NASA Astrophysics Data System (ADS)
Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil
2009-12-01
Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... gasoline dispensing facilities more stringent by applying them statewide, making the rule applicable to... Emissions Standards for Hazardous Air Pollutants (NESHAPs) for gasoline dispensing facilities. The revisions... January 10, 2008, EPA issued new, more stringent National Regulations for Gasoline Dispensing Facilities...
Application rate affects the degradation rate and hence emissions of chloropicrin in soil
USDA-ARS?s Scientific Manuscript database
Increasingly stringent regulations to control soil-air emissions of soil fumigants has led to much research effort aimed at reducing emission potential. Using laboratory soil columns, we aimed to investigate the relationship between chloropicrin (CP) application rate and its emissions from soil acro...
USDA-ARS?s Scientific Manuscript database
Stringent environmental regulations are being developed to control the emission of soil fumigants to reduce air pollution. Water application is a low-cost strategy for fumigant emission control and applicable for a wide range of commodity groups, especially those with low profit margins. Although it...
Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.
Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz
2014-06-03
We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development.
Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara
2015-08-01
The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study.
40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...
40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...
40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...
40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...
40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent than...
Khalek, Imad A.; Blanks, Matthew G.; Merritt, Patrick M.; Zielinska, Barbara
2015-01-01
The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study. Implications: Heavy-duty on-highway diesel engines equipped with DOC/DPF/SCR/AMOX and fueled with ultra-low-sulfur diesel fuel produced lower emissions than the stringent 2010 emission standards established by the U.S. Environmental Protection Agency. They also resulted in significant reductions in a wide range of unregulated toxic emission compounds relative to older technology engines. The increased use of newer technology (2010+) diesel engines in the on-highway sector and the adaptation of such technology by other sectors such as nonroad, displacing older, higher emissions engines, will have a positive impact on ambient levels of PM, NOx, and volatile organic compounds, in addition to many other toxic compounds. PMID:26037832
Fu, Mingliang; Ge, Yunshan; Tan, Jianwei; Zeng, Tao; Liang, Bin
2012-10-15
Non-road machinery, especially construction equipment could be an important pollutant source of the deterioration in air quality in Chinese urban areas due to its large quantity and to the absence of stringent emission requirements. In this study, emission tests were performed on 12 excavators and 8 wheel loaders by using portable emission measurement system (PEMS) to determine their emission characteristics. The typical operating modes were categorized as idling mode, moving mode and working mode. Compared with those during idling and moving modes, the average time-based emission factors during working mode of HC were 2.61 and 1.27 times higher, NO(x) were 3.66 and 1.36 times higher, and PM were 4.05 and 1.95 times higher, respectively. Under all conditions, categories of the measured emissions increased with the rise in engine power. Compared with those of Stage I emission standard equipment, gaseous emissions and PM emitted from Stage II emission standard equipment were lower. The results indicated that, from Stage I to Stage II, the average reductions of HC, NO(x) and PM were 56%, 37% and 29% for the working mode, respectively. Those results also demonstrated the effectiveness of emission control regulation and the improvement of emission control technology. The data and tests show that the longer the accumulated working hours, the higher HC and NO(x) average fuel-based emission factors are. The emissions measured from the construction vehicles employed in this study were higher than the data collected in previous studies, which shows that it is critical for the government to put into effect more stringent emission regulations to further improve the air quality in Chinese urban areas. Copyright © 2012 Elsevier B.V. All rights reserved.
Decision-Making and Environmental Implications under Cap-and-Trade and Take-Back Regulations
Chen, Yuyu; Li, Bangyi; Liu, Zhi
2018-01-01
To reduce carbon emissions during production and realize the recycling of resources, the government has promulgated carbon cap-and-trade regulation and take-back regulation separately. This paper firstly analyses the manufacturing, remanufacturing and collection decisions of a monopoly manufacturer under cap-and-trade regulation and take-back regulation conditions, and then explores the environmental impact (i.e., carbon emissions) of both carbon regulation and more stringent take-back regulation. Finally, numerical examples are provided to illustrate the theoretical results. The results indicate that it will do good for the environment once the cap-and-trade regulation is carried out. We also conclude that government’s supervision of carbon trading price plays an important role in reducing the environmental impact. Furthermore, unexpectedly, we prove that if emissions intensity of a remanufactured (vis-á-vis new) product is sufficiently high, the improvement of collection and remanufacturing targets might lead to the deterioration of environment. PMID:29617334
Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.
Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia
2013-05-07
Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.
Performance of a peroxide-based cetane improvement additive in different diesel fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, M.K.; Jacobs, D.C.; Liotta, F.J. Jr.
The implementation of stringent diesel engine emissions regulations is growing worldwide. The use of high cetane diesel fuels is a cost-effective option that can be used to reduce engine emissions. A direct comparison of heavy-duty diesel engine emissions for three different low sulfur diesel fuels treated with di-t-butyl peroxide and 2-ethylhexyl nitrate, at the same cetane level, was evaluated. Both the peroxide and the nitrate cetane improvement additive significantly reduced all regulated and unregulated emissions including the oxides of nitrogen (NOx) emission. Di-t-butyl peroxide shows a small advantage over ethylhexyl nitrate in reducing NOx in all the three fuels. Compatibilitymore » of the peroxide and the nitrate additives, when mixed in a fuel blend, has been demonstrated by cetane response and engine emissions for the fuel blend. 13 refs., 2 figs., 9 tabs.« less
40 CFR 52.970 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...)(50) Section 1303.A Toxic Substances 10/20/1995 7/05/2011, 76 FR 38977 Section 1305 Control of....999(c)(50) Section 1315 More Stringent Regulations may be Prescribed if Particulates are Toxic Jun... Law 30:2060 N.6 Toxic air pollution emission control program 10/22/92 06/23/94, 59 FR 32359 Ref 52.999...
40 CFR 52.970 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...)(50) Section 1303.A Toxic Substances 10/20/1995 7/05/2011, 76 FR 38977 Section 1305 Control of....999(c)(50) Section 1315 More Stringent Regulations may be Prescribed if Particulates are Toxic Jun... Law 30:2060 N.6 Toxic air pollution emission control program 10/22/92 06/23/94, 59 FR 32359 Ref 52.999...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
...This action would establish more stringent vehicle emissions standards and reduce the sulfur content of gasoline beginning in 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air quality and public health. The proposed gasoline sulfur standard would make emission control systems more effective for both existing and new vehicles, and would enable more stringent vehicle emissions standards. The proposed vehicle standards would reduce both tailpipe and evaporative emissions from passenger cars, light-duty trucks, medium-duty passenger vehicles, and some heavy-duty vehicles. This would result in significant reductions in pollutants such as ozone, particulate matter, and air toxics across the country and help state and local agencies in their efforts to attain and maintain health-based National Ambient Air Quality Standards. Motor vehicles are an important source of exposure to air pollution both regionally and near roads. These proposed vehicle standards are intended to harmonize with California's Low Emission Vehicle program, thus creating a federal vehicle emissions program that would allow automakers to sell the same vehicles in all 50 states. The proposed vehicle standards would be implemented over the same timeframe as the greenhouse gas/fuel efficiency standards for light-duty vehicles, as part of a comprehensive approach toward regulating emissions from motor vehicles.
Integrated Analysis of Greenhouse Gas Mitigation Options and Related Impacts
Increased concerns over air pollution (combined with detrimental health effects) and climate change have called for more stringent emission reduction strategies for criteria air pollutants and greenhouse gas emissions. However, stringent regulatory policies can possibly have a...
NASA Astrophysics Data System (ADS)
Henze, D. K.; Anenberg, S.; Miller, J.; Vicente, F.; Du, L.; Emberson, L.; Lacey, F.; Malley, C.; Minjares, R. J.
2016-12-01
Vehicle emissions contribute to tropospheric ozone and fine particulate matter (PM2.5), impacting human health, crop yields, and climate worldwide. Diesel cars, trucks, and buses produce 70% of global land transportation emissions of nitrogen oxides (NOx), a key PM2.5 and ozone precursor. Despite progressive tightening of regulated NOx emission limits in leading markets, current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that real-world diesel NOx emissions in 11 markets representing 80% of global diesel vehicle sales are on average 24% higher than certification limits indicate. This excess NOx contributed an estimated 33,000 additional ozone- and PM2.5-related premature deaths globally in 2015, including 6% of all EU-28 ozone- and PM2.5-related premature deaths. Next-generation diesel NOx standards and in-use compliance (more stringent than Euro 6/VI standards) could avoid 358,000 (5%) of global PM2.5- and ozone-related premature deaths in 2040 and up to 4% of ozone-related crop production loss regionally. Impacts of NOx-induced changes in aerosols, methane, and ozone on the global climate are found to present a small net positive radiative forcing (i.e., climate disbenefit), likely outweighed by the climate benefits of reductions to co-emitted black carbon aerosol. In some markets (Australia, Brazil, China, Mexico, and Russia), Euro 6/VI standards alone can achieve most (72-98%) of these health benefits. In India and the EU-28, reducing Euro 6 real-world NOx emissions through strengthened type-approval and in-use emissions testing programs (including market surveillance and expanded emissions test procedure boundaries) would achieve one-third of the health benefits from adopting next generation standards. Our results indicate that implementing stringent and technically feasible NOx emission regulations for diesel vehicles can substantially improve public health.
40 CFR 52.970 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Particulate Matter Jun 1988, LR14:348 06/15/89, 54 FR 25451 Ref 52.999(c)(50) Section 1303.A Toxic Substances... Stringent Regulations may be Prescribed if Particulates are Toxic Jun 1988, LR14:348 06/15/89, 54 FR 25451... Law 30:2060 N.6 Toxic air pollution emission control program 10/22/92 06/23/94, 59 FR 32359 Ref 52.999...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Lamb, Brian K.; Westberg, Halvor
Volatile organic compounds (VOCs) are precursors to ground level ozone. Ground level ozone is the major component of photochemical smog, and has been linked to a variety of adverse health effects. These health effects include cancer, heart disease, pneumonia and death. In order to reduce ground level ozone, VOC emissions are being more stringently regulated. One VOC source that may come under regulation is lumber drying. Drying lumber is known to emit VOC into the atmosphere. This research evaluates the validity of VOC emission measurements from a small-scale kiln to approximate VOC emissions from kilns at commercial mills. We alsomore » report emission factors for three lumber species commonly harvested in the northwest United States (Douglas-fir, ponderosa pine, & grand fir). This work was done with a novel tracer ratio technique at a small laboratory kiln and a large commercial lumber drying facility. The measured emission factors were 0.51 g/kgOD for Douglas-fir, 0.7 g/kgOD for ponderosa pine, and 0.15 g/kgOD for grand fir. Aldehyde emission rates from lumber drying were also measured in some experiments. Results indicate that aldehyde emissions can constitute a significant percentage of the total VOC emissions.« less
Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming
2017-01-01
The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.
After 'dieselgate': Regulations or economic incentives for a successful environmental policy?
NASA Astrophysics Data System (ADS)
Zachariadis, Theodoros
2016-08-01
In September 2015 the U.S. Environmental Protection Agency announced that it started investigations against the automaker Volkswagen for illegally installing software that allowed some diesel-powered vehicle models to pass stringent emission tests for type-approval. Although generally prohibited, modern software makes it feasible for vehicles to detect an emission test and modulate engine operation or emission control accordingly. It has also been well known to experts worldwide - and readers of this Journal - that emission tests for motor vehicles are conducted with outdated test procedures which do not reflect today's actual driving conditions and enable automakers to exploit 'flexibilities' so as to yield artificially low emission results. For example, on-road carbon dioxide (CO2) emissions of cars that entered the European market in 2014 were reportedly 40% higher than their formal test emissions, while this gap was less than 10% in the early 2000s (Tietge et al., 2015). In the case of health-related pollutant nitrogen oxides (NOx), this gap seems to be markedly higher, in particular for diesel-powered cars (Weiss et al., 2012) - whereas this does not seem to be a serious problem for other air pollutants. In internal combustion engines of motor vehicles there is still a trade-off between NOx emissions and fuel efficiency (and hence CO2 emissions): a fast combustion with high temperatures is optimal for maximum fuel efficiency and minimum CO2 emissions, whereas these conditions give rise to higher NOx emissions. Conversely, NOx control techniques such as exhaust gas recirculation reduce combustion temperature and often lead to lower fuel efficiency. In short, it becomes ever more difficult for internal combustion engines to meet the increasingly stringent legislated standards for some air pollutants and carbon dioxide at the same time. This increases the probability of applying legal and illegal defeat strategies.
Saliba, Georges; Saleh, Rawad; Zhao, Yunliang; Presto, Albert A; Lambe, Andrew T; Frodin, Bruce; Sardar, Satya; Maldonado, Hector; Maddox, Christine; May, Andrew A; Drozd, Greg T; Goldstein, Allen H; Russell, Lynn M; Hagen, Fabian; Robinson, Allen L
2017-06-06
Recent increases in the Corporate Average Fuel Economy standards have led to widespread adoption of vehicles equipped with gasoline direct-injection (GDI) engines. Changes in engine technologies can alter emissions. To quantify these effects, we measured gas- and particle-phase emissions from 82 light-duty gasoline vehicles recruited from the California in-use fleet tested on a chassis dynamometer using the cold-start unified cycle. The fleet included 15 GDI vehicles, including 8 GDIs certified to the most-stringent emissions standard, superultra-low-emission vehicles (SULEV). We quantified the effects of engine technology, emission certification standards, and cold-start on emissions. For vehicles certified to the same emissions standard, there is no statistical difference of regulated gas-phase pollutant emissions between PFIs and GDIs. However, GDIs had, on average, a factor of 2 higher particulate matter (PM) mass emissions than PFIs due to higher elemental carbon (EC) emissions. SULEV certified GDIs have a factor of 2 lower PM mass emissions than GDIs certified as ultralow-emission vehicles (3.0 ± 1.1 versus 6.3 ± 1.1 mg/mi), suggesting improvements in engine design and calibration. Comprehensive organic speciation revealed no statistically significant differences in the composition of the volatile organic compounds emissions between PFI and GDIs, including benzene, toluene, ethylbenzene, and xylenes (BTEX). Therefore, the secondary organic aerosol and ozone formation potential of the exhaust does not depend on engine technology. Cold-start contributes a larger fraction of the total unified cycle emissions for vehicles meeting more-stringent emission standards. Organic gas emissions were the most sensitive to cold-start compared to the other pollutants tested here. There were no statistically significant differences in the effects of cold-start on GDIs and PFIs. For our test fleet, the measured 14.5% decrease in CO 2 emissions from GDIs was much greater than the potential climate forcing associated with higher black carbon emissions. Thus, switching from PFI to GDI vehicles will likely lead to a reduction in net global warming.
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be published in the Federal Register. (b) Any State law or regulation which provides for more stringent land use and environmental controls and regulations of coal exploration and surface coal mining... the control and regulation of coal exploration and surface coal mining and reclamation operations for...
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be published in the Federal Register. (b) Any State law or regulation which provides for more stringent land use and environmental controls and regulations of coal exploration and surface coal mining... the control and regulation of coal exploration and surface coal mining and reclamation operations for...
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be published in the Federal Register. (b) Any State law or regulation which provides for more stringent land use and environmental controls and regulations of coal exploration and surface coal mining... the control and regulation of coal exploration and surface coal mining and reclamation operations for...
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be published in the Federal Register. (b) Any State law or regulation which provides for more stringent land use and environmental controls and regulations of coal exploration and surface coal mining... the control and regulation of coal exploration and surface coal mining and reclamation operations for...
30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... regulations. 730.11 Section 730.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... Register setting forth the text or a summary of any State law or regulation initially determined by him to... stringent land use and environmental controls and regulations of coal exploration and surface coal mining...
2009-01-01
Background While much attention is focused on national policies intended to protect human health from environmental hazards, states can also prevent environmentally mediated disease through legislation and regulation. However, relatively few analyses have examined the extent to which states protect children from chemical factors in the environment. Methods Using Lexis Nexis and other secondary sources, we systematically reviewed environmental regulation and legislation in the fifty states and the District of Columbia as of July 2007 intended to protect children against neurodevelopmental disabilities and asthma. Results States rarely address children specifically in environmental regulation and legislation, though many state regulations go far to limit children's exposures to environmental hazards. Northeast and Midwest states have implemented model regulation of mercury emissions, and regulations in five states set exposure limits to volatile organic compound emissions that are more stringent than US Environmental Protection Agency standards. Discussion Differences in state environmental regulation and legislation are likely to lead to differences in exposure, and thus to impacts on children's health. The need for further study should not inhibit other states and the federal government from pursuing the model regulation and legislation we identified to prevent diseases of environmental origin in children. PMID:19323818
Universal Industrial Solution and Industrial Sectors Module for Pulp and Paper Sector
Increased concerns over air pollution and its detrimental effects on health have called for more stringent emission reduction strategies in the industrial sector. However, stringent regulatory policies can potentially adversely affect domestic and international trade. Therefore E...
Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust
NASA Astrophysics Data System (ADS)
Srinivaas, A.; Sathian, Samanyu; Ramesh, Arjun
2018-02-01
The principle of an industrially used emission reduction technique is employed in automotive diesel exhaust to reduce the diesel particulate emission. As the Emission regulation are becoming more stringent legislations have been formulated, due to the hazardous increase in the air quality index in major cities. Initially electrostatic precipitation principle and working was investigated. The High voltage requirement in an Electrostatic precipitator is obtained by designing an appropriate circuit in MATLAB -SIMULINK. Mechanical structural design of the new model after treatment device for the specific diesel exhaust was done. Fluid flow analysis of the ESP model was carried out using ANSYS CFX for optimized fluid with a reduced back pressure. Design reconsideration was done in accordance with fluid flow analysis. Accordingly, a new design is developed by considering diesel particulate filter and catalytic converter design to ESP model.
Ahmed, Khalid; Ahmed, Sidrah
2018-03-28
This study takes environmental policy stringency and economic activity as the controlling variables and forecasts the CO 2 emissions in China up to 2022. In doing so, an application of corrected grey model with convolution is used over the annual time series data between 1990 and 2012. The simulation results show that (1) between 2012 and 2022, CO 2 emissions in China is expected to increase at an average rate of 17.46% annually, raising the emissions intensity from 7.04 in 2012 to 25.461 metric tons per capita by 2022; (2) stringent environmental policies reduce CO 2 emissions-whereas, GDP tends to increase the emissions intensity in China; (3) stringent environmental policies are found to have a negative impact on GDP in China. Based on the empirical findings, the study also provides some policy suggestions to reduce emissions intensity in China.
Bolorinos, Jose; Ajami, Newsha K; Muñoz Meléndez, Gabriela; Jackson, Robert B
2018-05-01
This paper presents a "policy-informed" life cycle assessment of a cross-border electricity supply chain that links the impact of each unit process to its governing policy framework. An assessment method is developed and applied to the California-Mexico energy exchange as a unique case study. CO 2 -equivalent emissions impacts, water withdrawals, and air quality impacts associated with California's imports of electricity from Mexican combined-cycle facilities fueled by natural gas from the U.S. Southwest are estimated, and U.S. and Mexican state and federal environmental regulations are examined to assess well-to-wire consistency of energy policies. Results indicate most of the water withdrawn per kWh exported to California occurs in Baja California, most of the air quality impacts accrue in the U.S. Southwest, and emissions of CO 2 -equivalents are more evenly divided between the two regions. California energy policy design addresses generation-phase CO 2 emissions, but not upstream CO 2 -eq emissions of methane during the fuel cycle. Water and air quality impacts are not regulated consistently due to varying U.S. state policies and a lack of stringent federal regulation of unconventional gas development. Considering local impacts and the regulatory context where they occur provides essential qualitative information for functional-unit-based measures of life cycle impact and is necessary for a more complete environmental impact assessment.
Kuwahara, Takuya; Nakaguchi, Harunobu; Kuroki, Tomoyuki; Okubo, Masaaki
2016-05-05
Considering the recent stringent regulations governing diesel NO(x) emission, an aftertreatment system for the reduction of NO(x) in the exhaust gas has been proposed and studied. The proposed system is a hybrid method combining nonthermal plasma and NOx adsorbent. The system does not require precious metal catalysts or harmful chemicals such as urea and ammonia. In the present system, NO(x) in diesel emission is treated by adsorption and desorption by adsorbent as well as nonthermal plasma reduction. In addition, the remaining NO(x) in the adsorbent is desorbed again in the supplied air by residual heat. The desorbed NO(x) in air recirculates into the intake of the engine, and this process, i.e., exhaust gas components' recirculation (EGCR) achieves NO(x) reduction. Alternate utilization of two adsorption chambers in the system can achieve high-efficiency NO(x) removal continuously. An experiment with a stationary diesel engine for electric power generation demonstrates an energy efficiency of 154 g(NO2)/kWh for NO(x) removal and continuous NO(x) reduction of 70.3%. Considering the regulation against diesel emission in Japan, i.e., the new regulation to be imposed on vehicles of 3.5-7.5 ton since 2016, the present aftertreatment system fulfills the requirement with only 1.0% of engine power. Copyright © 2016. Published by Elsevier B.V.
Is ionizing radiation regulated more stringently than chemical carcinogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.
1989-04-01
It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals andmore » ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens.« less
Zemba, Stephen; Ames, Michael; Green, Laura; Botelho, Maria João; Gossman, David; Linkov, Igor; Palma-Oliveira, José
2011-09-15
Emissions from Portland cement manufacturing facilities may increase health risks in nearby populations and are thus subject to stringent regulations. Direct testing of pollutant concentrations in exhaust gases provides the best basis for assessing the extent of these risks. However, these tests (i) are often conducted under stressed, rather than typical, operating conditions, (ii) may be limited in number and duration, and (iii) may be influenced by specific fuel-types and attributes of individual kilns. We report here on the results of more than 150 emissions-tests conducted of two kilns at a Portland cement manufacturing plant in Portugal. The tests measured various regulated metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs). Stack-gas concentrations of pollutants were found to be highly variable, with standard deviations on the order of mean values. Emission rates of many pollutants were higher when coal was used as the main kiln fuel (instead of petroleum coke). Use of various supplemental fuels, however, had little effect on stack emissions, and few statistically significant differences were observed when hazardous waste was included in the fuel mix. Significant differences in emissions for some pollutants were observed between the two kilns despite their similar designs and uses of similar fuels. All measured values were found to be within applicable regulatory limits. Published by Elsevier B.V.
U. S. light duty vehicle fleet emissions performance and the emissions impact of technology changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabourin, M.; Platte, L
1988-01-01
This paper determines the level of improvement in Federal Test Procedure (FTP) exhaust emissions realized by typical in-use vehicles over the last twenty years as emission standards have become increasingly stringent. Furthermore, this paper explores the likelihood that in-use emission performance improvements will continue now that emission standards have stabilized.
On-road vehicle emissions and their control in China: A review and outlook.
Wu, Ye; Zhang, Shaojun; Hao, Jiming; Liu, Huan; Wu, Xiaomeng; Hu, Jingnan; Walsh, Michael P; Wallington, Timothy J; Zhang, K Max; Stevanovic, Svetlana
2017-01-01
The large (26-fold over the past 25years) increase in the on-road vehicle fleet in China has raised sustainability concerns regarding air pollution prevention, energy conservation, and climate change mitigation. China has established integrated emission control policies and measures since the 1990s, including implementation of emission standards for new vehicles, inspection and maintenance programs for in-use vehicles, improvement in fuel quality, promotion of sustainable transportation and alternative fuel vehicles, and traffic management programs. As a result, emissions of major air pollutants from on-road vehicles in China have peaked and are now declining despite increasing vehicle population. As might be expected, progress in addressing vehicle emissions has not always been smooth and challenges such as the lack of low sulfur fuels, frauds over production conformity and in-use inspection tests, and unreliable retrofit programs have been encountered. Considering the high emission density from vehicles in East China, enhanced vehicle, fuel and transportation strategies will be required to address vehicle emissions in China. We project the total vehicle population in China to reach 400-500 million by 2030. Serious air pollution problems in many cities of China, in particular high ambient PM 2.5 concentration, have led to pressure to accelerate the progress on vehicle emission reduction. A notable example is the draft China 6 emission standard released in May 2016, which contains more stringent emission limits than those in the Euro 6 regulations, and adds a real world emission testing protocol and a 48-h evaporation testing procedure including diurnal and hot soak emissions. A scenario (PC[1]) considered in this study suggests that increasingly stringent standards for vehicle emissions could mitigate total vehicle emissions of HC, CO, NO X and PM 2.5 in 2030 by approximately 39%, 57%, 59% and 79%, respectively, compared with 2013 levels. With additional actions to control the future light-duty passenger vehicle population growth and use, and introduce alternative fuels and new energy vehicles, the China total vehicle emissions of HC, CO, NO X and PM 2.5 in 2030 could be reduced by approximately 57%, 71%, 67% and 84%, respectively, (the PC[2] scenario) relative to 2013. This paper provides detailed policy roadmaps and technical options related to these future emission reductions for governmental stakeholders. Copyright © 2016 Elsevier B.V. All rights reserved.
49 CFR 355.21 - Regulatory review.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) It applies to interstate commerce; (iii) It is more stringent than the FMCSRs in that it is more... law or regulation applies to interstate commerce and is more stringent than the FMCSRs, the State shall determine: (i) The safety benefits associated with such State law or regulation; and (ii) The...
NOx adsorber and method of regenerating same
Endicott, Dennis L [Peoria, IL; Verkiel, Maarten [Metamora, IL; Driscoll, James J [Dunlap, IL
2007-01-30
New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.
Analysis of Energy Intensive Enterprises under EU Emission Trading System in Latvia
NASA Astrophysics Data System (ADS)
Zahare, Dace; Rosa, Marika
2011-01-01
Climate change and global warming has become one of the main topics worldwide. The European Union Emission Trading System (EU ETS) was established to limit climate change, providing regulations which encourage companies to invest in cleaner production and more energy efficient production. Latvian energy intensive enterprises are operating under the EU ETS from the year 2005. The main goal of this paper is to provide an analysis of energy intensive installations in terms of their energy efficiency. Additionally, an analysis of EU ETS phase III which will start to operate in 2013 under new, more stringent rules has been conducted by modelling three Latvian energy intensive enterprise operations under this phase and estimating the barriers to meet the goal of the EU ETS phase III.
NASA Astrophysics Data System (ADS)
Zhang, Shaojun; Wu, Ye; Wu, Xiaomeng; Li, Mengliang; Ge, Yunshan; Liang, Bin; Xu, Yueyun; Zhou, Yu; Liu, Huan; Fu, Lixin; Hao, Jiming
2014-06-01
As a pioneer in controlling vehicle emissions within China, Beijing released the Clean Air Action Plan 2013-2017 document in August 2013 to improve its urban air quality. It has put forward this plan containing the most stringent emission control policies and strategies to be adopted for on-road vehicles of Beijing. This paper estimates the historic and future trends and uncertainties in vehicle emissions of Beijing from 1998 to 2020 by applying a new emission factor model for the Beijing vehicle fleet (EMBEV). Our updated results show that total emissions of CO, THC, NOx and PM2.5 from the Beijing vehicle fleet are 507 (395-819) kt, 59.1 (41.2-90.5) kt, 74.7 (54.9-103.9) kt and 2.69 (1.91-4.17) kt, respectively, at a 95% confidence level. This represents significant reductions of 58%, 59%, 31% and 62%, respectively, relative to the total vehicle emissions in 1998. The past trends clearly posed a challenge to NOx emission mitigation for the Beijing vehicle fleet, especially in light of those increasing NOx emissions from heavy-duty diesel vehicles (HDDVs) which have partly offset the reduction benefit from light-duty gasoline vehicles (LDGVs). Because of recently announced vehicle emission controls to be adopted in Beijing, including tighter emissions standards, limitations on vehicle growth by more stringent license control, promotion of alternative fuel technologies (e.g., natural gas) and the scrappage of older vehicles, estimated vehicle emissions in Beijing will continue to be mitigated by 74% of CO, 68% of THC, 56% of NOx and 72% of PM2.5 in 2020 compared to 2010 levels. Considering that many of the megacities in China are facing tremendous pressures to mitigate emissions from on-road vehicles, our assessment will provide a timely case study of significance for policy-makers in China.
On the development of a methodology for extensive in-situ and continuous atmospheric CO2 monitoring
NASA Astrophysics Data System (ADS)
Wang, K.; Chang, S.; Jhang, T.
2010-12-01
Carbon dioxide is recognized as the dominating greenhouse gas contributing to anthropogenic global warming. Stringent controls on carbon dioxide emissions are viewed as necessary steps in controlling atmospheric carbon dioxide concentrations. From the view point of policy making, regulation of carbon dioxide emissions and its monitoring are keys to the success of stringent controls on carbon dioxide emissions. Especially, extensive atmospheric CO2 monitoring is a crucial step to ensure that CO2 emission control strategies are closely followed. In this work we develop a methodology that enables reliable and accurate in-situ and continuous atmospheric CO2 monitoring for policy making. The methodology comprises the use of gas filter correlation (GFC) instrument for in-situ CO2 monitoring, the use of CO2 working standards accompanying the continuous measurements, and the use of NOAA WMO CO2 standard gases for calibrating the working standards. The use of GFC instruments enables 1-second data sampling frequency with the interference of water vapor removed from added dryer. The CO2 measurements are conducted in the following timed and cycled manner: zero CO2 measurement, two standard CO2 gases measurements, and ambient air measurements. The standard CO2 gases are calibrated again NOAA WMO CO2 standards. The methodology is used in indoor CO2 measurements in a commercial office (about 120 people working inside), ambient CO2 measurements, and installed in a fleet of in-service commercial cargo ships for monitoring CO2 over global marine boundary layer. These measurements demonstrate our method is reliable, accurate, and traceable to NOAA WMO CO2 standards. The portability of the instrument and the working standards make the method readily applied for large-scale and extensive CO2 measurements.
Brockmann-Gretza, Olaf; Kalinowski, Jörn
2006-01-01
Background The stringent response is the initial reaction of microorganisms to nutritional stress. During stringent response the small nucleotides (p)ppGpp act as global regulators and reprogram bacterial transcription. In this work, the genetic network controlled by the stringent response was characterized in the amino acid-producing Corynebacterium glutamicum. Results The transcriptome of a C. glutamicum rel gene deletion mutant, unable to synthesize (p)ppGpp and to induce the stringent response, was compared with that of its rel-proficient parent strain by microarray analysis. A total of 357 genes were found to be transcribed differentially in the rel-deficient mutant strain. In a second experiment, the stringent response was induced by addition of DL-serine hydroxamate (SHX) in early exponential growth phase. The time point of the maximal effect on transcription was determined by real-time RT-PCR using the histidine and serine biosynthetic genes. Transcription of all of these genes reached a maximum at 10 minutes after SHX addition. Microarray experiments were performed comparing the transcriptomes of SHX-induced cultures of the rel-proficient strain and the rel mutant. The differentially expressed genes were grouped into three classes. Class A comprises genes which are differentially regulated only in the presence of an intact rel gene. This class includes the non-essential sigma factor gene sigB which was upregulated and a large number of genes involved in nitrogen metabolism which were downregulated. Class B comprises genes which were differentially regulated in response to SHX in both strains, independent of the rel gene. A large number of genes encoding ribosomal proteins fall into this class, all being downregulated. Class C comprises genes which were differentially regulated in response to SHX only in the rel mutant. This class includes genes encoding putative stress proteins and global transcriptional regulators that might be responsible for the complex transcriptional patterns detected in the rel mutant when compared directly with its rel-proficient parent strain. Conclusion In C. glutamicum the stringent response enfolds a fast answer to an induced amino acid starvation on the transcriptome level. It also showed some significant differences to the transcriptional reactions occuring in Escherichia coli and Bacillus subtilis. Notable are the rel-dependent regulation of the nitrogen metabolism genes and the rel-independent regulation of the genes encoding ribosomal proteins. PMID:16961923
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann
2015-01-01
Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector.
Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann
2015-01-01
Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector. PMID:25806516
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pingen; Lin, Qinghua; Prikhodko, Vitaly Y.
Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuelmore » penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.« less
Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements
NASA Technical Reports Server (NTRS)
Lortz, Charlene L.; Huang, Chi-Chien N.; Ravich, Joshua A.; Steiner, Carl N.
2013-01-01
This packaging design approach can help heritage hardware meet a flight project's stringent EMC radiated emissions requirement. The approach requires only minor modifications to a hardware's chassis and mainly concentrates on its connector interfaces. The solution is to raise the surface area where the connector is mounted by a few millimeters using a pedestal, and then wrapping with conductive tape from the cable backshell down to the surface-mounted connector. This design approach has been applied to JPL flight project subsystems. The EMC radiated emissions requirements for flight projects can vary from benign to mission critical. If the project's EMC requirements are stringent, the best approach to meet EMC requirements would be to design an EMC control program for the project early on and implement EMC design techniques starting with the circuit board layout. This is the ideal scenario for hardware that is built from scratch. Implementation of EMC radiated emissions mitigation techniques can mature as the design progresses, with minimal impact to the design cycle. The real challenge exists for hardware that is planned to be flown following a built-to-print approach, in which heritage hardware from a past project with a different set of requirements is expected to perform satisfactorily for a new project. With acceptance of heritage, the design would already be established (circuit board layout and components have already been pre-determined), and hence any radiated emissions mitigation techniques would only be applicable at the packaging level. The key is to take a heritage design with its known radiated emissions spectrum and repackage, or modify its chassis design so that it would have a better chance of meeting the new project s radiated emissions requirements.
Westerholm, R; Christensen, A; Törnqvist, M; Ehrenberg, L; Rannug, U; Sjögren, M; Rafter, J; Soontjens, C; Almén, J; Grägg, K
2001-05-01
Diesel fuels, classified as environmentally friendly, have been available on the Swedish market since 1991. The Swedish diesel fuel classification is based upon the specification of selected fuel composition and physical properties to reduce potential environmental and health effects from direct human exposure to exhaust. The objective of the present investigation was to compare the most stringent, environmentally classified Swedish diesel fuel (MK1) to the reference diesel fuel used in the "European Program on Emissions, Fuels and Engine Technologies" (EPEFE) program. The study compares measurements of regulated emissions, unregulated emissions, and biological tests from a Volvo truck using these fuels. The regulated emissions from these two fuels (MK1 vs EPEFE) were CO (-2.2%), HC (12%), NOx (-11%), and particulates (-11%). The emissions of aldehydes, alkenes, and carbon dioxide were basically equivalent. The emissions of particle-associated polycyclic aromatic hydrocarbons (PAHs) and 1-nitropyrene were 88% and 98% lower than those of the EPEFE fuel, respectively. The emissions of semi-volatile PAHs and 1-nitropyrene were 77% and 80% lower than those from the EPEFE fuel, respectively. The reduction in mutagenicity of the particle extract varied from -75 to -90%, depending on the tester strain. The reduction of mutagenicity of the semi-volatile extract varied between -40 and -60%. Furthermore, the dioxin receptor binding activity was a factor of 8 times lower in the particle extracts and a factor of 4 times lower in the semi-volatile extract than that of the EPEFE fuel. In conclusion, the MK1 fuel was found to be more environmentally friendly than the EPEFE fuel.
NASA Astrophysics Data System (ADS)
Williamson, G. J.; Bowman, D. M. J. S.; Price, O. F.; Henderson, S. B.; Johnston, F. H.
2016-12-01
Prescribed burning is used to reduce the occurrence, extent and severity of uncontrolled fires in many flammable landscapes. However, epidemiologic evidence of the human health impacts of landscape fire smoke emissions is shaping fire management practice through increasingly stringent environmental regulation and public health policy. An unresolved question, critical for sustainable fire management, concerns the comparative human health effects of smoke from wild and prescribed fires. Here we review current knowledge of the health effects of landscape fire emissions and consider the similarities and differences in smoke from wild and prescribed fires with respect to the typical combustion conditions and fuel properties, the quality and magnitude of air pollution emissions, and the potential for dispersion to large populations. We further examine the interactions between these considerations, and how they may shape the longer term smoke regimes to which populations are exposed. We identify numerous knowledge gaps and propose a conceptual framework that describes pathways to better understanding of the health trade-offs of prescribed and wildfire smoke regimes.
Particulate matter emissions from combustion of wood in district heating applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine
2011-01-01
The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning systemmore » in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.« less
40 CFR 1054.701 - General provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 1054.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... include engines or equipment certified for California if California has more stringent emission standards for these products or if your products generate or use emission credits under the California program...
40 CFR 1051.701 - General provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 1051.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... for California if it has more stringent emission standards for these vehicles or those vehicles generate or use emission credits under the California program. (5) Any other vehicles, where we indicate...
40 CFR 1054.701 - General provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 1054.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... include engines or equipment certified for California if California has more stringent emission standards for these products or if your products generate or use emission credits under the California program...
40 CFR 1054.701 - General provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 1054.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... include engines or equipment certified for California if California has more stringent emission standards for these products or if your products generate or use emission credits under the California program...
40 CFR 1054.701 - General provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 1054.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... include engines or equipment certified for California if California has more stringent emission standards for these products or if your products generate or use emission credits under the California program...
40 CFR 1051.701 - General provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 1051.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... for California if it has more stringent emission standards for these vehicles or those vehicles generate or use emission credits under the California program. (5) Any other vehicles, where we indicate...
40 CFR 1051.701 - General provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 1051.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... for California if it has more stringent emission standards for these vehicles or those vehicles generate or use emission credits under the California program. (5) Any other vehicles, where we indicate...
40 CFR 1051.701 - General provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 1051.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... for California if it has more stringent emission standards for these vehicles or those vehicles generate or use emission credits under the California program. (5) Any other vehicles, where we indicate...
40 CFR 1054.701 - General provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 1054.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... include engines or equipment certified for California if California has more stringent emission standards for these products or if your products generate or use emission credits under the California program...
40 CFR 1051.701 - General provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 1051.701 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... for California if it has more stringent emission standards for these vehicles or those vehicles generate or use emission credits under the California program. (5) Any other vehicles, where we indicate...
Regulation of early mRNA synthesis after bacteriophage T4 infection of Escherichia coli.
Linder, C H; Fast, R
1975-01-01
Regulation of T4-specific mRNA synthesis was studied during leucine starvation of a leucine-requiring stringent Escherichia coli B strain. This was done by imposing starvation prior to T4 infection and then letting RNA synthesis proceed for different time periods. Rifampin or streptolydigin was added to stop further RNA synthesis, and protein synthesis was restored by addition of leucine. Samples were withdrawn at different times, and the enzyme-forming capacities found that, during conditions which elicit the stringent response in uninfected bacteria, immediate early mRNA is not stringently regulated. This conclusion contradicts the earlier conclusion of others, obtained by measuring incorporation of radioactive uracil; this is explained by the observation of Edlin and Neuhard (1967), confirmed and extended by us to the T4-infected cell, that the incorporation of uracil into RNA of a stringent strain is virtually blocked by amino acid starvation, whereas that of adenine continues at 30 to 50% of the rate seen in the presence of the required amino acid. PMID:1099229
Environmentally regulated aerospace coatings
NASA Technical Reports Server (NTRS)
Morris, Virginia L.
1995-01-01
Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.
On-road emissions of light-duty vehicles in europe.
Weiss, Martin; Bonnel, Pierre; Hummel, Rudolf; Provenza, Alessio; Manfredi, Urbano
2011-10-01
For obtaining type approval in the European Union, light-duty vehicles have to comply with emission limits during standardized laboratory emissions testing. Although emission limits have become more stringent in past decades, light-duty vehicles remain an important source of nitrogen oxides and carbon monoxide emissions in Europe. Furthermore, persisting air quality problems in many urban areas suggest that laboratory emissions testing may not accurately capture the on-road emissions of light-duty vehicles. To address this issue, we conduct the first comprehensive on-road emissions test of light-duty vehicles with state-of-the-art Portable Emission Measurement Systems. We find that nitrogen oxides emissions of gasoline vehicles as well as carbon monoxide and total hydrocarbon emissions of both diesel and gasoline vehicles generally remain below the respective emission limits. By contrast, nitrogen oxides emissions of diesel vehicles (0.93 ± 0.39 grams per kilometer [g/km]), including modern Euro 5 diesel vehicles (0.62 ± 0.19 g/km), exceed emission limits by 320 ± 90%. On-road carbon dioxide emissions surpass laboratory emission levels by 21 ± 9%, suggesting that the current laboratory emissions testing fails to accurately capture the on-road emissions of light-duty vehicles. Our findings provide the empirical foundation for the European Commission to establish a complementary emissions test procedure for light-duty vehicles. This procedure could be implemented together with more stringent Euro 6 emission limits in 2014. The envisaged measures should improve urban air quality and provide incentive for innovation in the automotive industry.
Guan, Bin; Zhan, Reggie; Lin, He; Huang, Zhen
2015-05-01
The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Bin Bin; Liu, Meng Li; Zhan, Lei; Li, Chun Mei; Huang, Cheng Zhi
2018-03-20
Highly selective and sensitive detection of guanosine 3'-diphosphate-5'-diphosphate (ppGpp), namely, the stringent in plants or microorganisms responding to strict or extreme environmental conditions such as stress and starvation, which plays an important role in gene expression, rRNA and antibiotics production, regulations of virulence of bacteria, and growth of plants, faces a great challenge owing to its extreme similarity to normal nucleotides. By modifying the surface groups of a facile two-step hydrothermal route prepared carbon dots (CDs) with terbium ions (Tb 3+ ) in this contribution, a novel fluorescent probe with excellent properties such as highly physical and chemical stability, narrow emission and excitation wavelength-independent emission was prepared. The Tb 3+ ions on the surface of CDs cannot only preserve the intrinsic fluorescence (FL) of CDs but also keep its own coordination capacity with rare earth complex, and thus the clamp structure (four phosphate groups) of ppGpp can specific binding with Tb 3+ ions on the surface of CDs to produce antenna effect. Therefore, a highly selective and sensitive fluorescent ratiometry of ppGpp was developed by terbium-modified carbon dots (CDs-Tb) with the limit of detection as low as 50 nM based on the synergistic effect of antenna effect of Tb 3+ ions and specific recognition capacity of CDs. The applicability of this assay was demonstrated by CDs-Tb-based paper sensor for high distinguishing ppGpp from other nucleotides with similar structure.
Oh, Young Taek; Park, Yongjin; Yoon, Mi Young; Bari, Wasimul; Go, Junhyeok; Min, Kyung Bae; Raskin, David M.; Lee, Kang-Mu; Yoon, Sang Sun
2014-01-01
As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae. PMID:24648517
Gaal, T; Gourse, R L
1990-01-01
rRNA synthesis in Escherichia coli is subject to at least two regulation systems, growth rate-dependent control and stringent control. The inverse correlation between rRNA synthesis rates and guanosine 3'-diphosphate 5'-diphosphate (ppGpp) levels under various physiological conditions has led to the supposition that ppGpp is the mediator of both control mechanisms by inhibiting transcription from rrn P1 promoters. Recently, relA- spoT- strains have been constructed in which both ppGpp synthesis pathways most likely have been removed (M. Cashel, personal communication). We have confirmed that such strains produce no detectable ppGpp and therefore offer a direct means for testing the involvement of ppGpp in the regulation of rRNA synthesis in vivo. Stringent control was determined by measurement of rRNA synthesis after amino acid starvation, while growth rate control was determined by measurement of rRNA synthesis under different nutritional conditions. As expected, the relA- spoT- strain is relaxed for stringent control. However, growth rate-dependent regulation is unimpaired. These results indicate that growth rate regulation can occur in the absence of ppGpp and imply that ppGpp is not the mediator, or at least is not the sole mediator, of growth rate-dependent control. Therefore, growth rate-dependent control and stringent control may utilize different mechanisms for regulating stable RNA synthesis. PMID:2196571
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...
US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits
Wing, Ian Sue; Monier, Erwan; Stern, Ari; ...
2015-10-28
In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less
US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wing, Ian Sue; Monier, Erwan; Stern, Ari
In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... compounds (TOC) or nonmethane TOC from your process vent by 98 percent by weight using a control device or... stringent The mass emission reduction of nonmethane TOC measured by Method 25 over the period of the... mass emission reduction of TOC measured by Method 25A (or nonmethane TOC measured by Methods 25A and 18...
47 CFR 74.794 - Digital emissions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Stringent mask. In the first 500 kHz from the channel edges, emissions must be attenuated no less than 47 dB... determined by the following formula: A(dB) = 47 + 11.5 (Δf-0.5) (iii) Full service mask: (A) The power level... first 500 kHz from the channel edge the emissions must be attenuated no less than 47 dB. More than 6 MHz...
47 CFR 74.794 - Digital emissions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Stringent mask. In the first 500 kHz from the channel edges, emissions must be attenuated no less than 47 dB... determined by the following formula: A(dB) = 47 + 11.5 (Δf-0.5) (iii) Full service mask: (A) The power level... first 500 kHz from the channel edge the emissions must be attenuated no less than 47 dB. More than 6 MHz...
47 CFR 74.794 - Digital emissions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Stringent mask. In the first 500 kHz from the channel edges, emissions must be attenuated no less than 47 dB... determined by the following formula: A(dB) = 47 + 11.5 (Δf-0.5) (iii) Full service mask: (A) The power level... first 500 kHz from the channel edge the emissions must be attenuated no less than 47 dB. More than 6 MHz...
47 CFR 74.794 - Digital emissions.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Stringent mask. In the first 500 kHz from the channel edges, emissions must be attenuated no less than 47 dB... determined by the following formula: A(dB) = 47 + 11.5 (Δf-0.5) (iii) Full service mask: (A) The power level... first 500 kHz from the channel edge the emissions must be attenuated no less than 47 dB. More than 6 MHz...
Mobile phones: time to rethink and limit usage.
Paul, Bobby; Saha, Indranil; Kumar, Sanjay; Samim Ferdows, S K; Ghose, Gautam
2015-01-01
Radiofrequency waves generated from mobile phones cause potential public health problems. Short-term effects like changes in sleep, heart rate, and blood pressure, and long-term effects like carcinoma are well documented. The Government of India's efforts in laying down regulations regarding the safety limits, manufacture, marketing, and mobile use are still in nascent stage. The need for stringent enforcement of laws for prevention of phone usage while driving and guidelines of medical regulatory bodies regarding rules and regulations of phone usage while at class or attending patients is of utmost importance. This should be supplemented by mass media to raise awareness among people regarding the possible health effects of radiofrequency emissions from mobile phones and the guidelines to minimize its exposure. It is the need of the hour to teach young people to be structured, to know when to have the cell phone on, and to avoid becoming the slave of technology instead of its mastery.
Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets
NASA Astrophysics Data System (ADS)
Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris
2017-05-01
Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.
Application rate affects the degradation rate and hence emissions of chloropicrin in soil.
Ashworth, Daniel J; Yates, Scott R; Stanghellini, Mike; van Wesenbeeck, Ian J
2018-05-01
Increasingly stringent regulations to control soil-air emissions of soil fumigants has led to much research effort aimed at reducing emission potential. Using laboratory soil columns, we aimed to investigate the relationship between chloropicrin (CP) application rate and its emissions from soil across a wide range of CP applications (equivalent to 56-392kgha -1 ). In contrast to the known behavior of other fumigants, total emission percentages were strongly and positively related to application rate (i.e., initial mass), ranging from 4 to 34% across the application rate range. When combined, data from a previous study and the present study showed good overall comparability in terms of CP application rate vs. emission percentage, yielding a second-order polynomial relationship with an R 2 value of 0.93 (n=12). The study revealed that mass losses of CP were strongly disproportional to application rate, also showing a polynomial relationship. Based on degradation studies, we consider that a shorter half-life (faster degradation) at lower application rates limited the amount of CP available for emission. The non-linear relationship between CP application rate and CP emissions (both as % of that applied and as total mass) suggests that low application rates likely lead to disproportionally low emission losses compared with higher application rates; such a relationship could be taken into account when assessing/mitigating risk, e.g., in the setting of buffer zone distances. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... hydrocarbons (THC), and particulate matter (PM) from new and existing cement kilns located at major and area... appreciably is the floor for THC, which would become significantly more stringent because the revised data base would reflect cement kilns experiencing less variability in THC emissions.\\10\\ Given the minimal...
Battery condenser system PM2.5 emission factors and rates for cotton gins
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that detail a project to characterize cotton gin emissions from the standpoint of stack and ambient sampling. The impetus behind the project was the 2006 EPA implementation of a more stringent standard for particulate matter less than or equal to 2....
Circuitry Linking the Csr and Stringent Response Global Regulatory Systems
Edwards, Adrianne N.; Patterson-Fortin, Laura M.; Vakulskas, Christopher A.; Mercante, Jeffrey W.; Potrykus, Katarzyna; Vinella, Daniel; Camacho, Martha I.; Fields, Joshua A.; Thompson, Stuart A.; Georgellis, Dimitris; Cashel, Michael; Babitzke, Paul; Romeo, Tony
2011-01-01
Summary CsrA protein regulates important cellular processes by binding to target mRNAs and altering their translation and/or stability. In Escherichia coli, CsrA binds to sRNAs, CsrB and CsrC, which sequester CsrA and antagonize its activity. Here, mRNAs for relA, spoT and dksA of the stringent response system were found among 721 different transcripts that copurified with CsrA. Many of the transcripts that copurified with CsrA were previously determined to respond to ppGpp and/or DksA. We examined multiple regulatory interactions between the Csr and stringent response systems. Most importantly, DksA and ppGpp robustly activated csrB/C transcription (10-fold), while they modestly activated csrA expression. We propose that CsrA-mediated regulation is relieved during the stringent response. Gel shift assays confirmed high affinity binding of CsrA to relA mRNA leader and weaker interactions with dksA and spoT. Reporter fusions, qRT-PCR, and immunoblotting showed that CsrA repressed relA expression, and (p)ppGpp accumulation during stringent response was enhanced in a csrA mutant. CsrA had modest to negligible effects on dksA and spoT expression. Transcription of dksA was negatively autoregulated via a feedback loop that tended to mask CsrA effects. We propose that the Csr system fine-tunes the stringent response and discuss biological implications of the composite circuitry. PMID:21488981
Hood, Rachel D; Higgins, Sean A; Flamholz, Avi; Nichols, Robert J; Savage, David F
2016-08-16
The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle.
Hood, Rachel D.; Higgins, Sean A.; Flamholz, Avi; Nichols, Robert J.
2016-01-01
The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3′-diphosphate 5′-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle. PMID:27486247
Reducing secondary organic aerosol formation from gasoline vehicle exhaust
Zhao, Yunliang; Saleh, Rawad; Presto, Albert A.; Gordon, Timothy D.; Drozd, Greg T.; Goldstein, Allen H.; Robinson, Allen L.
2017-01-01
On-road gasoline vehicles are a major source of secondary organic aerosol (SOA) in urban areas. We investigated SOA formation by oxidizing dilute, ambient-level exhaust concentrations from a fleet of on-road gasoline vehicles in a smog chamber. We measured less SOA formation from newer vehicles meeting more stringent emissions standards. This suggests that the natural replacement of older vehicles with newer ones that meet more stringent emissions standards should reduce SOA levels in urban environments. However, SOA production depends on both precursor concentrations (emissions) and atmospheric chemistry (SOA yields). We found a strongly nonlinear relationship between SOA formation and the ratio of nonmethane organic gas to oxides of nitrogen (NOx) (NMOG:NOx), which affects the fate of peroxy radicals. For example, changing the NMOG:NOx from 4 to 10 ppbC/ppbNOx increased the SOA yield from dilute gasoline vehicle exhaust by a factor of 8. We investigated the implications of this relationship for the Los Angeles area. Although organic gas emissions from gasoline vehicles in Los Angeles are expected to fall by almost 80% over the next two decades, we predict no reduction in SOA production from these emissions due to the effects of rising NMOG:NOx on SOA yields. This highlights the importance of integrated emission control policies for NOx and organic gases. PMID:28630318
Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corporan, E.; DeWitt, M.; Klingshirn, Christopher D
2010-01-01
The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch syntheticmore » paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.« less
Duan, Lei; Liu, Jing; Xin, Yan; Larssen, Thorjørn
2013-10-01
The Chinese government has established compulsory targets to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions by 8% and 10%, respectively, during 2010-2015. In this study, the effect of the policy was evaluated by predicting the recovery of acidified forest soil in Chongqing, an area severely impacted by acid rain in southwest China. Since precipitation has decreased significantly in this area in recent years, the impact of drought on soil acidification was also considered. A dynamic acidification model, MAGIC, was used to predict future trends in soil chemistry under different scenarios for deposition reduction as well as drought. We found that the current regulation of SO2 emission abatement did not significantly increase soil water pH values, the Ca2+ to Al3+ molar ratio (Ca/Al), or soil base saturation to the level of 2000 before 2050. NOx emission control would have less of an effect on acidification recovery, while emission reduction of particulate matter could offset the benefits of SO2 reduction by greatly decreasing the deposition of base cations, particularly Ca(2+). Continuous droughts in the future might also delay acidification recovery. Therefore, more stringent SO2 emission control should be implemented to facilitate the recovery of seriously acidified areas in China. © 2013 Elsevier B.V. All rights reserved.
49 CFR 350.333 - What are the guidelines for the compatibility review?
Code of Federal Regulations, 2010 CFR
2010-10-01
... to interstate or intrastate commerce Less stringent or more stringent Action authorized (1) Yes Compatible—Interstate and intrastate commerce enforcement authorized. (2) No Intrastate Refer to § 350.341 (3... authorized if the State can demonstrate the law or regulation has a safety benefit or does not create an...
DOT National Transportation Integrated Search
2000-03-01
The Baltimore Metropolitan Area is classified as a severe nonattainment area under the Clean Air Act Amendments of 1990. Consequently, it operates on a stringent emissions budget and is mandated to embark on mitigation measures. The area has been agg...
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...
Environmental externalities: Thinking globally, taxing locally
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trisko, E.M.
1993-03-01
Assigning monetary externality values to the airborne emissions of electric power plants is gaining the attention of state utility commissions as a means to measure the social costs of alternative energy investments. Some commissions are using environmental externalities to encourage utility investments in energy conservation and renewable energy technologies such as solar, wind, and biomass. However, the monetization of externalities through so-called adders to direct generation costs can lead to inefficient resource allocation and expose consumers to electric rate increases without corresponding environmental benefits. The addition of externality values to direct electric generation costs distorts the economics of power supplymore » planning by creating artificial subsidies for generation sources that are not currently competitive in the market. Businesses and consumers will be forced to support higher-cost sources of electric generation as a consequence. Because pollutant emissions of all new sources of electric generation are stringently regulated, and generally are well below those of existing fossil-fired sources, little demonstrable environmental benefit would result from the expanded use of externality valuation.« less
Circuitry linking the Csr and stringent response global regulatory systems.
Edwards, Adrianne N; Patterson-Fortin, Laura M; Vakulskas, Christopher A; Mercante, Jeffrey W; Potrykus, Katarzyna; Vinella, Daniel; Camacho, Martha I; Fields, Joshua A; Thompson, Stuart A; Georgellis, Dimitris; Cashel, Michael; Babitzke, Paul; Romeo, Tony
2011-06-01
CsrA protein regulates important cellular processes by binding to target mRNAs and altering their translation and/or stability. In Escherichia coli, CsrA binds to sRNAs, CsrB and CsrC, which sequester CsrA and antagonize its activity. Here, mRNAs for relA, spoT and dksA of the stringent response system were found among 721 different transcripts that copurified with CsrA. Many of the transcripts that copurified with CsrA were previously determined to respond to ppGpp and/or DksA. We examined multiple regulatory interactions between the Csr and stringent response systems. Most importantly, DksA and ppGpp robustly activated csrB/C transcription (10-fold), while they modestly activated csrA expression. We propose that CsrA-mediated regulation is relieved during the stringent response. Gel shift assays confirmed high affinity binding of CsrA to relA mRNA leader and weaker interactions with dksA and spoT. Reporter fusions, qRT-PCR and immunoblotting showed that CsrA repressed relA expression, and (p)ppGpp accumulation during stringent response was enhanced in a csrA mutant. CsrA had modest to negligible effects on dksA and spoT expression. Transcription of dksA was negatively autoregulated via a feedback loop that tended to mask CsrA effects. We propose that the Csr system fine-tunes the stringent response and discuss biological implications of the composite circuitry. © Published 2011. This article is a US Government work and is in the public domain in the USA.
Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets.
Anenberg, Susan C; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K; Lacey, Forrest; Malley, Christopher S; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris
2017-05-25
Vehicle emissions contribute to fine particulate matter (PM 2.5 ) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x ), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.
Cassels, R; Oliva, B; Knowles, D
1995-01-01
The stringent response in Escherichia coli and many other organisms is regulated by the nucleotides ppGpp and pppGpp. We show here for the first time that at least six staphylococcal species also synthesize ppGpp and pppGpp upon induction of the stringent response by mupirocin. Spots corresponding to ppGpp and pppGpp on thin-layer chromatograms suggest that pppGpp is the principal regulatory nucleotide synthesized by staphylococci in response to mupirocin, rather than ppGpp as in E. coli. PMID:7665499
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less
EMI Performance of the AIRS Cooler and Electronics
NASA Technical Reports Server (NTRS)
Johnson, D.; Collins, S.; Ross, R.
1998-01-01
The TRW pulse tube cryocooler for JPL's Atmospheric Infrared Sounder (AIRS) instrument is required to meet stringent requirements for radiated electric and magnetic fields, conducted emissions on the input power bus, and electromagnetic susceptivility.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... gasoline dispensing facilities more stringent by applying them statewide, making the rule applicable to... Emissions Standards for Hazardous Air Pollutants for gasoline dispensing facilities. The revisions also...
The Uncontrolled Economic Engine of the Developing Economies, Speeding up the Climate Shift
NASA Astrophysics Data System (ADS)
Khan, K. M.; Khan, M. A.
2014-12-01
As we progress into the 21st century, the world faces challenges of truly global nature bearing implications on the whole world in one way or another. The global economic engine has shifted from the western world (Developed Economies) to the eastern world (Developing Economies) which has brought about tremendous change in the climate related variables in this part of the world. As uncontrolled carbon emissions grow in the developing economies, the phenomenon of global warming and climate shifts become more and more prevalent. While this economic activity provides income for millions of households, it is contributing generously to the rapid degradation of the environment. Developing economies as it has been seen do not employ or abide by stringent regulations regarding emissions which result in uncontrolled emissions. In this particular scenario, it is a tedious task to convince governments in the developing economies to implement regulations regarding emissions because businesses in these economies deem such regulations to be economically unviable. The other side of the problem is that these uncontrolled emission are causing evident climate shifts which has had adverse impacts on the agricultural societies where shifting climates are leading to reduced agricultural output and productivity. Consequently the lives of millions associated directly or indirectly with agriculture are affected and on a more global level, the agricultural produce is decreasing which increases the chances of famine in parts of the world. The situation could have devastating impacts on the global economy and environmental standards and therefore needs to be addressed on emergency basis. The first step towards betterment could be the introduction of the carbon trading economy in the developing economies which would incentivize emission reduction and become more attractive and in the process sustaining minimum possible damage to the environment. Though carbon trading is a formidable first step in the right direction, it is in no way the only step and many other steps need to be taken. Agricultural economies have to study climate changes in detail and inculcate findings into their agricultural practices in order to keep the productivity from reducing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Closed vent systems and control devices; or emissions routed to a fuel gas system or process standards. 63.1034 Section 63.1034 Protection... stringent. The 20 parts per million by volume standard is not applicable to the provisions of § 63.1016. (ii...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Closed vent systems and control devices; or emissions routed to a fuel gas system or process standards. 63.1034 Section 63.1034 Protection... stringent. The 20 parts per million by volume standard is not applicable to the provisions of § 63.1016. (ii...
Gwimbi, Patrick
2017-11-16
Persistently high sulphur dioxide (SO 2 ) emissions from platinum group metal (PGM) smelting pose a major threat to communities located around smelters. This paper examined SO 2 emission trends, emission regulations and residents' perceived health risks from exposures to such emissions at Selous Metallurgical Complex (SMC) PGM smelting facility in Zimbabwe. SO 2 data from roof monitoring sites at the smelter furnace were aggregated into annual, quarterly and monthly emission trends from 2008 to 2015. The regulatory regime's ability to protect human health from SO 2 pollution in communities located around the smelter was examined. Questionnaire responses to perceived health risks from SO 2 exposure from 40 purposively sampled residents were assessed. The relationships between SO 2 emission trends and residents' self-reported health risks from exposure to SO 2 emissions were explored using STATA version 11. Descriptive statistics were used to illustrate SO 2 emission trends and residents' self-reported health risks from exposure to SO 2 . Between 2008 and 2015, annual SO 2 emissions increased from 7951 to 2500 tonnes. Emissions exceeded the recommended standard limit of 50 mg/Nm 3 , presenting considerable adverse health risks to local residents. Concerns relating to inefficient environmental impact assessment (EIA) licensing system, poor monitoring and auditing by the environmental management agency, as well as non-deterring SO 2 emission exceedance penalties were identified as major drivers of emission increase. Thirty-two (80%) of the forty respondents perceived exposure to SO 2 emissions as adverse and the cause of their illnesses, with coughing, nasal congestion and shortness of breath the most frequently self-reported symptoms. A set of legally-binding SO 2 emission standards supported by stringent EIA licensing arrangements for smelting industries are suggested for development and enforcement to reduce the SO 2 emission problem. Community participation in SO 2 emissions monitoring is also proposed as a core part of sustainable environmental management in communities located around smelters.
Mitigation of PAH and nitro-PAH emissions from nonroad diesel engines.
Liu, Z Gerald; Wall, John C; Ottinger, Nathan A; McGuffin, Dana
2015-03-17
More stringent emission requirements for nonroad diesel engines introduced with U.S. Tier 4 Final and Euro Stage IV and V regulations have spurred the development of exhaust aftertreatment technologies. In this study, several aftertreatment configurations consisting of diesel oxidation catalysts (DOC), diesel particulate filters (DPF), Cu zeolite-, and vanadium-based selective catalytic reduction (SCR) catalysts, and ammonia oxidation (AMOX) catalysts are evaluated using both Nonroad Transient (NRTC) and Steady (8-mode NRSC) Cycles in order to understand both component and system-level effects of diesel aftertreatment on emissions of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH). Emissions are reported for four configurations including engine-out, DOC+CuZ-SCR+AMOX, V-SCR+AMOX, and DOC+DPF+CuZ-SCR+AMOX. Mechanisms responsible for the reduction, and, in some cases, the formation of PAH and nitro-PAH compounds are discussed in detail, and suggestions are provided to minimize the formation of nitro-PAH compounds through aftertreatment design optimizations. Potency equivalency factors (PEFs) developed by the California Environmental Protection Agency are then applied to determine the impact of aftertreatment on PAH-derived exhaust toxicity. Finally, a comprehensive set of exhaust emissions including criteria pollutants, NO2, total hydrocarbons (THC), n-alkanes, branched alkanes, saturated cycloalkanes, aromatics, aldehydes, hopanes and steranes, and metals is provided, and the overall efficacy of the aftertreatment configurations is described. This detailed summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere.
NOx emissions in China: historical trends and future perspectives
NASA Astrophysics Data System (ADS)
Zhao, B.; Wang, S. X.; Liu, H.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.
2013-10-01
Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to explore the impact of key factors on future emissions.
20 CFR 658.701 - Statements of policy.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ensure that State agencies comply with all requirements established by JS regulations. (b) It is the... continual violations of JS regulations if less stringent remedial actions taken in accordance with this... alleged violations by State agencies of the JS regulations received from any person or organization. ...
2017-01-01
Modern cities are engines of production, innovation, and growth. However, urbanization also increases both local and global pollution from household consumption and firms’ production. Do emissions change proportionately to city size or does pollution tend to outpace or lag urbanization? Do emissions scale differently with population versus economic growth or are emissions, population, and economic growth inextricably linked? How are the scaling relationships between emissions, population, and economic growth affected by environmental regulation? This paper examines the link between urbanization, economic growth and pollution using data from Metropolitan Statistical Areas (MSAs) in the United States between 1999 and 2011. We find that the emissions of local air pollution in these MSAs scale according to a ¾ power law with both population size and gross domestic product (GDP). However, the monetary damages from these local emissions scale linearly with both population and GDP. Counties that have previously been out of attainment with the local air quality standards set by the Clean Air Act show an entirely different relationship: local emissions scale according to the square root of population, while the monetary damages from local air pollution follow a 2/3rds power law with population. Counties out of attainment are subject to more stringent emission controls; we argue based on this that enforcement of the Clean Air Act induces sublinear scaling between emissions, damages, and city size. In contrast, we find that metropolitan GDP scales super-linearly with population in all MSAs regardless of attainment status. Summarizing, our findings suggest that environmental policy limits the adverse effects of urbanization without interfering with the productivity benefits that manifest in cities. PMID:28792949
Muller, Nicholas Z; Jha, Akshaya
2017-01-01
Modern cities are engines of production, innovation, and growth. However, urbanization also increases both local and global pollution from household consumption and firms' production. Do emissions change proportionately to city size or does pollution tend to outpace or lag urbanization? Do emissions scale differently with population versus economic growth or are emissions, population, and economic growth inextricably linked? How are the scaling relationships between emissions, population, and economic growth affected by environmental regulation? This paper examines the link between urbanization, economic growth and pollution using data from Metropolitan Statistical Areas (MSAs) in the United States between 1999 and 2011. We find that the emissions of local air pollution in these MSAs scale according to a ¾ power law with both population size and gross domestic product (GDP). However, the monetary damages from these local emissions scale linearly with both population and GDP. Counties that have previously been out of attainment with the local air quality standards set by the Clean Air Act show an entirely different relationship: local emissions scale according to the square root of population, while the monetary damages from local air pollution follow a 2/3rds power law with population. Counties out of attainment are subject to more stringent emission controls; we argue based on this that enforcement of the Clean Air Act induces sublinear scaling between emissions, damages, and city size. In contrast, we find that metropolitan GDP scales super-linearly with population in all MSAs regardless of attainment status. Summarizing, our findings suggest that environmental policy limits the adverse effects of urbanization without interfering with the productivity benefits that manifest in cities.
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...
Australians are not equally protected from industrial air pollution
NASA Astrophysics Data System (ADS)
Dobbie, B.; Green, D.
2015-05-01
Australian air pollution standards are set at national and state levels for a number of chemicals harmful to human health. However, these standards do not need to be met when ad hoc pollution licences are issued by state environment agencies. This situation results in a highly unequal distribution of air pollution between towns and cities, and across the country. This paper examines these pollution regulations through two case studies, specifically considering the ability of the regulatory regime to protect human health from lead and sulphur dioxide pollution in the communities located around smelters. It also considers how the proposed National Clean Air Agreement, once enacted, might serve to reduce this pollution equity problem. Through the case studies we show that there are at least three discrete concerns relating to the current licencing system. They are: non-onerous emission thresholds for polluting industry; temporal averaging thresholds masking emission spikes; and ineffective penalties for breaching licence agreements. In conclusion, we propose a set of new, legally-binding national minimum standards for industrial air pollutants must be developed and enforced, which can only be modified by more (not less) stringent state licence arrangements.
Cantú, Manuel; López-Salinas, Esteban; Valente, Jaime S; Montiel, Ramon
2005-12-15
Sulfur oxides are one of the most hazardous atmospheric pollutants since they contribute directly to acid rain formation. Consequently, stringent environmental regulations limit atmospheric SOx emissions, motivating research on efficient ways to reduce them. To supply an alternative to reduce these emissions in fluid catalytic cracking units, this study discloses efficient SOx reducing materials based on calcined MgAlFe hydrotalcite-like compounds (HT's). Thus, HT materials were synthesized by several methods including cerium addition. The adsorption of SO2 was carried out by contacting the calcined solid with a mixture of SO2 (1%) in air at 650 degrees C. It was demonstrated that the isomorphic incorporation of iron increased its reduction capability which was reflected in higher reduction rates and metal sulfate reduction grade at 550 degrees C. Moreover, when cerium was present in the iron-containing materials the saturation rate was improved, because cerium oxide promotes the oxidation of SO2 to SO3. The way cerium is incorporated influences the SO2 adsorption capacity.
Analysis of Carbon Policies for Electricity Networks with High Penetration of Green Generation
NASA Astrophysics Data System (ADS)
Feijoo, Felipe A.
In recent decades, climate change has become one of the most crucial challenges for humanity. Climate change has a direct correlation with global warming, caused mainly by the green house gas emissions (GHG). The Environmental Protection Agency in the U.S. (EPA) attributes carbon dioxide to account for approximately 82% of the GHG emissions. Unfortunately, the energy sector is the main producer of carbon dioxide, with China and the U.S. as the highest emitters. Therefore, there is a strong (positive) correlation between energy production, global warming, and climate change. Stringent carbon emissions reduction targets have been established in order to reduce the impacts of GHG. Achieving these emissions reduction goals will require implementation of policies like as cap-and-trade and carbon taxes, together with transformation of the electricity grid into a smarter system with high green energy penetration. However, the consideration of policies solely in view of carbon emissions reduction may adversely impact other market outcomes such as electricity prices and consumption. In this dissertation, a two-layer mathematical-statistical framework is presented, that serves to develop carbon policies to reduce emissions level while minimizing the negative impacts on other market outcomes. The bottom layer of the two layer model comprises a bi-level optimization problem. The top layer comprises a statistical model and a Pareto analysis. Two related but different problems are studied under this methodology. The first problem looks into the design of cap-and-trade policies for deregulated electricity markets that satisfy the interest of different market constituents. Via the second problem, it is demonstrated how the framework can be used to obtain levels of carbon emissions reduction while minimizing the negative impact on electricity demand and maximizing green penetration from microgrids. In the aforementioned studies, forecasts for electricity prices and production cost are considered. This, this dissertation also presents anew forecast model that can be easily integrated in the two-layer framework. It is demonstrated in this dissertation that the proposed framework can be utilized by policy-makers, power companies, consumers, and market regulators in developing emissions policy decisions, bidding strategies, market regulations, and electricity dispatch strategies.
76 FR 75913 - Notice of Lodging of Modification of Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... (``Regulated Bacteria'') and to comply with interim effluent limitations for those pollutants. The proposed Modification provides new, more stringent interim effluent limitations for Regulated Bacteria and requires... effluent limitations for Regulated Bacteria set forth in the Facility's National Pollutant Discharge...
49 CFR 218.4 - Preemptive effect.
Code of Federal Regulations, 2010 CFR
2010-10-01
... negligence standards apply where there is no Federal action covering the subject matter. Under 49 U.S.C. 20106 (section 20106), issuance of the regulations in this part preempts any State law, regulation, or order covering the same subject matter, except an additional or more stringent law, regulation, or order...
49 CFR 217.2 - Preemptive effect.
Code of Federal Regulations, 2010 CFR
2010-10-01
... negligence standards apply where there is no Federal action covering the subject matter. Under 49 U.S.C. 20106 (section 20106), issuance of the regulations in this part preempts any State law, regulation, or order covering the same subject matter, except an additional or more stringent law, regulation, or order...
Avoiding Clean Air Act Enforcement Actions
1994-06-01
process or common-source permits (for instance, all boilers or all sources within a defined area on one per- mit); or separate permits for every source of... boilers ; and explosive produc- tion processes. The limitations on NO. emissions may become more stringent if it is determined that these emissions...ISC = Infornmtbon Systems C~r;, INSCOM w; HSC m HhO Sewims Com- rand; FORSCOM - Forces Command; ARNG a Army Natonal Guwd; AMC = Army Maet Command
Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.; ...
2017-04-09
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less
Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation.
Jung, Heejung; Kittelson, David B; Zachariah, Michael R
2006-08-15
Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF.
Regulation of Phospholipid Synthesis in Escherichia coli by Guanosine Tetraphosphate
Merlie, John P.; Pizer, Lewis I.
1973-01-01
Phospholipid synthesis has been reported to be subject to stringent control in Escherichia coli. We present evidence that demonstrates a strict correlation between guanosine tetraphosphate accumulation and inhibition of phospholipid synthesis. In vivo experiments designed to examine the pattern of phospholipid labeling with 32P-inorganic phosphate and 32P-sn-glycerol-3-phosphate suggest that regulation must occur at the glycerol-3-phosphate acyltransferase step. Assay of phospholipid synthesis by cell-free extracts and semipurified preparations revealed that guanosine tetraphosphate inhibits at least two enzymes specific for the biosynthetic pathway, sn-glycerol-3-phosphate acyltransferase as well as sn-glycerol-3-phosphate phosphatidyl transferase. These findings provide a biochemical basis for the stringent control of lipid synthesis as well as regulation of steady-state levels of phospholipid in growing cells. Images PMID:4583220
New constraints and discovery potential of sub-GeV dark matter with xenon detectors
NASA Astrophysics Data System (ADS)
McCabe, Christopher
2017-08-01
Existing xenon dark matter (DM) direct detection experiments can probe the DM-nucleon interaction of DM with a sub-GeV mass through a search for photon emission from the recoiling xenon atom. We show that LUX's constraints on sub-GeV DM, which utilize the scintillation (S1) and ionization (S2) signals, are approximately 3 orders of magnitude more stringent than previous xenon constraints in this mass range, derived from the XENON10 and XENON100 S2-only searches. The new LUX constraints provide the most stringent direct detection constraints for DM particles with a mass below 0.5 GeV. In addition, the photon emission signal in LUX and its successor LZ maintain the discrimination between background and signal events so that an unambiguous discovery of sub-GeV DM is possible. We show that LZ has the potential to reconstruct the DM mass with ≃20 % accuracy for particles lighter than 0.5 GeV.
2013-01-01
Background In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. Results cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. Conclusions The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress. PMID:23834488
40 CFR 85.525 - Applicable standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... prohibition, vehicles/engines that have been converted to operate on a different fuel must meet emission standards and related requirements as follows: (a) The modified vehicle/engine must meet the requirements that applied for the OEM vehicle/engine, or the most stringent OEM vehicle/engine standards in any...
Technology innovations and experience curves for nitrogen oxides control technologies.
Yeh, Sonia; Rubin, Edward S; Taylor, Margaret R; Hounshell, David A
2005-12-01
This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO2) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. We use patent data to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus "forcing" innovation. We also demonstrate that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to approximately 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale.
Li, Jingji; Yang, Hairui; Wu, Yuxin; Lv, Junfu; Yue, Guangxi
2013-06-18
The advantage of circulating fluidized bed (CFB) boilers in China is their ability to utilize low rank coal with low cost emission control. However, the new National Emission Regulation (NER) issued in early 2012 brings much more stringent challenges on the CFB industries, which also causes much attention from other countries. Based on the principle of a CFB boiler and previous operating experience, it is possible for the CFB boilers to meet the new NER and maintain the advantage of low cost emission control, while, more influences should be considered in their design and operation. To meet the requirement of the new NER, the fly ash collector should adopt a bag house or combination of electrostatic precipitator and bag filter to ensure dust emissions of less than 30 mg · Nm(-3). For SO2 emission control, the bed temperature should be strictly lower than 900 °C to maintain high reactivity and pores. The limestone particle size distribution should be ranged within a special scope to optimize the residence time and gas-solid reaction. At the same time, the injecting point should be optimized to ensure fast contact of lime with oxygen. In such conditions, the desulfurization efficiency could be increased more than 90%. For lower sulfur content fuels (<1.5%, referred value based on the heating value of standard coal of China), increasing Ca/S enough could decrease SO2 emissions lower than that of the new NER, 100 mg · Nm(-3). For fuels with sulfur content higher than 1.5%, some simplified systems for flue gas desulfurization, such as flash dryer absorber (FDA), are needed. And the NOx emissions of a CFB can be controlled to less than 100 mg · Nm(-3) without any equipment at a bed temperature lower than 900 °C for fuels with low volatiles content (<12%), while for fuels with high volatiles, selective non-catalytic reduction (SNCR) should be considered. Due to the unique temperature in CFB as well as the circulating ash, the efficiency of SNCR could reach as high as 70%. The Hg emission of CFB is very low for the new NER due to its innate property.
30 CFR 937.700 - Oregon Federal program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Federal program. (c) The rules in this part apply to all surface coal mining operations in Oregon... more stringent environmental control and regulation of surface coal mining operations than do the... extent they provide for regulation of surface coal mining and reclamation operations which are exempt...
40 CFR 142.10 - Requirements for a determination of primary enforcement responsibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS... enforcement responsibility. A State has primary enforcement responsibility for public water systems in the...: (a) Has adopted drinking water regulations which are no less stringent than the national primary...
40 CFR 142.10 - Requirements for a determination of primary enforcement responsibility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS... enforcement responsibility. A State has primary enforcement responsibility for public water systems in the...: (a) Has adopted drinking water regulations which are no less stringent than the national primary...
40 CFR 142.10 - Requirements for a determination of primary enforcement responsibility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS... enforcement responsibility. A State has primary enforcement responsibility for public water systems in the...: (a) Has adopted drinking water regulations which are no less stringent than the national primary...
Wu, Xiaomeng; Wu, Ye; Zhang, Shaojun; Liu, Huan; Fu, Lixin; Hao, Jiming
2016-07-01
China has been embracing rapid motorization since the 1990s, and vehicles have become one of the major sources of air pollution problems. Since the late 1990s, thanks to the international experience, China has adopted comprehensive control measures to mitigate vehicle emissions. This study employs a local emission model (EMBEV) to assess China's first fifteen-year (1998-2013) efforts in controlling vehicles emissions. Our results show that China's total annual vehicle emissions in 2013 were 4.16 million tons (Mt) of HC, 27.4 Mt of CO, 7.72 Mt of NOX, and 0.37 Mt of PM2.5, respectively. Although vehicle emissions are substantially reduced relative to the without control scenarios, we still observe significantly higher emission density in East China than in developed countries with longer histories of vehicle emission control. This study further informs China's policy-makers of the prominent challenges to control vehicle emissions in the future. First, unlike other major air pollutants, total NOX emissions have rapidly increased due to a surge of diesel trucks and the postponed China IV standard nationwide. Simultaneous implementation of fuel quality improvements and vehicle-engine emission standards will be of great importance to alleviate NOX emissions for diesel fleets. Second, the enforcement of increasingly stringent standards should include strict oversight of type-approval conformity, in-use complacence and durability, which would help reduce gross emitters of PM2.5 that are considerable among in-use diesel fleets at the present. Third, this study reveals higher HC emissions than previous results and indicates evaporative emissions may have been underestimated. Considering that China's overall vehicle ownership is far from saturation, persistent efforts are required through economic tools, traffic management and emissions regulations to lower vehicle-use intensity and limit both exhaust and evaporative emissions. Furthermore, in light of the complex technology for emerging new energy vehicles, their real-world emissions need to be adequately evaluated before massive promotion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.
Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul
2016-11-01
The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.
40 CFR 1039.625 - What requirements apply under the program for equipment-manufacturer flexibility?
Code of Federal Regulations, 2012 CFR
2012-07-01
... NONROAD COMPRESSION-IGNITION ENGINES Special Compliance Provisions § 1039.625 What requirements apply... manufacturers to produce equipment with engines that are subject to less stringent emission standards after the... such equipment without manufacturing it. Engines and equipment you produce under this section are...
40 CFR 1039.625 - What requirements apply under the program for equipment-manufacturer flexibility?
Code of Federal Regulations, 2013 CFR
2013-07-01
... NONROAD COMPRESSION-IGNITION ENGINES Special Compliance Provisions § 1039.625 What requirements apply... manufacturers to produce equipment with engines that are subject to less stringent emission standards after the... such equipment without manufacturing it. Engines and equipment you produce under this section are...
Characterization of cotton gin particulate matter emissions – project plan
USDA-ARS?s Scientific Manuscript database
In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation timeline for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District, has pro...
Characterization of cotton gin particulate matter emissions - project plan
USDA-ARS?s Scientific Manuscript database
In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation time line for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District has pro...
Cap-and-Trade Modeling and Analysis: Congested Electricity Market Equilibrium
NASA Astrophysics Data System (ADS)
Limpaitoon, Tanachai
This dissertation presents an equilibrium framework for analyzing the impact of cap-and-trade regulation on transmission-constrained electricity market. The cap-and-trade regulation of greenhouse gas emissions has gained momentum in the past decade. The impact of the regulation and its efficacy in the electric power industry depend on interactions of demand elasticity, transmission network, market structure, and strategic behavior of firms. I develop an equilibrium model of an oligopoly electricity market in conjunction with a market for tradable emissions permits to study the implications of such interactions. My goal is to identify inefficiencies that may arise from policy design elements and to avoid any unintended adverse consequences on the electric power sector. I demonstrate this modeling framework with three case studies examining the impact of carbon cap-and-trade regulation. In the first case study, I study equilibrium results under various scenarios of resource ownership and emission targets using a 24-bus IEEE electric transmission system. The second and third case studies apply the equilibrium model to a realistic electricity market, Western Electricity Coordinating Council (WECC) 225-bus system with a detailed representation of the California market. In the first and second case studies, I examine oligopoly in electricity with perfect competition in the permit market. I find that under a stringent emission cap and a high degree of concentration of non-polluting firms, the electricity market is subject to potential abuses of market power. Also, market power can occur in the procurement of non-polluting energy through the permit market when non-polluting resources are geographically concentrated in a transmission-constrained market. In the third case study, I relax the competitive market structure assumption of the permit market by allowing oligopolistic competition in the market through a conjectural variation approach. A short-term equilibrium analysis of the joint markets in the presence of market power reveals that strategic permit trading can play a vital role in determining economic outcomes in the electricity market. In particular, I find that a firm with more efficient technologies can employ strategic withholding of permits, which allows for its increase in output share in the electricity market at the expense of other less efficient firms. In addition, strategic permit trading can influence patterns of transmission congestion. These results illustrate that market structure and transmission congestion can have a significant impact on the market performance and environmental outcome of the regulation while the interactions of such factors can lead to unintended consequences. The proposed approach is proven useful as a tool for market monitoring purposes in the short run from the perspective of a system operator, whose responsibility has become indirectly intertwined with emission trading regulation.
Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.
Ülpre, H; Eames, I
2014-11-15
Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance. Copyright © 2014. Published by Elsevier Ltd.
Advanced Turbo-Charging Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-02-27
The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger'more » because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.« less
State Law Approaches to Facility Regulation of Abortion and Other Office Interventions
Daniel, Sara; Cloud, Lindsay K.
2018-01-01
Objectives. To compare the prevalence and characteristics of facility laws governing abortion provision specifically (targeted regulation of abortion providers [TRAP] laws); office-based surgeries, procedures, sedation or anesthesia (office interventions) generally (OBS laws); and other procedures specifically. Methods. We conducted cross-sectional legal assessments of state facility laws for office interventions in effect as of August 1, 2016. We coded characteristics for each law and compared characteristics across categories of laws. Results. TRAP laws (n = 55; in 34 states) were more prevalent than OBS laws (n = 25; in 25 states) or laws targeting other procedures (n = 1; in 1 state). TRAP laws often regulated facilities that would not be regulated under OBS laws (e.g., all TRAP laws, but only 2 OBS laws, applied regardless of sedation or anesthesia used). TRAP laws imposed more numerous and more stringent requirements than OBS laws. Conclusions. Many states regulate abortion-providing facilities differently, and more stringently, than facilities providing other office interventions. The Supreme Court’s 2016 decision in Whole Woman’s Health v Hellerstedt casts doubt on the legitimacy of that differential treatment. PMID:29470114
Gaseous emissions from waste combustion.
Werther, Joachim
2007-06-18
An overview is given on methods and technologies for limiting the gaseous emissions from waste combustion. With the guideline 2000/76/EC recent European legislation has set stringent limits not only for the mono-combustion of waste in specialized incineration plants but also for co-combustion in coal-fired power plants. With increased awareness of environmental issues and stepwise decrease of emission limits and inclusion of more and more substances into the network of regulations a multitude of emission abatement methods and technologies have been developed over the last decades. The result is the state-of-the-art waste incinerator with a number of specialized process steps for the individual components in the flue gas. The present work highlights some new developments which can be summarized under the common goal of reducing the costs of flue gas treatment by applying systems which combine the treatment of several noxious substances in one reactor or by taking new, simpler routes instead of the previously used complicated ones or - in the case of flue gas desulphurisation - by reducing the amount of limestone consumption. Cost reduction is also the driving force for new processes of conditioning of nonhomogenous waste before combustion. Pyrolysis or gasification is used for chemical conditioning whereas physical conditioning means comminution, classification and sorting processes. Conditioning yields a fuel which can be used in power plants either as a co-fuel or a mono-fuel and which will burn there under much better controlled conditions and therefore with less emissions than the nonhomogeneous waste in a conventional waste incinerator. Also for cost reasons, co-combustion of wastes in coal-fired power stations is strongly pressing into the market. Recent investigations reveal that the co-firing of waste can also have beneficial effects on the operating behavior of the boiler and on the gaseous emissions.
Yoon, Seungju; Collins, John; Thiruvengadam, Arvind; Gautam, Mridul; Herner, Jorn; Ayala, Alberto
2013-08-01
Engine and exhaust control technologies applied to compressed natural gas (CNG) transit buses have advanced from lean-burn, to lean-burn with oxidation catalyst (OxC), to stoichiometric combustion with three-way catalyst (TWC). With this technology advancement, regulated gaseous and particulate matter emissions have been significantly reduced. Two CNG transit buses equipped with stoichiometric combustion engines and TWCs were tested on a chassis dynamometer, and their emissions were measured. Emissions from the stoichiometric engines with TWCs were then compared to the emissions from lean-burn CNG transit buses tested in previous studies. Stoichiometric combustion with TWC was effective in reducing emissions of oxides of nitrogen (NO(x)), particulate matter (PM), and nonmethane hydrocarbon (NMHC) by 87% to 98% depending on pollutants and test cycles, compared to lean combustion. The high removal efficiencies exceeded the emission reduction required from the certification standards, especially for NO(x) and PM. While the certification standards require 95% and 90% reductions for NO(x) and PM, respectively, from the engine model years 1998-2003 to the engine model year 2007, the measured NO(x) and PM emissions show 96% and 95% reductions, respectively, from the lean-burn engines to the stoichiometric engines with TWC over the transient Urban Dynamometer Driving Schedule (UDDS) cycle. One drawback of stoichiometric combustion with TWC is that this technology produces higher carbon monoxide (CO) emissions than lean combustion. In regard to controlling CO emissions, lean combustion with OxC is more effective than stoichiometric combustion. Stoichiometric combustion with TWC produced higher greenhouse gas (GHG) emissions including carbon dioxide (CO2) and methane (CH4) than lean combustion during the UDDS cycle, but lower GHG emissions during the steady-state cruise cycle. Stoichiometric combustion with three-way catalyst is currently the best emission control technology available for compressed natural gas (CNG) transit buses to meet the stringent U.S. Environmental Protection Agency (EPA) 2010 heavy-duty engine NO(x) emissions standard. For existing lean-burn CNG transit buses in the fleet, oxidation catalyst would be the most effective retrofit technology for the control of NMHC and CO emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigham, CJ; Speth, DR; Rha, C
Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectivelymore » repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor sigma(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.« less
The Effect of Emissions Trading And Carbon Sequestration on The Cost Of CO2 Emissions Mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahasenan, Natesan; Scott, Michael J.; Smith, Steven J.
2002-08-05
The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies. In addition, trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. We examine the effects of the availability of sequestration opportunities and emissions trading (either within select regionsmore » or globally) on the cost of emissions mitigation and compliance with different emissions reduction targets for the IPCC SRES scenarios. For each base scenario and emissions target, we examine the issues outlined above and present quantitative estimates for the impacts of trade and the availability of sequestration opportunities in meeting emissions limitation obligations.« less
Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M
2008-04-01
Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.
Cosmetic Regulations: A Comparative Study.
Suhag, Jyoti; Dureja, Harish
2015-01-01
The regulatory framework, compliance requirement, efficacy, safety, and marketing of cosmetic products are considered the most important factors for growth of the cosmetic industry. There are different regulatory bodies across the globe that have their own insights for regulation; moreover, governments such as the United States, European Union, and Japan follow a stringent regulatory framework, whereas cosmetics are not so much strictly regulated in countries such as India, Brazil, and China. The alignment of a regulatory framework will play a significant role in the removal of barriers to trade, growth of market at an international level, innovation in the development and presentation of new products, and most importantly safety and efficacy of the marketed products. The present contribution gives insight into the important cosmetic regulations in areas of premarket approval, ingredient control, and labeling and warnings, with a special focus on the cosmetic regulatory environments in the United States, European Union, Japan, and India. Most importantly, the authors highlight the dark side of cosmetics associated with allergic reactions and even skin cancer. The importance of cosmetic regulations has been highlighted by dint of which the society can be healthier, accomplished by more stringent and harmonized regulations.
NASA Astrophysics Data System (ADS)
Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.
2016-10-01
Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.
Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems
ERIC Educational Resources Information Center
McKinley, Thomas L.
2009-01-01
Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…
40 CFR 60.562-1 - Standards: Process emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... methane and ethane) (TOC) by 98 weight percent, or to a concentration of 20 parts per million by volume (ppmv) on a dry basis, whichever is less stringent. The TOC is expressed as the sum of the actual... Polypropylene and Polyethylene Affected Facilities Procedure /a/ Applicable TOC weight percent range Control/no...
40 CFR 1039.625 - What requirements apply under the program for equipment-manufacturer flexibility?
Code of Federal Regulations, 2014 CFR
2014-07-01
... differences that justify your request. (vi) Describe your efforts to find and use other compliant engines, or... NONROAD COMPRESSION-IGNITION ENGINES Special Compliance Provisions § 1039.625 What requirements apply... manufacturers to produce equipment with engines that are subject to less stringent emission standards after the...
Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles
NASA Astrophysics Data System (ADS)
Hajbabaei, Maryam
There is a global effort to expand the use of alternative fuels due to their several benefits such as improving air quality with reducing some criteria emissions, reducing dependency on fossil fuels, and reducing greenhouse gases such as carbon dioxide. This dissertation is focused on investigating the impact of two popular alternative fuels, biodiesel and natural gas (NG), on emissions from heavy-duty engines. Biodiesel is one of the most popular renewable fuels with diesel applications. Although biodiesel blends are reported to reduce particulate matter, carbon monoxide, and total hydrocarbon emissions; there is uncertainty on their impact on nitrogen oxides (NOx) emissions. This dissertation evaluated the effect of biodiesel feedstock, biodiesel blend level, engine technology, and driving conditions on NOx emissions. The results showed that NOx emissions increase with 20% and higher biodiesel blends. Also, in this study some strategies were proposed and some fuel formulations were found for mitigating NOx emissions increases with biodiesel. The impact of 5% biodiesel on criteria emissions specifically NOx was also fully studied in this thesis. As a part of the results of this study, 5% animal-based biodiesel was certified for use in California based on California Air Resources Board emissions equivalent procedure. NG is one of the most prominent alternative fuels with larger reserves compared to crude oil. However, the quality of NG depends on both its source and the degree to which it is processed. The current study explored the impact of various NG fuels, ranging from low methane/high energy gases to high methane/low energy gases, on criteria and toxic emissions from NG engines with different combustion and aftertreatment technologies. The results showed stronger fuel effects for the lean-burn technology bus. Finally, this thesis investigated the impact of changing diesel fuel composition on the criteria emissions from a variety of heavy-duty engine technologies. Emissions from an average diesel fuel used throughout the U.S. were compared with a 10% aromatic, ultra-low sulfur diesel fuel used in California with more stringent air quality regulations. The results showed that the emerging aftertreatment technologies eventually eliminate the benefits of the lower aromatic content/higher cetane number diesel fuels.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-05
..., therefore, this action establishes requirements that DoD personnel must follow when making acquisitions for...) ten-fold from 52 to 5 micrograms-per-cubic-meter, making it among the most stringently regulated... officer will forward the request to the authorized approving official (DFARS 223.7305(a)) for decision...
Contaminant levels, source strengths, and ventilation rates in California retail stores.
