Sample records for stringent optical alignment

  1. Holograms for laser diode: Single mode optical fiber coupling

    NASA Technical Reports Server (NTRS)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  2. Indexing system for optical beam steering

    NASA Technical Reports Server (NTRS)

    Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.

    1990-01-01

    This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.

  3. Two-dimensional surface strain measurement based on a variation of Yamaguchi's laser-speckle strain gauge

    NASA Technical Reports Server (NTRS)

    Barranger, John P.

    1990-01-01

    A novel optical method of measuring 2-D surface strain is proposed. Two linear strains along orthogonal axes and the shear strain between those axes is determined by a variation of Yamaguchi's laser-speckle strain gage technique. It offers the advantages of shorter data acquisition times, less stringent alignment requirements, and reduced decorrelation effects when compared to a previously implemented optical strain rosette technique. The method automatically cancels the translational and rotational components of rigid body motion while simplifying the optical system and improving the speed of response.

  4. Understanding Beam Alignment in a Coherent Lidar System

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Roychoudhari, Chandrasekhar

    2015-01-01

    Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.

  5. Mechanical tolerances study through simulations and experimental characterization for a 1000X micro-concentrator CPV module

    NASA Astrophysics Data System (ADS)

    Ritou, Arnaud; Voarino, Philippe; Goubault, Baptiste; David, Nadine; Bernardis, Sarah; Raccurt, Olivier; Baudrit, Mathieu

    2017-09-01

    Existing CPV technology markets are not compliant with a standard configuration. Concentrations vary from several suns to more than 1000 suns and the optical technology used could be very different. Nowadays, the market trends are moving toward more and more compact optical systems in order to exploit the Light Emitting Diode (LED) like approach. The aim is to increase the optical efficiency by using an ultra-short focal distance and to improve thermal management. Moreover the efficiency to weight ratio is increasing and the solar cell size becomes sub-millimetric. With these conditions, more stringent mechanical tolerances are essential to ensure an optimum optical alignment between cells and optics. A new process of micro-concentrator manufacturing is developed in this work. This process enables manufacturing and auto-alignment of Primary Optical Elements (POE) with Secondary Optical Elements (SOE) and solar cells with respect to certain mechanical tolerances. A 1000X micro-concentrator is manufactured with 0.6 x 0.6 mm² triple-junction cells and molded silicone optics. Mechanical alignment defects are studied by ray-tracing simulations and a prototype is characterized with respect to its mechanical behavior. An efficiency of 33.4% is measured with a Cell-to-Module ratio of 77.8%.

  6. Design and Error Analysis of a Vehicular AR System with Auto-Harmonization.

    PubMed

    Foxlin, Eric; Calloway, Thomas; Zhang, Hongsheng

    2015-12-01

    This paper describes the design, development and testing of an AR system that was developed for aerospace and ground vehicles to meet stringent accuracy and robustness requirements. The system uses an optical see-through HMD, and thus requires extremely low latency, high tracking accuracy and precision alignment and calibration of all subsystems in order to avoid mis-registration and "swim". The paper focuses on the optical/inertial hybrid tracking system and describes novel solutions to the challenges with the optics, algorithms, synchronization, and alignment with the vehicle and HMD systems. Tracker accuracy is presented with simulation results to predict the registration accuracy. A car test is used to create a through-the-eyepiece video demonstrating well-registered augmentations of the road and nearby structures while driving. Finally, a detailed covariance analysis of AR registration error is derived.

  7. Design, Qualification, and On Orbit Performance of the CALIPSO Aerosol Lidar Transmitter

    NASA Technical Reports Server (NTRS)

    Hovis, Floyd E.; Witt, Greg; Sullivan, Edward T.; Le, Khoa; Weimer, Carl; Applegate, Jeff; Luck, William S., Jr.; Verhapen, Ron; Cisewski, Michael S.

    2007-01-01

    The laser transmitter for the CALIPSO aerosol lidar mission has been operating on orbit as planned since June 2006. This document discusses the optical and laser system design and qualification process that led to this success. Space-qualifiable laser design guidelines included the use of mature laser technologies, the use of alignment sensitive resonator designs, the development and practice of stringent contamination control procedures, the operation of all optical components at appropriately derated levels, and the proper budgeting for the space-qualification of the electronics and software.

  8. Sidelobe-modulated optical vortices for free-space communication.

    PubMed

    Jia, P; Yang, Y; Min, C J; Fang, H; Yuan, X-C

    2013-02-15

    We propose and experimentally demonstrate a new method for free-space optical (FSO) communication, where the transmitter encodes data into a composite computer-generated hologram and the receiver decodes through a retrieved array of sidelobe-modulated optical vortices (SMOVs). By employing the SMOV generation and detection technique, the usual stringent alignment and phase-matching requirement of the detection of optical vortices is released. In transmitting a gray-scale picture with 180×180 pixels, a bit error rate as low as 3.01×10(-3) has been achieved. Due to the orbital angular momentum multiplexing and spatial paralleling, this FSO communication method possesses the ability to greatly increase the capacity of data transmission.

  9. Optical Metrology for the Segmented Optics on the Constellation-X Spectroscopy X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Content, David; Colella, David; Fleetwood, Charles; Hadjimichael, Theo; Lehan, John; McMann, Joseph; Reid, Paul; Saha, Timo; Wright, Geraldine; Zhang, William

    2004-01-01

    We present the metrology requirements and metrology implementation necessary to prove out the reflector technology for the Constellation X(C-X) spectroscopy X-ray telescope (SXT). This segmented, 1.6m diameter highly nested Wolter-1 telescope presents many metrology and alignment challenges. In particular, these mirrors have a stringent imaging error budget as compared to their intrinsic stiffness; This is required for Constellation-X to have sufficient effective area with the weight requirement. This has implications for the metrology that can be used. A variety of contract and noncontact optical profiling and interferometric methods are combined to test the formed glass substrates before replication and the replicated reflector segments.The reflectors are tested both stand-alone and in-situ in an alignment tower.Some of these methods have not been used on prior X-ray telescopes and some are feasible only because of the segmented approach used on the SXT. Methods discussed include high precision coordinate measurement machines using very low force or optical probe axial interferometric profiling azimuthal circularity profiling and use of advanced null optics such as conical computer generated hologram (CGHs).

  10. Technology Development for Nickel X-Ray Optics Enhancement

    NASA Technical Reports Server (NTRS)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  11. Alignment telescope for Antares

    NASA Astrophysics Data System (ADS)

    Appert, Q. D.; Swann, T. A.; Ward, J. H.; Hardesty, C.; Wright, L.

    The Antares Automatic Alignment System employs a specially designed telescope for alignment of its laser beamlines. There are two telescopes in the system, and since each telescope is a primary alignment reference, stringent boresight accuracy and stability over the focus range were required. Optical and mechanical designs, which meet this requirements as well as that of image quality over a wide wavelength band, are described. Special test techniques for initial assembly and alignment of the telescope are also presented. The telescope, which has a 180-mm aperture FK51-KZF2 type glass doublet objective, requires a boresight accuracy of 2.8 (SIGMA)rad at two focal lengths, and object distances between 11 meters and infinity. Travel of a smaller secondary doublet provides focus from 11 m to infinity with approximately 7.8 m effective focal length. By flipping in a third doublet, the effective focal length is reduced to 2.5 m. Telescope alignment was accomplished by using a rotary air bearing to establish an axis in front of the system and placing the focus of a Laser Unequal Path Interferometer (LUPI) at the image plane.

  12. Alignment Telescope For Antares

    NASA Astrophysics Data System (ADS)

    Appert, Q. D.; Swann, T. A.; Ward, J. H.; Hardesty, C.; Wrignt, L.

    1983-11-01

    The Antares Automatic Alignment System employs a specially designed telescope for alignment of its laser beamlines. There are two telescopes in the system, and since eacn telescope is a primary alignment reference, stringent boresight accuracy and stability over the focus range were required. Optical and mechanical designs, which meet this requirement as well as that of image quality over a wide wavelength band, are described. Special test techniques for initial assembly and alignment of the telescope are also presented. The telescope, which has a 180-mm aperture FK51-KZF2 type glass doublet objective, requires a boresight accuracy of 2.8 prad at two focal lengths, and object distances between 11 meters and infinity. Travel of a smaller secondary doublet provides focus from 11 m to infinity with approximately 7.8 m effective focal length. By flipping in a third doublet, the effective focal length is reduced to 2.5 m. Telescope alignment was accomplished by using a rotary air bearing to establish an axis in front of the system and placing the focus of a Laser Unequal Path Interferometer (LUPI) at the image plane.

