjak, Eric R; Senocak, Inanc

    2010-01-01

    In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources is difficult to disperse and may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. For these reasons it has become important to predict the flow field in urban street canyons. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a fast and reasonably accurate computational fluid dynamics (CFD) technique that solves the Navier-Stokes equations for complex urban areas has been developed called QUIC-CFD (Q-CFD). This technique represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. The paper details the solution procedure and validates this model for various simple and complex urban geometries.

  5. Microwave-assisted fast vapor-phase transport synthesis of MnAPO-5 molecular sieves

    SciTech Connect

    Shao Hui; Yao Jianfeng; Ke Xuebin; Zhang Lixiong Xu Nanping

    2009-04-02

    MnAPO-5 was prepared by a microwave-assisted vapor-phase transport method at 180 deg. C in short times. The products were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectra, UV-vis spectroscopic measurement, NH{sub 3}-temperature-programmed desorption and esterification reaction. It was found that dry gels prepared with aluminum isopropoxide, phosphoric acid and manganese acetate could be transferred to MnAPO-5 in the vapors of triethylamine and water by the microwave-assisted vapor-phase transport method at 180 deg. C for less than 30 min. The crystallization time was greatly reduced by the microwave heating compared with the conventional heating. The resulting MnAPO-5 exhibited much smaller particle sizes, higher surface areas and slightly higher catalytic activity in the esterification of acetic acid and butyl alcohol than those prepared by the conventional vapor-phase transport method and hydrothermal synthesis.

  6. Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Wang, Lin; Xue, Yan; Jiang, Lei; Zheng, Yongmei

    2013-10-01

    Issues of surfaces, e.g., inspired from beetle's back, spider silk, cactus stem, etc., become the active area of research on designing novel materials in need of human beings to acquire fresh water resource from air. However, the design of materials on surface structure is little achieved on controlling of micro-scale drop transport in a long distance. Here, we report the ability of micro-drop transport in a long distance on a bioinspired Fibers with Gradient Spindle-knots (BFGS), which are fabricated by tilt angle dip-coating method. The micro-drop of ~0.25 μL transports in distance of ~5.00 mm, with velocity of 0.10-0.22 m s-1 on BFGS. It is attributed to the multi-level cooperation of the release energy of drop coalescence along the gradient spindle-knots, in addition to capillary adhesion force and continuous difference of Laplace pressure, accordingly, water drops are driven to move fast directionally in a long distance on BFGS.

  7. Development of a New and Fast Linear Solver for Multi-component Reactive Transport Simulation

    NASA Astrophysics Data System (ADS)

    Qiao, C.; Li, L.; Bao, C.; Hu, X.; Johns, R.; Xu, J.

    2013-12-01

    Reactive transport models (RTM) have been extensively used to understand the coupling between solute transport and (bio) geochemical reactions in complex earth systems. RTM typically involves a large number of primary and secondary species with a complex reaction network in large domains. The computational expenses increase significantly with the number of grid blocks and the number of chemical species. Within both the operator splitting approach (OS) and the global implicit approach (GI) that are commonly used, the steps that involve Newton-Raphson method are typically one of the most time-consuming parts (up to 80% to 90% of CPU times). Under such circumstances, accelerating reactive transport simulation is very essential. In this research, we present a physics-based linear system solution strategy for general reactive transport models with many species. We observed up to five times speed up for the linear solver portion of the simulations in our test cases. Our new linear solver takes advantage of the sparsity of the Jacobian matrix arising from the reaction network. The Jacobian matrix for the speciation problem is typically considered as a dense matrix and solved with a direct method such as Gaussian elimination. For the reactive transport problem, the graph of the local Jacobian matrix has a one-to-one correspondence to the reaction network graph. The Jacobian matrix is commonly sparse and has the same sparsity structure for the same reaction network. We developed a strategy that performs a minimum degree of reordering and symbolic factorization to determine the non-zero pattern at the beginning of the OS and GI simulation. During the speciation calculation in OS, we calculate the L and U factors and solve the triangular matrices according to the non-zero pattern. For GI, our strategy can be applied to inverse the diagonal blocks in the block-Jacobi preconditioner and smoothers of the multigrid preconditioners in iterative solvers. Our strategy is naturally

  8. Fast Water Transport in CNTs: length dependence and entrane/exit effects

    NASA Astrophysics Data System (ADS)

    Walther, Jens; Koumoutsakos, Petros

    2011-11-01

    Superfast water transport in carbon nanotube (CNT) membranes has been reported in experimental studies. We use Molecular Dynamics simulations to elucidate the mechanisms of water entry, exit and transport in 2 nm -diameter hydrophobic CNTs embedded in a hydrophilic membrane matrix. We demonstrate, for the first time, that under imposed pressures of the order of 1 bar, water entry into the CNT cavity and exit from the CNT end, can occur only on pre-wetted membranes. We conduct large scale simulations for up to 500 nm long CNTs and observe a previously unseen dependence of the flow enhancement rates on the CNT length. We relate the present findings to past computational and experimental studies, we discuss previous continuum assessments for this flow and propose underlying physical mechanisms.

  9. Fast Na/+/-ion transport in skeleton structures. [solid electrolyte applications

    NASA Technical Reports Server (NTRS)

    Goodenough, J. B.; Hong, H. Y.-P.; Kafalas, J. A.

    1976-01-01

    The skeleton structures considered in the investigations consist of a rigid subarray with an interconnected interstitial space in which ions move in three dimensions. The classes of skeleton structures investigated include the Im3 phase of high-pressure KSbO3, the defect-pyrochlore structure illustrated by RbMgAlF6, and the carnegieite structure of high-temperature NaAlSiO4. A description is given of the results obtained in transport measurements involving dense polycrystalline ceramic disks. Results obtained in the case of the Na(+)-ion transport in Na3Zr2PSi2O12 appear particularly promising concerning the possible use of such substances in solid-electrolyte applications.

  10. Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study

    NASA Astrophysics Data System (ADS)

    Yabuuchi, T.; Sawada, H.; Regan, S. P.; Anderson, K.; Wei, M. S.; Betti, R.; Hund, J.; Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Paguio, R. R.; Patel, P. K.; Saito, K. M.; Stephens, R. B.; Wilks, S. C.; Beg, F. N.

    2012-09-01

    The CH foam plasma produced by a laser-driven shock wave has been characterized by a temporally resolved Al 1s-2p absorption spectroscopy technique. A 200 mg/cm3 foam target with Al dopant was developed for this experiment, which used an OMEGA EP [D. D. Meyerhofer et al., J. Phys.: Conf. Ser. 244, 032010 (2010)] long pulse beam with an energy of 1.2 kJ and 3.5 ns pulselength. The plasma temperatures were inferred with the accuracy of 5 eV from the fits to the measurements using an atomic physics code. The results show that the inferred temperature is sustained at 40-45 eV between 6 and 7 ns and decreases to 25 eV at 8 ns. 2-D radiation hydrodynamic simulations show a good agreement with the measurements. Application of the shock-heated foam plasma platform toward fast electron transport experiments is discussed.

  11. Quantitative measurements and modeling of cargo-motor interactions during fast transport in the living axon

    NASA Astrophysics Data System (ADS)

    Seamster, Pamela E.; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L.

    2012-10-01

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo-motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic

  12. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: Implications for chemotherapy-induced peripheral neuropathy

    PubMed Central

    LaPointe, Nichole E.; Morfini, Gerardo; Brady, Scott T.; Feinstein, Stuart C.; Wilson, Leslie; Jordan, Mary Ann

    2014-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a serious, painful and dose-limiting side effect of cancer drugs that target microtubules. The mechanisms underlying the neuronal damage are unknown, but may include disruption of fast axonal transport, an essential microtubule-based process that moves cellular components over long distances between neuronal cell bodies and nerve terminals. This idea is supported by the “dying back” pattern of degeneration observed in CIPN, and by the selective vulnerability of sensory neurons bearing the longest axonal projections. In this study, we test the hypothesis that microtubule-targeting drugs disrupt fast axonal transport using vesicle motility assays in isolated squid axoplasm and a cell-free microtubule gliding assay with defined components. We compare four clinically-used drugs, eribulin, vincristine, paclitaxel and ixabepilone. Of these, eribulin is associated with a relatively low incidence of severe neuropathy, while vincristine has a relatively high incidence. In vesicle motility assays, we found that all four drugs inhibited anterograde (conventional kinesin-dependent) fast axonal transport, with the potency being vincristine = ixabepilone > paclitaxel = eribulin. Interestingly, eribulin and paclitaxel did not inhibit retrograde (cytoplasmic dynein-dependent) fast axonal transport, in contrast to vincristine and ixabepilone. Similarly, vincristine and ixabepilone both exerted significant inhibitory effects in an in vitro microtubule gliding assay consisting of recombinant kinesin (kinesin-1) and microtubules composed of purified bovine brain tubulin, whereas paclitaxel and eribulin had negligible effects. Our results suggest that (i) inhibition of microtubule-based fast axonal transport may be a significant contributor to neurotoxicity induced by microtubule-targeting drugs, and (ii) that individual microtubule-targeting drugs affect fast axonal transport through different mechanisms. PMID:23711742

  13. Antibodies Covalently Immobilized on Actin Filaments for Fast Myosin Driven Analyte Transport

    PubMed Central

    Kumar, Saroj; ten Siethoff, Lasse; Persson, Malin; Lard, Mercy; te Kronnie, Geertruy; Linke, Heiner; Månsson, Alf

    2012-01-01

    Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 µm−1). The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments. PMID:23056279

  14. Fast Solutions of Maxwell's Equation for High Resolution Electromagnetic Imaging of Transport Pathways

    SciTech Connect

    DAY,DAVID M.; NEWMAN,GREGORY A.

    1999-10-01

    A fast precondition technique has been developed which accelerates the finite difference solutions of the 3D Maxwell's equations for geophysical modeling. The technique splits the electric field into its curl free and divergence free projections, and allows for the construction of an inverse operator. Test examples show an order of magnitude speed up compared with a simple Jacobi preconditioner. Using this preconditioner a low frequency Neumann series expansion is developed and used to compute responses at multiple frequencies very efficiently. Simulations requiring responses at multiple frequencies, show that the Neumann series is faster than the preconditioned solution, which must compute solutions at each discrete frequency. A Neumann series expansion has also been developed in the high frequency limit along with spectral Lanczos methods in both the high and low frequency cases for simulating multiple frequency responses with maximum efficiency. The research described in this report was to have been carried out over a two-year period. Because of communication difficulties, the project was funded for first year only. Thus the contents of this report are incomplete with respect to the original project objectives.

  15. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    SciTech Connect

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  16. The transport characteristics of passing fast ions produced by nonlocal overlapping of drift island surfaces and magnetic island surfaces

    NASA Astrophysics Data System (ADS)

    Cao, Jinjia; Gong, Xueyu; Xiang, Dong; Huang, Qianhong; Yu, Jun

    2016-08-01

    The structure of the drift-island surface of passing fast ions (PFIs) is investigated in the presence of the resonant interaction with a magnetic island. Two overlapping regions of the drift-island surface and the magnetic island surface are found, one corresponding to local overlapping region and the other to non-local one. Here, the word "nonlocal" denotes that the resonances in the core plasma can have effects on the PFIs near the plasma boundary, while the "local" represents that the PFIs just near the resonant location are influenced. The nonlocal overlapping constructs a transport path along which the PFIs can become losses. There are three kinds of drift-island surfaces to join in forming the transport paths. A pitch angle region, which is called pitch angle gap, is found near the plasma boundary, where the drift-island surface cannot be formed and few PFIs are lost. The pitch-angle selective features of PFI losses are obtained by analyzing the three kinds of drift-island surfaces. The coupling between the crowd drift island surfaces and the collision can induce the prompt losses of PFIs and rapidly slowing down of PFI energy. The time of the prompt losses and the slowing down rate are calculated. Qualitatively, the theoretical results are in well agreement with the experimental observations in ASDEX Upgrade [M. García-Muñoz et al., Nucl. Fusion 47, L10 (2007)].

  17. An influence of long-lasting and gradual magnetic flux transport on fate of magnetotail fast plasma flows: An energetic particle injection substorm event study

    NASA Astrophysics Data System (ADS)

    Nowada, Motoharu; Fu, Suiyan; Parks, George K.; Pulkkinen, Tuija I.; Pu, Zuyin

    2014-10-01

    Based on multi-satellite and ground observations, we investigated an influence of long-lasting and gradual enhancements of magnetic flux transport rate on the magnetotail fast flow duration. On March 10th, 2009, THEMIS-B, which was located in the central plasma sheet of middle distant magnetotail (XGSM ~-25.8 RE), observed the fast flows with the velocity exceeding 300 km/s, lasting over 3 h for intense southward Interplanetary Magnetic Field (IMF) period. During long-lasting fast flows, AL index variations were very extensive and their recovery was much slow. Pi 2 waves were observed at the ground observatories around the THEMIS's footpoints and at low-/mid-latitudes. The aspect for these AL variations suggests Steady Magnetospheric Convection (SMC), but clear substorm signatures were also observed. Further magnetic dipolarization was detected by THEMIS-A at XGSM ~-8.2 RE and its nearby THEMIS-E. Only THEMIS-A observed the associated energetic electron flux enhancements. Therefore, the fast flows occurred during substorm with energetic particle injections at “imitative” SMC, which would be driven by prolonged intense southward IMF. The cumulative transport rates of magnetic and Poynting fluxes consecutively and gradually enhanced. On the other hand, THEMIS-C detected much shorter fast flows with the duration of 37 min at XGSM ~-18.1 RE and weak/gradual substorm-associated dipolarization. However, the cumulative magnetic flux transport rate was enhanced only during the fast flow interval and was saturated after the fast flows. From different magnetic transport rate profiles at THEMIS-B and THEMIS-C, the realms of dipolar-configured field lines expanded to near THEMIS-C's position responsible for long-lasting fast flow-associated consecutive and gradual magnetic flux pileup. Because the resultant “high-speed flow braking” region was retreated into a few RE tailward direction, long-lasting fast flows were almost stemmed. These results suggest that the

  18. Fast cyclic electron transport around photosystem I in leaves under far-red light: a proton-uncoupled pathway?

    PubMed

    Laisk, Agu; Talts, Eero; Oja, Vello; Eichelmann, Hillar; Peterson, Richard B

    2010-02-01

    Fast cyclic electron transport (CET) around photosystem I (PS I) was observed in sunflower (Helianthus annuus L.) leaves under intense far-red light (FRL) of up to 200 mumol quanta m(-2) s(-1). The electron transport rate (ETR) through PS I was found from the FRL-dark transmittance change at 810 and 950 nm, which was deconvoluted into redox states and pool sizes of P700, plastocyanin (PC) and cytochrome f (Cyt f). PC and P700 were in redox equilibrium with K(e) = 35 (ΔE(m) = 90 mV). PS II ETR was based on O(2) evolution. CET [(PS I ETR) - (PS II ETR)] increased to 50-70 mumol e(-) m(-2) s(-1) when linear electron transport (LET) under FRL was limited to 5 mumol e(-) m(-2) s(-1) in a gas phase containing 20-40 mumol CO(2) mol(-1) and 20 mumol O(2) mol(-1). Under these conditions, pulse-saturated fluorescence yield F(m) was non-photochemically quenched; however, F(m) was similarly quenched when LET was driven by low green or white light, which energetically precluded the possibility for active CET. We suggest that under FRL, CET is rather not coupled to transmembrane proton translocation than the CET-coupled protons are short-circuited via proton channels regulated to open at high ΔpH. A kinetic analysis of CET electron donors and acceptors suggests the CET pathway is that of the reversed Q-cycle: Fd -> (FNR) -> Cyt c(n) -> Cyt b(h) -> Cyt b(l) -> Rieske FeS -> Cyt f -> PC -> P700 ->-> Fd. CET is activated when PQH(2) oxidation is opposed by high ΔpH, and ferredoxin (Fd) is reduced due to low availability of e(-) acceptors. The physiological significance of CET may be photoprotective, as CET may be regarded as a mechanism of energy dissipation under stress conditions.

  19. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    SciTech Connect

    Green, J.R.

    1995-01-31

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

  20. Plasmodesmata without callose and calreticulin in higher plants - open channels for fast symplastic transport?

    PubMed

    Demchenko, Kirill N; Voitsekhovskaja, Olga V; Pawlowski, Katharina

    2014-01-01

    Plasmodesmata (PD) represent membrane-lined channels that link adjacent plant cells across the cell wall. PD of higher plants contain a central tube of endoplasmic reticulum (ER) called desmotubule. Membrane and lumen proteins seem to be able to move through the desmotubule, but most transport processes through PD occur through the cytoplasmic annulus (Brunkard etal., 2013). Calreticulin (CRT), a highly conserved Ca(2+)-binding protein found in all multicellular eukaryotes, predominantly located in the ER, was shown to localize to PD, though not all PD accumulate CRT. In nitrogen-fixing actinorhizal root nodules of the Australian tree Casuarina glauca, the primary walls of infected cells containing the microsymbiont become lignified upon infection. TEM analysis of these nodules showed that during the differentiation of infected cells, PD connecting infected cells, and connecting infected and adjacent uninfected cells, were reduced in number as well as diameter (Schubert etal., 2013). In contrast with PD connecting young infected cells, and most PD connecting mature infected and adjacent uninfected cells, PD connecting mature infected cells did not accumulate CRT. Furthermore, as shown here, these PD were not associated with callose, and based on their diameter, they probably had lost their desmotubules. We speculate that either this is a slow path to PD degradation, or that the loss of callose accumulation and presumably also desmotubules leads to the PD becoming open channels and improves metabolite exchange between cells.

  1. Release of kinesin from vesicles by hsc70 and regulation of fast axonal transport

    NASA Technical Reports Server (NTRS)

    Tsai, M. Y.; Morfini, G.; Szebenyi, G.; Brady, S. T.

    2000-01-01

    The nature of kinesin interactions with membrane-bound organelles and mechanisms for regulation of kinesin-based motility have both been surprisingly difficult to define. Most kinesin is recovered in supernatants with standard protocols for purification of motor proteins, but kinesin recovered on membrane-bound organelles is tightly bound. Partitioning of kinesin between vesicle and cytosolic fractions is highly sensitive to buffer composition. Addition of either N-ethylmaleimide or EDTA to homogenization buffers significantly increased the fraction of kinesin bound to organelles. Given that an antibody against kinesin light chain tandem repeats also releases kinesin from vesicles, these observations indicated that specific cytoplasmic factors may regulate kinesin release from membranes. Kinesin light tandem repeats contain DnaJ-like motifs, so the effects of hsp70 chaperones were evaluated. Hsc70 released kinesin from vesicles in an MgATP-dependent and N-ethylmaleimide-sensitive manner. Recombinant kinesin light chains inhibited kinesin release by hsc70 and stimulated the hsc70 ATPase. Hsc70 actions may provide a mechanism to regulate kinesin function by releasing kinesin from cargo in specific subcellular domains, thereby effecting delivery of axonally transported materials.

  2. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein

    NASA Technical Reports Server (NTRS)

    Ratner, N.; Bloom, G. S.; Brady, S. T.

    1998-01-01

    Proteins that interact with both cytoskeletal and membrane components are candidates to modulate membrane trafficking. The tumor suppressor proteins neurofibromin (NF1) and adenomatous polyposis coli (APC) both bind to microtubules and interact with membrane-associated proteins. The effects of recombinant NF1 and APC fragments on vesicle motility were evaluated by measuring fast axonal transport along microtubules in axoplasm from squid giant axons. APC4 (amino acids 1034-2844) reduced only anterograde movements, whereas APC2 (aa 1034-2130) or APC3 (aa 2130-2844) reduced both anterograde and retrograde transport. NF1 had no effect on organelle movement in either direction. Because APC contains multiple cyclin-dependent kinase (CDK) consensus phosphorylation motifs, the kinase inhibitor olomoucine was examined. At concentrations in which olomoucine is specific for cyclin-dependent kinases (5 microM), it reduced only anterograde transport, whereas anterograde and retrograde movement were both affected at concentrations at which other kinases are inhibited as well (50 microM). Both anterograde and retrograde transport also were inhibited by histone H1 and KSPXK peptides, substrates for proline-directed kinases, including CDKs. Our data suggest that CDK-like axonal kinases modulate fast anterograde transport and that other axonal kinases may be involved in modulating retrograde transport. The specific effect of APC4 on anterograde transport suggests a model in which the binding of APC to microtubules may limit the activity of axonal CDK kinase or kinases in restricted domains, thereby affecting organelle transport.

  3. Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D

    SciTech Connect

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C.; Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M.; Gong, X.; Ren, Q.; Park, J. M.; Kim, K.; Turco, F.

    2015-05-15

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.

  4. Enhanced Dopamine Release by Dopamine Transport Inhibitors Described by a Restricted Diffusion Model and Fast-Scan Cyclic Voltammetry.

    PubMed

    Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R

    2016-06-15

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data.

  5. Impact of Pre-Plasma on Fast Electron Generation and Transport from Short Pulse High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Peebles, J.; McGuffey, C.; Krauland, C.; Jarrott, L. C.; Sorokovikova, A.; Qiao, B.; Krasheninnikov, S.; Beg, F. N.; Wei, M. S.; Park, J.; Link, A.; Chen, H.; McLean, H. S.; Wagner, C.; Minello, V.; McCary, E.; Meadows, A.; Spinks, M.; Gaul, E.; Dyer, G.; Hegelich, B. M.; Martinez, M.; Donovan, M.; Ditmire, T.

    2014-10-01

    We present the results and analysis from recent short pulse laser matter experiments using the Texas Petawatt Laser to study the impact of pre-plasma on fast electron generation and transport. The experimental setup consisted of 3 separate beam elements: a main, high intensity, short pulse beam for the interaction, a secondary pulse of equal intensity interacting with a separate thin foil target to generate protons for side-on proton imaging and a third, low intensity, wider beam to generate a varied scale length pre-plasma. The main target consisted of a multilayer planar Al foil with a buried Cu fluor layer. The electron beam was characterized with multiple diagnostics, including several bremsstrahlung spectrometers, magnetic electron spectrometers and Cu-K α imaging. The protons from the secondary target were used to image the fields on the front of the target in the region of laser plasma interaction. Features seen in the interaction region by these protons will be presented along with characteristics of the generated electron beam. This work performed under the auspices of the US DOE under Contracts DE-FOA-0000583 (FES, NNSA).

  6. Fast and efficient charge transport across a lipid bilayer is electronically mediated by C{sub 70} fullerene aggregates

    SciTech Connect

    Niu, S.; Mauzerall, D.

    1996-06-19

    Fullerene anions, made by photoreduction in a lipid bilayer, produce the largest trans-membrane steady state photocurrents yet observed, nearly 6.0 {mu}A/cm{sup 2}. Since these photocurrents are not light saturated, their maximum value is considerably larger. Dithionite was used as electron donor for its ability to reduce photoexcited fullerenes at the donor interface on a time scale faster than 15 ns. Both photovoltage and photocurrent increase 15-fold on adding the acceptor ferricyanide trans to the donor. There are two components to the transit time of negative charge across the bilayer, <100 ns and 6 {mu}s, in the 100 mM dithionite 0.6 mM C{sub 70} 5 mM ferricyanide system, where stands for the water-bilayer interface. This is strong evidence that the conduction is electronic and not diffusive-ionic. The plot of the ratio of photovoltage for the dithionite C{sub 70} system to that of the dithionite C{sub 70} ferricyanide system versus concentration of C{sub 70} in the lipid-forming solution is highly monlinear. This suggests that aggregates of the fullerene are responsible for the fast negative charge transport. The action spectrum of the photocurrent further supports the existence of photoactive C{sub 70} aggregates in the lipid bilayer. These aggregates may form the conductive path for electrons across the lipid bilayer. 23 refs., 5 figs., 1 tab.

  7. Experimental Transport Benchmarks for Physical Dosimetry to Support Development of Fast-Neutron Therapy with Neutron Capture Augmentation

    SciTech Connect

    D. W. Nigg; J. K. Hartwell; J. R. Venhuizen; C. A. Wemple; R. Risler; G. E. Laramore; W. Sauerwein; G. Hudepohl; A. Lennox

    2006-06-01

    The Idaho National Laboratory (INL), the University of Washington (UW) Neutron Therapy Center, the University of Essen (Germany) Neutron Therapy Clinic, and the Northern Illinois University(NIU) Institute for Neutron Therapy at Fermilab have been collaborating in the development of fast-neutron therapy (FNT) with concurrent neutron capture (NCT) augmentation [1,2]. As part of this effort, we have conducted measurements to produce suitable benchmark data as an aid in validation of advanced three-dimensional treatment planning methodologies required for successful administration of FNT/NCT. Free-beam spectral measurements as well as phantom measurements with Lucite{trademark} cylinders using thermal, resonance, and threshold activation foil techniques have now been completed at all three clinical accelerator facilities. The same protocol was used for all measurements to facilitate intercomparison of data. The results will be useful for further detailed characterization of the neutron beams of interest as well as for validation of various charged particle and neutron transport codes and methodologies for FNT/NCT computational dosimetry, such as MCNP [3], LAHET [4], and MINERVA [5].

  8. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    SciTech Connect

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooled fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the

  9. Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice.

    PubMed

    Tanegashima, Kosuke; Sato-Miyata, Yukiko; Funakoshi, Masabumi; Nishito, Yasumasa; Aigaki, Toshiro; Hara, Takahiko

    2017-01-01

    We carried out liquid chromatography-tandem mass spectrometry analysis of metabolites in mice. Those metabolome data showed that hepatic glucose content is reduced, but that brain glucose content is unaffected, during fasting, consistent with the priority given to brain glucose consumption during fasting. The molecular mechanisms for this preferential glucose supply to the brain are not fully understood. We also showed that the fasting-induced production of the ketone body β-hydroxybutyrate (β-OHB) enhances expression of the glucose transporter gene Slc2a1 (Glut1) via histone modification. Upon β-OHB treatment, Slc2a1 expression was up-regulated, with a concomitant increase in H3K9 acetylation at the critical cis-regulatory region of the Slc2a1 gene in brain microvascular endothelial cells and NB2a neuronal cells, shown by quantitative PCR analysis and chromatin immunoprecipitation assay. CRISPR/Cas9-mediated disruption of the Hdac2 gene increased Slc2a1 expression, suggesting that it is one of the responsible histone deacetylases (HDACs). These results confirm that β-OHB is a HDAC inhibitor and show that β-OHB plays an important role in fasting-induced epigenetic activation of a glucose transporter gene in the brain.

  10. Transcriptome Analysis and Postprandial Expression of Amino Acid Transporter Genes in the Fast Muscles and Gut of Chinese Perch (Siniperca chuatsi)

    PubMed Central

    Chen, Lin; Zeng, Ming; Wu, Yuanan; Wang, Jianhua; Zhang, Jianshe

    2016-01-01

    The characterization of the expression and regulation of growth-related genes in the muscles of Chinese perch is of great interest to aquaculturists because of the commercial value of the species. The transcriptome annotation of the skeletal muscles is a crucial step in muscle growth-related gene analysis. In this study, we generated 52 504 230 reads of mRNA sequence data from the fast muscles of the Chinese perch by using Solexa/Illumina RNA-seq. Twenty-one amino acid transporter genes were annotated by searching protein and gene ontology databases, and postprandial changes in their transcript abundance were assayed after administering a single satiating meal to Chinese perch juveniles (body mass, approximately 100 g), following fasting for 1 week. The gut content of the Chinese perch increased significantly after 1 h and remained high for 6 h following the meal and emptied within 48–96 h. Expression of eight amino acid transporter genes was assayed in the fast muscles through quantitative real-time polymerase chain reaction at 0, 1, 3, 6, 12, 24, 48, and 96 h. Among the genes, five transporter transcripts were markedly up-regulated within 1 h of refeeding, indicating that they may be potential candidate genes involved in the rapid-response signaling system regulating fish myotomal muscle growth. These genes display coordinated regulation favoring the resumption of myogenesis responding to feeding. PMID:27463683

  11. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  12. A simple calculation of control assembly effectiveness in a liquid-metal fast breeder reactor by a transport-diffusion equivalence method

    SciTech Connect

    Benoist, P. ); Carta, M. ); Palmiotti, G. ); Salvatores, M. )

    1989-11-01

    A method to calculate the effectiveness of the control assembly in a fast neutron reactor is proposed. For each type of heterogeneous assembly (control or follower), a polar parameter, taking into account the assembly absorption and the axial leakage of neutrons inside the assembly, is defined. In a similar way, a bipolar parameter, taking into account the reaction of the assembly to a transverse flux gradient, is also defined. These two parameters, deduced from transport theory, are used to determine the absorption cross section and the diffusion coefficient of an equivalent homogeneous control or follower assembly. These new parameters are introduced in a one-group diffusion code, calculating the reactor as a whole with any number of control and follower assemblies. An approximate generalization to multigroup theory is proposed. Numerical comparisons show that this equivalent diffusion method gives results that are much closer to transport results than those obtained by the classical diffusion theory.

  13. Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle.

    PubMed Central

    Camps, M; Castelló, A; Muñoz, P; Monfar, M; Testar, X; Palacín, M; Zorzano, A

    1992-01-01

    1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and white muscle, as well as in brown and white adipose tissue from 7-day streptozotocin-induced diabetic and 48 h-fasted rats. 2. In agreement with previous data, white adipose tissue showed a substantial decrease in GLUT-4 mRNA and protein levels in response to both diabetes and fasting. Similarly, GLUT-4 mRNA and protein markedly decreased in brown adipose tissue in both insulinopenic conditions. 3. Under control conditions, the level of expression of GLUT-4 protein content differed substantially in heart, red and white skeletal muscle. Thus GLUT-4 protein was maximal in heart, and red muscle had a greater GLUT-4 content compared with white muscle. In spite of the large differences in GLUT-4 protein content, GLUT-4 mRNA levels were equivalent in heart and red skeletal muscle. 4. In heart, GLUT-4 mRNA decreased to a greater extent than GLUT-4 protein in response to diabetes and fasting. In contrast, red muscle showed a greater decrease in GLUT-4 protein than in mRNA in response to diabetes or fasting, and in fact no decrease in GLUT-4 mRNA content was detectable in fasting. On the other hand, preparations of white skeletal muscle showed a substantial increase in GLUT-4 mRNA under both insulinopenic conditions, and that was concomitant to either a modest decrease in GLUT-4 protein in diabetes or to no change in fasting. 5. These results indicate that (a) the effects of diabetes and fasting are almost identical and lead to changes in GLUT-4 expression that are tissue-specific, (b) white adipose tissue, brown adipose tissue and heart respond similarly to insulin deficiency by decreasing GLUT-4 mRNA to a larger extent than GLUT-4 protein, and (c) red and white skeletal muscle respond to insulinopenic conditions in a heterogeneous manner which is characterized by enhanced GLUT-4 mRNA/protein ratios. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1554359

  14. Pressure-induced fast axonal transport abnormalities and the anatomy at the lamina cribrosa in primate eyes.

    PubMed

    Radius, R L

    1983-03-01

    In ten owl monkey eyes (Aotus trivirgatus) the location of pressure-induced (perfusion pressure 35 mmHg) axonal transport abnormalities was determined by the examination of serial step cross-section tissue radio autographs from the optic nerve head. The degree of the local transport interruption did not correlate with the fiber bundle cross-section area, the shape of the laminar pores or the density of the inter-bundle septa in that region.

  15. Differential screening of mutated SOD1 transgenic mice reveals early up-regulation of a fast axonal transport component in spinal cord motor neurons.