Chan, W R; Cohn, S; Sidheswaran, M; Sullivan, D P; Fisk, W J
2015-08-01
This field study measured ventilation rates and indoor air quality in 21 visits to retail stores in California. Three types of stores, such as grocery, furniture/hardware stores, and apparel, were sampled. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California's Title 24 Standard in all but one store. Concentrations of volatile organic compounds (VOCs), ozone, and carbon dioxide measured indoors and outdoors were analyzed. Even though there was adequate ventilation according to standard, concentrations of formaldehyde and acetaldehyde exceeded the most stringent chronic health guidelines in many of the sampled stores. The whole-building emission rates of VOCs were estimated from the measured ventilation rates and the concentrations measured indoor and outdoor. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California's stringent formaldehyde reference level. Given the high costs of providing ventilation, effective source control is an attractive alternative. Field measurements suggest that California retail stores were well ventilated relative to the minimum ventilation rate requirement specified in the Building Energy Efficiency Standards Title 24. Concentrations of formaldehyde found in retail stores were low relative to levels found in homes but exceeded the most stringent chronic health guideline. Looking ahead, California is mandating zero energy commercial buildings by 2030. To reduce the energy use from building ventilation while maintaining or even lowering formaldehyde in retail stores, effective formaldehyde source control measures are vitally important. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Brough, Rachel; Papanastasiou, Antigoni M; Porter, Andrew CG
2007-01-01
Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes. PMID:17493262
Medical Device Regulation: A Comparison of the United States and the European Union.
Maak, Travis G; Wylie, James D
2016-08-01
Medical device regulation is a controversial topic in both the United States and the European Union. Many physicians and innovators in the United States cite a restrictive US FDA regulatory process as the reason for earlier and more rapid clinical advances in Europe. The FDA approval process mandates that a device be proved efficacious compared with a control or be substantially equivalent to a predicate device, whereas the European Union approval process mandates that the device perform its intended function. Stringent, peer-reviewed safety data have not been reported. However, after recent high-profile device failures, political pressure in both the United States and the European Union has favored more restrictive approval processes. Substantial reforms of the European Union process within the next 5 to 10 years will result in a more stringent approach to device regulation, similar to that of the FDA. Changes in the FDA regulatory process have been suggested but are not imminent.
Trends and variability of atmospheric PM2.5 and PM10-2.5 concentration in the Po Valley, Italy
NASA Astrophysics Data System (ADS)
Bigi, Alessandro; Ghermandi, Grazia
2016-12-01
The Po Valley is one of the largest European regions with a remarkably high concentration level of atmospheric pollutants, both for particulate and gaseous compounds. In the last decade stringent regulations on air quality standards and on anthropogenic emissions have been set by the European Commission, including also for PM2.5 and its main components since 2008. These regulations have led to an overall improvement in air quality across Europe, including the Po Valley and specifically PM10, as shown in a previous study by Bigi and Ghermandi (2014). In order to assess the trend and variability in PM2.5 in the Po Valley and its role in the decrease in PM10, we analysed daily gravimetric equivalent concentration of PM2.5 and of PM10-2.5 at 44 and 15 sites respectively across the Po Valley. The duration of the times series investigated in this work ranges from 7 to 10 years. For both PM sizes, the trend in deseasonalized monthly means, annual quantiles and in monthly frequency distribution was estimated: this showed a significant decreasing trend at several sites for both size fractions and mostly occurring in winter. All series were tested for a significant weekly periodicity (a proxy to estimate the impact of primary anthropogenic emissions), yielding positive results for summer PM2.5 and for summer and winter PM10-2.5. Hierarchical cluster analysis showed moderate variability in PM2.5 across the valley, with two to three main clusters, dividing the area in western, eastern and southern/Apennines foothill sectors. The trend in atmospheric concentration was compared with the time series of local emissions, vehicular fleet details and fuel sales, suggesting that the decrease in PM2.5 and in PM10 originates from a drop both in primary and in precursors of secondary inorganic aerosol emissions, largely ascribed to vehicular traffic. Potentially, the increase in biomass burning emissions in winter and the modest decrease in NH3 weaken an otherwise even larger drop in atmospheric concentrations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
... no additional emissions controls for some pollutants but does not specify an appropriately stringent... controls from examination based on economic factors alone. Response 4: The Commenter overstates the scope... beyond the control of the user (see, e.g., 40 CFR 60.7575; Georgia Air Quality Control Rules 391-3-1-.02...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Huifang; Lam, William; Remias, Joseph
Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less
Modelisation 0D/1D des emissions de particules de suie dans les turbines a gaz aeronautiques
NASA Astrophysics Data System (ADS)
Bisson, Jeremie
Because of more stringent regulations of aircraft particle emissions as well as strong uncertainties about their formation and their effects on the atmosphere, a better understanding of particle microphysical mechanisms and their interactions with the engine components is required. This thesis focuses on the development of a 0D/1D combustion model with soot production in an aeronautical gas turbine. A major objective of this study is to assess the quality of soot particle emission predictions for different flight configurations. The model should eventually allow performing parametric studies on current or future engines with a minimal computation time. The model represents the combustor as well as turbines and nozzle with a chemical reactor network (CRN) that is coupled with a detailed combustion chemistry for kerosene (Jet A-1) and a soot particle dynamics model using the method of moments. The CRN was applied to the CFM56-2C1 engine during flight configurations of the LTO cycle (Landing-Take-Off) as in the APEX-1 study on aircraft particle emissions. The model was mainly validated on gas turbine thermodynamic data and pollutant concentrations (H2O, COX, NOx, SOX) which were measured in the same study. Once the first validation completed, the model was subsequently used for the computation of mass and number-based emissions indices of the soot particulate population and average diameter. Overall, the model is representative of the thermodynamic conditions and succeeds in predicting the emissions of major pollutants, particularly at high power. Concerning soot particulate emissions, the model's ability to predict simultaneously the emission indices as well as mean diameter has been partially validated. Indeed, the mass emission indices have remained higher than experimental results particularly at high power. These differences on particulate emission index may be the result of uncertainties on thermodynamic parameters of the CRN and mass air flow distribution in the combustion chamber. The analysis of the number-based emission index profile along the CRN also highlights the need to review the nucleation model that has been used and to consider in the future the implementation of a particle aggregation mechanism.
Can scooter emissions dominate urban organic aerosol?
NASA Astrophysics Data System (ADS)
El Haddad, Imad; Platt, Stephen; Huang, Ru-Jin; Zardini, Alessandro; Clairotte, Micheal; Pieber, Simone; Pfaffenberger, Lisa; Fuller, Steve; Hellebust, Stig; Temime-Roussel, Brice; Slowik, Jay; Chirico, Roberto; Kalberer, Markus; Marchand, Nicolas; Dommen, Josef; Astorga, Covadonga; Baltensperger, Urs; Prevot, Andre
2014-05-01
In urban areas, where the health impact of pollutants increases due to higher population density, traffic is a major source of ambient organic aerosol (OA). A significant fraction of OA from traffic is secondary, produced via the reaction of exhaust volatile organic compounds (VOCs) with atmospheric oxidants. Secondary OA (SOA) has not been systematically assessed for different vehicles and driving conditions and thus its relative importance compared to directly emitted, primary OA (POA) is unknown, hindering the design of effective vehicle emissions regulations. 2-stroke (2S) scooters are inexpensive and convenient and as such a popular means of transportation globally, particularly in Asia. European regulations for scooters are less stringent than for other vehicles and thus primary particulate emissions and SOA precursor VOCs from 2S engines are estimated to be much higher. Assessing the effects of scooters on public health requires consideration of both POA, and SOA production. Here, we quantify POA emission factors and potential SOA EFs from 2S scooters, and the effect of using aromatic free fuel instead of standard gasoline thereon. During the tests, Euro 1 and Euro 2 2S scooters were run in idle or simulated low power conditions. Emissions from a Euro 2 2S scooter were also sampled during regulatory driving cycles on a chassis dynamometer. Vehicle exhaust was introduced into smog chambers, where POA emission and SOA production were quantified using a high-resolution time-of-flight aerosol mass spectrometer. A high resolution proton transfer time-of-flight mass spectrometer was used to investigate volatile organic compounds and a suite of instruments was utilized to quantify CO, CO2, O3, NOX and total hydrocarbons. We show that the oxidation of VOCs in the exhaust emissions of 2S scooters produce significant SOA, exceeding by up to an order of magnitude POA emissions. By monitoring the decay of VOC precursors, we show that SOA formation from 2S scooter emissions essentially stems from the condensation of aromatic oxidation products. Further, we demonstrate that replacing the standard gasoline with an aromatic-free fuel mitigates SOA production, underlining the major role of aromatic compounds from 2S exhaust on SOA production. POA and potential SOA EFs determined here from 2S scooters will be presented and compared with EF from other vehicles, including 4-stroke scooters, gasoline cars and diesel cars to assess the contributions of 2S scooters in urban atmospheres.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
.... DFARS 215.371 states the DoD policy that adequate price competition does not exist if only one offer is... maximum practicable competition and to ensure that the price is fair and reasonable. This proposed rule applies a more stringent policy for determination of adequate price competition than is allowed by FAR 15...
SRNL Atmospheric Technologies Group
Viner, Brian; Parker, Matthew J.
2018-01-16
The Savannah River National Laboratory, Atmospheric Technologies Group, conducts a best-in class Applied Meteorology Program to ensure the Department of Energyâs Savannah River Site is operated safely and complies with stringent environmental regulations.
Qin, Ruijun; Gao, Suduan; Ajwa, Husein; Sullivan, David; Wang, Dong; Hanson, Bradley D
2011-01-01
Preplant soil fumigation is an important pest management practice in coastal California strawberry production regions. Potential atmospheric emissions of fumigants from field treatment, however, have drawn intensive environmental and human health concerns; increasingly stringent regulations on fumigant use have spurred research on low-emission application techniques. The objectives of this research were to determine the effects of a new low-permeability film, commonly known as totally impermeable film (TIF), on fumigant emissions and on fumigant distribution in soil. A 50/50 mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) was shank-applied at 314 kg ha in two location-separate field plots (0.4 ha each) in Ventura County, California, in fall 2009. One plot was surface-covered with standard polyethylene (PE) film, and the other was covered with TIF immediately after fumigant application. Data collection included emissions, soil-gas phase concentration profile, air concentration under the film, and soil residuals of the applied fumigants. Peak emission flux of 1,3-D and CP from the TIF field was substantially lower than from the PE field. Total through-film emission loss was 2% for 1,3-D and <1% for CP from the TIF field during a 6-d film covering period, compared with 43% for 1,3-D and 12% for CP from the PE field. However, on film-cutting, greater retention of 1,3-D in the TIF field resulted in a much higher emission surge compared with the PE field, while CP emissions were fairly low in both fields. Higher concentrations and a more uniform distribution in the soil profile for 1,3-D and CP were observed under the TIF compared with the PE film, suggesting that the TIF may allow growers to achieve satisfactory pest control with lower fumigant rates. The surging 1,3-D emissions after film-cutting could result in high exposure risks to workers and bystanders and must be addressed with additional mitigation measures. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... noted that the limit for baked extreme performance coatings in the rule is less stringent than the limit... the VOC limit for baked extreme performance coatings and the exemption for repair and touch-up operations. As to the emission limit for baked extreme performance coatings, the VOC limit in Rule 4603 is...
In 2007, 12.3 million tons of flue gas desulfurization (FGD) gypsum was produced due to air emission controls at coal-fired power plants. With increasing use of wet scrubbers in response to more stringent air pollution control requirements, FGD gypsum production is expected to in...
Linkages Between Ozone-depleting Substances, Tropospheric Oxidation and Aerosols
NASA Technical Reports Server (NTRS)
Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.
2013-01-01
Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6mW/sq. m for CFCs and -6.7mW/sq. m for N2O) and sulfate aerosols (-3.0mW/sq. m for CFCs and +6.5mW/sq. m for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.
Unique Systems Analysis Task 7, Advanced Subsonic Technologies Evaluation Analysis
NASA Technical Reports Server (NTRS)
Eisenberg, Joseph D. (Technical Monitor); Bettner, J. L.; Stratton, S.
2004-01-01
To retain a preeminent U.S. position in the aircraft industry, aircraft passenger mile costs must be reduced while at the same time, meeting anticipated more stringent environmental regulations. A significant portion of these improvements will come from the propulsion system. A technology evaluation and system analysis was accomplished under this task, including areas such as aerodynamics and materials and improved methods for obtaining low noise and emissions. Previous subsonic evaluation analyses have identified key technologies in selected components for propulsion systems for year 2015 and beyond. Based on the current economic and competitive environment, it is clear that studies with nearer turn focus that have a direct impact on the propulsion industry s next generation product are required. This study will emphasize the year 2005 entry into service time period. The objective of this study was to determine which technologies and materials offer the greatest opportunities for improving propulsion systems. The goals are twofold. The first goal is to determine an acceptable compromise between the thermodynamic operating conditions for A) best performance, and B) acceptable noise and chemical emissions. The second goal is the evaluation of performance, weight and cost of advanced materials and concepts on the direct operating cost of an advanced regional transport of comparable technology level.
Air pollution from hot mix plants.
DOT National Transportation Integrated Search
1970-10-01
The Louisiana Air Control Commission adopted Regulation II, effective 1969, which sets stringent limits on suspended particulates. Because of the lack of knowledge concerning air pollution caused by hot mix plants within the Stake and because of the ...
Nitrogen stress response and stringent response are coupled in Escherichia coli
Brown, Daniel R.; Barton, Geraint; Pan, Zhensheng; Buck, Martin; Wigneshweraraj, Sivaramesh
2014-01-01
Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria. PMID:24947454
Comparison of steady-state and transient CVS cycle emission of an automotive Stirling engine
NASA Technical Reports Server (NTRS)
Farrell, R. A.; Bolton, R. J.
1983-01-01
The Automotive Stirling Engine Development Program is to demonstrate a number of goals for a Stirling-powered vehicle. These goals are related to an achievement of specified maximum emission rates, a combined cycle fuel economy 30 percent better than a comparable internal-combustion engine-powered automobile, multifuel capability, competitive cost and reliability, and a meeting of Federal standards concerning noise and safety. The present investigation is concerned with efforts related to meeting the stringent emission goals. Attention is given to the initial development of a procedure for predicting transient CVS urban cycle gaseous emissions from steady-state engine data, taking into account the employment of the test data from the first-generation automotive Stirling engine. A large amount of steady-state data from three Mod I automotive Stirling engines were used to predict urban CVS cycle emissions for the Mod I Lerma vehicle.
NASA Astrophysics Data System (ADS)
Xu, Bing; Cheng, Min
2018-06-01
This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Toshiba Display Services, a television picture-tube manufacturer in Horseheads, NY, recently was able to meet stringent state regulations to reduce emissions from two of its film applications lines by installing a regenerative catalytic oxidation system. Toshiba officials initially evaluated several technologies to control volatile organic compounds. After deciding that oxidation was the best technology for its facility, the company invited a number of suppliers to submit proposals. Because all of the oxidation technologies considered by Toshiba had the capability to achieve the destruction and removal efficiency requirement, the company combined the second and third decision elements and conducted an in-depthmore » comparison of the initial capital and ongoing operating costs for each proposal. Officials narrowed the field to two systems--the lowest-cost regenerative thermal oxidation system on the market and a regenerative catalytic oxidation system. The company selected St. Louis, Mo.-based Monsanto Enviro-Chem Systems Inc., to install its DynaCycle{reg_sign} regenerative catalytic oxidation system, marking the first Dyna-Cycle installation in a US television picture-tube facility.« less
2015-01-01
Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792
Evaluating the effectiveness of air quality interventions.
van Erp, Annemoon M M; O'Keefe, Robert; Cohen, Aaron J; Warren, Jane
2008-01-01
Evaluating the extent to which air quality regulations improve public health--sometimes referred to as accountability--is part of an emerging effort to assess the effectiveness of environmental regulatory policies. Air quality has improved substantially in the United States and Western Europe in recent decades, with far less visible pollution and decreasing concentrations of several major pollutants. In large part, these gains were achieved through increasingly stringent air quality regulations. The costs associated with compliance and, importantly, the need to ensure that the regulations are achieving the intended public health benefits underscore the importance of accountability research. To date, accountability research has emphasized measuring the effects of actions already taken to improve air quality. Such research may also contribute to estimating the burden of disease that might be avoided in the future if certain actions are taken. The Health Effects Institute (HEI) currently funds eight ongoing studies on accountability, which cover near-term interventions to improve air quality including (1) a ban on the sale of coal, (2) replacing old wood stoves with cleaner ones, (3) decreasing sulfur content in fuel, (4) measures to reduce traffic, and (5) longer term, wide-ranging actions or events (such as complex changes associated with the reunification of Germany). HEI is also funding the development of methods and research to assess regulations that are implemented incrementally over extended periods of time, such as Title IV of the 1990 Clean Air Act Amendments, which reduces sulfur dioxide emissions from power plants in the eastern United States.
NASA Astrophysics Data System (ADS)
Kirchstetter, T.; Preble, C.; Dallmann, T. R.; DeMartini, S. J.; Tang, N. W.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.
2013-12-01
Diesel particle filters have become widely used in the United States since the introduction in 2007 of a more stringent exhaust particulate matter emission standard for new heavy-duty diesel vehicle engines. California has instituted additional regulations requiring retrofit or replacement of older in-use engines to accelerate emission reductions and air quality improvements. This presentation summarizes pollutant emission changes measured over several field campaigns at the Port of Oakland in the San Francisco Bay Area associated with diesel particulate filter use and accelerated modernization of the heavy-duty truck fleet. Pollutants in the exhaust plumes of hundreds of heavy-duty trucks en route to the Port were measured in 2009, 2010, 2011, and 2013. Ultrafine particle number, black carbon (BC), nitrogen oxides (NOx), and nitrogen dioxide (NO2) concentrations were measured at a frequency ≤ 1 Hz and normalized to measured carbon dioxide concentrations to quantify fuel-based emission factors (grams of pollutant emitted per kilogram of diesel consumed). The size distribution of particles in truck exhaust plumes was also measured at 1 Hz. In the two most recent campaigns, emissions were linked on a truck-by-truck basis to installed emission control equipment via the matching of transcribed license plates to a Port truck database. Accelerated replacement of older engines with newer engines and retrofit of trucks with diesel particle filters reduced fleet-average emissions of BC and NOx. Preliminary results from the two most recent field campaigns indicate that trucks without diesel particle filters emit 4 times more BC than filter-equipped trucks. Diesel particle filters increase emissions of NO2, however, and filter-equipped trucks have NO2/NOx ratios that are 4 to 7 times greater than trucks without filters. Preliminary findings related to particle size distribution indicate that (a) most trucks emitted particles characterized by a single mode of approximately 100 nm in diameter and (b) new trucks originally equipped with diesel particle filters were 5 to 6 times more likely than filter-retrofitted trucks and trucks without filters to emit particles characterized by a single mode in the range of 10 to 30 nm in diameter.
Public Water System Supervision Program Revision for the State of Nevada
Nevada revised its approved Public Water System Supervision Program under the federal Safe Drinking Water Act. EPA has determined that these revisions by the State of Nevada are no less stringent than the corresponding Federal regulations.
Gemini primary mirror in situ wash
NASA Astrophysics Data System (ADS)
Vucina, Tomislav; Boccas, Maxime; Araya, Claudio; Ah Hee, Clayton; Cavedoni, Chas
2008-07-01
The Gemini twins were the first large modern telescopes to receive protected silver coatings on their mirrors in 2004. The low emissivity requirement is fundamental for the IR optimization. In the mid-IR a factor of two reduction in telescope emissivity is equivalent to increasing the collecting area by the same factor. Our emissivity maintenance requirement is very stringent: 0.5% maximum degradation during operations, at any single wavelength beyond 2.2 μm. We developed a very rigorous standard to wash the primary mirrors in the telescope without science down time. The in-situ washes are made regularly, and the reflectivity and emissivity gains are significant. The coating lifetime has been extended far more than our original expectations. In this report we describe the in-situ process and hardware, explain our maintenance plan, and show results of the coating performance over time.
NASA Astrophysics Data System (ADS)
Ning, Zhi; Wubulihairen, Maimaitireyimu; Yang, Fenhuan
2012-12-01
Vehicular emissions are the major sources of air pollution in urban areas. For metropolitan cities with large population working and living in environments with direct traffic impact, emission control is of great significance to protect public health. Implementation of more stringent emission standards, retrofitting fleet with emission control devices and switching to clearer fuel has been commonly practiced in different cities including Hong Kong. The present study employed a new plume chasing method for effective and quick evaluation of on-road fleet emission factors of particulate matter (PM), nitrogen oxides (NOx), and butane from heavy duty diesel trucks, diesel buses and liquefied petroleum gas (LPG) vehicles. The results showed distinct profiles of the emissions from different fleets with excessive butane emissions from LPG fleet and contrasting PM and NOx emissions from diesel trucks and buses fleets. A cross comparison was also made with emission data from other cities and from historic local studies. The implications of the observed difference on the effectiveness of emission control measures and policy are discussed with recommendations of direction for future research and policy making.
NASA Astrophysics Data System (ADS)
Telaga, Abdi Suryadinata; Hartanto, Indra Dwi; Audina, Debby Rizky; Prabowo, Fransiscus Dimas
2017-06-01
Environmental awareness, stringent regulation and soaring energy costs, together make energy efficiency as an important pillar for every company. Particularly, in 2020, the ministry of energy and mineral resources of Indonesia has set a target to reduce carbon emission by 26%. For that reason, companies in Indonesia have to comply with the emission target. However, there is trade-off between company's productivity and carbon emission. Therefore, the companies' productivity must be weighed against the environmental effect such as carbon emission. Nowadays, distinguish excessive energy in a company is still challenging. The company rarely has skilled person that capable to audit energy consumed in the company. Auditing energy consumption in a company is a lengthy and time consuming process. As PT Astra International (AI) have 220 affiliated companies (AFFCOs). Occasionally, direct visit to audit energy consumption in AFFCOs is inevitable. However, capability to conduct on-site energy audit was limited by the availability of PT AI energy auditors. For that reason, PT AI has developed a set of audit energy tools or Astra green energy (AGEn) tools to aid the AFFCOs auditor to be able to audit energy in their own company. Fishbone chart was developed as an analysis tool to gather root cause of audit energy problem. Following the analysis results, PT AI made an improvement by developing an AGEn web-based system. The system has capability to help AFFCOs to conduct energy audit on-site. The system was developed using prototyping methodology, object-oriented system analysis and design (OOSAD), and three-tier architecture. The implementation of system used ASP.NET, Microsoft SQL Server 2012 database, and web server IIS 8.
Information Control: Preventing a Vietnamese Spring?
2013-11-01
challenges with labor market tensions and land management corruption continue to plague the Party and demonstrate their inability to effectively...the 1997 regulation in 2001. The 2001 regulation provided for a “partial liberalisation of the internet market ” while placing a “more stringent...Vietnam increased. This increase resulted in market competition and lower prices for internet service, broadening the availability of the internet to
40 CFR 131.4 - State authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS... reviewing, establishing, and revising water quality standards. As recognized by section 510 of the Clean Water Act, States may develop water quality standards more stringent than required by this regulation...
Does the First Amendment Guarantee a Right to Conduct Scientific Experiments?
ERIC Educational Resources Information Center
Attanasio, John B.
1987-01-01
An analysis of first amendment guarantees focuses on the federal government's power to regulate experiments, arguing that they do not merit the stringent level of first amendment protection offered by strict scrutiny or related standards. (Author/MSE)
Lipophilic super-absorbent polymer gels as surface cleaners for oil and grease
USDA-ARS?s Scientific Manuscript database
Increasingly stringent environmental regulations on volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) demand the development of disruptive technologies for cleaning weapons systems and platforms. Currently employed techniques such as vapor degreasing, solvent, aqueous, or blast ...
Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies
NASA Astrophysics Data System (ADS)
Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.
2017-08-01
Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area increases with increase in distance away from tailpipe. Also indicating the cooling and dilution of the exhaust begins at close vicinity to the tailpipe. The rate of cooling and dilution are greatest in early stages of the dilution process for the areas with high turbulence intensity (TI), where strong mixing phenomena occurs, leading to the formation of a predominant nucleation mode. On the other hand, the core of the plume observes a slower cooling and dilution rate. This difference is reflected in the PM formation and evolution of these two distinct regions, as shown by the particle size distributions and number concentrations. Continuous mixing will tend to mellow those differences, but its ;final; result is related to the dilution history.
Food and Drug Administration regulation and evaluation of vaccines.
Marshall, Valerie; Baylor, Norman W
2011-05-01
The vaccine-approval process in the United States is regulated by the Center for Biologics Evaluation and Research of the US Food and Drug Administration. Throughout the life cycle of development, from preclinical studies to after licensure, vaccines are subject to rigorous testing and oversight. Manufacturers must adhere to good manufacturing practices and control procedures to ensure the quality of vaccines. As mandated by Title 21 of the Code of Regulations, licensed vaccines must meet stringent criteria for safety, efficacy, and potency.
77 FR 57524 - Stage 3 Helicopter Noise Certification Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... standards of the International Civil Aviation Organization (ICAO). The proposal of these more stringent... Organization (ICAO) is the international body with the responsibility for the development of international..., organizations, and governmental jurisdictions subject to regulation.'' To achieve that principle, the RFA...
UTILIZING LOW VOLATILE ORGANIC CONTENT EXTERIOR COATINGS FOR WOOD FURNITURE
This report provides an evaluation of commercially viable source reduction techniques implemented by a manufacturer of wood chairs, bar stools and settees in various styles ranging from classic American to European contemporary. As federal EPA regulations became more stringent fo...
Wu, Yingying; Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu
2012-01-01
In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020-2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NO(x), and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017-2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry.
Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu
2012-01-01
In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020–2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NOx, and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017–2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry. PMID:23365524
Gamma-Ray Upper Limits on Magnetars with Six Years of FERMI-LAT Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian; Rea, Nanda; Torres, Diego F.
2017-01-16
In this article, we report on the search for gamma-ray emission from 20 magnetars using six years of Fermi Large Area Telescope observations. No significant evidence for gamma-ray emission from any of the currently known magnetars is found. We derived the most stringent upper limits to date on the 0.1–10 GeV emission of Galactic magnetars, which are estimated between ~10 -12 and 10 -11 erg s -1 cm -2. We searched gamma-ray pulsations for the four magnetars having reliable ephemerides over the observing period, but detected none. Finally, we also report updated morphologies and spectral properties of seven spatially extendedmore » gamma-ray sources, which are most likely attributed to supernova remnants associated with or adjacent to the magnetars.« less
An overview of a 5-year research program on acid deposition in China
NASA Astrophysics Data System (ADS)
Wang, T.; He, K.; Xu, X.; Zhang, P.; Bai, Y.; Wang, Z.; Zhang, X.; Duan, L.; Li, W.; Chai, F.
2011-12-01
Despite concerted research and regulative control of sulfur dioxide in China, acid rain remained a serious environmental issue, due to a sharp increase in the combustion of fossil fuel in the 2000s. In 2005, the Ministry of Science and Technology of China funded a five-year comprehensive research program on acid deposition. This talk will give an overview of the activities and the key findings from this study, covering emission, atmospheric processes, and deposition, effects on soil and stream waters, and impact on typical trees/plants in China. The main results include (1) China still experiences acidic rainfalls in southern and eastern regions, although the situation has stabilized after 2006 due to stringent control of SO2 by the Chinese Government; (2) Sulfate is the dominant acidic compound, but the contribution of nitrate has increased; (3) cloud-water composition in eastern China is strongly influenced by anthropogenic emissions; (4) the persistent fall of acid rain in the 30 years has lead to acidification of some streams/rivers and soils in southern China; (5) the studied plants have shown varying response to acid rain; (6) some new insights have been obtained on atmospheric chemistry, atmospheric transport, soil chemistry, and ecological impacts, some of which will be discussed in this talk. Compared to the situation in North America and Europe, China's acid deposition is still serious, and continued control of sulfur and nitrogen emission is required. There is an urgent need to establish a long-term observation network/program to monitor the impact of acid deposition on soil, streams/rivers/lakes, and forests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... convenience of the Government to facilitate sales; more stringent than terms offered under FmHA or its... terms for SFH or MFH property sales, offered for the convenience of the Government to facilitate sales...
Lipophilic super-absorbent swelling gels as cleaners for use on weapons systems and platforms
USDA-ARS?s Scientific Manuscript database
Increasingly stringent environmental regulations on volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) demand the development of disruptive technologies for cleaning weapons systems and platforms. Currently employed techniques such as vapor degreasing, solvent, aqueous, or blast c...
Eco-driving: behavioural pattern change in Polish passenger vehicle drivers
NASA Astrophysics Data System (ADS)
Czechowski, Piotr Oskar; Oniszczuk-Jastrząbek, Aneta; Czuba, Tomasz
2018-01-01
In Poland, as in the rest of Europe, air quality depends primarily on emissions from municipal, domestic and road transport sources. The problems of appropriate air quality are especially important within urban areas due to numerous sources of emissions being concentrated in relatively small spaces in both large cities and small/medium-sized towns. Due to the steadily increasing share of urban population in the overall number of population, the issue of providing clean air will over the years become a more significant problem for human health, and therefore a stronger incentive to intensify research. The key challenge faced by a modern society is, therefore, to limit harmful substance emissions in order to minimise the contribution of transport to pollution and health hazards. Increasingly stringent emission standards are being imposed on car manufacturers; on the other hand, scant regard is paid to the issue of drivers, i.e. how they can help reduce emissions and protect their life and health by applying eco-driving rules.
NASA Astrophysics Data System (ADS)
Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara
2013-12-01
Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-α and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that DPFs may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.
Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; ...
2014-12-29
Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy inmore » the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.« less
Lee, Jae-Woo; Park, Young-Ha; Seok, Yeong-Jae
2018-06-18
Bacteria respond to nutritional stresses by changing the cellular concentration of the alarmone (p)ppGpp. This control mechanism, called the stringent response, depends on two enzymes, the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT in Escherichia coli and related bacteria. Because SpoT is the only enzyme responsible for (p)ppGpp hydrolysis in these bacteria, SpoT activity needs to be tightly regulated to prevent the uncontrolled accumulation of (p)ppGpp, which is lethal. To date, however, no such regulation of SpoT (p)ppGpp hydrolase activity has been documented in E. coli In this study, we show that Rsd directly interacts with SpoT and stimulates its (p)ppGpp hydrolase activity. Dephosphorylated HPr, but not phosphorylated HPr, of the phosphoenolpyruvate-dependent sugar phosphotransferase system could antagonize the stimulatory effect of Rsd on SpoT (p)ppGpp hydrolase activity. Thus, we suggest that Rsd is a carbon source-dependent regulator of the stringent response in E. coli . Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhang, Xiuying; Xu, Wen; Liu, Xuejun; Li, Yi; Lu, Xuehe; Zhang, Yuehan; Zhang, Wuting
2017-08-01
China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen (Nr). Atmospheric ammonia (NH3) and nitrogen dioxide (NO2) are the most important precursors for Nr compounds (including N2O5, HNO3, HONO and particulate NO3- and NH4+) in the atmosphere. Understanding the changes in NH3 and NO2 has important implications for the regulation of anthropogenic Nr emissions and is a requirement for assessing the consequence of environmental impacts. We conducted the temporal trend analysis of atmospheric NH3 and NO2 on a national scale since 1980 based on emission data (during 1980-2010), satellite observation (for NH3 since 2008 and for NO2 since 2005) and atmospheric chemistry transport modeling (during 2008-2015).Based on the emission data, during 1980-2010, significant continuous increasing trends in both NH3 and NOx were observed in REAS (Regional Emission inventory in Asia, for NH3 0.17 and for NOx 0.16 kg N ha-1 yr-2) and EDGAR (Emissions Database for Global Atmospheric Research, for NH3 0.24 and for NOx 0.17 kg N ha-1 yr-2) over China. Based on the satellite data and atmospheric chemistry transport model (CTM) MOZART-4 (Model for Ozone and Related chemical Tracers, version 4), the NO2 columns over China increased significantly from 2005 to 2011 and then decreased significantly from 2011 to 2015; the satellite-retrieved NH3 columns from 2008 to 2014 increased at a rate of 2.37 % yr-1. The decrease in NO2 columns since 2011 may result from more stringent strategies taken to control NOx emissions during the 12th Five Year Plan, while no control policy has focused on NH3 emissions. Our findings provided an overall insight into the temporal trends of both NO2 and NH3 since 1980 based on emission data, satellite observations and atmospheric transport modeling. These findings can provide a scientific background for policy makers that are attempting to control atmospheric pollution in China. Moreover, the multiple datasets used in this study have implications for estimating long-term Nr deposition datasets to assess its impact on soil, forest, water and greenhouse balance.
43 CFR 420.12 - Requirements-operators.
Code of Federal Regulations, 2012 CFR
2012-10-01
... THE INTERIOR OFF-ROAD VEHICLE USE Operating Criteria § 420.12 Requirements—operators. (a) In addition... off-road vehicles; if State laws are lacking or less stringent than the regulations established in... operator of an off-road vehicle operated on Reclamation lands shall possess a valid motor vehicle operator...
43 CFR 420.12 - Requirements-operators.
Code of Federal Regulations, 2013 CFR
2013-10-01
... THE INTERIOR OFF-ROAD VEHICLE USE Operating Criteria § 420.12 Requirements—operators. (a) In addition... off-road vehicles; if State laws are lacking or less stringent than the regulations established in... operator of an off-road vehicle operated on Reclamation lands shall possess a valid motor vehicle operator...
43 CFR 420.12 - Requirements-operators.
Code of Federal Regulations, 2014 CFR
2014-10-01
... THE INTERIOR OFF-ROAD VEHICLE USE Operating Criteria § 420.12 Requirements—operators. (a) In addition... off-road vehicles; if State laws are lacking or less stringent than the regulations established in... operator of an off-road vehicle operated on Reclamation lands shall possess a valid motor vehicle operator...
30 CFR 939.700 - Rhode Island Federal program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Rhode Island Federal program. (a) This part contains all rules that are applicable to surface coal... to all surface coal mining and reclamation operations in Rhode Island conducted on non-Federal and... stringent environmental control and regulation of surface coal mining and reclamation operations than do the...
43 CFR 420.12 - Requirements-operators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... snowmobiles, trail bikes, and any other off road vehicle the operator shall wear safety equipment, generally... THE INTERIOR OFF-ROAD VEHICLE USE Operating Criteria § 420.12 Requirements—operators. (a) In addition... off-road vehicles; if State laws are lacking or less stringent than the regulations established in...
43 CFR 420.12 - Requirements-operators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... snowmobiles, trail bikes, and any other off road vehicle the operator shall wear safety equipment, generally... THE INTERIOR OFF-ROAD VEHICLE USE Operating Criteria § 420.12 Requirements—operators. (a) In addition... off-road vehicles; if State laws are lacking or less stringent than the regulations established in...
On the road to recovery: Gasoline content regulations and child health.
Marcus, Michelle
2017-07-01
Gasoline content regulations are designed to curb pollution and improve health, but their impact on health has not been quantified. By exploiting both the timing of regulation and spatial variation in children's exposure to highways, I estimate the effect of gasoline content regulation on pollution and child health. The introduction of cleaner-burning gasoline in California in 1996 reduced asthma admissions by 8% in high exposure areas. Reductions are greatest for areas downwind from highways and heavy traffic areas. Stringent gasoline content regulations can improve child health, and may diminish existing health disparities. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory.
McDonald, Brian C; McKeen, Stuart A; Cui, Yu Yan; Ahmadov, Ravan; Kim, Si-Wan; Frost, Gregory J; Pollack, Ilana B; Peischl, Jeff; Ryerson, Thomas B; Holloway, John S; Graus, Martin; Warneke, Carsten; Gilman, Jessica B; de Gouw, Joost A; Kaiser, Jennifer; Keutsch, Frank N; Hanisco, Thomas F; Wolfe, Glenn M; Trainer, Michael
2018-06-22
Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO x = NO + NO 2 ). Here, we expand a previously developed fuel-based inventory of motor-vehicle emissions (FIVE) to the continental U.S. for the year 2013, and evaluate our estimates of mobile source emissions with the U.S. Environmental Protection Agency's National Emissions Inventory (NEI) interpolated to 2013. We find that mobile source emissions of NO x and carbon monoxide (CO) in the NEI are higher than FIVE by 28% and 90%, respectively. Using a chemical transport model, we model mobile source emissions from FIVE, and find consistent levels of urban NO x and CO as measured during the Southeast Nexus (SENEX) Study in 2013. Lastly, we assess the sensitivity of ozone (O 3 ) over the Eastern U.S. to uncertainties in mobile source NO x emissions and biogenic volatile organic compound (VOC) emissions. The ground-level O 3 is sensitive to reductions in mobile source NO x emissions, most notably in the Southeastern U.S. and during O 3 exceedance events, under the revised standard proposed in 2015 (>70 ppb, 8 h maximum). This suggests that decreasing mobile source NO x emissions could help in meeting more stringent O 3 standards in the future.
Production, distribution, and cost of oxygenated gasoline blends as a CO control strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, J.G; Dworsky, B.S.
1988-01-01
During the past two decades, efforts to reduce the contribution of automotive emissions to air pollution have focused principally on the development of more stringent emission standards for new vehicles, and the use of inspection and maintenance (I/M) programs. Despite the achievements in the last few years, motor vehicles have remained a major source of air pollution in urban areas. Further reductions in either the emission standards or in I/M program pass/fail cutpoints are not politically feasible, and alternative methods to achieve emission reductions are being investigated. One potential method is through the use of alternative fuels that can reducemore » tailpipe emissions. For example, the addition of alcohol or ether into gasoline has been shown to lean out the engine and cut carbon monoxide emissions. This paper compares the costs of producing and distribution methanol, ethanol, and MTBE blends as part of a carbon monoxide control strategy. It addresses the costs of production, distribution, infrastructure development, and retailing associated with each fuel blend.« less
GAMMA-RAY UPPER LIMITS ON MAGNETARS WITH SIX YEARS OF FERMI -LAT OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian; Rea, Nanda; Torres, Diego F.
2017-01-20
We report on the search for gamma-ray emission from 20 magnetars using six years of Fermi Large Area Telescope observations. No significant evidence for gamma-ray emission from any of the currently known magnetars is found. We derived the most stringent upper limits to date on the 0.1–10 GeV emission of Galactic magnetars, which are estimated between ∼10{sup −12} and 10{sup −11} erg s{sup −1} cm{sup −2}. We searched gamma-ray pulsations for the four magnetars having reliable ephemerides over the observing period, but detected none. We also report updated morphologies and spectral properties of seven spatially extended gamma-ray sources, which aremore » most likely attributed to supernova remnants associated with or adjacent to the magnetars.« less
Magnetorheological valve based actuator for improvement of passively controlled turbocharger system
NASA Astrophysics Data System (ADS)
Bahiuddin, I.; Mazlan, S. A.; Imaduddin, F.; Ubaidillah, Ichwan, B.
2016-03-01
Variable geometry turbochargers have been widely researched to fulfil the current engine stringent regulations. The passively controlled turbocharger (PCT) concept has been proposed to reduce energy consumption by utilizing the emission energy to move the actuator. However, it only covered a small range operating condition. Therefore, a magnetorheological(MR) Valve device, as typical smart material devices to enhance a passive device, is proposed to improve the PCT. Even though the benefits have been considered for the compactness and easiness to connect to an electrical system, the number of publications regarding the MR application within engine system is hard to be found. Therefore, this paper introduces a design of an MR Valve in a turbocharger. The main challenge is to make sure its capability to produce a sufficient total pressure drop. To overcome the challenge, its material properties, shape and pressure drop calculation has been analyzed to fulfil the requirement. Finally, to get a more understanding of actuator performance, the actuator response was simulated by treating the exhaust gas pressure as an input. It shows that the new MR actuator has a potential dynamic to improve the PCT controllability.
NASA Astrophysics Data System (ADS)
Degner, J.; Horn, A.; Merklein, M.
2017-09-01
Within the last decades, stringent regulations on fuel consumption, CO2 emissions and product recyclability forced the automotive sector to implement new strategies within the field of car body manufacturing. Due to their low density and good corrosion resistance, aluminum became one of the most relevant lightweight materials. Recently, especially high- strength aluminum alloys for structural components gained importance. Since the low formability of these alloys limits their application, there is a need for novel process strategies in order to enhance the forming behavior. One promising approach is the hot stamping of aluminum alloys. The combination of quenching and forming in one step after solution heat treatment leads to a significant improvement of the formability. Furthermore, higher manufacturing accuracy can be achieved due to reduced spring back. Within this contribution, the influence of forming temperature on the subsequent material behavior and the heat transfer during quenching will be analyzed. Therefore, the mechanical and thermal material characteristics such as flow behavior and heat transfer coefficient during hot stamping are investigated.
Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís
2013-10-25
The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.
EPA may modify Du Pont waiver for methanol fuel blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, E.V.
1985-09-02
The Environmental Protection Agency (EPA) granted a Clean Air ACt waiver to DuPont's blendstock of methanol and other cosolvent alcohols for use in unleaded gasoline. The waiver included some stringent fuel volatility requirements to control evaporative emissions that have kept the waiver from becoming the marketing tool for fuel alcohols that everyone expected it to be. EPA seems willing to amend the waiver as long as evaporative emissions controls are kept, but there are some difficult procedural issues to resolve first. To date, only small amounts of alcohol blends have been sold under the DuPont waiver because the blendstock tendsmore » to increase the volatility of gasoline.« less
Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss
NASA Astrophysics Data System (ADS)
Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.
2014-12-01
Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.
The Impact of Child Support Enforcement Policy on Nonmarital Childbearing
ERIC Educational Resources Information Center
Plotnick, Robert D.; Garfinkel, Irwin; McLanahan, Sara S.; Ku, Inhoe
2007-01-01
The interaction of welfare and child support regulations has created a situation in which child support policy's incentives that discourage unwed fatherhood tend to be stronger than its incentives that encourage unwed motherhood. This suggests that more stringent child support enforcement creates incentives that reduce the likelihood of nonmarital…
78 FR 20039 - Reportable Events and Certain Other Notification Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
...'' test and four other criteria designed to measure various aspects of financial soundness. The credit... controlled group changes. Like section 4043, the reportable events regulation generally requires post-event... available for plans that could meet one of two funding tests that would be more stringent than those...
76 FR 52644 - Faucets, Showerheads, Water Closets and Urinals
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
...-0053] Faucets, Showerheads, Water Closets and Urinals AGENCY: Office of Energy Efficiency and Renewable... concerning the water use or water efficiency of faucets, showerheads, water closets and urinals that is: (1) More stringent than Federal regulation concerning the water use or water efficiency for that same type...
Heavy-Duty Vehicle Thermal Management | Transportation Research | NREL
Heavy-Duty Vehicle Thermal Management Heavy-Duty Vehicle Thermal Management Infrared image of a and meet more stringent idling regulations. NREL's HDV thermal management program, CoolCab, focuses on thermal management technologies undergo assessment at NREL's Vehicle Testing and Integration Facility test
76 FR 45253 - Public Water Supply Supervision Program; Program Revision for the State of Alaska
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9444-8] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to the EPA's Ground Water Rule. The EPA has determined that these revisions are no less stringent than the corresponding...
Sex Discrimination and Intercollegiate Athletics: Putting Some Muscle on Title IX.
ERIC Educational Resources Information Center
Yale Law Journal, 1979
1979-01-01
Argues that the general language of the Title IX statute, together with certain specific features of it, strongly suggests that the Department of Health, Education, and Welfare should develop more stringent and demanding regulations based on social policy considerations concerning sex discrimination in intercollegiate sports. Available from Yale…
Fipronil is a widely used, broad-spectrum pesticide that is applied as an equal mixture of two enantiomers. As regulations on older pesticides become more stringent, production and application of fipronil is expected to grow, leading to increased inputs into aquatic environments ...
Jagmann, Nina; Philipp, Bodo
2018-01-01
The opportunistic pathogen Pseudomonas aeruginosa employs its complex quorum sensing (QS) network to regulate the expression of virulence factors such as pyocyanin. Besides cell density, QS in this bacterium is co-regulated by environmental cues. In this study, we employed a previously established co-culture model system to identify metabolic influences that are involved in the regulation of pyocyanin production in P. aeruginosa. In this co-culture consisting of P. aeruginosa and the chitinolytic bacterium Aeromonas hydrophila, parasitic growth of P. aeruginosa is strictly dependent on the production of pyocyanin. We could show that in this co-culture, pyocyanin production is likely induced by the stringent response mediated by SpoT in response to nutrient limitation. Pyocyanin production by stringent response mutants in the co-culture could not be complemented by overexpression of PqsE. Via transposon mutagenesis, several amino acid auxotrophic mutants were identified that were also unable to produce pyocyanin when PqsE was overexpressed or when complementing amino acids were present. The inability to produce pyocyanin even though PqsE was overexpressed was likely a general effect of amino acid auxotrophy. These results show the value of the co-culture approach to identify both extra- and intracellular metabolic influences on QS that might be important in infection processes as well. PMID:29720972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, Christoph; Johnson, Nils; Luderer, Gunnar
Stringent long-term climate targets necessitate a strict limit on cumulative emissions in this century for which sufficient policy signals are so far lacking. Based on an ensemble of ten energy-economy models, we explore how long-term transformation pathways depend on policies pursued during the next two decades. We find that weak GHG emission targets for 2030 lead, in that year alone, to excess carbon dioxide emissions of nearly half of the annual emissions in 2010, mainly through coal electricity generation. Furthermore, by consuming more of the long-term cumulative emissions budget in the first two decades, weak policy increases the likelihood ofmore » overshooting the budget and the urgency of reducing GHG emissions. Therefore, to be successful under weak policies, models must prematurely retire much of the additional coal capacity post-2030 and remove large quantities of carbon dioxide from the atmosphere in the latter half of the century. While increased energy efficiency lowers mitigation costs considerably, even with weak near-term policies, it does not substantially reduce the short term reliance on coal electricity. However, increased energy efficiency does allow the energy system more flexibility in mitigating emissions and, thus, makes the post-2030 transition easier.« less
Emission Projections for Long-Haul Freight Trucks and Rail in the United States through 2050.