  13. High-resolution AM LCD development for avionic applications

    NASA Astrophysics Data System (ADS)

    Lamberth, Larry S.; Laddu, Ravindra R.; Harris, Doug; Sarma, Kalluri R.; Li, Wang-Yang; Chien, C. C.; Chu, C. Y.; Lee, C. S.; Kuo, Chen-Lung

    2003-09-01

    For the first time, an avionic grade MVA AM LCD with wide viewing angle has been developed for use in either landscape or portrait mode. The development of a high resolution Multi-domain Vertical Alignment (MVA) Active Matrix Liquid Crystal Display (AM LCD) is described. Challenges met in this development include achieving the required performance with high luminance and sunlight readability while meeting stringent optical (image quality) and environmental performance requirements of avionics displays. In this paper the optical and environmental performance of this high resolution 14.1" MVA-AM-LCD are discussed and some performance comparisons to conventional AM-LCDs are documented. This AM LCD has found multiple Business Aviation and Military display applications and cockpit pictures are presented.

  14. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retainedmore » the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.« less

  15. [Optics heterodyne detection of the autoionization state of barium].

    PubMed

    Sun, Jiang; Su, Hong-xin; Wang, Yan-bang; Guo, Qing-lin; Zuo, Zhan-chun; Fu, Pan-ming

    2008-06-01

    The autoionization state of barium was observed by optics heterodyne between three-photon resonant nondegenerated six-wave mixing (NSWM) and two-photon resonant nondegenerated four-wave mixing (NFWM). In this way, optics heterodyne spectrum of 6p(3/2) 19d autoionization state of barium was measured. The suppression and enhancement of the NFWM signal was observed which was caused by the quantum interference between NFWM and NSWM. Our method is a pure nonlinear optic technique. It has the advantages of excellent spatial signal resolution and simple optical alignment. Here two-photon resonant NFWM is used as local oscillation, while three-photon resonant NSWM signal is used as signal beam. Detection of autoionization states of Ba was achieved by changing the frequency of signal beam. The phase matching condition of this technique is not so stringent and can be achieved over a very wide frequency range, which is very difficult in the general six-wave mixing. Furthermore, the signal is coherent light. Optics heterodyne spectrum is a Doppler-free spectroscopy when the incident lasers have narrow bandwidths.

  16. Controlling Disorder by Electric Field Directed Reconfiguration of Nanowires to Tune Random Lasing.

    PubMed

    Donahue, Philip P; Zhang, Chenji; Nye, Nicholas; Miller, Jennifer; Wang, Cheng-Yu; Tang, Rong; Christodoulides, Demetrios; Keating, Christine D; Liu, Zhiwen

    2018-06-27

    Top-down fabrication is commonly used to provide positioning control of optical structures; yet, it places stringent limitations on component materials and oftentimes, dynamic reconfigurability is challenging to realize. Here we present a reconfigurable nanoparticle platform that can integrate heterogeneous particle assembly of different shapes, sizes, and material compositions. We demonstrate dynamic manipulation of disorder in this platform and use it to controllably enhance or frustrate random laser emission for a suspension of titanium dioxide nanowires in a dye solution. Using an alternating current electric field, we control the nanowire orientation to dynamically control the collective scattering of the sample and thus light confinement. Our theoretical model indicates that an increase of 22% in scattering coefficient can be achieved for the experimentally determined nanowire length distribution upon alignment. As a result, a nearly 20-fold enhancement in lasing intensity was achieved. We illustrate the generality of the approach by demonstrating enhanced lasing for aligned nanowires of other materials including gold, mixed gold/dielectric and vanadium oxide (VxOy).

  17. Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.

    2004-01-01

    This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.

  18. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    PubMed

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  19. Eight-channel Kirkpatrick-Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments.

    PubMed

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu

    2016-10-01

    Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

  20. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter Through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared (MIR) and a far-infrared interferometer (FIR) and operates at 170 Kelvin. The MIR is a Michelson Fourier transform spectrometer utilizing a 76 mm (3 inch) diameter potassium bromide beamsplitter and compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. 'Me stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  1. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James, III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared and a far-infrared interferometer and operates at 170 Kelvin. The mid-infrared interferometer is a Michelson- type Fourier transform spectrometer utilizing a 3 inch diameter potassium bromide beamsplitter/compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. The stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  2. Beam alignment based on two-dimensional power spectral density of a near-field image.

    PubMed

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  3. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yuzheng; Robertson, John

    2016-06-06

    We calculate a large difference in the band alignments for transition metal dichalcogenide (TMD) heterojunctions when arranged in the stacked layer or lateral (in-plane) geometries, using direct supercell calculations. The stacked case follows the unpinned limit of the electron affinity rule, whereas the lateral geometry follows the strongly pinned limit of alignment of charge neutrality levels. TMDs therefore provide one of the few clear tests of band alignment models, whereas three-dimensional semiconductors give less stringent tests because of accidental chemical trends in their properties.

  4. Solving the shrinkage-induced PDMS alignment registration issue in multilayer soft lithography

    NASA Astrophysics Data System (ADS)

    Moraes, Christopher; Sun, Yu; Simmons, Craig A.

    2009-06-01

    Shrinkage of polydimethylsiloxane (PDMS) complicates alignment registration between layers during multilayer soft lithography fabrication. This often hinders the development of large-scale microfabricated arrayed devices. Here we report a rapid method to construct large-area, multilayered devices with stringent alignment requirements. This technique, which exploits a previously unrecognized aspect of sandwich mold fabrication, improves device yield, enables highly accurate alignment over large areas of multilayered devices and does not require strict regulation of fabrication conditions or extensive calibration processes. To demonstrate this technique, a microfabricated Braille display was developed and characterized. High device yield and accurate alignment within 15 µm were achieved over three layers for an array of 108 Braille units spread over a 6.5 cm2 area, demonstrating the fabrication of well-aligned devices with greater ease and efficiency than previously possible.

  5. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires almost no adjustment.

  6. Attitude sensor alignment calibration for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-01-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  7. Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser

    NASA Astrophysics Data System (ADS)

    Lu, M.; Choi, S. S.; Wagner, C. J.; Eden, J. G.; Cunningham, B. T.

    2008-06-01

    A label free biosensor based upon a vertically emitting distributed feedback (DFB) laser has been demonstrated. The DFB laser comprises a replica-molded, one-dimensional dielectric grating coated with laser dye-doped polymer as the gain medium. Adsorption of biomolecules onto the laser surface alters the DFB laser emission wavelength, thereby permitting the kinetic adsorption of a protein polymer monolayer or the specific binding of small molecules to be quantified. A bulk sensitivity of 16.6nm per refractive index unit and the detection of a monolayer of the protein polymer poly(Lys, Phe) have been observed with this biosensor. The sensor represents a departure from conventional passive resonant optical sensors from the standpoint that the device actively generates its own narrowband high intensity output without stringent requirements on the coupling alignments, resulting in a simple, robust illumination and detection configuration.

  8. Interfacial electronic structure of a hybrid organic-inorganic optical upconverter device: The role of interface states

    NASA Astrophysics Data System (ADS)

    Tsai, K. Y. F.; Helander, M. G.; Lu, Z. H.

    2009-04-01

    Organic-inorganic hybrid heterojunctions are critical for the integration of organic electronics with traditional Si and III-V semiconductor microelectronics. The amorphous nature of organic semiconductors eliminates the stringent lattice-matching requirements in semiconductor monolithic growth. However, as of yet it is unclear what driving forces dictate the energy-level alignment at hybrid organic-inorganic heterojunctions. Using photoelectron spectroscopy we investigate the energy-level alignment at the hybrid organic-inorganic heterojunction formed between S-passivated InP(100) and several commonly used hole injection/transport molecules, namely, copper phthalocyanine (CuPc), N ,N'-diphenyl-N ,N'-bis-(1-naphthyl)-1-1'-biphenyl-4,4'-diamine (α-NPD), and fullerene (C60). The energy-level alignment at the hybrid organic-inorganic heterojunction is found to be consistent with traditional interface dipole theory, originally developed to describe Schottky contacts. Contrary to conventional wisdom, hole injection from S-passivated InP(100) into an organic semiconductor is found to originate from interface states at or near the Fermi level, rather than from the valance band maximum of the semiconductor. As a result the barrier height for hole injection is defined by the offset between the surface Fermi level of the S-passivated InP(100) and the highest occupied molecular orbital of the organic. This finding sheds new light on the unusual trend in device performance reported in literature for such hybrid organic-inorganic heterojunction devices.