    PubMed

    Dupuis, L; de Tapia, M; René, F; Lutz-Bucher, B; Gordon, J W; Mercken, L; Pradier, L; Loeffler, J P

    2000-08-01

    In the present study we analyze the molecular mechanisms underlying motor neuron degeneration in familial amyotrophic lateral sclerosis (FALS). For this, we used a transgenic mouse model expressing the Cu/Zn superoxide dismutase (SOD1) gene with a Gly(86) to Arg (G86R) mutation equivalent to that found in a subset of human FALS. Using an optimized suppression subtractive hybridization method, a cDNA specifically up-regulated during the asymptomatic phase in the lumbar spinal cord of G86R mice was identified by sequence analysis as the KIF3-associated protein (KAP3), a regulator of fast axonal transport. RT-PCR analysis revealed that KAP3 induction was an early event arising long before axonal degeneration. Immunohistochemical studies further revealed that KAP3 protein predominantly accumulates in large motor neurons of the ventral spinal cord. We further demonstrated that KAP3 up-regulation occurs independent of any change in the other components of the kinesin II complex. However, since the ubiquitous KIF1A motor is up-regulated, our results show an early and complex rearrangement of the fast axonal transport machinery in the course of FALS pathology.

  16. Application of the Finite Orbit Width Version of the CQL3D Code to Transport of Fast Ions

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2016-10-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code now includes the ``fully'' neoclassical version in which the diffusion and advection processes are averaged over actual drift orbits, rather than using a 1st-order expansion. Incorporation of Finite-Orbit-Width (FOW) effects results in neoclassical radial transport caused by collisions, RF wave heating and by toroidal electric field (radial pinch). We apply the CQL3D-full-FOW code to study the thermalization and radial transport of high-energy particles, such as alpha-particles produced by fusion in ITER or deuterons from NBI in NSTX, under effect of their interaction with auxiliary RF waves. A particular attention is given to visualization of transport in 3D space of velocity +major-radius coordinates. Supported by USDOE Grants FC02-01ER54649, FG02-04ER54744, and SC0006614.

  17. FAST TRACK PAPER: A study of the applicability and divergence of the ray series using a modified transport equation

    NASA Astrophysics Data System (ADS)

    Buske, Stefan; Kravtsov, Yury A.

    2005-01-01

    In this paper, we study an extension of the standard ray-theoretical transport equation. We include a higher-order term of the ray series and obtain a modified frequency-dependent transport equation. This equation is solved analytically and numerically for an elastic 1-D model. The analysis of the results documents that the ray series diverges just at the boundary of applicability of the underlying high-frequency approximation. This implies that taking into account higher-order terms in the ray series neither improves accuracy nor allows a shift of the boundary of its applicability towards lower frequencies.

  18. Divergence-free transport of laser-produced fast electrons along a meter-long wire target.

    PubMed

    Nakajima, Hiroaki; Tokita, Shigeki; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji

    2013-04-12

    We demonstrate that, from a 10-μm metal wire irradiated by a 10(19)  W/cm2 laser pulse, fast electrons form a nearly perfect circular beam around the wire and propagate along it. The total charge and diameter of the electron beam are maintained over a propagation distance of 1 m. Moreover, the electron beam can be guided along a slightly bent wire. Numerical simulations suggest that a relatively weak steady electric field, which does not decay for several nanoseconds, is generated around the wire and plays a key role in the long-distance guidance.

  19. Fast Transport from Southeast Asia Boundary Layer Sources to Northern Europe: Rapid Uplift in Typhoons and Eastward Eddy Shedding of the Asian Monsoon Anticyclone

    NASA Astrophysics Data System (ADS)

    Mueller, R.; Vogel, B.; Guenther, G.; Grooss, J. U.; Hoor, P. M.; Kraemer, M.; Mueller, S.; Zahn, A.; Riese, M.

    2014-12-01

    During the TACTS aircraft campaign enhanced tropospheric trace gases such as CO, CH4, and H2O and reduced stratospheric O3 were measured in situ in the lowermost stratosphere over Northern Europe on 26 September 2012. The measurements indicate that these air masses differ from the stratospheric background. The calculation of 40 day backward trajectories with the trajectory module of the CLaMS model shows that these air masses are affected by the Asian monsoon anticyclone. Some air masses originate from the boundary layer in Southeast Asia/West Pacific and are rapidly lifted (1-2 days) within a typhoon. Afterwards they are injected directly into the anticyclonic circulation of the Asian monsoon. The subsequent long-range transport (8-14 days) of enhanced water vapour and pollutants to the lowermost stratosphere in Northern Europe is driven by eastward transport of tropospheric air from the Asian monsoon anticyclone caused by an eddy shedding event. We find that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is an additional fast transport pathway that, for the case studied here, carries boundary emissions from Southeast Asia/West Pacific within approximately 5 weeks to the lowermost stratosphere in Northern Europe.

  20. Fast transport from Southeast Asia boundary layer sources to northern Europe: rapid uplift in typhoons and eastward eddy shedding of the Asian monsoon anticyclone

    NASA Astrophysics Data System (ADS)

    Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Hoor, P.; Krämer, M.; Müller, S.; Zahn, A.; Riese, M.

    2014-12-01

    Enhanced tropospheric trace gases such as CO, CH4 and H2O and reduced stratospheric O3 were measured in situ in the lowermost stratosphere over northern Europe on 26 September 2012 during the TACTS aircraft campaign. The measurements indicate that these air masses clearly differ from the stratospheric background. The calculation of 40-day backward trajectories with the trajectory module of the CLaMS model shows that these air masses are affected by the Asian monsoon anticyclone. Some air masses originate from the boundary layer in Southeast Asia/West Pacific and are rapidly lifted (1-2 days) within a typhoon up to the outer edge of the Asian monsoon anticyclone. Afterwards, the air parcels are entrained by the anticyclonic circulation of the Asian monsoon. The subsequent long-range transport (8-14 days) of enhanced water vapour and pollutants to the lowermost stratosphere in northern Europe is driven by eastward transport of tropospheric air from the Asian monsoon anticyclone caused by an eddy shedding event. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway that may carry boundary emissions from Southeast Asia/West Pacific within approximately 5 weeks to the lowermost stratosphere in northern Europe.

  1. Fast transport from Southeast Asia boundary layer sources to Northern Europe: rapid uplift in typhoons and eastward eddy shedding of the Asian monsoon anticyclone

    NASA Astrophysics Data System (ADS)

    Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Hoor, P.; Krämer, M.; Müller, S.; Zahn, A.; Riese, M.

    2014-07-01

    During the TACTS aircraft campaign enhanced tropospheric trace gases such as CO, CH4, and H2O and reduced stratospheric O3 were measured in situ in the lowermost stratosphere over Northern Europe on 26 September 2012. The measurements indicate that these air masses differ from the stratospheric background. The calculation of 40 day backward trajectories with the trajectory module of the CLaMS model shows that these air masses are affected by the Asian monsoon anticyclone. Some air masses originate from the boundary layer in Southeast Asia/West Pacific and are rapidly lifted (1-2 days) within a typhoon. Afterwards they are injected directly into the anticyclonic circulation of the Asian monsoon. The subsequent long-range transport (8-14 days) of enhanced water vapour and pollutants to the lowermost stratosphere in Northern Europe is driven by eastward transport of tropospheric air from the Asian monsoon anticyclone caused by an eddy shedding event. We find that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is an additional fast transport pathway that, in this study, carries boundary emissions from Southeast Asia/West Pacific within approximately 5 weeks to the lowermost stratosphere in Northern Europe.

  2. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-01-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  3. Evaluation of moisture and heat transport in the fast-response building-resolving urban transport code QUIC EnvSim

    NASA Astrophysics Data System (ADS)

    Briggs, Kevin A.

    QUIC EnvSim (QES) is a complete building-resolving urban microclimate modeling system developed to rapidly compute mass, momentum, and heat transport for the design of sustainable cities. One of the more computationally intensive components of this type of modeling system is the transport and dispersion of scalars. In this paper, we describe and evaluate QESTransport, a Reynolds-averaged Navier-Stokes (RANS) scalar transport model. QESTransport makes use of light-weight methods and modeling techniques. It is parallelized for Graphics Processing Units (GPUs), utilizing NVIDIA's OptiX application programming interfaces (APIs). QESTransport is coupled with the well-validated QUIC Dispersion Modeling system. To couple the models, a new methodology was implemented to efficiently prescribe surface flux boundary conditions on both vertical walls and flat surfaces. In addition, a new internal boundary layer parameterization was introduced into QUIC to enable the representation of momentum advection across changing surface conditions. QESTransport is validated against the following three experimental test cases designed to evaluate the model's performance under idealized conditions: (i) flow over a step change in moisture, roughness, and temperature, (ii) flow over an isolated heated building, and (iii) flow through an array of heated buildings. For all three cases, the model is compared against published simulation results. QESTransport produces velocity, temperature, and moisture fields that are comparable to much more complex numerical models for each case. The code execution time performance is evaluated and demonstrates linear scaling on a single GPU for problem sizes up to 4.5 x 4.5 km at 5 m grid resolution, and is found to produce results at much better than real time for a 1.2 x 1.2 km section of downtown Salt Lake City, Utah.

  4. Risk assessment of the fatality due to explosion in land mass transport infrastructure by fast transient dynamic analysis.

    PubMed

    Giannopoulos, G; Larcher, M; Casadei, F; Solomos, G

    2010-01-15

    Terrorist attacks in New York have shocked the world community showing clearly the vulnerability of air transport in such events. However, the terrorist attacks in Madrid and London showed that land mass transport infrastructure is equally vulnerable in case of similar attacks. The fact that there has not been substantial investment in the domain of risk analysis and evaluation of the possible effects due to such events in land mass transportation infrastructure leaves large room for new developments that could eventually fill this gap. In the present work using the finite element code EUROPLEXUS there has been a large effort to perform a complete study of the land mass infrastructure in case of explosion events. This study includes a train station, a metro station and a metro carriage providing thus valuable simulation data for a variety of different situations. For the analysis of these structures it has been necessary to apply a laser scanning method for the acquisition of geometrical data, to improve the simulation capabilities of EUROPLEXUS by adding failure capabilities for specific finite elements, to implement new material models (e.g. glass), and to add new modules that achieve data post-processing for the calculation of fatal and non-fatal injuries risk. The aforementioned improvements are explained in the present work with emphasis in the newly developed risk analysis features of EUROPLEXUS.

  5. Advancing the visualization of pure water transport in porous materials by fast, talbot interferometry-based multi-contrast x-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Griffa, Michele; Hipp, Alexander; Derluyn, Hannelore; Moonen, Peter; Kaufmann, Rolf; Boone, Matthieu N.; Beckmann, Felix; Lura, Pietro

    2016-10-01

    The spatio-temporal distribution (4D) of water in porous materials plays a fundamental role in many natural and technological processes. The dynamics of water transport is strongly entangled with the material's pore-scale structure. Understanding their correlation requires imaging simultaneously the 4D water distribution and the porous microstructure. To date, 4D images with high temporal and spatial resolution have been mainly acquired by attenuation-based X-ray micro-tomography, whereby pure water is substituted by saline solutions with high atomic number components to improve image contrast. The use of saline solutions is however not always desirable, as the altered fluid properties may affect the transport process as well or, as it is the case for hydrating cement-based materials, they may modify the chemical reactions and their kinetics. In this study, we aimed at visualizing pure water transport in porous building materials by a new implementation of fast Talbot interferometry-based multi-contrast X-ray micro-tomography at the P07 beamline of the Helmholtz-Zentrum Geesthacht at DESY. We report results from a mortar specimen imaged at three different stages during evaporative drying. We show the possibility of visualizing simultaneously the microstructure and the pore-scale water redistribution by the phase contrast images. In addition, different solid material phases are clearly distinguished in these images. The higher contrast between water and the porous substrate, achievable in the phase contrast images, compared with the attenuation ones, empowers new analysis and allows investigating the correlation between the drying process and the porous microstructure. The approach offers the possibility of studying other chemically inert or reactive water transport processes without any chemical or physical perturbation of the processes themselves.

  6. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Milčák, Ján; Cvachovec, František; Jánský, Bohumil; Rypar, Vojtěch; Juříček, Vlastimil; Novák, Evžen; Egorov, Alexander; Zaritskiy, Sergey

    2016-02-01

    A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1-10 MeV) and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1). Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  7. N-Substituted Benztropine Analogs: Selective Dopamine Transporter Ligands with a Fast Onset of Action and Minimal Cocaine-Like Behavioral Effects

    PubMed Central

    Li, Su-Min; Kopajtic, Theresa A.; O'Callaghan, Matthew J.; Agoston, Gregory E.; Cao, Jianjing; Newman, Amy Hauck

    2011-01-01

    Previous studies suggested that differences between the behavioral effects of cocaine and analogs of benztropine were related to the relatively slow onset of action of the latter compounds. Several N-substituted benztropine analogs with a relatively fast onset of effects were studied to assess whether a fast onset of effects would render the effects more similar to those of cocaine. Only one of the compounds increased locomotor activity, and the increases were modest compared with those of 10 to 20 mg/kg cocaine. In rats trained to discriminate 10 mg/kg cocaine from saline none of the compounds produced more than 40% cocaine-like responds up to 2 h after injection. None of the compounds produced place-conditioning when examined up to 90 min after injection, indicating minimal abuse liability. The compounds had 5.6 to 30 nM affinities at the dopamine transporter (DAT), with uniformly lower affinities at norepinephrine and serotonin transporters (from 490-4600 and 1420–7350 nM, respectively). Affinities at muscarinic M1 receptors were from 100- to 300-fold lower than DAT affinities, suggesting minimal contribution of those sites to the behavioral effects of the compounds. Affinities at histaminic H1 sites were from 11- to 43-fold lower than those for the DAT. The compounds also had affinity for sigma, 5-hydroxytryptamine1 (5-HT1), and 5-HT2 receptors that may have contributed to their behavioral effects. Together, the results indicate that a slow onset of action is not a necessary condition for reduced cocaine-like effects of atypical DAT ligands and suggest several mechanisms that may contribute to the reduced cocaine-like efficacy of these compounds. PMID:21088247

  8. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.

    PubMed

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K

    2008-06-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations ( approximately 1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 10(6-7) K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 x 10(5) W/m(2).K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 x 10(6) W/m(2).K, which is approximately 10(3) times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 10(6-7)K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA.

  9. The Shortlist Method for Fast Computation of the Earth Mover's Distance and Finding Optimal Solutions to Transportation Problems

    PubMed Central

    Gottschlich, Carsten; Schuhmacher, Dominic

    2014-01-01

    Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method. PMID:25310106

  10. R_transport_matrices of the Fast Extraction Beam (FEB) of the AGS, and Beam Parameters at the Starting point of the AtR Line

    SciTech Connect

    Tsoupas,N.; MacKay, W.W.; Satogata, T.; Glenn, W.; Ahrens, L.; Brown, K.; Gardner, C.; Tanaka, S.

    2008-01-01

    As part of the task to improve and further automate the 'AtR BPM Application' we provide the theoretically calculated R-transport-matrices for the following beam line sections, which are shown schematically in Figure 1: (a) the Fast Extraction Beam section (FEB) of the AGS synchrotron. The FEB section starts at the middle of the GlO-kicker and ends at the middle of the H1 0{_}septum. (b) the Drift Extraction Channel (DEC) section of the AGS synchrotron. The DEC section starts at the middle of the H10{_}septum, continues along the fringe field region of the H11,H12, and H13 AGS main magnets, and ends at the starting point of the AtR line. The knowledge of these R-transport-matrices are needed in order to calculate the beam parameters at the beginning of the AtR line, which in turn, are required to calculate the magnet settings of the U{_}line, that match the U{_}line into the W{_}line. Also by incorporating these R{_}matrices into the model of the AtR line, the G10 kicker and the H10 septum are included in the AtR model therefore one can investigate any 'jitter' of either the GlO{_}kicker or HlO{_}septum by looking at the trajectory of the beam in the AtR line.

  11. Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

    SciTech Connect

    Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P.; Ryu, H. J.; Kulesza, K. P.; Kim, S. J.; Halsey, W. G.; Smith, C. F.; Brown, N. W.; Greenspan, E.; de Caro, M.; Li, N.; Hosemann, P.; Zhang, J.; Yu, H.; Nuclear Engineering Division; LLNL; LANL; Massachusetts Inst. of Tech.; Ecole des Mines de Paris; Oregon State Univ.; Univ.of California at Berkley

    2008-06-23

    This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics

  12. PHASE RETRIEVAL FROM TWO DEFOCUSED IMAGES BY THE TRANSPORT OF INTENSITY EQUATION FORMALISM WITH FAST FOURIER TRANSFORM.

    SciTech Connect

    VOLKOV,V.V.; ZHU,Y.

    2001-08-05

    The problem of phase retrieval from intensity measurements plays an important role in many fields of physical research, e.g. optics, electron and x-ray microscopy, crystallography, diffraction tomography and others. In practice the recorded images contain information only on the intensity distribution I(x,y) = {Psi}*{Psi} = {vert_bar}A{vert_bar}{sup 2} of the imaging wave function {Psi} = A*exp(-i{var_phi}) and the phase information {var_phi}(x,y) is usually lost. In general, the phase problem can be solved either by special holographic/interferometric methods, or by non-interferometric approaches based on intensity measurements in far Fraunhofer zone or in the Fresnel zone at two adjacent planes orthogonal to the optical axis. The latter approach uses the transport-of-intensity equation (TIE) formalism, introduced originally by Teague [1] and developed later in [2]. Applications of TIE to nonmagnetic materials and magnetic inductance mapping were successfully made in [3,4]. However, this approach still needs further improvement both in mathematics and in practical solutions, since the result is very sensitive to many experimental parameters.

  13. MO-A-BRD-10: A Fast and Accurate GPU-Based Proton Transport Monte Carlo Simulation for Validating Proton Therapy Treatment Plans

    SciTech Connect

    Wan Chan Tseung, H; Ma, J; Beltran, C

    2014-06-15

    Purpose: To build a GPU-based Monte Carlo (MC) simulation of proton transport with detailed modeling of elastic and non-elastic (NE) protonnucleus interactions, for use in a very fast and cost-effective proton therapy treatment plan verification system. Methods: Using the CUDA framework, we implemented kernels for the following tasks: (1) Simulation of beam spots from our possible scanning nozzle configurations, (2) Proton propagation through CT geometry, taking into account nuclear elastic and multiple scattering, as well as energy straggling, (3) Bertini-style modeling of the intranuclear cascade stage of NE interactions, and (4) Simulation of nuclear evaporation. To validate our MC, we performed: (1) Secondary particle yield calculations in NE collisions with therapeutically-relevant nuclei, (2) Pencil-beam dose calculations in homogeneous phantoms, (3) A large number of treatment plan dose recalculations, and compared with Geant4.9.6p2/TOPAS. A workflow was devised for calculating plans from a commercially available treatment planning system, with scripts for reading DICOM files and generating inputs for our MC. Results: Yields, energy and angular distributions of secondaries from NE collisions on various nuclei are in good agreement with the Geant4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%–2mm for 70–230 MeV pencil-beam dose distributions in water, soft tissue, bone and Ti phantoms is 100%. The pass rate at 2%–2mm for treatment plan calculations is typically above 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is around 20s for 1×10{sup 7} proton histories. Conclusion: Our GPU-based proton transport MC is the first of its kind to include a detailed nuclear model to handle NE interactions on any nucleus. Dosimetric calculations demonstrate very good agreement with Geant4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil

  14. How Fast Is Fast?

    ERIC Educational Resources Information Center

    Korn, Abe

    1994-01-01

    Presents an activity that enables students to answer for themselves the question of how fast a body must travel before the nonrelativistic expression must be replaced with the correct relativistic expression by deciding on the accuracy required in describing the kinetic energy of a body. (ZWH)

  15. Effects of fasting and refeeding on gene expression of slc15a1a, a gene encoding an oligopeptide transporter (PepT1), in the intestine of Mozambique tilapia.

    PubMed

    Orozco, Zenith Gaye A; Soma, Satoshi; Kaneko, Toyoji; Watanabe, Soichi

    2017-01-01

    The tissue distribution of slc15a1a, a gene that encodes an oligopeptide transporter, PepT1, and its response to fasting and refeeding were investigated in the intestinal epithelium of Mozambique tilapia for a better understanding of its role on nutrient absorption. The slc15a1a was predominantly expressed in the absorptive epithelia of the anterior part of the intestine, suggesting that digested oligopeptides are primarily absorbed in the anterior intestine. The response of slc15a1a to fasting was evaluated at 1, 2, 4, 7 and 14days after the last feeding. Fasting revealed a biphasic effect, where short-term fasting significantly upregulated slc15a1a expression and long-term fasting resulted in downregulation. The expression level continued to decrease and fell below the pre-fasted level from day 4 to 14. Proximal (the hepatic loop, HL) and distal parts (the proximal major coil, PMC) of the anterior intestine showed different magnitudes of responses to fasting; slc15a1a expression in the PMC showed greater upregulation and downregulation than that in the HL. Refeeding significantly stimulated slc15a1a expression at day 3, although the expression did not exceed the pre-fasted level. Observed responses of slc15a1a to fasting and refeeding suggest that the expression level of this gene can serve as a sensitive indicator of the changes that may occur in altering nutritional conditions. These findings contribute to a better understanding of the role of PepT1 in nutrition and of the complex mechanisms underlying the absorption of oligopeptides and amino acids in the intestine, and may lead to development of possible means to manipulate the absorption processes for the improvement of growth and other metabolic and physiological conditions in fish.

  16. Intermodal Transportation: Current Fast Ship Designs Specify Propulsion Systems that Are about 20 Knots Faster than Ships in the Current Fleet

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2005-01-01

    Intermodal transportation is the moving of people or cargo using more than one mode of transportation. When a person drives to the airport, stands on a conveyor to move through the terminal, and flies to another city, then he or she is using intermodal transportation. Moving cargo in the first half of the twentieth century was a time-consuming and…

  17. Fast Reactors

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Pisanti, O.

    The following sections are included: * Elementary Considerations * The Integral Equation to the Neutron Distribution * The Critical Size for a Fast Reactor * Supercritical Reactors * Problems and Exercises

  18. Fast CRCs

    DTIC Science & Technology

    2009-10-01

    Detecting Codes: General Theory and Their Application in Feedback Communication Systems. Kluwer Academic, 1995. [8] D.E. Knuth , The Art of Computer ... computation . Index Terms—Fast CRC, low-complexity CRC, checksum, error-detection code, Hamming code, period of polynomial, fast software implementation...simulations, and performance analysis of systems and networks. CRC implementation in software is desirable, because many computers do not have hardware

  19. Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn2SnO4 Electron Transporting Layer: Interface Matters.

    PubMed

    Bera, Ashok; Sheikh, Arif D; Haque, Md Azimul; Bose, Riya; Alarousu, Erkki; Mohammed, Omar F; Wu, Tom

    2015-12-30

    Here we report that mesoporous ternary oxide Zn2SnO4 can significantly promotes the crystallization of hybrid perovskite layers and serves as an efficient electron transporting material in perovskite solar cells. Such devices exhibit an energy conversion efficiency of 13.34%, which is even higher than that achieved with the commonly used TiO2 in the similar experimental conditions (9.1%). Simple one-step spin coating of CH3NH3PbI3-xClx on Zn2SnO4 is found to lead to rapidly crystallized bilayer perovskite structure without any solvent engineering. Furthermore, ultrafast transient absorption measurement reveals efficient charge transfer at the Zn2SnO4/perovskite interface. Most importantly, solar cells with Zn2SnO4 as the electron-transporting material exhibit negligible electrical hysteresis and exceptionally high stability without encapsulation for over one month. Besides underscoring Zn2SnO4 as a highly promising electron transporting material for perovskite solar cells, our results demonstrate the significant role of interfaces on improving the perovskite crystallization and photovoltaic performance.

  20. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  1. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  2. Project FAST.

    ERIC Educational Resources Information Center

    Essexville-Hampton Public Schools, MI.

    Described are components of Project FAST (Functional Analysis Systems Training) a nationally validated project to provide more effective educational and support services to learning disordered children and their regular elementary classroom teachers. The program is seen to be based on a series of modules of delivery systems ranging from mainstream…

  3. Molecular dynamics simulation of the thermodynamic and transport properties of the molten salt fast reactor fuel LiF-ThF4

    NASA Astrophysics Data System (ADS)

    Dewan, Leslie C.; Simon, Christian; Madden, Paul A.; Hobbs, Linn W.; Salanne, Mathieu

    2013-03-01

    The local structure and transport properties of molten LiF-ThF4 at the eutectic composition have been studied at a range of temperatures, using molecular dynamics simulations that incorporate dipole polarization effects. This polarizable interaction potential was parameterized from first-principles calculations. We have calculated the density, self-diffusion coefficients, electrical conductivity, viscosity, and heat capacity at a range of temperatures from 850 K to 1273 K. We have also examined the changes in coordination number as a function of temperature. The simulation results were in good agreement with available experimental data, indicating that such simulations can fulfill a valuable role in augmenting existing experimental work.

  4. Genetic changes during a laboratory adaptive evolution process that allowed fast growth in glucose to an Escherichia coli strain lacking the major glucose transport system

    PubMed Central

    2012-01-01

    Background Escherichia coli strains lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS), which is the major bacterial component involved in glucose transport and its phosphorylation, accumulate high amounts of phosphoenolpyruvate that can be diverted to the synthesis of commercially relevant products. However, these strains grow slowly in glucose as sole carbon source due to its inefficient transport and metabolism. Strain PB12, with 400% increased growth rate, was isolated after a 120 hours adaptive laboratory evolution process for the selection of faster growing derivatives in glucose. Analysis of the genetic changes that occurred in the PB12 strain that lacks PTS will allow a better understanding of the basis of its growth adaptation and, therefore, in the design of improved metabolic engineering strategies for enhancing carbon diversion into the aromatic pathways. Results Whole genome analyses using two different sequencing methodologies: the Roche NimbleGen Inc. comparative genome sequencing technique, and high throughput sequencing with Illumina Inc. GAIIx, allowed the identification of the genetic changes that occurred in the PB12 strain. Both methods detected 23 non-synonymous and 22 synonymous point mutations. Several non-synonymous mutations mapped in regulatory genes (arcB, barA, rpoD, rna) and in other putative regulatory loci (yjjU, rssA and ypdA). In addition, a chromosomal deletion of 10,328 bp was detected that removed 12 genes, among them, the rppH, mutH and galR genes. Characterization of some of these mutated and deleted genes with their functions and possible functions, are presented. Conclusions The deletion of the contiguous rppH, mutH and galR genes that occurred simultaneously, is apparently the main reason for the faster growth of the evolved PB12 strain. In support of this interpretation is the fact that inactivation of the rppH gene in the parental PB11 strain substantially increased its growth rate, very

  5. A PET imaging agent with fast kinetics: synthesis and in vivo evaluation of the serotonin transporter ligand [11C]2-[2-dimethylaminomethylphenylthio)]-5-fluorophenylamine ([11C]AFA).

    PubMed

    Huang, Yiyun; Narendran, Raj; Bae, Sung-A; Erritzoe, David; Guo, Ningning; Zhu, Zhihong; Hwang, Dah-Ren; Laruelle, Marc

    2004-08-01

    A new serotonin transporter (SERT) ligand, [11C]2-[2-(dimethylaminomethylphenylthio)]-5-fluorophenylamine (10, [11C]AFA), was synthesized and evaluated as a candidate PET radioligand in pharmacological and pharmacokinetic studies. As a PET radioligand, AFA (8) can be labeled with either C-11 or F-18. In vitro, AFA displayed high affinity for SERT (Ki 1.46 +/- 0.15 nM) and lower affinity for norepinephrine transporter (NET, Ki 141.7 +/- 47.4 nM) or dopamine transporter (DAT, Ki > 10,000 nM). [11C]AFA (10) was prepared from its monomethylamino precursor 9 by reaction with high specific activity [11C]methyl iodide. Radiochemical yield was 43 +/- 20% based on [11C]methyl iodide at end of bombardment (EOB, n = 10) and specific activity was 2,129 +/- 1,369 Ci/mmol at end of synthesis (EOS, n = 10). Biodistribution studies in rats indicated that [11C]AFA accumulated in brain regions known to contain high concentrations of SERT. Binding in SERT-rich brain regions was reduced significantly by pretreatment with either the cold compound 8 or with the selective serotonin reuptake inhibitor (SSRI) citalopram, but not by the selective norepinephrine reuptake inhibitor nisoxetine, thus underlining its in vivo binding selectivity and specificity for SERT. Imaging experiments in baboons demonstrated that the uptake pattern of [11C]AFA in the baboon brain is consistent with the known distribution of SERT, with highest activity levels in the midbrain and thalamus, followed by striatum, hippocampus, and cortical regions. Activity levels in the baboon brain peaked at 15-40 min after radioligand injection, indicating a fast uptake kinetics for [11C]AFA. Pretreatment of the baboon with citalopram (4 mg/kg) significantly reduced the specific binding of [11C]AFA in all SERT-containing brain regions. Kinetic analysis revealed that the regional equilibrium specific to non-specific partition coefficients (V3") of [11C]AFA are similar to those of [11C]McN5652, but lower than those of [11C

  6. Optically detected carrier transport in III/V semiconductor QW structures: experiments, model calculations and applications in fast 1.55 µm laser devices

    NASA Astrophysics Data System (ADS)

    Hillmer, H.; Marcinkevičius, S.

    1998-01-01

    This paper reviews optically detected carrier dynamics in III/V semiconductor quantum well (QW) heterostructures perpendicular to the interfaces. Photoluminescence emissions originating from different semiconductor layers are recorded in a time-resolved way to monitor the carrier dynamics between these layers. The experimental methods presented provide a very high spatial and temporal resolution, partly even in the nanometer and sub-picosecond ranges, respectively. Model calculations based on a self-consistent solution of the continuity equation, the Poisson equation and rate-equation(s) are used to evaluate the experimental data. It will be demonstrated that experiments using several specially tailored semiconductor heterostructures enable the following individual dynamic effects to be studied and separated: transport in extended unquantized layers, capture into the QWs, relaxation in the QWs, tunneling between the QWs and thermal re-emission from the QWs. It will be shown that several basic physical effects have to be studied and understood before modern high-speed semiconductor laser devices can be designed and implemented. By adding levels of increasing complexity, this review starts from simple basic structures to finally approach real laser structures in a sequence of consecutive steps. AlGaInAs and GaInAsP heterostructures are compared with respect to interwell transfer efficiencies and problems in technological implementation. This review proceeds from basic research on carrier dynamics to applications in high-speed laser devices. Throughout the review an overview of the experimental and theoretical literature is given.

  7. Solid phase transitions and fast ion transport in LiNaSO[sub 4]: LiCl: Na[sub 2]WO[sub 4] mixed systems

    SciTech Connect

    Prabaharan, S.R.S.; Muthusubramanian, P. ); Kulandainathan, M.A.; Kapali, V. )

    1993-10-01

    LiNaSO[sub 4]: LiCl: Na[sub 2]WO[sub 4] composites of a few different compositions have been prepared by quenching the melt and studied for the first time with a view to improve the ionic conductivity of LiNaSO[sub 4] at the lowest possible temperature. The phase formations of the composites have been analyzed by means of X-ray powder diffraction technique. The transport properties have been studied by DSC and complex ac impedance analysis (to extract the dc electrical conductivity, [sigma][sub dc]). The X-ray diffractograms show evidence for solid solutions (ss) as well as second dispersed phase due to indissolved excess compound (LiCl). The [sigma] enhancement may be attributed to the increase in interfacial conductivity due to the increase in concentration of the charge carriers (ions or vacancies) forming a diffuse space charge layer between the two ion conductors, i.e., the solid solution of LiNaSO[sub 4] with dissolved chloride and tungstate fractions and a chloride phase with dissolved sulfate fraction. DSC measurements show improved thermal properties with respect to [alpha]-LiNaSO[sub 4]. The present composite mixtures offer the choice of lower transition temperatures, but these are accompanied by lower transition enthalpies.

  8. Ab initio prediction of fast non-equilibrium transport of nascent polarons in SrI2: a key to high-performance scintillation

    NASA Astrophysics Data System (ADS)

    Zhou, Fei; Sadigh, Babak; Erhart, Paul; Åberg, Daniel

    2016-08-01

    The excellent light yield proportionality of europium-doped strontium iodide (SrI2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale for the unexpected high-energy resolution of SrI2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for non-linear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.

  9. CONFERENCE REPORT: 13th EU-US Transport Task Force Workshop on transport in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Connor, J. W.; Fasoli, A.; Hidalgo, C.; Kirk, A.; Naulin, V.; Peeters, A. G.; Tala, T.