Liu, Liang; Hwang, Taesung; Lee, Sungwon; Ouyang, Yanfeng; Lee, Bumsoo; Smith, Steven J; Yan, Fang; Daenzer, Kathryn; Bond, Tami C
2015-10-06
This work develops an integrated model approach for estimating emissions from long-haul freight truck and rail transport in the United States between 2010 and 2050. We connect models of macroeconomic activity, freight demand by commodity, transportation networks, and emission technology to represent different pathways of future freight emissions. Emissions of particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), and total hydrocarbon (THC) decrease by 60%-70% from 2010 to 2030, as older vehicles built to less-stringent emission standards retire. Climate policy, in the form of carbon tax that increases apparent fuel prices, causes a shift from truck to rail, resulting in a 30% reduction in fuel consumption and a 10%-28% reduction in pollutant emissions by 2050, if rail capacity is sufficient. Eliminating high-emitting conditions in the truck fleet affects air pollutants by 20% to 65%; although these estimates are highly uncertain, they indicate the importance of durability in vehicle engines and emission control systems. Future infrastructure investment will be required both to meet transport demand and to enable actions that reduce emissions of air and climate pollutants. By driving the integrated model framework with two macroeconomic scenarios, we show that the effect of carbon tax on air pollution is robust regardless of growth levels.
Prompt optical emission from gamma-ray bursts
NASA Astrophysics Data System (ADS)
Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim
The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.
Constraints on biomass energy deployment in mitigation pathways: the case of water scarcity
NASA Astrophysics Data System (ADS)
Séférian, Roland; Rocher, Matthias; Guivarch, Céline; Colin, Jeanne
2018-05-01
To limit global warming to well below 2 ° most of the IPCC-WGIII future stringent mitigation pathways feature a massive global-scale deployment of negative emissions technologies (NETs) before the end of the century. The global-scale deployment of NETs like Biomass Energy with Carbon Capture and Storage (BECCS) can be hampered by climate constraints that are not taken into account by Integrated assessment models (IAMs) used to produce those pathways. Among the various climate constraints, water scarcity appears as a potential bottleneck for future land-based mitigation strategies and remains largely unexplored. Here, we assess climate constraints relative to water scarcity in response to the global deployment of BECCS. To this end, we confront results from an Earth system model (ESM) and an IAM under an array of 25 stringent mitigation pathways. These pathways are compatible with the Paris Agreement long-term temperature goal and with cumulative carbon emissions ranging from 230 Pg C and 300 Pg C from January 1st onwards. We show that all stylized mitigation pathways studied in this work limit warming below 2 °C or even 1.5 °C by 2100 but all exhibit a temperature overshoot exceeding 2 °C after 2050. According to the IAM, a subset of 17 emission pathways are feasible when evaluated in terms of socio-economic and technological constraints. The ESM however shows that water scarcity would limit the deployment of BECCS in all the mitigation pathways assessed in this work. Our findings suggest that the evolution of the water resources under climate change can exert a significant constraint on BECCS deployment before 2050. In 2100, the BECCS water needs could represent more than 30% of the total precipitation in several regions like Europe or Asia.
McClellan, Roger O; Hesterberg, Thomas W; Wall, John C
2012-07-01
Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.
78 FR 56267 - Article 19-A of the State of New York's Vehicle and Traffic Law
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
... safety benefits, how it is being enforced against interstate passenger carriers and its effect, if any, on interstate commerce. DATES: Comments are due on or before November 12, 2013. ADDRESSES: You may... interstate commerce by imposing requirements that are more stringent than Federal regulations. MCC stated...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... traditional inspection methods to newly reflagged vessels, while at the same time apply a less stringent level... any one of the following methods: (1) Federal eRulemaking Portal: http://www.regulations.gov . (2) Fax... methods. See the ``Public Participation and Request for Comments'' portion of the SUPPLEMENTARY...
NASA Astrophysics Data System (ADS)
Zhang, Yunhua; Lou, Diming; Tan, Piqiang; Hu, Zhiyuan
2018-03-01
The increasingly stringent emission regulations will mandate the retrofit of after-treatment devices for in-use diesel vehicles, in order to reduce their substantial particulate matter and nitrogen oxides (NOX) emissions. In this paper, a combination of DOC (diesel oxidation catalyst), CDPF (catalytic diesel particulate filter) and SCR (selective catalytic reduction) retrofit for a heavy-duty diesel engine was employed to perform experiment on the engine test bench to evaluate the effects on the particulate matter emissions including particle number (PN), particle mass (PM), particle size distributions and nitrogenous compounds emissions including NOX, nitrogen dioxide (NO2)/NOX, nitrous oxide (N2O) and ammonia (NH3) slip. In addition, the urea injection was also of our concern. The results showed that the DOC+CDPF+SCR retrofit almost had no adverse effect on the engine power and fuel consumption. Under the test loads, the upstream DOC and CDPF reduced the PN and PM by an average of 91.6% and 90.9%, respectively. While the downstream SCR brought about an average decrease of 85% NOX. Both PM and NOX emission factors based on this retrofit were lower than China-Ⅳ limits (ESC), and even lower than China-Ⅴ limits (ESC) at medium and high loads. The DOC and CDPF changed the particle size distributions, leading to the increase in the proportion of accumulation mode particles and the decrease in the percentage of nuclear mode particles. This indicates that the effect of DOC and CDPF on nuclear mode particles was better than that of accumulation mode ones. The upstream DOC could increase the NO2/NOX ratio to 40%, higher NO2/NOX ratio improved the efficiency of CDPF and SCR. Besides, the N2O emission increased by an average of 2.58 times after the retrofit and NH3 slip occurred with the average of 26.7 ppm. The rate of urea injection was roughly equal to 8% of the fuel consumption rate. The DOC+CDPF+SCR retrofit was proved a feasible and effective measurement in terms of reducing particulate emissions and NOX simultaneously for in-use engine. However, it also resulted in higher N2O emission, NH3 slip as well as urea injecting strategy problem which should be of further concern.
Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.
Talati, Shuchi; Zhai, Haibo; Morgan, M Granger
2014-10-21
We employ an integrated systems modeling tool to assess the water impacts of the new source performance standards recently proposed by the U.S. Environmental Protection Agency for limiting CO2 emissions from coal- and gas-fired power plants. The implementation of amine-based carbon capture and storage (CCS) for 40% CO2 capture to meet the current proposal will increase plant water use by roughly 30% in supercritical pulverized coal-fired power plants. The specific amount of added water use varies with power plant and CCS designs. More stringent emission standards than the current proposal would require CO2 emission reductions for natural gas combined-cycle (NGCC) plants via CCS, which would also increase plant water use. When examined over a range of possible future emission standards from 1100 to 300 lb CO2/MWh gross, new baseload NGCC plants consume roughly 60-70% less water than coal-fired plants. A series of adaptation approaches to secure low-carbon energy production and improve the electric power industry's water management in the face of future policy constraints are discussed both quantitatively and qualitatively.
Aircraft gas turbine low-power emissions reduction technology program
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Gleason, C. C.; Bahr, D. W.
1978-01-01
Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.
Fermi-LAT observation on magnetars and associated SNRs
NASA Astrophysics Data System (ADS)
Li, Jian; Rea, Nanda; De Ona Wilhelmi, Emma; Torres, Diego F.
2016-07-01
We report on the search for gamma-ray emission from several magnetars using 6 years of Fermi Large Area Telescope (LAT) observations. No significant evidence for gamma-ray emission from any of the currently-known magnetars was found. We derived the most stringent upper limits to date on the 0.1-300 GeV emission from Galactic magnetars, which are estimated between ˜10^{-12} - 10^{-11} erg cm^{-2} s^{-1}. Gamma-ray pulsations were searched for the few sources having reliable ephemerides over the observing period, but none were detected. On the other hand, we studied the gamma-ray morphology and spectra of six SNRs associated with or adjacent to magnetars (namely: CTB109, Kes 73, W41, G337.0-00.1, HB9 and CTB 37A), that have 0.1-300 GeV fluxes between 1.5-14×10^{-11} erg cm^{-2} s^{-1}.
NASA Astrophysics Data System (ADS)
Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.
2013-06-01
Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.
Fujita, Yasutaro; Ogura, Mitsuo; Nii, Satomi; Hirooka, Kazutake
2017-01-01
It is known that transcription of kinB encoding a trigger for Bacillus subtilis sporulation is under repression by SinR, a master repressor of biofilm formation, and under positive stringent transcription control depending on the adenine species at the transcription initiation nucleotide (nt). Deletion and base substitution analyses of the kinB promoter (P kinB ) region using lacZ fusions indicated that either a 5-nt deletion (Δ5, nt -61/-57, +1 is the transcription initiation nt) or the substitution of G at nt -45 with A (G-45A) relieved kinB repression. Thus, we found a pair of SinR-binding consensus sequences (GTTCTYT; Y is T or C) in an inverted orientation (SinR-1) between nt -57/-42, which is most likely a SinR-binding site for kinB repression. This relief from SinR repression likely requires SinI, an antagonist of SinR. Surprisingly, we found that SinR is essential for positive stringent transcription control of P kinB . Electrophoretic mobility shift assay (EMSA) analysis indicated that SinR bound not only to SinR-1 but also to SinR-2 (nt -29/-8) consisting of another pair of SinR consensus sequences in a tandem repeat arrangement; the two sequences partially overlap the '-35' and '-10' regions of P kinB . Introduction of base substitutions (T-27C C-26T) in the upstream consensus sequence of SinR-2 affected positive stringent transcription control of P kinB , suggesting that SinR binding to SinR-2 likely causes this positive control. EMSA also implied that RNA polymerase and SinR are possibly bound together to SinR-2 to form a transcription initiation complex for kinB transcription. Thus, it was suggested in this work that derepression of kinB from SinR repression by SinI induced by Spo0A∼P and occurrence of SinR-dependent positive stringent transcription control of kinB might induce effective sporulation cooperatively, implying an intimate interplay by stringent response, sporulation, and biofilm formation.
Measurement of Excitation Spectra in the ^{12}C(p,d) Reaction near the η^{'} Emission Threshold.
Tanaka, Y K; Itahashi, K; Fujioka, H; Ayyad, Y; Benlliure, J; Brinkmann, K-T; Friedrich, S; Geissel, H; Gellanki, J; Guo, C; Gutz, E; Haettner, E; Harakeh, M N; Hayano, R S; Higashi, Y; Hirenzaki, S; Hornung, C; Igarashi, Y; Ikeno, N; Iwasaki, M; Jido, D; Kalantar-Nayestanaki, N; Kanungo, R; Knöbel, R; Kurz, N; Metag, V; Mukha, I; Nagae, T; Nagahiro, H; Nanova, M; Nishi, T; Ong, H J; Pietri, S; Prochazka, A; Rappold, C; Reiter, M P; Rodríguez-Sánchez, J L; Scheidenberger, C; Simon, H; Sitar, B; Strmen, P; Sun, B; Suzuki, K; Szarka, I; Takechi, M; Tanihata, I; Terashima, S; Watanabe, Y N; Weick, H; Widmann, E; Winfield, J S; Xu, X; Yamakami, H; Zhao, J
2016-11-11
Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.
Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A
2011-09-01
Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health effects studies of pre-2007 DE likely have little relevance in assessing the potential health risks of NTDE exposures.
Basophil mediated pro-allergic inflammation in vehicle-emitted particles exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharenko, Alexander M.
Despite of the fact that engine manufacturers develop a new technology to reduce exhaust emissions, insufficient attention given to particulate emissions. However, diesel exhaust particles are a major source of air-borne pollution, contain vast amount of polycyclic aromatic hydrocarbons (PAHs) and may have deleterious effects on the immune system, resulting in the induction and enhancement of pro-allergic processes. In the current study, vehicle emitted particles (VEP) from 2 different types of cars (diesel - D and gasoline - G) and locomotive (L) were collected. Overall, 129 four-week-old, male SPF-class Kunming mice were subcutaneously instilled with either low dose 100, 250more » or high dose, 500 mg/kg VEP and 15 mice were assigned as control group. The systemic toxicity was evaluated and alterations in the percentages of the CD3, CD4, CD8, CD16, CD25 expressing cells, basophils, eosinophils and neutrophils were determined. Basophil percentages were inversely associated with the PAH content of the VEPs, however basophil sensitization was more important than cell count in VEP exposure. Thus, the effects of VEP-PAHs emerge with the activation of basophils in an allergen independent fashion. Despite the increased percentage of CD4+ T cells, a sharp decrease in basophil counts at 500 mg/kg of VEP indicates a decreased inhibitory effect of CD16+ monocytes on the proliferation of CD4+ T cell and suppressed polarization into a Th2 phenotype. Therefore, although the restrictions for vehicles emissions differ between countries, follow up studies and strict regulations are needed. - Highlights: • Basophil sensitization is more important than cell count in VEP exposure. • CD16+ cells are more effective than basophils on CD4+ T cell proliferation. • CD16+ and CD16- monocytes respond to VEP exposure in opposite directions. • CD8+ T cell proliferation is inhibited by all doses of VEPs. • Globally, more stringent standards are needed for vehicle particle emissions.« less
Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.
Liu, Wei; Shin, Dongwon; Ng, Martin; Sanbonmatsu, Karissa Y; Tor, Yitzhak; Cooperman, Barry S
2017-08-29
Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.
Energy Market and Economic Impacts of S. 280, the Climate Stewardship and Innovation Act of 2007
2007-01-01
This report responds to a request from Senators Joseph Lieberman and John McCain for an estimate of the economic impacts of S.280, the Climate Stewardship and Innovation Act of 2007. S. 280 would establish a series of caps on greenhouse gas emissions starting in 2012 followed by increasingly stringent caps beginning in 2020, 2030 and 2050. The report provides estimates of the effects of S. 280 on energy markets and the economy through 2030.
Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M
2015-02-13
Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaei, Fateme; Rownaghi, Ali A.; Monjezi, Saman
One of the main challenges in the power and chemical industries is to remove generated toxic or environmentally harmful gases before atmospheric emission. To comply with stringent environmental and pollutant emissions control regulations, coal-fired power plants must be equipped with new technologies that are efficient and less energy-intensive than status quo technologies for flue gas cleanup. While conventional sulfur oxide (SOx) and nitrogen oxide (NOx) removal technologies benefit from their large-scale implementation and maturity, they are quite energy-intensive. In view of this, the development of lower-cost, less energy-intensive technologies could offer an advantage. Significant energy and cost savings can potentiallymore » be realized by using advanced adsorbent materials. One of the major barriers to the development of such technologies remains the development of materials that are efficient and productive in removing flue gas contaminants. In this review, adsorption-based removal of SOx/NOx impurities from flue gas is discussed, with a focus on important attributes of the solid adsorbent materials as well as implementation of the materials in conventional and emerging acid gas removal technologies. The requirements for effective adsorbents are noted with respect to their performance, key limitations, and suggested future research directions. The final section includes some key areas for future research and provides a possible roadmap for the development of technologies for the removal of flue gas impurities that are more efficient and cost-effective than status quo approaches.« less
Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Eric; Jeltema, Tesla; Profumo, Stefano, E-mail: erccarls@ucsc.edu, E-mail: tesla@ucsc.edu, E-mail: profumo@ucsc.edu
We test the origin of the 3.5 keV line photons by analyzing the morphology of the emission at that energy from the Galactic Center and from the Perseus cluster of galaxies. We employ a variety of different templates to model the continuum emission and analyze the resulting radial and azimuthal distribution of the residual emission. We then perform a pixel-by-pixel binned likelihood analysis including line emission templates and dark matter templates and assess the correlation of the 3.5 keV emission with these templates. We conclude that the radial and azimuthal distribution of the residual emission is incompatible with a darkmore » matter origin for both the Galactic center and Perseus; the Galactic center 3.5 keV line photons trace the morphology of lines at comparable energy, while the Perseus 3.5 keV photons are highly correlated with the cluster's cool core, and exhibit a morphology incompatible with dark matter decay. The template analysis additionally allows us to set the most stringent constraints to date on lines in the 3.5 keV range from dark matter decay.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatur, M.; Tyrer, H.; Tomazic, D.
2005-01-01
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure,more » common-rail fuel systems, low-sulfur diesel fuel, NO{sub x} adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S. Department of Energy (DOE) has engaged in several test projects under the Advanced Petroleum Based Fuels - Diesel Emission Controls (APBF-DEC) activity. The primary technology being addressed by these projects are the sulfur tolerance and durability of the NAC/DPF system. The project investigated the performance of the emission control system and system desulphurization effects on regulated and unregulated emissions. Emissions measurements were conducted over the Federal Test Procedure (FTP), Supplemental Federal Test Procedure (SFTP), and the Highway Fuel Economy Test (HFET). Testing was conducted after the accumulation of 150 hours of engine operation calculated to be the equivalent of approximately 8,200 miles. For these evaluations three out of six of the FTP test cycles were within the 50,000-mile Tier 2 bin 5 emission standards (0.05 g/mi NO{sub x} and 0.01 g/mi PM). Emissions over the SC03 portion of the SFTP were within the 4,000-mile SFTP standards. The emission of NO{sub x}+NMHC exceeded the 4,000-mile standard over the US06 portion of the SFTP. Testing was also conducted after the accumulation of 1,000 hours of engine operation calculated to be the equivalent of approximately 50,000 miles. Recalibrated driveability maps resulted in more repeatable NOs{sub x} emissions from cycle to cycle. The NO{sub x} level was below the Tier 2 emission limits for 50,000 and 120,000 miles. NMHC emissions were found at a level outside the limit for 120,000 miles.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... Interstate Rule (CAIR, 70 FR 25162 (May 12, 2005)), but not the Clean Air Mercury Rule (CAMR, 70 FR 28606 (May 18, 2005)). Subsequent regulations, including the finalized CAIR replacement rule, the Cross-State... Air Interstate Rule (CAIR, which has a similar structure, but with less stringent budgets and less...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... allowable stress factors for type B and type C independent cargo tanks are more stringent than the... inspections have advanced since the Coast Guard first promulgated regulations on allowable stress factors on... allowable stress factors provide a level of safety protection equivalent to the standards in 46 CFR 154.447...
32 CFR 766.5 - Conditions governing use of aviation facilities by civil aircraft.
Code of Federal Regulations, 2011 CFR
2011-07-01
... weather minimums as follows: (1) Visual Flight Operations shall be conducted in accordance with Federal Aviation Regulations (FAR), § 91.105 of this title. If more stringent visual flight rules minimums have... must be noted in § 766.5 of the license application. If a narrative report from the pilot is available...
32 CFR 766.5 - Conditions governing use of aviation facilities by civil aircraft.
Code of Federal Regulations, 2010 CFR
2010-07-01
... weather minimums as follows: (1) Visual Flight Operations shall be conducted in accordance with Federal Aviation Regulations (FAR), § 91.105 of this title. If more stringent visual flight rules minimums have... must be noted in § 766.5 of the license application. If a narrative report from the pilot is available...
NASA Astrophysics Data System (ADS)
Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.
2017-10-01
Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.
2006-12-01
The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized particles were between 50 and 300 nm, depending on engine operating conditions and particle composition. We will show that while the drastically reduced diesel PM emissions often render the PM filter measurements inadequate due to organic vapor artifacts SPLAT demonstrated its capability to provide real-time information on size and composition of individual diesel exhaust particles as function of engine operating conditions with better than 1 minute resolution.
Control of rRNA transcription in Escherichia coli.
Condon, C; Squires, C; Squires, C L
1995-01-01
The control of rRNA synthesis in response to both extra- and intracellular signals has been a subject of interest to microbial physiologists for nearly four decades, beginning with the observations that Salmonella typhimurium cells grown on rich medium are larger and contain more RNA than those grown on poor medium. This was followed shortly by the discovery of the stringent response in Escherichia coli, which has continued to be the organism of choice for the study of rRNA synthesis. In this review, we summarize four general areas of E. coli rRNA transcription control: stringent control, growth rate regulation, upstream activation, and anti-termination. We also cite similar mechanisms in other bacteria and eukaryotes. The separation of growth rate-dependent control of rRNA synthesis from stringent control continues to be a subject of controversy. One model holds that the nucleotide ppGpp is the key effector for both mechanisms, while another school holds that it is unlikely that ppGpp or any other single effector is solely responsible for growth rate-dependent control. Recent studies on activation of rRNA synthesis by cis-acting upstream sequences has led to the discovery of a new class of promoters that make contact with RNA polymerase at a third position, called the UP element, in addition to the well-known -10 and -35 regions. Lastly, clues as to the role of antitermination in rRNA operons have begun to appear. Transcription complexes modified at the antiterminator site appear to elongate faster and are resistant to the inhibitory effects of ppGpp during the stringent response. PMID:8531889
Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L
2016-04-19
Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.
UV disinfection for reuse applications in North America.
Sakamoto, G; Schwartzel, D; Tomowich, D
2001-01-01
In an effort to conserve and protect limited water resources, the States of Florida and California have actively promoted wastewater reclamation and have implemented comprehensive regulations covering a range of reuse applications. Florida has a semi-tropical climate with heavy summer rains that are lost due to run off and evaporation. Much of California is arid and suffers periodic droughts, low annual rainfall and depleted ground water supplies. The high population density combined with heavy irrigation demands has depleted ground water supplies resulting in salt-water intrusion. During the past decade, Florida reuse sites have increased dramatically from 118 to 444 plants representing a total flow capacity of 826 MGD. California presently has over 250 plants producing 1 BGD with a projected increase of 160 sites over the next 20 years. To prevent the transmission of waterborne diseases, disinfection of reclaimed water is controlled by stringent regulations. Many states regulate wastewater treatment processes, nutrient removal, final effluent quality and disinfection criteria based upon the specific reuse application. As a rule, the resulting effluents have low turbidity and suspended solids. For such effluents, UV technology can economically achieve the most stringent disinfection targets that are required by the States of California and Florida for restricted and unrestricted reuse. This paper compares UV disinfection for wastewater reuse sites in California and Florida and discusses the effect of effluent quality on UV disinfection.
Prompt Optical Observations of Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim
2000-03-01
The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.
Project 8: Towards cyclotron radiation emission spectroscopy on tritium
NASA Astrophysics Data System (ADS)
Fertl, Martin; Project 8 Collaboration
2017-01-01
Project 8 aims to determine the neutrino mass by making a precise measurement of the beta decay of molecular tritium (Q = 18.6 keV) using the recently demonstrated the technique of cyclotron radiation emission spectroscopy (CRES). We report on results for calibration measurements performed with Kr-83m in a gas cell that fulfills the stringent requirements for a measurement using tritium: cryogenic operation, safe tritium handling, a non-magnetic design, and a good microwave guide performance. The phased program that allows Project 8 to probe the neutrino mass range accessible using molecular tritium is described. Major financial support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics to the University of Washington under Award Number DE-FG02-97ER41020 is acknowledged
Quantum random number generation for loophole-free Bell tests
NASA Astrophysics Data System (ADS)
Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar
2015-05-01
We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.
Atomization and Dispersion of a Liquid Jet Injected Into a Crossflow of Air
NASA Technical Reports Server (NTRS)
Seay, J. E.; Samuelson, G. S.
1996-01-01
In recent years, environmental regulations have become more stringent, requiring lower emissions of mainly nitrogen oxides (NOx), as well as carbon monoxide (CO) and unburned hydrocarbons (UHC). These regulations have forced the gas turbine industry to examine non-conventional combustion strategies, such as the lean burn approach. The reasoning behind operating under lean conditions is to maintain the temperature of combustion near and below temperatures required for the formation of thermal nitric oxide (NO). To be successful, however, the lean processes require careful preparation of the fuel/air mixture to preclude formation of either locally rich reaction zones, which may give rise to NO formation, or locally lean reaction zones, which may give rise to inefficient fuel processing. As a result fuel preparation is crucial to the development and success of new aeroengine combustor technologies. A key element of the fuel preparation process is the fuel nozzle. As nozzle technologies have developed, airblast atomization has been adopted for both industrial and aircraft gas turbine applications. However, the majority of the work to date has focused on prefilming nozzles, which despite their complexity and high cost have become an industry standard for conventional combustion strategies. It is likely that the new strategies required to meet future emissions goals will utilize novel fuel injector approaches, such as radial injection. This thesis proposes and demonstrates an experiment to examine, on a mechanistic level (i.e., the physics of the action), the processes associated with the atomization, evaporation, and dispersion of a liquid jet introduced, from a radial, plain-jet airblast injector, into a crossflow of air. This understanding requires the knowledge not only of what factors influence atomization, but also the underlying mechanism associated with liquid breakup and dispersion. The experimental data acquired identify conditions and geometries for improved performance of radial airblast injectors.
The impact of global warming on the automotive industry
NASA Astrophysics Data System (ADS)
Hannappel, Ralf
2017-08-01
One cause of global warming of the earth's atmosphere is the emission of human made gases (methane, CO2, nitrous oxygen, etc.) into the environment. Of the total global CO2 emissions the transportation sector contributes to about 14%. In order to control the emissions of the automotive sector, in all major countries (USA, Europe, China, Japan) of the world, tough emissions targets were being set to reduce the vehicle traffic's contribution of CO2. These are derived from the global climate conference' target to limit the maximum temperature increase of the earth of 2 degrees Celsius until 2100. In order to achieve these stringent targets the automotive industry will face a major change in its drivetrain. It will move from combustion to electrical engines. The technical realization of these engines will most likely be battery and fuel cell driven propulsion systems. In order to achieve that transition a major effort is required in 4 industrial areas, i.e. growing electrical charging infrastructure, lowering battery cost, increasing the battery-electric vehicle ranges and developing new environmental friendly hydrogen production methods.
Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels
NASA Technical Reports Server (NTRS)
Anderson, D. N.
1977-01-01
Tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 300,000 Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5 percent purity propane was used. The combustion efficiency for 99.8-percent purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppm of bound nitrogen and consequently produced the highest NOx emissions of the three fuels. As much as 85 percent of the bound nitrogen was converted to NOx. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8-percent purity propane. With that fuel, a minimum temperature of 1480 K was required.
Climate, Health, Agricultural and Economic Impacts of Tighter Vehicle-Emission Standards
NASA Technical Reports Server (NTRS)
Shindell, Drew; Faluvegi, Greg; Walsh, Michael; Anenberg, Susan C.; VanDingen, Rita; Muller, Nicholas Z.; Austin, Jeff; Koch, Dorothy; Milly, George
2011-01-01
Non-CO2 air pollutants from motor vehicles have traditionally been controlled to protect air quality and health, but also affect climate. We use global composition climate modelling to examine the integrated impacts of adopting stringent European on-road vehicle-emission standards for these pollutants in 2015 in many developing countries. Relative to no extra controls, the tight standards lead to annual benefits in 2030 and beyond of 120,000-280,000 avoided premature air pollution-related deaths, 6.1-19.7 million metric tons of avoided ozone-related yield losses of major food crops, $US0.6-2.4 trillion avoided health damage and $US1.1-4.3 billion avoided agricultural damage, and mitigation of 0.20 (+0.14/-0.17) C of Northern Hemisphere extratropical warming during 2040-2070. Tighter vehicle-emission standards are thus extremely likely to mitigate short-term climate change in most cases, in addition to providing large improvements in human health and food security. These standards will not reduce CO2 emissions, however, which is required to mitigate long-term climate change.
Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.
2013-10-15
With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the muchmore » lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.« less
Extractive sampling and optical remote sensing of F100 aircraft engine emissions.
Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard
2009-05-01
The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.
Environmental Quality: Environmental Protection and Enhancement
2002-01-17
have an adverse effect on human health . These regulations are federally enforceable. Primacy states may have more stringent requirements. Primary...includes TT requirements for filtered and unfiltered systems that are specifically designed to protect against the adverse health effects of exposure to...MTBE (20) Alachlor ESA (36) Lead- 210 (9) Nitrobenzene (21) 1,2-diphenylhydrazine (37) Polonium - 210 (10) Terbacil (22) Diazinon (11) Acetochlor (23
Frazier, Melanie; Miller, A. Whitman; Lee, Henry; Reusser, Deborah A.
2013-01-01
Discharge from the ballast tanks of ships is one of the primary vectors of nonindigenous species in marine environments. To mitigate this environmental and economic threat, international, national, and state entities are establishing regulations to limit the concentration of living organisms that may be discharged from the ballast tanks of ships. The proposed discharge standards have ranged from zero detectable organisms to 3. If standard sampling methods are used, verifying whether ballast discharge complies with these stringent standards will be challenging due to the inherent stochasticity of sampling. Furthermore, at low concentrations, very large volumes of water must be sampled to find enough organisms to accurately estimate concentration. Despite these challenges, adequate sampling protocols comprise a critical aspect of establishing standards because they help define the actual risk level associated with a standard. A standard that appears very stringent may be effectively lax if it is paired with an inadequate sampling protocol. We describe some of the statistical issues associated with sampling at low concentrations to help regulators understand the uncertainties of sampling as well as to inform the development of sampling protocols that ensure discharge standards are adequately implemented.
Advanced Collaborative Emissions Study (ACES)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon
2013-12-31
The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested enginesmore » was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.« less
Hu, Yuanan; Cheng, Hefa
2016-11-01
Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
DEMONSTRATION OF POTENTIAL FOR SELECTIVE CATALYTIC REDUCTION AND DIESEL PARTICULATE FILTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGILL,R; KHAIR, M; SHARP, C
2003-08-24
This project addresses the potential for Selective Catalytic Reduction (SCR) devices (using urea as reductant) together with Diesel Particulate Filters (DPF) and low-pressure loop exhaust gas recirculation (EGR) to achieve future stringent emissions standards for heavy-duty engines powering Class 8 vehicles. Two emission control systems consisting of the three technologies (EGR, SCR, and DPF) were calibrated on a Caterpillar C-12 heavy-duty diesel engine. Results of these calibrations showed good promise in meeting the 2010 heavy-duty emission standards as set forth by the Environmental Protection Agency (EPA). These two emission control systems were developed to evaluate a series of fuels thatmore » have similar formulations except for their sulfur content. Additionally, one fuel, code-named BP15, was also evaluated. This fuel was prepared by processing straight-run distillate stocks through a commercial, single stage hydrotreater employing high activity catalyst at maximum severity. An additional goal of this program is to provide data for an on-going EPA technology review that evaluates progress toward meeting 2007/2010 emission standards. These emissions levels were to be achieved not only on the transient test cycles but in other modes of operation such as the steady-state Euro-III style emission test known as the OICA (Organisation Internationale des Compagnies d'Automobiles) or the ESC (European Stationary Cycle). Additionally, hydrocarbon and carbon monoxide emissions standards are to be met.« less
The Effect of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions
Dhar, Sumitrajit
2009-01-01
Evoked otoacoustic emissions are often used to study the medial olivocochlear (MOC) efferents in humans. There has been concern that the emission-evoking stimulus may itself elicit efferent activity and alter the evoked otoacoustic emission. Spontaneous otoacoustic emissions (SOAEs) are hence advantageous as no external stimulation is necessary to record the response in the test ear. Contralateral acoustic stimulation (CAS) has been shown to suppress SOAE level and elevate SOAE frequency, but the time course of these effects is largely unknown. By utilizing the Choi–Williams distribution, here we report a gradual adaptation during the presence of CAS and an overshoot following CAS offset in both SOAE magnitude and frequency from six normal-hearing female human subjects. Furthermore, we have quantified the time constants of both magnitude and frequency shifts at the onset, presence, and offset of four levels of CAS. Most studies using contralateral elicitors do not stringently control the middle-ear muscle (MEM) reflex, leaving the results difficult to interpret. In addition to clinically available measures of the MEM reflex, we have incorporated a sensitive laboratory technique to monitor the MEM reflex in our subjects, allowing us to interpret the results with greater confidence. PMID:19798532
New use of global warming potentials to compare cumulative and short-lived climate pollutants
NASA Astrophysics Data System (ADS)
Allen, Myles R.; Fuglestvedt, Jan S.; Shine, Keith P.; Reisinger, Andy; Pierrehumbert, Raymond T.; Forster, Piers M.
2016-08-01
Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions. Metric choice can affect the relative emphasis placed on reductions of `cumulative climate pollutants' such as carbon dioxide versus `short-lived climate pollutants' (SLCPs), including methane and black carbon. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20-40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century, which may be necessary to limit warming to ``well below 2 °C'' (ref. ). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.
Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control
NASA Technical Reports Server (NTRS)
Anderson, D. N.
1978-01-01
A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.
Precision Adjustable Liquid Regulator (ALR)
NASA Astrophysics Data System (ADS)
Meinhold, R.; Parker, M.
2004-10-01
A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi. The regulator is fault tolerant in that it was purposely designed with no shutoff capability, such that the minimum flow position of the poppet still allows the subsystem to provide adequate flow to the main engine for basic operation.
Dark matter detectors as dark photon helioscopes.
An, Haipeng; Pospelov, Maxim; Pradler, Josef
2013-07-26
Light new particles with masses below 10 keV, often considered as a plausible extension of the standard model, will be emitted from the solar interior and can be detected on Earth with a variety of experimental tools. Here, we analyze the new "dark" vector state V, a massive vector boson mixed with the photon via an angle κ, that in the limit of the small mass mV has its emission spectrum strongly peaked at low energies. Thus, we utilize the constraints on the atomic ionization rate imposed by the results of the XENON10 experiment to set the limit on the parameters of this model: κ×mV<3×10(-12) eV. This makes low-threshold dark matter experiments the most sensitive dark vector helioscopes, as our result not only improves current experimental bounds from other searches by several orders of magnitude but also surpasses even the most stringent astrophysical and cosmological limits in a seven-decade-wide interval of mV. We generalize this approach to other light exotic particles and set the most stringent direct constraints on "minicharged" particles.
Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position
Liu, Wei; Shin, Dongwon; Ng, Martin; Sanbonmatsu, Karissa Y.; Tor, Yitzhak; Cooperman, Barry S.
2017-01-01
Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5′- and 3′-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix. PMID:28850078
An unsuccessful search for brown dwarf companions to white dwarf stars
NASA Technical Reports Server (NTRS)
Shipman, Harry L.
1986-01-01
The results of a survey to detect excess infrared emission from white dwarf stars which would be attributable to a low mass companion are reviewed. Neither a simple comparison of spectroscopically identified white dwarf stars with the IRAS Point Source Catalog nor the coadding of IRAS survey data resulted in a detection of a brown dwarf. The seven nearest stars where the most stringent limits to the presence of a brown dwarf were obtained are listed, and an effort to detect brown dwarfs in the solar neighborhood is discussed.
Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish
2018-05-01
Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.
Sun, Kangfeng; Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai; Yang, Shichun
2018-01-01
As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small.
Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai
2018-01-01
As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small. PMID:29408924
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, G.A.; Kerstetter, J.; Lyons, J.K.
1993-06-01
Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive,more » their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.« less
Vogt, Stefanie L.; Green, Christopher; Stevens, Katarzyna M.; Day, Brad; Erickson, David L.; Woods, Donald E.; Storey, Douglas G.
2011-01-01
The stringent response is a regulatory system that allows bacteria to sense and adapt to nutrient-poor environments. The central mediator of the stringent response is the molecule guanosine 3′,5′-bispyrophosphate (ppGpp), which is synthesized by the enzymes RelA and SpoT and which is also degraded by SpoT. Our laboratory previously demonstrated that a relA mutant of Pseudomonas aeruginosa, the principal cause of lung infections in cystic fibrosis patients, was attenuated in virulence in a Drosophila melanogaster feeding model of infection. In this study, we examined the role of spoT in P. aeruginosa virulence. We generated an insertion mutation in spoT within the previously constructed relA mutant, thereby producing a ppGpp-devoid strain. The relA spoT double mutant was unable to establish a chronic infection in D. melanogaster and was also avirulent in the rat lung agar bead model of infection, a model in which the relA mutant is fully virulent. Synthesis of the virulence determinants pyocyanin, elastase, protease, and siderophores was impaired in the relA spoT double mutant. This mutant was also defective in swarming and twitching, but not in swimming motility. The relA spoT mutant and, to a lesser extent, the relA mutant were less able to withstand stresses such as heat shock and oxidative stress than the wild-type strain PAO1, which may partially account for the inability of the relA spoT mutant to successfully colonize the rat lung. Our results indicate that the stringent response, and SpoT in particular, is a crucial regulator of virulence processes in P. aeruginosa. PMID:21788391
R. M. Bordas; G. A. Davis; B. L. Hopkins; R. E. Thornas; Robert B. Rummer
2001-01-01
The logging industry remains one of the most hazardous in the nation. Despite more stringent safety regulations and improvements in equipment safety features, the rate of logging fatalities has decreased at a much lower rate than the decrease in the rate of illnesses and injuries in the same occupation. The objective of this research was to identify and assess the...
Welding and joining techniques.
Chipperfield, F A; Dunkerton, S B
2001-05-01
There is a welding solution for most applications. As products must meet more stringent requirements or require more flexible processes to aid design or reduce cost, further improvements or totally new processes are likely to be developed. Quality control aspects are also becoming more important to meet regulation, and monitoring and control of welding processes and the standardised testing of joints will meet some if not all of these requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.
A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the modelmore » calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.« less
Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees
2004-07-15
Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.
Auroral photometry from the atmosphere Explorer satellite
NASA Technical Reports Server (NTRS)
Rees, M. H.; Abreu, V. J.
1984-01-01
Attention is given to the ability of remote sensing from space to yield quantitative auroral and ionospheric parametrers, in view of the auroral measurements made during two passes of the Explorer C satellite over the Poker Flat Optical Observatory and the Chatanika Radar Facility. The emission rate of the N2(+) 4278 A band computed from intensity measurements of energetic auroral electrons has tracked the same spetral feature that was measured remotely from the satellite over two decades of intensity, providing a stringent test for the measurement of atmospheric scattering effects. It also verifies the absolute intensity with respect to ground-based photometric measurements. In situ satellite measurments of ion densities and ground based electron density profile radar measurements provide a consistent picture of the ionospheric response to auroral input, while also predicting the observed optical emission rate.
The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals
NASA Astrophysics Data System (ADS)
Zhang, Runsen; Fujimori, Shinichiro; Hanaoka, Tatsuya
2018-05-01
The transport sector contributes around a quarter of global CO2 emissions; thus, low-carbon transport policies are required to achieve the 2 °C and 1.5 °C targets. In this paper, representative transport policy scenarios are structured with the aim of achieving a better understanding of the interaction between the transport sector and the macroeconomy. To accomplish this, the Asia–Pacific Integrated Model/Transport (AIM/Transport) model, coupled with a computable general equilibrium model (AIM/CGE), is used to simulate the potential for different transport policy interventions to reduce emissions and cost over the period 2005–2100. The results show that deep decarbonization in the transport sector can be achieved by implementing transport policies such as energy efficiency improvements, vehicle technology innovations particularly the deployment of electric vehicles, public transport developments, and increasing the car occupancy rate. Technological transformations such as vehicle technological innovations and energy efficiency improvements provide the most significant reduction potential. The key finding is that low-carbon transport policies can reduce the carbon price, gross domestic product loss rate, and welfare loss rate generated by climate mitigation policies to limit global warming to 2 °C and 1.5 °C. Interestingly, the contribution of transport policies is more effective for stringent climate change targets in the 1.5 °C scenario, which implies that the stronger the mitigation intensity, the more transport specific policy is required. The transport sector requires attention to achieve the goal of stringent climate change mitigation.
Food poisoning as an in-flight safety hazard.
Beers, K N; Mohler, S R
1985-06-01
The leading cause by far of airline pilot incapacitations is gastrointestinal illness resulting from "food poisoning". This potentially hazardous condition is inadequately dealt with by the airlines today and strikes equally in all pilot age groups. Sufficient incidents are occurring to justify more stringent aircrew meal standards and regulations. Aircrew heart attack and stroke concerns pale into insignificance relative to the far more common food poisoning incapacitations. Specific regulations on aircrew feeding should be promulgated by the Federal Aviation Administration and the regulatory authorities in other countries to preclude simultaneous-onset in-flight incapacitations due to common-source food poisoning.
NASA Astrophysics Data System (ADS)
Kim, Y.; Woo, J. H.; Choi, K. C.; Lee, J. B.; Song, C. K.; Kim, S. K.; Hong, J.; Hong, S. C.; Zhang, Q.; Hong, C.; Tong, D.
2015-12-01
Future emission scenarios based on up-to-date regional socio-economic and control policy information were developed in support of climate-air quality integrated modeling research over East Asia. Two IPCC-participated Integrated Assessment Models(IAMs) were used to developed those scenario pathways. The two emission processing systems, KU-EPS and SMOKE-Asia, were used to convert these future scenario emissions to comprehensive chemical transport model-ready form. The NIER/KU-CREATE (Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment) served as the regional base-year emission inventory. For anthropogenic emissions, it has 54 fuel classes, 201 sub-sectors and 13 pollutants, including CO2, CH4, N2O, SO2, NOx, CO, NMVOC, NH3, OC, BC, PM10, PM2.5, and mercury. Fast energy growth and aggressive penetration of the control measures make emissions projection very active for East Asia. Despite of more stringent air pollution control policies by the governments, however, air quality over the region seems not been improved as much - even worse in many cases. The needs of more scientific understanding of inter-relationship among emissions, transport, chemistry over the region are very high to effectively protect public health and ecosystems against ozone, fine particles, and other toxic pollutants in the air. After developing these long-term future emissions, therefore, we also tried to apply our future scenarios to develop the present emissions inventory for chemical weather forecasting and aircraft field campaign. On site, we will present; 1) the future scenario development framework and process methodologies, 2) initial development results of the future emission pathways, 3) present emission inventories from short-term projection, and 4) air quality modeling performance improvements over the region.
Effects of Changing Emissions on Ozone and Particulates in the Northeastern United States
NASA Astrophysics Data System (ADS)
Frost, G. J.; McKeen, S.; Trainer, M.; Ryerson, T.; Holloway, J.; Brock, C.; Middlebrook, A.; Wollny, A.; Matthew, B.; Williams, E.; Lerner, B.; Fortin, T.; Sueper, D.; Parrish, D.; Fehsenfeld, F.; Peckham, S.; Grell, G.; Peltier, R.; Weber, R.; Quinn, P.; Bates, T.
2004-12-01
Emissions of nitrogen oxides (NOx) from electric power generation have decreased in recent years due to changes in burner technology and fuels used. Mobile NOx emissions assessments are less certain, since they must account for increases in vehicle miles traveled, changes in the proportion of diesel and gasoline vehicles, and more stringent controls on engines and fuels. The impact of these complicated emission changes on a particular region's air quality must be diagnosed by a combination of observation and model simulation. The New England Air Quality Study - Intercontinental Transport and Chemical Transformation 2004 (NEAQS-ITCT 2004) program provides an opportunity to test the effects of changes in emissions of NOx and other precursors on air quality in the northeastern United States. An array of ground, marine, and airborne observation platforms deployed during the study offer checks on emission inventories and air quality model simulations, like those of the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem). Retrospective WRF-Chem runs are carried out with two EPA inventories, one compiled for base year 1999 and an update for 2004 incorporating projected and known changes in emissions during the past 5 years. Differences in model predictions of ozone, particulates, and other tracers using the two inventories are investigated. The inventories themselves and the model simulations are compared with the extensive observations available during NEAQS-ITCT 2004. Preliminary insights regarding the sensitivity of the model to NOx emission changes are discussed.
NASA Astrophysics Data System (ADS)
Rajagopal, Deepak
2013-06-01
The absence of a globally-consistent and binding commitment to reducing greenhouse emissions provides a rationale for partial policies, such as renewable energy mandates, product emission standards, etc to target lifecycle emissions of the regulated products or services. While appealing in principle, regulation of lifecycle emissions presents several practical challenges. Using biofuels as an illustrative example, we highlight some outstanding issues in the design and implementation of life cycle-based policies and discuss potential remedies. We review the literature on emissions due to price effects in fuel markets, which are akin to emissions due to indirect land use change, but are, unlike the latter, ignored under all current life cycle emissions-based regulations. We distinguish the current approaches to regulating indirect emissions into hard and soft approaches and discuss their implications.
The Nature of the Optical "Jets" in the Spiral Galaxy NGC 1097
NASA Technical Reports Server (NTRS)
Wehrle, Ann E.; Keel, William C.; Jones, Dayton L.
1997-01-01
We present new observations of the jet features in the barred spiral galaxy NGC 1097, including optical spectroscopy of the brightest jet features, two-color optical imagery, new VLA mapping at 327 MHz, and archival 1.4 GHz VLA data reprocessed for improved sensitivity. No optical emission lines appear to an equivalent width limit of 15-30 A (depending on the line wavelength). The jets are uniformly blue, with B - V = 0.45 for the two well-observed jets R1 and R2. No radio emission from the jets is detected at either frequency; the 327-MHz data set particularly stringent limits on "fossil" emission from aging synchrotron electrons. The morphology of the jets is shown to be inconsistent with any conical distribution of emission enhanced by edge-brightening; their combination of transverse profile and relative narrowness cannot be reproduced with cone models. The optical colors, lack of radio emission, and morphology of the features lead us to conclude that they are tidal manifestations, perhaps produced by multiple encounters of the small elliptical companion NGC 1097A with the disk of NGC 1097. We present photometric and morphological comparisons to the tail of NGC 465 1, which is similar in scale and morphology to the northeast "dogleg" feature R1 in NGC 1097.
Review of electrotechnologies used in the disinfection of water and wastewater. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
VandeVenter, L.W.
This report provides an overview of the disinfection practices used in water and wastewater treatment. Chlorine historically has been the disinfectant of choice for both water and wastewater, but with increased research and more stringent regulations, other disinfectants, namely ozone and ultraviolet irradiation, are being considered. The report summarizes the present and future applications of these technologies and defines possible opportunities for Demand- Side Management (DSM).
Review of electrotechnologies used in the disinfection of water and wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
VandeVenter, L.W.
This report provides an overview of the disinfection practices used in water and wastewater treatment. Chlorine historically has been the disinfectant of choice for both water and wastewater, but with increased research and more stringent regulations, other disinfectants, namely ozone and ultraviolet irradiation, are being considered. The report summarizes the present and future applications of these technologies and defines possible opportunities for Demand- Side Management (DSM).
Contact Transfer of VX from Contaminated Grass onto Army Combat Uniform
2017-01-01
intervals for agricultural workers who use pesticides . The reentry intervals are based on the available toxicity data, concentrations of chemicals used...for workers using some of the more toxic organophosphate pesticides . State regulators are free to set more stringent intervals. Watson suggested...report, the RASH method that uses RPF values for pesticide exposure of agricultural workers appears to be unrealistic for extrapolating to the exposure
Advanced Conversion Coatings for Magnesium alloys
NASA Astrophysics Data System (ADS)
Nibhanupudi, Syam; Manavbasi, Alp
Magnesium and its alloys have excellent physical and mechanical properties due to their high strength-to-weight ratio and are ideal for various applications in automotive, aerospace and defense sectors. However, Mg alloys are also highly susceptible to corrosion under harsh environments. Owing to this carcinogenicity as well as environmental impact of hexavalent chromium fueled by stringent environmental regulations, an environmentally green alternative to the carcinogenic hexavalent chromium coatings on magnesium is due.