  9. NFIRAOS in 2015: engineering for future integration of complex subsystems

    NASA Astrophysics Data System (ADS)

    Atwood, Jenny; Andersen, David; Byrnes, Peter; Densmore, Adam; Fitzsimmons, Joeleff; Herriot, Glen; Hill, Alexis

    2016-07-01

    The Narrow Field InfraRed Adaptive Optics System (NFIRAOS) will be the first-light facility Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). NFIRAOS will be able to host three science instruments that can take advantage of this high performance system. NRC Herzberg is leading the design effort for this critical TMT subsystem. As part of the final design phase of NFIRAOS, we have identified multiple subsystems to be sub-contracted to Canadian industry. The scope of work for each subcontract is guided by the NFIRAOS Work Breakdown Structure (WBS) and is divided into two phases: the completion of the final design and the fabrication, assembly and delivery of the final product. Integration of the subsystems at NRC will require a detailed understanding of the interfaces between the subsystems, and this work has begun by defining the interface physical characteristics, stability, local coordinate systems, and alignment features. In order to maintain our stringent performance requirements, the interface parameters for each subsystem are captured in multiple performance budgets, which allow a bottom-up error estimate. In this paper we discuss our approach for defining the interfaces in a consistent manner and present an example error budget that is influenced by multiple subsystems.

  10. Investigations into phase effects from diffracted Gaussian beams for high-precision interferometry

    NASA Astrophysics Data System (ADS)

    Lodhia, Deepali

    Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.

  11. Cooperative interactions in dense thermal Rb vapour confined in nm-scale cells

    NASA Astrophysics Data System (ADS)

    Keaveney, James

    Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.

  12. Self-aligned spatial filtering using laser optical tweezers.

    PubMed

    Birkbeck, Aaron L; Zlatanovic, Sanja; Esener, Sadik C

    2006-09-01

    We present an optical spatial filtering device that has been integrated into a microfluidic system and whose motion and alignment is controlled using a laser optical tweezer. The lithographically patterned micro-optical spatial filter device filters out higher frequency additive noise components by automatically aligning itself in three dimensions to the focus of the laser beam. This self-alignment capability is achieved through the attachment of a refractive optical element directly over the circular aperture or pinhole of the spatial filter. A discussion of two different spatial filter designs is presented along with experimental results that demonstrate the effectiveness of the self-aligned micro-optic spatial filter.

  13. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  14. Study on the key alignment technology of the catadioptric optical system

    NASA Astrophysics Data System (ADS)

    Song, Chong; Fu, Xing; Fu, Xi-hong; Kang, Xiao-peng; Liu, Kai

    2017-02-01

    Optical system alignment has a great influence on the whole system accuracy. In this paper, the processing of optical system alignment was mainly studied, the processing method of optics on the primary and secondary mirrors, front correction lens group and behind correction lens group with high precision centering lathe and internal focusing telescope. Then using the height indicator complete the system alignment of the primary mirror, secondary mirror, front correction group and behind correction group. Finally, based on the zygo interferometer detect the wavefront information. Using this alignment program for catadioptric optical system, the wavefront aberration of optical system, focal length, modulation transfer function (MTF) and other technical indicators have reached the requirements.

  15. Minimal-effort planning of active alignment processes for beam-shaping optics

    NASA Astrophysics Data System (ADS)

    Haag, Sebastian; Schranner, Matthias; Müller, Tobias; Zontar, Daniel; Schlette, Christian; Losch, Daniel; Brecher, Christian; Roßmann, Jürgen

    2015-03-01

    In science and industry, the alignment of beam-shaping optics is usually a manual procedure. Many industrial applications utilizing beam-shaping optical systems require more scalable production solutions and therefore effort has been invested in research regarding the automation of optics assembly. In previous works, the authors and other researchers have proven the feasibility of automated alignment of beam-shaping optics such as collimation lenses or homogenization optics. Nevertheless, the planning efforts as well as additional knowledge from the fields of automation and control required for such alignment processes are immense. This paper presents a novel approach of planning active alignment processes of beam-shaping optics with the focus of minimizing the planning efforts for active alignment. The approach utilizes optical simulation and the genetic programming paradigm from computer science for automatically extracting features from a simulated data basis with a high correlation coefficient regarding the individual degrees of freedom of alignment. The strategy is capable of finding active alignment strategies that can be executed by an automated assembly system. The paper presents a tool making the algorithm available to end-users and it discusses the results of planning the active alignment of the well-known assembly of a fast-axis collimator. The paper concludes with an outlook on the transferability to other use cases such as application specific intensity distributions which will benefit from reduced planning efforts.

  16. MEMS Integrated Submount Alignment for Optoelectronics

    NASA Astrophysics Data System (ADS)

    Shakespeare, W. Jeffrey; Pearson, Raymond A.; Grenestedt, Joachim L.; Hutapea, Parsaoran; Gupta, Vikas

    2005-02-01

    One of the most expensive and time-consuming production processes for single-mode fiber-optic components is the alignment of the photonic chip or waveguide to the fiber. The alignment equipment is capital intensive and usually requires trained technicians to achieve desired results. Current technology requires active alignment since tolerances are only ~0.2 μ m or less for a typical laser diode. This is accomplished using piezoelectric actuated stages and active optical feedback. Joining technologies such as soldering, epoxy bonding, or laser welding may contribute significant postbond shift, and final coupling efficiencies are often less than 80%. This paper presents a method of adaptive optical alignment to freeze in place directly on an optical submount using a microelectromechanical system (MEMS) shape memory alloy (SMA) actuation technology. Postbond shift is eliminated since the phase change is the alignment actuation. This technology is not limited to optical alignment but can be applied to a variety of MEMS actuations, including nano-actuation and nano-alignment for biomedical applications. Experimental proof-of-concept results are discussed, and a simple analytical model is proposed to predict the stress strain behavior of the optical submount. Optical coupling efficiencies and alignment times are compared with traditional processes. The feasibility of this technique in high-volume production is discussed.

  17. Assembly and alignment method for optimized spatial resolution of off-axis three-mirror fore optics of hyperspectral imager.

    PubMed

    Kim, Youngsoo; Hong, Jinsuk; Choi, Byungin; Lee, Jong-Ung; Kim, Yeonsoo; Kim, Hyunsook

    2017-08-21

    A fore optics for the hyperspectral spectrometer is designed, manufactured, assembled, and aligned. The optics has a telecentric off-axis three-mirror configuration with a field of view wider than 14 degrees and an f-number as small as 2.3. The primary mirror (M1) and the secondary mirror (M2) are axially symmetric aspheric surfaces to minimize the sensitivity. The tertiary mirror (M3) is a decentered aspheric surface to minimize the coma and astigmatism aberration. The M2 also has a hole for the slit to maintain the optical performance while maximizing the telecentricity. To ensure the spatial resolution performance of the optical system, an alignment procedure is established to assemble and align the entrance slit of the spectrometer to the rear end of the fore optics. It has a great advantage to confirm and maintain the alignment integrity of the fore optics module throughout the alignment procedure. To perform the alignment procedure successfully, the precision movement control requirements are calculated and applied. As a result, the alignment goal of the RMS wave front error (WFE) to be smaller than 90 nm at all fields is achieved.