    2009-04-01

    This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape-off-layer transport and MHD and fast particle interaction with transport.

  10. Enhanced Model for Fast Ignition

    SciTech Connect

    Mason, Rodney J.

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  11. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  12. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  13. Fast food (image)

    MedlinePlus

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated ...

  14. Is fast food addictive?

    PubMed

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations.

  15. Integrative Physiology of Fasting.

    PubMed

    Secor, Stephen M; Carey, Hannah V

    2016-03-15

    Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.

  16. A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory.

    PubMed

    She, Xiao-Jian; Gustafsson, David; Sirringhaus, Henning

    2017-02-01

    A new device architecture for fast organic transistor memory is developed, based on a vertical organic transistor configuration incorporating high-performance ambipolar conjugated polymers and unipolar small molecules as the transport layers, to achieve reliable and fast programming and erasing of the threshold voltage shift in less than 200 ns.

  17. Measuring Fast Ion Losses in a Reversed Field Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Almagri, A. F.; Kim, J.; Clark, J.; Capecchi, W.; Sears, S. H.

    2015-11-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The RFP's weak toroidal field, strong magnetic shear, and ability to enter a 3D state provide a wide range of dynamics to study fast ions. Core-localized, 25 keV fast ions are sourced into MST by a tangentially injected hydrogen/deuterium neutral beam. Neutral particle analysis and measured fusion neutron flux indicate enhanced fast ion transport in the plasma core. Past experiments point to a dynamic loss of fast ions associated with the RFP's transition to a 3D state and with beam-driven, bursting magnetic modes. Consequently, fast ion transport and losses in the RFP have garnered recent attention. Valuable information on fast-ion loss, such as energy and pitch distributions, are sought to provide a better understanding of the transport mechanisms at hand. We have constructed and implemented two fast ion loss detectors (FILDs) for use on MST. The FILDs have two, independent, design concepts: collecting particles as a function of v⊥ or with pitch greater than 0.8. In this work, we present our preliminary findings and results from our FILDs on MST. This research is supported by US DOE.

  18. Diagnostics for Fast Ignition Science

    SciTech Connect

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  19. Fast wave current drive

    SciTech Connect

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities.

  20. fast-matmul

    SciTech Connect

    Grey Ballard, Austin Benson

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.

  1. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  2. Fast and effective?

    PubMed

    Trueland, Jennifer

    2013-12-18

    The 5.2 diet involves two days of fasting each week. It is being promoted as the key to sustained weight loss, as well as wider health benefits, despite the lack of evidence on the long-term effects. Nurses need to support patients who wish to try intermittent fasting.

  3. fastKDE

    SciTech Connect

    O'Brien, Travis A.; Kashinath, Karthik

    2015-05-22

    This software implements the fast, self-consistent probability density estimation described by O'Brien et al. (2014, doi: ). It uses a non-uniform fast Fourier transform technique to reduce the computational cost of an objective and self-consistent kernel density estimation method.

  4. Fast optical pyrometry

    NASA Technical Reports Server (NTRS)

    Cezairliyan, Ared

    1988-01-01

    Design and operation of accurate millisecond and microsecond resolution optical pyrometers developed at the National Bureau of Standards during the last two decades are described. Results of tests are presented and estimates of uncertainties in temperature measurements are given. Calibration methods are discussed and examples of applications of fast pyrometry are given. Ongoing research in developing fast multiwavelength and spatial scanning pyrometers are summarized.

  5. Dual fluidized bed design for the fast pyrolysis of biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mechanism for the transport of solids between fluidised beds in dual fluidised bed systems for the fast pyrolysis of biomass process was selected. This mechanism makes use of an overflow standpipe to transport solids from the fluidised bed used for the combustion reactions to a second fluidised be...

  6. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  7. Reusable fast opening switch

    DOEpatents

    Van Devender, John P.; Emin, David

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  8. Fast Breeder Reactor studies

    SciTech Connect

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  9. FAST Construction Progress

    NASA Astrophysics Data System (ADS)

    Nan, R. D.; Zhang, H. Y.; Zhang, Y.; Yang, L.; Cai, W. J.; Liu, N.; Xie, J. T.; Zhang, S. X.

    2016-11-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. A unique karst depression in Guizhou province has been selected as the site to build an active reflector radio telescope with a diameter of 500 m and three outstanding aspects, which enables FAST to have a large sky coverage and the ability of observing astronomical targets with a high precision. Chinese Academy of Sciences and Guizhou province are in charge of FAST construction. The first light of the telescope was expected on September 25, 2016.

  10. FAST joins Breakthrough programme

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2016-11-01

    The 180m Five-hundred-meter Aperture Spherical radio Telescope (FAST) - the world's largest single-aperture radio receiver - has become part of the Breakthrough Listen programme, which launched in July 2015 to look for intelligent life beyond Earth.

  11. Pneumococcal Disease Fast Facts

    MedlinePlus

    ... Home About Pneumococcal Types of Infection Risk Factors & Transmission Symptoms & Complications Diagnosis & Treatment Prevention Photos Fast Facts Pneumococcal Vaccination For Clinicians Streptococcus pneumoniae Transmission Clinical Features Risk Factors Diagnosis & Management Prevention For ...

  12. Calorie count - Fast food

    MedlinePlus

    ... count - fast food FOOD ITEM SERVING SIZE CALORIES Breakfast Foods Dunkin Donuts Egg White Veggie Wrap 1 ... Cheese Biscuit Sandwich 1 sandwich 510 BK Ultimate Breakfast Platter 1 platter 1190 McDonalds Fruit 'n Yogurt ...

  13. Discovery with FAST

    NASA Astrophysics Data System (ADS)

    Wilkinson, P.

    2016-02-01

    FAST offers "transformational" performance well-suited to finding new phenomena - one of which might be polarised spectral transients. But discoveries will only be made if "the system" provides its users with the necessary opportunities. In addition to designing in as much observational flexibility as possible, FAST should be operated with a philosophy which maximises its "human bandwidth". This band includes the astronomers of tomorrow - many of whom not have yet started school or even been born.

  14. Status of Fast Ignition Program at LLNL

    NASA Astrophysics Data System (ADS)

    Patel, P. K.; Bellei, C.; Chawla, S.; Chen, C.; Cohen, B.; Divol, L.; Higginson, D.; Kemp, A.; Kemp, G.; Key, M.; Larson, D.; Link, A.; Ma, T.; McLean, H.; Ping, Y.; Sawada, H.; Shay, H.; Strozzi, D.; Tabak, M.; Westover, B.; Wilks, S.

    2011-10-01

    The fast ignition (FI) approach to inertial confinement fusion offers the potential for achieving the high target gains required for Inertial Fusion Energy (IFE). This paper reports progress at LLNL on the development of a point design for an indirect-drive re-entrant-cone FI target. Integrated hohlraum and capsule designs are described that optimize the peak density, ρR and spatial uniformity of the fuel assembly around the cone tip. The interaction of the short-pulse ignitor beam in the cone is simulated with the PSC explicit particle-in-cell (PIC) code, and the subsequent transport of the electrons and core heating calculated with the Zuma hybrid transport code coupled to the Hydra radiation-hydrodynamics code. Progress will be described in the integrated modeling approach to fast ignition target design through the self-consistent treatment of the hohlraum radiation drive, capsule implosion, fast electron generation and transport, and core heating. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Fast wave current drive

    NASA Astrophysics Data System (ADS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Experiments on the fast wave in the range of high ion cyclotron harmonics in the ACT-1 device show that current drive is possible with the fast wave just as it is for the lower hybrid wave, except that it is suitable for higher plasma densities. A 140° loop antenna launched the high ion cyclotron harmonic fast wave [ω/Ω=O(10)] into a He+ plasma with ne≂4×1012 cm-3 and B=4.5 kG. Probe and magnetic loop diagnostics and FIR laser scattering confirmed the presence of the fast wave, and the Rogowski loop indicated that the circulating plasma current increased by up to 40A with 1 kW of coupled power, which is comparable to lower hybrid current drive in the same device with the same unidirectional fast electron beam used as the target for the rf. A phased antenna array would be used for FWCD in a tokamak without the E-beam.

  16. Radiation Transport

    SciTech Connect

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  17. A Fast Hermite Transform.

    PubMed

    Leibon, Gregory; Rockmore, Daniel N; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S

    2008-12-17

    We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed.

  18. Fast current ramp experiments on TFTR

    SciTech Connect

    Fredrickson, E.D.; McGuire, K.; Goldston, R.J.; Bell, M.; Grek, B.; Johnson, D.; Morris, A.W.; Stauffer, F.J.; Taylor, G.; Zarnstorff, M.C.

    1987-05-01

    Electron heat transport on TFTR and other tokamaks is several orders of magnitude larger than neoclassical calculations would predict. Despite considerable effort, there is still no clear theoretical understanding of this anomalous transport. The electron temperature profile T/sub e/(r), shape has shown a marked consistency on many machines, including TFTR, for a wide range of plasma parameters and heating profiles. This could be an important clue as to the process responsible for this enhanced thermal transport. In this paper 'profile consistency' in TFTR is described and an experiment which uses a fast current ramp to transiently decouple the current density profile J(r), and the T/sub e/(r) profiles is discussed. From this experiment the influence of J(r) on electron temperature profile consistency can be determined.

  19. Fast thermalization and Helmholtz oscillations of an ultracold Bose gas.

    PubMed

    Papoular, D J; Pitaevskii, L P; Stringari, S

    2014-10-24

    We analyze theoretically the transport properties of a weakly interacting ultracold Bose gas enclosed in two reservoirs connected by a constriction. We assume that the transport of the superfluid part is hydrodynamic, and we describe the ballistic transport of the normal part using the Landauer-Büttiker formalism. Modeling the coupled evolution of the phase, atom number, and temperature mismatches between the reservoirs, we predict that Helmholtz (plasma) oscillations can be observed at nonzero temperatures below Tc. We show that, because of its strong compressibility, the Bose gas is characterized by a fast thermalization compared to the damping time for plasma oscillations, accompanied by a fast transfer of the normal component. This fast thermalization also affects the gas above Tc, where we present a comparison to the ideal fermionic case. Moreover, we outline the possible realization of a superleak through the inclusion of a disordered potential.

  20. Fast ForWord.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Fast ForWord, a CD-ROM and Internet-based training program for children (pre-K to grade 8) with language and reading problems that helps children rapidly build oral language comprehension and other critical skills necessary for learning to read or becoming a better reader. With the help of computers, speech…

  1. The Integral Fast Reactor

    SciTech Connect

    Till, C.E.; Chang, Y.I. ); Lineberry, M.J. )

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

  2. Integral Fast Reactor concept

    SciTech Connect

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  3. Ab initio prediction of fast non-equilibrium transport of nascent polarons in SrI2: a key to high-performance scintillation [First-principles study of hole polaron formation and migration in strontium iodide

    DOE PAGES

    Zhou, Fei; Sadigh, Babak; Aberg, Daniel; ...

    2016-08-12

    The excellent light yield proportionality of europium-doped strontium iodide (SrI2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale for the unexpectedmore » high-energy resolution of SrI2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for nonlinear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.« less

  4. Ab initio prediction of fast non-equilibrium transport of nascent polarons in SrI2: a key to high-performance scintillation [First-principles study of hole polaron formation and migration in strontium iodide

    SciTech Connect

    Zhou, Fei; Sadigh, Babak; Aberg, Daniel; Erhart, Paul

    2016-08-12

    The excellent light yield proportionality of europium-doped strontium iodide (SrI2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale for the unexpected high-energy resolution of SrI2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for nonlinear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.

  5. FAST - FREEDOM ASSEMBLY SEQUENCING TOOL PROTOTYPE

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1994-01-01

    FAST is a project management tool designed to optimize the assembly sequence of Space Station Freedom. An appropriate assembly sequence coordinates engineering, design, utilization, transportation availability, and operations requirements. Since complex designs tend to change frequently, FAST assesses the system level effects of detailed changes and produces output metrics that identify preferred assembly sequences. FAST incorporates Space Shuttle integration, Space Station hardware, on-orbit operations, and programmatic drivers as either precedence relations or numerical data. Hardware sequencing information can either be input directly and evaluated via the "specified" mode of operation or evaluated from the input precedence relations in the "flexible" mode. In the specified mode, FAST takes as its input a list of the cargo elements assigned to each flight. The program determines positions for the cargo elements that maximize the center of gravity (c.g.) margin. These positions are restricted by the geometry of the cargo elements and the location of attachment fittings both in the orbiter and on the cargo elements. FAST calculates every permutation of cargo element location according to its height, trunnion fitting locations, and required intercargo element spacing. Each cargo element is tested in both its normal and reversed orientation (rotated 180 degrees). The best solution is that which maximizes the c.g. margin for each flight. In the flexible mode, FAST begins with the first flight and determines all feasible combinations of cargo elements according to mass, volume, EVA, and precedence relation constraints. The program generates an assembly sequence that meets mass, volume, position, EVA, and precedence constraints while minimizing the total number of Shuttle flights required. Issues associated with ground operations, spacecraft performance, logistics requirements and user requirements will be addressed in future versions of the model. FAST is written in C

  6. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  7. "Fast" Capitalism and "Fast" Schools: New Realities and New Truths.

    ERIC Educational Resources Information Center

    Robertson, Susan L.

    This paper locates the phenomenon of self-managing schools within the framework of "fast capitalism" and identifies themes of organization central to fast capitalism, which are argued to also underpin the self-managing schools. "Fast capitalism" refers to the rapidly intensified integration of regionalized productive activities into the global…

  8. PHENIX Fast TOF

    SciTech Connect

    Soha, Aria; Chiu, Mickey; Mannel, Eric; Stoll, Sean; Lynch, Don; Boose, Steve; Northacker, Dave; Alfred, Marcus; Lindesay, James; Chujo, Tatsuya; Inaba, Motoi; Nonaka, Toshihiro; Sato, Wataru; Sakatani, Ikumi; Hirano, Masahiro; Choi, Ihnjea

    2014-01-15

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of PHENIX Fast TOF group who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program. The goals for this test beam experiment are to verify the timing performance of the two types of time-of-flight detector prototypes.

  9. The Integral Fast Reactor

    SciTech Connect

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab.

  10. Fast tracking hospital construction.

    PubMed

    Quirk, Andrew

    2013-03-01

    Hospital leaders should consider four factors in determining whether to fast track a hospital construction project: Expectations of project length, quality, and cost. Whether decisions can be made quickly as issues arise. Their own time commitment to the project, as well as that of architects, engineers, construction managers, and others. The extent to which they are willing to share with the design and construction teams how and why decisions are being made.

  11. Fasting - the ultimate diet?

    PubMed

    Johnstone, A M

    2007-05-01

    Adult humans often undertake acute fasts for cosmetic, religious or medical reasons. For example, an estimated 14% of US adults have reported using fasting as a means to control body weight and this approach has long been advocated as an intermittent treatment for gross refractory obesity. There are unique historical data sets on extreme forms of food restriction that give insight into the consequences of starvation or semi-starvation in previously healthy, but usually non-obese subjects. These include documented medical reports on victims of hunger strike, famine and prisoners of war. Such data provide a detailed account on how the body adapts to prolonged starvation. It has previously been shown that fasting for the biblical period of 40 days and 40 nights is well within the overall physiological capabilities of a healthy adult. However, the specific effects on the human body and mind are less clearly documented, either in the short term (hours) or in the longer term (days). This review asks the following three questions, pertinent to any weight-loss therapy, (i) how effective is the regime in achieving weight loss, (ii) what impact does it have on psychology? and finally, (iii) does it work long-term?

  12. Lipid metabolism during fasting.

    PubMed

    Jensen, M D; Ekberg, K; Landau, B R

    2001-10-01

    These studies were conducted to understand the relationship between measures of systemic free fatty acid (FFA) reesterification and regional FFA, glycerol, and triglyceride metabolism during fasting. Indirect calorimetry was used to measure fatty acid oxidation in six men after a 60-h fast. Systemic and regional (splanchnic, renal, and leg) FFA ([(3)H]palmitate) and glycerol ([(3)H]glycerol) kinetics, as well as splanchnic triglyceride release, were measured. The rate of systemic FFA reesterification was 366 +/- 93 micromol/min, which was greater (P < 0.05) than splanchnic triglyceride fatty acid output (64 +/- 6 micromol/min), a measure of VLDL triglyceride fatty acid export. The majority of glycerol uptake occurred in the splanchnic and renal beds, although some leg glycerol uptake was detected. Systemic FFA release was approximately double that usually present in overnight postabsorptive men, yet the regional FFA release rates were of the same proportions previously observed in overnight postabsorptive men. In conclusion, FFA reesterification at rest during fasting far exceeds splanchnic triglyceride fatty acid output. This indicates that nonhepatic sites of FFA reesterification are important, and that peripheral reesterification of FFA exceeds the rate of simultaneous intracellular triglyceride fatty acid oxidation.

  13. Fast Track Study

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.

  14. Neighborhood fast food availability and fast food consumption

    PubMed Central

    Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D

    2015-01-01

    Recent nutritional and public health research has focused on how the availability of various types of food in a person’s immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person’s perceived availability of fast-food and an objective measure of fast-food presence—Geographic Information Systems (GIS)—within that person’s neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant’s neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely

  15. Neighborhood fast food availability and fast food consumption.

    PubMed

    Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D

    2015-09-01

    Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective.

  16. Compositional terranes on Mercury: Information from fast neutrons

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Peplowski, Patrick N.; Beck, Andrew W.; Feldman, William C.; Frank, Elizabeth A.; McCoy, Timothy J.; Nittler, Larry R.; Solomon, Sean C.

    2017-01-01

    We report measurements of the flux of fast neutrons at Mercury from 20ºS to the north pole. On the basis of neutron transport simulations and remotely sensed elemental compositions, cosmic-ray-induced fast neutrons are shown to provide a measure of average atomic mass, , a result consistent with earlier studies of the Moon and Vesta. The dynamic range of fast neutron flux at Mercury is 3%, which is smaller than the fast-neutron dynamic ranges of 30% and 6% at the Moon and Vesta, respectively. Fast-neutron data delineate compositional terranes on Mercury that are complementary to those identified with X-ray, gamma-ray, and slow-neutron data. Fast neutron measurements confirm the presence of a region with high , relative to the mean for the planet, that coincides with the previously identified high-Mg region and reveal the existence of at least two additional compositional terranes: a low- region within the northern smooth plains and a high- region near the equator centered near 90ºE longitude. Comparison of the fast-neutron map with elemental composition maps show that variations predicted from the combined element maps are not consistent with the measured variations in fast-neutron flux. This lack of consistency could be due to incomplete coverage for some elements or uncertainties in the interpretations of compositional and neutron data. Currently available data and analyses do not provide sufficient constraints to resolve these differences.

  17. Fast infrared response of YBCO thin films

    NASA Technical Reports Server (NTRS)

    Ballentine, P. H.; Kadin, A. M.; Donaldson, W. R.; Scofield, J. H.; Bajuk, L.

    1990-01-01

    The response to short infrared pulses of some epitaxial YBCO films prepared by sputter deposition and by electron-beam evaporation is reported. The response is found to be essentially bolometric on the ns timescale, with some indirect hints of nonequilibrium electron transport on the ps scale. Fast switching could be obtained either by biasing the switch close to the critical current or by cooling the film below about 20 K. These results are encouraging for potential application to a high-current optically-triggered opening switch.

  18. Bi-Directional Fast Charging Study Report

    SciTech Connect

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  19. Fast ion profile stiffness due to the resonance overlap of multiple Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Van Zeeland, M. A.; Heidbrink, W. W.

    2016-11-01

    Fast ion pressure profiles flattened by multiple Alfvén eigenmodes (AEs) are investigated for various neutral beam deposition powers in a multi-phase simulation, which is a combination of classical simulation and hybrid simulation for energetic particles interacting with a magnetohydrodynamic fluid. Monotonic degradation of fast ion confinement and fast ion profile stiffness is found with increasing beam deposition power. The confinement degradation and profile stiffness are caused by a sudden increase in fast ion transport flux brought about by AEs for fast ion pressure gradients above a critical value. The critical pressure gradient and the corresponding beam deposition power depend on the radial location. The fast ion pressure gradient stays moderately above the critical value, and the profiles of the fast ion pressure and fast ion transport flux spread radially outward from the inner region, where the beam is injected. It is found that the square root of the MHD fluctuation energy is proportional to the beam deposition power. Analysis of the time evolutions of the fast ion energy flux profiles reveals that intermittent avalanches take place with contributions from the multiple eigenmodes. Surface of section plots demonstrate that the resonance overlap of multiple eigenmodes accounts for the sudden increase in fast ion transport with increasing beam power. The critical gradient and critical beam power for the profile stiffness are substantially higher than the marginal stability threshold.

  20. Transport Experiments

    NASA Technical Reports Server (NTRS)

    Hall, Timothy M.; Wuebbles, Donald J.; Boering, Kristie A.; Eckman, Richard S.; Lerner, Jean; Plumb, R. Alan; Rind, David H.; Rinsland, Curtis P.; Waugh, Darryn W.; Wei, Chu-Feng

    1999-01-01

    MM II defined a series of experiments to better understand and characterize model transport and to assess the realism of this transport by comparison to observations. Measurements from aircraft, balloon, and satellite, not yet available at the time of MM I [Prather and Remsberg, 1993], provide new and stringent constraints on model transport, and address the limits of our transport modeling abilities. Simulations of the idealized tracers the age spectrum, and propagating boundary conditions, and conserved HSCT-like emissions probe the relative roles of different model transport mechanisms, while simulations of SF6 and C02 make the connection to observations. Some of the tracers are related, and transport diagnostics such as the mean age can be derived from more than one of the experiments for comparison to observations. The goals of the transport experiments are: (1) To isolate the effects of transport in models from other processes; (2) To assess model transport for realistic tracers (such as SF6 and C02) for comparison to observations; (3) To use certain idealized tracers to isolate model mechanisms and relationships to atmospheric chemical perturbations; (4) To identify strengths and weaknesses of the treatment of transport processes in the models; (5) To relate evaluated shortcomings to aspects of model formulation. The following section are included:Executive Summary, Introduction, Age Spectrum, Observation, Tropical Transport in Models, Global Mean Age in Models, Source-Transport Covariance, HSCT "ANOY" Tracer Distributions, and Summary and Conclusions.

  1. Faster Heavy Ion Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.

    2013-01-01

    The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z < 2), mesons, and leptons, it is important to maintain overall computational efficiency. In this work, the heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.

  2. Fast quench reactor method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  3. Simplified fast neutron dosimeter

    DOEpatents

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  4. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  5. The fast encryption package

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1988-01-01

    The organization of some tools to help improve passwork security at a UNIX-based site is described along with how to install and use them. These tools and their associated library enable a site to force users to pick reasonably safe passwords (safe being site configurable) and to enable site management to try to crack existing passworks. The library contains various versions of a very fast implementation of the Data Encryption Standard and of the one-way encryption functions used to encryp the password.

  6. Fast neutron nuclear reactor

    SciTech Connect

    Cabrillat, M. Th.; Lions, N.

    1985-01-08

    The invention relates to a fast neutron nuclear reactor of the integrated type comprising a cylindrical inner vessel. The inner vessel comprises two concentric ferrules and the connection between the hot collector defined within this vessel and the inlet port of the exchangers is brought about by a hot structure forming a heat baffle and supported by the inner ferrule and by a cold structure surrounding the hot structure, supported by the outer ferrule and sealingly connected to the exchanger. Application to the generation of electric power in nuclear power stations.

  7. FAST NEUTRONIC REACTOR

    DOEpatents

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  8. Fast quench reactor method

    SciTech Connect

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  9. Fasting and sport: an introduction.

    PubMed

    Maughan, R J

    2010-06-01

    Most humans observe an overnight fast on a daily basis, and the human body copes well with short duration fasting. Periodic fasting is widely practised for cultural, religious or health reasons. Fasting may take many different forms. Prolonged restriction of food and fluid is harmful to health and performance, and it is often automatically assumed that intermittent fasting will lead to decrements in exercise performance. Athletes who choose to fast during training or competitions may therefore be at a disadvantage. The available evidence does not entirely support this view, but there is little or no information on the effects on elite athletes competing in challenging environments. Prolonged periods of training in the fasted state may not allow optimum adaptation of muscles and other tissues. Further research on a wide range of athletes with special nutrition needs is urgently required. In events where performance might be affected, other strategies to eliminate or minimise any effects must be sought.

  10. Fast-Acting Valve

    NASA Technical Reports Server (NTRS)

    Wojciechowski, Bogdan V. (Inventor); Pegg, Robert J. (Inventor)

    2003-01-01

    A fast-acting valve includes an annular valve seat that defines an annular valve orifice between the edges of the annular valve seat, an annular valve plug sized to cover the valve orifice when the valve is closed, and a valve-plug holder for moving the annular valve plug on and off the annular valve seat. The use of an annular orifice reduces the characteristic distance between the edges of the valve seat. Rather than this distance being equal to the diameter of the orifice, as it is for a conventional circular orifice, the characteristic distance equals the distance between the inner and outer radii (for a circular annulus). The reduced characteristic distance greatly reduces the gap required between the annular valve plug and the annular valve seat for the valve to be fully open, thereby greatly reducing the required stroke and corresponding speed and acceleration of the annular valve plug. The use of a valve-plug holder that is under independent control to move the annular valve plug between its open and closed positions is important for achieving controllable fast operation of the valve.

  11. Fast SCR Thyratron Driver

    SciTech Connect

    Nguyen, M.N.; /SLAC

    2007-06-18

    As part of an improvement project on the linear accelerator at SLAC, it was necessary to replace the original thyratron trigger generator, which consisted of two chassis, two vacuum tubes, and a small thyratron. All solid-state, fast rise, and high voltage thyratron drivers, therefore, have been developed and built for the 244 klystron modulators. The rack mounted, single chassis driver employs a unique way to control and generate pulses through the use of an asymmetric SCR, a PFN, a fast pulse transformer, and a saturable reactor. The resulting output pulse is 2 kV peak into 50 {Omega} load with pulse duration of 1.5 {mu}s FWHM at 180 Hz. The pulse risetime is less than 40 ns with less than 1 ns jitter. Various techniques are used to protect the SCR from being damaged by high voltage and current transients due to thyratron breakdowns. The end-of-line clipper (EOLC) detection circuit is also integrated into this chassis to interrupt the modulator triggering in the event a high percentage of line reflections occurred.

  12. Slow and fast light in semiconductors

    NASA Astrophysics Data System (ADS)

    Sedgwick, Forrest Grant

    Slow and fast light are the propagation of optical signals at group velocities below and above the speed of light in a given medium. There has been great interest in the use of nonlinear optics to engineer slow and fast light dispersion for applications in optical communications and radio-frequency or microwave photonics. Early results in this field were primarily confined to dilute atomic systems. While these results were impressive, they had two major barriers to practical application. First, the wavelengths were not compatible with fiber optic telecommunications. More importantly, the bandwidth obtainable in these experiments was inherently low; 100 kHz or less. Within the last five years slow and fast light effects have been observed and engineered in a much wider variety of systems. In this work, we detail our efforts to realize slow and fast light in semiconductor systems. There are three primary advantages of semiconductor systems: fiber-compatible wavelengths, larger bandwidth, and simplification of integration with other optical components. In this work we will explore three different types of physical mechanisms for implementing slow and fast light. The first is electromagnetically induced transparency (EIT). In transporting this process to semiconductors, we initially turn our attention to quantum dots or "artificial atoms". We present simulations of a quantum dot EIT-based device within the context of an optical communications link and we derive results which are generally applicable to a broad class of slow light devices. We then present experimental results realizing EIT in quantum wells by using long-lived electron spin coherence. The second mechanism we will explore is coherent population oscillations (CPO), also known as carrier density pulsations (CDP). We examine for the first time how both slow and fast light may be achieved in a quantum well semiconductor optical amplifier (SOA) while operating in the gain regime. Again, we simulate the device

  13. Mechanisms for fast flow in unsaturated fractured rock

    SciTech Connect

    Tokunaga, Tetsu K.; Wan, Jiamin

    1998-03-01

    Although fractures in rock are well-recognized as pathways for fast percolation of water, the possibility that fast flow could occur along unsaturated fracture pathways is commonly not considered in vadose zone hydrology. In this study, two mechanisms for fast flow along unsaturated fractures were investigated, film flow and surface zone flow. The importance of fracture surface roughness was demonstrated through experiments conducted on ceramic blocks having simple surface topographies. Those experiments showed that film flow on fracture surfaces is largely due to flow along continuous surface channels which become water-filled at near-zero matric (capillary) potentials. The second mechanism, surface zone flow, is important when the permeability of the rock along fractures (fracture skin) is significantly greater than that of the bulk rock matrix. Surface zone fast flow was demonstrated through water imbibition (sorptivity) experiments. These mechanisms help explain observations of rapid solute transport in unsaturated subsurface environments.

  14. Islamic fasting and multiple sclerosis

    PubMed Central

    2014-01-01

    Background Month-long daytime Ramadan fasting pose s major challenges to multiple sclerosis (MS) patients in Muslim countries. Physicians should have practical knowledge on the implications of fasting on MS. We present a summary of database searches (Cochrane Database of Systematic Reviews, PubMed) and a mini-symposium on Ramadan fasting and MS. In this symposium, we aimed to review the effect of fasting on MS and suggest practical guidelines on management. Discussion In general, fasting is possible for most stable patients. Appropriate amendment of drug regimens, careful monitoring of symptoms, as well as providing patients with available evidence on fasting and MS are important parts of management. Evidence from experimental studies suggests that calorie restriction before disease induction reduces inflammation and subsequent demyelination and attenuates disease severity. Fasting does not appear to have unfavorable effects on disease course in patients with mild disability (Expanded Disability Status Scale (EDSS) score ≤3). Most experts believed that during fasting (especially in summer), some MS symptoms (fatigue, fatigue perception, dizziness, spasticity, cognitive problems, weakness, vision, balance, gait) might worsen but return to normal levels during feasting. There was a general consensus that fasting is not safe for patients: on high doses of anti-convulsants, anti-spastics, and corticosteroids; with coagulopathy or active disease; during attacks; with EDSS score ≥7. Summary These data suggest that MS patients should have tailored care. Fasting in MS patients is a challenge that is directly associated with the spiritual belief of the patient. PMID:24655543

  15. Fast Food Jobs. National Study of Fast Food Employment.

    ERIC Educational Resources Information Center

    Charner, Ivan; Fraser, Bryna Shore

    A study examined employment in the fast-food industry. The national survey collected data from employees at 279 fast-food restaurants from seven companies. Female employees outnumbered males by two to one. The ages of those fast-food employees in the survey sample ranged from 14 to 71, with fully 70 percent being in the 16- to 20-year-old age…

  16. Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport.

    PubMed

    Kallem, Parashuram; Eguizabal, Adela; Mallada, Reyes; Pina, Maria Pilar

    2016-12-28

    Polymeric ionic liquids (PILs) have triggered great interest as all solid-state flexible electrolytes because of safety and superior thermal, chemical, and electrochemical stability. It is of great importance to fabricate highly conductive electrolyte membranes capable to operate above 120 °C under anhydrous conditions and in the absence of mineral acids, without sacrificing the mechanical behavior. Herein, the diminished dimensional and mechanical stability of poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide has been improved thanks to its infiltration on a polybenzimidale (PBI) support with specific pore architecture. Our innovative solution is based on the synergic combination of an emerging class of materials and sustainable large-scale manufacturing techniques (UV polymerization and replication by microtransfer-molding). Following this approach, the PIL plays the proton conduction role, and the PBI microsieve (SPBI) mainly provides the mechanical reinforcement. Among the resulting electrolyte membranes, conductivity values above 50 mS·cm(-1) at 200 °C and 10.0 MPa as tensile stress are shown by straight microchannels of poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide cross-linked with 1% of dyvinylbenzene embedded in a PBI microsieve with well-defined porosity (36%) and pore diameter (17 μm).

  17. Microstructure design for fast oxygen conduction

    DOE PAGES

    Aidhy, Dilpuneet S.; Weber, William J.