Chen, Xianjun; Li, Ting; Wang, Xue; Du, Zengmin; Liu, Renmei; Yang, Yi
2016-04-07
Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Khakimova, Malika; Ahlgren, Heather G.; Harrison, Joe J.; English, Ann M.
2013-01-01
Pseudomonas aeruginosa, a human opportunistic pathogen, possesses a number of antioxidant defense enzymes under the control of multiple regulatory systems. We recently reported that inactivation of the P. aeruginosa stringent response (SR), a starvation stress response controlled by the alarmone (p)ppGpp, caused impaired antioxidant defenses and antibiotic tolerance. Since catalases are key antioxidant enzymes in P. aeruginosa, we compared the levels of H2O2 susceptibility and catalase activity in P. aeruginosa wild-type and ΔrelA ΔspoT (ΔSR) mutant cells. We found that the SR was required for optimal catalase activity and mediated H2O2 tolerance during both planktonic and biofilm growth. Upon amino acid starvation, induction of the SR upregulated catalase activity. Full expression of katA and katB also required the SR, and this regulation occurred through both RpoS-independent and RpoS-dependent mechanisms. Furthermore, overexpression of katA was sufficient to restore H2O2 tolerance and to partially rescue the antibiotic tolerance of ΔSR cells. All together, these results suggest that the SR regulates catalases and that this is an important mechanism in protecting nutrient-starved and biofilm bacteria from H2O2- and antibiotic-mediated killing. PMID:23457248
Chang, Lin-Chau; Kang, Jaw-Jou; Gau, Churn-Shiouh
2016-06-01
The main concern for container closure systems of drugs is to ensure suitability for the intended use which is associated with issues regarding protection, compatibility, safety, and performance. Among various concerns, leachables may pose a safety hazard to patients, while risks might vary depending on the dosage form and the administration route. Stringent regulatory authorities such as the European Medicines Agency and the United States Food and Drug Administration have established risk-based regulatory requirements and published corresponding guidelines to facilitate implementation. Taiwan, a member of the Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation Scheme, makes every effort to harmonize with international regulations and to strengthen protection of public health through regulatory controls. The aim of the present study was to investigate the regulatory framework and policies set by stringent regulatory authorities. The strategy proposed for the development of an eventual guideline was sent to the Taiwan Food and Drug Administration for decision. A risk-based, phased-in approach which was extensively discussed in the expert committee was proposed. The approach proposed herein could also serve as a starting point which is worth considered by other countries in which international harmonization is in process. Copyright © 2016 Elsevier Inc. All rights reserved.
Chang, Lin-Chau; Kang, Jaw-Jou; Gau, Churn-Shiouh
2015-12-01
Excipients, once considered an inert component, have been shown to greatly influence the characteristics of the drug product, such as quality and safety. Functionality-related characteristics of excipients could affect the performance of the drug product. Moreover, the impact of globalization has complicated the issue and made the supervision of supply chain highly important. Taiwan, a member of the Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation Scheme, makes efforts to harmonize with international regulations and to strengthen the protection of patients through regulatory controls. In order to improve the harmonization and the transparency of regulatory requirements, the aim of the present study was to investigate the regulatory framework and considerations of stringent regulatory authorities and to propose the draft regulatory requirements to the Taiwan Food and Drug Administration for jurisdiction. The proposal which was extensively discussed in the expert committee includes the regulatory considerations to ensure the safety and quality of the excipients and may serve as a platform to facilitate the communication with industries about the current thinking on related issues. Moreover, through the review of the recent guidelines published by the stringent regulatory authorities, the trend of the regulatory considerations was revealed and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Abraham, John; Davis, Courtney
2005-09-01
By going beyond individual case studies and solely quantitative surveys, this paper systematically examines why there were over twice as many new prescription drugs withdrawn from the market on grounds of safety in the UK as there were in the US between 1971 and 1992. Drawing on interviews with regulators, industry scientists and others involved, and on regulatory data never before accessed outside governments and companies, five key hypotheses which might explain this difference in drug safety withdrawals are analysed. These are: (1) simply because the UK approved more new drugs than the US; (2) because of an industrial corporate strategy to seek approval of 'less safe' drugs in the UK earlier; (3) because British regulators were more vigilant at spotting post-marketing safety problems than their US counterparts; (4) because the slowness of the US in approving new drugs enabled regulators there to learn from, and avoid, safety problems that had already emerged in the UK or European market; and (5) because more stringent regulation in the US meant that they approved fewer unsafe drugs on to the market in the first place. It is concluded that the main explanation for fewer drug safety withdrawals in the US is that the regulatory agency there applied more stringent pre-market review and/or standards, which took longer than UK regulatory checks, but prevented unsafe drugs marketed in the UK from entering the US market. Contrary to the claims frequently made by the pharmaceutical industry and regulatory agencies on both sides of the Atlantic, these results imply that it is likely that acceleration of regulatory review times in the US and the UK since the early 1990s is compromising drug safety.
[Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].
Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong
2007-06-01
Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.
A search for radio emission from exoplanets around evolved stars
NASA Astrophysics Data System (ADS)
O'Gorman, E.; Coughlan, C. P.; Vlemmings, W.; Varenius, E.; Sirothia, S.; Ray, T. P.; Olofsson, H.
2018-04-01
The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically ≥150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the LOw Frequency ARray (LOFAR) at 150 MHz (λ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β Gem, ι Dra, and β UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β Gem, ι Dra, and β UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.
Review of modern low emissions combustion technologies for aero gas turbine engines
NASA Astrophysics Data System (ADS)
Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Nalianda, Devaiah; Li, Yi-Guang; Wang, Lu
2017-10-01
Pollutant emissions from aircraft in the vicinity of airports and at altitude are of great public concern due to their impact on environment and human health. The legislations aimed at limiting aircraft emissions have become more stringent over the past few decades. This has resulted in an urgent need to develop low emissions combustors in order to meet legislative requirements and reduce the impact of civil aviation on the environment. This article provides a comprehensive review of low emissions combustion technologies for modern aero gas turbines. The review considers current high Technologies Readiness Level (TRL) technologies including Rich-Burn Quick-quench Lean-burn (RQL), Double Annular Combustor (DAC), Twin Annular Premixing Swirler combustors (TAPS), Lean Direct Injection (LDI). It further reviews some of the advanced technologies at lower TRL. These include NASA multi-point LDI, Lean Premixed Prevaporised (LPP), Axially Staged Combustors (ASC) and Variable Geometry Combustors (VGC). The focus of the review is placed on working principles, a review of the key technologies (includes the key technology features, methods of realising the technology, associated technology advantages and design challenges, progress in development), technology application and emissions mitigation potential. The article concludes the technology review by providing a technology evaluation matrix based on a number of combustion performance criteria including altitude relight auto-ignition flashback, combustion stability, combustion efficiency, pressure loss, size and weight, liner life and exit temperature distribution.
A lower bound to the social cost of CO2 emissions
NASA Astrophysics Data System (ADS)
van den Bergh, J. C. J. M.; Botzen, W. J. W.
2014-04-01
Many studies have estimated the social cost of carbon (SCC). We critically evaluate SCC estimates, focusing on omitted cost categories, discounting, uncertainties about damage costs and risk aversion. This allows for the calculation of a lower bound to the SCC. Dominant SCC values turn out to be gross underestimates, notably, but not only, for a low discount rate. The validity of this lower bound is supported by a precautionary approach to reflect risk aversion against extreme climate change. The results justify a more stringent climate policy than is suggested by most influential past studies.
Holograms for laser diode: Single mode optical fiber coupling
NASA Technical Reports Server (NTRS)
Fuhr, P. L.
1982-01-01
The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.
Bacterial Cysteine-Inducible Cysteine Resistance Systems
Takumi, Kazuhiro
2016-01-01
ABSTRACT Cysteine donates sulfur to macromolecules and occurs naturally in many proteins. Because low concentrations of cysteine are cytotoxic, its intracellular concentration is stringently controlled. In bacteria, cysteine biosynthesis is regulated by feedback inhibition of the activities of serine acetyltransferase (SAT) and 3-phosphoglycerate dehydrogenase (3-PGDH) and is also regulated at the transcriptional level by inducing the cysteine regulon using the master regulator CysB. Here, we describe two novel cysteine-inducible systems that regulate the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for biotechnological, medical, and industrial purposes. One locus, designated ccdA (formerly PAJ_0331), encodes a novel cysteine-inducible cysteine desulfhydrase (CD) that degrades cysteine, and its expression is controlled by the transcriptional regulator encoded by ccdR (formerly PAJ_0332 or ybaO), located just upstream of ccdA. The other locus, designated cefA (formerly PAJ_3026), encodes a novel cysteine-inducible cysteine efflux pump that is controlled by the transcriptional regulator cefR (formerly PAJ_3027), located just upstream of cefA. To our knowledge, this is the first example where the expression of CD and an efflux pump is regulated in response to cysteine and is directly involved in imparting resistance to excess levels of cysteine. We propose that ccdA and cefA function as safety valves that maintain homeostasis when the intra- or extracellular cysteine concentration fluctuates. Our findings contribute important insights into optimizing the production of cysteine and related biomaterials by P. ananatis. IMPORTANCE Because of its toxicity, the bacterial intracellular cysteine level is stringently regulated at biosynthesis. This work describes the identification and characterization of two novel cysteine-inducible systems that regulate, through degradation and efflux, the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for industrial purposes. We propose that this novel mechanism for sensing and regulating cysteine levels is a safety valve enabling adaptation to sudden changes in intra- or extracellular cysteine levels in bacteria. Our findings provide important insights into optimizing the production of cysteine and related biomaterials by P. ananatis and also a deep understanding of sulfur/cysteine metabolism and regulation in this plant pathogen and related bacteria. PMID:26883827
Mexico City, Mexico as seen from STS-62
1994-03-05
STS062-84-028 (4-18 March 1994) --- According to NASA scientists this image is the clearest photo of Mexico City taken from United States manned spacecraft. North is to the upper right. Mexico City sits in a basin surrounded by large volcanoes. The restricted atmospheric circulation in the basin, coupled with the inevitable air emissions produced by a city of 20 million people has created a critical air pollution problem for the city. In most photographs of the region, Mexico City is obscured by haze. Scientists feel the clear atmosphere in this photograph may be due, in part, to the stringent air emission restrictions now in place. The clarity of the photograph allows many key cultural features to be identified, including all of the major boulevards, the horse track (western part of the city), the university (south of the city), and the museum areas. Large, man-made ponds east of the city also stand out.
A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Busse, R. S.; Carver, T.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Leonard, K.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lozano Mariscal, C. J.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; O’Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tönnis, C.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; IceCube Collaboration
2018-04-01
We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E ‑2 energy spectrum assumed, which is 0.0021 GeV cm‑2 per burst for emission timescales up to ∼102 s from the northern hemisphere stacking search.
Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter
NASA Technical Reports Server (NTRS)
Kovaleski, S. D.; Burke, Tom (Technical Monitor)
2001-01-01
Hollow cathodes with barium calcium aluminate impregnated tungsten emitters for thermionic emission are widely used in electric propulsion. These high current, low power cathodes are employed in ion thrusters, Hall thrusters, and on the International Space Station in plasma contactors. The requirements on hollow cathode life are growing more stringent with the increasing use of electric propulsion technology. The life limiting mechanism that determines the entitlement lifetime of a barium impregnated thermionic emission cathode is the evolution and transport of barium away from the emitter surface. A model is being developed to study the process of barium transport and loss from the emitter insert in hollow cathodes. The model accounts for the production of barium through analysis of the relevant impregnate chemistry. Transport of barium through the approximately static gas is also being treated. Finally, the effect of temperature gradients within the cathode are considered.
Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory
NASA Astrophysics Data System (ADS)
Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.
2015-12-01
The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.
Polarization swings reveal magnetic energy dissipation in blazars
Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; ...
2015-05-01
The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization informationmore » in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.« less
Stringency and relaxation among the halobacteria.
Cimmino, C; Scoarughi, G L; Donini, P
1993-01-01
Accumulation of stable RNA and production of guanosine polyphosphates (ppGpp and pppGpp) were studied during amino acid starvation in four species of halobacteria. In two of the four species, stable RNA was under stringent control, whereas one of the remaining two species was relaxed and the other gave an intermediate phenotype. The stringent reaction was reversed by anisomycin, an effect analogous to the chloroamphenicol-induced reversal of stringency in the eubacteria. During the stringent response, neither ppGpp nor pppGpp accumulation took place during starvation. In both growing and starved cells a very low basal level of the two polyphosphates appeared to be present. In the stringent species the intracellular concentration of GTP did not diminish but actually increased during the course of the stringent response. These data demonstrate that (i) wild-type halobacteria can have either the stringent or the relaxed phenotype (all wild-type eubacteria tested have been shown to be stringent); (ii) stringency in the halobacteria is dependent on the deaminoacylation of tRNA, as in the eubacteria; and (iii) in the halobacteria, ppGpp is not an effector of stringent control over stable-RNA synthesis. Images PMID:7691798
APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, C; Weber, P; Thornton,M
2003-08-24
The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT)more » or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)« less
Xiao, Zhuang; Tian, Yixiang; Yuan, Zheng
2018-01-01
To establish a micro foundation to understand the impacts of greenhouse gas (GHG) emission regulations and financial development levels on firms’ GHG emissions, we build a two-stage dynamic game model to incorporate GHG emission regulations (in terms of an emission tax) and financial development (represented by the corresponding financing cost) into a two-echelon supply chain. With the subgame perfect equilibrium, we identify the conditions to determine whether an emission regulatory policy and/or financial development can affect GHG emissions in the supply chain. We also reveal the impacts of the strictness of GHG emission regulation, the financial development level, and the unit GHG emission rate on the operations of the supply chain and the corresponding profitability implications. Managerial insights are also discussed. PMID:29470451
Effect of reductive treatments on Pt behavior and NOx storage in lean NOx trap catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xianqin; Kim, Do Heui; Kwak, Ja Hun
2011-10-01
Lean NOx trap (LNT) catalysts represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and particle size, are known to be important factors in determining NOx uptake performance, since Pt provides active sites for NO oxidation to NO2 necessary for storing NOx as nitrates, and for the reduction of nitrates to N2. In this work, the physicochemical properties of Pt in Pt-BaO/Al2O3 LNT catalysts, such as the Pt accessible surface area and particle size, were investigated by using various tools, such as irreversible volumetric H2 chemisorption, highmore » resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), following successive reductive treatments at elevated temperatures. NOx uptake activities were also measured to establish a relationship between the properties of Pt and NOx storage following identical high-temperature reductive treatments. We find that the reductive treatments of Pt-BaO/Al2O3 lean NOx trap catalysts at temperatures up to 500 ºC promote a significant increase in NOx uptake explained, in part, by an induced close interaction between Pt and BaO phases in the catalyst, thus enabling facilitation of the NOx storage process.« less
Kennett, Jeanette
2017-01-01
The spread of demands by physicians and allied health professionals for accommodation of their private ethical, usually religiously based, objections to providing care of a particular type, or to a particular class of persons, suggests the need for a re-evaluation of conscientious objection in healthcare and how it should be regulated. I argue on Kantian grounds that respect for conscience and protection of freedom of conscience is consistent with fairly stringent limitations and regulations governing refusal of service in healthcare settings. Respect for conscience does not entail that refusal of service should be cost free to the objector. I suggest that conscientious objection in medicine should be conceptualized and treated analogously to civil disobedience.
Ofungwu, Joseph; Eget, Steven
2006-07-01
Redevelopment of landfill sites in the New Jersey-New York metropolitan area for recreational (golf courses), commercial, and even residential purposes seems to be gaining acceptance among municipal planners and developers. Landfill gas generation, which includes methane and potentially toxic nonmethane compounds usually continues long after closure of the landfill exercise phase. It is therefore prudent to evaluate potential health risks associated with exposure to gas emissions before redevelopment of the landfill sites as recreational, commercial, and, especially, residential properties. Unacceptably high health risks would call for risk management measures such as limiting the development to commercial/recreational rather than residential uses, stringent gas control mechanisms, interior air filtration, etc. A methodology is presented for applying existing models to estimate residual landfill hazardous compounds emissions and to quantify associated health risks. Besides the toxic gas constituents of landfill emissions, other risk-related issues concerning buried waste, landfill leachate, and explosive gases were qualitatively evaluated. Five contiguously located landfill sites in New Jersey intended for residential and recreational redevelopment were used to exemplify the approach.
Beating the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parameswaran, A.; Pardi, S.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer, J.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Salit, M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Buchner, S.; Hotan, A.; Palfreyman, J.
2011-08-01
We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 × 10-24 and 2.2 × 10-24, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 × 10-24, with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 × 10-24 for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of ~10-3. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.
GAMMA-RAYS FROM THE QUASAR PKS 1441+25: STORY OF AN ESCAPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeysekara, A. U.; Archambault, S.; Archer, A.
2015-12-20
Outbursts from gamma-ray quasars provide insights on the relativistic jets of active galactic nuclei and constraints on the diffuse radiation fields that fill the universe. The detection of significant emission above 100 GeV from a distant quasar would show that some of the radiated gamma-rays escape pair-production interactions with low-energy photons, be it the extragalactic background light (EBL), or the radiation near the supermassive black hole lying at the jet’s base. VERITAS detected gamma-ray emission up to ∼200 GeV from PKS 1441+25 (z = 0.939) during 2015 April, a period of high activity across all wavelengths. This observation of PKS 1441+25more » suggests that the emission region is located thousands of Schwarzschild radii away from the black hole. The gamma-ray detection also sets a stringent upper limit on the near-ultraviolet to near-infrared EBL intensity, suggesting that galaxy surveys have resolved most, if not all, of the sources of the EBL at these wavelengths.« less
Characterization of three-way automotive catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, E.A.; More, K.L.; LaBarge, W.
1997-04-01
The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improvedmore » performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.« less
NASA Astrophysics Data System (ADS)
Lau, Chui Fong; Rakowska, Agata; Townsend, Thomas; Brimblecombe, Peter; Chan, Tat Leung; Yam, Yat Shing; Močnik, Griša; Ning, Zhi
2015-12-01
Vehicle emissions are an important source of urban air pollution. Diesel fuelled vehicles, although constituting a relatively small fraction of fleet population in many cities, are significant contributors to the emission inventory due to their often long mileage for goods and public transport. Recent classification of diesel exhaust as carcinogenic by the World Health Organization also raises attention to more stringent control of diesel emissions to protect public health. Although various mandatory and voluntary based emission control measures have been implemented in Hong Kong, there have been few investigations to evaluate if the fleet emission characteristics have met desired emission reduction objectives and if adoption of an Inspection/Maintenance (I/M) programme has been effective in achieving these objectives. The limitations are partially due to the lack of cost-effective approaches for the large scale characterisation of fleet based emissions to assess the effectiveness of control measures and policy. This study has used a plume chasing method to collect a large amount of on-road vehicle emission data of Hong Kong highways and a detailed analysis was carried out to provide a quantitative evaluation of the emission characteristics in terms of the role of high and super-emitters in total emission reduction, impact of after-treatment on the multi-pollutants reduction strategy and the trend of NO2 emissions with newer emission standards. The study revealed that not all the high-emitters are from those vehicles of older Euro emission standards. Meanwhile, there is clear evidence that high-emitters for one pollutant may not be a high-emitter for another pollutant. Multi-pollutant control strategy needs to be considered in the enactment of the emission control policy which requires more comprehensive retrofitting technological solutions and matching I/M programme to ensure the proper maintenance of fleets. The plume chasing approach used in this study also shows to be a useful approach for assessing city wide vehicle emission characteristics.
NASA Astrophysics Data System (ADS)
Karl, Matthias; Geyer, Beate; Bieser, Johannes; Matthias, Volker; Quante, Markus; Jalkanen, Jukka-Pekka; Johansson, Lasse; Fridell, Erik
2017-04-01
Deposition of nitrogen compounds originating from shipping activities contribute to eutrophication of the Baltic Sea and coastal areas in the Baltic Sea region. Emissions of nitrogen oxides (NOx) from shipping on the Baltic Sea are comparable to the combined land-based emissions of NOx from Finland and Sweden and have been relatively stable over the last decade. However, expected future growth of maritime transport will result in higher fuel consumption and, if not compensated by increased transport efficiency or other measures, lead to higher total emissions of NOx from shipping. For the Baltic Sea a nitrogen emission control area (NECA) will become effective in 2021 - permitting only new built ships that are compliant with stringent Tier III emission limits - with the target of reducing NOx-emissions. In order to study the effect of implementing a Baltic Sea NECA-2021 on air quality and nitrogen deposition two future scenarios were designed; one with implementation of a NECA for the Baltic Sea starting in 2021 and another with no NECA implemented. The same increase of ship traffic was assumed for both future scenarios. Since complete fleet renewal with low NOx-emitting engines is not expected until 20-30 years after the NECA entry date, year 2040 was chosen as future scenario year. The Community Multiscale Air Quality (CMAQ) model was used to simulate the current and future air quality situation. The nested simulation runs with CMAQ were performed on a horizontal resolution of 4 km × 4 km for the entire Baltic Sea region. The meteorological year 2012 was chosen for the simulation of the current and future air quality situation since the 2m-temperature and precipitation anomalies of 2012 are closely aligned to the 2004-2014 decadal average over Baltic Proper. High-resolution meteorology obtained from COSMO-CLM was used for the regional simulations. Ship emissions were generated with the Ship Traffic Emission Assessment Model (STEAM) by the Finnish Meteorological Institute (FMI) using the Automatic Identification System (AIS) network data to allocate ship positions. Gridded land-based emissions were taken from the SMOKE-EU model which is based on the official EMEP data. Future land-based emissions were reduced in accordance with current legislation. Model simulations for the current situation show that shipping emissions are the main contributor to ambient NO2 concentrations over the Baltic Sea. Shipping emissions are responsible for 40-70 % of the particulate nitrate concentrations during the summer months. Relative contribution of shipping emissions to monthly total nitrogen deposition, as a sum of oxidized and reduced nitrogen compounds, was highest in summer, with up to 60 % in the northern part of the Baltic Proper, while it was on average 10 % for other parts of the Baltic Sea. With the NECA in the Baltic Sea in effect from 2021, the reduction of reactive nitrogen concentrations and deposition in the Baltic Sea region compared to a scenario without Tier III regulations is significant.
Regulated and non-regulated emissions from in-use diesel-electric switching locomotives.
Sawant, Aniket A; Nigam, Abhilash; Miller, J Wayne; Johnson, Kent C; Cocker, David R
2007-09-01
Diesel-electric locomotives are vital to the operation of freight railroads in the United States, and emissions from this source category have generated interest in recent years. They are also gaining attention as an important emission source under the larger set of nonroad sources, both from a regulated emissions and health effects standpoint. The present work analyzes regulated (NOx, PM, THC, CO) and non-regulated emissions from three in-use diesel-electric switching locomotives using standardized sampling and analytical techniques. The engines tested in this work were from 1950, 1960, and 1970 and showed a range of NOx and PM emissions. In general, non-regulated gaseous emissions showed a sharp increase as engines shifted from non-idle to idle operating modes. This is interesting from an emissions perspective since activity data shows that these locomotives spend around 60% of their time idling. In terms of polycyclicaromatic hydrocarbon (PAH) contributions, the dominance of naphthalene and its derivatives over the total PAH emissions was apparent, similar to observations for on-road diesel tractors. Among nonnaphthalenic species, itwas observed that lower molecular weight PAHs and n-alkanes dominated their respective compound classes. Regulated emissions from a newer technology engine used in a back-up generator (BUG) application were also compared againstthe present engines; it was determined that use of the newer engine may lower NOx and PM emissions by up to 30%. Another area of interest to regulators is better estimation of the marine engine inventory for port operations. Toward that end, a comparison of emissions from these engines with engine manufacturer data and the newer technology BUG engine was also performed for a marine duty cycle, another application where these engines are used typically with little modifications.
MBE growth of highly reproducible VCSELs
NASA Astrophysics Data System (ADS)
Houng, Y. M.; Tan, M. R. T.
1997-05-01
Advances in the design of heterojunction devices have placed stringent demands on the epitaxial material technologies required to fabricate these structures. The increased demand for more stringent tolerance and complex device structures have resulted in a situation where acceptable growth yields will be realized only if epitaxial growth is directly monitored and controlled in real time. We report the growth of 980- and 850-nm vertical cavity surface emitting lasers (VCSEL's) by gas-source molecular beam epitaxy (GSMBE), in which the pyrometric interferometry technique is used for in situ monitoring and feedback control of layer thickness to obtain the highly reproducible distributed Bragg reflectors (DBR) for VCSEL structures. This technique uses an optical pyrometer to measure emissivity oscillations of the growing epi-layer surface. The growing layer thickness can then be related to the emissivity oscillation signals. When the layer reaches the desired thickness, the growth of the subsequent layer is initiated. By making layer thickness measurements and control in real-time throughout the entire growth cycle of the structure, the Fabry-Perot resonance at the desired wavelength is reproducibly obtained. The run-to-run variation of the Fabry-Perot wavelength of VCSEL structures is < ± 0.4%. Using this technique, the group III fluxes can also be calibrated and corrected for flux drifts, thus we are able to control the gain peak of the active region with a run-to-run variation of less than 0.3%. Surface emitting laser diodes were fabricated and operated CW at room temperature. CW threshold currents of 3 and 5 mA are measured at room temperature for 980- and 850-nm lasers, respectively. Output powers higher than 25 mW for 980-nm and 12 mW for 850-nm devices are obtained.
ATP-Induced IL-1β Specific Secretion: True Under Stringent Conditions.
Stoffels, Monique; Zaal, Ruben; Kok, Nina; van der Meer, Jos W M; Dinarello, Charles A; Simon, Anna
2015-01-01
Interleukin-1β is a potent proinflammatory cytokine, of which processing and secretion are tightly regulated. After exposure to various stimuli, mononuclear phagocytes synthesize the inactive precursor (pro-IL-1β), which is then cleaved intracellularly by caspase-1 and secreted. A widely used method for in vitro secretion of IL-1β employs LPS-primed human peripheral blood monocytes. Subsequently, adenosine triphosphate (ATP) is added to the cells in order to trigger the P2X7 receptor resulting in processing and secretion of mature IL-1β. However, it is often reported that secretion is due to cytotoxic effects of ATP with P2X7 receptor-activation-related cell death. We have challenged this concept and demonstrate IL-1β specific secretion, since there is no increase in cell death and IL-1α and IL-18 are not released in the same cultures. More importantly we show that these conclusions can only be drawn under stringent experimental conditions.
Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins.
Chavali, Sreenivas; Chavali, Pavithra L; Chalancon, Guilhem; de Groot, Natalia Sanchez; Gemayel, Rita; Latysheva, Natasha S; Ing-Simmons, Elizabeth; Verstrepen, Kevin J; Balaji, Santhanam; Babu, M Madan
2017-09-01
Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.
Wenderska, Iwona B; Latos, Andrew; Pruitt, Benjamin; Palmer, Sara; Spatafora, Grace; Senadheera, Dilani B; Cvitkovitch, Dennis G
2017-01-01
In the cariogenic Streptococcus mutans , competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans , DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans , XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a potential role in competence shutoff. Together, our results provide further evidence that multiple stress response mechanisms are linked through the genetic competence signaling pathway in S. mutans .
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Robert L; Fioroni, Gina; Fatouraie, Mohammad
Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulatemore » emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. Evans; Benjamin F. Hobbs; Craig Oren
2007-03-15
The Clean Air Act establishes New Source Review (NSR) programs that apply to the construction or modification of major stationary emissions sources. In 2002 and 2003, the U.S. Environmental Protection Agency revised its rules to narrow the applicability of NSR to facility renovations. Congress then mandated a National Research Council study of the effects of the rules. An electricity-sector model - the Integrated Planning Model (IPM) - was used to explore the possible effects of the equipment replacement provision (ERP), the principal NSR change that was to affect the power-generation industry. The studies focused in particular on coal-fired electricity generatingmore » units, EGUs, for two reasons. First, coal-fired EGUs are important contributors of these pollutants, accounting for approximately 70 and 20% of nations SO{sub 2} and NOx emissions in 2004, respectively. Second, the shares of total capacity of large coal-fired EGUs that lack flue-gas desulfurization to control SO{sub 2} and selective catalytic reduction to reduce NOx emissions are 62 and 63% respectively. Although the analysis cannot predict effects on local emissions, assuming that the Clean Air Interstate Rule (CAIR) is implemented, we find that stringent enforcement of the previous NSR rules would likely lead to no or limited decreases in national emissions compared to policies such as ERP. Our results indicate that tighter emissions caps could achieve further decreases in national emissions more cost-effectively than NSR programs. 15 refs., 3 figs., 1 tab.« less
High-resolution ammonia emissions inventories in Fujian, China, 2009-2015
NASA Astrophysics Data System (ADS)
Wu, Shui-Ping; Zhang, Yin-Ju; Schwab, James J.; Li, Yang-Fan; Liu, Yuan-Long; Yuan, Chung-Shin
2017-08-01
A high-resolution NH3 emission inventory was developed based on the corrected emission factors and county-level activity data. To provide model-ready emission input, the NH3 emission inventory was gridded for the modeling domain at 1 × 1 km resolution using source-based spatial surrogates and a GIS system. The best estimate of total NH3 emission for the province was 228.02 kt in 2015 with a percentage uncertainty of ±16.3%. Four major contributors were farmland ecosystem, livestock wastes, humans and waste treatment, which contributed 39.4%, 43.1%, 4.9%, and 4.2% of the total emissions, respectively. The averaged NH3 emission density for the whole region was 1.88 t km-2 yr-1 and the higher values were found in coastal areas with higher dense populations. The seasonal patterns, with higher emissions in summer, were consistent with the patterns of temperature and planting practices. From 2009 to 2015, annual NH3 emissions increased from 218.49 kt to 228.02 kt. All of these changes are insignificant compared to the estimated overall uncertainties in the analysis, but indicative of changes in the source categories over this period. Between 2009 and 2015, the largest changes occurred in human emissions and waste treatment plants, which were consistent with the process of rapid urbanization. Meanwhile, the decrease of emissions from pigs was slightly higher than the increased emissions from broilers and the increased emissions from meat goats and beef cattle due to the combine effects of increasingly stringent environmental requirements for pig farms and shift away from pork consumption to beef, chicken and mutton. The validity of the estimates was further evaluated using uncertainty analysis, comparison with previous studies, and correlation analysis between emission density and observed ground ammonia. The inventories reflect the changes in economic progress and environmental protection and can provide scientific basis for the establishment of effective PM2.5 control strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley; Beppler, Ross; Zinaman, Owen
Natural gas generation in the U.S. electricity sector has grown substantially in recent years, while the sector's carbon dioxide (CO2) emissions have generally declined. This relationship highlights the concept of natural gas as a potential enabler of a transition to a lower-carbon future. This work considers that concept by using the National Renewable Energy Laboratory (NREL) Renewable Energy Deployment System (ReEDS) model. ReEDS is a long-term capacity expansion model of the U.S. electricity sector. We examine the role of natural gas within the ReEDS modeling framework as increasingly strict carbon emission targets are imposed on the electricity sector. In additionmore » to various natural gas price futures, we also consider scenarios that emphasize a low-carbon technology in order to better understand the role of natural gas if that low-carbon technology shows particular promise. Specifically, we consider scenarios with high amounts of energy efficiency (EE), low nuclear power costs, low renewable energy (RE) costs, and low carbon capture and storage (CCS) costs. Within these scenarios we find that requiring the electricity sector to lower CO2 emissions over time increases near-to-mid-term (through 2030) natural gas generation (see Figure 1 - left). The long-term (2050) role of natural gas generation in the electricity sector is dependent on the level of CO2 emission reduction required. Moderate reductions in long-term CO2 emissions have relatively little impact on long-term natural gas generation, while more stringent CO2 emission limits lower long-term natural gas generation (see Figure 1 - right). More stringent carbon targets also impact other generating technologies, with the scenarios considered here seeing significant decreases in coal generation, and new capacity of nuclear and renewable energy technologies over time. Figure 1 also demonstrates the role of natural gas in the context of scenarios where a specific low-carbon technology is advantaged. In 2030, natural gas generation in the technology scenarios is quite similar to that in the reference scenarios, indicating relatively little change in the role of natural gas in the near-to-mid-term due to advancements in those technology areas. The 2050 natural gas generation shows more significant differences, suggesting that technology advancements will likely have substantial impacts on the role of natural gas in the longer-term timeframe. Natural gas generation differences are most strongly driven by alternative natural gas price trajectories--changes in natural gas generation in the Low NG Price and High NG Price scenarios are much larger than in any other scenario in both the 2030 and 2050 timeframes. The only low-carbon technology scenarios that showed any increase in long-term natural gas generation relative to the reference case were the Low CCS cost scenarios. Carbon capture and storage technology costs are currently high, but have the potential to allow fossil fuels to play a larger role in low-carbon grid. This work considers three CCS cost trajectories for natural gas and coal generators: a baseline trajectory and two lower cost trajectories where CO2 capture costs reach $40/metric ton and $10/metric ton, respectively. We find that in the context of the ReEDS model and with these assumed cost trajectories, CCS can increase the long-term natural gas generation under a low carbon target (see Figure 2). Under less stringent carbon targets we do not see ReEDS electing to use CCS as part of its electricity generating portfolio for the scenarios considered in this work.« less
Climate regulation enhances the value of second generation biofuel technology
NASA Astrophysics Data System (ADS)
Hertel, T. W.; Steinbuks, J.; Tyner, W.
2014-12-01
Commercial scale implementation of second generation (2G) biofuels has long been 'just over the horizon - perhaps a decade away'. However, with recent innovations, and higher oil prices, we appear to be on the verge of finally seeing commercial scale implementations of cellulosic to liquid fuel conversion technologies. Interest in this technology derives from many quarters. Environmentalists see this as a way of reducing our carbon footprint, however, absent a global market for carbon emissions, private firms will not factor this into their investment decisions. Those interested in poverty and nutrition see this as a channel for lessening the biofuels' impact on food prices. But what is 2G technology worth to society? How valuable are prospective improvements in this technology? And how are these valuations affected by future uncertainties, including climate regulation, climate change impacts, and energy prices? This paper addresses all of these questions. We employ FABLE, a dynamic optimization model for the world's land resources which characterizes the optimal long run path for protected natural lands, managed forests, crop and livestock land use, energy extraction and biofuels over the period 2005-2105. By running this model twice for each future state of the world - once with 2G biofuels technology available and once without - we measure the contribution of the technology to global welfare. Given the uncertainty in how these technologies are likely to evolve, we consider a range cost estimates - from optimistic to pessimistic. In addition to technological uncertainty, there is great uncertainty in the conditions characterizing our baseline for the 21st century. For each of the 2G technology scenarios, we therefore also consider a range of outcomes for key drivers of global land use, including: population, income, oil prices, climate change impacts and climate regulation. We find that the social valuation of 2G technologies depends critically on climate change regulations and future oil prices. In the base case with no climate policy and higher oil prices, the value of second generation biofuels is roughly $8 billion. With stringent climate change regulations in place, 2G biofuels are worth about fifty percent more.
Development and validation of spray models for investigating diesel engine combustion and emissions
NASA Astrophysics Data System (ADS)
Som, Sibendu
Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.
NASA Astrophysics Data System (ADS)
Yao, Zhiliang; Wu, Bobo; Wu, Yunong; Cao, Xinyue; Jiang, Xi
2015-12-01
To mitigate NOx and other emissions from diesel vehicles, China I, China II, China III and China IV emissions standards for new vehicles have been implemented nationwide. However, recent on-road measurements using a portable emission measurement system (PEMS) have revealed no significant reductions in the NOx emissions factors of diesel trucks due to the change from China II emissions standards to the more stringent China III standards. Thus, it is important to understand the effect of the China IV emissions standard on NOx emissions. In this study, nine China III and nine China IV diesel trucks of three sizes (light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs)) were tested on real roads in Beijing using a PEMS. Compared to the tested China III diesel trucks, the China IV diesel trucks showed significant reductions of the average NOx emissions factors in terms of both distance travelled and fuel consumption. However, the driving conditions had an important impact on the reduction. Under non-highway driving (NHD), several of the tested China IV diesel trucks experienced no reduction or an increase in NOx emissions compared to their China III counterparts. The NOx emissions factors of the 18 tested diesel trucks under NHD were on average 1.5-times greater than those under highway driving (HD), and the effects on NOx emissions removal from China III to China IV diesel trucks were greater under HD than under NHD. In addition, no significant reduction of NOx based on fuel consumption for China IV diesel trucks was observed for MDDTs and HDDTs compared to the test results for similar China II vehicles reported in a previous study. To reduce NOx emissions in China, additional control measures of vehicular NOx emissions should be formulated.
Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers
NASA Astrophysics Data System (ADS)
Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.
2015-12-01
There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.
Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers
NASA Astrophysics Data System (ADS)
Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.
2014-12-01
There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.
Environmental implications of carbon limits on market ...
Combined heat and power (CHP) is promoted as an economical, energy-efficient option for combating climate change. To fully examine the viability of CHP as a clean-technology solution, its market potential and impacts need to be analyzed as part of scenarios of the future energy system, particularly those with policies limiting greenhouse gas (GHG) emissions. This paper develops and analyzes scenarios using a bottom-up, technology rich optimization model of the U.S. energy system. Two distinct carbon reduction goals were set up for analysis. In Target 1, carbon emission reduction goals were only included for the electric sector. In Target 2, carbon emission reduction goals were set across the entire energy system with the target patterned after the U.S.’s commitment to reducing GHG emissions as part of the Paris Agreement reached at the COP21 summit. From a system-wide carbon reduction standpoint, Target 2 is significantly more stringent. In addition, these scenarios examine the implications of various CHP capacity expansion and contraction assumptions and energy prices. The largest CHP capacity expansion are observed in scenarios that included Target 1, but investments were scaled back in scenarios that incorporated Target 2. The latter scenario spurred rapid development of zero-emissions technologies within the electric sector, and purchased electricity increased dramatically in many end-use sectors. The results suggest that CHP may play a role in a carbon-c
The Implications of Deep Mitigation Pathways
NASA Astrophysics Data System (ADS)
Calvin, K. V.
2016-12-01
The 21st Conference of Parties to the UNFCCC agreement called for limiting climate change to "well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C." A climate target of 1.5°C places a stringent constraint on allowable emissions over the twenty-first century. Roegli et al. (2015) set that constraint at 200-415 GtCO2 between 2011 and 2100 for a likely chance of staying below 1.5°C in 2100. Limiting emissions to these levels requires that global emissions peak and decline over the coming decades, with net negative global emissions by mid-century. This level of decarbonization requires dramatic shifts in the energy and agricultural sectors, and comes at significant economic costs. This talk explores the effect of mitigating climate change to 1.5°C on the economy, energy system, and terrestrial system. We quantify the required deployment of various low carbon technologies, as well as the amount of existing capital that is abandoned in an effort to limit emissions. We show the shifts required in the terrestrial system, including its contribution to carbon sequestration through afforestation and bioenergy. Additionally, we show the implications of deep mitigation pathways on energy, food, and carbon prices. We contrast these results with a reference, no climate policy, world and a 2°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, A.W.
1990-04-01
This paper describes an approach to solve air quality problems which frequently occur during iterations of the baseline change process. From a schedule standpoint, it is desirable to perform this evaluation in as short a time as possible while budgetary pressures limit the size of the staff available to do the work. Without a method in place to deal with baseline change proposal requests the environment analysts may not be able to produce the analysis results in the time frame expected. Using a concept called the Rapid Response Air Quality Analysis System (RAAS), the problems of timing and cost becomemore » tractable. The system could be adapted to assess other atmospheric pathway impacts, e.g., acoustics or visibility. The air quality analysis system used to perform the EA analysis (EA) for the Salt Repository Project (part of the Civilian Radioactive Waste Management Program), and later to evaluate the consequences of proposed baseline changes, consists of three components: Emission source data files; Emission rates contained in spreadsheets; Impact assessment model codes. The spreadsheets contain user-written codes (macros) that calculate emission rates from (1) emission source data (e.g., numbers and locations of sources, detailed operating schedules, and source specifications including horsepower, load factor, and duty cycle); (2) emission factors such as those published by the U.S. Environmental Protection Agency, and (3) control efficiencies.« less
Avoiding Title V permitting pitfalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laswell, D.L.
1993-04-01
Title V of the 1990 Clean Air Act Amendments requires states to implement new air operating permit programs. States have a great deal of flexibility in developing their permit programs. Industry should work now to ensure that state programs contain the favorable aspects of the federal regulations and do not contain more stringent requirements that are not required under the Clean Air Act. This article outlines areas of the permit program that have the potential to handicap industry`s ability to expand.
Oral bioaccessibility testing and read-across hazard assessment of nickel compounds.
Henderson, Rayetta G; Cappellini, Danielle; Seilkop, Steven K; Bates, Hudson K; Oller, Adriana R
2012-06-01
In vitro metal ion bioaccessibility, as a measure of bioavailability, can be used to read-across toxicity information from data-rich, source substances to data-poor, target substances. To meet the data requirements for oral systemic toxicity endpoints under the REACH Regulation in Europe, 12 nickel substances underwent bioaccessibility testing in stomach and intestinal fluids. A read-across paradigm was developed based on the correlation between gastric bioaccessibility and in vivo acute oral toxicity. The oral LD₅₀ values were well predicted by nickel release (R² = 0.91). Samples releasing <48% available nickel (mgNi released/mg available Ni × 100) are predicted to have an LD₅₀ > 2000 mg/kg; while samples releasing > 76% available nickel are expected to have an LD₅₀ between 300 and 2000 mg/kg. The hazard classifications (European Regulation on Classification, Labelling and Packaging of Chemical Substances and Mixtures) for all oral systemic endpoints were evaluated based on read-across from three source nickel compounds (sulfate, subsulfide, oxide). Samples releasing < 48% available nickel were read-across from nickel oxides and subsulfide. Samples releasing > 76% Ni were read-across from nickel sulfate. This assessment suggests that nickel chloride and dihydroxide should be less stringently classified and nickel sulfamate should receive a more stringent classification for oral systemic endpoints than currently assigned. Copyright © 2012 Elsevier Inc. All rights reserved.
The Next Generation Heated Halo for Blackbody Emissivity Measurement
NASA Astrophysics Data System (ADS)
Gero, P.; Taylor, J. K.; Best, F. A.; Revercomb, H. E.; Knuteson, R. O.; Tobin, D. C.; Adler, D. P.; Ciganovich, N. N.; Dutcher, S. T.; Garcia, R. K.
2011-12-01
The accuracy of radiance measurements from space-based infrared spectrometers is contingent on the quality of the calibration subsystem, as well as knowledge of its uncertainty. Future climate benchmarking missions call for measurement uncertainties better than 0.1 K (k=3) in radiance temperature for the detection of spectral climate signatures. Blackbody cavities impart the most accurate calibration for spaceborne infrared sensors, provided that their temperature and emissivity is traceably determined on-orbit. The On-Orbit Absolute Radiance Standard (OARS) has been developed at the University of Wisconsin to meet the stringent requirements of the next generation of infrared remote sensing instruments. It provides on-orbit determination of both traceable temperature and emissivity for calibration blackbodies. The Heated Halo is the component of the OARS that provides a robust and compact method to measure the spectral emissivity of a blackbody in situ. A carefully baffled thermal source is placed in front of a blackbody in an infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. We present the results from the Heated Halo methodology implemented with a new Absolute Radiance Interferometer (ARI), which is a prototype space-based infrared spectrometer designed for climate benchmarking that was developed under the NASA Instrument Incubator Program (IIP). We compare our findings to models and other experimental methods of emissivity determination.
Acceleration of runaway electrons and Joule heating in solar flares
NASA Technical Reports Server (NTRS)
Holman, G. D.
1985-01-01
The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.
Acceleration of runaway electrons and Joule heating in solar flares
NASA Technical Reports Server (NTRS)
Holman, G. D.
1984-01-01
The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.
Uckun, Fatih M.; Ma, Hong; Zhang, Jian; Ozer, Zahide; Dovat, Sinisa; Mao, Cheney; Ishkhanian, Rita; Goodman, Patricia; Qazi, Sanjive
2012-01-01
Ikaros is a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis through transcriptional regulation of the earliest stages of lymphocyte ontogeny and differentiation. Functional deficiency of Ikaros has been implicated in the pathogenesis of acute lymphoblastic leukemia, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros activity is considered of paramount importance, but the operative molecular mechanisms responsible for its regulation remain largely unknown. Here we provide multifaceted genetic and biochemical evidence for a previously unknown function of spleen tyrosine kinase (SYK) as a partner and posttranslational regulator of Ikaros. We demonstrate that SYK phoshorylates Ikaros at unique C-terminal serine phosphorylation sites S358 and S361, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Mechanistically, we establish that SYK-induced Ikaros activation is essential for its nuclear localization and optimal transcription factor function. PMID:23071339
Hesterberg, Thomas W; Long, Christopher M; Bunn, William B; Lapin, Charles A; McClellan, Roger O; Valberg, Peter A
2012-06-01
The mutagenicity of organic solvent extracts from diesel exhaust particulate (DEP), first noted more than 55 years ago, initiated an avalanche of diesel exhaust (DE) health effects research that now totals more than 6000 published studies. Despite an extensive body of results, scientific debate continues regarding the nature of the lung cancer risk posed by inhalation of occupational and environmental DE, with much of the debate focused on DEP. Decades of scientific scrutiny and increasingly stringent regulation have resulted in major advances in diesel engine technologies. The changed particulate matter (PM) emissions in "New Technology Diesel Exhaust (NTDE)" from today's modern low-emission, advanced-technology on-road heavy-duty diesel engines now resemble the PM emissions in contemporary gasoline engine exhaust (GEE) and compressed natural gas engine exhaust more than those in the "traditional diesel exhaust" (TDE) characteristic of older diesel engines. Even with the continued publication of epidemiologic analyses of TDE-exposed populations, this database remains characterized by findings of small increased lung cancer risks and inconsistent evidence of exposure-response trends, both within occupational cohorts and across occupational groups considered to have markedly different exposures (e.g. truckers versus railroad shopworkers versus underground miners). The recently published National Institute for Occupational Safety and Health (NIOSH)-National Cancer Institute (NCI) epidemiologic studies of miners provide some of the strongest findings to date regarding a DE-lung cancer association, but some inconsistent exposure-response findings and possible effects of bias and exposure misclassification raise questions regarding their interpretation. Laboratory animal studies are negative for lung tumors in all species, except for rats under lifetime TDE-exposure conditions with durations and concentrations that lead to "lung overload." The species specificity of the rat lung response to overload, and its occurrence with other particle types, is now well-understood. It is thus generally accepted that the rat bioassay for inhaled particles under conditions of lung overload is not predictive of human lung cancer hazard. Overall, despite an abundance of epidemiologic and experimental data, there remain questions as to whether TDE exposure causes increased lung cancers in humans. An abundance of emissions characterization data, as well as preliminary toxicological data, support NTDE as being toxicologically distinct from TDE. Currently, neither epidemiologic data nor animal bioassay data yet exist that directly bear on NTDE carcinogenic potential. A chronic bioassay of NTDE currently in progress will provide data on whether NTDE poses a carcinogenic hazard, but based on the significant reductions in PM mass emissions and the major changes in PM composition, it has been hypothesized that NTDE has a low carcinogenic potential. When the International Agency for Research on Cancer (IARC) reevaluates DE (along with GEE and nitroarenes) in June 2012, it will be the first authoritative body to assess DE carcinogenic health hazards since the emergence of NTDE and the accumulation of data differentiating NTDE from TDE.