  18. Optimization of cw-QC lasers for Doppler and sub-Doppler molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelly, James F.; Disselkamp, Robert S.; Sams, Robert L.; Blake, Thomas A.; Sharpe, Steven W.; Richter, Dirk A.; Fried, Alan

    2002-09-01

    Inter-subband (Type I) quantum-cascade (QC) lasers have shown the potential to generate tunable mid-IR radiation with narrow intrinsic linewidths (< 160 KHz in 15 mSec sweeps) and excellent amplitude stability (< 3 ppm averaged over minutes). Our bench-scale efforts to develop the Type I distributed feedback (DFB)-QC lasers for fieldable atmospheric chemistry campaigns, where multipass (Herriot or White) cells are used to enhance path-length, have not yet realized performance to the low intrinsic noise levels seen in these devices. By comparison, many operational systems' levels of noise-equivalent-absorbance (NEA) using Pb-salt lasers can routinely achieve at least one-order of magnitude better cw-performance, and with much lower powers. We have found that instability effets from weak back-scattered laser light -primarily from the Herriot cell- results in feedback-implicated technical noise well above the thermal and shot-noise of standard IR detectors. Of more fundamental concern is the fact that planar-stripe DFB-QC lasers undergo beam steering and transverse spatial-mode competitions during current tuning. It is the development of fully automated sub-ppbV sensitive IR chem-sensors. It is possible to reach low-ppm levels of absorptance change-detection (ΔI/I0) over small wavelength regions with careful alignment to 100 M Herriott cells, but extreme care in spatial filtering is critical. However in the case of optical configurations which preclude significant optical feedback and need for stringent mode coupling alignments, the cw-DFB-QC lasers show great promise to do high resolution sub-Doppler spectroscopy. By serendipitous events, a varient of 'mode- or level-crossing' spectroscopy was probably rediscovered, which may allow very high resolution, sub-Doppler features and/or hyperfine alignments to be probed with 'uni-directional' topologies. We will primarily discuss the basic features of the 'uni-directional' sub-Doppler spectroscopy concept in this report. It shows potential to be exploitable in multi-pass cells or ring configurations. The phenomena of satuation 'dips' in molecular transitions appear to be very accessible with sinusoidally current-modulated DFB-QC lasers. Observations of sub-Doppler structures, either induced by residual AM 'pulsation dips' and/or hyperfine level-crossing effects (due to weak Zeeman splittings by the earth's B-field) can be recovered with good contrast. If this phenomena is indeed implicated with long-lived coherent hyperfine alignments, due perhaps to coherent population trapping in 'dark-states,' then sub-Doppler signals from saturated 'level-crossings' can potentially be seen without recourse to expensive polarization optics, nor elaborate beam shaping and isolation techniques.

  19. Optics Alignment of a Balloon-Borne Far-Infrared Interferometer BETTII

    NASA Technical Reports Server (NTRS)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Sampler, Henry; Juanola Parramon, Roser; Veach, Todd; Fixsen, Dale; Vila Hernandez De Lorenzo, Jor; Silverberg, Robert F.

    2017-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-m baseline far-infrared (FIR: 30 90 micrometer) interferometer providing spatially resolved spectroscopy. The initial scientific focus of BETTII is on clustered star formation, but this capability likely has a much broader scientific application.One critical step in developing an interferometer, such as BETTII, is the optical alignment of the system. We discuss how we determine alignment sensitivities of different optical elements on the interferogram outputs. Accordingly, an alignment plan is executed that makes use of a laser tracker and theodolites for precise optical metrology of both the large external optics and the small optics inside the cryostat. We test our alignment on the ground by pointing BETTII to bright near-infrared sources and obtaining their images in the tracking detectors.

  20. Enzyme activity assays within microstructured optical fibers enabled by automated alignment.

    PubMed

    Warren-Smith, Stephen C; Nie, Guiying; Schartner, Erik P; Salamonsen, Lois A; Monro, Tanya M

    2012-12-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women's health.

  1. Design considerations for a compact infrared airborne imager to meet alignment and assembly requirements

    NASA Astrophysics Data System (ADS)

    Spencer, Harvey

    2002-09-01

    Helicopter mounted optical systems require compact packaging, good image performance (approaching the diffraction-limit), and must survive and operate in a rugged shock and thermal environment. The always-present requirement for low weight in an airborne sensor is paramount when considering the optical configuration. In addition, the usual list of optical requirements which must be satisfied within narrow tolerances, including field-of-view, vignetting, boresight, stray light rejection, and transmittance drive the optical design. It must be determined early in the engineering process which internal optical alignment adjustment provisions must be included, which may be included, and which will have to be omitted, since adding alignment features often conflicts with the requirement for optical component stability during operation and of course adds weight. When the system is to be modular and mates with another optical system, a telescope designed by different contractor in this case, additional alignment requirements between the two systems must be specified and agreed upon. Final delivered cost is certainly critical and "touch labor" assembly time must be determined and controlled. A clear plan for the alignment and assembly steps must be devised before the optical design can even begin to ensure that an arrangement of optical components amenable to adjustment is reached. The optical specification document should be written contemporaneously with the alignment plan to insure compatibility. The optics decisions that led to the success of this project are described and the final optical design is presented. A description of some unique pupil alignment adjustments, never performed by us in the infrared, is described.

  2. MATISSE: alignment, integration, and test phase first results

    NASA Astrophysics Data System (ADS)

    Allouche, F.; Robbe-Dubois, S.; Lagarde, S.; Cruzalèbes, P.; Antonelli, P.; Bresson, Y.; Fantei-Caujolle, Y.; Marcotto, A.; Morel, S.; Beckmann, U.; Bettonvil, F.; Berio, Ph.; Heininger, M.; Lehmitz, M.; Agocs, T.; Brast, R.; Elswijk, E.; Ives, D.; Meixner, K.; Laun, W.; Mellein, M.; Neumann, U.; Bailet, C.; Clausse, J.-M.; Matter, A.; Meilland, A.; Millour, F.; Petrov, R. G.; Accardo, M.; Bristow, P.; Frahm, R.; Glindemann, A.; Gonzáles Herrera, J.-C.; Lizon, J.-L.; Schöller, M.; Graser, U.; Jaffe, W.; Lopez, B.

    2016-08-01

    MATISSE (Multi AperTure mid-Infrared SpectroScopic Experiment) is the spectro-interferometer for the VLTI of the European Southern Observatory, operating in near and mid-infrared, and combining up to four beams from the unit or the auxiliary telescopes. MATISSE will offer new breakthroughs in the study of circumstellar environments by allowing the multispectral mapping of the material distribution, the gas and essentially the dust. The instrument consists in a warm optical system (WOP) accepting four optical beams and relaying them after a dichroic splitting (for the L and M- and N- spectral bands) to cold optical benches (COB) located in two separate cryostats. The Observatoire de la Côte d'Azur is in charge of the WOP providing the spectral band separation, optical path equalization and modulation, pupil positioning, beam anamorphosis, beam commutation, and calibration. NOVA-ASTRON is in charge of the COB providing the functions of beam selection, reduction of thermal background emission, spatial filtering, pupil transfer, photometry and interferometry splitting, additional beam anamorphosis, spectral filtering, polarization selection, image dispersion, and image combination. The Max Planck Institut für Radio Astronomie is in charge of the operation and performance validation of the two detectors, a HAWAII-2RG from Teledyne for the L- and M- bands and a Raytheon AQUARIUS for the N-band. Both detectors are provided by ESO. The Max Planck Institut für Astronomie is in charge of the electronics and the cryostats for which the requirements on space limitations and vibration stability resulted on very specific and stringent decisions on the design. The integration and test of the COB: the two cryogenic systems, including the cold benches and the detectors, have been conducted at MPIA in parallel with the integration of the WOP at OCA. At the end of 2014, the complete instrument was integrated at OCA. Following this integration, a period of interface and alignment between the COB and the WOP took place resulting in the first interference fringes in the L-band during summer 2015 and the first interference fringes in the N-ban in March 2016. After a period of optimization of both the instrument reliability and the environmental working conditions, the test plan is presently being conducted in order to evaluate the complete performance of the instrument and its compliance with the high-level requirements. The present paper gives the first results of the alignment, integration and test phase of the MATISSE instrument.

  3. 75 FR 32611 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... implement more stringent standards for stationary compression ignition engines with displacement greater... engines with displacement at or above 30 liters per cylinder to align more closely with recent standards.... Standards for New Engines With Displacement Greater Than or Equal to 10 l/cyl and Less Than 30 l/cyl B...

  4. Multianode Photomultiplier Tube Alignment for the MINERvA Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Bruno, Jorge

    2006-10-01

    The MINERvA experiment (Main INjector ExpeRiment vA) at FNAL will study the neutrino-nucleon and neutrino-nucleus interaction. The light collection from the detector will be done via optic fibers using Hamamatsu H8804 64-channel photomultiplier tubes (PMT). Each PMT channel needs to be precisely aligned with the corresponding optic fiber. The MINERvA PMT optical boxes contain precision machined optic ``cookies'' which capture the 8x8 array of optic fibers. Each PMT-cookie pair needs to be aligned as precisely as possible. This contribution will describe the alignment setup and procedure implemented at James Madison University.