    2015-11-11

    Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less

  18. Microstructure design for fast oxygen conduction

    SciTech Connect

    Aidhy, Dilpuneet S.; Weber, William J.

    2015-11-11

    Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations are other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.

  19. FAST ACTING CURRENT SWITCH

    DOEpatents

    Batzer, T.H.; Cummings, D.B.; Ryan, J.F.

    1962-05-22

    A high-current, fast-acting switch is designed for utilization as a crowbar switch in a high-current circuit such as used to generate the magnetic confinement field of a plasma-confining and heat device, e.g., Pyrotron. The device particularly comprises a cylindrical housing containing two stationary, cylindrical contacts between which a movable contact is bridged to close the switch. The movable contact is actuated by a differential-pressure, airdriven piston assembly also within the housing. To absorb the acceleration (and the shock imparted to the device by the rapidly driven, movable contact), an adjustable air buffer assembly is provided, integrally connected to the movable contact and piston assembly. Various safety locks and circuit-synchronizing means are also provided to permit proper cooperation of the invention and the high-current circuit in which it is installed. (AEC)

  20. FAST OPENING SWITCH

    DOEpatents

    Bender, M.; Bennett, F.K.; Kuckes, A.F.

    1963-09-17

    A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)

  1. Fast thyratron driver

    SciTech Connect

    Nguyen, M.N.; Cassel, R.L.

    1991-04-01

    A fast solid-state pulse generator used as a thyratron grid driver for kicker pulsers, has been developed and built with power MOSFETs and a transmission line transformer. The MOSFET, pulsed on and off by a pair of P-N channel HEXFETs, switches charged capacitors into the transformer connected in parallel on one end and in series on the other end to step up the voltage. The resulting output pulse parameters are 2 kilovolts peak (into 50 Ohms), 13 nanoseconds risetime (10--90%), 250 nanoseconds duration, and less than 50 picoseconds pulse-to-pulse jitter. Various methods are employed to protect the MOSFETs from thyratron arc back, including the use of TransZorbs and a magnetic diode. 3 refs., 3 figs.

  2. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  3. Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria M.

    2017-01-01

    Fast Radio Bursts (FRBs) are a recently discovered phenomenon consisting of short (few ms) bursts of radio waves that have dispersion measures that strongly suggest an extragalactic and possibly cosmological origin. Current best estimates for the rate of FRBs is several thousand per sky per day at radio frequencies near 1.4 GHz. Even with so high a rate, to date, fewer than 20 FRBs have been reported, with one source showing repeated bursts. In this talk I will describe known FRB properties including what is known about the lone repeating source, as well as models for the origin of these mysterious events. I will also describe the CHIME radio telescope, currently under construction in Canada. Thanks to its great sensitivity and unprecedented field-of-view, CHIME promises major progress on FRBs.

  4. Quantum Transport.

    DTIC Science & Technology

    1994-08-15

    Notre Dame was concerned with a variety of quantum transport in mesoscopic structures. This research was funded by the Air Force Office of Scientific...Research under Grant No. AFOSR-91-0211. The major issues examined included quantum transport in high magnetic fields and modulated channels, Coulomb...lifetimes in quasi-1D structures, quantum transport experiments in metals, the mesoscopic photovoltaic effect, and new techniques for fabricating quantum structures in semiconductors.

  5. An Investigation of Fast Ion Transport in Solids Using Conductivity and N.M.R. (Fast Ion Transport in Solids).

    DTIC Science & Technology

    1980-10-15

    A crystal grown from one batch of Rare Earth Products material. 3. A crystal grown from the same material as 2 plus 1000 p.p.m. SrF2 (Harshaw crystal...III. 2 C. Sr 2+ doped LaF3 Crystal 3 was doped with 1000 p.p.m. SrF2 and the conductivity plot is shown in Figures 8 and 12. As might have been... SRF2 -S2 - 111.2 D. Th4 doped LaF3 Crystal 4 was doped with 1000 p.p.m. ThF4 and the conductivity plot is shown in Figure 8 and 13. The conductivity

  6. School Transportation.

    ERIC Educational Resources Information Center

    Executive Educator, 1989

    1989-01-01

    A special report on school transportation covers the following topics: (1) a school bus safety update; (2) equipping school buses with motion detectors; (3) state training requirements for school bus drivers; (4) recruiting and retaining drivers; (5) regulations covering underground fuel-storage tanks; and (6) a transportation directory. (MLF)

  7. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  8. Fast word reading in pure alexia: "fast, yet serial".

    PubMed

    Bormann, Tobias; Wolfer, Sascha; Hachmann, Wibke; Neubauer, Claudia; Konieczny, Lars

    2015-01-01

    Pure alexia is a severe impairment of word reading in which individuals process letters serially with a pronounced length effect. Yet, there is considerable variation in the performance of alexic readers with generally very slow, but also occasionally fast responses, an observation addressed rarely in previous reports. It has been suggested that "fast" responses in pure alexia reflect residual parallel letter processing or that they may even be subserved by an independent reading system. Four experiments assessed fast and slow reading in a participant (DN) with pure alexia. Two behavioral experiments investigated frequency, neighborhood, and length effects in forced fast reading. Two further experiments measured eye movements when DN was forced to read quickly, or could respond faster because words were easier to process. Taken together, there was little support for the proposal that "qualitatively different" mechanisms or reading strategies underlie both types of responses in DN. Instead, fast responses are argued to be generated by the same serial-reading strategy.

  9. Integrated simulation approach for laser-driven fast ignition.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-01-01

    An integrated simulation approach fully based on the particle-in-cell (PIC) model is proposed, which involves both fast-particle generation via laser solid-density plasma interaction and transport and energy deposition of the particles in extremely high-density plasma. It is realized by introducing two independent systems in a simulation, where the fast-particle generation is simulated by a full PIC system and the transport and energy deposition computed by a second PIC system with a reduced field solver. Data of the fast particles generated in the full PIC system are copied to the reduced PIC system in real time as the fast-particle source. Unlike a two-region approach, which takes a single PIC system and two field solvers in two plasma density regions, respectively, the present one need not match the field solvers since the reduced field solver and the full solver adopted respectively in the two systems are independent. A simulation case is presented, which demonstrates that this approach can be applied to integrated simulation of fast ignition with real target densities, e.g., 300 g/cm(3).

  10. IPv6 transport experiment using the GMPLS-controlled network of JGN II

    NASA Astrophysics Data System (ADS)

    Okamoto, S.; Otani, T.

    2005-11-01

    IPv6 transport over the GMPLS-controlled optical network of JGN II was experimentally investigated, and four FastEthernet IPv6 streams were successfully transported with OSPFv3 routing information exchange.

  11. Fast pitch softball injuries.

    PubMed

    Meyers, M C; Brown, B R; Bloom, J A

    2001-01-01

    The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision

  12. Fast dual tomography

    NASA Astrophysics Data System (ADS)

    Carrion, Philip M.

    1990-09-01

    This paper can be considered as a continuation of the work by Carrion and Carneiro (1989), where a generalized approach to linearized inversion of geophysical data was developed. Their method allows one to incorporate virtually any constraints in the inversion and reformulate the problem in the dual space of Langrangian multipliers (see also Carrion, 1989a). The constrained tomography makes traveltime inversion robust: it automatically rejects “bad data” which correspond to solutions beyond the chosen constraints and allows one to start inversion with an arbitrary chosen initial model.In this paper, I will derive basic formulas for constrained tomographic imaging that can be used in such areas of geophysics as global mapping of the earth interior, exploration geophysics, etc. The method is fast: an example that will be shown in the paper took only 6 min. of VAX CPU time. Had the conventional least-squares matrix inversion been used it would have taken more than 10 hours of the CPU time to solve the same problem.

  13. Fast foldable tent domes

    NASA Astrophysics Data System (ADS)

    Jägers, Aswin P. L.; Sliepen, Guus; Bettonvil, Felix C. M.; Hammerschlag, Robert H.

    2008-07-01

    In the near future ELTs (Extreme Large Telescopes) will be built. Preferably these telescopes should operate without obstructions in the near surrounding to reach optimal seeing conditions and avoid large turbulences with wind-gust accelerations around large obstacles. This applies also to future large solar telescopes. At present two foldable dome prototypes have been built on the Canary Islands: the Dutch Open Telescope (DOT, La Palma) and the GREGOR Telescope (Tenerife), having a diameter of 7 and 9 meter, respectively. The domes are usually fully retracted during observations. The research consists of measurements on the two domes. New camera systems are developed and placed inside the domes for precise dome deformation measurements within 0.1 mm over the whole dome size. Simultaneously, a variety of wind-speed and -direction sensors measure the wind field around the dome. In addition, fast sensitive air-pressure sensors placed on the supporting bows measure the wind pressure. The aim is to predict accurately the expected forces and deformations on up-scaled, fully retractable domes to make their construction more economically. The dimensions of 7 and 9 meter are large enough for realistic on-site tests in gusty wind and will give much more information than wind tunnel experiments.

  14. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  15. Fast Feedback in Classroom Practice

    ERIC Educational Resources Information Center

    Emmett, Katrina; Klaassen, Kees; Eijkelhof, Harrie

    2009-01-01

    In this article we describe one application of the fast feedback method (see Berg 2003 "Aust. Sci. Teach. J." 28-34) in secondary mechanics education. Two teachers tried out a particular sequence twice, in consecutive years, once with and once without the use of fast feedback. We found the method to be successful, and the data that we obtained…

  16. Glycemic management during Jain fasts

    PubMed Central

    Julka, Sandeep; Sachan, Alok; Bajaj, Sarita; Sahay, Rakesh; Chawla, Rajeev; Agrawal, Navneet; Saboo, Banshi; Unnikrishnan, A. G.; Baruah, Manash P.; Parmar, Girish; Kalra, Sanjay

    2017-01-01

    This review describes the various fasts observed by adherents of the Jain religion. It attempts to classify them according to their suitability for people with diabetes and suggests appropriate regime and dose modification for those observing these fasts. The review is an endeavor to encourage rational and evidence-based management in this field of diabetology. PMID:28217525

  17. Radar system components to detect small and fast objects

    NASA Astrophysics Data System (ADS)

    Hülsmann, Axel; Zech, Christian; Klenner, Mathias; Tessmann, Axel; Leuther, Arnulf; Lopez-Diaz, Daniel; Schlechtweg, Michael; Ambacher, Oliver

    2015-05-01

    Small and fast objects, for example bullets of caliber 5 to 10 mm, fired from guns like AK-47, can cause serious problems to aircrafts in asymmetric warfare. Especially slow and big aircrafts, like heavy transport helicopters are an easy mark of small caliber hand fire weapons. These aircrafts produce so much noise, that the crew is not able to recognize an attack unless serious problems occur and important systems of the aircraft fail. This is just one of many scenarios, where the detection of fast and small objects is desirable. Another scenario is the collision of space debris particles with satellites.

  18. Fast Ignition Experimental and Theoretical Studies

    SciTech Connect

    Akli, Kramer Ugerthen

    2006-01-01

    We are becoming dependent on energy more today than we were a century ago, and with increasing world population and booming economies, sooner or later our energy sources will be exhausted. Moreover, our economy and welfare strongly depends on foreign oil and in the shadow of political uncertainties, there is an urgent need for a reliable, safe, and cheap energy source. Thermonuclear fusion, if achieved, is that source of energy which not only will satisfy our demand for today but also for centuries to come. Today, there are two major approaches to achieve fusion: magnetic confinement fusion (MFE) and inertial confinement fusion (ICF). This dissertation explores the inertial confinement fusion using the fast ignition concept. Unlike the conventional approach where the same laser is used for compression and ignition, in fast ignition separate laser beams are used. This dissertation addresses three very important topics to fast ignition inertial confinement fusion. These are laser-to-electron coupling efficiency, laser-generated electron beam transport, and the associated isochoric heating. First, an integrated fast ignition experiment is carried out with 0.9 kJ of energy in the compression beam and 70 J in the ignition beam. Measurements of absolute Kα yield from the imploded core revealed that about 17% of the laser energy is coupled to the suprathermal electrons. Modeling of the transport of these electrons and the associated isochoric heating, with the previously determined laser-to-electron conversion efficiency, showed a maximum target temperature of 166 eV at the front where the electron flux is higher and the density is lower. The contribution of the potential, induced by charge separation, in opposing the motion of the electrons was moderate. Second, temperature sensitivity of Cu Kα imaging efficiency using a spherical Bragg reflecting crystal is investigated. It was found that due to the shifting and broadening of the K

  19. Anomalous flattening of the fast-ion profile during Alfvén-Eigenmode activity.

    PubMed

    Heidbrink, W W; Gorelenkov, N N; Luo, Y; Van Zeeland, M A; White, R B; Austin, M E; Burrell, K H; Kramer, G J; Makowski, M A; McKee, G R; Nazikian, R

    2007-12-14

    Neutral-beam injection into plasmas with negative central shear produces a rich spectrum of toroidicity-induced and reversed-shear Alfvén eigenmodes in the DIII-D tokamak. The first application of fast-ion D_{alpha} (FIDA) spectroscopy to Alfvén-eigenmode physics shows that the central fast-ion profile is anomalously flat in the inner half of the discharge. Neutron and equilibrium measurements corroborate the FIDA data. The current density driven by fast ions is also strongly modified. Calculations based on the measured mode amplitudes do not explain the observed fast-ion transport.

  20. Optimal shortcuts for atomic transport in anharmonic traps

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Muga, J. G.; Guéry-Odelin, D.; Chen, Xi

    2016-06-01

    We design fast trap trajectories to transport cold atoms in anharmonic traps, combining invariant-based inverse engineering, perturbation theory, and optimal control theory. Among the ideal trajectories for harmonic traps, we choose the ones that minimize the anharmonic energy.

  1. VIM2/13. Continuous Energy MC Neutron Transport

    SciTech Connect

    Blomquist, R.N.

    1984-04-01

    VIM solves the three-dimensional steady-state multiplication eigenvalue or fixed source neutron transport problem using continuous energy-dependent nuclear data. It was designed for the analysis of fast critical experiments.

  2. An enhanced fast scanning algorithm for image segmentation

    NASA Astrophysics Data System (ADS)

    Ismael, Ahmed Naser; Yusof, Yuhanis binti

    2015-12-01

    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.

  3. Transport Phenomena.

    ERIC Educational Resources Information Center

    Shah, D. B.

    1984-01-01

    Describes a course designed to achieve a balance between exposing students to (1) advanced topics in transport phenomena, pointing out similarities and differences between three transfer processes and (2) common methods of solving differential equations. (JN)

  4. Transportation of medical isotopes

    SciTech Connect

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  5. Long Range Fast Tool Servo

    DTIC Science & Technology

    1993-05-31

    AD-A271 614 r, FINAL REPORT w to I OFFICE OF NAVAL RESEARCH [I on * LONG RANGE FAST TOOL SERVO I ONR CONTRACT NO. N00014-92-J-4082-PII Covering the...n I I 1 INTRODUCTION The PEC’s MAC 100 Fast Tool Servo (FTS) System has demonstrated the efficacy of fabricating off-axis parabolic segments on axis...by utilizing a fast tool motion to machine non-rotationally symmetric surfaces [1]. The key to this technique was a servo for the tool motion that had

  6. Fast critical experiment data for space reactors

    SciTech Connect

    Collins, P.J.; McFarlane, H.F.; Olsen, D.N.; Atkinson, C.A.; Ross, J.R.

    1987-01-01

    Data from a number of previous critical experiments exist that are relevant to the design concepts being considered for SP-100 and MMW space reactors. Although substantial improvements in experiment techniques have since made some of the measured quantities somewhat suspect, the basic criticality data are still useful in most cases. However, the old experiments require recalculation with modern computational methods and nuclear cross section data before they can be applied to today's designs. Recently, we have calculated about 20 fast benchmark critical experiments with the latest ENDF/B data and modern transport codes. These calculations were undertaken as a part of the planning process for a new series of benchmark experiments aimed at supporting preliminary designs of SP-100 and MMW space reactors.

  7. Gas-Fast Reactor Fuel Fabrication

    SciTech Connect

    Randall Fielding; Mitchell Meyer; Ramprashad Prabhakaran; Jim Miller; Sean McDeavitt

    2005-11-01

    The gas-cooled fast reactor is a high temperature helium cooled Generation IV reactor concept. Operating parameters for this type of reactor are well beyond those of current fuels so a novel fuel must be developed. One fuel concept calls for UC particles dispersed throughout a SiC matrix. This study examines a hybrid reaction bonding process as a possible fabrication route for this fuel. Processing parameters are also optimized. The process combines carbon and SiC powders and a carbon yielding polymer. In order to obtain dense reaction bonded SiC samples the porosity to carbon ratio in the preform must be large enough to accommodate SiC formation from the carbon present in the sample, however too much porosity reduces mechanical integrity which leads to poor infiltration properties . The porosity must also be of a suitable size to allow silicon transport throughout the sample but keep residual silicon to a minimum.

  8. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  9. FastStats: Contraceptive Use

    MedlinePlus

    ... Inflicted Injury Life Stages and Populations Age Groups Adolescent Health Child Health Infant Health Older Persons' Health ... Contraceptive Use Infertility Reproductive Health Notice Regarding FastStats Mobile Application Get Email Updates To receive email updates ...

  10. FastStats: Sinus Conditions

    MedlinePlus

    ... please visit this page: About CDC.gov . FastStats Homepage Diseases and Conditions Anemia or Iron Deficiency Arthritis ... Statistics Tables for U.S. Adults: National Health Interview Survey, 2014, Table A-2 [PDF - 219 KB] Physician ...

  11. Diagnostics for fast ignition science (invited)

    SciTech Connect

    MacPhee, A. G.; Chen, C. D.; Chen, H.; Hey, D. S.; Kemp, A. J.; Key, M. H.; Le Pape, S.; Patel, P. K.; Phillips, T. W.; Town, R.; Mackinnon, A. J.; Akli, K. U.; Stephens, R. B.; Beg, F. N.; King, J. A.; Ma, T. Y.; Wei, M. S.; Clarke, R.; Freeman, R. R.; Link, A.

    2008-10-15

    The ignition concept for electron fast ignition inertial confinement fusion requires sufficient energy be transferred from an {approx}20 ps laser pulse to the compressed fuel via approximately MeV electrons. We have assembled a suite of diagnostics to characterize such transfer, simultaneously fielding absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256 eV; spherically bent crystal imagers at 4.5 and 8 keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung, electron and proton spectrometers (along the same line of sight), and a picosecond optical probe interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following the laser-plasma interactions at extremely high intensities in both planar and conical targets. Together with accurate on-shot laser focal spot and prepulse characterization, these measurements are yielding new insights into energy coupling and are providing critical data for validating numerical particle-in-cell (PIC) and hybrid PIC simulation codes in an area crucial for fast ignition and other applications. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultrahigh intensity laser-plasma interactions are discussed.

  12. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  13. Fast Food: Tips for Choosing Healthier Options

    MedlinePlus

    ... make wise meal choices when going to a fast-food restaurant. By Mayo Clinic Staff Does following ... or healthy diet mean you must swear off fast food? Not necessarily. An occasional stop for fast ...

  14. Fasting in paediatric ambulatory surgery.

    PubMed

    Klemetti, Seija; Suominen, Tarja

    2008-02-01

    The purpose of this descriptive study was to examine how preoperative fasting and postoperative termination of the fast was experienced in ambulatory surgery by child patients and their mothers. The target group consisted of children (n = 12, age 2-10 years) who had undergone tonsillectomy/adenoidectomy, and their mothers. In the interviews, the mothers were asked to describe the problems connected with their child's preoperative fast and postoperative termination of the fast, as well as the things that went well in the process. Content analysis was carried out inductively. Preoperatively, the children were thirsty and anxious, but understood the fasting situation well. In some cases, there were conflicts between the child and his/her parent if fasting was prolonged. Parents also had doubts about their ability to implement the child's fast. Postoperatively, children had pains in their throats and stomachs, suffered from nausea, and had difficulty taking in nutrition and medication. Parents had worries about their child's home care, such as food intake and administration of pain medication. The possibility of postoperative bleeding and exacerbation of the child's condition was also worrying for the parents. The most evident result of the study was that parents need more information before their child's operation. Preparing the child for the operation by giving him/her nutrition as long as permitted enhances postoperative recovery and improves parents' control over the ambulatory surgical experience. Nurses should take a more active part in children's perioperative fasting and preoperative preparation of children and their parents. In further research, experimental studies should be designed in order to receive more evidence-based information for clinical practice.

  15. Dynamic Transportation Navigation

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  16. Fast-Tracking Colostomy Closures.

    PubMed

    Nanavati, Aditya J; Prabhakar, Subramaniam

    2015-12-01

    There have been very few studies on applying fast-track principles to colostomy closures. We believe that outcome may be significantly improved with multimodal interventions in the peri-operative care of patients undergoing this procedure. A retrospective study was carried out comparing patients who had undergone colostomy closures by the fast-track and traditional care protocols at our centre. We intended to analyse peri-operative period and recovery in colostomy closures to confirm that fast-track surgery principles improved outcomes. Twenty-six patients in the fast-track arm and 24 patients in the traditional care arm had undergone colostomy closures. Both groups were comparable in terms of their baseline parameters. Patients in the fast-track group were ambulatory and accepted oral feeding earlier. There was a significant reduction in the duration of stay (4.73 ± 1.43 days vs. 7.21 ± 1.38 days, p = 0.0000). We did not observe a rise in complications or 30-day re-admissions. Fast-track surgery can safely be applied to colostomy closures. It shows earlier ambulation and reduction in length of hospital stay.

  17. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    SciTech Connect

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H. )

    1990-12-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.

  18. Air transport

    NASA Technical Reports Server (NTRS)

    Page, F Handley

    1924-01-01

    I purpose (sic) in this paper to deal with the development in air transport which has taken place since civil aviation between England and the Continent first started at the end of August 1919. A great deal of attention has been paid in the press to air services of the future, to the detriment of the consideration of results obtained up to the present.

  19. Pupil Transportation.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents the opinions of four transportation experts on issues related to school buses. The experts respond to the following questions: will advertisements placed on buses be used to generate district revenue; will compressed natural gas or liquefied natural gas become standard fuel for school buses; and will school bus seat belts be mandatory and…

  20. Anomalous transport

    NASA Astrophysics Data System (ADS)

    Cheverry, Christophe

    2017-02-01

    This article is concerned with the relativistic Vlasov equation, for collisionless axisymmetric plasmas immersed in a strong magnetic field, like in tokamaks. It provides a consistent kinetic treatment of the microscopic particle phase-space dynamics. It shows that the turbulent transport can be completely described through WKB expansions.

  1. Fast molecular shocks. II - Emission from fast dissociative shocks

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Dalgarno, A.

    1989-01-01

    The line radiations emitted in the cooling gas behind a fast dissociative shock are studied. The intensities emitted in high rotational transitions of the neutral molecules CO, SiO, HCN, CN, NO, and SO are estimated, as well as in rovibrational transitions of the molecular ions HeH(+) and OH(+) in radio recombination lines of atomic hydrogen and in fine-structure transitions of C, C(+), O, and Si(+). The predictions are compared with the observed intensities of line emission from the Orion-KL region. For Orion-KL the observations do not exclude, but probably do not require, the presence of a fast dissociative shock. Emission from SiO in high-J rotational states and from vibrationally excited OH(+), HeH(+), HeH(+), and SO(+) may be detectable from dissociative shocks under suitable conditions of preshock density and shock velocity; such emission may prove to be a useful diagnostic probe of fast shock activity.

  2. [Diabetic patients in the Yom Kippur fast--who can fast and how to treat the fasting patients].

    PubMed

    Katz, Yisrael; Zangen, David; Leibowitz, Gil; Szalalt, Auryan

    2009-09-01

    Jews all over the world fast on Yom Kippur, a fast lasting 25 hours. For diabetic patients and their physicians the fast is a significant challenge. The Jewish law exempts patients from fasting if the fast endangers the patient's health. In order to know if they can fast safely, many diabetic patients consult their physicians. In this review, the authors summarize the potential risk for fasting in diabetic patients and propose treatment protocols for patients who intend to fast. The principle recommendations are based on data related to fasting diabetic patients during the Ramadan fast, which is shorter than Yom Kippur. Furthermore, practical suggestions are based on a recent Israeli study on type 1 diabetic patients fasting for 25 hours, taking into account the Jewish law. Every diabetic patient who intends to fast should consult his physician for assurance that fasting is safe. The physician should pay special attention to patients on intensive insulin treatment or on sulfonylureas. Some, but not all these patients, should avoid fasting. In case these patients decide to fast, intensive monitoring of blood glucose is required during the fast to prevent severe hypoglycemia.

  3. Studies of thunderstorm transport processes with aircraft using tracer techniques

    SciTech Connect

    Detwiler, A.G.; Smith, P.L.; Stith, J.L.

    1996-10-01

    Instrumented aircraft can provide in situ measurements of winds and turbulence useful for studying transport and dispersion in clouds. Using inert artificial gases as tracers, and fast response analyzers on aircraft, time-resolved observations of transport and dispersion have been obtained. Examples are shown of these types of observations in and around cumulus and cumulonimbus clouds. 23 refs., 6 figs.

  4. Analysis of colloid transport

    SciTech Connect

    Travis, B.J.; Nuttall, H.E.

    1985-12-31

    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab.

  5. HI Intensity Mapping with FAST

    NASA Astrophysics Data System (ADS)

    Bigot-Sazy, M.-A.; Ma, Y.-Z.; Battye, R. A.; Browne, I. W. A.; Chen, T.; Dickinson, C.; Harper, S.; Maffei, B.; Olivari, L. C.; Wilkinsondagger, P. N.

    2016-02-01

    We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST 19-beam L-band receivers (1.05-1.45 GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters (w0,wa) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is 6000 deg2. However, observing with larger frequency coverage at higher redshift (0.95-1.35 GHz) improves the projected errorbars on the HI power spectrum by more than 2 σ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.

  6. Future Assets, Student Talent (FAST)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Future Assets, Student Talent (FAST) motivates and prepares talented students with disabilities to further their education and achieve High Tech and professional employment. The FAST program is managed by local professionals, business, and industry leaders; it is modeled after High School High Tech project TAKE CHARGE started in Los Angeles in 1983. Through cooperative efforts of Alabama Department of Education, Vocational Rehabilitation, Adult and Children Services, and the President's Committee on Employment of People with Disabilities, north central Alabama was chosen as the second site for a High School High Tech project. In 1986 local business, industry, education, government agencies, and rehabilitation representatives started FAST. The program objectives and goals, results and accomplishments, and survey results are included.

  7. Fast reactors and nuclear nonproliferation

    SciTech Connect

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  8. Fast Setting Cement - Literature Survey

    DTIC Science & Technology

    1973-01-01

    materials does produce early set times and high strengths . It is re- ported, also, that the addition of 1.5 percent Ca"l 2 to clinkers contain- Ing more than...produce high strength concrete. They include addition of iron asggregate, physical treatment of clinker , ’ addition of highly reactive SiO2 or Ca0, and...Fast-Fix. The Western Co. has developed materials designated as Fast-Fix with rapid setting and high strength properties. Published data show i .1

  9. [Preoperative fasting guidelines: an update].

    PubMed

    López Muñoz, A C; Busto Aguirreurreta, N; Tomás Braulio, J

    2015-03-01

    Anesthesiology societies have issued various guidelines on preoperative fasting since 1990, not only to decrease the incidence of lung aspiration and anesthetic morbidity, but also to increase patient comfort prior to anesthesia. Some of these societies have been updating their guidelines, as such that, since 2010, we now have 2 evidence-based preoperative fasting guidelines available. In this article, an attempt is made to review these updated guidelines, as well as the current instructions for more controversial patients such as infants, the obese, and a particular type of ophthalmic surgery.

  10. Copper transport.

    PubMed

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  12. Fasting-induced changes in ECL cell gene expression.

    PubMed

    Lambrecht, Nils W G; Yakubov, Iskandar; Sachs, George

    2007-10-22

    Gastric enterochromaffin-like (ECL) cells release histamine in response to food because of elevation of gastrin and neural release of pituitary adenylate cyclase-activating peptide (PACAP). Acid secretion is at a basal level in the absence of food but is rapidly stimulated with feeding. Rats fasted for 24 h showed a significant decrease of mucosal histamine despite steady-state expression of the histamine-synthesizing enzyme histidine decarboxylase (HDC). Comparative transcriptomal analysis using gene expression oligonucleotide microarrays of 95% pure ECL cells from fed and 24-h fasted rats, thereby eliminating mRNA contamination from other gastric mucosal cell types, identified significantly increased gene expression of the enzymes histidase and urocanase catabolizing the HDC substrate L-histidine but significantly decreased expression of the cellular L-histidine uptake transporter SN2 and of the vesicular monoamine transporter 2 (VMAT-2) responsible for histamine uptake into secretory vesicles. This was confirmed by reverse transcriptase-quantitative polymerase chain reaction of gastric fundic mucosal samples from fed and 24-h fasted rats. The decrease of VMAT-2 gene expression was also shown by a decrease in VMAT-2 protein content in protein extracts from fed and 24-h fasted rats compared with equal amounts of HDC protein and Na-K-ATPase alpha(1)-subunit protein content. These results indicate that rat gastric ECL cells regulate their histamine content during 24-h fasting not by a change in HDC gene or protein expression but by regulation of substrate concentration for HDC and a decreased histamine secretory pool.

  13. Kinetic transport simulation of energetic particles

    NASA Astrophysics Data System (ADS)

    Sheng, He; Waltz, R. E.

    2016-05-01

    A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.

  14. Overview of TFTR transport studies

    SciTech Connect

    Hawryluk, R.J.; Arunasalam, V.; Beer, M.; Bell, M.; Bell, R.; Biglari, H.; Bitter, M.; Boivin, R.; Bretz, N.L.; Budny, R.; Cheng, C.Z.; Chu, T.K.; Cohen, S.A.; Cowley, S.; Efthimion, P.C.; Fredrickson, E.; Furth, H.P.; Goldston, R.J.; Greene, G.; Grek, B.; Grisham, L.R.; Hammett, G.; Hill, K.W.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Janos, A.; Jassby, D.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kieras-Phillips, C.; Kilpatrick, S

    1991-10-01

    A review of TFTR plasma transport studies is presented. Parallel transport and the confinement of suprathermal ions are found to be relatively well described by theory. Cross-field transport of the thermal plasma, however, is anomalous with the momentum diffusivity being comparable to the ion thermal diffusivity and larger than the electron thermal diffusivity in neutral beam heated discharges. Perturbative experiments have studied non-linear dependencies in the transport coefficients and examined the role of possible non-local phenomena. The underlying turbulence has been studied using microwave scattering, beam emission spectroscopy and microwave reflectometry over a much broader range in k{perpendicular} than previously possible. Results indicate the existence of large-wavelength fluctuations correlated with enhanced transport. MHD instabilities set important operational constraints. However, by modifying the current profile using current ramp-down techniques, it has been possible to extend the operating regime to higher values of both {var epsilon}{beta}{sub p} and normalized {beta}{sub T}. In addition, the interaction of MHD fluctuations with fast ions, of potential relevance to {alpha}-particle confinement in D-T plasmas, has been investigated. The installation of carbon-carbon composite tiles and improvements in wall conditioning, in particular the use of Li pellet injection to reduce the carbon recycling, continue to be important in the improvement of plasma performance. 96 refs., 16 figs.

  15. Fast, Massively Parallel Data Processors

    NASA Technical Reports Server (NTRS)

    Heaton, Robert A.; Blevins, Donald W.; Davis, ED

    1994-01-01

    Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.

  16. Fast excitation variable period wiggler

    SciTech Connect

    van Steenbergen, A.; Gallardo, J.; Romano, T.; Woodle, M.

    1991-01-01

    The design of an easily stackable, variable period length, fast excitation driven wiggler, making use of geometrically alternating substacks of Vanadium Permandur ferromagnetic laminations, interspaced with conductive, non magnetic, laminations which act as eddy current induced field reflectors,'' is discussed and experimental results obtained with short wiggler models are presented.