[Thermovalorization: new technologies, impacts and mitigation strategies].
Buffoli, M; Capolongo, S; Loconte, V L; Signorelli, C
2012-01-01
In recent decades the quantity (in weight and volume) of solid waste is grown so rapidly to become a real problem especially in densely urbanized areas. The disposal of Municipal Solid Waste by incineration with energy recovery (WtE) is recognized as the most suitable system to process non-recyclable waste. However in several countries there are still concerns from experts and local communities about the environmental impact of incinerators. Epidemiological studies, developed since the 80s, are still the subject of controversial discussion because the results of research often refer to old incinerators--built a few decades ago--and therefore more impactful. In fact inadequate levels of gas cleaning and combustion process control in these facilities tended to risk the health of plant workers and local environment. This situation furthermore contributes to increase public risk perception and the spread of the NIMBY (not in my backyard) syndrome while siting this unwanted but necessary facilities. Actually, new strategies as advances in emission control designs and very stringent new governmental regulations, have resulted in large reductions in the amount of emissions. So the first aim of this work has been to understand if these high perception of risk have a reason to exist also in modern and new municipal waste incinerators. The second aim is to discover if the law, the new technologies and the mitigation strategies can really set a limit on the negative impacts on human health and on environment and if is it possible to improve or increase these strategies. Work has been divided into two parts. The first part focuses on analysis of waste environmental impact regulations, of plant operation systems and of epidemiological studies results. The second part involves the examination of the actual use of regulatory instruments, the most advanced technologies and the strategies for mitigation in the most effective new concept incinerators plants. For this verification has been analyzed in detail some different incineration plants recently created or rehabilitated in the last decade. The case-studies showed that the preliminary evaluation tools and the constant control of the waste incinerator are very effective. Moreover the comparison between the maximum emission limits, the BAT and the analysis of the actual emission of the cases study has shown the effectiveness of the depuration systems currently used. The emissions are in fact much lower than these limits. By the comparison we also identified the most efficient strategies and the best policies to inform and to involve people. Success in siting an unwanted but needed facility requires that authorities fully involve the public with openness and integrity in all aspects of the planning process. Starting from these result and in order to exploit what is already effective, some proposals where outlined and aim to be the basis for further approaches to design waste disposal plants.
Hesterberg, Thomas W.; Long, Christopher M.; Bunn, William B.; Lapin, Charles A.; McClellan, Roger O.; Valberg, Peter A.
2012-01-01
The mutagenicity of organic solvent extracts from diesel exhaust particulate (DEP), first noted more than 55 years ago, initiated an avalanche of diesel exhaust (DE) health effects research that now totals more than 6000 published studies. Despite an extensive body of results, scientific debate continues regarding the nature of the lung cancer risk posed by inhalation of occupational and environmental DE, with much of the debate focused on DEP. Decades of scientific scrutiny and increasingly stringent regulation have resulted in major advances in diesel engine technologies. The changed particulate matter (PM) emissions in “New Technology Diesel Exhaust (NTDE)” from today's modern low-emission, advanced-technology on-road heavy-duty diesel engines now resemble the PM emissions in contemporary gasoline engine exhaust (GEE) and compressed natural gas engine exhaust more than those in the “traditional diesel exhaust” (TDE) characteristic of older diesel engines. Even with the continued publication of epidemiologic analyses of TDE-exposed populations, this database remains characterized by findings of small increased lung cancer risks and inconsistent evidence of exposure-response trends, both within occupational cohorts and across occupational groups considered to have markedly different exposures (e.g. truckers versus railroad shopworkers versus underground miners). The recently published National Institute for Occupational Safety and Health (NIOSH)-National Cancer Institute (NCI) epidemiologic studies of miners provide some of the strongest findings to date regarding a DE-lung cancer association, but some inconsistent exposure-response findings and possible effects of bias and exposure misclassification raise questions regarding their interpretation. Laboratory animal studies are negative for lung tumors in all species, except for rats under lifetime TDE-exposure conditions with durations and concentrations that lead to'lung overload."The species specificity of the rat lung response to overload, and its occurrence with other particle types, is now well-understood. It is thus generally accepted that the rat bioassay for inhaled particles under conditions of lung overload is not predictive of human lung cancer hazard. Overall, despite an abundance of epidemiologic and experimental data, there remain questions as to whether TDE exposure causes increased lung cancers in humans. An abundance of emissions characterization data, as well as preliminary toxicological data, support NTDE as being toxicologically distinct from TDE. Currently, neither epidemiologic data nor animal bioassay data yet exist that directly bear on NTDE carcinogenic potential. A chronic bioassay of NTDE currently in progress will provide data on whether NTDE poses a carcinogenic hazard, but based on the significant reductions in PM mass emissions and the major changes in PM composition, it has been hypothesized that NTDE has a low carcinogenic potential. When the International Agency for Research on Cancer (IARC) reevaluates DE (along with GEE and nitroarenes) in June 2012, it will be the first authoritative body to assess DE carcinogenic health hazards since the emergence of NTDE and the accumulation of data differentiating NTDE from TDE. PMID:22663144
How much do direct livestock emissions actually contribute to global warming?
Reisinger, Andy; Clark, Harry
2018-04-01
Agriculture directly contributes about 10%-12% of current global anthropogenic greenhouse gas emissions, mostly from livestock. However, such percentage estimates are based on global warming potentials (GWPs), which do not measure the actual warming caused by emissions and ignore the fact that methane does not accumulate in the atmosphere in the same way as CO 2 . Here, we employ a simple carbon cycle-climate model, historical estimates and future projections of livestock emissions to infer the fraction of actual warming that is attributable to direct livestock non-CO 2 emissions now and in future, and to CO 2 from pasture conversions, without relying on GWPs. We find that direct livestock non-CO 2 emissions caused about 19% of the total modelled warming of 0.81°C from all anthropogenic sources in 2010. CO 2 from pasture conversions contributed at least another 0.03°C, bringing the warming directly attributable to livestock to 23% of the total warming in 2010. The significance of direct livestock emissions to future warming depends strongly on global actions to reduce emissions from other sectors. Direct non-CO 2 livestock emissions would contribute only about 5% of the warming in 2100 if emissions from other sectors increase unabated, but could constitute as much as 18% (0.27°C) of the warming in 2100 if global CO 2 emissions from other sectors are reduced to near or below zero by 2100, consistent with the goal of limiting warming to well below 2°C. These estimates constitute a lower bound since indirect emissions linked to livestock feed production and supply chains were not included. Our estimates demonstrate that expanding the mitigation potential and realizing substantial reductions of direct livestock non-CO 2 emissions through demand and supply side measures can make an important contribution to achieve the stringent mitigation goals set out in the Paris Agreement, including by increasing the carbon budget consistent with the 1.5°C goal. © 2017 John Wiley & Sons Ltd.
Aircraft LTO emissions regulations and implementations at European airports
NASA Astrophysics Data System (ADS)
Yunos, Siti Nur Mariani Mohd; Ghafir, Mohammad Fahmi Abdul; Wahab, Abas Ab
2017-04-01
Aviation affects the environment via the emission of pollutants from aircraft, impacting human health and ecosystem. Impacts of aircraft operations at lower ground towards local air quality have been recognized. Consequently, various standards and regulations have been introduced to address the related emissions. This paper discussed both environmental regulations by focusing more on the implementations of LTO emissions charges, an incentive-based regulation introduced in Europe as an effort to fill the gap in addressing the environmental issues related to aviation.
Burgard, Daniel A; Provinsal, Melissa N
2009-12-01
A remote sensing device was used to obtain on-road and in-use gaseous emission measurements from three fleets of schools buses at two locations in Washington State. This paper reports each fleet's carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), and nitrogen dioxide (NO2) mean data. The fleets represent current emission retrofit technologies, such as diesel particulate filters and diesel oxidation catalysts, and a control fleet. This study shows that CO and HC emissions decrease with the use of either retrofit technology when compared with control buses of the same initial emission standards. The CO and HC emission reductions are consistent with published U.S. Environmental Protection Agency verified values. The total oxides of nitrogen (NOx), NO, and the NO2/NOx ratio all increase with each retrofit technology when compared with control buses. As was expected, the diesel particulate filters emitted significantly higher levels of NO2 than the control fleet because of the intentional conversion of NO to NO2 by these systems. Most prior research suggests that NOx emissions are unaffected by the retrofits; however, these previous studies have not included measurements from retrofit devices on-road and after nearly 5 yr of use. Two 2006 model-year buses were also measured. These vehicles did not have retrofit devices but were built to more stringent new engine standards. Reductions in HCs and NOx were observed for these 2006 vehicles in comparison to other non-retrofit earlier model-year vehicles.
Air Quality in Mexico City: Policies Implemented for its Improvement
NASA Astrophysics Data System (ADS)
Paramo, V.
2007-12-01
Ozone and suspended particles (PM) are two pollutants in the atmosphere of Mexico City Metropolitan Area (MCMA) that still exceed the recommended Mexican health standards. The other criteria pollutants very seldom exceed their corresponding standards. In 2006, the maximum ozone concentrations were above the health standard (0.11 ppm in 1 hour) during 59 percent of the days for an average of 2.2 hours and 130 points of the Air Quality Index (Índice Metropolitano de la Calidad del Aire - IMECA). In contrast, in 1991, 98 percent of the days exceeded the ozone health standard for an average of 6.6 hours and 200 IMECA points. With regards to PM10, in 2006, 80 percent of the sampled concentrations were below the health standard of 120 µg/m3 in 24 hours. However, the annual health standard of 50 µg/m3 is still exceeded. The air quality management in the MCMA is a difficult task due to several adverse factors. The main one is the large population that increased from nearly 15 million in 1992 to more than 18 million at present. As a result, the urban area grows in the adjoined municipalities of the State of Mexico. The vehicular fleet increases also to almost 4 million and the number of industrial facilities is at present 50,000. Consequently, the fuel consumption is very high. The daily energy consumption is estimated to be 44 million liters of equivalent of gasoline. Despite the fact that the air quality has improved in recent years, the related health standards are still exceeded and therefore it is necessary to continue applying the most cost-effective actions to improve the environment quality. Some actions that have contributed most to the reduction of pollutant emissions are the following: Continuous update of the inspection and maintenance program of the vehicular fleet; substitution of the catalytic converters at the end of their useful life; self-regulation of the diesel fleet; use of alternative fuels; update the No-Driving-Day program; establishment of more stringent emission levels of the gasoline fleet; update the detention of pollutant vehicles program; partial exemption of the inspection and maintenance program for cleaner and or highly efficient vehicles; substitution of 3,000 microbuses, 40,000 taxis and 1,200 buses; commissioning of the first Bus Rapid Transit system; implementation of a program for the emissions reduction for the 300 most polluted industrial facilities; and continuous update of the air quality environmental management programs. To continue improving the air quality in the MCMA, the environmental authorities will continue the implementation of the 2002-2010 Air Quality Improvement Program. In 2007 the Green Program was started, this includes those actions that have proven to be effective reduction of pollutant emissions and incorporates new actions for the reduction of local and global pollutant emissions. The most important of these new actions are: substitution of 9,500 microbuses; renewal of all the taxis fleet; commissioning of 10 Bus Rapid Transit lines; commissioning of Line 12 of the underground system; schedules and routes limitations to the cargo fleet; increase 5 percent the number of non-motorized trips (bicycling and walking); regulation of the private public transport passenger stops; requirement of private schools to provide school transport; regulation of non-occupied taxis in circulation; modifications to the circulation of 350 critical crossing points in the city; adoption of intelligent traffic lights systems; complete substitution of the local government vehicle's fleet; implement the inspection and maintenance of the cargo fleet; introduction of low- sulfur diesel, among other measures.
Understanding Emissions in East Asia - The KORUS 2015 Emissions Inventory
NASA Astrophysics Data System (ADS)
Woo, J. H.; Kim, Y.; Park, R.; Choi, Y.; Simpson, I. J.; Emmons, L. K.; Streets, D. G.
2017-12-01
The air quality over Northeast Asia have been deteriorated for decades due to high population and energy use in the region. Despite of more stringent air pollution control policies by the governments, air quality over the region seems not been improved as much - even worse sometimes. The needs of more scientific understanding of inter-relationship among emissions, transport, chemistry over the region are much higher to effectively protect public health and ecosystems. Two aircraft filed campaigns targeting year 2016, MAPS-Seoul and KORUS-AQ, have been organized to study the air quality of over Korea and East Asia relating to chemical evolution, emission inventories, trans-boundary contribution, and satellite application. We developed a new East-Asia emissions inventory, named KORUS2015, based on NIER/KU-CREATE (Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment), in support of the filed campaigns. For anthropogenic emissions, it has 54 fuel classes, 201 sub-sectors and 13 pollutants, including CO2, SO2, NOx, CO, NMVOC, NH3, PM10, and PM2.5. Since the KORUS2015 emissions framework was developed using the integrated climate and air quality assessment modeling framework (i.e. GAINS) and is fully connected with the comprehensive emission processing/modeling systems (i.e. SMOKE, KU-EPS, and MEGAN), it can be effectively used to support atmospheric field campaigns for science and policy. During the field campaigns, we are providing modeling emissions inventory to participating air quality models, such as CMAQ, WRF-Chem, CAMx, GEOS-Chem, MOZART, for forecasting and post-analysis modes. Based on initial assessment of those results, we are improving our emissions, such as VOC speciation, biogenic VOCs modeling. From the 2nditeration between emissions and modeling/measurement, further analysis results will be presented at the conference. Acknowledgements : This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program." This work was supported under the framework of national strategy project on fine particulate matters by Ministry of Science, ICT and Future Planning.
Constraining Microwave Emission from Extensive Air Showers via the MIDAS Experiment
NASA Astrophysics Data System (ADS)
Richardson, Matthew; Privitera, Paolo
2017-01-01
Ultra high energy cosmic rays (UHECRs) are accelerated by the most energetic processes in the universe. Upon entering Earth’s atmosphere they produce particle showers known as extensive air showers (EASs). Observatories like the Pierre Auger Observatory sample the particles and light produced by the EASs through large particle detector arrays or nitrogen fluorescence detectors to ascertain the fundamental properties of UHECRs. The large sample of high quality data provided by the Pierre Auger Observatory can be attributed to the hybrid technique which utilizes the two aforementioned techniques simultaneously; however, the limitation of only being able to observe nitrogen fluorescence from EASs on clear moonless nights yields a limited 10% duty cycle for the hybrid technique. One proposal for providing high quality data at increased statistics is the observation of isotropic microwave emission from EASs, as such emission would be observed with a 100% duty cycle. Measurements of microwave emission from laboratory air plasmas conducted by Gorham et al. (2008) produced promising results indicating that the microwave emission should be observable using inexpensive detectors. The Microwave Detection of Air Showers (MIDAS) experiment was built at the University of Chicago to characterize the isotropic microwave emission from EASs and has collected 359 days of observational data at the location of the Pierre Auger experiment. We have performed a time coincidence analysis between this data and data from Pierre Auger and we report a null result. This result places stringent limits on microwave emission from EASs and demonstrates that the laboratory measurements of Gorham et al. (2008) are not applicable to EASs, thus diminishing the feasibility of using isotropic microwave emission to detect EASs.
Gene-Editing: Interpretation of Current Law and Legal Policy.
Kim, Na-Kyoung
2017-09-01
With the development of the third-generation gene scissors, CRISPR-Cas9, concerns are being raised about ethical and social repercussions of the new gene-editing technology. In this situation, this article explores the legislation and interpretation of the positive laws in South Korea. The BioAct does not specify and regulate 'gene editing' itself. However, assuming that genetic editing is used in the process of research and treatment, we can look to the specific details of the regulations for research on humans as well as gene therapy research in order to see how genetic editing is regulated under the BioAct. BioAct differentiates the regulation between (born) humans and embryos etc. and the regulation differ entirely in the manner and scope. Moreover, due to the fact that gene therapy products are regarded as drugs, they fall under different regulations. The Korean Pharmacopoeia Act put stringent sanctions on clinical trials for gene therapy products and the official Notification "Approval and Examination Regulations for Biological Products, etc." by Food and Drug Safety Administration may be applied to gene editing for gene therapy purposes.
Testa, Francesco; Iraldo, Fabio; Frey, Marco
2011-09-01
There is a considerable debate on the effects of environmental regulation on competitive performance. Based on survey data, this paper analyzes the two main research questions, derived from literature, on the links between environmental regulation and competitiveness, by focusing on firms operating in the building and construction sector, i.e.: 1) whether environmental policy stringency affects the competitive performance of firms in the building and construction sector 2) and how a specific form of environmental regulation (direct regulation, economic instruments and soft instruments) affects this performance? By applying a regression analysis, we find that a more stringent environmental regulation, measured by inspection frequency, provides a positive impulse for increasing investments in advanced technological equipment and innovative products and on business performance. Moreover, a well-designed "direct regulation" appears to be the most effective policy instrument for prompting the positive impact of environmental policies on innovation and intangible performance while economic instruments do negatively affect business performance. Copyright © 2011 Elsevier Ltd. All rights reserved.
cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging
Bork, Nadja I.; Nikolaev, Viacheslav O.
2018-01-01
The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460
Air quality improvements and health benefits from China’s clean air action since 2013
NASA Astrophysics Data System (ADS)
Zheng, Yixuan; Xue, Tao; Zhang, Qiang; Geng, Guannan; Tong, Dan; Li, Xin; He, Kebin
2017-11-01
Aggressive emission control measures were taken by the Chinese government after the promulgation of the ‘Air Pollution Prevention and Control Action Plan’ in 2013. Here we evaluated the air quality and health benefits associated with this stringent policy during 2013-2015 by using surface PM2.5 concentrations estimated from a three-stage data fusion model and cause-specific integrated exposure-response functions. The population-weighted annual mean PM2.5 concentrations decreased by 21.5% over China during 2013-2015, reducing from 60.5 in 2013 to 47.5 μg m-3 in 2015. Subsequently, the national PM2.5-attributable mortality decreased from 1.22 million (95% CI: 1.05, 1.37) in 2013 to 1.10 million (95% CI: 0.95, 1.25) in 2015, which is a 9.1% reduction. The limited health benefits compared to air quality improvements are mainly due to the supralinear responses of mortality to PM2.5 over the high concentration end of the concentration-response functions. Our study affirms the effectiveness of China’s recent air quality policy; however, due to the nonlinear responses of mortality to PM2.5 variations, current policies should remain in place and more stringent measures should be implemented to protect public health.
Structural integrity and containment aspects of small gas turbine engines
NASA Astrophysics Data System (ADS)
Gupta, S. S.; Gomuc, R.
1994-03-01
Structural integrity of rotating components in gas turbine engines is very crucial since their failure implies high impact energy, which, if uncontained, could mean damage to aircraft structures, controls, and so forth, and, in the worst scenario, even loss of lives. This final consequence has led to very stringent airworthiness regulations for engine/aircraft certifications. This paper discusses the historical statistics of noncontainment events in turbofans, turboprops, and turboshafts and shows how the damage severity varies between different applications and how changes to regulations are continuing in order to improve the reliability of aircraft/rotorcraft. The paper also presents design challenges resulting from the analysis complexity of containment/noncontainment event and the way Pratt & Whitney Canada design/analysis/test system caters to all the requirements. The weight and cost impact of possible changes to current regulations are also presented.
NASA Astrophysics Data System (ADS)
Botyánszki, János; Kasen, Daniel; Plewa, Tomasz
2018-01-01
The classic single-degenerate model for the progenitors of Type Ia supernova (SN Ia) predicts that the supernova ejecta should be enriched with solar-like abundance material stripped from the companion star. Spectroscopic observations of normal SNe Ia at late times, however, have not resulted in definite detection of hydrogen. In this Letter, we study line formation in SNe Ia at nebular times using non-LTE spectral modeling. We present, for the first time, multidimensional radiative transfer calculations of SNe Ia with stripped material mixed in the ejecta core, based on hydrodynamical simulations of ejecta–companion interaction. We find that interaction models with main-sequence companions produce significant Hα emission at late times, ruling out these types of binaries being viable progenitors of SNe Ia. We also predict significant He I line emission at optical and near-infrared wavelengths for both hydrogen-rich or helium-rich material, providing an additional observational probe of stripped ejecta. We produce models with reduced stripped masses and find a more stringent mass limit of M st ≲ 1 × 10‑4 M ⊙ of stripped companion material for SN 2011fe.
Unregulated pollutant emissions from on-road vehicles in China, 1999-2014.
Lang, Jianlei; Zhou, Ying; Cheng, Shuiyuan; Zhang, Yanyun; Dong, Meng; Li, Shengyue; Wang, Gang; Zhang, Yonglin
2016-12-15
Multi-year (1999-2014) vehicular unregulated pollutants emissions in China, including SO 2 , CH 4 , N 2 O, NH 3 , Indeno(1,2,3-cd)pyrene (IPY), Benzo(k)fluoranthene (BkF), Benzo(b)fluoranthene (BbF), Benzo(a)pyrene (BaP), dioxins and furans, were estimated based on emission factors calculated by COPERT. The inter-annual trends, correlation with GDP and population, spatial distribution characteristics, contributions from various vehicle types for the ten pollutants emissions were analyzed. Results showed that the emissions of the above ten pollutants changed from approximately 576.9Gg, 130.0Gg, 8.1Gg, 2.1Gg, 1.0Mg, 1.1Mg, 1.4Mg, 0.5Mg, 7.4g and 15.6g in 1999 to 193.8Gg, 171.1Gg, 79.1Gg, 117.8Gg, 3.5Mg, 6.7Mg, 6.8Mg, 2.9Mg, 37.6g and 79.1g in 2014, respectively. Implementation of stringent sulfur content limit during the past decade reduced approximately 94.4% of the SO 2 emission in 2014. CH 4 and N 2 O increased from 1999 to 2011, but began to decrease since 2012; NH 3 emission had the highest annual average change rate (35.5%) from 1999 to 2014; PAHs, dioxins and furans increased continuously during the past decade. The vehicular emissions were higher in Guangdong, Shandong, Henan, Jiangsu, Zhejiang and Hebei. Good linear correlation between vehicular emissions and GDP was found (except SO 2 ); in the provinces/municipalities with higher population density, the emission density was also larger, indicating more significant vehicular emissions' potential damage on human health. HDT and PC, PC and MC, PC and BUS were the major contributors to SO 2 , CH 4 , N 2 O emissions, respectively. In 2014, PC was the dominant contributor to NH 3 emission; PC, BUS and HDT had higher fraction in the total IPY and BaP emissions; HDT was the major contributor to BkF and BbF emissions. In addition, the uncertainties of estimated emissions were also analyzed based on Monte Carlo simulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Double-beta decay with majoron emission in GERDA Phase I
NASA Astrophysics Data System (ADS)
Hemmer, Sabine
2015-07-01
Neutrinoless double-beta decay with emission of one or two majorons (0 νββχ( χ)) is predicted by several beyond-Standard-Model theories. This article reviews the results of a search for 0 νββχ( χ) of 76Ge using data from the Germanium Detector Array (GERDA) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The analysis comprised data with an exposure of 20.3 kg·yr from the first phase of the experiment. No indication of contributions to the observed energy spectra was detected for any of the majoron models. The lower limit on the half-life for the ordinary majoron model (spectral index n = 1 was determined to be T {1/2/0 νβ } > 4.2 · 1023 yr (90% quantile). This limit and the limits derived for the other majoron modes constitute the most stringent limits on 0 νββχ( χ) decay of 76Ge measured to date.
Trapped between two tails: trading off scientific uncertainties via climate targets
NASA Astrophysics Data System (ADS)
Lemoine, Derek; McJeon, Haewon C.
2013-09-01
Climate change policies must trade off uncertainties about future warming, about the social and ecological impacts of warming, and about the cost of reducing greenhouse gas emissions. We show that laxer carbon targets produce broader distributions for climate damages, skewed towards severe outcomes. However, if potential low-carbon technologies fill overlapping niches, then more stringent carbon targets produce broader distributions for the cost of reducing emissions, skewed towards high-cost outcomes. We use the technology-rich GCAM integrated assessment model to assess the robustness of 450 and 500 ppm carbon targets to each uncertain factor. The 500 ppm target provides net benefits across a broad range of futures. The 450 ppm target provides net benefits only when impacts are greater than conventionally assumed, when multiple technological breakthroughs lower the cost of abatement, or when evaluated with a low discount rate. Policy evaluations are more sensitive to uncertainty about abatement technology and impacts than to uncertainty about warming.
Trapped Between Two Tails: Trading Off Scientific Uncertainties via Climate Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemoine, Derek M.; McJeon, Haewon C.
2013-08-20
Climate change policies must trade off uncertainties about future warming, about the social and ecological impacts of warming, and about the cost of reducing greenhouse gas emissions. We show that laxer carbon targets produce broader distributions for climate damages, skewed towards severe outcomes. However, if potential low-carbon technologies fill overlapping niches, then more stringent carbon targets produce broader distributions for the cost of reducing emissions, skewed towards high-cost outcomes. We use the technology- rich GCAM integrated assessment model to assess the robustness of 450 ppm and 500 ppm carbon targets to each uncertain factor. The 500 ppm target provides netmore » benefits across a broad range of futures. The 450 ppm target provides net benefits only when impacts are greater than conventionally assumed, when multiple technological breakthroughs lower the cost of abatement, or when evaluated with a low discount rate. Policy evaluations are more sensitive to uncertainty about abatement technology and impacts than to uncertainty about warming.« less
Spatially-Dependent Modelling of Pulsar Wind Nebula G0.9+0.1
NASA Astrophysics Data System (ADS)
van Rensburg, C.; Krüger, P. P.; Venter, C.
2018-03-01
We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multi-zone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially-dependent B-field, spatially-dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.
On the Neutrino Non-detection of GRB 130427A
NASA Astrophysics Data System (ADS)
Gao, Shan; Kashiyama, Kazumi; Mészáros, Peter
2013-07-01
The recent gamma-ray burst GRB 130427A has an isotropic electromagnetic energy E iso ~ 1054 erg, suggesting an ample supply of target photons for photo-hadronic interactions, which at its low redshift of z ~ 0.34 would appear to make it a promising candidate for neutrino detection. However, the IceCube collaboration has reported a null result based on a search during the prompt emission phase. We show that this neutrino non-detection can provide valuable information about this gamma-ray burst's (GRB's) key physical parameters such as the emission radius Rd , the bulk Lorentz factor Γ, and the energy fraction converted into cosmic rays epsilon p . The results are discussed both in a model-independent way and in the specific scenarios of an internal shock (IS) model, a baryonic photospheric (BPH) model, and a magnetic photospheric (MPH) model. We find that the constraints are most stringent for the MPH model considered, but the constraints on the IS and the BPH models are fairly modest.
Spatially dependent modelling of pulsar wind nebula G0.9+0.1
NASA Astrophysics Data System (ADS)
van Rensburg, C.; Krüger, P. P.; Venter, C.
2018-07-01
We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multizone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially dependent B-field, spatially dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.
The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood
Hooven, Thomas A.; Catomeris, Andrew J.; Bonakdar, Maryam; Tallon, Luke J.; Santana-Cruz, Ivette; Ott, Sandra; Daugherty, Sean C.; Tettelin, Hervé
2017-01-01
ABSTRACT Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent. PMID:29109175
Future automotive materials: Evolution or revolution
NASA Technical Reports Server (NTRS)
Beardmore, P.
1990-01-01
An exciting era is evolving in the application of new materials technologies to automotive applications. The desire on the part of the automobile industry to completely satisfy the customers while concurrently meeting increasing demands and regulations for stringent emission control and fuel efficiency is opening a plethora of opportunities for new materials. In many cases, materials solutions are the only mechanisms for resolving some of the upcoming issues. The materials scientist and engineer will therefore have a primary role to play and will assume a position of significance hithertofore unseen in the automobile industry. The nature of the industry dictates that changes are primarily evolutionary with respect to chronology but nevertheless some of the future material changes will be revolutionary in nature. This presentation will treat three primary systems of the vehicle separately, based on the different materials approaches which will be adopted. These areas are: (1) skin panels, (2) structures, and (3) powertrains. The competition between a variety of new materials in these 3 systems will be discussed in detail with the various tradeoffs being outlined. Amongst the more prominent of the new breed of materials will be new steel technologies, structural plastics (FRP), aluminum alloys (conventional and rapidly solidified), titanium alloys, metal matrix composites and smart materials (electrorheological fluids, etc.). The pace of development and application is accelerating rapidly and the impetus is likely to increase.
MAP Propulsion System Thermal Design
NASA Technical Reports Server (NTRS)
Mosier, Carol L.
2003-01-01
The propulsion system of the Microwave Anisotropy Probe (MAP) had stringent requirements that made the thermal design unique. To meet instrument stability requirements the system had to be designed to keep temperatures of all components within acceptable limits without heater cycling. Although the spacecraft remains at a fixed 22 sun angle at L2, the variations in solar constant, property degradation, and bus voltage range all significantly affect the temperature. Large portions of the fuel lines are external to the structure and all components are mounted to non-conductive composite structure. These two facts made the sensitivity to the MLI effective emissivity and bus temperature very high. Approximately two years prior to launch the propulsion system was redesigned to meet MAP requirements. The new design utilized hardware that was already installed in order to meet schedule constraints. The spacecraft design and the thermal requirements were changed to compensate for inadequacies of the existing hardware. The propulsion system consists of fuel lines, fill and drain lines/valve, eight thrusters, a HXCM, and a propulsion tank. A voltage regulator was added to keep critical components within limits. Software was developed to control the operational heaters. Trim resistors were put in series with each operational heater circuits and the tank survival heater. A highly sophisticated test program, which included real time model correlation, was developed to determine trim resistors sizes. These trim resistors were installed during a chamber break and verified during thermal balance testing.
NASA Astrophysics Data System (ADS)
Luján, José M.; Bermúdez, Vicente; Dolz, Vicente; Monsalve-Serrano, Javier
2018-02-01
Recent investigations demonstrated that real-world emissions usually exceed the levels achieved in the laboratory based type approval processes. By means of on-board emissions measurements, it has been shown that nitrogen oxides emitted by diesel engines substantially exceed the limit imposed by the Euro 6 regulation. Thus, with the aim of complementing the worldwide harmonized light vehicles test cycle, the real driving emissions cycle will be introduced after 1 September 2017 to regulate the vehicle emissions in real-world driving situations. This paper presents on-board gaseous emissions measurements from a Euro 6 light-duty diesel vehicle in a real-world driving route using a portable emissions measurement system. The test route characteristics follow the requirements imposed by the RDE regulation. The analysis of the raw emissions results suggests that the greatest amount of nitrogen oxides and nitrogen dioxide are emitted during the urban section of the test route, confirming that lower speeds with more accelerations and decelerations lead to higher nitrogen oxides emissions levels than constant high speeds. Moreover, the comparison of the two calculation methods proposed by the real driving emissions regulation has revealed emissions rates differences ranging from 10% to 45% depending on the pollutant emission and the trip section considered (urban or total). Thus, the nitrogen oxides emissions conformity factor slightly varies from one method to the other.
The Heated Halo for Space-Based Blackbody Emissivity Measurement
NASA Astrophysics Data System (ADS)
Gero, P.; Taylor, J. K.; Best, F. A.; Revercomb, H. E.; Garcia, R. K.; Adler, D. P.; Ciganovich, N. N.; Knuteson, R. O.; Tobin, D. C.
2012-12-01
The accuracy of radiance measurements with space-based infrared spectrometers is contingent on the quality of the calibration subsystem, as well as knowledge of its uncertainty. Upcoming climate benchmark missions call for measurement uncertainties better than 0.1 K (k=3) in radiance temperature for the detection of spectral climate signatures. Blackbody cavities impart the most accurate calibration for spaceborne infrared sensors, provided that their temperature and emissivity is traceably determined on-orbit. The On-Orbit Absolute Radiance Standard (OARS) has been developed at the University of Wisconsin and has undergone further refinement under the NASA Instrument Incubator Program (IIP) to meet the stringent requirements of the next generation of infrared remote sensing instruments. It provides on-orbit determination of both traceable temperature and emissivity for calibration blackbodies. The Heated Halo is the component of the OARS that provides a robust and compact method to measure the spectral emissivity of a blackbody in situ. A carefully baffled thermal source is placed in front of a blackbody in an infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. We present the results from the Heated Halo methodology implemented with a new Absolute Radiance Interferometer (ARI), which is a prototype space-based infrared spectrometer designed for climate benchmarking. We show the evolution of the technical readiness level of this technology and we compare our findings to models and other experimental methods of emissivity determination.
NASA Astrophysics Data System (ADS)
Tong, D.; Zhang, Q.
2017-12-01
As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous construction of new coal-fired power plants driven by increased electricity demand would pose a potential threat to climate change mitigation and China's peak carbon pledge, and more aggressive CO2 emission reduction policy should be implemented in the future.
The challenge to NOx emission control for heavy-duty diesel vehicles in China
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.
2012-07-01
China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km -1) nor brake-specific (g kW h-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km-1, 12.5± 1.3 g km-1, and 11.8±2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet in the future.
The challenge to NOx emission control for heavy-duty diesel vehicles in China
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.
2012-10-01
China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g km-1, and 11.8 ± 2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV fleet in the future.
Air toxics provisions of the Clean Air Act: Potential impacts on energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hootman, H.A.; Vernet, J.E.
1991-11-01
This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less
Air toxics provisions of the Clean Air Act: Potential impacts on energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hootman, H.A.; Vernet, J.E.
1991-11-01
This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less
Strong binary pulsar constraints on Lorentz violation in gravity.
Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico
2014-04-25
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
X-raying a galactic gravitational lense
NASA Astrophysics Data System (ADS)
Garmire, Gordon
2016-09-01
It can be very difficult to detect compact objects that are not accreting in binary systems. Therefore we know very little about such objects and likely would not notice them even if they are very nearby. Two most obvious examples are very old isolated neutron stars (those that may be beyond the death line and hence are lacking pulsed radio or gamma-ray emission) and isolated stellar-mass black holes (none have been identified so far). OGLE3-ULENSPAR-05 is one of the few massive objects identified in microlensing searches for dark massive objects by the OGLE collaboration. We propose to detect the source or set stringent limit on its X-ray luminosity.
The urgency of the development of CO2 capture from ambient air
Lackner, Klaus S.; Brennan, Sarah; Matter, Jürg M.; Park, A.-H. Alissa; Wright, Allen; van der Zwaan, Bob
2012-01-01
CO2 capture and storage (CCS) has the potential to develop into an important tool to address climate change. Given society’s present reliance on fossil fuels, widespread adoption of CCS appears indispensable for meeting stringent climate targets. We argue that for conventional CCS to become a successful climate mitigation technology—which by necessity has to operate on a large scale—it may need to be complemented with air capture, removing CO2 directly from the atmosphere. Air capture of CO2 could act as insurance against CO2 leaking from storage and furthermore may provide an option for dealing with emissions from mobile dispersed sources such as automobiles and airplanes. PMID:22843674
Permit Regulations for the Construction and/or Operation of Air Emissions Equipment involved in ambient air quality standards & regulations in MS + where to obtain copies of referenced federal regulations
Abraham, Adane
2013-01-01
On September 9, 2009, Ethiopia enacted a highly restrictive biosafety law firmly based on precautionary principles as a foundation for its GMO regulation system. Its drafting process, led by the country's Environmental Protection Authority, was judged as biased, focusing only on protecting the environment from perceived risks, giving little attention to potential benefits of GMOs. Many of its provisions are very stringent, exceeding those of Cartagena Protocol on Biosafety, while others cannot be fulfilled by applicants, collectively rendering the emerged biosafety system unworkable. These provisions include requirements for advance informed agreement and rigorous socioeconomic assessment in risk evaluation for all GMO transactions, including contained research use-which requires the head of the competent national authority of the exporting country to take full responsibility for GMO-related information provided-and stringent labeling, insurance and monitoring requirements for all GMO activities. Furthermore, there is no provision to establish an independent national biosafety decision-making body(ies). As a result, foreign technology owners that provide highly demanded technologies like Bt cotton declined to work with Ethiopia. There is a fear that the emerged biosafety system might also continue to suppress domestic genetic engineering research and development. Thus, to benefit from GMOs, Ethiopia has to revise its biosafety system, primarily by making changes to some provisions of the law in a way that balances its diverse interests of conserving biodiversity, protecting the environment and enhancing competition in agricultural and other economic sectors.
Kazmierczak, Krystyna M.; Wayne, Kyle J.; Rechtsteiner, Andreas; Winkler, Malcolm E.
2009-01-01
Summary RelA/ SpoT homolog (RSH) proteins have (p)ppGpp synthetase and hydrolase activities that mediate major global responses to nutrient limitation and other stresses. RSH proteins are conserved in most bacteria and play diverse roles in bacterial pathogenesis. We report here that the RSH protein of S. pneumoniae, RelSpn, can be deleted and is the primary source of (p)ppGpp synthesis in virulent strain D39 under some conditions. A D39 ΔrelSpn mutant grew well in complex medium, but did not grow in chemically defined medium unless supplemented with the metals copper and manganese. Transcriptome analysis of D39 rel+Spn and ΔreSpn strains treated with mupirocin revealed relSpn-independent (translation stress), relSpn-dependent (stringent response), and ΔrelSpn-dependent changes suggesting that relSpn and (p)ppGpp amount play wide-ranging homeostatic roles in pneumococcal physiology, besides adjusting macromolecular synthesis and transport in response to nutrient availability. Notably, the relSpn-dependent response included significant up-regulation of the ply operon encoding pneumolysin toxin, whereas the ΔrelSpn-dependent response affected expression linked to the VicRK and CiaRH two component systems. Finally, a D39 ΔrelSpn mutant was severely attenuated and displayed a significantly altered course of disease progression in a mouse model of infection, which was restored to normal by an ectopic copy of rel+Spn. PMID:19426208
Climate change mitigation through livestock system transitions.
Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C; Mosnier, Aline; Thornton, Philip K; Böttcher, Hannes; Conant, Richard T; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An
2014-03-11
Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y(-1). Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient--measured in "total abatement calorie cost"--than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.
NASA Astrophysics Data System (ADS)
Huang, Qian; Wang, Tijian; Chen, Pulong; Huang, Xiaoxian; Zhu, Jialei; Zhuang, Bingliang
2017-11-01
As the holding city of the 2nd Youth Olympic Games (YOG), Nanjing is highly industrialized and urbanized, and faces several air pollution issues. In order to ensure better air quality during the event, the local government took great efforts to control the emissions from pollutant sources. However, air quality can still be affected by synoptic weather, not only emission. In this paper, the influences of meteorological factors and emission reductions were investigated using observational data and numerical simulations with WRF-CMAQ (Weather Research and Forecasting - Community Multiscale Air Quality). During the month in which the YOG were held (August 2014), the observed hourly mean concentrations of SO2, NO2, PM10, PM2.5, CO and O3 were 11.6 µg m-3, 34.0 µg m-3, 57.8 µg m-3, 39.4 µg m-3, 0.9 mg m-3 and 38.8 µg m-3, respectively, which were below China National Ambient Air Quality Standard (level 2). However, model simulation showed that the weather conditions, such as weaker winds during the YOG, were adverse for better air quality and could increase SO2, NO2, PM10, PM2.5 and CO by 17.5, 16.9, 18.5, 18.8, 7.8 and 0.8 %. Taking account of local emission abatement only, the simulated SO2, NO2, PM10, PM2.5 and CO decreased by 24.6, 12.1, 15.1, 8.1 and 7.2 %. Consequently, stringent emission control measures can reduce the concentrations of air pollutants in the short term, and emission reduction is very important for air quality improvement during the YOG. A good example has been set for air quality protection for important social events.
Climate change mitigation through livestock system transitions
Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An
2014-01-01
Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375
Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J
2016-03-01
The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations.
NASA Astrophysics Data System (ADS)
Bigi, Alessandro; Ghermandi, Grazia
2017-04-01
The Po Valley is one of the largest European regions with a remarkably high concentration level of atmospheric pollutants, both for particulate and gaseous compounds. In the last decade stringent regulations on air quality standards and on anthropogenic emissions have been set by the European Commission, leading to an overall improvement in air quality across Europe. In order to assess the decadal pattern and variability in PM across the Po valley we thoroughly investigated the time series of PM10, PM2.5 and PM10-2.5 from 41, 44 and 15 sites respectively (Bigi & Ghermandi 2014, 2016). PM2.5 and PM10-2.5 (PM10) series with a 7 (10) year or longer record have been analysed for long term trend in deseasonalized monthly means, annual quantiles and in monthly frequency distribution by robust statistical methods. A widespread and significant decreasing trend was observed at several sites for all size fractions, with the drop, up to a few percent per year, occurring mainly in winter for PM2.5 and throughout the year for PM10. All series were tested for a significant weekly periodicity (a proxy to estimate the impact of primary anthropogenic emissions) by 3 different statistical methods, yielding positive results for summer PM2.5 and PM10, and for both summer and winter PM10-2.5. Hierarchical cluster analysis showed larger variability for PM10 than for PM2.5. The former was split in five clusters: two encompassing the metropolitan areas of Turin and Milan and their respective nearby sites and the other three clusters gathering northeast, northwest and central Po Valley sites respectively. PM2.5 clusters divide the valley in western, eastern and southern/Apennines foothill sectors. The trend in atmospheric concentration was compared with the time series of local primary and precursor emissions, vehicular fleet details and fuel sales. A significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to primary emissions of PM10 and PM2.5, whose drop was low and spatially restricted. Overall the decrease in atmospheric PM2.5 and PM10 seems to originate from a drop in both primary emissions and in precursors of secondary inorganic aerosol emissions, largely ascribed to vehicular traffic. Potentially, the recent increase in biomass burning emissions in winter and the modest decrease in NH3 weaken an otherwise even larger drop in atmospheric concentrations. References Bigi, A. & Ghermandi, G. Long-term trend and variability of atmospheric PM10 concentration in the Po Valley Atmospheric Chemistry and Physics, 2014, 14, 4895-4907 Bigi, A. & Ghermandi, G. Trends and variability of atmospheric PM2.5 and PM10-2.5 concentration in the Po Valley, Italy Atmospheric Chemistry and Physics, 2016, 16, 15777-15788
Evaluation of co-benefits from combined climate change and air pollution reduction strategies
NASA Astrophysics Data System (ADS)
Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa
2014-05-01
The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined climate and air pollution strategies assessed. The TM5-FASST tool allows for a fast screening of emission scenario variants and the resulting impacts can be investigated by source country, source sector level or by precursor. Developed at JRC, this model is a linearized version derived from the full chemical transport model TM5-CTM, taking as input pollutants emissions from 56 source regions with global coverage. The resulting pollutant concentrations are determined and their associated effect on human health (from PM2.5 and O3), the yield loss of damaged crops (from O3), and CO2eq of short lived climate forcers are quantified. The analysis of the LIMITS scenarios allows for impact assessment of alternate air pollution control assumptions on pollutant emission trajectories out to 2030 and 2050. The results show that stringent climate policies provide a significant air quality benefit compared to current legislation air quality policy. The identified benefits and trade-offs provide a strong incentive for the implementation of combined national policy focusing both on climate change and air pollution.
Orphan Toxin OrtT (YdcX) of Escherichia coli Reduces Growth during the Stringent Response
2015-01-29
antimicrobials trimethoprim and sulfamethoxazole; these antimicrobials induce the stringent response by inhibiting tetrahydrofolate synthesis...in the presence of both antimicrobials trimethoprim and sulfamethoxazole; these antimicrobials induce the stringent response by inhibiting...level [20]. Toxins 2015, 7 301 Despite these difficulties in determining physiological roles, TA systems are clearly phage inhibition systems
Air Emission Regulations for the Prevention, Abatement and Control of Air Contaminents for areas involved in ambient air quality standards & regulations in MS + where to obtain copies of referenced federal regulations
Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock.
Zeng, Lanting; Wang, Xiaoqin; Kang, Ming; Dong, Fang; Yang, Ziyin
2017-11-13
Like other organisms, plants have endogenous biological clocks that enable them to organize their metabolic, physiological, and developmental processes. The representative biological clock is the circadian system that regulates daily (24-h) rhythms. Circadian-regulated changes in growth have been observed in numerous plants. Evidence from many recent studies indicates that the circadian clock regulates a multitude of factors that affect plant metabolites, especially emitted volatiles that have important ecological functions. Here, we review recent progress in research on plant volatiles showing rhythmic emission under the regulation of the circadian clock, and on how the circadian clock controls the rhythmic emission of plant volatiles. We also discuss the potential impact of other factors on the circadian rhythmic emission of plant volatiles.