  5. Optical fiber stripper positioning apparatus

    DOEpatents

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  6. Development of Optical System for ARGO-M

    NASA Astrophysics Data System (ADS)

    Nah, Jakyoung; Jang, Jung-Guen; Jang, Bi-Ho; Han, In-Woo; Han, Jeong-Yeol; Park, Kwijong; Lim, Hyung-Chul; Yu, Sung-Yeol; Park, Eunseo; Seo, Yoon-Kyung; Moon, Il-Kwon; Choi, Byung-Kyu; Na, Eunjoo; Nam, Uk-Won

    2013-03-01

    ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.

  7. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; hide

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  8. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hetherington, Samuel E.; hide

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a "toolbox" format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  9. Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-10-01

    Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview methodology showing how it is possible to reduce complex alignment directions into a simplified set of instructions for layman service engineers.

  10. Diffractive optics for precision alignment of Euclid space telescope optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Asfour, Jean-Michel; Weidner, Frank; Bodendorf, Christof; Bode, Andreas; Poleshchuk, Alexander G.; Nasyrov, Ruslan K.; Grupp, Frank; Bender, Ralf

    2017-09-01

    We present a method for precise alignment of lens elements using specific Computer Generated Hologram (CGH) with an integrated Fizeau reference flat surface and a Fizeau interferometer. The method is used for aligning the so called Camera Lens Assembly for ESAs Euclid telescope. Each lens has a corresponding annular area on the diffractive optics, which is used to control the position of each lens. The lenses are subsequently positioned using individual annular rings of the CGH. The overall alignment accuracy is below 1 µm, the alignment sensitivity is in the range of 0.1 µm. The achieved alignment accuracy of the lenses relative to each other is mainly depending on the stability in time of the alignment tower. Error budgets when using computer generated holograms and physical limitations are explained. Calibration measurements of the alignment system and the typically reached alignment accuracies will be shown and discussed.

  11. High-speed all-optical DNA local sequence alignment based on a three-dimensional artificial neural network.

    PubMed

    Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra

    2017-07-01

    This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.

  12. Optical Analysis And Alignment Applications Using The Infrared Smartt Interferometer

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Bolen, P. D.; Liberman, I.; Seery, B. D.

    1981-12-01

    The possiblility of using the infrared Smartt interferometer for optical analysis and alignment of infrared laser systems has been discussed previously. In this paper, optical analysis of the Gigawatt Test Facility at Los Alamos, as well as a deformable mirror manufactured by Rocketdyne, are discussed as examples of the technique. The possibility of optically characterizing, as well as aligning, pulsed high energy laser systems like Helios and Antares is discussed in some detail.

  13. Optical analysis and alignment applications using the infrared Smartt interferometer

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Bolen, P. D.; Liberman, I.; Seery, B. D.

    The possibility of using the infrared Smartt interferometer for optical analysis and alignment of infrared laser systems has been discussed previously. In this paper, optical analysis of the Gigawatt Test Facility at Los Alamos, as well as a deformable mirror manufactured by Rocketdyne, are discussed as examples of the technique. The possibility of optically characterizing, as well as aligning, pulsed high energy laser systems like Helios and Antares is discussed in some detail.

  14. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  15. Scalable cell alignment on optical media substrates.

    PubMed

    Anene-Nzelu, Chukwuemeka G; Choudhury, Deepak; Li, Huipeng; Fraiszudeen, Azmall; Peh, Kah-Yim; Toh, Yi-Chin; Ng, Sum Huan; Leo, Hwa Liang; Yu, Hanry

    2013-07-01

    Cell alignment by underlying topographical cues has been shown to affect important biological processes such as differentiation and functional maturation in vitro. However, the routine use of cell culture substrates with micro- or nano-topographies, such as grooves, is currently hampered by the high cost and specialized facilities required to produce these substrates. Here we present cost-effective commercially available optical media as substrates for aligning cells in culture. These optical media, including CD-R, DVD-R and optical grating, allow different cell types to attach and grow well on them. The physical dimension of the grooves in these optical media allowed cells to be aligned in confluent cell culture with maximal cell-cell interaction and these cell alignment affect the morphology and differentiation of cardiac (H9C2), skeletal muscle (C2C12) and neuronal (PC12) cell lines. The optical media is amenable to various chemical modifications with fibronectin, laminin and gelatin for culturing different cell types. These low-cost commercially available optical media can serve as scalable substrates for research or drug safety screening applications in industry scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Design and realization of the optical and electron beam alignment system for the HUST-FEL oscillator

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Tan, P.; Liu, K. F.; Qin, B.; Liu, X.

    2018-06-01

    A Free Electron Laser(FEL) oscillator with radiation wavelength at 30-100 μ m is under commissioning at Huazhong University of Science and Technology (HUST). This work presents the schematic design and realization procedures for the optical and beam alignment system in the HUST FEL facility. The optical cavity misalignment effects are analyzed with the code OPC + Genesis 1.3, and the tolerance of misalignment is proposed with the simulation result. Depending on undulator mechanical benchmarks, a laser indicating system has been built up as reference datum. The alignment of both optical axis and beam trajectory were achieved by this alignment system.

  17. Alignment displacements of the solar optical telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Medenica, W. V.

    1978-01-01

    Solar optical telescope is a space shuttle payload which is at the present time (1978) being planned. The selected alignment method for the telescope's primary mirror is such that the six inclined legs supporting the mirror are at the same time motorized alignment actuators, changing their own length according to the alignment requirement and command. The alignment displacements were described, including circumvention of some apparent NASTRAN limitations.

  18. Design of practical alignment device in KSTAR Thomson diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J. H., E-mail: jhlee@nfri.re.kr; University of Science and Technology; Lee, S. H.

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broadmore » wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.« less

  19. Design of practical alignment device in KSTAR Thomson diagnostic.

    PubMed

    Lee, J H; Lee, S H; Yamada, I

    2016-11-01

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.

  20. Optical Wireless Communications

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi; Britz, David M.; Boucouvalas, Anthony C.; Kavehrad, Mohsen

    2005-01-01

    Call for Papers

    Optical Wireless Communications

    Submission Deadline: 1 February 2005

    Guest Editors:

    1. System and method for reproducibly mounting an optical element

      DOEpatents

      Eisenbies, Stephen; Haney, Steven

      2005-05-31

      The present invention provides a two-piece apparatus for holding and aligning the MEMS deformable mirror. The two-piece apparatus comprises a holding plate for fixedly holding an adaptive optics element in an overall optical system and a base spatially fixed with respect to the optical system and adapted for mounting and containing the holding plate. The invention further relates to a means for configuring the holding plate through adjustments to each of a number of off-set pads touching each of three orthogonal plane surfaces on the base, wherein through the adjustments the orientation of the holding plate, and the adaptive optics element attached thereto, can be aligned with respect to the optical system with six degrees of freedom when aligning the plane surface of the optical element. The mounting system thus described also enables an operator to repeatedly remove and restore the adaptive element in the optical system without the need to realign the system once that element has been aligned.

    2. Optical Alignment of the JWST ISIM to the OTE Simulator (OSIM): Current Concept and Design Studies

      NASA Technical Reports Server (NTRS)

      Frey, Bradley J.; Davila, Pamela S.; Marsh, James M.; Ohl, Raymond G.; Sullivan, Joseph

      2007-01-01

      The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) is the scientific payload of the observatory and contai ns four science instruments. During alignment and test of the integrated ISIM (i.e. ISIM + science instruments) at NASA's Goddard Space Fli ght Center (GSFC), the Optical telescope element SIMulator (OSIM) wil l be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to determine and verify the proper alignment of OSIM to ISIM during testing at GSFC. The se fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, 6 degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing.

    3. Modified alignment CGHs for aspheric surface test

      NASA Astrophysics Data System (ADS)

      Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo

      2009-08-01

      Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.

    4. Neural nets for aligning optical components in harsh environments: Beam smoothing spatial filter as an example

      NASA Technical Reports Server (NTRS)

      Decker, Arthur J.; Krasowski, Michael J.

      1991-01-01

      The goal is to develop an approach to automating the alignment and adjustment of optical measurement, visualization, inspection, and control systems. Classical controls, expert systems, and neural networks are three approaches to automating the alignment of an optical system. Neural networks were chosen for this project and the judgements that led to this decision are presented. Neural networks were used to automate the alignment of the ubiquitous laser-beam-smoothing spatial filter. The results and future plans of the project are presented.