  17. Fast excitation variable period wiggler

    SciTech Connect

    van Steenbergen, A.; Gallardo, J.; Romano, T.; Woodle, M.

    1991-12-31

    The design of an easily stackable, variable period length, fast excitation driven wiggler, making use of geometrically alternating substacks of Vanadium Permandur ferromagnetic laminations, interspaced with conductive, non magnetic, laminations which act as eddy current induced ``field reflectors,`` is discussed and experimental results obtained with short wiggler models are presented.

  18. Fast Atom Bombardment Mass Spectrometry.

    ERIC Educational Resources Information Center

    Rinehart, Kenneth L., Jr.

    1982-01-01

    Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)

  19. Fast-response cloud chamber

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1977-01-01

    Wall structure keeps chambers at constant, uniform temperature, yet allows them to be cooled rapidly if necessary. Wall structure, used in fast-response cloud chamber, has surface heater and coolant shell separated by foam insulation. It is lightweight and requires relatively little power.

  20. Maintenance of skeletal muscle energy homeostasis during prolonged wintertime fasting in the raccoon dog (Nyctereutes procyonoides).

    PubMed

    Kinnunen, Sanni; Mänttäri, Satu; Herzig, Karl-Heinz; Nieminen, Petteri; Mustonen, Anne-Mari; Saarela, Seppo

    2015-05-01

    The raccoon dog (Nyctereutes procyonoides) is a canid species with autumnal fattening and prolonged wintertime fasting. Nonpathological body weight cycling and the ability to tolerate food deficiency make this species a unique subject for studying physiological mechanisms in energy metabolism. AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating energy homeostasis. During acute fasting, AMPK promotes fatty acid oxidation and enhances glucose uptake. We evaluated the effects of prolonged fasting on muscle energy metabolism in farm-bred raccoon dogs. Total and phosphorylated AMPK and acetyl-CoA carboxylase (ACC), glucose transporter 4 (GLUT 4), insulin receptor and protein kinase B (Akt) protein expressions of hind limb muscles were determined by Western blot after 10 weeks of fasting. Plasma insulin, leptin, ghrelin, glucose and free fatty acid levels were measured, and muscle myosin heavy chain (MHC) isoform composition analyzed. Fasting had no effects on AMPK phosphorylation, but total AMPK expression decreased in m. rectus femoris, m. tibialis anterior and m. extensor digitorum longus resulting in a higher phosphorylation ratio. Decreased total expression was also observed for ACC. Fasting did not influence GLUT 4, insulin receptor or Akt expression, but Akt phosphorylation was lower in m. flexor digitorum superficialis and m. extensor digitorum longus. Three MHC isoforms (I, IIa and IIx) were detected without differences in composition between the fasted and control animals. The studied muscles were resistant to prolonged fasting indicating that raccoon dogs have an effective molecular regulatory system for preserving skeletal muscle function during wintertime immobility and fasting.

  1. Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements

    NASA Astrophysics Data System (ADS)

    Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.

    2017-04-01

    High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.

  2. Fast electron beam measurements from relativistically intense, frequency-doubled laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Scott, R. H. H.; Pérez, F.; Streeter, M. J. V.; Clark, E. L.; Davies, J. R.; Schlenvoigt, H.-P.; Santos, J. J.; Hulin, S.; Lancaster, K. L.; Dorchies, F.; Fourment, C.; Vauzour, B.; Soloviev, A. A.; Baton, S. D.; Rose, S. J.; Norreys, P. A.

    2013-09-01

    Experimental measurements of the fast electron beam created by the interaction of relativistically intense, frequency-doubled laser light with planar solid targets and its subsequent transport within the target are presented and compared with those of a similar experiment using the laser fundamental frequency. Using frequency-doubled laser light, the fast electron source size is significantly reduced, while evidence suggests the divergence angle may be reduced. Pyrometric measurements of the target rear surface temperature and the Cu Kα imager data indicate the laser to fast electron absorption fraction is reduced using frequency doubled laser light. Bremsstrahlung measurements indicate the fast electron temperature is 125 keV, while the laser energy absorbed into forward-going fast electrons was found to be 16 ± 4% for frequency doubled light at a mean laser intensity of 5 ± 3 × 1018 W cm-2.

  3. Linear induction accelerator requirements for ion fast ignition

    SciTech Connect

    Logan, G.

    1998-01-26

    induction linacs, the purpose of this memo is to explore possible new features and characteristic parameters that induction linacs would need to meet the stringent requirements for beam quality and compression (sufficiently low longitudinal and transverse thermal spread) for ion driven fast ignition. Separately, Ed Lee at LBNL is looking at heavy-ion synchrotrons to meet similar fast ignition requirements. Parameters relating to cost (e.g, total beam-line length and transport quads, total core volt-seconds and power switching) have to be considered in addition to meeting the challenging beam quality requirements for fast ignition compared to conventional HIF. The aim of this preliminary study is to motivate, after critical debate, taking a next step to do more detailed designs, particle simulations, and experimental tests of the most critical accelerator elements and focusing optics, to further assess the feasibility of ion-driven fast ignition.

  4. Fast-reactor-data testing of ENDF/B-V at ORNL

    SciTech Connect

    Wright, R.Q.; Ford, W.E. III; Lucius, J.L.; Webster, C.C.; Marable, J.H.

    1982-01-01

    The Cross Section Evaluation Working Group (CSEWG) is coordinating a program to assess the adequacy of ENDF/B-V cross sections for both fast- and thermal-reactor design applications. A secondary goal is to evaluate cross-section processing codes, cross-section libraries, and radiation-transport codes. Fast reactor data testing (FRDT) goals are accomplished, in part, by comparison of calculated results with documented performance parameters of CSEWG fast reactor benchmarks and with results obtained by other data testers. The purpose of this paper is to describe the results of FRDT at Oak Ridge National Laboratory (ORNL).

  5. Two-dimensional fast marching for geometrical optics.

    PubMed

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore

    2014-11-03

    We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.

  6. FAST Redress Act of 2009

    THOMAS, 111th Congress

    Rep. Clarke, Yvette D. [D-NY-11

    2009-01-15

    02/04/2009 Received in the Senate and Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  7. Direct Energy Conversion for Fast Reactors

    SciTech Connect

    Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

    2000-07-01

    Strategic Computing Initiative (ASCI), should improve the speed and decrease the cost of developing new TEGs. The system concept to be evaluated is shown in Figure 1. Liquid metal is used to transport heat away from the nuclear heat source and to the TEG. Air or liquid (water or a liquid metal) is used to transport heat away from the cold side of the TEG. Typical reactor coolants include sodium or eutectic mixtures of lead-bismuth. These are coolants that have been used to cool fast neutron reactors. Heat from the liquid metal coolant is rejected through the thermal electric materials, thereby producing electrical power directly. The temperature gradient could extend from as high as 1300 K to 300 K, although fast reactor structural materials (including those used to clad the fuel) currently used limit the high temperature to about 825K.

  8. Proton Transport

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  9. Nondiffusive plasma transport at tokamak edge

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.

    2000-10-01

    Recent findings show that cross field edge plasma transport at tokamak edge does not necessarily obey a simple diffusive law [1], the only type of a transport model applied so far in the macroscopic modeling of edge plasma transport. Cross field edge transport is more likely due to plasma filamentation with a ballistic motion of the filaments towards the first wall. Moreover, it so fast that plasma recycles on the main chamber first wall rather than to flow into divertor as conventional picture of edge plasma fluxes suggests. Crudely speaking particle recycling wise diverted tokamak operates in a limiter regime due to fast anomalous non-diffusive cross field plasma transport. Obviously that this newly found feature of edge plasma anomalous transport can significantly alter a design of any future reactor relevant tokamaks. Here we present a simple model describing the motion of the filaments in the scrape off layer and discuss it implications for experimental observations. [1] M. Umansky, S. I. Krasheninnikov, B. LaBombard, B. Lipschultz, and J. L. Terry, Phys. Plasmas 6 (1999) 2791; M. Umansky, S. I. Krasheninnikov, B. LaBombard and J. L. Terry, Phys. Plasmas 5 (1998) 3373.

  10. Fast ignition integrated experiments and high-gain point design

    SciTech Connect

    Shiraga, H.; Nagatomo, H.; Theobald, W.; Solodov, A. A.; Tabak, M.

    2014-04-17

    Here, integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ~kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester. The neutron yields are being analyzed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.

  11. Techniques for Fast Stereoscopic MRI

    PubMed Central

    Guttman, Michael A.; McVeigh, Elliot R.

    2007-01-01

    Stereoscopic MRI can impart 3D perception with only two image acquisitions. This economy over standard multiplanar 3D volume renderings allows faster frame rates, which are needed for real-time imaging applications. Real-time 3D perception may enhance the appreciation of complex anatomical structures, and may improve hand-eye coordination while manipulating a medical device during an image-guided interventional procedure. To this goal, a system is being developed to acquire and display stereoscopic MR images in real-time. A clinically used, fast gradient-recalled echo-train sequence has been modified to produce stereo image pairs. Features have been added for depth cueing, view sharing, and bulk signal suppression. A workstation was attached to a clinical MR scanner for fast data extraction, image reconstruction and stereoscopic image display. PMID:11477636

  12. Fast Moreau envelope computation I

    NASA Astrophysics Data System (ADS)

    Lucet, Yves

    2006-11-01

    The present article summarizes the state of the art algorithms to compute the discrete Moreau envelope, and presents a new linear-time algorithm, named NEP for NonExpansive Proximal mapping. Numerical comparisons between the NEP and two existing algorithms: The Linear-time Legendre Transform (LLT) and the Parabolic Envelope (PE) algorithms are performed. Worst-case time complexity, convergence results, and examples are included. The fast Moreau envelope algorithms first factor the Moreau envelope as several one-dimensional transforms and then reduce the brute force quadratic worst-case time complexity to linear time by using either the equivalence with Fast Legendre Transform algorithms, the computation of a lower envelope of parabolas, or, in the convex case, the non expansiveness of the proximal mapping.

  13. Causes of Extremely Fast CMEs

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Ruzmaikin, Alexander

    2006-01-01

    We study CMEs observed by LASCO to have plane of the sky velocities exceeding 1500 km/sec. We find that these extremely fast CMEs are typically associated with flares accompanied by erupting prominences. Our results are consistent with a single CME initiation process that consists of three stages. The initial stage is brought about by the emergence of new magnetic flux, which interacts with the pre-existing magnetic configuration and results in a slow rise of the magnetic structure. The second stage is a fast reconnection phase with flaring, filament eruption and a sudden increase of the rise velocity of the magnetic structure (CME). The third stage consists of propagation in the corona. We discuss the sources of these CMEs and the need for improved understanding of the first and third stages.

  14. Why are idioms recognized fast?

    PubMed

    Tabossi, Patrizia; Fanari, Rachele; Wolf, Kinou

    2009-06-01

    It is an established fact that idiomatic expressions are fast to process. However, the explanation of the phenomenon is controversial. Using a semantic judgment paradigm, where people decide whether a string is meaningful or not, the present experiment tested the predictions deriving from the three main theories of idiom recognition-the lexical representation hypothesis, the idiom decomposition hypothesis, and the configuration hypothesis. Participants were faster at judging decomposable idioms, nondecomposable idioms, and clichés than at judging their matched controls. The effect was comparable for all conventional expressions. The results were interpreted as suggesting that, as posited by the configuration hypothesis, the fact that they are known expressions, rather than idiomaticity, explains their fast recognition.

  15. A fast meteor detection algorithm

    NASA Astrophysics Data System (ADS)

    Gural, P.

    2016-01-01

    A low latency meteor detection algorithm for use with fast steering mirrors had been previously developed to track and telescopically follow meteors in real-time (Gural, 2007). It has been rewritten as a generic clustering and tracking software module for meteor detection that meets both the demanding throughput requirements of a Raspberry Pi while also maintaining a high probability of detection. The software interface is generalized to work with various forms of front-end video pre-processing approaches and provides a rich product set of parameterized line detection metrics. Discussion will include the Maximum Temporal Pixel (MTP) compression technique as a fast thresholding option for feeding the detection module, the detection algorithm trade for maximum processing throughput, details on the clustering and tracking methodology, processing products, performance metrics, and a general interface description.

  16. Fast quench reactor and method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-09-24

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  17. Fast quench reactor and method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    1998-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  18. Fast quench reactor and method

    DOEpatents

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  19. Fast Anomaly Discovery Given Duplicates

    DTIC Science & Technology

    2012-12-01

    skipping the computations for duplicate points in SN(ui) that have ci larger than k, the runtime complexity is enhanced significantly. That is, in...Fast anomaly discovery given duplicates Jay-Yoon Lee, U Kang, Danai Koutra, Christos Faloutsos Dec 2012 CMU-CS-12-146 School of Computer Science...ES) Carnegie Mellon University,School of Computer Science,Pittsburgh,PA,15213 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  20. Fast track to 340B.

    PubMed

    Gricius, Robert F; Wong, Douglas

    2016-01-01

    Hospitals that are newly qualified for the 340B Drug Pricing Program may have an opportunity for fast-track approval to participate in the program. Three steps are required to seize this opportunity: Use data analytics to assess current and future percentages of Medicaid utilization and eligibility for federal SSI cash benefits. Determine the feasibility of early cost report filing. Prepare appropriate documentation and undertake the initial enrollment process.

  1. Fast quench reactor and method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  2. Sputtering of fast meteoroids' surface

    NASA Astrophysics Data System (ADS)

    Popova, O. P.; Strelkov, A. S.; Sidneva, S. N.

    Entering meteoroids are subjected by direct impacts of molecules of the individual constituents of the air, when the body approaching the Earth at heights of about 300-100 km. At meteor velocities about 72 km/s the energy of air molecules is about 800 eV and oxygen atoms have energy about 400 eV. Particles with such energies don't penetrate into deep layers of entering body and are concentrated in narrow surface layer of about hundreds angstroms. Action of air particles on meteoroid leads to both heating of meteoroid and sputtering of meteoroid surface. Sputtering effect was supposed as explanation of this high altitude ionization and luminosity (Brosch et al, 2001), which aren't explained by classical ablation theory. Sputtering results in appearance of fast particles, which also may be exited and/or ionized. Flux of these particles causes formation of ionized meteor trails recording by radars. For bigger bodies fast particles may create luminous area at the altitudes above altitude of intensive evaporation. We demonstrate physical model, which allows us to describe sputtering of meteoroid surface under impacts of incoming air particles. We consider sputtering of meteoroid with composition close to hondritic one at the altitude 150 km. Fast particles are really sputtered from meteoroid surface. They carry out about 10% of incoming flux energy. There are also reflected particles, but the most part of total particle outcome is formed by particles of meteor substance. Presence of fast particles possibly explains a large size of meteors in diffuse stage at high altitudes (above 130 km). The sputtering is neglectable in the case of meteor velocities below 30 km/s. Sputtered and reflected particles have enough high ionization degree (˜ (1-5) 10-2, that is larger than ionization degree of surrounding atmosphere (˜ 10-5div 10-6)).

  3. [Fasting and physical endurance capacity].

    PubMed

    Schürch, P M

    1993-03-01

    Fasting, or zero calorie diets are used not only by overweight people as a means of losing weight, but by athletes too. Their use is then explained on philosophical grounds, with the aim of even enhancing sports performance. The purpose of this investigation consisted of quantifying the effects of a 10-day fast on maximum performance capacity and endurance (as measured on a bicycle ergometer) of 12 female students of physical education of normal weight. The measurements included resting and exercise metabolism determinants, as well as weight and lean body mass. The main results show that after the diet period the maximum ergometric performance was lower in absolute terms as well as in relation to weight or lean body mass. Performance capacity for submaximal exercise was also reduced. Fat combustion was enhanced both at rest and during exercise. The reduction of maximum performance and endurance capacity may be explained by an enhanced muscle breakdown, an efficiency drop of muscular work, and an inadequate glycogen content of the acting muscles. Shorter fasting periods of 24-36 hours also lead to a lower performance level for exercise bouts extending from several minutes to 1-3 hours. An enhancement of fat combustion was always conspicuous. One may conclude that optimal physical performance is dependent on full hepatic and muscle glycogen stores. Glycogen concentration in the liver decreases sharply as a matter of fact after merely one day of carbohydrate shortage. Zero calorie or low carbohydrate diets are thus at variance with an optimal physical work capacity.

  4. A repeating fast radio burst

    NASA Astrophysics Data System (ADS)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  5. Heterogeneous Transmutation Sodium Fast Reactor

    SciTech Connect

    S. E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

  6. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  7. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  8. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  9. Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Weiland, M.; Mlynek, A.; Reich, M.; Bock, A.; Dunne, M.; Dux, R.; Fable, E.; Fischer, R.; Garcia-Munoz, M.; Hobirk, J.; Hopf, C.; Nielsen, S.; Odstrcil, T.; Rapson, C.; Rittich, D.; Ryter, F.; Salewski, M.; Schneider, P. A.; Tardini, G.; Willensdorfer, M.

    2015-01-01

    The confinement fast ions, generated by neutral beam injection (NBI), has been investigated at the ASDEX Upgrade tokamak. In plasmas that exhibit strong sawtooth crashes, a significant sawtooth-induced internal redistribution of mainly passing fast ions is observed, which is in very good agreement with the theoretical predictions based on the Kadomtsev model. Between the sawtooth crashes, the fishbone modes are excited which, however, do not cause measurable changes in the global fast-ion population. During experiments with on- and off-axis NBI and without strong magnetohydrodynamic (MHD) modes, the fast-ion measurements agree very well with the neo-classical predictions. This shows that the MHD-induced (large-scale), as well as a possible turbulence-induced (small-scale) fast-ion transport is negligible under these conditions. However, in discharges performed to study the off-axis NBI current drive efficiency with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic: the fast-ion driven current profile is clearly modified when changing the NBI injection geometry and the measurements agree best with the predictions that assume weak anomalous fast-ion diffusion.

  10. Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, A. L.; Menard, J. E.; Wilson, J. R.; Medley, S. S.; Andre, R.; Phillips, C. K.; Darrow, D. S.; LeBlanc, B. P.; Redi, M. H.; Fisch, N. J.; NSTX Team, Harvey, R. W.; Mau, T. K.; Jaeger, E. F.; Ryan, P. M.; Swain, D. W.; Sabbagh, S. A.; Egedal, J.

    2004-05-01

    Ion absorption of the high harmonic fast wave in a spherical torus [Y.-K. M. Peng et al., Nucl. Fusion 26, 769 (1986)] is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] shots has revealed that under some conditions when neutral beam and rf power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the rf-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is a rf interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering are presented, along with results from the TRANSP [R. J. Hawryluk, Physics of Plasmas Close to Thermonuclear Conditions 1, 19 (1981); J. P. H. E. Ongena et al., Fusion Technol. 33, 181 (1998)] transport analysis code, ray-tracing codes HPRT [J. Menard et al., Phys. Plasmas 6, 2002 (1999)], and CURRAY [T. K. Mau et al., RF Power in Plasmas: 13th Topical Conference (1999), p. 148], full-wave code AORSA [E. F. Jaeger et al., RF Power in Plasmas: 14th Topical Conference, 2001, p. 369], quasilinear code CQL3D [R. W. Harvey et al., in Proceedings of the IAEA TCM on Advances in Simulation and Modeling of Thermonuclear Plasmas, 1992], and ion loss codes EIGOL [D. S. Darrow et al., in Proceedings of the 6th IAEA TCM on

  11. Fast neutron imaging device and method

    SciTech Connect

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  12. Fast Foods, Organic Foods, Fad Diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is no standard definition of fast food. Generally, fast food is eaten without cutlery, and fast-food restaurants have no wait staff. Failure to have a standardized definition makes it difficult to compare studies. Foods available outside the home tend to be high in energy and fat compared w...

  13. LFR "Lead-Cooled Fast Reactor"

    SciTech Connect

    Cinotti, L; Fazio, C; Knebel, J; Monti, S; Abderrahim, H A; Smith, C; Suh, K

    2006-05-11

    The main purpose of this paper is to present the current status of development of the Lead-cooled Fast Reactor (LFR) in Generation IV (GEN IV), including the European contribution, to identify needed R&D and to present the corresponding GEN IV International Forum (GIF) R&D plan [1] to support the future development and deployment of lead-cooled fast reactors. The approach of the GIF plan is to consider the research priorities of each member country in proposing an integrated, coordinated R&D program to achieve common objectives, while avoiding duplication of effort. The integrated plan recognizes two principal technology tracks: (1) a small, transportable system of 10-100 MWe size that features a very long refuelling interval, and (2) a larger-sized system rated at about 600 MWe, intended for central station power generation. This paper provides some details of the important European contributions to the development of the LFR. Sixteen European organizations have, in fact, taken the initiative to present to the European Commission the proposal for a Specific Targeted Research and Training Project (STREP) devoted to the development of a European Lead-cooled System, known as the ELSY project; two additional organizations from the US and Korea have joined the project. Consequently, ELSY will constitute the reference system for the large lead-cooled reactor of GEN IV. The ELSY project aims to demonstrate the feasibility of designing a competitive and safe fast power reactor based on simple technical engineered features that achieves all of the GEN IV goals and gives assurance of investment protection. As far as new technology development is concerned, only a limited amount of R&D will be conducted in the initial phase of the ELSY project since the first priority is to define the design guidelines before launching a larger and expensive specific R&D program. In addition, the ELSY project is expected to benefit greatly from ongoing lead and lead-alloy technology

  14. Energy transport velocity in bidispersed magnetic colloids

    NASA Astrophysics Data System (ADS)

    Bhatt, Hem; Patel, Rajesh; Mehta, R. V.

    2012-07-01

    Study of energy transport velocity of light is an effective background for slow, fast, and diffuse light and exhibits the photonic property of the material. We report a theoretical analysis of magnetic field dependent resonant behavior in forward-backward anisotropy factor, light diffusion constant, and energy transport velocity for bidispersed magnetic colloids. A bidispersed magnetic colloid is composed of micrometer size magnetic spheres dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a nonmagnetic liquid carrier. Magnetic Mie resonances and reduction in energy transport velocity accounts for the possible delay (longer dwell time) by field dependent resonant light transport. This resonant behavior of light in bidispersed magnetic colloids suggests a novel magnetophotonic material.

  15. Fast two-dimensional model

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Douglass, Anne R.; Stolarski, Richard S.; Guthrie, Paul D.; Thompson, A. M.

    1990-01-01

    A two dimensional (altitude and latitude) model of the atmosphere is used to investigate problems relating to the variability of the dynamics and temperature of the atmosphere on the ozone distribution, solar cycle variations of atmospheric constituents, the sensitivity of model results to tropospheric trace gas sources, and assessment computations of changes in ozone related to manmade influences. In a comparison between two dimensional model results in which the odd nitrogen family was transported together and model results in which the odd nitrogen species was transported separately, it was found that the family approximations are adequate for perturbation scenario calculations.

  16. Glycolate transporter of the pea chloroplast envelope

    SciTech Connect

    Howitz, K.T.

    1985-01-01

    The discovery of a glycolate transporter in the pea (Pisum sativum) chloroplast envelope is described. Several novel silicone oil centrifugation methods were developed to resolve the initial rate kinetics of (/sup 14/C)glycolate transport by isolated, intact pea chloroplasts. Chloroplast glycolate transport was found to be carrier mediated. Transport rates saturated with increasing glycolate concentration. N-Ethylmaleimide (NEM) pretreatment of chloroplasts inhibited transport, an inhibition prevented by glycolate. Glycolate distributed across the envelope in a way which equalized stromal and medium glycolic acid concentrations, limiting possible transport mechanisms to facilitated glycolic acid diffusion, proton symport or hydroxyl antiport. The effects of stomal and medium pH's on the K/sub m/ and V/sub max/ fit the predictions of mobile carrier kinetic models of hydroxyl antiport or proton symport (H/sup +/ binds first). The carrier mediated transport was fast enough to be consistent with in vivo rates of photorespiration. The 2-hydroxymonocarboxylates, glycerate, lactate and glyoxylate are competitive inhibitors of chloroplast glycolate uptake. Glyoxylate, D-lactate and D-glycerate cause glycolate counterflow, indicating that they are also substrates of the glycolate carrier. This finding was confirmed for D-glycerate by studies on glycolate effects on (1-/sup 14/C)D-glycerate transport.

  17. Overview of recent progress in US fast ignition research

    SciTech Connect

    Freeman, R R; Akli, K; Beg, F; Betti, R; Chen, S; Clark, D J; Gu, P; Gregori, G; Hatchett, S P; Hey, D; Highbarger, K; Hill, J M; Izumi, N; Key, M H; King, J A; Koch, J A; Lasinski, B; Langdon, B; Mackinnon, A J; Meyerhofer, D; Patel, N; Patel, P; Pasley, J; Park, H; Ren, C; Snavely, R A; Stephens, R B; Stoeckl, C; Tabak, M; Town, R; Van Woerkom, L; Weber, R; Wilks, S C; Zhang, B

    2005-09-28

    The Fast Ignition Program in the United States has enjoyed increased funding in various forms from the Office of Fusion Energy Sciences of the Department of Energy. The program encompasses experiments on large laser facilities at various world-wide locations, and benefits enormously from collaborations with many international scientists. The program includes exploratory work in cone-target design and implosion dynamics, high electron current transport measurements in normal density materials, development of diagnostics for heating measurements, generation of protons from shaped targets, theoretical work on high gain target designs, and extensive modeling development using PIC and hybrid codes.

  18. Features of a point design for fast ignition

    SciTech Connect

    Tabak, M; Clark, D; Town, R J; Key, M H; Amendt, P; Ho, D; Meeker, D J; Shay, H D; Lasinski, B F; Kemp, A; Divol, L; Mackinnon, A J; Patel, P; Strozzi, D; Grote, D P

    2009-10-26

    Fast Ignition is an inertial fusion scheme in which fuel is first assembled and then heated to the ignition temperature with an external heating source. In this note we consider cone and shell implosions where the energy supplied by short pulse lasers is transported to the fuel by electrons. We describe possible failure modes for this scheme and how to overcome them. In particular, we describe two sources of cone tip failure, an axis jet driven from the compressed fuel mass and hard photon preheat leaking through the implosion shell, and laser prepulse that can change the position of laser absorption and the angular distribution of the emitted electrons.

  19. Collisionally induced stochastic dynamics of fast ions in solids

    SciTech Connect

    Burgdoerfer, J.

    1989-01-01

    Recent developments in the theory of excited state formation in collisions of fast highly charged ions with solids are reviewed. We discuss a classical transport theory employing Monte-Carlo sampling of solutions of a microscopic Langevin equation. Dynamical screening by the dielectric medium as well as multiple collisions are incorporated through the drift and stochastic forces in the Langevin equation. The close relationship between the extrinsically stochastic dynamics described by the Langevin and the intrinsic stochasticity in chaotic nonlinear dynamical systems is stressed. Comparison with experimental data and possible modification by quantum corrections are discussed. 49 refs., 11 figs.

  20. Robotic transportation.

    PubMed

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions.

  1. Comparison of Fast-Food and Non-Fast-Food Children's Menu Items

    ERIC Educational Resources Information Center

    Serrano, Elena L.; Jedda, Virginia B.

    2009-01-01

    Objective: Compare the macronutrient content of children's meals sold by fast-food restaurants (FFR) and non-fast-food restaurants (NFF). Design: All restaurants within the designated city limits were surveyed. Non-fast-food children's meals were purchased, weighed, and analyzed using nutrition software. All fast-food children's meals were…

  2. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  3. Modeling electronic quantum transport with machine learning

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole

    2014-06-01

    We present a machine learning approach to solve electronic quantum transport equations of one-dimensional nanostructures. The transmission coefficients of disordered systems were computed to provide training and test data sets to the machine. The system's representation encodes energetic as well as geometrical information to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure of similarity. Errors for out-of-sample predictions systematically decrease with training set size, enabling the accurate and fast prediction of new transmission coefficients. The remarkable performance of our model to capture the complexity of interference phenomena lends further support to its viability in dealing with transport problems of undulatory nature.

  4. Mechanisms for fast flare reconnection

    NASA Technical Reports Server (NTRS)

    Vanhoven, G.; Deeds, D.; Tachi, T.

    1988-01-01

    Normal collisional-resistivity mechanisms of magnetic reconnection have the drawback that they are too slow to explain the fast rise of solar flares. Two methods are examined which are proposed for the speed-up of the magnetic tearing instability: the anomalous enhancement of resistivity by the injection of MHD turbulence and the increase of Coulomb resistivity by radiative cooling. The results are described for nonlinear numerical simulations of these processes which show that the first does not provide the claimed effects, while the second yields impressive rates of reconnection, but low saturated energy outputs.

  5. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  6. Fast pulse nonthermal plasma reactor

    DOEpatents

    Rosocha, Louis A.

    2005-06-14

    A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.

  7. Fast feedback for linear colliders

    SciTech Connect

    Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.

    1995-05-01

    A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies.

  8. Isochoric implosions for fast ignition

    SciTech Connect

    Clark, D S; Tabak, M

    2006-06-05

    Fast Ignition (FI) exploits the ignition of a dense, uniform fuel assembly by an external energy source to achieve high gain. In conventional ICF implosions, however, the fuel assembles as a dense shell surrounding a low density, high-pressure hotspot. Such configurations are far from optimal for FI. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942).] may be employed to implode a dense, quasi-uniform fuel assembly with minimal energy wastage in forming a hotspot. A scheme for realizing these specialized implosions in a practical ICF target is also described.

  9. Searches for Fast Radio Transients

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; McLaughlin, M. A.

    2003-10-01

    We discuss optimal detection of fast radio transients from astrophysical objects while taking into account the effects of propagation through intervening ionized media, including dispersion, scattering, and scintillation. Our analysis applies to the giant-pulse phenomenon exhibited by some pulsars, for which we show examples, and to radio pulses from other astrophysical sources, such as prompt radio emission from gamma-ray burst sources and modulated signals from extraterrestrial civilizations. We estimate scintillation parameters for extragalactic sources that take into account scattering both in the host galaxy and in foreground Galactic plasma.

  10. Fast, efficient lossless data compression

    NASA Technical Reports Server (NTRS)

    Ross, Douglas

    1991-01-01

    This paper presents lossless data compression and decompression algorithms which can be easily implemented in software. The algorithms can be partitioned into their fundamental parts which can be implemented at various stages within a data acquisition system. This allows for efficient integration of these functions into systems at the stage where they are most applicable. The algorithms were coded in Forth to run on a Silicon Composers Single Board Computer (SBC) using the Harris RTX2000 Forth processor. The algorithms require very few system resources and operate very fast. The performance of the algorithms with the RTX enables real time data compression and decompression to be implemented for a wide range of applications.

  11. Ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, H. F.-W.; Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Petersen, B.; Seiden, A.; Zatserklyaniy, A.; Cartiglia, N.; Marchetto, F.; Bruzzi, M.; Mori, R.; Scaringella, M.; Vinattieri, A.

    2013-12-01

    We propose to develop a fast, thin silicon sensor with gain capable to concurrently measure with high precision the space (∼10 μm) and time (∼10 ps) coordinates of a particle. This will open up new application of silicon detector systems in many fields. Our analysis of detector properties indicates that it is possible to improve the timing characteristics of silicon-based tracking sensors, which already have sufficient position resolution, to achieve four-dimensional high-precision measurements. The basic sensor characteristics and the expected performance are listed, the wide field of applications are mentioned and the required R&D topics are discussed.

  12. Review of Fast Monte Carlo Codes for Dose Calculation in Radiation Therapy Treatment Planning

    PubMed Central

    Jabbari, Keyvan

    2011-01-01

    An important requirement in radiation therapy is a fast and accurate treatment planning system. This system, using computed tomography (CT) data, direction, and characteristics of the beam, calculates the dose at all points of the patient's volume. The two main factors in treatment planning system are accuracy and speed. According to these factors, various generations of treatment planning systems are developed. This article is a review of the Fast Monte Carlo treatment planning algorithms, which are accurate and fast at the same time. The Monte Carlo techniques are based on the transport of each individual particle (e.g., photon or electron) in the tissue. The transport of the particle is done using the physics of the interaction of the particles with matter. Other techniques transport the particles as a group. For a typical dose calculation in radiation therapy the code has to transport several millions particles, which take a few hours, therefore, the Monte Carlo techniques are accurate, but slow for clinical use. In recent years, with the development of the ‘fast’ Monte Carlo systems, one is able to perform dose calculation in a reasonable time for clinical use. The acceptable time for dose calculation is in the range of one minute. There is currently a growing interest in the fast Monte Carlo treatment planning systems and there are many commercial treatment planning systems that perform dose calculation in radiation therapy based on the Monte Carlo technique. PMID:22606661

  13. Transporting particulate material

    DOEpatents

    Aldred, Derek Leslie; Rader, Jeffrey A.; Saunders, Timothy W.