Kavvada, Olga; Tarpeh, William A; Horvath, Arpad; Nelson, Kara L
2017-11-07
Nitrogen standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, requiring some treatment plants to reduce effluent nitrogen concentrations. This study aimed to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion exchange of source-separated urine. We modeled an approach in which nitrogen from urine at individual buildings is sorbed onto resins, then transported by truck to regeneration and fertilizer production facilities. To provide insight into impacts from transportation, we enhanced the traditional economic and environmental assessment approach by combining spatial analysis, system-scale evaluation, and detailed last-mile logistics modeling using the city of San Francisco as an illustrative case study. The major contributor to energy intensity and greenhouse gas (GHG) emissions was the production of sulfuric acid to regenerate resins, rather than transportation. Energy and GHG emissions were not significantly sensitive to the number of regeneration facilities. Cost, however, increased with decentralization as rental costs per unit area are higher for smaller areas. The metrics assessed (unit energy, GHG emissions, and cost) were not significantly influenced by facility location in this high-density urban area. We determined that this decentralized approach has lower cost, unit energy, and GHG emissions than centralized nitrogen management via nitrification-denitrification if fertilizer production offsets are taken into account.
Air Quality and Health Benefits of China's Recent Stringent Environmental Policy
NASA Astrophysics Data System (ADS)
Zheng, Y.; Xue, T.; Zhang, Q.; Geng, G.; He, K.
2016-12-01
Aggressive emission control measures were taken by China's central and local governments after the promulgation of the "Air Pollution Prevention and Control Action Plan" in 2013. We evaluated the air quality and health benefits of this ever most stringent air pollution control policy during 2013-2015 by utilizing a two-stage data fusion model and newly-developed cause-specific integrated exposure-response functions (IER) developed for the Global Burden of Disease (GBD). The two-stage data fusion model predicts spatiotemporal continuous PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) concentrations by integrating satellite-derived aerosol optical depth (AOD) measurements, PM2.5 concentrations from measurement and air quality model, and other ancillary information. During the years of analysis, PM2.5 concentration dropped significantly on national average and over heavily polluted regions as identified by Mann-Kendall analysis. The national PM2.5-attributable mortality decreased by 72.8 (95% CI: 59.4, 85.2) thousand (6%) from 1.23 (95% CI: 1.06, 1.39) million in 2013 to 1.15 (95% CI: 0.98, 1.31) million in 2015 due to considerable reduction (i.e. 18%) of population-weighted PM2.5 from 61.4 to 50.5 µg/m3. Meteorological variations between 2013 and 2015 were estimated to raise the PM2.5 levels by 0.24 µg/m3 and national mortality by 2.1 (95% CI: 1.6, 2.6) thousand through sensitivity tests, which implies the dominant role of anthropogenic impacts on PM2.5 abatement and attributable mortality reduction. Our study affirms the effectiveness of China's recent air quality policy, however, due to the possible supralinear shape of C-R functions, health benefits induced by air quality improvement in these years are limited. We therefore appeal for continuous implementation of current policies and further stringent measures from both air quality improvement and public health protection perspectives.
Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric
2011-10-15
Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.
Assunta, M; Chapman, S
2004-12-01
To describe tobacco industry efforts in Malaysia to thwart government efforts to regulate tobacco promotion and health warnings. Systematic keyword and opportunistic website searches of formerly private tobacco industry internal documents made available through the Master Settlement Agreement and secondary websites; relevant information from news articles and financial reports. Commencing in the 1970s, the industry began to systematically thwart government tobacco control. Guidelines were successfully promoted in the place of legislation for over two decades. Even when the government succeeded in implementing regulations such as health warnings and advertising bans they were compromised and acted effectively to retard further progress for years to come. Counter-measures to delay or thwart government efforts to regulate tobacco were initiated by the industry. Though not unique to Malaysia, the main difference lies in the degree to which strategies were used to successfully counter stringent tobacco control measures between 1970 and 1995.
High-throughput sequencing methods to study neuronal RNA-protein interactions.
Ule, Jernej
2009-12-01
UV-cross-linking and RNase protection, combined with high-throughput sequencing, have provided global maps of RNA sites bound by individual proteins or ribosomes. Using a stringent purification protocol, UV-CLIP (UV-cross-linking and immunoprecipitation) was able to identify intronic and exonic sites bound by splicing regulators in mouse brain tissue. Ribosome profiling has been used to quantify ribosome density on budding yeast mRNAs under different environmental conditions. Post-transcriptional regulation in neurons requires high spatial and temporal precision, as is evident from the role of localized translational control in synaptic plasticity. It remains to be seen if the high-throughput methods can be applied quantitatively to study the dynamics of RNP (ribonucleoprotein) remodelling in specific neuronal populations during the neurodegenerative process. It is certain, however, that applications of new biochemical techniques followed by high-throughput sequencing will continue to provide important insights into the mechanisms of neuronal post-transcriptional regulation.
A 0.18 μm CMOS LDO Regulator for an On-Chip Sensor Array Impedance Measurement System.
Pérez-Bailón, Jorge; Márquez, Alejandro; Calvo, Belén; Medrano, Nicolás
2018-05-02
This paper presents a fully integrated 0.18 μm CMOS Low-Dropout (LDO) Voltage Regulator specifically designed to meet the stringent requirements of a battery-operated impedance spectrometry multichannel CMOS micro-instrument. The proposed LDO provides a regulated 1.8 V voltage from a 3.6 V to 1.94 V battery voltage over a −40 °C to 100 °C temperature range, with a compact topology (<0.10 mm² area) and a constant quiescent current of only 7.45 μA with 99.985% current efficiency, achieving remarkable state-of-art Figures of Merit (FoMs) for the regulating⁻transient performance. Experimental measurements validate its suitability for the target application, paving the way towards the future achievement of a truly portable System on Chip (SoC) platform for impedance sensors.
Ogunnariwo, J A; Schryvers, A B
1990-01-01
Seven type 1 field isolates of Pasteurella haemolytica were screened for their ability to use different transferrins as a source of iron for growth. All seven strains were capable of using bovine but not human, porcine, avian, or equine transferrin. A screening assay failed to detect siderophore production in any of the strains tested. Iron-deficient cells from these strains expressed a binding activity, specific for bovine transferrin, that was regulated by the level of iron in the medium. Inhibition of expression by translation and transcription inhibitors suggested that iron regulation was occurring at the gene level. Affinity isolation of receptor proteins from all seven strains with biotinylated bovine transferrin identified a 100-kilodalton iron-regulated outer membrane protein as the bovine transferrin receptor. Iron-regulated outer membrane proteins of 71 and 77 kilodaltons were isolated along with the 100-kilodalton protein when less stringent washing procedures were employed in the affinity isolation procedure. Images PMID:2365453
1988-07-01
MSDS or Material Safety Data Sheets from our suppliers and we are required to provide the same for our customers . We are required to train our personnel...non-sparking tools. Labels We protect our customers by labeling our materials in accordance with the NPCA Labeling Guide which is at least as...stringent as any federal or local regulations, by providing Material Safety Data Sheets and by providing customer assistance O when requested regarding safe
Sensors and regulators of intracellular pH.
Casey, Joseph R; Grinstein, Sergio; Orlowski, John
2010-01-01
Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.
Transnational Dynamics Amid Poor Regulations: Taiwan's Asbestos Ban Actions and Experiences.
Wu, Harry Yi-Jui; Lin, Ro-Ting; Wang, Jung-Der; Cheng, Yawen
2017-10-17
This article describes the history of the asbestos use regulation process in Taiwan and the associated factors leading to its total ban in 2018. Despite the long history of asbestos mining and manufacturing since the Japanese colonial period, attempts to understand the impact of asbestos on the health of the population and to control its use did not emerge until the early 1980s. We attempted to investigate the driving forces and obstructions involved in asbestos regulations by reviewing available public sources and scientific journal articles and conducting interviews with key propagators of the asbestos regulation and ban. Correlation between asbestos exposure and asbestos-related diseases has already been established; however, authorities have been unable to effectively regulate the extensive application of asbestos in various light industries that support economic growth since the 1960s. More stringent regulations on asbestos use in industries and an eventual ban were caused indirectly by appeals made by visionary scholars and healthcare professionals but also due to the subsidence of asbestos-related industries. With the elucidation of factors that affect asbestos regulation and ban, a thorough long-term healthcare plan for the neglected victims of asbestos-related diseases and upstream measures for policy change must be developed.
Gilbraith, Nathaniel; Azevedo, Inês L; Jaramillo, Paulina
2014-12-16
The federal government has the goal of decreasing commercial building energy consumption and pollutant emissions by incentivizing the adoption of commercial building energy codes. Quantitative estimates of code benefits at the state level that can inform the size and allocation of these incentives are not available. We estimate the state-level climate, environmental, and health benefits (i.e., social benefits) and reductions in energy bills (private benefits) of a more stringent code (ASHRAE 90.1-2010) relative to a baseline code (ASHRAE 90.1-2007). We find that reductions in site energy use intensity range from 93 MJ/m(2) of new construction per year (California) to 270 MJ/m(2) of new construction per year (North Dakota). Total annual benefits from more stringent codes total $506 million for all states, where $372 million are from reductions in energy bills, and $134 million are from social benefits. These total benefits range from $0.6 million in Wyoming to $49 million in Texas. Private benefits range from $0.38 per square meter in Washington State to $1.06 per square meter in New Hampshire. Social benefits range from $0.2 per square meter annually in California to $2.5 per square meter in Ohio. Reductions in human/environmental damages and future climate damages account for nearly equal shares of social benefits.
Fuel regulation in inland navigation: reduced soil black carbon and PAH deposition in river valleys
NASA Astrophysics Data System (ADS)
Bläsing, M.; Schwark, L.; Amelung, W.; Lehndorff, E.
2016-12-01
Inland navigation (IN) is of increasing importance in the transport sector. Most inland waterways and inland ports are located in/near urban regions; hence many people are exposed to emissions from IN. However, its contribution to environmental quality is not yet known. Accordingly, we aimed at identifying IN emissions in the environment, and investigating consequences of the S-reduction in ship diesel (EU regulation 2009/30/EC) on IN emissions. To do so, topsoil samples were taken from vineyards in valley transects (perpendicular to rivers) at two German inland waterways (Rhine, Moselle) and one ship-free reference valley (Ahr) and analyzed for polycyclic aromatic hydrocarbons (PAHs) and black carbon (BC). To elucidate the effect of fuel regulation (effective since 2011), samplings were performed from 2010 to 2013. Additionally, the potential dispersal of IN emissions was simulated by a Lagrangian stochastic model. Before regulating the S-content of ship diesel by the EU directive soil samples indicated a clear impact of IN emissions on BC and PAH deposits, in at least 200 and 350 m distance to the Moselle and Rhine river, respectively. IN emissions accounted for approximately 30% of total soil BC. However, soils along waterways comprised only slightly more BC than soils in the ship-free Ahr Valley, with BC contents comparable to rural to suburban European soils. Contents of PAHs in river valleys compared to remote to urban pollution load. In the course of the fuel regulation, BC and PAH deposits in soil were reduced within three years by 30-60%, respectively. Also the quality of emissions changed to higher shares of low molecular weight PAHs and smaller proportions of soot-BC, indicating less deposition of IN emissions. The impact of the fuel regulation was more obvious at the Rhine Valley than at the Moselle Valley, likely because of higher ship traffic volume at the former. Overall, fuel regulation was effective in reducing IN emissions along inland waterways.
Extreme Wolf-Rayet Galaxies with HST/COS: Understanding CIII] Emission in the Reionization Era
NASA Astrophysics Data System (ADS)
Stark, Daniel
2017-08-01
The first deep spectra of reionization-era galaxies have revealed strong UV nebular emission in high-ionization lines. This is in striking contrast to massive galaxies at lower redshifts, where emission from CIII], OIII], HeII, and CIV is rarely seen. These lines will likely be the only probe available for the most distant galaxies JWST will detect; but we are still unprepared to interpret them. Modeling predicts that intense UV nebular emission can only be produced below a tenth solar metallicity. However, recent HST/COS observations of local galaxies suggest that extreme populations of Wolf-Rayet (WR) stars, the hot exposed cores of massive O stars, may be capable of powering CIII] at metallicities as high as a half-solar. If these moderately metal-poor extreme WR galaxies are indeed a viable source of strong CIII] emission, our interpretation of CIII] detections in the reionization era will be dramatically altered; but we presently have sufficient UV coverage for only three examples. Here, we propose HST/COS G160M and G185M observations of an additional seven extreme WR galaxies spanning 0.5 dex in metallicity around half-solar. These observations will constrain the maximum CIII] equivalent width these galaxies can power as a function of metallicity. The moderate resolution gratings will robustly characterize the massive O and WR star populations, allowing us to link the nebular emission directly to the massive stars responsible. These data will provide a stringent test for the population synthesis codes which will be applied to JWST observations. Without this empirical baseline, our understanding of the most distant galaxies JWST finds will be severely limited.
NASA Astrophysics Data System (ADS)
Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.
2013-03-01
We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.
Hallberg, Lance M; Ward, Jonathan B; Wickliffe, Jeffrey K; Ameredes, Bill T
2017-01-01
Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES), in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay), blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay), and hippocampus (lipid peroxidation assay), across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective. PMID:28659715
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.
2013-01-01
We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are comparedmore » to a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline underlying socioeconomic assumptions, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095 with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.« less
Synthetic (p)ppGpp Analogue Is an Inhibitor of Stringent Response in Mycobacteria
Syal, Kirtimaan; Flentie, Kelly; Bhardwaj, Neerupma; Maiti, Krishnagopal; Jayaraman, Narayanaswamy; Stallings, Christina L.
2017-01-01
ABSTRACT Bacteria elicit an adaptive response against hostile conditions such as starvation and other kinds of stresses. Their ability to survive such conditions depends, in part, on stringent response pathways. (p)ppGpp, considered to be the master regulator of the stringent response, is a novel target for inhibiting the survival of bacteria. In mycobacteria, the (p)ppGpp synthetase activity of bifunctional Rel is critical for stress response and persistence inside a host. Our aim was to design an inhibitor of (p)ppGpp synthesis, monitor its efficiency using enzyme kinetics, and assess its phenotypic effects in mycobacteria. As such, new sets of inhibitors targeting (p)ppGpp synthesis were synthesized and characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. We observed significant inhibition of (p)ppGpp synthesis by RelMsm in the presence of designed inhibitors in a dose-dependent manner, which we further confirmed by monitoring the enzyme kinetics. The Rel enzyme inhibitor binding kinetics were investigated by isothermal titration calorimetry. Subsequently, the effects of the compounds on long-term persistence, biofilm formation, and biofilm disruption were assayed in Mycobacterium smegmatis, where inhibition in each case was observed. In vivo, (p)ppGpp levels were found to be downregulated in M. smegmatis treated with the synthetic inhibitors. The compounds reported here also inhibited biofilm formation by the pathogen Mycobacterium tuberculosis. The compounds were tested for toxicity by using an MTT assay with H460 cells and a hemolysis assay with human red blood cells, for which they were found to be nontoxic. The permeability of compounds across the cell membrane of human lung epithelial cells was also confirmed by mass spectrometry. PMID:28396544
Synthetic (p)ppGpp Analogue Is an Inhibitor of Stringent Response in Mycobacteria.
Syal, Kirtimaan; Flentie, Kelly; Bhardwaj, Neerupma; Maiti, Krishnagopal; Jayaraman, Narayanaswamy; Stallings, Christina L; Chatterji, Dipankar
2017-06-01
Bacteria elicit an adaptive response against hostile conditions such as starvation and other kinds of stresses. Their ability to survive such conditions depends, in part, on stringent response pathways. (p)ppGpp, considered to be the master regulator of the stringent response, is a novel target for inhibiting the survival of bacteria. In mycobacteria, the (p)ppGpp synthetase activity of bifunctional Rel is critical for stress response and persistence inside a host. Our aim was to design an inhibitor of (p)ppGpp synthesis, monitor its efficiency using enzyme kinetics, and assess its phenotypic effects in mycobacteria. As such, new sets of inhibitors targeting (p)ppGpp synthesis were synthesized and characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. We observed significant inhibition of (p)ppGpp synthesis by Rel Msm in the presence of designed inhibitors in a dose-dependent manner, which we further confirmed by monitoring the enzyme kinetics. The Rel enzyme inhibitor binding kinetics were investigated by isothermal titration calorimetry. Subsequently, the effects of the compounds on long-term persistence, biofilm formation, and biofilm disruption were assayed in Mycobacterium smegmatis , where inhibition in each case was observed. In vivo , (p)ppGpp levels were found to be downregulated in M. smegmatis treated with the synthetic inhibitors. The compounds reported here also inhibited biofilm formation by the pathogen Mycobacterium tuberculosis The compounds were tested for toxicity by using an MTT assay with H460 cells and a hemolysis assay with human red blood cells, for which they were found to be nontoxic. The permeability of compounds across the cell membrane of human lung epithelial cells was also confirmed by mass spectrometry. Copyright © 2017 American Society for Microbiology.
Izrael, Y A; Nazarov, I M; Ryaboshapko, A G
1982-12-01
The authors consider some possible ways of regulating three types of atmospheric emission of pollutants: - emission of substances causing pollution of the natural environment on the global scale (global pollutants); - emission of substances causing pollution on a regional scale, most often including territories of several countries (international pollutants); - emission of substances causing negative effects in a relatively limited region, for example within border area of two adjoining countries. Substances (gaseous, as a rule) of a long life-time in the atmosphere that can contaminate natural media on a global scale irrespective of the place of emission refer to the first class of pollutants that are subject to emission regulation at an international level and to quota establishement for individual countries. They are carbon dioxide, freon, krypton-85.Various approaches to determining permissible emission and to quota establishing are discussed in the paper.The second group includes substances of a limited, yet rather long, life-time whose emission intensity makes a notable contribution to environmental pollution of a large region including territories of several countries. Here it is needed to regulate internationally not the atmospheric emission as it is but pollutant transport over national boundaries (sulphur and nitrogen oxides, pesticides, heavy metals).The third group includes substances of relatively short time of life producing local effects. Emission regulation in such cases should be based upon bilateral agreements with due account of countries' mutual interests.
Doua, Joachim Y; Van Geertruyden, Jean-Pierre
2014-01-01
New medicines are registered after a resource-demanding process. Unfortunately, in low-income countries (LICs), demand outweighs resources. To facilitate registration in LICs, stringent review procedures of the European Medicines Agency (EMA Article-58), Food and Drug Administration (FDA PEPFAR-linked review) and WHO Prequalification programme have been established. Only the PEPFAR-linked review gives approval, while the others make recommendations for approval. This study assessed the performance and discussed the challenges of these three stringent review procedures. Data from WHO, FDA, EMA, Medline and Internet were analysed. Over 60% of medicines reviewed by stringent review procedures are manufactured in India. Until 2012, WHO prequalified 400 medicines (211 vaccines, 130 antiretrovirals, 29 tuberculostatics, 15 antimalarials and 15 others). PEPFAR-linked review approved 156 antiretrovirals, while EMA Article 58 recommended approval of 3 antiretrovirals, 1 vaccine and 1 antimalarial. WHO Prequalification and PEPFAR-linked review are free of charge and as a result have accelerated access to antiretrovirals. They both built capacity in sub-Saharan Africa, although WHO prequalification relies technically on stringent regulatory authorities and financially on donors. Article-58 offers the largest disease coverage and strongest technical capacities, is costly and involves fewer LICs. To meet the high demand for quality medicines in LICs, these stringent review procedures need to enlarge their disease coverage. To improve registration, EMA Article 58 should actively involve LICs. Furthermore, LIC regulatory activities must not be fully resigned to stringent review procedure. © 2013 John Wiley & Sons Ltd.
Physics from Time Variability of the VHE Blazar PKS 2155-304
NASA Astrophysics Data System (ADS)
Barres de Almeida, Ulisses
2010-10-01
Blazars are the principal extragalactic sources of very high energy gamma-ray emission in the Universe. These objects constitute a sub-class of Active Galactic Nuclei whose emission is dominated by Doppler boosted non-thermal radiation from plasma outflow- ing at relativistic speeds from the central engine. This plasma outflow happens in the form of large-scale collimated structures called jets, which can extend for Mpc in length and transport energy from the central engine of the galaxy to the larger scale intergalac- tic medium. Over thirty such sources have been discovered to date by ground-based gamma-ray telescopes such as H.E.S.S., and PKS 2155-304 is the prototypical southern- hemisphere representative of this population of objects. In this thesis we have studied in detail some aspects of the temporal variability of the jet emission from PKS 2155-304, combining coordinated observations across the electro- magnetic spectrum, from optical polarimetric measurements to X-ray and ground-based gamma-ray data. The temporal properties of the dataset allowed us to derive important physical information about the structure and emission mechanisms of the source and put constraints to the location of the sites of VHE emission and particle acceleration within the jet. We have also derived a sensitive statistical measure, called Kolmogorov distance, which we applied to the large outburst observed from PKS 2155-304 in July 2006, to de- rive the most stringent constraints to date on limits for the violation of Lorentz invariance induced by quantum-gravity effects from AGN measurements.
Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.;
2012-01-01
We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.
An ultrabright and monochromatic electron point source made of a LaB6 nanowire
NASA Astrophysics Data System (ADS)
Zhang, Han; Tang, Jie; Yuan, Jinshi; Yamauchi, Yasushi; Suzuki, Taku T.; Shinya, Norio; Nakajima, Kiyomi; Qin, Lu-Chang
2016-03-01
Electron sources in the form of one-dimensional nanotubes and nanowires are an essential tool for investigations in a variety of fields, such as X-ray computed tomography, flexible displays, chemical sensors and electron optics applications. However, field emission instability and the need to work under high-vacuum or high-temperature conditions have imposed stringent requirements that are currently limiting the range of application of electron sources. Here we report the fabrication of a LaB6 nanowire with only a few La atoms bonded on the tip that emits collimated electrons from a single point with high monochromaticity. The nanostructured tip has a low work function of 2.07 eV (lower than that of Cs) while remaining chemically inert, two properties usually regarded as mutually exclusive. Installed in a scanning electron microscope (SEM) field emission gun, our tip shows a current density gain that is about 1,000 times greater than that achievable with W(310) tips, and no emission decay for tens of hours of operation. Using this new SEM, we acquired very low-noise, high-resolution images together with rapid chemical compositional mapping using a tip operated at room temperature and at 10-times higher residual gas pressure than that required for W tips.
Blowers, Paul; Lownsbury, James M
2010-03-01
The U.S. is strongly considering regulating hydrofluorocarbons (HFCs) due to their global climate change forcing effects. A drop-in replacement hydrofluoroether has been evaluated using a gate-to-grave life cycle assessment of greenhouse gas emissions for the trade-offs between direct and indirect carbon dioxide equivalent emissions compared to a current HFC and a historically used refrigerant. The results indicate current regulations being considered may increase global climate change.
Advanced Low Emissions Subsonic Combustor Study
NASA Technical Reports Server (NTRS)
Smith, Reid
1998-01-01
Recent advances in commercial and military aircraft gas turbines have yielded significant improvements in fuel efficiency and thrust-to-weight ratio, due in large part to increased combustor operating pressures and temperatures. However, the higher operating conditions have increased the emission of oxides of nitrogen (NOx), which is a pollutant with adverse impact on the atmosphere and environment. Since commercial and military aircraft are the only important direct source of NOx emissions at high altitudes, there is a growing consensus that considerably more stringent limits on NOx emissions will be required in the future for all aircraft. In fact, the regulatory communities have recently agreed to reduce NOx limits by 20 percent from current requirements effective in 1996. Further reductions at low altitude, together with introduction of limits on NOx at altitude, are virtual certainties. In addition, the U.S. Government recently conducted hearings on the introduction of federal fees on the local emission of pollutants from all sources, including aircraft. While no action was taken regarding aircraft in this instance, the threat of future action clearly remains. In these times of intense and growing international competition, the U.S. le-ad in aerospace can only be maintained through a clear technological dominance that leads to a product line of maximum value to the global airline customer. Development of a very low NOx combustor will be essential to meet the future needs of both the commercial and military transport markets, if additional economic burdens and/or operational restrictions are to be avoided. In this report, Pratt & Whitney (P&W) presents the study results with the following specific objectives: Development of low-emissions combustor technologies for advances engines that will enter into service circa 2005, while producing a goal of 70 percent lower NOx emissions, compared to 1996 regulatory levels. Identification of solution approaches to barriers to the productization and economic viability of the low-emissions technologies. Preparation of these technologies to facilitate an annular rig high-pressure demonstration.
Premnath, S; Devaradjane, G
2015-11-01
The emissions from the Compression ignition (CI) engines introduce toxicity to the atmosphere. The undesirable carbon deposits from these engines are realized in the nearby static or dynamic systems such as vehicles, inhabitants, etc. The objective of this research work is to improve the performance and emission characteristics of a diesel engine in the modified re-entrant combustion chamber using a diesel and Jatropha methyl ester blend (J20) at three different injection pressures. From the literature, it is revealed that the shape of the combustion chamber and the fuel injection pressure have an impact on the performance and emission parameters of the CI engine. In this work, a re-entrant combustion chamber with three different fuel injection pressures (200, 220 and 240bars) has been used in the place of the conventional hemispherical combustion chamber for diesel and J20. From the experimental results, it is found that the re-entrant chamber improves the brake thermal efficiency of diesel and J20 in all the tested conditions. It is also found that the 20% blend of Jatropha methyl ester showed 4% improvement in the brake thermal efficiency in the re-entrant chamber at the maximum injection pressure. Environmental safety directly relates to the reduction in the undesirable effects on both living and non-living things. Currently environmental pollution is of major concern. Even with the stringent emission norms new methods are required to reduce the harmful effects from automobiles. The toxicity of carbon monoxide (CO) is well known. In the re-entrant combustion chamber, the amount of CO emission is reduced by 26% when compared with the conventional fuel operation of the engine. Moreover, the amount of smoke is reduced by 24% and hydrocarbons (HC) emission by 24%. Thus, the modified re-entrant combustion chamber reduces harmful pollutants such as unburned HC and CO as well as toxic smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.
Impact of cold temperature on Euro 6 passenger car emissions.
Suarez-Bertoa, Ricardo; Astorga, Covadonga
2018-03-01
Hydrocarbons, CO, NOx, NH 3 , N 2 O, CO 2 and particulate matter emissions affect air quality, global warming and human health. Transport sector is an important source of these pollutants and high pollution episodes are often experienced during the cold season. However, EU vehicle emissions regulation at cold ambient temperature only addresses hydrocarbons and CO vehicular emissions. For that reason, we have studied the impact that cold ambient temperatures have on Euro 6 diesel and spark ignition (including: gasoline, ethanol flex-fuel and hybrid vehicles) vehicle emissions using the World-harmonized Light-duty Test Cycle (WLTC) at -7 °C and 23 °C. Results indicate that when facing the WLTC at 23 °C the tested vehicles present emissions below the values set for type approval of Euro 6 vehicles (still using NEDC), with the exception of NOx emissions from diesel vehicles that were 2.3-6 times higher than Euro 6 standards. However, emissions disproportionally increased when vehicles were tested at cold ambient temperature (-7 °C). High solid particle number (SPN) emissions (>1 × 10 11 # km -1 ) were measured from gasoline direct injection (GDI) vehicles and gasoline port fuel injection vehicles. However, only diesel and GDI SPN emissions are currently regulated. Results show the need for a new, technology independent, procedure that enables the authorities to assess pollutant emissions from vehicles at cold ambient temperatures. Harmful pollutant emissions from spark ignition and diesel vehicles are strongly and negatively affected by cold ambient temperatures. Only hydrocarbon, CO emissions are currently regulated at cold temperature. Therefore, it is of great importance to revise current EU winter vehicle emissions regulation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Climate benefits of U.S. EPA programs and policies that reduced methane emissions 1993-2013
The United States (U.S.) Environmental Protection Agency (EPA) has established voluntary programs to reduce CH4 emissions, as well as regulations that provide co-benefits of reducing CH4 emissions while controlling for other air pollutants. These programs and regulations address ...
Ishiguro, E E; Vanderwel, D; Kusser, W
1986-01-01
The influence of the relA gene on lipopolysaccharide (LPS) biosynthesis and release by Escherichia coli and Salmonella typhimurium was investigated. Similar results were obtained with both species. The incorporation of [3H]galactose into LPS by galE mutants was inhibited by at least 50% (as compared with normal growing controls) during amino acid deprivation of relA+ strains. This inhibition could be prevented by the treatment of the amino acid-deprived relA+ bacteria with chloramphenicol, a known antagonist of the stringent control mechanism. Furthermore, LPS biosynthesis was not inhibited during amino acid deprivation of isogenic relA mutant strains. These results indicate that LPS synthesis is regulated by the stringent control mechanism. Normal growing cells of both relA+ and relA strains released LPS into the culture fluid at low rates. Amino acid deprivation stimulated the rate of LPS release by relA mutants but not by relA+ bacteria. Chloramphenicol treatment markedly stimulated the release of cell-bound LPS by amino acid-deprived relA+ cells. Thus, a low rate of LPS release was characteristic of normal growth and could be increased in nongrowing cells by relaxing the control of LPS synthesis. Images PMID:3531174
Circadian Rhythms in Floral Scent Emission.
Fenske, Myles P; Imaizumi, Takato
2016-01-01
To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.
Impact of reformulated fuels on motor vehicle emissions
NASA Astrophysics Data System (ADS)
Kirchstetter, Thomas
Motor vehicles continue to be an important source of air pollution. Increased vehicle travel and degradation of emission control systems have offset some of the effects of increasingly stringent emission standards and use of control technologies. A relatively new air pollution control strategy is the reformulation of motor vehicle fuels, both gasoline and diesel, to make them cleaner- burning. Field experiments in a heavily traveled northern California roadway tunnel revealed that use of oxygenated gasoline reduced on-road emissions of carbon monoxide (CO) and volatile organic compounds (VOC) by 23 +/- 6% and 19 +/- 8%, respectively, while oxides of nitrogen (NOx) emissions were not significantly affected. The introduction of reformulated gasoline (RFG) in California led to large changes in gasoline composition including decreases in alkene, aromatic, benzene, and sulfur contents, and an increase in oxygen content. The combined effects of RFG and fleet turnover between summers 1994 and 1997 were decreases in on-road vehicle exhaust emissions of CO, non-methane VOC, and NOx by 31 +/- 5, 43 +/- 8, and 18 +/- 4%, respectively. Although it was difficult to separate the fleet turnover and RFG contributions to these changes, it was clear that the effect of RFG was greater for VOC than for NOx. The RFG effect on exhaust emissions of benzene was a 30-40% reduction. Use of RFG reduced the reactivity of liquid gasoline and gasoline headspace vapors by 23 and 19%, respectively. Increased use of methyl tert-butyl ether in gasoline led to increased concentrations of highly reactive formaldehyde and isobutene in vehicle exhaust. As a result, RFG reduced the reactivity of exhaust emissions by only about 5%. Per unit mass of fuel burned, heavy-duty diesel trucks emit about 25 times more fine particle mass and 15-20 times the number of fine particles compared to light-duty vehicles. Exhaust fine particle emissions from heavy-duty diesels contain more black carbon than particulate matter emissions from light-duty vehicles (52 vs. 32% of PM2.5 mass). Sulfate emission rates measured for heavy-duty diesel trucks fueled with low- sulfur, low-aromatic diesel are significantly lower than emission rates reported before the introduction of cleaner-burning diesel fuel. Statewide fuel consumption and measured emission rates indicate that diesel vehicles in California are responsible for nearly half of NOx emissions and greater than three quarters of exhaust fine particle emissions from on-road motor vehicles.
Energy Efficient Engine combustor test hardware detailed design report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.
Design and CFD analysis of intake port and exhaust port for a 4 valve cylinder head engine
NASA Astrophysics Data System (ADS)
Latheesh, V. M.; Parthasarathy, P.; Baskaran, V.; Karthikeyan, S.
2018-02-01
In cylinder air motion in a compression ignition engine effects mixing of air-fuel, quality of combustion and emission produced. The primary objective is to design and analyze intake and the exhaust port for a four valve cylinder head to meet higher emission norms for a given diesel engine with two valves. In this work, an existing cylinder head designed for two valves was redesigned with 4 valves. The modern trend also confirms this approach. This is being followed in the design and development of new generation engines to meet the stringent environment norms, competition in market and demand for more fuel-efficient engines. The swirl ratio and flow coefficient were measured for different valve lifts using STAR CCM+. CFD results were validated with the two-valve cylinder experimental results. After validation, a comparison between two-valve and four-valve cylinder head was done. The conversion of two valve cylinder head to 4 valves may not support modern high swirl generating port layout and requires a trade-off between many design parameters.
Stringent Mitigation Policy Implied By Temperature Impacts on Economic Growth
NASA Astrophysics Data System (ADS)
Moore, F.; Turner, D.
2014-12-01
Integrated assessment models (IAMs) compare the costs of greenhouse gas mitigation with damages from climate change in order to evaluate the social welfare implications of climate policy proposals and inform optimal emissions reduction trajectories. However, these models have been criticized for lacking a strong empirical basis for their damage functions, which do little to alter assumptions of sustained GDP growth, even under extreme temperature scenarios. We implement empirical estimates of temperature effects on GDP growth-rates in the Dynamic Integrated Climate and Economy (DICE) model via two pathways, total factor productivity (TFP) growth and capital depreciation. Even under optimistic adaptation assumptions, this damage specification implies that optimal climate policy involves the elimination of emissions in the near future, the stabilization of global temperature change below 2°C, and a social cost of carbon (SCC) an order of magnitude larger than previous estimates. A sensitivity analysis shows that the magnitude of growth effects, the rate of adaptation, and the dynamic interaction between damages from warming and GDP are three critical uncertainties and an important focus for future research.
The solar gamma ray spectrum between 4 and 8 MeV
NASA Technical Reports Server (NTRS)
Ramaty, R.; Kozlovsky, B.; Suri, A. N.
1976-01-01
The properties of nuclear gamma ray emission in the 4 to 8 MeV range were evaluated. This emission consists of broad and narrow lines resulting from nuclear reactions of energetic H, He, C and O nuclei with ambient matter. Calculations were compared with observations of the 1972, August 4 flare and show that: (1) essentially all the observed radiation in the 4 to 8 MeV region is to the superposition of broad and narrow lines of nuclear origin with almost no contribution from other mechanisms; (2) the accelerated particles in the energy region from about 10 to 100 MeV/amu have a relatively flat Energy spectrum; (3) the calculated gamma ray spectrum, obtained from an isotropic distribution of accelerated particles, fits the observed spectrum better than the spectrum derived from an anisotropic distribution for which the particles' velocity vectors point towards the photosphere; and (4) it is possible to set a stringent upper limit on the ratio of relativistic electrons to protons in flares, consistent with the small, but finite, electron-to-proton ratio in galactic cosmic rays.
A NuSTAR OBSERVATION OF THE CENTER OF THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastaldello, Fabio; Molendi, S.; Wik, Daniel R.
2015-02-20
We present the results of a 55 ks NuSTAR observation of the core of the Coma Cluster. The global spectrum can be explained by thermal gas emission, with a conservative 90% upper limit to non-thermal inverse Compton (IC) emission of 5.1 × 10{sup –12} erg cm{sup –2} s{sup –1} in a 12' × 12' field of view. The brightness of the thermal component in this central region does not allow more stringent upper limits on the IC component when compared with non-imaging instruments with much larger fields of view where claims of detections have been made. Future mosaic NuSTAR observations ofmore » Coma will further address this issue. The temperature map shows a relatively uniform temperature distribution with a gradient from the hot northwest side to the cooler southeast, in agreement with previous measurements. The temperature determination is robust given the flat effective area and low background in the 3-20 keV band, making NuSTAR an ideal instrument to measure high temperatures in the intracluster medium.« less
NASA Astrophysics Data System (ADS)
Parracino, Stefano; Richetta, Maria; Gelfusa, Michela; Malizia, Andrea; Bellecci, Carlo; De Leo, Leonardo; Perrimezzi, Carlo; Fin, Alessandro; Forin, Marco; Giappicucci, Francesca; Grion, Massimo; Marchese, Giuseppe; Gaudio, Pasquale
2016-10-01
Urban air pollution causes deleterious effects on human health and the environment. To meet stringent standards imposed by the European Commission, advanced measurement methods are required. Remote sensing techniques, such as light detection and ranging (LiDAR), can be a valuable option for evaluating particulate matter (PM), emitted by vehicles in urban traffic, with high sensitivity and in shorter time intervals. Since air quality problems persist not only in large urban areas, a measuring campaign was specifically performed in a suburban area of Crotone, Italy, using both a compact LiDAR system and conventional instruments for real-time vehicle emissions monitoring along a congested road. First results reported in this paper show a strong dependence between variations of LiDAR backscattering signals and traffic-related air pollution levels. Moreover, time-resolved LiDAR data averaged in limited regions, directly above conventional monitoring stations at the border of an intersection, were found to be linearly correlated to the PM concentration levels with a correlation coefficient between 0.75 and 0.84.
Hello darkness my old friend: the fading of the nearby TDE ASASSN-14ae
NASA Astrophysics Data System (ADS)
Brown, Jonathan S.; Shappee, Benjamin J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Prieto, J. L.
2016-11-01
We present late-time optical spectroscopy taken with the Large Binocular Telescope's Multi-Object Double Spectrograph, an improved All-Sky Automated Survey for SuperNovae pre-discovery non-detection, and late-time Swift observations of the nearby (d = 193 Mpc, z = 0.0436) tidal disruption event (TDE) ASASSN-14ae. Our observations span from ˜20 d before to ˜750 d after discovery. The proximity of ASASSN-14ae allows us to study the optical evolution of the flare and the transition to a host-dominated state with exceptionally high precision. We measure very weak Hα emission 300 d after discovery (LH α ≃ 4 × 1039 erg s-1) and the most stringent upper limit to date on the Hα luminosity ˜750 d after discovery (LH α ≲ 1039 erg s-1), suggesting that the optical emission arising from a TDE can vanish on a time-scale as short as 1 yr. Our results have important implications for both spectroscopic detection of TDE candidates at late times, as well as the nature of TDE host galaxies themselves.
A NuSTAR observation of the center of the Coma Cluster
Gastaldello, Fabio; Wik, Daniel R.; Molendi, S.; ...
2015-02-20
We present the results of a 55 ks NuSTAR observation of the core of the Coma Cluster. The global spectrum can be explained by thermal gas emission, with a conservative 90% upper limit to non-thermal inverse Compton (IC) emission of 5.1 × 10 –12 erg cm –2 s –1 in a 12' × 12' field of view. The brightness of the thermal component in this central region does not allow more stringent upper limits on the IC component when compared with non-imaging instruments with much larger fields of view where claims of detections have been made. Future mosaic NuSTAR observationsmore » of Coma will further address this issue. In addition, the temperature map shows a relatively uniform temperature distribution with a gradient from the hot northwest side to the cooler southeast, in agreement with previous measurements. The temperature determination is robust given the flat effective area and low background in the 3-20 keV band, making NuSTAR an ideal instrument to measure high temperatures in the intracluster medium.« less
NASA Technical Reports Server (NTRS)
Perey, D. F.
1996-01-01
Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique, based on the principle of Optically Stimulated Electron Emission (OSEE), has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it is non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be sent to an external computer for archiving or analysis.
Carbon Budgets as a Guide to Deep Decarbonisation
NASA Astrophysics Data System (ADS)
Rogelj, J.
2017-12-01
Halting global mean temperature rise requires a limit on the cumulative amount of net CO2 disposed of in the atmosphere. Remaining within the limits of such carbon budgets over the 21st century will require a profound transformation of how our societies use and produce energy, crops, and materials. To understand the options available to stay within stringent carbon budget constraints, global transformation pathways are being devised with integrated models of the energy-economy-land system. This presentation will look at how the latest insights of such pathways affect carbon budgets. Estimates of carbon budgets compatible with a given temperature limit depend on the anticipated temperature contribution at peak warming of non-CO2 forcers. Integrated transformation pathways allow to understand the projected extend of these contributions, as well as estimate the maximum conceivable rate of emissions reductions over the coming decades. The latter directly informs the lower end of future cumulative CO2 emissions and can thus provide an estimate for minimum peak warming over the 21st century - a measure which can be compared to the ambitious long-term temperature goal of the UNFCCC Paris Agreement.
Achleitner, Stefan; De Toffol, Sara; Engelhard, Carolina; Rauch, Wolfgang
2005-04-01
The European Water framework directive (WFD) is probably the most important environmental management directive that has been enacted over the last decade in the European Union. The directive aims at achieving an overall good ecological status in all European water bodies. In this article, we discuss the implementation steps of the WFD and their implications for environmental engineering practice while focusing on rivers as the main receiving waters. Arising challenges for engineers and scientists are seen in the quantitative assessment of water quality, where standardized systems are needed to estimate the biological status. This is equally of concern in engineering planning, where the prediction of ecological impacts is required. Studies dealing with both classification and prediction of the ecological water quality are reviewed. Further, the combined emission-water quality approach is discussed. Common understanding of this combined approach is to apply the most stringent of either water quality or emission standard to a certain case. In contrast, for example, the Austrian water act enables the application of only the water quality based approach--at least on a temporary basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Feng; Kwak, Ja Hun; Lee, Jong H.
2013-02-14
Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of themore » catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200°C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.« less
Forest Carbon Monitoring and Reporting for REDD+: What Future for Africa?
Gizachew, Belachew; Duguma, Lalisa A
2016-11-01
A climate change mitigation mechanism for emissions reduction from reduced deforestation and forest degradation, plus forest conservation, sustainable management of forest, and enhancement of carbon stocks (REDD+), has received an international political support in the climate change negotiations. The mechanism will require, among others, an unprecedented technical capacity for monitoring, reporting and verification of carbon emissions from the forest sector. A functional monitoring, reporting and verification requires inventories of forest area, carbon stock and changes, both for the construction of forest reference emissions level and compiling the report on the actual emissions, which are essentially lacking in developing countries, particularly in Africa. The purpose of this essay is to contribute to a better understanding of the state and prospects of forest monitoring and reporting in the context of REDD+ in Africa. We argue that monitoring and reporting capacities in Africa fall short of the stringent requirements of the methodological guidance for monitoring, reporting and verification for REDD+, and this may weaken the prospects for successfully implementing REDD+ in the continent. We presented the challenges and prospects in the national forest inventory, remote sensing and reporting infrastructures. A North-South, South-South collaboration as well as governments own investments in monitoring, reporting and verification system could help Africa leapfrog in monitoring and reporting. These could be delivered through negotiations for the transfer of technology, technical capacities, and experiences that exist among developed countries that traditionally compile forest carbon reports in the context of the Kyoto protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.
Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that wouldmore » be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.« less
O'Donnell, Sean T; Caldwell, Michael D; Barlaz, Morton A; Morris, Jeremy W F
2018-05-01
Municipal solid waste (MSW) landfills in the USA are regulated under Subtitle D of the Resource Conservation and Recovery Act (RCRA), which includes the requirement to protect human health and the environment (HHE) during the post-closure care (PCC) period. Several approaches have been published for assessment of potential threats to HHE. These approaches can be broadly divided into organic stabilization, which establishes an inert waste mass as the ultimate objective, and functional stability, which considers long-term emissions in the context of minimizing threats to HHE in the absence of active controls. The objective of this research was to conduct a case study evaluation of a closed MSW landfill using long-term data on landfill gas (LFG) production, leachate quality, site geology, and solids decomposition. Evaluations based on both functional and organic stability criteria were compared. The results showed that longer periods of LFG and leachate management would be required using organic stability criteria relative to an approach based on functional stability. These findings highlight the somewhat arbitrary and overly stringent nature of assigning universal stability criteria without due consideration of the landfill's hydrogeologic setting and potential environmental receptors. This supports previous studies that advocated for transition to a passive or inactive control stage based on a performance-based functional stability framework as a defensible mechanism for optimizing and ending regulatory PCC. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nanocrystal Additives for Advanced Lubricants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Gregory; Lohuis, James; Demas, Nicholaos
The innovations in engine and drivetrain lubricants are mainly driven by ever more stringent regulations, which demand better fuel economy, lower carbon emission, and less pollution. Many technologies are being developed for the next generations of vehicles to achieve these goals. Even if these technologies can be adopted, there still is a significant need for a “drop-in” lubricant solution for the existing ground vehicle fleet to reap immediate fuel savings at the same time reduce the pollution. Dramatic improvements were observed when Pixelligent’s proprietary, mono-dispersed, and highly scalable metal oxide nanocrystals were added to the base oils. The dispersions inmore » base and formulated oils are clear and without any change of appearance and viscosity. However, the benefits provided by the nanocrystals were limited to the base oils due to the interference of exiting additives in the fully formulated oils. Developing a prototype formulation including the nanocrystals that can demonstrate the same improvements observed in the base oils is a critical step toward the commercialization of these advanced nano-additives. A ‘bottom-up’ approach was adopted to develop a prototype lubricant formulation to avoid the complicated interactions with the multitude of additives, only minimal numbers of most essential additives are added, step by step, into the formulation, to ensure that they are compatible with the nanocrystals and do not compromise their tribological performance. Tribological performance are characterized to come up with the best formulations that can demonstrate the commercial potential of the nano-additives.« less
USABC Development of 12 Volt Battery for Start-Stop Application: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tataria, H.; Gross, O.; Bae, C.