    5. Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system

      NASA Astrophysics Data System (ADS)

      Kampmann, R.; Sinzinger, S.

      2014-12-01

      In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.

    6. Sub-cell turning to accomplish micron-level alignment of precision assemblies

      NASA Astrophysics Data System (ADS)

      Kumler, James J.; Buss, Christian

      2017-08-01

      Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.

    7. Simulation and modeling of silicon pore optics for the ATHENA x-ray telescope

      NASA Astrophysics Data System (ADS)

      Spiga, D.; Christensen, F. E.; Bavdaz, M.; Civitani, M. M.; Conconi, P.; Della Monica Ferreira, D.; Knudsen, E. B.; Massahi, S.; Pareschi, G.; Salmaso, B.; Shortt, B.; Tayabaly, K.; Westergaard, N. J.; Wille, E.

      2016-07-01

      The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with more than 1000 mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. Even if the current baseline design fulfills the required effective area of 2 m2 at 1 keV on-axis, alternative design solutions, e.g., privileging the field of view or the off-axis angular resolution, are also possible. Moreover, the stringent requirement of a 5 arcsec HEW angular resolution at 1 keV entails very small profile errors and excellent surface smoothness, as well as a precise alignment of the 1000 mirror modules to avoid imaging degradation and effective area loss. Finally, the stray light issue has to be kept under control. In this paper we show the preliminary results of simulations of optical systems based on SPO for the ATHENA X-ray telescope, from pore to telescope level, carried out at INAF/OAB and DTU Space under ESA contract. We show ray-tracing results, including assessment of the misalignments of mirror modules and the impact of stray light. We also deal with a detailed description of diffractive effects expected in an SPO module from UV light, where the aperture diffraction prevails, to X-rays where the surface diffraction plays a major role. Finally, we analyze the results of X-ray tests performed at the BESSY synchrotron, we compare them with surface finishing measurements, and we estimate the expected HEW degradation caused by the X-ray scattering.

    8. Misalignment corrections in optical interconnects

      NASA Astrophysics Data System (ADS)

      Song, Deqiang

      Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or reset beam. The operating conditions were studied to generate two stable states between the VCSOA pair. The entire functionality test was implemented with free space optical components.

    9. Multispectral optical telescope alignment testing for a cryogenic space environment

      NASA Astrophysics Data System (ADS)

      Newswander, Trent; Hooser, Preston; Champagne, James

      2016-09-01

      Multispectral space telescopes with visible to long wave infrared spectral bands provide difficult alignment challenges. The visible channels require precision in alignment and stability to provide good image quality in short wavelengths. This is most often accomplished by choosing materials with near zero thermal expansion glass or ceramic mirrors metered with carbon fiber reinforced polymer (CFRP) that are designed to have a matching thermal expansion. The IR channels are less sensitive to alignment but they often require cryogenic cooling for improved sensitivity with the reduced radiometric background. Finding efficient solutions to this difficult problem of maintaining good visible image quality at cryogenic temperatures has been explored with the building and testing of a telescope simulator. The telescope simulator is an onaxis ZERODUR® mirror, CFRP metered set of optics. Testing has been completed to accurately measure telescope optical element alignment and mirror figure changes in a cryogenic space simulated environment. Measured alignment error and mirror figure error test results are reported with a discussion of their impact on system optical performance.

    10. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

      NASA Technical Reports Server (NTRS)

      Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

      1993-01-01

      This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

    11. Optical mounts for harsh environments

      NASA Astrophysics Data System (ADS)

      Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.

      2009-08-01

      Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.

    12. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

      DOEpatents

      Johnson, Steve A.; Shannon, Robert R.

      1987-01-01

      Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

    13. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

      DOEpatents

      Johnson, S.A.; Shannon, R.R.

      1985-01-18

      Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

    14. Fiber optics welder having movable aligning mirror

      DOEpatents

      Higgins, Robert W.; Robichaud, Roger E.

      1981-01-01

      A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

    15. The PILOT optical alignment for its first flight

      NASA Astrophysics Data System (ADS)

      Mot, B.; Longval, Y.; Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; deBernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Chaigneau, M.; Coudournac, C.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Mangilli, A.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Saccoccio, M.; Salatino, M.; Savini, G.; Stever, S.; Simonella, O.; Tapie, P.; Tauber, J.; Tibbs, C.; Torre, J.-P.; Tucker, C.

      2017-12-01

      PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 µm with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015

    16. Smart and precise alignment of optical systems

      NASA Astrophysics Data System (ADS)

      Langehanenberg, Patrik; Heinisch, Josef; Stickler, Daniel

      2013-09-01

      For the assembly of any kind of optical systems the precise centration of every single element is of particular importance. Classically the precise alignment of optical components is based on the precise centering of all components to an external axis (usually a high-precision rotary spindle axis). Main drawback of this timeconsuming process is that it is significantly sensitive to misalignments of the reference (e.g. the housing) axis. In order to facilitate process in this contribution we present a novel alignment strategy for the TRIOPTICS OptiCentric® instrument family that directly aligns two elements with respect to each other by measuring the first element's axis and using this axis as alignment reference without the detour of considering an external reference. According to the optical design any axis in the system can be chosen as target axis. In case of the alignment to a barrel this axis is measured by using a distance sensor (e.g., the classically used dial indicator). Instead of fine alignment the obtained data is used for the calculation of its orientation within the setup. Alternatively, the axis of an optical element (single lens or group of lenses) whose orientation is measured with the standard OptiCentric MultiLens concept can be used as a reference. In the instrument's software the decentering of the adjusting element to the calculated axis is displayed in realtime and indicated by a target mark that can be used for the manual alignment. In addition, the obtained information can also be applied for active and fully automated alignment of lens assemblies with the help of motorized actuators.

    17. Optical alignment of the JWST ISIM to the OTE simulator (OSIM): current concept and design studies

      NASA Astrophysics Data System (ADS)

      Frey, Bradley J.; Davila, Pamela S.; Hagopian, John G.; Marsh, James M.; Ohl, Raymond G.; Wilson, Mark E.; Young, Philip J.

      2007-09-01

      The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) contains the observatory's four science instruments and their support subsystems. During alignment and test of the integrated ISIM at NASA's Goddard Space Flight Center (GSFC), the Optical telescope element SIMulator (OSIM) will be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to align the OSIM to the ISIM during testing at GSFC. These fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, six degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing. These fixtures will allow us to position the OSIM and detect OSIM-ISIM absolute alignment to better than 180 microns in translation and 540 micro-radians in rotation. We will provide a brief overview of the OSIM system and we will also discuss the relevance of these fixtures in the context of the overall ISIM alignment and test plan.

    18. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

      NASA Astrophysics Data System (ADS)

      Nagarajan, Rao M.; Rask, Steven D.

      1988-06-01

      A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.

    19. Radio-Optical Alignments in a Low Radio Luminosity Sample

      NASA Technical Reports Server (NTRS)

      Lacy, Mark; Ridgway, Susan E.; Wold, Margrethe; Lilje, Per B.; Rawlings, Steve

      1999-01-01

      We present an optically-based study of the alignment between the radio axes and the optical major axes of eight z approximately 0.7 radio galaxies in a 7C sample. The radio galaxies in this sample are approximately 20-times less radio luminous than 3C galaxies at the same redshift, and are significantly less radio-luminous than any other well-defined samples studied to date. Using Nordic Optical Telescope images taken in good seeing conditions at rest-frame wavelengths just longward of the 4000A break, we find a statistically significant alignment effect in the 7C sample. Furthermore, in two cases where the aligned components are well separated from the host we have been able to confirm spectroscopically that they are indeed at the same redshift as the radio galaxy. However, a quantitative analysis of the alignment in this sample and in a corresponding 3C sample from HST (Hubble Space Telescope) archival data indicates that the percentage of aligned flux may be lower and of smaller spatial scale in the 7C sample. Our study suggests that alignments on the 50-kpc scale are probably closely related to the radio luminosity, whereas those on the 15 kpc scale are not. We discuss these results in the context of popular models for the alignment effect.

    20. Package for integrated optic circuit and method

      DOEpatents

      Kravitz, Stanley H.; Hadley, G. Ronald; Warren, Mial E.; Carson, Richard F.; Armendariz, Marcelino G.

      1998-01-01

      A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.

    1. Package for integrated optic circuit and method

      DOEpatents

      Kravitz, S.H.; Hadley, G.R.; Warren, M.E.; Carson, R.F.; Armendariz, M.G.