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  14. Transporting Handicapped Students.

    ERIC Educational Resources Information Center

    Turner, Dayton Ray

    The book presents guidelines for adaptive transportation measures for handicapped students. Part 1 considers the transportation cycle as a means to evaluate individual student competencies at all logical points during the transportation experience. The transportation cycle is reviewed from deciding to transport the student to gaining access to…

  15. GRIFFIN's Fast-Timing Array

    NASA Astrophysics Data System (ADS)

    Olaizola, Bruno; Griffin Collaboration

    2016-09-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is the new β-decay spectrometer facility at TRIUMF-ISAC. Consists of an array of 16 large-volume HPGe clover detectors with an unparalleled efficiency of 19% at 1.33 MeV. Its strongest advantage is the versatility of the ancillary detectors that can be coupled to the main array to tag on β particles, neutrons or precisely measure conversion electron spectra. An ancillary array of 8 LaBr3(Ce) detectors for γ-rays and a fast plastic scintillator for β-particles has been optimized for fast-timing experiments with GRIFFIN. The 51 mm x 51 mm cylindrical LaBr3(Ce) crystals are coupled to Hamamatsu R2083 photomultipliers. Timing resolutions as good as FWHM 200 ps and time-walks below +/- 30 ps have been obtained for individual crystals using analog electronics. There is also an ongoing project to develop an active BGO shield for the LaBr3(Ce) crystals. The LaBr3(Ce) array commissioning experiment to measure the 145,146Cs decay to 145,146Ba will test its capabilities over a wide range of lifetimes. Preliminary results on the lifetimes of some of the low-laying states will be presented.

  16. RCD+: Fast loop modeling server

    PubMed Central

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-01-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  17. Cortical Specializations Underlying Fast Computations.

    PubMed

    Volgushev, Maxim

    2016-04-01

    The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints.

  18. Fast generic polar harmonic transforms.

    PubMed

    Hoang, Thai V; Tabbone, Salvatore

    2014-07-01

    Generic polar harmonic transforms have recently been proposed to extract rotation-invariant features from images and their usefulness has been demonstrated in a number of pattern recognition problems. However, direct computation of these transforms from their definition is inefficient and is usually slower than some efficient computation strategies that have been proposed for other methods. This paper presents a number of novel computation strategies to compute these transforms rapidly. The proposed methods are based on the inherent recurrence relations among complex exponential and trigonometric functions used in the definition of the radial and angular kernels of these transforms. The employment of these relations leads to recursive and addition chain-based strategies for fast computation of harmonic function-based kernels. Experimental results show that the proposed method is about 10× faster than direct computation and 5× faster than fast computation of Zernike moments using the q-recursive strategy. Thus, among all existing rotation-invariant feature extraction methods, polar harmonic transforms are the fastest.

  19. Manybeam velocimeter for fast surfaces

    SciTech Connect

    Goosman, D.; Avara, G.; Steinmetz, L.; Lai, C.; Perry, S.

    1996-09-01

    For the past 5 years, we have conceived, built and successfully used a new 10 beam laser velocimeter for monitoring velocity vs time histories of fast moving surfaces, and will have a 20 beam capability soon. We conceived a method to multiplex 5 to 10 beams through a single Fabry-Perot interferometer, without losing any light that our equivalently-performing single beam system could use, and with negligible cross- talk. This saves the cost of 16 interferometers, simplifies operation and takes less space than without multiplexing. We devised special efficient light collecting probes, streak cameras that change sweep speed during the course of the record, and a new double cavity interferometer which is better, cheaper and more flexible than our previous versions. With the 10 recorders, we conceived and employ a method of using both a fast and a slow streak camera on each of 5 beams without reducing the light that is available to either camera separately. Five new galvanometrically-driven triggerable CCD streak cameras will be installed soon.

  20. Energetic-Particle-Driven Instabilities and Their Effect on Fast Ions in a Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J.; Anderson, J. K.; Almagri, A. F.; Chapman, B. E.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2012-10-01

    During 1 MW tangential neutral-beam injection (NBI) into the MST reversed field pinch, multiple, bursty instabilities (n=5, 4 and -1) are detected by various fluctuation diagnostics. The spatial structure of associated density fluctuations peaks near the core where fast ions reside. Significant bicoherence among them is measured, indicating nonlinear three-wave coupling. These instabilities are also observed by a laser-based Faraday-rotation diagnostic, containing critical information on the internal magnetic field fluctuations. A tangential-view high-energy neutral particle analyzer (NPA) is used to study the fast-ion population. The measured NPA signal decreases by 15% following NBI-driven instabilities, indicating fluctuation-induced fast-ion transport. The NBI also reduces the amplitude of the innermost-resonant tearing mode by up to 65%. This mode-suppression is lessened following the NBI-driven bursts, consistent with fast ion loss/redistribution weakening the suppression effect.

  1. Role of Combined NNBI and ICRH Heating in FAST H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Calabrò, G.; Di Troia, C.; Marinucci, M.; Baiocchi, B.; Bilato, R.; Brambilla, M.; Briguglio, S.; Fogaccia, G.; Mantica, P.; Vlad, G.; Zonca, F.

    2011-12-01

    The combination of ICRH+NNBI in FAST allows the generation of fast ion populations with different velocity space anisotropy and radial profiles. These energetic ion populations can excite meso-scale fluctuations with the same characteristics of those expected in reactor conditions and, for this reason, FAST can address a number of important burning plasma physics issues. Numerical simulation and modeling of energetic particle physics are based on the use of transport codes that are iteratively coupled with a bi-dimensional full wave-quasi-linear solver for ICRH, in order to determinate the normalized supra-thermal population pressure ßhot. The value of ßhot. as well the energetic particle distribution functions can be used as initial condition for numerical simulation studies, investigating the destabilization and saturation of fast ion driven Alfvénic modes.

  2. Cytoplasmic dynein is associated with slow axonal transport.

    PubMed Central

    Dillman, J F; Dabney, L P; Pfister, K K

    1996-01-01

    Neuronal function is dependent on the transport of materials from the cell body to the synapse via anterograde axonal transport. Anterograde axonal transport consists of several components that differ in both rate and protein composition. In fast transport, membranous organelles are moved along microtubules by the motor protein kinesin. The cytoskeleton and the cytomatrix proteins move in the two components of slow transport. While the mechanisms underlying slow transport are unknown, it has been hypothesized that the movement of microtubules in slow transport is generated by sliding. To determine whether dynein, a motor protein that causes microtubule sliding in flagella, may play a role in slow axonal transport, we identified the transport rate components with which cytoplasmic dynein is associated in rat optic nerve. Nearly 80% of the anterogradely moving dynein was associated with slow transport, whereas only approximately 15% of the dynein was associated with the membranous organelles of anterograde fast axonal transport. A segmental analysis of the transport of dynein through contiguous regions of the optic nerve and tract showed that dynein is associated with the microfilaments and other proteins of slow component b. Dynein from this transport component has the capacity to bind microtubules in vitro. These results are consistent with the hypothesis that cytoplasmic dynein generates the movement of microtubules in slow axonal transport. A model is presented to illustrate how dynein attached to the slow component b complex of proteins is appropriately positioned to generate force of the correct polarity to slide microtubules down the axon. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8552592

  3. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  4. THE SPECTROSCOPIC FOOTPRINT OF THE FAST SOLAR WIND

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.; De Pontieu, Bart E-mail: robert.j.leamon@nasa.gov

    2011-01-20

    We analyze a large, complex equatorial coronal hole (ECH) and its immediate surroundings with a focus on the roots of the fast solar wind. We start by demonstrating that our ECH is indeed a source of the fast solar wind at 1 AU by examining in situ plasma measurements in conjunction with recently developed measures of magnetic conditions of the photosphere, inner heliosphere, and the mapping of the solar wind source region. We focus the bulk of our analysis on interpreting the thermal and spatial dependence of the non-thermal line widths in the ECH as measured by SOHO/SUMER by placing the measurements in context with recent studies of ubiquitous Alfven waves in the solar atmosphere and line profile asymmetries (indicative of episodic heating and mass loading of the coronal plasma) that originate in the strong, unipolar magnetic flux concentrations that comprise the supergranular network. The results presented in this paper are consistent with a picture where a significant portion of the energy responsible for the transport of heated mass into the fast solar wind is provided by episodically occurring small-scale events (likely driven by magnetic reconnection) in the upper chromosphere and transition region of the strong magnetic flux regions that comprise the supergranular network.

  5. Fast Pyrolysis of Agricultural Wastes in a Fluidized Bed Reactor

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Chen, H. P.; Yang, H. P.; Dai, X. M.; Zhang, S. H.

    Solid biomass can be converted into liquid fuel through fast pyrolysis, which is convenient to be stored and transported with potential to be used as a fossil oil substitute. In China, agricultural wastes are the main biomass materials, whose pyrolysis process has not been researched adequately compared to forestry wastes. As the representative agricultural wastes in China, peanut shell and maize stalk were involved in this paper and pine wood sawdust was considered for comparing the different pyrolysis behaviors of agricultural wastes and forestry wastes. Fast pyrolysis experiments were carried out in a bench-scale fluidized-bed reactor. The bio-oil yieldsof peanut shell and maize stalk were obviously lower than that ofpine sawdust. Compared with pine sawdust, the char yields of peanut shell and maize stalk were higher but the heating value of uncondensable gaswas lower. This means that the bio-oil cost will be higher for agricultural wastes if taking the conventional pyrolysis technique. And the characteristic and component analysis resultsof bio-oil revealed that the quality of bio-oil from agricultural wastes, especially maize stalk, was worse than that from pine wood. Therefore, it is important to take some methods to improve the quality of bio-oilfrom agricultural wastes, which should promote the exploitation of Chinese biomass resources through fast pyrolysis in afluidized bed reactor.

  6. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  7. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect

    Westover, B.; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  8. Measurements and modelling of fast-ion redistribution due to resonant MHD instabilities in MAST

    NASA Astrophysics Data System (ADS)

    Jones, O. M.; Cecconello, M.; McClements, K. G.; Klimek, I.; Akers, R. J.; Boeglin, W. U.; Keeling, D. L.; Meakins, A. J.; Perez, R. V.; Sharapov, S. E.; Turnyanskiy, M.; the MAST Team

    2015-12-01

    The results of a comprehensive investigation into the effects of toroidicity-induced Alfvén eigenmodes (TAE) and energetic particle modes on the NBI-generated fast-ion population in MAST plasmas are reported. Fast-ion redistribution due to frequency-chirping TAE in the range 50 kHz-100 kHz and frequency-chirping energetic particle modes known as fishbones in the range 20 kHz-50 kHz, is observed. TAE and fishbones are also observed to cause losses of fast ions from the plasma. The spatial and temporal evolution of the fast-ion distribution is determined using a fission chamber, a radially-scanning collimated neutron flux monitor, a fast-ion deuterium alpha spectrometer and a charged fusion product detector. Modelling using the global transport analysis code Transp, with ad hoc anomalous diffusion and fishbone loss models introduced, reproduces the coarsest features of the affected fast-ion distribution in the presence of energetic particle-driven modes. The spectrally and spatially resolved measurements show, however, that these models do not fully capture the effects of chirping modes on the fast-ion distribution.

  9. Glymphatic solute transport does not require bulk flow

    NASA Astrophysics Data System (ADS)

    Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan

    2016-12-01

    Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space.

  10. Glymphatic solute transport does not require bulk flow

    PubMed Central

    Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan

    2016-01-01

    Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space. PMID:27929105

  11. Smart Growth and Transportation

    EPA Pesticide Factsheets

    Describes the relationship between smart growth and transportation, focusing smart and sustainable street design, transit-oriented development, parking management, sustainable transportation planning, and related resources.

  12. Automatic differentiation: Obtaining fast and reliable derivatives -- fast

    SciTech Connect

    Bischof, C.H.; Khademi, P.M.; Pusch, G.; Carle, A.

    1994-12-31

    In this paper, the authors introduce automatic differentiation as a method for computing derivatives of large computer codes. After a brief discussion of methods of differentiating codes, they review automatic differentiation and introduce the ADIFOR (Automatic DIfferentiation of FORtran) tool. They highlight some applications of ADIFOR to large industrial and scientific codes (groundwater transport, CFD airfoil design, and sensitivity-enhanced MM5 mesoscale weather model), and discuss the effectiveness and performance of their approach. Finally, they discuss sparsity in automatic differentiation and introduce the SparsLinC library.

  13. Review of progress in Fast Ignition

    NASA Astrophysics Data System (ADS)

    Tabak, Max

    2004-11-01

    Marshall Rosenbluth's extensive contributions included seminal analysis of the inertial fusion program. Over the last decade he avidly followed the efforts of many scientists around the world who have studied with increasing intensity Fast Ignition, an alternate form of inertial fusion. In this scheme, the fuel is first compressed by a long pulse driver and then ignited by the short pulse laser. Due to technological advances, external energy sources (such as short pulse lasers) can focus intensity equivalent to that produced by the hydrodynamic stagnation of conventional inertial fusion capsules. This review will discuss the ignition requirements and gain curves starting from simple models and then describing how these are modified, as more detailed physics understanding is included. The critical design issues revolve around two questions: How can we efficiently assemble the compressed fuel? And how can we deliver the power from the driver to the ignition region? We will describe schemes to shorten the distance between the critical surface, where the high intensity laser deposits its energy into relativistic electrons, and the ignition region. We will review the theoretical and experimental status of the "hole boring" and "cone focus" schemes. In the hole-boring scheme an additional laser beam's ponderomotive light pressure is used to push the coronal plasma out of the ignition laser's beam path. For the cone focus scheme the implosion target is manufactured such that a vacuum path for the ignition laser is maintained during the implosion phase. We will describe what is known about the efficiency with which light couples to a plasma and the transport properties of the relativistic electrons that are generated during the interaction. An alternate route to coupling the energy to the ignition region passes through an intermediate stage where protons are generated from a virtual cathode and then focused into the compressed fuel . Experiments and modeling of the

  14. Fast breeder reactor protection system

    DOEpatents

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  15. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  16. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  17. Fast Steerable Principal Component Analysis

    PubMed Central

    Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit

    2016-01-01

    Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL3 + L4), while existing algorithms take O(nL4). The new algorithm computes the expansion coefficients of the images in a Fourier–Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA. PMID:27570801

  18. Integral fast reactor safety features

    SciTech Connect

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents.

  19. Fast Steerable Principal Component Analysis.

    PubMed

    Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit

    2016-03-01

    Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL(3) + L(4)), while existing algorithms take O(nL(4)). The new algorithm computes the expansion coefficients of the images in a Fourier-Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA.

  20. Fast data parallel polygon rendering

    SciTech Connect

    Ortega, F.A.; Hansen, C.D.

    1993-09-01

    This paper describes a parallel method for polygonal rendering on a massively parallel SIMD machine. This method, based on a simple shading model, is targeted for applications which require very fast polygon rendering for extremely large sets of polygons such as is found in many scientific visualization applications. The algorithms described in this paper are incorporated into a library of 3D graphics routines written for the Connection Machine. The routines are implemented on both the CM-200 and the CM-5. This library enables a scientists to display 3D shaded polygons directly from a parallel machine without the need to transmit huge amounts of data to a post-processing rendering system.

  1. Heterogeneous Recycling in Fast Reactors

    SciTech Connect

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  2. FastBit Reference Manual

    SciTech Connect

    Wu, Kesheng

    2007-08-02

    An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. The compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.

  3. Fast Transient Behavior of Thyristor Switches.

    DTIC Science & Technology

    1985-02-01

    FAST TRANSIENT BEHAVIOR OF THYRISTOR SWITCHES(U) TEXAS i/tl TECH UNIV LUBBOCK DEPT OF ELECTRICAL ENGINEERING PROTNOV FEB 85 RADC-TR-85-20...8217 , " , - ." .- ., .-, ..., .., . ., , ." ’ ’ , ’ , ., " " , ’ ., ., .., ..’ ..’ , .’ .. ., [ ." -.-.-, . ’ .J ,Z . ’ .’ , , . ,. C ; RADC-TR85-20 4 Final Technical Report February 1965 Lf) FAST TRANSIENT BEHAVIOR OF 4 ~THYRISTOR SWITCHES Texas Tech...Ctawaficaitonp FAST TRANSIENT BEHAVIOR OF THYRISTOR SWITCHES 12. PERSONAL AUTHOR(S)

  4. Solid Electrolytes: Alkali-Ion Transport in Skeleton Structures

    DTIC Science & Technology

    1976-06-30

    side if necessary and identify by block number) solid electrolytes alkali -ion transport sodium -sulfur batteries fast -ion transport O ABSTRACT...molten Na 2 S4 for 10 days at 400’C indicated chemical stability, similar testing i-1 molten sodium was initiated, and it has been established that...tests under dynamic conditions are necessary before long-term stability of tile material can be established. Tests for stability in molten sodium have

  5. Energy and Environmental Consequences of Transportation: Indicators of Sustainability

    SciTech Connect

    Greene, D.L.

    1997-07-01

    The rapid motorization of world transportation systems puts growing emphasis on controlling transportation`s direct and indirect impacts on the global environment, in other words, on achieving sustainability in transport. In 1950, the world contained 70 million motor vehicles, of which 70% were in the United States. Today the world`s motor vehicle fleet exceeds 600 million,of which less than one-third are in the U.S. Outside of the U.S., motor vehicle stocks are growing twice as fast (Davis & McFarlin, 1996, tables 1.1 & 1.2). With this explosive growth of motorized transport comes a compelling need to control its concomitant pollution, greenhouse gas emissions, and fossil fuel consumption. Large scale indicators of transportation`s performance with respect to sustainability are therefore becoming increasingly important for monitoring trends and evaluating the effectiveness of policies at national and international scales. A recent survey by the Bureau of Transportation Statistics (U. S. DOT/BTS, 1 996) of data on transportation`s environmental consequences in the U.S., found that reasonable indicators exist for energy use and for certain of transportation`s environmental impacts. Statistics on air pollutant emissions, greenhouse gas emissions, and energy use are adequate for developing rigorous indicators of at least emissions and energy use. Much less is known about noise generation, water and groundwater pollution, solid waste,land-use and habitat impacts.

  6. The fast escaping set for quasiregular mappings

    NASA Astrophysics Data System (ADS)

    Bergweiler, Walter; Drasin, David; Fletcher, Alastair

    2014-06-01

    The fast escaping set of a transcendental entire function is the set of all points which tend to infinity under iteration as fast as possible compatible with the growth of the function. We study the analogous set for quasiregular mappings in higher dimensions and show, among other things, that various equivalent definitions of the fast escaping set for transcendental entire functions in the plane also coincide for quasiregular mappings. We also exhibit a class of quasiregular mappings for which the fast escaping set has the structure of a spider's web.

  7. Fasting: Molecular Mechanisms and Clinical Applications

    PubMed Central

    Longo, Valter D.; Mattson, Mark P.

    2014-01-01

    Fasting has been practiced for millennia, but only recently studies have shed light on its role in adaptive cellular responses that reduce oxidative damage and inflammation, optimize energy metabolism and bolster cellular protection. In lower eukaryotes, chronic fasting extends longevity in part by reprogramming metabolic and stress resistance pathways. In rodents intermittent or periodic fasting protects against diabetes, cancers, heart disease and neurodegeneration, while in humans it helps reduce obesity, hypertension, asthma and rheumatoid arthritis. Thus, fasting has the potential to delay aging and help prevent and treat diseases while minimizing the side effects caused by chronic dietary interventions. PMID:24440038

  8. Practical management of diabetes during Ramadan fasting.

    PubMed

    Fariduddin, M; Mahtab, H; Latif, Z A; Siddiqui, N I

    2011-07-01

    Diabetes mellitus is a global epidemic including Bangladesh. It is a chronic, costly and deadly disease. Recent advancement gives us the opportunity to control diabetes and offer the patient to have a normal or near normal life. Fasting during Ramadan is one of the five pillars of Islam. Recent studies show that most of the type-2 diabetic patients can fast during the holy month of Ramadan safely. But they need pre-Ramadan counseling for assessment, education, motivation, dietary and drug adjustment. Ramadan is beneficial for health. Fasting improves metabolic control, reduces weight and helps to control hypertension. Fasting also associated with some risks like-hypoglycemia, diabetic ketoacidosis, hyper osmolar non ketotic coma and dehydration. All of these risks can be significantly reduced by pre-Ramadan counseling. Those who are at very high risks of hypoglycemia and acute diabetic or other complications they should not fast. After recovery they should complete their fast with the consultation of Islamic scholars. If there is hypoglycemia while fasting, fast must be broken. Islam allows us to have a regular blood sugar test during fast. Patient should follow a highly individualized management plan. Close monitoring is essential to prevent complications for safe Ramadan.

  9. Primitive layered gabbros from fast-spreading lower oceanic crust.

    PubMed

    Gillis, Kathryn M; Snow, Jonathan E; Klaus, Adam; Abe, Natsue; Adrião, Alden B; Akizawa, Norikatsu; Ceuleneer, Georges; Cheadle, Michael J; Faak, Kathrin; Falloon, Trevor J; Friedman, Sarah A; Godard, Marguerite; Guerin, Gilles; Harigane, Yumiko; Horst, Andrew J; Hoshide, Takashi; Ildefonse, Benoit; Jean, Marlon M; John, Barbara E; Koepke, Juergen; Machi, Sumiaki; Maeda, Jinichiro; Marks, Naomi E; McCaig, Andrew M; Meyer, Romain; Morris, Antony; Nozaka, Toshio; Python, Marie; Saha, Abhishek; Wintsch, Robert P

    2014-01-09

    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt.

  10. Primitive layered gabbros from fast-spreading lower oceanic crust

    NASA Astrophysics Data System (ADS)

    Gillis, Kathryn M.; Snow, Jonathan E.; Klaus, Adam; Abe, Natsue; Adrião, Álden B.; Akizawa, Norikatsu; Ceuleneer, Georges; Cheadle, Michael J.; Faak, Kathrin; Falloon, Trevor J.; Friedman, Sarah A.; Godard, Marguerite; Guerin, Gilles; Harigane, Yumiko; Horst, Andrew J.; Hoshide, Takashi; Ildefonse, Benoit; Jean, Marlon M.; John, Barbara E.; Koepke, Juergen; Machi, Sumiaki; Maeda, Jinichiro; Marks, Naomi E.; McCaig, Andrew M.; Meyer, Romain; Morris, Antony; Nozaka, Toshio; Python, Marie; Saha, Abhishek; Wintsch, Robert P.

    2014-01-01

    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt.

  11. Using ultra fast analog memories for fast photodetector readout

    NASA Astrophysics Data System (ADS)

    Breton, Dominique; Delagnes, Eric; Maalmi, Jihane

    2012-12-01

    The recent progresses in the field of photodetection have pushed the performances of the detectors toward the picosecond scale. Necessary precise charge and time measurement are mainly based on high-end oscilloscopes or commercial modules, but these solutions are expensive and house very few channels. The USB-WaveCatcher board provides high performances over a short time window. It houses two 12-bit 500-MHz-bandwidth digitizers sampling up to 3.2 GS/s. Its low consumption allows it to be USB-powered and it offers a lot of functionalities. The board has been used in different test benches dedicated to fast MCP-PMTs or SiPMs, and a reproducible time precision better than 10 ps rms has been demonstrated. Implementations with up to 16 channels have been designed and exhibit the same time precision. The USB-WaveCatcher thus seems to be a wonderful tool for photodetector characterization. Our next step is to widely expand the number of channels while keeping the 10 ps time precision.

  12. Transport induced by mean-eddy interaction: II. Analysis of transport processes

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-03-01

    We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.

  13. Runaway electron transport via tokamak microturbulence

    SciTech Connect

    Hauff, T.; Jenko, F.

    2009-10-15

    The mechanisms found for the magnetic transport of fast ions in the work of Hauff et al. [Phys. Rev. Lett. 102, 075004 (2009)] are extended to the diffusion of runaway electrons. Due to their smaller mass and larger energy, they behave strongly relativistically, for which reason the scaling laws defined previously have to be modified. It is found that due to these changes, the regime of constant magnetic transport does not exist anymore, but diffusivity scales with E{sup -1} for magnetic transport, or even with E{sup -2} in the case that finite gyroradius effects become important. It is shown that the modified analytical approaches are able to explain the surprisingly small values found in experiments, although it cannot be excluded that possibly other reduction mechanisms are present at the same time.

  14. Transport analysis of stellarator reactors

    SciTech Connect

    Painter, S.L. . Dept. of Nuclear Engineering Australian National Univ., Canberra . Research School of Physical Sciences); Lyon, J.F. )

    1991-02-01

    The performance of deuterium-tritium stellarator reactors is studied with a new, fast one-dimensional (1-D) transport survey code that is based on the spectral collocation method. Two operating modes with different signs of the assumed radial electric field are identified. The operating mode with a positive electric field is characterized by high temperatures and moderate densities, whereas the other mode has lower temperatures and higher densities. Both modes lead to possible reactors that could tolerate a large alpha-particle energy loss. The sensitivity to device parameters and to profile assumptions is examined. Scaling expressions useful for parametric studies are obtained for different quantities of interest, and the 1-D code results are compared with results derived from an empirical scaling relation. Deuterium-helium-3 (D-{sup 3}He) operation is also feasible but is more demanding. The implications for stellarator reactor design optimization are discussed. 47 refs., 16 figs., 1 tab.

  15. Mitochondrial metabolic suppression in fasting and daily torpor: consequences for reactive oxygen species production.

    PubMed

    Brown, Jason C L; Staples, James F

    2011-01-01

    Abstract Daily torpor results in an ∼70% decrease in metabolic rate (MR) and a 20%-70% decrease in state 3 (phosphorylating) respiration rate of isolated liver mitochondria in both dwarf Siberian hamsters and mice even when measured at 37°C. This study investigated whether mitochondrial metabolic suppression also occurs in these species during euthermic fasting, when MR decreases significantly but torpor is not observed. State 3 respiration rate measured at 37°C was 20%-30% lower in euthermic fasted animals when glutamate but not succinate was used as a substrate. This suggests that electron transport chain complex I is inhibited during fasting. We also investigated whether mitochondrial metabolic suppression alters mitochondrial reactive oxygen species (ROS) production. In both torpor and euthermic fasting, ROS production (measured as H(2)O(2) release rate) was lower with glutamate in the presence (but not absence) of rotenone when measured at 37°C, likely reflecting inhibition at or upstream of the complex I ROS-producing site. ROS production with succinate (with rotenone) increased in torpor but not euthermic fasting, reflecting complex II inhibition during torpor only. Finally, mitochondrial ROS production was twofold more temperature sensitive than mitochondrial respiration (as reflected by Q(10) values). These data suggest that electron leak from the mitochondrial electron transport chain, which leads to ROS production, is avoided more efficiently at the lower body temperatures experienced during torpor.

  16. Energy deposition of quasi-two temperature relativistic electrons in fast-shock ignition scenario

    NASA Astrophysics Data System (ADS)

    Ghasemi, Seyed Abolfazl; Farahbod, Amir Hossein

    2016-10-01

    Previous calculations from Solodov et al. (2008) indicate that classical stopping and scattering dominate electrons energy deposition and transport when the electrons reach the dense plasma in FSI inertial confinement fusion concept [1]. Our calculations show that, by using quasi- two temperature electrons energy distribution function [2] in comparison with exponential [3] or monoenergetic distribution function and also increasing fast electrons energy to about 7 MeV, the ratio of beam blooming to straggling definitely decreases. Our analytical analysis shows that for fuel mass more than 1 mg and for fast ignitor wavelength λif > 0.53 μ m, straggling and beam blooming increases. Meanwhile, by reducing fast ignitor wavelength from 0.53 to 0.35 micron, and for fuel mass about 2 mg, electron penetration into the dense fuel slightly increases. Therefore, reduction of scattering (blooming and straggling) of electrons and enhancement of electron penetration into the dense fuel, can be obtained in relativistic regime with high energy fast electrons of the order of 5 Mev and more. Such derivations can be used in theoretical studies of the ignition conditions and PIC simulations of the electron transport in fast ignition scenario.

  17. Investigation of fast-ion instabilities and tearing-mode reduction during neutral beam injection in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-10-01

    Neutral beam injection into the MST-RFP is observed to drive instabilities that induce fast-ion transport and quench the fast-ion density below classical predictions. These instabilities are detected for both super- and sub-Alfvénic fast ions, indicating that free energy arises from the real space gradient. As plasma current and fast-ion species are changed, the mode number of the dominant instability varies to maintain the wave-particle resonance condition. The dominant instability also exhibits a dependence on fast-ion velocity (v). As v increases, the mode frequency linearly increases and the spatial asymmetry of associated density fluctuations becomes more pronounced. These features link the observed instabilities to continuum modes destabilized by strong drive. In addition to driving instabilities, fast ions are observed to affect intrinsic tearing modes. For certain plasma scenarios, fast ions reduce the core-resonant tearing mode amplitude by 60% while enhancing the kinetic dynamo arising from coherent interactions between density and radial magnetic fluctuations. This implies the potential importance of kinetic dynamo in the tearing mode suppression. Tearing modes can also impact fast-ion redistribution as suggested by edge-resonant tearing mode triggering of a chirping fast-ion mode. Work supported by US DOE.

  18. Fast ion confinement and stability in a neutral beam injected reversed field pincha)

    NASA Astrophysics Data System (ADS)

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; Fiksel, G.; Sakakita, H.; Spong, D. A.; Titus, J.

    2013-05-01

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3-5% D2) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ˜50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  19. Fast ion confinement and stability in a neutral beam injected reversed field pinch

    SciTech Connect

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A.; Lin, L.; Liu, D.; and others

    2013-05-15

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3–5% D{sub 2}) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ∼50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  20. Characterization and scaling effect of the resistive magnetic field on guiding laser generated fast electrons in solid targets

    NASA Astrophysics Data System (ADS)

    Sentoku, Yasuhiko; Leblanc, Philippe

    2013-10-01

    For applications such as fast ignition, laser generated fast electrons play an essential role in determining energy deposition mechanics. However, the physics behind the electron beam self-guiding in solid materials is poorly understood. Upon examination of experimental results and simulation data, it has been determined that understanding the resistive magnetic field is crucial in determining laser produced fast electron transport patterns in solid targets. The scaling of the resistive magnetic field and confinement conditions are derived and are compared with 2-dimensional collisional particle-in-cell simulations. We study the impact of the initial state of the material (Z dependence, conductor or insulator) on global electron transport patterns. The fast electron transport seen in the simulations are found to be consistent with our scaling rule. Previous experimental observations (e.g. Stephens PRE 2004 and Sentoku PRL 2011) that show confinement or divergence in various materials are explained by this empirical resistive scaling. Our scaling is a powerful tool to design applications of compact radiation source, where controlling fast electron transport is critical.