Global automakers are accelerating the development of fuel efficient vehicles, as a part of meeting regional regulatory CO2 emissions requirements. The micro hybrid vehicles with auto start-stop functionality are considered economical solutions for the stringent European regulations. Flooded lead acid batteries were initially considered the most economical solution for idle-stop systems. However, the dynamic charge acceptance (DCA) at lower state-of-charge (SOC) was limiting the life of the batteries. While improved lead-acid batteries with AGM and VRLA features have improved battery longevity, they do not last the life of the vehicle. The United States Advanced Battery Consortium (or USABC, a consortiummore » of GM, Ford, and Chrysler) analyzed energy storage needs for a micro hybrid automobile with start-stop capability, and with a single power source. USABC has analyzed the start-stop behaviors of many drivers and has developed the requirements for the start-stop batteries (Table 3). The testing procedures to validate the performance and longevity were standardized and published. The guideline for the cost estimates calculations have also been provided, in order to determine the value of the newly developed modules. The analysis effort resulted in a set of requirements which will help the battery manufacturers to develop a module to meet the automotive Original Equipment Manufacturers (OEM) micro hybrid vehicle requirements. Battery developers were invited to submit development proposals and two proposals were selected for 50% cost share with USABC/DOE.« less
Kidd, Mark; Modlin, Irvin M; Drozdov, Ignat
2014-07-15
Tumor transcriptomes contain information of critical value to understanding the different capacities of a cell at both a physiological and pathological level. In terms of clinical relevance, they provide information regarding the cellular "toolbox" e.g., pathways associated with malignancy and metastasis or drug dependency. Exploration of this resource can therefore be leveraged as a translational tool to better manage and assess neoplastic behavior. The availability of public genome-wide expression datasets, provide an opportunity to reassess neuroendocrine tumors at a more fundamental level. We hypothesized that stringent analysis of expression profiles as well as regulatory networks of the neoplastic cell would provide novel information that facilitates further delineation of the genomic basis of small intestinal neuroendocrine tumors. We re-analyzed two publically available small intestinal tumor transcriptomes using stringent quality control parameters and network-based approaches and validated expression of core secretory regulatory elements e.g., CPE, PCSK1, secretogranins, including genes involved in depolarization e.g., SCN3A, as well as transcription factors associated with neurodevelopment (NKX2-2, NeuroD1, INSM1) and glucose homeostasis (APLP1). The candidate metastasis-associated transcription factor, ST18, was highly expressed (>14-fold, p < 0.004). Genes previously associated with neoplasia, CEBPA and SDHD, were decreased in expression (-1.5 - -2, p < 0.02). Genomic interrogation indicated that intestinal tumors may consist of two different subtypes, serotonin-producing neoplasms and serotonin/substance P/tachykinin lesions. QPCR validation in an independent dataset (n = 13 neuroendocrine tumors), confirmed up-regulated expression of 87% of genes (13/15). An integrated cellular transcriptomic analysis of small intestinal neuroendocrine tumors identified that they are regulated at a developmental level, have key activation of hypoxic pathways (a known regulator of malignant stem cell phenotypes) as well as activation of genes involved in apoptosis and proliferation. Further refinement of these analyses by RNAseq studies of large-scale databases will enable definition of individual master regulators and facilitate the development of novel tissue and blood-based tools to better understand diagnose and treat tumors.
Jian, Ming; He, Hua; Ma, Changsong; Wu, Yan; Yang, Hao
2017-05-17
This article studies the price competition and cooperation in a duopoly that is subjected to carbon emissions cap. The study assumes that in a departure from the classical Bertrand game, there is still a market for both firms' goods regardless of the product price, even though production capacity is limited by carbon emissions regulation. Through the decentralized decision making of both firms under perfect information, the results are unstable. The firm with the lower maximum production capacity under carbon emissions regulation and the firm with the higher maximum production capacity both seek market price cooperation. By designing an internal carbon credits trading mechanism, we can ensure that the production capacity of the firm with the higher maximum production capacity under carbon emissions regulation reaches price equilibrium. Also, the negotiation power of the duopoly would affect the price equilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnitt, R. A.; Chernich, D.; Burnitzki, M.
2010-05-01
A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimesmore » almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.« less
The Installation of a P.E.T. Pharmacy at Washington University
NASA Astrophysics Data System (ADS)
Gaehle, G.; Schwarz, S.; Mueller, M.; Margenau, B.; Welch, M. J.
2003-08-01
Washington University has produced radioisotopes for medical application since the early 1960s. In order to serve seven PET scanners and to meet more stringent government regulations we have installed a new PET pharmacy based on our past years of experiences. The new pharmacy was installed at the site of the 3.7 MeV tandem cascade accelerator that was decommissioned in April of 2001. The pharmacy consists of a production lab, quality control lab, reagent preparation lab, shipping and storage area and an office. Security and safety was a main consideration in the design of this PET pharmacy.
Integrins in bone metastasis formation and potential therapeutic implications.
Clëzardin, P
2009-11-01
Integrins constitute a family of cell surface receptors that are heterodimers composed of noncovalently associated alpha and beta subunits. Integrins bind to extracellular matrix proteins and immunogobulin superfamily molecules. They exert a stringent control on cell migration, survival and proliferation. However, their expression and functions are often deregulated in cancer, and many lines of evidence implicate them as key regulators during progression from primary tumor growth to metastasis. Here, we review the role of integrins in bone metastasis formation and present evidence that the use of integrin-targeted therapeutic agents may be an efficient strategy to block tumor metastasis.
The right to know and the duty to disclose hazard information.
Baram, M S
1984-04-01
In late 1983, the Occupational Safety and Health Administration (OSHA) promulgated its final rule on "hazard communication," establishing the right of workers in manufacturing industries to information about chemical hazards, and the duty of importers and manufacturers to disclose such information. Baram reviews areas where the new, limited OSHA regulation conflicts with existing local, state, and federal laws, many of which are more stringent and more protective of worker and community health. He suggests steps that could be taken to avoid the extensive litigation that might result from the potential preemptive effect of the new OSHA rule.
The Installation of a P.E.T. Pharmacy at Washington University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaehle, G.; Schwarz, S.; Mueller, M.
2003-08-26
Washington University has produced radioisotopes for medical application since the early 1960s. In order to serve seven PET scanners and to meet more stringent government regulations we have installed a new PET pharmacy based on our past years of experiences. The new pharmacy was installed at the site of the 3.7 MeV tandem cascade accelerator that was decommissioned in April of 2001. The pharmacy consists of a production lab, quality control lab, reagent preparation lab, shipping and storage area and an office. Security and safety was a main consideration in the design of this PET pharmacy.
Applications of fuzzy ranking methods to risk-management decisions
NASA Astrophysics Data System (ADS)
Mitchell, Harold A.; Carter, James C., III
1993-12-01
The Department of Energy is making significant improvements to its nuclear facilities as a result of more stringent regulation, internal audits, and recommendations from external review groups. A large backlog of upgrades has resulted. Currently, a prioritization method is being utilized which relies on a matrix of potential consequence and probability of occurrence. The attributes of the potential consequences considered include likelihood, exposure, public health and safety, environmental impact, site personnel safety, public relations, legal liability, and business loss. This paper describes an improved method which utilizes fuzzy multiple attribute decision methods to rank proposed improvement projects.
Fenske, Myles P.; Hewett Hazelton, Kristen D.; Hempton, Andrew K.; Shim, Jae Sung; Yamamoto, Breanne M.; Riffell, Jeffrey A.; Imaizumi, Takato
2015-01-01
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia. PMID:26124104
Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato
2015-08-04
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.
Hydrofluorocarbon (HFC) Emissions in China: An Inventory for 2005-2013 and Projections to 2050.
Fang, Xuekun; Velders, Guus J M; Ravishankara, A R; Molina, Mario J; Hu, Jianxin; Prinn, Ronald G
2016-02-16
Many hydrofluorocarbons (HFCs) that are widely used as substitutes for ozone-depleting substances (now regulated under the Montreal Protocol) are very potent greenhouse gases (GHGs). China's past and future HFC emissions are of great interest because China has emerged as a major producer and consumer of HFCs. Here, we present for the first time a comprehensive inventory estimate of China's HFC emissions during 2005-2013. Results show a rapid increase in HFC production, consumption, and emissions in China during the period and that the emissions of HFC with a relatively high global warming potential (GWP) grew faster than those with a relatively low GWP. The proportions of China's historical HFC CO2-equivalent emissions to China's CO2 emissions or global HFC CO2-equivalent emissions increased rapidly during 2005-2013. Using the "business-as-usual" (BAU) scenario, in which HFCs are used to replace a significant fraction of hydrochlorofluorocarbons (HCFCs) in China (to date, there are no regulations on HFC uses in China), emissions of HFCs are projected to be significant components of China's and global future GHG emissions. However, potentials do exist for minimizing China's HFC emissions (for example, if regulations on HFC uses are established in China). Our findings on China's historical and projected HFC emission trajectories could also apply to other developing countries, with important implications for mitigating global GHG emissions.
The Clean Air Act: A time to assess impacts and management options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, T.; Repa, E.
The Clean Air Act Amendments of 1990 significantly altered the complexion of air emission regulation and for the first time established requirements for comprehensive emission control strategies. None of the provisions of this act will have as great an impact on the waste management industry as will the General Operating Permit Provisions of Title V. Title V establishes a program for issuing operating permits to all major sources (and certain other sources) of air pollutants in the U.S. These permits will collect in one place all applicable requirements, limitations, and conditions governing regulated air emissions. While past air regulations governedmore » specific air emissions sources, as of November 1993 the law requires states and localities to regulate emissions from all major stationary sources that directly emit, or have the potential to emit, 100 tons or more of any pollutant, 10 tons or more of a single hazardous air pollutant, or 25 tons or more of two or more hazardous air pollutants.« less
Transnational Dynamics Amid Poor Regulations: Taiwan’s Asbestos Ban Actions and Experiences
Wu, Harry Yi-Jui; Wang, Jung-Der; Cheng, Yawen
2017-01-01
This article describes the history of the asbestos use regulation process in Taiwan and the associated factors leading to its total ban in 2018. Despite the long history of asbestos mining and manufacturing since the Japanese colonial period, attempts to understand the impact of asbestos on the health of the population and to control its use did not emerge until the early 1980s. We attempted to investigate the driving forces and obstructions involved in asbestos regulations by reviewing available public sources and scientific journal articles and conducting interviews with key propagators of the asbestos regulation and ban. Correlation between asbestos exposure and asbestos-related diseases has already been established; however, authorities have been unable to effectively regulate the extensive application of asbestos in various light industries that support economic growth since the 1960s. More stringent regulations on asbestos use in industries and an eventual ban were caused indirectly by appeals made by visionary scholars and healthcare professionals but also due to the subsidence of asbestos-related industries. With the elucidation of factors that affect asbestos regulation and ban, a thorough long-term healthcare plan for the neglected victims of asbestos-related diseases and upstream measures for policy change must be developed. PMID:29039774
Cheung, Yee Tak Derek; Wang, Man Ping; Ho, Sai Yin; Jiang, Nan; Kwong, Antonio; Lai, Vienna; Lam, Tai Hing
2017-06-30
This study aimed to gauge the Hong Kong's public support towards new e-cigarette regulation, and examine the associated factors of the support. We conducted a two-stage, randomized cross-sectional telephone-based survey to assess the public support towards the banning of e-cigarette promotion and advertisement, its use in smoke-free venues, the sale to people aged under 18, and regulating the sale of nicotine-free e-cigarettes. Adults (aged 15 years or above) who were never smoking ( n = 1706), ex-smoking ( n = 1712) or currently smoking ( n = 1834) were included. Over half (57.8%) supported all the four regulations. Banning of e-cigarette promotion and advertisement (71.7%) received slightly less support than the other three regulations (banning of e-cigarette use in smoke-free venues (81.5%); banning of e-cigarette sale to minors (93.9%); sale restriction of nicotine-free e-cigarettes (80.9%)). Current smokers, and perceiving e-cigarettes as less harmful than traditional cigarettes or not knowing the harmfulness, were associated with a lower level of support. Our findings showed a strong public support for further regulation of e-cigarettes in Hong Kong. Current stringent measures on tobacco and e-cigarettes, and media reports on the harmfulness of e-cigarettes may underpin the strong support for the regulation.
Regulation of stem cell therapies under attack in Europe: for whom the bell tolls
Bianco, Paolo; Barker, Roger; Brüstle, Oliver; Cattaneo, Elena; Clevers, Hans; Daley, George Q; De Luca, Michele; Goldstein, Lawrence; Lindvall, Olle; Mummery, Christine; Robey, Pamela G; Sattler de Sousa e Brito, Clara; Smith, Austin
2013-01-01
At the time of writing, the Italian Parliament is debating a new law that would make it legal to practice an unproven stem cell treatment in public hospitals. The treatment, offered by a private non-medical organization, may not be safe, lacks a rationale, and violates current national laws and European regulations. This case raises multiple concerns, most prominently the urgent need to protect patients who are severely ill, exposed to significant risks, and vulnerable to exploitation. The scientific community must consider the context—social, financial, medical, legal—in which stem cell science is currently situated and the need for stringent regulation. Additional concerns are emerging. These emanate from the novel climate, created within science itself, and stem cell science in particular, by the currently prevailing model of ‘translational medicine'. Only rigorous science and rigorous regulation can ensure translation of science into effective therapies rather than into ineffective market products, and mark, at the same time, the sharp distinction between the striving for new therapies and the deceit of patients. PMID:23644381
Securing Safety - Spaceflight Standards for the Mass Market
NASA Astrophysics Data System (ADS)
Goh, G.
The projected total revenue of the space tourism industry is expected to exceed USD $1 billion by 2021. The vast economic potential of space tourism has fuelled ambitious plans for commercial orbital and suborbital flights, in addition to longer- duration spaceflights on board the International Space Station (ISS) and other planned orbiting habitats. International and national legal frameworks are challenged to provide regulations to ensure minimum standards of spaceflight safety for a high risk activity that aims to enter the mainstream tourism market. Thrown into the mix are various considerations of the number of spaceflight participants per flight, the economic viability of stringent safety standards, the plethora of possible flight vehicles and the compensation mechanism in case of violations of safety regulations. This paper surveys the legal challenges in the regulation of safety in commercial manned spaceflight, including issues of jurisdiction, authorization, licensing and liability. Drawing on analogous developments in other fields of law related to international carriage, a safety regulation framework with minimum international standards is proposed. This proposed framework considers both accident avoidance and emergency response in light of international legal, policy and economic perspectives.
40 CFR Table W - 7 of Subpart W-Default Methane Emission Factors for Natural Gas Distribution
Code of Federal Regulations, 2012 CFR
2012-07-01
... Valve 0.557 Control Valve 9.34 Pressure Relief Valve 0.27 Orifice Meter 0.212 Regulator 0.772 Open-ended Line 26.131 Population Emission Factors—Below Grade Metering-Regulating station 1 Components, Gas... 100 to 300 psig 0.20 Below Grade M&R Station, Inlet Pressure Population Emission...
High Efficiency, Clean Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald Stanton
2010-03-31
Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast,more » the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R&D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R&D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.« less
Mobile sources critical review: 1998 NARSTO assessment
NASA Astrophysics Data System (ADS)
Sawyer, R. F.; Harley, R. A.; Cadle, S. H.; Norbeck, J. M.; Slott, R.; Bravo, H. A.
Mobile sources of air pollutants encompass a range of vehicle, engine, and fuel combinations. They emit both of the photochemical ozone precursors, hydrocarbons and oxides of nitrogen. The most important source of hydrocarbons and oxides of nitrogen are light- and heavy-duty on-road vehicles and heavy-duty off-road vehicles, utilizing spark and compression ignition engines burning gasoline and diesel respectively. Fuel consumption data provide a convenient starting point for assessing current and future emissions. Modern light-duty, gasoline vehicles when new have very low emissions. The in-use fleet, due largely to emissions from a small "high emitter" fraction, has significantly larger emissions. Hydrocarbons and carbon monoxide are higher than reported in current inventories. Other gasoline powered mobile sources (motorcycles, recreational vehicles, lawn, garden, and utility equipment, and light aircraft) have high emissions on a per quantity of fuel consumed basis, but their contribution to total emissions is small. Additional uncertainties in spatial and temporal distribution of emissions exist. Heavy-duty diesel vehicles are becoming the dominant mobile source of oxides of nitrogen. Oxides of nitrogen emissions may be greater than reported in current inventories, but the evidence for this is mixed. Oxides of nitrogen emissions on a fuel-consumed basis are much greater from diesel mobile sources than from gasoline mobile sources. This is largely the result of stringent control of gasoline vehicle emissions and a lesser (heavy-duty trucks) or no control (construction equipment, locomotives, ships) of heavy-duty mobile sources. The use of alternative fuels, natural gas, propane, alcohols, and oxygenates in motor vehicles is increasing but remains small. Vehicles utilizing these fuels can be but are not necessarily cleaner than their gasoline or diesel counterparts. Historical vehicle kilometers traveled growth rates of about 2% annually in both the United States and Canada will slow somewhat to about 1.5%. Mexican growth rates are expected to be greater. Fuel consumption growth in recent years of about 1.4% annually is projected to continue as slowing gains in fuel economy from fleet turnover are more than offset by growth and the increasing number of Sport Utility Vehicles. This growth also will erode the emissions reductions resulting from cleaner new vehicles and fuels. Uncertainties in these projections are high and affected by economic activity, demographics, and the effectiveness of emissions control programs — especially those for reducing in-use emissions.
Assunta, M; Chapman, S
2004-01-01
Objective: To describe tobacco industry efforts in Malaysia to thwart government efforts to regulate tobacco promotion and health warnings. Methods: Systematic keyword and opportunistic website searches of formerly private tobacco industry internal documents made available through the Master Settlement Agreement and secondary websites; relevant information from news articles and financial reports. Results: Commencing in the 1970s, the industry began to systematically thwart government tobacco control. Guidelines were successfully promoted in the place of legislation for over two decades. Even when the government succeeded in implementing regulations such as health warnings and advertising bans they were compromised and acted effectively to retard further progress for years to come. Conclusion: Counter-measures to delay or thwart government efforts to regulate tobacco were initiated by the industry. Though not unique to Malaysia, the main difference lies in the degree to which strategies were used to successfully counter stringent tobacco control measures between 1970 and 1995. PMID:15564220
Trade treaties and alcohol advertising policy.
Gould, Ellen
2005-09-01
Restrictions on alcohol advertising are vulnerable to challenge under international trade agreements. As countries negotiate new trade treaties and expand the scope of existing ones, the risk of such a challenge increases. While alcohol advertising restrictions normally do not distinguish between foreign and domestic products, this neutral character does not protect them from being challenged under trade rules. The article analyzes four provisions of trade agreements--expropriation, de facto discrimination, market access, and necessity--in relation to the jeopardy they pose for alcohol advertising restrictions. Key cases are reviewed to illustrate how these provisions have been used to either overturn existing advertising restrictions or prevent new ones from coming into force. The article also reports on the mixed results governments have had in trying to justify their regulations to trade panels and the stringent criteria imposed for proving that a regulation is "necessary."
Regulatory Phosphorylation of Ikaros by Bruton's Tyrosine Kinase
Zhang, Jian; Ishkhanian, Rita; Uckun, Fatih M.
2013-01-01
Diminished Ikaros function has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL), the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros is of paramount importance for normal lymphocyte ontogeny. Here we provide genetic and biochemical evidence for a previously unknown function of Bruton's tyrosine kinase (BTK) as a partner and posttranslational regulator of Ikaros, a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis. We demonstrate that BTK phosphorylates Ikaros at unique phosphorylation sites S214 and S215 in the close vicinity of its zinc finger 4 (ZF4) within the DNA binding domain, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Our results further demonstrate that BTK-induced activating phosphorylation is critical for the optimal transcription factor function of Ikaros. PMID:23977012
Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, G.J.
2001-10-29
Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency.more » This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.« less
Functional impact of splice isoform diversity in individual cells
Yap, Karen; Makeyev, Eugene V.
2016-01-01
Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a ‘splicing noise’, co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. PMID:27528755
Functional impact of splice isoform diversity in individual cells.
Yap, Karen; Makeyev, Eugene V
2016-08-15
Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a 'splicing noise', co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. © 2016 The Author(s).
Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichol, Corrie Ian
This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO 2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO 2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO 2 emissions would have been reduced by 350 millionmore » metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).« less
Radio Constraints on Long-lived Magnetar Remnants in Short Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Fong, W.; Metzger, B. D.; Berger, E.; Özel, F.
2016-11-01
The merger of a neutron star (NS) binary may result in the formation of a rapidly spinning magnetar. The magnetar can potentially survive for seconds or longer as a supramassive NS before collapsing to a black hole if, indeed, it collapses at all. During this process, a fraction of the magnetar’s rotational energy of ˜1053 erg is transferred via magnetic spin-down to the surrounding ejecta. The resulting interaction between the ejecta and the surrounding circumburst medium powers a year-long or greater synchrotron radio transient. We present a search for radio emission with the Very Large Array following nine short-duration gamma-ray bursts (GRBs) at rest-frame times of ≈1.3-7.6 yr after the bursts, focusing on those events that exhibit early-time excess X-ray emission that may signify the presence of magnetars. We place upper limits of ≲18-32 μJy on the 6.0 GHz radio emission, corresponding to spectral luminosities of ≲(0.05-8.3) × 1039 erg s-1. Comparing these limits to the predicted radio emission from a long-lived remnant and incorporating measurements of the circumburst densities from broadband modeling of short GRB afterglows, we rule out a stable magnetar with an energy of 1053 erg for half of the events in our sample. A supramassive remnant that injects a lower rotational energy of 1052 erg is ruled out for a single event, GRB 050724A. This study represents the deepest and most extensive search for long-term radio emission following short GRBs to date, and thus the most stringent limits placed on the physical properties of magnetars associated with short GRBs from radio observations.
NASA Technical Reports Server (NTRS)
Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Courturier, C.; Granot, J.; Stecker, Floyd William; Cohen-Tanugi, J.; Longo, F.
2013-01-01
We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E(sub QG)) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB 090510 and are E(sub QG,1) > 7.6 times the Planck energy (E(sub Pl)) and E(sub QG,2) > 1.3×10(exp 11) GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of approx. 2. Our results disfavor any class of models requiring E(sub QG,1) < or approx. E(sub Pl)
Stringent Constraints on Fundamental Constant Evolution Using Conjugate 18 cm Satellite OH Lines
NASA Astrophysics Data System (ADS)
Kanekar, Nissim; Ghosh, Tapasi; Chengalur, Jayaram N.
2018-02-01
We have used the Arecibo Telescope to carry out one of the deepest-ever integrations in radio astronomy, targeting the redshifted conjugate satellite OH 18 cm lines at z ≈0.247 towards PKS 1413 +135 . The satellite OH 1720 and 1612 MHz lines are, respectively, in emission and absorption, with exactly the same line shapes due to population inversion in the OH ground state levels. Since the 1720 and 1612 MHz line rest frequencies have different dependences on the fine structure constant α and the proton-electron mass ratio μ , a comparison between their measured redshifts allows one to probe changes in α and μ with cosmological time. In the case of conjugate satellite OH 18 cm lines, the predicted perfect cancellation of the sum of the line optical depths provides a strong test for the presence of systematic effects that might limit their use in probing fundamental constant evolution. A nonparametric analysis of our new Arecibo data yields [Δ X /X ] =(+0.97 ±1.52 )×10-6 , where X ≡μ α2 . Combining this with our earlier results from the Arecibo Telescope and the Westerbork Synthesis Radio Telescope, we obtain [Δ X /X ] =(-1.0 ±1.3 )×10-6 , consistent with no changes in the quantity μ α2 over the last 2.9 Gyr. This is the most stringent present constraint on fractional changes in μ α2 from astronomical spectroscopy, and with no evidence for systematic effects.
Vasileiou, V.; Jacholkowska, A.; Piron, F.; ...
2013-06-04
For this research, we analyze the MeV/GeV emission from four bright gamma-ray bursts (GRBs) observed by the Fermi Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some quantum gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic, spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derivemore » limits on the QG energy scale (the energy scale where LIV-inducing QG effects become strong, E QG) and the coefficients of the Standard Model Extension. For the subluminal case (where high-energy photons propagate more slowly than lower-energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% C.L.) are obtained from GRB 090510 and are E QG,1 > 7.6 times the Planck energy (E Pl) and E QG,2 > 1.3 × 10 11 GeV for linear and quadratic leading-order LIV-induced vacuum dispersion, respectively. In conclusion, these limits improve the latest constraints by Fermi and H.E.S.S. by a factor of ~2 . Our results disfavor any class of models requiring E QG,1 ≲ E Pl .« less
Stringent Constraints on Fundamental Constant Evolution Using Conjugate 18 cm Satellite OH Lines.
Kanekar, Nissim; Ghosh, Tapasi; Chengalur, Jayaram N
2018-02-09
We have used the Arecibo Telescope to carry out one of the deepest-ever integrations in radio astronomy, targeting the redshifted conjugate satellite OH 18 cm lines at z≈0.247 towards PKS 1413+135. The satellite OH 1720 and 1612 MHz lines are, respectively, in emission and absorption, with exactly the same line shapes due to population inversion in the OH ground state levels. Since the 1720 and 1612 MHz line rest frequencies have different dependences on the fine structure constant α and the proton-electron mass ratio μ, a comparison between their measured redshifts allows one to probe changes in α and μ with cosmological time. In the case of conjugate satellite OH 18 cm lines, the predicted perfect cancellation of the sum of the line optical depths provides a strong test for the presence of systematic effects that might limit their use in probing fundamental constant evolution. A nonparametric analysis of our new Arecibo data yields [ΔX/X]=(+0.97±1.52)×10^{-6}, where X≡μα^{2}. Combining this with our earlier results from the Arecibo Telescope and the Westerbork Synthesis Radio Telescope, we obtain [ΔX/X]=(-1.0±1.3)×10^{-6}, consistent with no changes in the quantity μα^{2} over the last 2.9 Gyr. This is the most stringent present constraint on fractional changes in μα^{2} from astronomical spectroscopy, and with no evidence for systematic effects.
First Direct-Detection Constraints on eV-Scale Hidden-Photon Dark Matter with DAMIC at SNOLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.
We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30 eVmore » $$c^{-2}$$ with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of hidden photons, the sensitivity to the kinetic mixing parameter $$\\kappa$$ is competitive with constraints from solar emission, reaching a minimum value of 2.2$$\\times$$$10^{-14}$$ at 17 eV$$c^{-2}$$. These results are the most stringent direct detection constraints on hidden-photon dark matter with masses 3-12 eV$$c^{-2}$$ and the first demonstration of direct experimental sensitivity to ionization signals $<$12 eV from dark matter interactions.« less
REVIEWS OF TOPICAL PROBLEMS: Cooling of neutron stars and superfluidity in their cores
NASA Astrophysics Data System (ADS)
Yakovlev, Dmitrii G.; Levenfish, Kseniya P.; Shibanov, Yurii A.
1999-08-01
We study the heat capacity and neutrino emission reactions (direct and modified Urca processes, nucleon-nucleon bremsstrahlung, Cooper pairing of nucleons) in the supranuclear density matter of neutron star cores with superfluid neutrons and protons. Various superfluidity types are analysed (singlet-state pairing and two types of triplet-state pairing, without and with gap nodes at the nucleon Fermi surface). The results are used for cooling simulations of isolated neutron stars. Both the standard cooling and the cooling enhanced by the direct Urca process are strongly affected by nucleon superfluidity. Comparison of the cooling theory of isolated neutron stars with observations of their thermal radiation may give stringent constraints on the critical temperatures of the neutron and proton superfluidities in the neutron star cores.
Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
Zhou, Hufeng; Rezaei, Javad; Hugo, Willy; Gao, Shangzhi; Jin, Jingjing; Fan, Mengyuan; Yong, Chern-Han; Wozniak, Michal; Wong, Limsoon
2013-01-01
H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv. But current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce. This seriously limits the study of the interaction between this important pathogen and its host H. sapiens. Computational prediction of H. sapiens-M. tuberculosis H37Rv PPIs is an important strategy to fill in the gap. Domain-domain interaction (DDI) based prediction is one of the frequently used computational approaches in predicting both intra-species and inter-species PPIs. However, the performance of DDI-based host-pathogen PPI prediction has been rather limited. We develop a stringent DDI-based prediction approach with emphasis on (i) differences between the specific domain sequences on annotated regions of proteins under the same domain ID and (ii) calculation of the interaction strength of predicted PPIs based on the interacting residues in their interaction interfaces. We compare our stringent DDI-based approach to a conventional DDI-based approach for predicting PPIs based on gold standard intra-species PPIs and coherent informative Gene Ontology terms assessment. The assessment results show that our stringent DDI-based approach achieves much better performance in predicting PPIs than the conventional approach. Using our stringent DDI-based approach, we have predicted a small set of reliable H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies. We also analyze the H. sapiens-M. tuberculosis H37Rv PPIs predicted by our stringent DDI-based approach using cellular compartment distribution analysis, functional category enrichment analysis and pathway enrichment analysis. The analyses support the validity of our prediction result. Also, based on an analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent DDI-based approach, we have discovered some important properties of domains involved in host-pathogen PPIs. We find that both host and pathogen proteins involved in host-pathogen PPIs tend to have more domains than proteins involved in intra-species PPIs, and these domains have more interaction partners than domains on proteins involved in intra-species PPI. The stringent DDI-based prediction approach reported in this work provides a stringent strategy for predicting host-pathogen PPIs. It also performs better than a conventional DDI-based approach in predicting PPIs. We have predicted a small set of accurate H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies.
Recent regulation by the US Environmental Protection Agency requires large-scale emission reductions of NOx and SO2. This study estimates the impact of these changes on the sensitivity of PM2.5 to NH3 emission reductions and the reduce...
Electronic Reporting of Air Emissions
EPA regulations require affected sources to perform emissions source tests, conduct continuous emissions monitoring, and submit compliance and emissions reports. This site provides technical resources and access for providing such submissions.
NOx Emission Reduction by Oscillating combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Institute of Gas Technology
2004-01-30
High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less
NOx Emission Reduction by Oscillating Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
John C. Wagner
2004-03-31
High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MULKEY, C.H.
1999-07-06
This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through themore » DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.« less
Dummy and injury criteria for aircraft crashworthiness.
DOT National Transportation Integrated Search
1996-04-01
Since 1988, newly type-certificated aircraft are required to comply with stringent crashworthiness requirements. Central to these more stringent requirements is a dynamic test that assesses the potential for injury for someone exposed to similar cond...
European emission, fuel quality regs tighten--
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-12-18
Emission regulations and fuel quality requirements will tighten as Europe enters the 1990s. The stiffer emission regulations, particularly in those nations in the European Economic Community (EEC), will more closely resemble those already in effect in the U.S. and Japan. Nations not in the EEC, particularly Austria, Switzerland, Norway, Sweden, and Finland, are also formulating rules that adopt the 1983 U.S. emission standards. Rules and tax incentives have also been introduced to encourage the use of unleaded gasoline in EEC member countries. Details of some of the emission rules for both EEC member and non-member countries are discussed.
Crawford, Matthew A.; Tapscott, Timothy; Fitzsimmons, Liam F.; Liu, Lin; Reyes, Aníbal M.; Libby, Stephen J.; Trujillo, Madia; Fang, Ferric C.; Radi, Rafael
2016-01-01
ABSTRACT The four-cysteine zinc finger motif of the bacterial RNA polymerase regulator DksA is essential for protein structure, canonical control of the stringent response to nutritional limitation, and thiol-based sensing of oxidative and nitrosative stress. This interdependent relationship has limited our understanding of DksA-mediated functions in bacterial pathogenesis. Here, we have addressed this challenge by complementing ΔdksA Salmonella with Pseudomonas aeruginosa dksA paralogues that encode proteins differing in cysteine and zinc content. We find that four-cysteine, zinc-bound (C4) and two-cysteine, zinc-free (C2) DksA proteins are able to mediate appropriate stringent control in Salmonella and that thiol-based sensing of reactive species is conserved among C2 and C4 orthologues. However, variations in cysteine and zinc content determine the threshold at which individual DksA proteins sense and respond to reactive species. In particular, zinc acts as an antioxidant, dampening cysteine reactivity and raising the threshold of posttranslational thiol modification with reactive species. Consequently, C2 DksA triggers transcriptional responses in Salmonella at levels of oxidative or nitrosative stress normally tolerated by Salmonella expressing C4 orthologues. Inappropriate transcriptional regulation by C2 DksA increases the susceptibility of Salmonella to the antimicrobial effects of hydrogen peroxide and nitric oxide, and attenuates virulence in macrophages and mice. Our findings suggest that the redox-active sensory function of DksA proteins is finely tuned to optimize bacterial fitness according to the levels of oxidative and nitrosative stress encountered by bacterial species in their natural and host environments. PMID:27094335
Medical waste treatment and disposal methods used by hospitals in Oregon, Washington, and Idaho.
Klangsin, P; Harding, A K
1998-06-01
This study investigated medical waste practices used by hospitals in Oregon, Washington, and Idaho, which includes the majority of hospitals in the U.S. Environmental Protection Agency's (EPA) Region 10. During the fall of 1993, 225 hospitals were surveyed with a response rate of 72.5%. The results reported here focus on infectious waste segregation practices, medical waste treatment and disposal practices, and the operating status of hospital incinerators in these three states. Hospitals were provided a definition of medical waste in the survey, but were queried about how they define infectious waste. The results implied that there was no consensus about which agency or organization's definition of infectious waste should be used in their waste management programs. Confusion around the definition of infectious waste may also have contributed to the finding that almost half of the hospitals are not segregating infectious waste from other medical waste. The most frequently used practice of treating and disposing of medical waste was the use of private haulers that transport medical waste to treatment facilities (61.5%). The next most frequently reported techniques were pouring into municipal sewage (46.6%), depositing in landfills (41.6%), and autoclaving (32.3%). Other methods adopted by hospitals included Electro-Thermal-Deactivation (ETD), hydropulping, microwaving, and grinding before pouring into the municipal sewer. Hospitals were asked to identify all methods they used in the treatment and disposal of medical waste. Percentages, therefore, add up to greater than 100% because the majority chose more than one method. Hospitals in Oregon and Washington used microwaving and ETD methods to treat medical waste, while those in Idaho did not. No hospitals in any of the states reported using irradiation as a treatment technique. Most hospitals in Oregon and Washington no longer operate their incinerators due to more stringent regulations regarding air pollution emissions. Hospitals in Idaho, however, were still operating incinerators in the absence of state regulations specific to these types of facilities.
Global emission projections for the transportation sector using dynamic technology modeling
NASA Astrophysics Data System (ADS)
Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.
2014-06-01
In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable detail on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC (Intergovernmental Panel on Climate Change) scenarios (A1B, A2, B1, and B2). With global fossil-fuel use (oil and coal) in the transportation sector in the range of 128-171 EJ across the four scenarios, global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of non-methane total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM) in the year 2030. At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to global CO and THC emissions in the year 2010; this dominance shifts to Africa and South Asia in the future. By the year 2050, for CO and THC emissions, non-road engines contribute the greatest fraction in Asia and the former USSR, while on-road vehicles make the largest contribution in Latin America, Africa, and the Middle East; for NOx and PM emissions, shipping controls the trend in most regions. These forecasts include a formal treatment of the factors that drive technology choices in the global vehicle sector and therefore represent a robust and plausible projection of what future emissions may be. These results have important implications for emissions of gases and aerosols that influence air quality, human health, and climate change.
Global emission projections for the transportation sector using dynamic technology modeling
NASA Astrophysics Data System (ADS)
Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.
2013-09-01
In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2). We project that global fossil-fuel use (oil and coal) in the transportation sector will be in the range of 3.0-4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM). At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to global CO and THC emissions in the year 2010; this dominance shifts to Africa and South Asia in the future. By the year 2050, for CO and THC emissions, non-road engines contribute the greatest fraction in Asia and the Former USSR, while on-road vehicles make the largest contribution in Latin America, Africa, and the Middle East; for NOx and PM emissions, shipping controls the trend in most regions. These forecasts include a formal treatment of the factors that drive technology choices in the global vehicle sector and therefore represent a more realistic projection of what future emissions are likely to be. These results have important implications for emissions of gases and aerosols that influence air quality, human health, and climate change.
Global emission projections for the transportation sector using dynamic technology modeling
NASA Astrophysics Data System (ADS)
Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.
2013-12-01
In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2). We project that global fossil-fuel use (oil and coal) in the transportation sector will be in the range of 3.0-4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM). At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to global CO and THC emissions in the year 2010; this dominance shifts to Africa and South Asia in the future. By the year 2050, for CO and THC emissions, non-road engines contribute the greatest fraction in Asia and the Former USSR, while on-road vehicles make the largest contribution in Latin America, Africa, and the Middle East; for NOx and PM emissions, shipping controls the trend in most regions. These forecasts include a formal treatment of the factors that drive technology choices in the global vehicle sector and therefore represent a more realistic projection of what future emissions are likely to be. These results have important implications for emissions of gases and aerosols that influence air quality, human health, and climate change.
Waluś, Konrad J; Warguła, Łukasz; Krawiec, Piotr; Adamiec, Jarosław M
2018-02-01
The high awareness of intensification and frequency of smog phenomenon all over the world in XXI age makes for detailed analyses of the reasons of its formation and prevention. The governments of the developed countries and conscious of real hazards, including many European countries, aim to restrict the emission of harmful gases. In literature, we can find the discussions on the influence of this phenomenon on the health and life of inhabitants of contaminated areas. Some elaborations of prognostic models, descriptions of pollution sources, the manner of their restriction, and the analysis of causal-consecutive correlation are also popular. The influence of pollutions resulting from the operation of vehicles, planes, and the industry are well described. However, every machine and device which is driven with a combustion engine has the effect on the general level of anthropogenic pollutions. These drives are subject of different regulations limiting their emission for service conditions and applications. One of the groups of such machines described in European and American regulations is non-road mobile machinery. The aim of this paper is the presentation of the problem of weak analysis and application of engineering and technological tools for machinery drive emission, despite of many publications on hazards and problems of emission. These machines have the influence on both the increase of global contamination and the machine users. The regulations of the European Union take into consideration the generated hazards and restrict the emission of machine exhaust gases by approval tests-these regulations are continually improved, and the effects of these works are new emission limits in 2019. However, these activities seem to be liberal as opposed to limits of the emission for passenger and goods vehicles where the technological development of the construction is greater and the regulations are the most rigorous. During the analysis of the development of non-road mobile machinery in the correlation with automotive vehicles, we can indicate engineering and technological solutions which are limiting the emission of non-road mobile machinery, but which are not applied. Due to liberal regulations for this group of machinery, the producers do not apply innovative solutions which can be found in road vehicles. The paper presents the synthetic review of existing EU regulations concerning limits of the emission of harmful exhaust gases which are generated by spark-ignition combustion engines of non-road mobile machinery. The authors show the divergences between the limits of the emission of harmful exhaust gases generated by road vehicles and non-road mobile machinery (boats and railway engines are not taken into account). The authors present the directions of the development of the combustion process control and systems limiting the emission of harmful exhaust gases. High innovative automotive industry was indicated as the direction of the development for limiting the influence of the emission on the environment by non-road mobile machinery.
Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich
2005-09-01
The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.
A search for Hα emission in high-metallicity damped Lyman α systems at z ˜ 2.4
NASA Astrophysics Data System (ADS)
Wang, Wei-Hao; Kanekar, Nissim; Prochaska, J. Xavier
2015-04-01
We report on a sensitive search for redshifted Hα line-emission from three high-metallicity damped Lyα absorbers (DLAs) at z ≈ 2.4 with the Near-infrared Integral Field Spectrometer (NIFS) on the Gemini-North telescope, assisted by the ALTtitude conjugate Adaptive optics for the InfraRed (ALTAIR) system with a laser guide star. Within the NIFS field-of-view, ≈3.22 arcsec × 2.92 arcsec corresponding to ≈25 kpc × 23 kpc at z = 2.4, we detect no statistically significant line-emission at the expected redshifted Hα wavelengths. The measured root-mean-square noise fluctuations in 0.4 arcsec apertures are 1-3 × 10-18 erg s-1 cm-2. Our analysis of simulated, compact, line-emitting sources yields stringent limits on the star formation rates (SFRs) of the three DLAs, <2.2 M⊙ yr-1 (3σ) for two absorbers, and <11 M⊙ yr-1 (3σ) for the third, at all impact parameters within ≈12.5 kpc to the quasar sightline at the DLA redshift. For the third absorber, the SFR limit is <4.4 M⊙ yr-1 for locations away from the quasar sightline. These results demonstrate the potential of adaptive optics-assisted, integral field unit searches for galaxies associated with high-z DLAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croll, Bryce; Albert, Loic; Lafreniere, David
We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K {sub CONT}-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so asmore » to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations.« less
Large Engine Technology Program. Task 22: Variable Geometry Concepts for Rich-Quench-Lean Combustors
NASA Technical Reports Server (NTRS)
Tacina, Robert R. (Technical Monitor); Cohen, J. M.; Padget, F. C.; Kwoka, D.; Wang, Q.; Lohmann, R. P.
2005-01-01
The objective of the task reported herein was to define, evaluate, and optimize variable geometry concepts suitable for use with a Rich-Quench-Lean (RQL) combustor. The specific intent was to identify approaches that would satisfy High Speed Civil Transport (HSCT) cycle operational requirements with regard to fuel-air ratio turndown capability, ignition, and stability margin without compromising the stringent emissions, performance, and reliability goals that this combustor would have to achieve. Four potential configurations were identified and three of these were refined and tested in a high-pressure modular RQL combustor rig. The tools used in the evolution of these concepts included models built with rapid fabrication techniques that were tested for airflow characteristics to confirm sizing and airflow management capability, spray patternation, and atomization characterization tests of these models and studies that were supported by Computational Fluid Dynamics analyses. Combustion tests were performed with each of the concepts at supersonic cruise conditions and at other critical conditions in the flight envelope, including the transition points of the variable geometry system, to identify performance, emissions, and operability impacts. Based upon the cold flow characterization, emissions results, acoustic behavior observed during the tests and consideration of mechanical, reliability, and implementation issues, the tri-swirler configuration was selected as the best variable geometry concept for incorporation in the RQL combustor evolution efforts for the HSCT.
New test of weak equivalence principle using polarized light from astrophysical events
NASA Astrophysics Data System (ADS)
Wu, Xue-Feng; Wei, Jun-Jie; Lan, Mi-Xiang; Gao, He; Dai, Zi-Gao; Mészáros, Peter
2017-05-01
Einstein's weak equivalence principle (WEP) states that any freely falling, uncharged test particle follows the same identical trajectory independent of its internal structure and composition. Since the polarization of a photon is considered to be part of its internal structure, we propose that polarized photons from astrophysical transients, such as gamma-ray bursts (GRBs) and fast radio bursts (FRBs), can be used to constrain the accuracy of the WEP through the Shapiro time delay effect. Assuming that the arrival time delays of photons with different polarizations are mainly attributed to the gravitational potential of the Laniakea supercluster of galaxies, we show that a strict upper limit on the differences of the parametrized post-Newtonian parameter γ value for the polarized optical emission of GRB 120308A is Δ γ <1.2 ×10-10 , for the polarized gamma-ray emission of GRB 100826A is Δ γ <1.2 ×10-10 , and for the polarized radio emission of FRB 150807 is Δ γ <2.2 ×10-16 . These are the first direct verifications of the WEP for multiband photons with different polarizations. In particular, the result from FRB 150807 provides the most stringent limit to date on a deviation from the WEP, improving by one order of magnitude the previous best result based on Crab pulsar photons with different energies.
NASA Astrophysics Data System (ADS)
Gali, Adam; Zólyomi, Viktor; Somogyi, Bálint
2013-03-01
Small molecule-sized fluorescent emitters are needed as probes to image and track the locations of targeted nano-sized objects with minimal perturbation, and are much sought-after to probe biomolecules in living cells. For in vivo biological imaging, fluorescent biomarkers have to meet the following stringent requirements: (i) they should be non-toxic and bioinert, (ii) their hydrodynamical size should be sufficiently small for clearance, (iii) they should be photo-stable. Furthermore, it is highly desirable that (iv) they have intense, stable emission in the near-infrared range, and (v) they can be produced in relatively large amount for biological studies. Here we report time-density functional calculations on SiC-based QDs in the aspect of in vivo biological imaging applications. We find that Si-vacancy, divacancy, as well as single metal dopants such as Vanadium (V), Molybdenum (Mo) and Tungsten (W) in molecule-sized (1-2 nm) SiC QDs emit light efficiently in the near-infrared range. Furthermore, their emission wavelength varies on the size of host SiC QDs at less extent than that of pristine SiC QDs, thus sharper emission spectrum is expected even in a disperse size distribution of these QDs. These fluorescent SiC QDs are paramagnetic in the ground state. EU FP7 DIAMANT (Grant No. 270197)
NASA Technical Reports Server (NTRS)
Wey, Thomas
2017-01-01
With advances in computational power and availability of distributed computers, the use of even the most complex of turbulent chemical interaction models in combustors and coupled analysis of combustors and turbines is now possible and more and more affordable for realistic geometries. Recent more stringent emission standards have enticed the development of more fuel-efficient and low-emission combustion system for aircraft gas turbine applications. It is known that the NOx emissions tend to increase dramatically with increasing flame temperature. It is well known that the major difficulty, when modeling the turbulence-chemistry interaction, lies in the high non-linearity of the reaction rate expressed in terms of the temperature and species mass fractions. The transport filtered density function (FDF) model and the linear eddy model (LEM), which both use local instantaneous values of the temperature and mass fractions, have been shown to often provide more accurate results of turbulent combustion. In the present, the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models, LEM-like and EUPDF-like, capable of emulating the major processes occurring in the turbulence-chemistry interaction will be used to perform reacting flow simulations of a selected test case. The selected test case from the Volvo Validation Rig was documented by Sjunnesson.
Constraints on the Galactic Halo Dark Matter From FERMI-LAT Diffuse Measurements
Ackermann, M.; Ajello, M.; Atwood, W. B.; ...
2012-11-28
For this study, we have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e +/e – produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limitsmore » is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. In conclusion, the resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.« less
Analysis of carbon emission regulations in supply chains with volatile demand.
DOT National Transportation Integrated Search
2014-07-01
This study analyzes an inventory control problem of a company in stochastic demand environment under carbon emissions : regulations. In particular, a continuous review inventory model with multiple suppliers is investigated under carbon taxing and ca...
TSCA Section 21 Petition Requesting EPA to Regulate Anthropogenic Emissions Carbon Dioxide
This petition requests EPA to promulgate regulations under section 6 of TSCA to protect “public health and the environment from the serious harms associated with anthropogenic emissions of carbon dioxide, including ocean acidification.
Xinling, Li; Zhen, Huang
2009-03-15
A study of engine performance characteristics and both of regulated (CO, HC, NO(x), and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NO(x) and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (N(tot)) and mass (M(tot)) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NO(x) and smoke free throughout all the engine conditions. However, N(tot) for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.