      1998-08-04

      A structure and method are disclosed for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package. 6 figs.

    2. Tolerancing the alignment of large-core optical fibers, fiber bundles and light guides using a Fourier approach.

      PubMed

      Sawyer, Travis W; Petersburg, Ryan; Bohndiek, Sarah E

      2017-04-20

      Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications, for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems; however, there currently are no formal approaches to tolerancing the alignment of a light-guide coupling system. Here, we propose a Fourier alignment sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray-tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems.

    3. Tolerancing the alignment of large-core optical fibers, fiber bundles and light guides using a Fourier approach

      PubMed Central

      Sawyer, Travis W.; Petersburg, Ryan; Bohndiek, Sarah E.

      2017-01-01

      Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications; for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems, however, there currently are no formal approaches to tolerancing the alignment of a light guide coupling system. Here, we propose a Fourier Alignment Sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems. PMID:28430250

    4. JWST Integrated Science Instrument Module Alignment Optimization Tool

      NASA Technical Reports Server (NTRS)

      Bos, Brent

      2013-01-01

      During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. In order to understand how to manipulate the ISIM's degrees of freedom properly and to prepare for the ISIM flight model testing, a series of optical-mechanical analyses have been completed to develop and identify the best approaches for bringing a non-compliant ISIM element into compliance. In order for JWST to meet its observatory-level optical requirements and ambitious science goals, the ISIM element has to meet approximately 150 separate optical requirements. Successfully achieving many of those optical requirements depends on the proper alignment of the ISIM element with respect to the OTE. To verify that the ISIM element will meet its optical requirements, a series of cryogenic vacuum tests will be conducted with an OTE Simulator (OSIM). An optical Ray Trace and Geometry Model tool was developed to help solve the multi-dimensional alignment problem. The tool allows the user to determine how best to adjust the alignment of the JWST ISIM with respect to the ideal telescope interfaces so that the approximately 150 ISIM optical performance requirements can be satisfied. This capability has not existed previously.

    5. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

      NASA Astrophysics Data System (ADS)

      Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

      We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

    6. Optical Modeling of the Alignment and Test of the NASA James Webb Space Telescope

      NASA Technical Reports Server (NTRS)

      Howard, Joseph M.; Hayden, Bill; Keski-Kuha, Ritva; Feinberg, Lee

      2007-01-01

      Optical modeling challenges of the ground alignment plan and optical test and verification of the NASA James Webb Space Telescope are discussed. Issues such as back-out of the gravity sag of light-weighted mirrors, as well as the use of a sparse-aperture auto-collimating flat system are discussed. A walk-through of the interferometer based alignment procedure is summarized, and sensitivities from the sparse aperture wavefront test are included as examples.'

    7. Precision alignment and calibration of optical systems using computer generated holograms

      NASA Astrophysics Data System (ADS)

      Coyle, Laura Elizabeth

      As techniques for manufacturing and metrology advance, optical systems are being designed with more complexity than ever before. Given these prescriptions, alignment and calibration can be a limiting factor in their final performance. Computer generated holograms (CGHs) have several unique properties that make them powerful tools for meeting these demanding tolerances. This work will present three novel methods for alignment and calibration of optical systems using computer generated holograms. Alignment methods using CGHs require that the optical wavefront created by the CGH be related to a mechanical datum to locate it space. An overview of existing methods is provided as background, then two new alignment methods are discussed in detail. In the first method, the CGH contact Ball Alignment Tool (CBAT) is used to align a ball or sphere mounted retroreflector (SMR) to a Fresnel zone plate pattern with micron level accuracy. The ball is bonded directly onto the CGH substrate and provides permanent, accurate registration between the optical wavefront and a mechanical reference to locate the CGH in space. A prototype CBAT was built and used to align and bond an SMR to a CGH. In the second method, CGH references are used to align axi-symmetric optics in four degrees of freedom with low uncertainty and real time feedback. The CGHs create simultaneous 3D optical references where the zero order reflection sets tilt and the first diffracted order sets centration. The flexibility of the CGH design can be used to accommodate a wide variety of optical systems and maximize sensitivity to misalignments. A 2-CGH prototype system was aligned multiplied times and the alignment uncertainty was quantified and compared to an error model. Finally, an enhanced calibration method is presented. It uses multiple perturbed measurements of a master sphere to improve the calibration of CGH-based Fizeau interferometers ultimately measuring aspheric test surfaces. The improvement in the calibration is a function of the interferometer error and the aspheric departure of the desired test surface. This calibration is most effective at reducing coma and trefoil from figure error or misalignments of the interferometer components. The enhanced calibration can reduce overall measurement uncertainty or allow the budgeted error contribution from another source to be increased. A single set of sphere measurements can be used to calculate calibration maps for closely related aspheres, including segmented primary mirrors for telescopes. A parametric model is developed and compared to the simulated calibration of a case study interferometer.

    8. An automatic alignment system for measuring optical path of transmissometer based on light beam scanning

      NASA Astrophysics Data System (ADS)

      Zhou, Shudao; Ma, Zhongliang; Wang, Min; Peng, Shuling

      2018-05-01

      This paper proposes a novel alignment system based on the measurement of optical path using a light beam scanning mode in a transmissometer. The system controls both the probe beam and the receiving field of view while scanning in two vertical directions. The system then calculates the azimuth angle of the transmitter and the receiver to determine the precise alignment of the optical path. Experiments show that this method can determine the alignment angles in less than 10 min with errors smaller than 66 μrad in the azimuth. This system also features high collimation precision, process automation and simple installation.

    9. MUSE optical alignment procedure

      NASA Astrophysics Data System (ADS)

      Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

      2012-09-01

      MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

    10. Manufacture, alignment and measurement for a reflective triplet optics in imaging spectrometer

      NASA Astrophysics Data System (ADS)

      Yuan, Liyin; He, Zhiping; Wang, Yueming; Lv, Gang

      2016-09-01

      Reflective triplet (RT) optics is an optical form with decenters and tilts of all the three mirrors. It can be used in spectrometer as collimator and reimager to get fine optical and spectral performances. To alleviate thermal and assembly stress deformation, opto-mechanical integrated design suggests that as with all the machine elements and the mainframe, the mirrors substrates are aluminum. All the mirrors are manufactured by single-point diamond turning technology and measured by interferometer or profilometer. Because of retro-reflection by grating or prism and reimaging away from the object field, solo three mirrors optical path of RT has some aberrations. So its alignment and measurement needs an aberration corrected measuring optical system with auxiliary plane and sphere mirrors and in which the RT optics used in four pass. Manufacture, alignment and measurement for a RT optics used in long wave infrared grating spectrometer is discussed here. We realized the manufacture, alignment and test for the RT optics of a longwave infrared spectromter by CMM and interferometer. Wavefront error test by interferometer and surface profiles measured by profilometer indicate that performances of the manufactured mirrors exceed the requirements. Interferogram of the assembled RT optics shows that wavefront error rms is less than 0.0493λ@10.6μm vs design result 0.0207λ.

    11. A rigid and thermally stable all ceramic optical support bench assembly for the LSST Camera

      NASA Astrophysics Data System (ADS)

      Kroedel, Matthias; Langton, J. Brian; Wahl, Bill

      2017-09-01

      This paper will present the ceramic design, fabrication and metrology results and assembly plan of the LSST camera optical bench structure which is using the unique manufacturing features of the HB-Cesic technology. The optical bench assembly consists of a rigid "Grid" fabrication supporting individual raft plates mounting sensor assemblies by way of a rigid kinematic support system to meet extreme stringent requirements for focal plane planarity and stability.

    12. Conditions for space invariance in optical data processors used with coherent or noncoherent light.

      PubMed

      Arsenault, H R

      1972-10-01

      The conditions for space invariance in coherent and noncoherent optical processors are considered. All linear optical processors are shown to belong to one of two types. The conditions for space invariance are more stringent for noncoherent processors than for coherent processors, so that a system that is linear in coherent light may be nonlinear in noncoherent light. However, any processor that is linear in noncoherent light is also linear in the coherent limit.

    13. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

      NASA Technical Reports Server (NTRS)

      Rakoczy, John; Steincamp, James; Taylor, Jaime

      2003-01-01

      A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.