  1. Fast repetition rate (FRR) flasher

    DOEpatents

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  2. Fast repetition rate (FRR) flasher

    DOEpatents

    Kolber, Zbigniew; Falkowski, Paul

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  3. Impulsively generated fast coronal pulsations

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1986-01-01

    Rapid oscillations in the corona are discussed from a theoretical standpoint, developing some previous work on ducted, fast magnetoacoustic waves in an inhomogeneous medium. In the theory, impulsively (e.g., flare) generated mhd (magnetohydrodynamic) waves are ducted by regions of low Alfven speed (high density) such as coronal loops. Wave propagation in such ducts is strongly dispersive and closely akin to the behavior of Love waves in seismology, Pekeris waves in oceanography and guided waves in fiber optics. Such flare-generated magnetoacoustic waves possess distinctive temporal signatures consisting of periodic, quasi-periodic and decay phases. The quasi-periodic phase possesses the strongest amplitudes and the shortest time scales. Time scales are typically of the order of a second for inhomogeneities (coronal loop width) of 1000 km and Alfven speeds of 1000/kms, and pulse duration times are of tens of seconds. Quasi-periodic signatures have been observed in radio wavelengths for over a decade and more recently by SMM. It is hoped that the theoretical ideas outlined may be successfully related to these observations and thus aid the interpretation of oscillatory signatures recorded by SMM. Such signatures may also provide a diagnostic of coronal conditions. New aspects of the ducted mhd waves, for example their behavior in smoothly varying as opposed to tube-like inhomogeneities, are currently under investigation. The theory is not restricted to loops but applied equally to open field regions.

  4. Fast evaluation of polarizable forces.

    PubMed

    Wang, Wei; Skeel, Robert D

    2005-10-22

    Polarizability is considered to be the single most significant development in the next generation of force fields for biomolecular simulations. However, the self-consistent computation of induced atomic dipoles in a polarizable force field is expensive due to the cost of solving a large dense linear system at each step of a simulation. This article introduces methods that reduce the cost of computing the electrostatic energy and force of a polarizable model from about 7.5 times the cost of computing those of a nonpolarizable model to less than twice the cost. This is probably sufficient for the routine use of polarizable forces in biomolecular simulations. The reduction in computing time is achieved by an efficient implementation of the particle-mesh Ewald method, an accurate and robust predictor based on least-squares fitting, and non-stationary iterative methods whose fast convergence is accelerated by a simple preconditioner. Furthermore, with these methods, the self-consistent approach with a larger timestep is shown to be faster than the extended Lagrangian approach. The use of dipole moments from previous timesteps to calculate an accurate initial guess for iterative methods leads to an energy drift, which can be made acceptably small. The use of a zero initial guess does not lead to perceptible energy drift if a reasonably strict convergence criterion for the iteration is imposed.

  5. GROMACS: fast, flexible, and free.

    PubMed

    Van Der Spoel, David; Lindahl, Erik; Hess, Berk; Groenhof, Gerrit; Mark, Alan E; Berendsen, Herman J C

    2005-12-01

    This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simulations. The package includes about 100 utility and analysis programs. GROMACS is in the public domain and distributed (with source code and documentation) under the GNU General Public License. It is maintained by a group of developers from the Universities of Groningen, Uppsala, and Stockholm, and the Max Planck Institute for Polymer Research in Mainz. Its Web site is http://www.gromacs.org.

  6. Fast Robust PCA on Graphs

    NASA Astrophysics Data System (ADS)

    Shahid, Nauman; Perraudin, Nathanael; Kalofolias, Vassilis; Puy, Gilles; Vandergheynst, Pierre

    2016-06-01

    Mining useful clusters from high dimensional data has received significant attention of the computer vision and pattern recognition community in the recent years. Linear and non-linear dimensionality reduction has played an important role to overcome the curse of dimensionality. However, often such methods are accompanied with three different problems: high computational complexity (usually associated with the nuclear norm minimization), non-convexity (for matrix factorization methods) and susceptibility to gross corruptions in the data. In this paper we propose a principal component analysis (PCA) based solution that overcomes these three issues and approximates a low-rank recovery method for high dimensional datasets. We target the low-rank recovery by enforcing two types of graph smoothness assumptions, one on the data samples and the other on the features by designing a convex optimization problem. The resulting algorithm is fast, efficient and scalable for huge datasets with O(nlog(n)) computational complexity in the number of data samples. It is also robust to gross corruptions in the dataset as well as to the model parameters. Clustering experiments on 7 benchmark datasets with different types of corruptions and background separation experiments on 3 video datasets show that our proposed model outperforms 10 state-of-the-art dimensionality reduction models. Our theoretical analysis proves that the proposed model is able to recover approximate low-rank representations with a bounded error for clusterable data.

  7. Fast approach for toner saving

    NASA Astrophysics Data System (ADS)

    Safonov, Ilia V.; Kurilin, Ilya V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sangho; Choi, Donchul

    2011-01-01

    Reducing toner consumption is an important task in modern printing devices and has a significant positive ecological impact. Existing toner saving approaches have two main drawbacks: appearance of hardcopy in toner saving mode is worse in comparison with normal mode; processing of whole rendered page bitmap requires significant computational costs. We propose to add small holes of various shapes and sizes to random places inside a character bitmap stored in font cache. Such random perforation scheme is based on processing pipeline in RIP of standard printer languages Postscript and PCL. Processing of text characters only, and moreover, processing of each character for given font and size alone, is an extremely fast procedure. The approach does not deteriorate halftoned bitmap and business graphics and provide toner saving for typical office documents up to 15-20%. Rate of toner saving is adjustable. Alteration of resulted characters' appearance is almost indistinguishable in comparison with solid black text due to random placement of small holes inside the character regions. The suggested method automatically skips small fonts to preserve its quality. Readability of text processed by proposed method is fine. OCR programs process that scanned hardcopy successfully too.

  8. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  9. Generalized Backprojection Operator: Fast Calculation

    NASA Astrophysics Data System (ADS)

    Miqueles, Eduardo X.; Helou, Elias S.; De Pierro, Alvaro R.

    2014-03-01

    The inverse Radon transform and his straightforward implementation, known as filtered backprojection (also known as FBP), has become a powerful algorithm for solving a tomographic inverse problem. It has a wide range of applications, including geophysics, medicine and synchrotrons, and from kilo to centi to micro scale respectively. Such a classical inversion has a major computational disadvantage: increasing slowness proportionally to the data size. An ordinary implementation of this algorithm relies on a simple integral that has to be done pixelwise. Many accelerating techniques were proposed in the literature so as to make this part of the inversion as fast as possible. One the most promising strategies is converting the backprojection as a convolution operator (at log-polar coordinates). The generalized backprojector has many applications, for instance in the analytical inversion of single-photon emission tomography or x-ray fluorescence tomography. Our aim in this paper is to show how these ideas can be used for other inversion methods, the iterative ones; which deal much better with noise.

  10. Fast Mapping Verb Meaning from Argument Structure

    ERIC Educational Resources Information Center

    Johnson, Valerie E.

    2010-01-01

    Purpose: To examine lexical knowledge in children through a fast mapping task. Method: This study compared the performance of 60 African American English-speaking and general American English-speaking children between the ages of 4 and 6 years. They were presented with a comprehension task involving the fast mapping of novel verbs in 4 different…

  11. Fast Mapping in Late-Talking Toddlers

    ERIC Educational Resources Information Center

    Weismer, Susan Ellis; Venker, Courtney E.; Evans, Julia L.; Moyle, Maura Jones

    2013-01-01

    This study investigated fast mapping in late-talking (LT) toddlers and toddlers with normal language (NL) development matched on age, nonverbal cognition, and maternal education. The fast-mapping task included novel object labels and familiar words. The LT group scored significantly lower than the NL group on novel word comprehension and…

  12. Fast Mapping by Bilingual Preschool Children

    ERIC Educational Resources Information Center

    Kana, Pui Fong; Kohnert, Kathryn

    2008-01-01

    Previous studies show that young monolingual children's ability to "fast map" new word forms is closely associated with both their age and existing vocabulary knowledge. In this study we investigate potential relationships between age, fast mapping skills and existing vocabulary knowledge in both languages of developing bilingual preschool…

  13. Can Fast and Slow Intelligence Be Differentiated?

    ERIC Educational Resources Information Center

    Partchev, Ivailo; De Boeck, Paul

    2012-01-01

    Responses to items from an intelligence test may be fast or slow. The research issue dealt with in this paper is whether the intelligence involved in fast correct responses differs in nature from the intelligence involved in slow correct responses. There are two questions related to this issue: 1. Are the processes involved different? 2. Are the…

  14. FAST User's Guide - Updated August 2005

    SciTech Connect

    Jonkman, J. M.; Buhl, M. L. Jr.

    2005-10-01

    The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) Code is a comprehensive aeroelastic simulator capable of predicting both the extreme and fatigue loads of two- and three-bladed horizontal-axis wind turbines (HAWTs). This document covers the features of FAST and outlines its operating procedures.

  15. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  16. The fast diffusion of Au IN Pb

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Ko, C.; Brotzen, F. R.

    1990-01-01

    A treatment of the phenomenon of fast diffusion in lead is presented. The model used is based upon the fast diffusion of free solute interstitials. The very large negative enhancement coefficients found in the Pb-(Au, Ag) systems is explained by the formation of first and second order clusters of vacancies and substitutional solute atoms.

  17. Research Program of a Super Fast Reactor

    SciTech Connect

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki; Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki; GOTO, Shoji

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

  18. Fasting: The History, Pathophysiology and Complications

    PubMed Central

    Kerndt, Peter R.; Naughton, James L.; Driscoll, Charles E.; Loxterkamp, David A.

    1982-01-01

    An appreciation of the physiology of fasting is essential to the understanding of therapeutic dietary interventions and the effect of food deprivation in various diseases. The practice of prolonged fasting for political or religious purposes is increasing, and a physician is likely to encounter such circumstances. Early in fasting weight loss is rapid, averaging 0.9 kg per day during the first week and slowing to 0.3 kg per day by the third week; early rapid weight loss is primarily due to negative sodium balance. Metabolically, early fasting is characterized by a high rate of gluconeogenesis with amino acids as the primary substrates. As fasting continues, progressive ketosis develops due to the mobilization and oxidation of fatty acids. As ketone levels rise they replace glucose as the primary energy source in the central nervous system, thereby decreasing the need for gluconeogenesis and sparing protein catabolism. Several hormonal changes occur during fasting, including a fall in insulin and T3 levels and a rise in glucagon and reverse T3 levels. Most studies of fasting have used obese persons and results may not always apply to lean persons. Medical complications seen in fasting include gout and urate nephrolithiasis, postural hypotension and cardiac arrhythmias. ImagesFigure 4. PMID:6758355

  19. Analytical model for fast-shock ignition

    SciTech Connect

    Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.

    2014-07-15

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25.

  20. Differential staining of bacteria: acid fast stain.

    PubMed

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria.

  1. Optical imaging of fast, dynamic neurophysiological function.

    SciTech Connect

    Rector, D. M.; Carter, K. M.; Yao, X.; George, J. S.

    2002-01-01

    Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.

  2. Fast ion JET diagnostics: confinement and losses

    SciTech Connect

    Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; Syme, D. B.; Cecconello, M.; Darrow, D.; Hill, K.; Goloborod'ko, V.; Yavorskij, V.; Johnson, T.; Murari, A.; Reich, M.; Gorini, G.; Zoita, V.

    2008-03-12

    A study of magnetically confined fast ions in tokamaks plays an important role in burning plasma research. To reach ignition and steady burning of a reactor plasma an adequate confinement of energetic ions produced by NBI heating, accelerated with ICRF and born in fusion reactions is essential to provide efficient heating of the bulk plasma. Thus, investigation of the fast ion behaviour is an immediate task for present-day large machines, such as JET, in order to understand the main mechanisms of slowing down, redistribution and losses, and to develop optimal plasma scenarios. Today's JET has an enhanced suite of fast ion diagnostics both of confined and lost ions that enable to significantly contribute to this important area of research. Fast ion populations of p, d, t, {sup 3}He and {sup 4}He, made with ICRF, NBI, and fusion reactions have been investigated in experiments on JET with sophisticated diagnostics in conventional and shear-reversed plasmas, exploring a wide range of effects. This paper will introduce to the JET fast-ion diagnostic techniques and will give an overview of recent observations. A synergy of the unique diagnostic set was utilised in JET, and studies of the response of fast ions to MHD modes (e.g. tornado modes, sawtooth crashes), fast {sup 3}He-ions behaviour in shear-reversed plasmas are impressive examples of that. Some results on fast ion losses in JET experiments with various levels of the toroidal field ripple will be demonstrated.

  3. Advances by the Integral Fast Reactor Program

    SciTech Connect

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs.

  4. Nutrient quality of fast food kids meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...

  5. Exercise, fasting, and mimetics: toward beneficial combinations?

    PubMed

    Jaspers, Richard T; Zillikens, M Carola; Friesema, Edith C H; delli Paoli, Giuseppe; Bloch, Wilhelm; Uitterlinden, André G; Goglia, Fernando; Lanni, Antonia; de Lange, Pieter

    2017-01-01

    Obesity and type 2 diabetes are associated disorders that involve a multiplicity of tissues. Both fasting and physical exercise are known to counteract dyslipidemia/hyperglycemia. Skeletal muscle plays a key role in the control of blood glucose levels, and the metabolic changes and related signaling pathways in skeletal muscle induced by fasting overlap with those induced by exercise. The reduction of fat disposal has been shown to extend to the liver and to white and brown adipose tissue and to involve an increase in their metabolic activities. In recent years signal transduction pathways related to exercise and fasting/food withdrawal in muscle have been intensively studied, both in animals and in humans. Combining fasting/food withdrawal with exercise in animals as well as in humans causes changes unlike those seen during fasting/food withdrawal or exercise alone, which favor repair of muscle over autophagy. In addition, compounds that mimic exercise have been studied in combination with exercise or fasting/food withdrawal. This review addresses our current knowledge of the mechanisms that underlie the individual and combined effects of fasting/food withdrawal, endurance or resistance exercise, and their mimetics, in muscle vs other organs in rodents and humans, and highlights which combinations may improve metabolic disorders.-Jaspers, R. T., Zillikens, M. C., Friesema, E. C. H., delli Paoli, G., Bloch, W., Uitterlinden, A. G., Goglia, F., Lanni, A., de Lange, P. Exercise, fasting, and mimetics: toward beneficial combinations.

  6. Thyroid hormone transport by monocarboxylate transporters.

    PubMed

    Visser, W Edward; Friesema, Edith C H; Jansen, Jurgen; Visser, Theo J

    2007-06-01

    Thyroid hormone (TH) is essential for the normal development and metabolism of different tissues. TH action and metabolism take place intracellularly, which requires cellular uptake via transporters. Several transporter families have been identified, of which the monocarboxylate transporter (MCT) family deserves special attention. So far, only MCT1, MCT2, MCT3, MCT4 and MCT6 have been demonstrated to transport monocarboxylates; MCT8 has been identified as a specific TH transporter. MCT8 mutations in humans are associated with severe psychomotor retardation and elevated 3,3',5-triiodothyronine (T(3)) levels. Recently, MCT8 knockout mice have been shown to perfectly imitate the thyroid state in patients with MCT8 mutations; however, they lack the neurological defects. Although it was long hypothesized that a T-type amino acid transporter also transports iodothyronines, it only recently became clear that MCT10 is involved in the bidirectional transport of aromatic amino acids and iodothyronines. MCT10 preferentially transports T(3) even more effectively than does MCT8. However, its precise function in the human body is poorly understood.

  7. Development towards a fast ion loss detector for the reversed field pinch.

    PubMed

    Bonofiglo, P J; Anderson, J K; Almagri, A F; Kim, J; Clark, J; Capecchi, W; Sears, S H; Egedal, J

    2016-11-01

    A fast ion loss detector has been constructed and implemented on the Madison Symmetric Torus (MST) to investigate energetic ion losses and transport due to energetic particle and MHD instabilities. The detector discriminates particle orbits solely on pitch and consists of two thin-foil, particle collecting plates that are symmetric with respect to the device aperture. One plate collects fast ion signal, while the second aids in the minimization of background and noise effects. Initial measurements are reported along with suggestions for the next design phase of the detector.

  8. The performance of ENDF/B-V. 2 nuclear data for fast reactor calculations

    SciTech Connect

    Atkinson, C.A.; Collins, P.J.

    1987-01-01

    Calculations with ENDF/B-V.2 data have been made for twenty-five fast-spectrum integral assemblies covering a wide range of sizes and compositions. Analysis was done by transport codes with refined cross section processing methods and detailed reactor modelling. The predictions of fission rate distributions and control rod worths were emphasized for the more prototypic benchmark cores. The results show considerable improvements in agreement with experiment compared with analysis using ENDF/B-IV data, but it is apparent that significant errors remain for fast reactor design calculations.

  9. Absorption of thiamine and nicotinic acid in the rat intestine during fasting and immobilization stress

    NASA Technical Reports Server (NTRS)

    Kirilyuk, O. G.; Khmelevskiy, Y. V.

    1980-01-01

    By perfusion of isolated sections of intestine with a solution containing thiamine at a concentration of 3.1 micromole, it was established that thiamine absorption in animals fasted for 72 hours decreased by 28 percent, whereas absorption increased by 12 percent in rats after 24 hour immobilization. After immobilization, absorption of label in the intestinal mucosa increased. Na K ATPase activity in the intestinal mucosa decreased by 10 percent during fasting, and it increased with immobilization of the animals. Activity of Na K ATPase in the intestinal mucosa cells determined the absorption rate of thiamine and nicotinic acid at the level of vitamin transport through the plasma membranes of the enterocytes.

  10. Optimization of Monte Carlo transport simulations in stochastic media

    SciTech Connect

    Liang, C.; Ji, W.

    2012-07-01

    This paper presents an accurate and efficient approach to optimize radiation transport simulations in a stochastic medium of high heterogeneity, like the Very High Temperature Gas-cooled Reactor (VHTR) configurations packed with TRISO fuel particles. Based on a fast nearest neighbor search algorithm, a modified fast Random Sequential Addition (RSA) method is first developed to speed up the generation of the stochastic media systems packed with both mono-sized and poly-sized spheres. A fast neutron tracking method is then developed to optimize the next sphere boundary search in the radiation transport procedure. In order to investigate their accuracy and efficiency, the developed sphere packing and neutron tracking methods are implemented into an in-house continuous energy Monte Carlo code to solve an eigenvalue problem in VHTR unit cells. Comparison with the MCNP benchmark calculations for the same problem indicates that the new methods show considerably higher computational efficiency. (authors)

  11. FAST Spacecraft Battery Design and Performance

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Rao, Gopalakrishna; Ahmad, Anisa

    1997-01-01

    The Fast Auroral Snapshot (FAST) Explorer spacecraft is to study the physical processes that produce the aurora borealis and aurora australis. It is a unique plasma physics experiment that will take fundamental measurements of the magnetic and electrical fields. This investigation will add significantly to our understanding of the near-earth space environments and its effect. The FAST has a 1 year requirement and 3-year goal for its mission life in low earth orbit. The FAST power power system topology is a Direct Energy Transfer (DET) system based on the SAMPEX design. The FAST flight battery supplies power to the satellite during pre-launch operations, the launch phase, the eclipse periods for all mission phases, and when the load is about 50 watts.

  12. Fast Pyrolysis of Wood for Biofuels: Spatiotemporally Resolved Diffuse Reflectance In situ Spectroscopy of Particles.

    PubMed

    Paulsen, Alex D; Hough, Blake R; Williams, C Luke; Teixeira, Andrew R; Schwartz, Daniel T; Pfaendtner, Jim; Dauenhauer, Paul J

    2014-02-20

    Fast pyrolysis of woody biomass is a promising process capable of producing renewable transportation fuels to replace gasoline, diesel, and chemicals currently derived from nonrenewable sources. However, biomass pyrolysis is not yet economically viable and requires significant optimization before it can contribute to the existing oil-based transportation system. One method of optimization uses detailed kinetic models for predicting the products of biomass fast pyrolysis, which serve as the basis for the design of pyrolysis reactors capable of producing the highest value products. The goal of this work is to improve upon current pyrolysis models, usually derived from experiments with low heating rates and temperatures, by developing models that account for both transport and pyrolysis decomposition kinetics at high heating rates and high temperatures (>400 °C). A new experimental technique is proposed herein: spatiotemporally resolved diffuse reflectance in situ spectroscopy of particles (STR-DRiSP), which is capable of measuring biomass composition during fast pyrolysis with high spatial (10 μm) and temporal (1 ms) resolution. Compositional data were compared with a comprehensive 2D single-particle model, which incorporated a multistep, semiglobal reaction mechanism, prescribed particle shrinkage, and thermophysical properties that varied with temperature, composition, and orientation. The STR-DRiSP technique can be used to determine the transport-limited kinetic parameters of biomass decomposition for a wide variety of biomass feedstocks.

  13. Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids.

    PubMed

    Scerbo, Diego; Son, Ni-Huiping; Sirwi, Alaa; Zeng, Lixia; Sas, Kelli M; Cifarelli, Vincenza; Schoiswohl, Gabriele; Huggins, Lesley-Ann; Gumaste, Namrata; Hu, Yunying; Pennathur, Subramaniam; Abumrad, Nada A; Kershaw, Erin E; Hussain, M Mahmood; Susztak, Katalin; Goldberg, Ira J

    2017-04-12

    Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or non-esterified fatty acids (NEFAs). With overnight fasting, kidneys accumulated triglyceride but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a beta adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cd36 mRNA increased 2-fold, and Angptl4, an LpL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LpL with poloxamer 407 or by use of mice with induced genetic LpL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter CD36.

  14. Water-transporting proteins.

    PubMed

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

  15. Mutual colliding impact fast ignition

    SciTech Connect

    Winterberg, Friedwardt

    2014-09-15

    It is proposed to apply the well established colliding beam technology of high energy physics to the fast hot spot ignition of a highly compressed DT (deuterium-tritium) target igniting a larger D (deuterium) burn, by accelerating a small amount of solid deuterium, and likewise a small amount of tritium, making a head-on collision in the center of the target, projecting them through conical ducts situated at the opposite side of the target and converging in its center. In their head-on collision, the relative collision velocity is 5/3 times larger compared to the collision velocity of a stationary target. The two pieces have for this reason to be accelerated to a smaller velocity than would otherwise be needed to reach upon impact the same temperature. Since the velocity distribution of the two head-on colliding projectiles is with its two velocity peaks non-Maxwellian, the maximum cross section velocity product turns out to be substantially larger than the maximum if averaged over a Maxwellian. The D and T projectiles would have to be accelerated with two sabots driven by powerful particle or laser beams, permitting a rather large acceleration length. With the substantially larger cross section-velocity product by virtue of the non-Maxwellian velocity distribution, a further advantage is that the head-on collision produces a large magnetic field by the thermomagnetic Nernst effect, enhancing propagating burn. With this concept, the ignition of the neutron-less hydrogen-boron (HB{sup 11}) reaction might even be possible in a heterogeneous assembly of the hydrogen and the boron to reduce the bremsstrahlung-losses, resembling the heterogeneous assembly in a graphite-natural uranium reactor, there to reduce the neutron losses.

  16. Transportation Technology: Rail Transport and Logistics

    ERIC Educational Resources Information Center

    Lang, Aaron B.

    2011-01-01

    Transportation can simply be defined as the movement of goods, services, and people from one location to another. Without an efficient means to transport goods from place to place, the economy would be nothing like it is today. Throughout the history of the United States, American railroads have paved the way toward creating a nation of great…

  17. Fasts, feasts and festivals in diabetes-1: Glycemic management during Hindu fasts

    PubMed Central

    Kalra, Sanjay; Bajaj, Sarita; Gupta, Yashdeep; Agarwal, Pankaj; Singh, S. K.; Julka, Sandeep; Chawla, Rajeev; Agrawal, Navneet

    2015-01-01

    This communication is the first of a series on South Asian fasts, festivals, and diabetes, designed to spread awareness and stimulate research on this aspect of diabetes and metabolic care. It describes the various fasts observed as part of Hindu religion and offers a classification scheme for them, labeling them as infrequent and frequent. The infrequent fasts are further sub-classified as brief and prolonged, to facilitate a scientific approach to glycemic management during these fasts. Pre-fast counseling, non-pharmacological therapy, pharmacological modification, and post-fast debriefing are discussed in detail. All available drug classes and molecules are covered in this article, which provides guidance about necessary changes in dosage and timing of administration. While in no way exhaustive, the brief review offers a basic framework which diabetes care professionals can use to counsel and manage persons in their care who wish to observe various Hindu fasts. PMID:25729681

  18. Secure Transportation Management

    SciTech Connect

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  19. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    NASA Astrophysics Data System (ADS)

    Hunt, Randall J.; Johnson, William P.

    2016-12-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  20. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang; Akli, Kramer U.; Beg, Farhat N.; Sentoku, Yasuhiko; Schumacher, Douglass W.; Wei, Mingsheng

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  1. Physiological Responses to Fasting and Estivation for the Three-Toed Amphiuma (Amphiuma tridactylum).

    PubMed

    Smith, Matthew E; Secor, Stephen M

    Species of Amphiuma enter a state of subterranean estivation with the drying of their aquatic habitat. Characteristic of amphibian fasting and estivation is an initial depression of metabolism and tissue mass and function with fasting, followed by a more pronounced adaptive decrease in metabolism and tissue function with estivation. We hypothesized that Amphiuma likewise experiences a two-stage set of responses to estivation. Therefore, we examined the physiological responses of the three-toed amphiuma (Amphiuma tridactylum) to fasting and estivation treatments. Recently fed A. tridactylum served as controls for fasting treatments of 1, 3, and 6 mo (in water) and estivation treatments of 3 and 6 mo (buried in dried substrate). After a 1-mo fast, A. tridactylum experienced no further depression of metabolic rate following 3 or 6 mo of fasting or estivation. For all fasting and estivation trials, A. tridactylum maintained blood chemistry homeostasis, with the exception of an increase in blood urea following 6 mo of estivation. Compared with fed controls, the mass of most organs did not vary even after 6 mo of fasting and estivation. Only the small intestine (decreasing) and the full gall bladder (increasing) experienced significant changes in mass with fasting or estivation. The fasting decrease in small intestinal mass was in part due to enterocyte atrophy, which resulted in a decrease in mucosa/submucosa thickness. In contrast to many estivating anurans and the ecologically convergent sirens, A. tridactylum does not surround itself in a cocoon of dried skin or mucus during estivation. The thickness and architecture of their skin remains unchanged even after 6 mo of estivation. Following months of fasting or estivation, individuals still maintain gastric acid production, pancreatic enzyme activity, and intestinal enzyme and transporter activities. Contrary to our hypothesis that A. tridactylum experiences two stages of metabolic depression and tissue downregulation

  2. Fast Physics Testbed for the FASTER Project

    SciTech Connect

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  3. Fasting headache, weight loss, and dehydration.

    PubMed

    Mosek, A; Korczyn, A D

    1999-03-01

    Recently, we showed that fasting is a strong headache precipitator unrelated to coffee, tea, or smoking withdrawal or to oversleeping. In the current study, we evaluated the role of dehydration as a possible precipitator of fasting headache. The effects of a 25-hour fast of the Jewish Yom Kippur (Day of Atonement) were studied in women who participated in our previous Yom Kippur study. We asked the subjects to weigh themselves at the beginning and at the end of the Yom Kippur fast, assuming that the weight loss would largely reflect dehydration. In all but 1 of the 56 participants, the fast resulted in weight loss but only 28 (50%) reported headache. The average weight loss was 1.4 +/- 0.8 kg in those who developed headache and 1.2 +/- 0.5 kg in those who did not. This small difference was not statistically significant. We conclude that dehydration, as reflected by acute weight loss, is an unlikely cause of headache during a single day of fasting. The mechanism of fasting headache remains unclear.

  4. Derivation of deformation characteristics in fast-moving glaciers

    NASA Astrophysics Data System (ADS)

    Herzfeld, Ute C.; Clarke, Garry K. C.; Mayer, Helmut; Greve, Ralf

    2004-04-01

    Crevasse patterns are the writings in a glacier's history book—the movement, strain and deformation frozen in ice. Therefore by analysis of crevasse patterns we can learn about the ice-dynamic processes which the glacier has experienced. Direct measurement of ice movement and deformation is time-consuming and costly, in particular for large glaciers; typically, observations are lacking when sudden changes occur. Analysis of crevasse patterns provides a means to reconstruct past and ongoing deformation processes mathematically. This is especially important for fast-moving ice. Ice movement and deformation are commonly described and analyzed using continuum mechanics and measurements of ice velocities or strain rates. Here, we present a different approach to the study of ice deformation based on principles of structural geology. Fast ice movement manifests itself in the occurrence of crevasses. Because crevasses remain after the deformation event and may be transported, overprinted or closed, their analysis based on aerial videography and photography or satellite data gives information on past deformation events and resulting strain states. In our treatment, we distinguish (A) continuously fast-moving glaciers and ice streams, and (B) surge-type glaciers, based on observations of two prototypes, Jakobshavns Isbræ, Greenland, for (A), and Bering Glacier, Alaska, during the 1993-1995 surge, for (B). Classes of ice-deformation types are derived from aerial images of ice surfaces using structural geology, i.e. structural glaciology. For each type, the deformation gradient matrix is formed. Relationships between invariants used in structural geology and continuum mechanics and the singular value decomposition are established and applied to ice-surface classification. Deformation during a surge is mostly one of the extensional deformation types. Continuously, or infinitesimally repeated, deformation acting in continuously fast-moving ice causes different typical

  5. The axial topographic high at intermediate and fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Carbotte, Suzanne M.; MacDonald, Ken C.

    1994-12-01

    An axial topographic high is commonly observed at both fast spreading ridges and some segments of intermediate spreading ridges. At fast rates the axial high is primarily created by the buoyancy of hot rock and magma beneath the rise. As newly formed crust is transported off axis, little vestige of an axial high is observed on the ridge flanks. In contrast, at intermediate rates, a significant component of the positive topography may be a volcanic construction, preserved on the ridge flanks as abyssal hills, which are slit axial volcanoes. We suggest this difference in the nature of the axial high reflects a lithosphere strong enough to support construction of a volcanic crestal ridge at intermediate spreading rates, but only rarely at fast rates. Relict overlap ridges, found within the discordant zones left by overlapping spreading centers, is one class of ridge-flank topography which appears to have a significant volcanic constructional component even at fast spreading ridges. Unlike topography away from these discontinuities, the relief and shape of overlapping spreading centers is preserved as relict ridge tips are rafted onto the ridge flanks. Reduced magma supply at these discontinuities may give rise to an axial lithosphere strong enough to support volcanic construction of overlap ridges. Low axial lithospheric strength may also account for the lack of normal faults within the innermost 1-2 km of fast, and some intermediate, spreading ridges. With a thin/weak brittle layer at the ridge crest, tensile failure will predominate and few normal faults will form. Depths to the axial magma chamber reflector observed in multi-channel seismic data limit the thickness of the brittel layer on axis to less than 1-2 km for much of the East Pacific Rise (EPR). This depth is comparable to depths over which tensile failure within the oceanic crust will predominate, estimated from the Griffith criteria for fracture initiation (approx. 0.5-1.5 km). As the brittle layer

  6. Fast Food and Neighborhood Stroke Risk

    PubMed Central

    Morgenstern, Lewis B.; Escobar, James D.; Sánchez, Brisa N.; Hughes, Rebecca; Zuniga, Belinda G.; Garcia, Nelda; Lisabeth, Lynda D.

    2009-01-01

    Objective To investigate the association between the number of fast food restaurants and ischemic stroke in neighborhoods. Methods This work was a pre-specified part of the Brain Attack in Corpus Christi (BASIC) project. Ischemic stroke cases were prospectively ascertained in Nueces County, Texas. Home addresses were geocoded and used to establish the census tract for each stroke case. Census tracts were used as proxies for neighborhoods (n=64). Using a standard definition, fast food restaurants were identified from a commercial list. Poisson regression was used to study the association between the number of fast food restaurants in the neighborhood, using a 1-mile buffer around each census tract, and the risk of stroke in the neighborhood. Models were adjusted for demographics and neighborhood socioeconomic status (SES). Results There were 1,247 completed ischemic strokes from January 2000 through June 2003 and 262 fast food restaurants. The median number of fast food restaurants per census tract including buffer was 22 (IQR 12–33). Adjusting for neighborhood demographics and SES, the association of fast food restaurants with stroke was significant (p=0.02). The association suggested that the risk of stroke in a neighborhood increased by 1% for every fast food restaurant (RR 1.01 95% CI: 1.00–1.01). The relative risk of stroke comparing neighborhoods in the 75th to the 25th percentile of the distribution of fast food restaurants was 1.13 (95% CI: 1.02–1.25). Interpretation Controlling for demographic and SES factors, there was a significant association between fast food restaurants and stroke risk in neighborhoods in this community-based study. PMID:19743456

  7. Very fast approximate reconstruction of MR images.

    PubMed

    Angelidis, P A

    1998-11-01

    The ultra fast Fourier transform (UFFT) provides the means for a very fast computation of a magnetic resonance (MR) image, because it is implemented using only additions and no multiplications at all. It achieves this by approximating the complex exponential functions involved in the Fourier transform (FT) sum with computationally simpler periodic functions. This approximation introduces erroneous spectrum peaks of small magnitude. We examine the performance of this transform in some typical MRI signals. The results show that this transform can very quickly provide an MR image. It is proposed to be used as a replacement of the classically used FFT whenever a fast general overview of an image is required.

  8. Weizmann Fast Astronomical Survey Telescope (WFAST)

    NASA Astrophysics Data System (ADS)

    Nir, Guy; Ofek, Eran Oded; Ben-Ami, Sagi; Manulis, Ilan; Gal-Yam, Avishay; Diner, Oz; Rappaport, Michael

    2017-01-01

    The Weizmann Fast Astronomical Survey Telescope (W-FAST) is an experiment designed to explore variability on sub-second time scales. When completed it will consist of two robotic 55-cm f/2 Schmidt telescopes. The optics is capable of providing $\\sim0.5$" image quality over 23 deg$^2$. The focal plane will be equipped with fast readout, low read-noise sCMOS detectors. The first generation focal plane is expected to have 6.2 deg$^2$ field of view. WFAST is designed to study occultations by solar system objects (KBOs and Oort cloud objects), short time scale stellar variability, and high resolution imaging via proper coaddition.

  9. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  10. The Fast Debris Evolution Model

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; Swinerd, Graham; Newland, Rebecca; Saunders, Arrun

    The ‘Particles-in-a-box' (PIB) model introduced by Talent (1992) removed the need for computerintensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FaDE), employs a first-order differential equation to describe the rate at which new objects (˜ 10 cm) are added and removed from the environment. Whilst Talent (1992) based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FaDE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FaDE model has been implemented as a client-side, web-based service using Javascript embedded within a HTML document. Due to the simple nature of the algorithm, FaDE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ˜ 10 cm low Earth orbit (LEO) debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FaDE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly

  11. Transportation and handling loads

    NASA Technical Reports Server (NTRS)

    Ostrem, F. E.

    1971-01-01

    Criteria and recommended practices are presented for the prediction and verification of transportation and handling loads for the space vehicle structure and for monitoring these loads during transportation and handling of the vehicle or major vehicle segments. Elements of the transportation and handling systems, and the forcing functions and associated loads are described. The forcing functions for common carriers and typical handling devices are assessed, and emphasis is given to the assessment of loads at the points where the space vehicle is supported during transportation and handling. Factors which must be considered when predicting the loads include the transportation and handling medium; type of handling fixture; transport vehicle speed; types of terrain; weather (changes in pressure of temperature, wind, etc.); and dynamics of the transportation modes or handling devices (acceleration, deceleration, and rotations of the transporter or handling device).

  12. Transportation Management Workshop: Proceedings

    SciTech Connect

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  13. Thermodynamics of nuclear transport

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    Molecular transport across the nuclear envelope is important for eukaryotes for gene expression and signaling. Experimental studies have revealed that nuclear transport is inherently a nonequilibrium process and actively consumes energy. In this work we present a thermodynamics theory of nuclear transport for a major class of nuclear transporters that are mediated by the small GTPase Ran. We identify the molecular elements responsible for powering nuclear transport, which we term the ``Ran battery'' and find that the efficiency of transport, measured by the cargo nuclear localization ratio, is limited by competition between cargo molecules and RanGTP to bind transport receptors, as well as the amount of NTF2 (i.e. RanGDP carrier) available to circulate the energy flow. This picture complements our current understanding of nuclear transport by providing a comprehensive thermodynamics framework to decipher the underlying biochemical machinery. Pm and CHW were supported by a Simons Investigator in the Mathematical Modeling in Living Systems grant (to PM).

  14. Basic Transportation Economics

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.

    1972-01-01

    Transportation economics is an integral part of all transportation activities. Refined, detailed, and careful economic analyses consider conduct-performance methodology and the specifications of production, cost and demand functions.

  15. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  16. Fast terahertz imaging using a quantum cascade amplifier

    SciTech Connect

    Ren, Yuan Wallis, Robert; Jessop, David Stephen; Degl'Innocenti, Riccardo; Klimont, Adam; Beere, Harvey E.; Ritchie, David A.

    2015-07-06

    A terahertz (THz) imaging scheme based on the effect of self-mixing in a 2.9 THz quantum cascade (QC) amplifier has been demonstrated. By coupling an antireflective-coated silicon lens to the facet of a QC laser, with no external optical feedback, the laser mirror losses are enhanced to fully suppress lasing action, creating a THz QC amplifier. The addition of reflection from an external target to the amplifier creates enough optical feedback to initiate lasing action and the resulting emission enhances photon-assisted transport, which in turn reduces the voltage across the device. At the peak gain point, the maximum photon density coupled back leads to a prominent self-mixing effect in the QC amplifier, leading to a high sensitivity, with a signal to noise ratio up to 55 dB, along with a fast data acquisition speed of 20 000 points per second.

  17. Fast Pairwise Conversion of Supernova Neutrinos: A Dispersion Relation Approach

    NASA Astrophysics Data System (ADS)

    Izaguirre, Ignacio; Raffelt, Georg; Tamborra, Irene

    2017-01-01

    Collective pair conversion νeν¯ e↔νxν¯ x by forward scattering, where x =μ or τ , may be generic for supernova neutrino transport. Depending on the local angular intensity of the electron lepton number carried by neutrinos, the conversion rate can be "fast," i.e., of the order of √{2 }GF(nνe-nν¯e)≫Δ matm2/2 E . We present a novel approach to understand these phenomena: a dispersion relation for the frequency and wave number (Ω ,K ) of disturbances in the mean field of νeνx flavor coherence. Runaway solutions occur in "dispersion gaps," i.e., in "forbidden" intervals of Ω and/or K where propagating plane waves do not exist. We stress that the actual solutions also depend on the initial and/or boundary conditions, which need to be further investigated.

  18. Setup for fast-pulsed measurements of large critical currents

    NASA Astrophysics Data System (ADS)

    D'Ovidio, Claudio Alberto; Esparza, Daniel Antonio; Malachevsky, Maria Teresa

    2000-07-01

    We describe a set of equipments for pulsed measurements of transport critical currents in superconducting materials having a critical current of tens or hundreds of amperes. It is based on the appliance of an electrical current for a very short period of time, rapid enough to preserve the integrity of the current leads and to minimize the Joule effect. Power is applied to the wire-sample setup and the voltage drop is measured within seconds, with a resolution of the order of 10 nV. In this way the I- V characteristics can be obtained with a 1% error, if the 1 μV/ cm criterion is employed. The hardware is composed of three parts: the current pulse generator, a fast low-noise voltage amplifier and a PC with a DAC-ADC card. The data acquisition is achieved via an Assembler program.

  19. Developments of fast emittance monitors for ion sources at RCNP

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-15

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  20. Developments of fast emittance monitors for ion sources at RCNP

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-01

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  1. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect

    Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.

    2014-10-15

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  2. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  3. Control of wire heating with resistively guided fast electrons through an inverse conical taper

    SciTech Connect

    Robinson, A. P. L. Schmitz, H.; Green, J. S.; Booth, N.; Ridgers, C. P.; Pasley, J.

    2015-04-15

    The heating of a solid wire embedded in a solid substrate (of lower Z material) with relativistic electrons generated by ultra-intense laser irradiation is considered. Previously, it has been noted that the initial angular distribution of the fast electrons is a highly important factor in the efficacy of the heating [Robinson et al., Phys. Plasmas 20, 122701 (2013)]. We show that, using 3D numerical simulations, the addition of an inverse conical taper at the front of wire can considerably improve the heating of the wire due to the reduction of angular spread of the fast electrons which is caused by transport through the inverse conical taper [Robinson et al., “Guiding of laser-generated fast electrons by exploiting the resistivity-gradients around a conical guide element,” Plasma Phys. Controlled Fusion (to be published)].

  4. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses

    SciTech Connect

    Cai Hongbo; Zhu Shaoping; Wu Sizhong; Chen Mo; Zhou Cangtao; He, X. T.; Yu Wei; Nagatomo, Hideo

    2011-02-15

    The efficient magnetic collimation of fast electron flow transporting in overdense plasmas is investigated with two-dimensional collisional particle-in-cell numerical simulations. It is found that the specially engineered targets exhibiting either high-resistivity-core-low-resistivity-cladding structure or low-density-core-high-density-cladding structure can collimate fast electrons. Two main mechanisms to generate collimating magnetic fields are found. In high-resistivity-core-low-resistivity-cladding structure targets, the magnetic field at the interfaces is generated by the gradients of the resistivity and fast electron current, while in low-density-core-high-density-cladding structure targets, the magnetic field is generated by the rapid changing of the flow velocity of the background electrons in transverse direction (perpendicular to the flow velocity) caused by the density jump. The dependences of the maximal magnetic field on the incident laser intensity and plasma density, which are studied by numerical simulations, are supported by our analytical calculations.

  5. The effect of the fast-ion profile on Alfvén eigenmode stability

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.; Van Zeeland, M. A.; Austin, M. E.; Bass, E. M.; Ghantous, K.; Gorelenkov, N. N.; Grierson, B. A.; Spong, D. A.; Tobias, B. J.

    2013-09-01

    Different combinations of on-axis and off-axis neutral beams are injected into DIII-D plasmas that are unstable to reversed shear Alfvén eigenmodes (RSAE) and toroidal Alfvén eigenmodes (TAE). The variations alter the classically expected fast-ion gradient ∇βf in the plasma interior. Off-axis injection reduces the amplitude of RSAE activity an order of magnitude. Core TAEs are also strongly stabilized. In contrast, at larger minor radius, the fast-ion gradient is similar for on- and off-axis injection and switching the angle of injection has a weaker effect on the stability of TAEs. The average mode amplitude correlates strongly with the classically expected profile but the measured profile relaxes to similar values independent of the fraction of off-axis beams. The observations agree qualitatively with a ‘critical-gradient’ model of fast-ion transport.

  6. A tangentially viewing fast ion D-alpha diagnostic for NSTX

    SciTech Connect

    Bortolon, A.; Heidbrink, W. W.; Podesta, M.

    2010-10-15

    A second fast ion D-alpha (FIDA) installation is planned at NSTX to complement the present perpendicular viewing FIDA diagnostics. Following the present diagnostic scheme, the new diagnostic will consist of two instruments: a spectroscopic diagnostic that measures fast ion spectra and profiles at 16 radial points with 5-10 ms resolution and a system that uses a band pass filter and photomultiplier to measure changes in FIDA light with 50 kHz sampling rate. The new pair of FIDA instruments will view the heating beams tangentially. The viewing geometry minimizes spectral contamination by beam emission or edge sources of background emission. The improved velocity-space resolution will provide detailed information about neutral-beam current drive and about fast ion acceleration and transport by injected radio frequency waves and plasma instabilities.

  7. How stressful is transportation?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is common for cattle to be transported multiple times during their production life cycle. Transportation events may include calves shipped to backgrounding facilities and feed yards, as well as pregnant cows that may be transported to sale barns or relocated due to drought to access a pasture or ...

  8. Cabrillo College Transportation Study.

    ERIC Educational Resources Information Center

    Willett, Terrence

    This report provides results of the survey and other sources of information which have been used to develop a transportation management plan at Cabrillo College (California). In 2000, Cabrillo College organized a Transportation Management Committee to review the existing transportation situation and develop and implement a plan with the goal of…

  9. Directory of Transportation Education.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC.

    This directory lists institutions of higher education that offer degree and non-degree programs in various transportation fields and modes, including aviation, highway, urban mass transportation, railroad, water transport, pipeline, intermodal, and environmental and consumer education. The book catalogs courses and degrees offered, names of…

  10. Packaging, transportation of LLW

    SciTech Connect

    Shelton, P.

    1994-12-31

    This presentation is an overview of the regulations and requirements for the packaging and transportation of low-level radioactive wastes. United States Environmental Protection Agency and Department of Transportation regulations governing the classification of wastes and the transport documentation are also described.

  11. Transport properties of interacting magnetic islands in tokamak plasmas

    SciTech Connect

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.

  12. Fate and transport of engineered nanomaterials in the environment.

    PubMed

    Lin, Daohui; Tian, Xiaoli; Wu, Fengchang; Xing, Baoshan

    2010-01-01

    With the fast development of nanotechnology, engineered nanomaterials (ENMs) will inevitably be introduced into the various environment. Increasing studies showed the toxiccity of various ENMs, which raises concerns over their fate and transport in the environment. This review focuses on advances in the research on environmental transport and fate of ENMs. Aggregation and suspension behaviors of ENMs determining their fate and transport in aqueous environment are discussed, with emphasis on the influencing factors, including natural colloids, natural organic matter, pH, and ionic strength. Studies on the transport of ENMs in porous media and its influencing factors are reviewed, and transformation and organismcleansing, as two fate routes of ENMs in the environment, are addressed. Future research directions and outlook in the environmental transport and fate of ENMs are also presented.

  13. FastBit: Interactively Searching Massive Data

    SciTech Connect

    Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming

    2009-06-23

    As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.

  14. Upgrading the ATLAS fast calorimeter simulation

    NASA Astrophysics Data System (ADS)

    Hubacek, Z.; ATLAS Collaboration

    2016-10-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full Geant4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software and can be tuned to data more easily than Geant4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis and a neural network parametrization to optimise the amount of information to store in the ATLAS simulation infrastructure.

  15. Do Ramadan fasting restrictions alter eating behaviours?

    PubMed

    Erol, Atila; Baylan, Gonul; Yazici, Fadime

    2008-07-01

    During Ramadan month, Muslims should refrain from drinking, eating and smoking from dawn to sunset. Ramadan fasting can be considered as a kind of dietary restriction. Eating restriction is a risk factor for later development of eating disorders. The purpose of this study is to evaluate whether Ramadan fasting changes the eating behaviours of young people, especially girls who are known as the most vulnerable group for eating disorders. Our sample consisted of 79 healthy volunteers from a high school (63 females; mean age = 16.29; 16 males; mean age = 16.31) who fasted during the Ramadan month. No statistically significant differences were found between the scores of EAT (Eating Attitude Test) and BITE (Bulimic Investigatory Test, Edinburgh) which were administered within the weeks before and after Ramadan. According to our results Ramadan fasting restrictions do not seem to change the eating behaviours of young girls and boys.

  16. Fast Food Combos Make Type A Lunches

    ERIC Educational Resources Information Center

    Stashower, Gloria

    1974-01-01

    Clark County school district in Las Vegas, Nevada, has combination lunches available for high school students that meet Type A nutrition requirements but which resemble the commercial fast food menus teenagers prefer. (MLF)

  17. Using Fast Food Restaurants for Consumer Education.

    ERIC Educational Resources Information Center

    Koorland, Mark A.; Cooke, Janice C.

    1990-01-01

    This article describes how classroom discussion and field trips can be used to teach students with disabilities to engage in comparative shopping and informed choice making when they dine in fast food restaurants. (JDD)

  18. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  19. Cosmology: Home of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Lorimer, Duncan

    2016-02-01

    Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453

  20. IBW and fast wave launching and damping on TFTR

    SciTech Connect

    Hosea, J.C.; Bell, R.; Hill, K.; LeBlanc, B.; Majeski, R.; Nazikian, R.; Ono, M.; Phillips, C.K.; Rogers, J.H.; Schilling, G.; Wilson, J.R.; DIppolito, D.A.; Myra, J.R.; Bush, C.E.; Hanson, G.R.

    1997-04-01

    Antennas to provide direct IBW excitation and to improve the launched spectrum and power handling for mode converted (MC) IBW excitation have been installed on TFTR to support studies of transport barrier formation inside the TFTR plasma. Initial IBW launching/heating experiments have been performed at f{sub RF}{approx}76MHz and 50.6 MHz for several antenna and plasma positions, several magnetic fields (D, T, H, {sup 3}He resonances), and with and without neutral beam injection. Although the measured surface density profiles in front of the antenna should theoretically support IBW launching to the plasma core via EPW excitation, loading resistance parameter dependence and heating results suggest that the wave energy is being deposited mostly in the plasma periphery. The potential roles of surface fast wave and near field excitation/damping on the IBW performance are discussed. Also MC IBW damping of the fast wave has been significantly improved through the removal of lithium 7 from the plasma. {copyright} {ital 1997 American Institute of Physics.}

  1. IBW and Fast Wave Launching and Damping on TFTR

    SciTech Connect

    First Author = J.C. Hosea

    1997-01-01

    Antennas to provide direct IBW (ion-Bernstein wave) excitation and to improve the launched spectrum and power handling for mode-coverted (MC) IBW excitation have been installed on TFTR (Tokamak Fusion Test Reactor) to support studies of transport barrier formation inside the TFTR plasma. Initial IBW launching/heating experiments have been performed at f(subscript) rf (nonsubsript) = 76 MHz and 50.6 MHz for several antenna and plasma positions, several mangetic fields [D, T, H, (superscript) 3 (nonsuperscript) He resonances], and with and without neutral-beam injection. Although the measured surface density profiles in front of the antenna should theoretically support IBW launching to the plasma core via EPW (electron plasma wave) excitation, loading resistance parameter dependence and heating results suggest that the wave energy is being deposited mostly in the plasma periphery. The potential roles of surface fast-wave and near-field excitation/damping on the IBW performance are discussed. Also MC IBW damping of the fast wave has been significantly improved through the removal of lithium 7 from the plasma.

  2. Features of Fast Ion Instability of Partly Compensated Ion Beams

    NASA Astrophysics Data System (ADS)

    Dudnikov, Vadim

    2000-10-01

    Compensation of a space charge of particle beams by ions have some significant features very different of the electrons compensation. Heavier ions have longer lifetime in the beam and it is possible to reach overcompensation with transformation of repulse forces to the focusing. This feature help to the long distance beam transportation inside a small apertures. But, an ability of heavy ions to keep coherent motion can be a reason of strong coherent instabilities of particle beams with a space charge compensation by ions. A strong coherent focusing of ions in space charge potential of the beam during accumulation can create very high local density of compensating ions with a very picked distribution (Christmas tree distribution). "Fast ion instability" have been observed recently in some storage rings.Very fast development of transverse instability have been observed during a first production of high intense negative ion beam from surface-plasma sources. This instability was observed as oscillation of the local current density of negative ion beam with low fluctuation of beam intensity.

  3. Studies of electron and proton isochoric heating for fast ignition

    SciTech Connect

    Mackinnon, A; Key, M; Akli, K; Beg, F; Clarke, R; Clarke, D; Chen, M; Chung, H; Chen, S; Freeman, R; Green, J; Gu, P; Gregori, G; Highbarger, K; Habara, H; Hatchett, S; Hey, D; Heathcote, R; Hill, J; King, J; Kodama, R; Koch, J; Lancaster, K; Langdon, B; Murphy, C; Norreys, P; Neely, D; Nakatsutsumi, M; Nakamura, H; Patel, N; Patel, P; Pasley, J; Snavley, R; Stephens, R; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Tanaka, K; Tempo, M; Toley, M; Town, R; Wilks, S; VanWoerkom, L; Weber, R; Yabuuchi, T; Zhang, B

    2006-10-02

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) proposal to use this technique to initiate burn in a fusion capsule. Experiments designed to investigate electron isochoric heating have measured heating in two limiting cases of interest to fast ignition, small planar foils and hollow cones. Data from Cu K{alpha} fluorescence, crystal x-ray spectroscopy of Cu K shell emission, and XUV imaging at 68eV and 256 eV are used to test PIC and Hybrid PIC modeling of the interaction. Isochoric heating by focused proton beams generated at the concave inside surface of a hemi-shell and from a sub hemi-shell inside a cone have been studied with the same diagnostic methods plus imaging of proton induced K{alpha}. Conversion efficiency to protons has also been measured and modeled. Conclusions from the proton and electron heating experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed.

  4. Sociodemographic differences in fast food price sensitivity

    PubMed Central

    Meyer, Katie A.; Guilkey, David K.; Ng, Shu Wen; Duffey, Kiyah J.; Popkin, Barry M.; Kiefe, Catarina I.; Steffen, Lyn M.; Shikany, James M.; Gordon-Larsen, Penny

    2014-01-01

    Importance Fiscal food policies (e.g., taxation) are increasingly proposed to improve population-level health, but their impact on health disparities is unknown. Objective We estimated subgroup-specific effects of fast food price changes on fast food consumption and cardio-metabolic outcomes, hypothesizing inverse associations between fast food price with fast food consumption, BMI, and insulin resistance and stronger associations among blacks (vs. whites) and participants with relatively lower education or income. Design 20-year follow-up (5 exams) in a biracial U.S. prospective cohort: Coronary Artery Risk Development in Young Adults (CARDIA) (1985/86–2005/06, baseline n=5,115). Participants Aged 18–30 at baseline; designed for equal recruitment by race (black/white), educational attainment, age, and gender. Exposures Community-level price data from the Council for Community and Economic Research (C2ER) temporally- and geographically-linked to study participants’ home address at each exam. Main outcome and measures Participant-reported number of fast food eating occasions per week; BMI (kg/m2) from clinical assessment of weight and height; homeostatic model assessment insulin resistance (HOMA-IR) from fasting glucose and insulin. Covariates included individual- and community-level social and demographic factors. Results In repeated measures regression, multivariable-adjusted associations between fast food price and consumption were non-linear (quadratic, p<0.001), with significant inverse estimated effects on consumption at higher prices; estimates varied according to race (interaction term p=0.04), income (p=0.07), and education (p=0.03). For example, at the 10th percentile of price ($1.25/serving), blacks and whites had mean fast food consumption (times/week) of 2.2 (95% CI: 2.1–2.3) and 1.6 (1.5–1.7), respectively, while at the 90th percentile of price ($1.53/serving), respective mean consumption estimates were 1.9 (1.8–2.0) and 1.5 (1.4–1.6). We

  5. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  6. Fast imaging system on Tore Supra

    SciTech Connect

    Geraud, A.; Salasca, S.; Verger, J. M.; Alarcon, T.; Agarici, G.; Bremond, S.; Chenevois, J. P.; Geynet, M.; Migozzi, J. B.; Reux, C.

    2009-03-15

    A new endoscope aiming at transferring the image of a poloidal section of the Tore Supra plasma to a fast camera able to record frames at a speed up to 4800 frames per second at full resolution, or much faster for a limited number of pixel, has been installed on Tore Supra. First movies showing the light emission associated to fast phenomena such as plasma start up, disruptions or gas and pellet injections have been produced.

  7. Localizing the Fast Radio Burst 121102

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shami; Wharton, Robert; Law, Casey J.; Hessels, Jason; Burke-Spolaor, Sarah; Bower, Geoffrey C.; Abruzzo, Matthew W.; Bassa, Cees; Butler, Bryan J.; Cordes, James M.; Paul, Demorest; Kaspi, Victoria M.; McLaughlin, Maura; Ransom, Scott M.; Scholz, Paul; Seymour, Andrew; Spitler, Laura; Tendulkar, Shriharsh P.; PALFA Survey Team; VLA+AO FRB121102 Simultaneous Campaign Team; EVN FRB121102 Campaign Team

    2017-01-01

    The precise localization of a fast radio burst and the identification of its host counterpart would allow constraints on their distances and energetics, and enable us to discriminate between various origin scenarios, from the local and mundane to the cosmological and exotic. Here we report on the results of an ongoing localization campaign on the repeating fast radio burst source, FRB 121102, with the VLA, Arecibo, and other telescopes.

  8. International Symposium on Fast Glacier Flow

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.

    1990-01-01

    Cryospheric Sciences Program "International Symposium on Fast Glacier Flow" (PI, C. Lingle) provided partial support for publication of Annals of Glaciology 36 by the International Glaciological Society. Annals of Glaciology is a peer-reviewed journal. Annals 36, which was published in 2003, contains 39 peer-reviewed and edited papers from the International Symposium on Fast Glacier Flow, which was held in Yakutat, Alaska, 10-14 June 2002.

  9. Universal Fast Breeder Reactor Subassembly Counter manual

    SciTech Connect

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  10. Design of unique pins for irradiation of higher actinides in a fast reactor

    SciTech Connect

    Basmajian, J.A.; Birney, K.R.; Weber, E.T.; Adair, H.L.; Quinby, T.C.; Raman, S.; Butler, J.K.; Bateman, B.C.; Swanson, K.M.

    1982-03-01

    The actinides produced by transmutation reactions in nuclear reactor fuels are a significant factor in nuclear fuel burnup, transportation and reprocessing. Irradiation testing is a primary source of data of this type. A segmented pin design was developed which provides for incorporation of multiple specimens of actinide oxides for irradiation in the UK's Prototype Fast Reactor (PFR) at Dounreay Scotland. Results from irradiation of these pins will extend the basic neutronic and material irradiation behavior data for key actinide isotopes.

  11. Fasting guidelines for diabetic children and adolescents.

    PubMed

    Azad, Kiswhar; Mohsin, Fauzia; Zargar, Abdul Hamid; Zabeen, Bedowra; Ahmad, Jamal; Raza, Syed Abbas; Tayyeb, Samin; Bajaj, Sarita; Ishtiaq, Osama; Kalra, Sanjay

    2012-07-01

    Fasting during the month of Ramadan, the ninth month of Islamic lunar calendar, is obligatory for all healthy adult and adolescent Muslims from the age of 12 years. Fasting starts from early dawn (Sohur/Sehri) till sunset (Iftar). During this period one has to abstain from eating and drinking. Islam has allowed many categories of people to be exempted from fasting, for example, young children, travelers, the sick, the elderly, pregnant, and lactating women. According to expert opinion, patients with type 1 diabetes (type 1 DM) who fast during Ramadan are at a very high risk to develop adverse events. However, some experienced physicians are of the opinion that fasting during Ramadan is safe for type 1 DM patients, including adolescents and older children, with good glycemic control who do regular self-monitoring and are under close professional supervision. The strategies to ensure safety of type 1 diabetic adolescents who are planning to fast include the following: Ramadan-focused medical education, pre-Ramadan medical assessment, following a healthy diet and physical activity pattern, modification in insulin regimen, and blood glucose monitoring as advised by the physician.

  12. Physical mechanism of spontaneous fast reconnection evolution

    NASA Astrophysics Data System (ADS)

    Ugai, M.

    2001-06-01

    Large dissipative events, such as solar flares and geomagnetic substorms, result from sudden onset of magnetic reconnection, so that it is a long-standing problem to find the physical mechanism that makes magnetic reconnection explosive. As recognized by Petschek, standing slow shocks enable the effective magnetic energy conversion in space plasmas of extremely large magnetic Reynolds number. Hence, a basic question is how the fast reconnection mechanism involving slow shocks can be realized as an eventual solution? We have proposed the spontaneous fast reconnection model, which describes a new type of nonlinear instability that grows by the positive feedback between plasma microphysics (current-driven anomalous resistivity) and macrophysics (global reconnection flow). It is demonstrated that the fast reconnection mechanism explosively grows by the positive feedback in a variety of physical situations; for the larger threshold of anomalous resistivity, the fast reconnection evolves more drastically. Also, distinct plasma processes, such as large-scale plasmoid and magnetic loop dynamics, result directly from the fast reconnection evolution. Even in general asymmetric situations, the spontaneous fast reconnection model effectively works, giving rise to drastic magnetic flux transfer.

  13. Suppressing Alfven eigenmodes by q-profile engineering to improve fast-ion confinement

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Tobias, B. J.; Nazikian, R.; Holcomb, C.; Collins, C.; van Zeeland, M. A.; Heidbrink, W. W.; Zhu, Y.

    2016-10-01

    High levels of Alfven eigenmode (AE) activity often limit the plasma performance of steady-state target plasmas. Experiments were performed on DIII-D to suppress harmful AEs by q profile engineering. Current ramp rates of 0.6 MA/s are typically used in L-mode discharges to create qmin near r/a = 0.3 where the fast-ion pressure gradient is strong, leading to strong AEs and enhanced fast-ion transport. In a new experiment a current ramp-rate of 7 MA/s was used together with ECCD at mid-radius. This resulted in a qmin radius larger than 0.5 which is outside the fast-ion pressure gradient region. This resulted in a complete suppression of TAEs in the core and a highly reduced RSAE activity near qmin giving rise to classical fast-ion transport as deduced from neutron measurements. Although qmin was not sustained at large radii, these experiments show that AEs can be suppressed by q profile engineering. For sustaining qmin at large radii a stronger off-axis current drive source is planned with neutral beam upgrades in 2017. DOE Grants DE-AC02-09CH11466 and DE-FC02-04ER54698.

  14. Transportation and public health.

    PubMed

    Litman, Todd

    2013-01-01

    This article investigates various ways that transportation policy and planning decisions affect public health and better ways to incorporate public health objectives into transport planning. Conventional planning tends to consider some public health impacts, such as crash risk and pollution emissions measured per vehicle-kilometer, but generally ignores health problems resulting from less active transport (reduced walking and cycling activity) and the additional crashes and pollution caused by increased vehicle mileage. As a result, transport agencies tend to undervalue strategies that increase transport system diversity and reduce vehicle travel. This article identifies various win-win strategies that can help improve public health and other planning objectives.

  15. Pharmacology of iron transport.

    PubMed

    Byrne, Shaina L; Krishnamurthy, Divya; Wessling-Resnick, Marianne

    2013-01-01

    Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential pharmacological tools to alleviate diseases of iron overload. This review focuses on the pharmacology of iron transport, introducing iron transport membrane proteins and known inhibitors.

  16. Pharmacology of Iron Transport

    PubMed Central

    Byrne, Shaina L.; Krishnamurthy, Divya; Wessling-Resnick, Marianne

    2013-01-01

    Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential pharmacological tools to alleviate diseases of iron overload. This review focuses on the pharmacology of iron transport, introducing iron transport membrane proteins and known inhibitors. PMID:23020294

  17. Hydrogen Sorption and Transport

    NASA Astrophysics Data System (ADS)

    McNeece, C. J.; Hesse, M. A.

    2015-12-01

    Hydrogen is unique among aqueous ions, both in its importance for geochemical reactions, and in its complex transport behavior through reactive media. The structure of hydrogen reaction fronts can be analyzed in the advective limit of the transport equation. At local chemical equilibrium, sorption of hydrogen onto the media surface (sorption isotherm) controls reaction front morphology. Transport modeling thus necessitates accurate knowledge of surface chemistry. Though motivated by transport, sorption models are often parameterized against batch titration experiments. The validity of these parameterizations, in a transport setting, are seldom tested. The analytic solution to the transport equation gives an algebraic relationship between concentration velocity and equilibrium sorption behavior. In this study, we conduct a suite of column flow experiments through quartz sand. Hydrogen concentration breakthrough curves at the column outlet are used to infer the "transport sorption isotherm." These results are compared to the batch titration derived sorption isotherm. We find excellent agreement between the datasets. Our findings suggest that, for aqueous hydrogen, local chemical equilibrium is a valid assumption. With the goal of a predictive transport model, we parameterize various sorption models against this dataset. Models which incorporate electrostatic effects at the surface predict transport well. Nonelectrostatic models such as the Kd, Langmuir, and Freundlich models fail. These results are particularly compelling as nonelectrostatic models are often employed to predict hydrogen transport in many reactive transport code.

  18. Transportation System Requirements Document

    SciTech Connect

    Not Available

    1993-09-01

    This Transportation System Requirements Document (Trans-SRD) describes the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of this document is to define the system-level requirements for Transportation consistent with the CRWMS Requirement Document (CRD). These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presents an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. The interface identification and description are published in the CRWMS Interface Specification.

  19. [Fructose transporter in yeasts].

    PubMed

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.

  20. Transportation safety training

    SciTech Connect

    Jones, E.

    1990-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Section at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, have developed and implemented a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 3 tabs.