    14. Automated alignment of a reconfigurable optical system using focal-plane sensing and Kalman filtering.

      PubMed

      Fang, Joyce; Savransky, Dmitry

      2016-08-01

      Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with 8 degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis on the simulated data set to obtain Karhunen-Loève modes, which form the basis set whose weights are the system measurements. A model function, which maps the state to the measurement, is learned using nonlinear least-squares fitting and serves as the measurement function for the nonlinear estimator (extended and unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss simulated and experimental results of the full system in operation.

    15. Structural design and analysis for an ultra low CTE optical bench for the Hubble Space Telescope corrective optics

      NASA Technical Reports Server (NTRS)

      Neam, Douglas C.; Gerber, John D.

      1992-01-01

      The stringent stability requirements of the Corrective Optics Space Telescope Axial Replacement (COSTAR) necessitates a Deployable Optical Bench (DOB) with both a low CTE and high resonant frequency. The DOB design consists of a monocoque thin shell structure which marries metallic machined parts with graphite epoxy formed structure. Structural analysis of the DOB has been integrated into the laminate design and optimization process. Also, the structural analytical results are compared with vibration and thermal test data to assess the reliability of the analysis.

    16. A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design

      NASA Technical Reports Server (NTRS)

      Britcliffe, M.; Hoppe, D.; Roberts, W.; Page, N.

      2001-01-01

      This article describes a telescope design for a 10-m optical ground station for deep-space communications. The design for a direct-detection optical communications telescope differs dramatically from a telescope for imaging applications. In general, the requirements for optical manufacturing and tracking performance are much less stringent for direct detection of optical signals. The technical challenge is providing a design that will operate in the daytime/nighttime conditions required for a Deep Space Network tracking application. The design presented addresses these requirements. The design will provide higher performance at lower cost than existing designs.

    17. Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment.

      PubMed

      Pint, Cary L; Xu, Ya-Qiong; Moghazy, Sharief; Cherukuri, Tonya; Alvarez, Noe T; Haroz, Erik H; Mahzooni, Salma; Doorn, Stephen K; Kono, Junichiro; Pasquali, Matteo; Hauge, Robert H

      2010-02-23

      A scalable and facile approach is demonstrated where as-grown patterns of well-aligned structures composed of single-walled carbon nanotubes (SWNT) synthesized via water-assisted chemical vapor deposition (CVD) can be transferred, or printed, to any host surface in a single dry, room-temperature step using the growth substrate as a stamp. We demonstrate compatibility of this process with multiple transfers for large-scale device and specifically tailored pattern fabrication. Utilizing this transfer approach, anisotropic optical properties of the SWNT films are probed via polarized absorption, Raman, and photoluminescence spectroscopies. Using a simple model to describe optical transitions in the large SWNT species present in the aligned samples, polarized absorption data are demonstrated as an effective tool for accurate assignment of the diameter distribution from broad absorption features located in the infrared. This can be performed on either well-aligned samples or unaligned doped samples, allowing simple and rapid feedback of the SWNT diameter distribution that can be challenging and time-consuming to obtain in other optical methods. Furthermore, we discuss challenges in accurately characterizing alignment in structures of long versus short carbon nanotubes through optical techniques, where SWNT length makes a difference in the information obtained in such measurements. This work provides new insight to the efficient transfer and optical properties of an emerging class of long, large diameter SWNT species typically produced in the CVD process.

    18. X-ray verification of an optically aligned off-plane grating module

      NASA Astrophysics Data System (ADS)

      Donovan, Benjamin D.; McEntaffer, Randall L.; Tutt, James H.; DeRoo, Casey T.; Allured, Ryan; Gaskin, Jessica A.; Kolodziejczak, Jeffery J.

      2018-01-01

      Off-plane x-ray reflection gratings are theoretically capable of achieving high resolution and high diffraction efficiencies over the soft x-ray bandpass, making them an ideal technology to implement on upcoming x-ray spectroscopy missions. To achieve high effective area, these gratings must be aligned into grating modules. X-ray testing was performed on an aligned grating module to assess the current optical alignment methods. Results indicate that the grating module achieved the desired alignment for an upcoming x-ray spectroscopy suborbital rocket payload with modest effective area and resolving power. These tests have also outlined a pathway towards achieving the stricter alignment tolerances of future x-ray spectrometer payloads, which require improvements in alignment metrology, grating fabrication, and testing techniques.

    19. Align-and-shine photolithography

      NASA Astrophysics Data System (ADS)

      Petrusis, Audrius; Rector, Jan H.; Smith, Kristen; de Man, Sven; Iannuzzi, Davide

      2009-10-01

      At the beginning of 2009, our group has introduced a new technique that allows fabrication of photolithographic patterns on the cleaved end of an optical fibre: the align-and-shine photolithography technique (see A. Petrušis et al., "The align-and-shine technique for series production of photolithography patterns on optical fibres", J. Micromech. Microeng. 19, 047001, 2009). Align-and-shine photolithography combines standard optical lithography with imagebased active fibre alignment processes. The technique adapts well to series production, opening the way to batch fabrication of fibre-top devices (D. Iannuzzi et al., "Monolithic fibre-top cantilever for critical environments and standard applications", Appl. Phys. Lett. 88, 053501, 2006) and all other devices that rely on suitable machining of engineered parts on the tip of a fibre. In this paper we review our results and briefly discuss its potential applications.

    20. Photothermal camera port accessory for microscopic thermal diffusivity imaging

      NASA Astrophysics Data System (ADS)

      Escola, Facundo Zaldívar; Kunik, Darío; Mingolo, Nelly; Martínez, Oscar Eduardo

      2016-06-01

      The design of a scanning photothermal accessory is presented, which can be attached to the camera port of commercial microscopes to measure thermal diffusivity maps with micrometer resolution. The device is based on the thermal expansion recovery technique, which measures the defocusing of a probe beam due to the curvature induced by the local heat delivered by a focused pump beam. The beam delivery and collecting optics are built using optical fiber technology, resulting in a robust optical system that provides collinear pump and probe beams without any alignment adjustment necessary. The quasiconfocal configuration for the signal collection using the same optical fiber sets very restrictive conditions on the positioning and alignment of the optical components of the scanning unit, and a detailed discussion of the design equations is presented. The alignment procedure is carefully described, resulting in a system so robust and stable that no further alignment is necessary for the day-to-day use, becoming a tool that can be used for routine quality control, operated by a trained technician.

    1. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Kumar, Rishi, E-mail: kkraina@gmail.com; Sood, Srishti, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com

      2014-04-24

      We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

    2. Contamination monitoring approaches for EUV space optics

      NASA Technical Reports Server (NTRS)

      Ray, David C.; Malina, Roger F.; Welsh, Barry J.; Battel, Steven J.

      1989-01-01

      Data from contaminant-induced UV optics degradation studies and particulate models are used here to develop end-of-service-life instrument contamination requirements which are very stringent but achievable. The budget is divided into allocations for each phase of hardware processing. Optical and nonoptical hardware are monitored for particulate and molecular contamination during initial cleaning and baking, assembly, test, and calibration phases. The measured contamination levels are compared to the requirements developed for each phase to provide confidence that the required end-of-life levels will be met.

    3. Alignment of the Korsch type off-axis 3 mirror optical system using sensitivity table method

      NASA Astrophysics Data System (ADS)

      Lee, Kyoungmuk; Kim, Youngsoo; Hong, Jinsuk; Kim, Sug-Whan; Lee, Haeng-Bok; Choi, Se-Chol

      2018-05-01

      The optical system of the entire mechanical and optical components consist of all silicon carbide (SiC) is designed, manufactured and aligned. The Korsch type Cassegrain optical system has 3-mirrors, the primary mirror (M1), the secondary mirror (M2), the folding mirror (FM) and the tertiary mirror (M3). To assemble the M3 and the FM to the rear side of the M1 bench, the optical axis of the M3 is 65.56 mm off from the physical center. Due to the limitation of the mass budget, the M3 is truncated excluding its optical axis. The M2 was assigned to the coma compensator and the M3 the astigmatism respectively as per the result of the sensitivity analysis. Despite of the difficulty of placing these optical components in their initial position within the mechanical tolerance, the initial wave front error (WFE) performance is as large as 171.4 nm RMS. After the initial alignment, the sensitivity table method is used to reach the goal of WFE 63.3 nm RMS in all fields. We finished the alignment with the final WFE performance in all fields are as large as 55.18 nm RMS.

    4. Developments in optical modeling methods for metrology

      NASA Astrophysics Data System (ADS)

      Davidson, Mark P.

      1999-06-01

      Despite the fact that in recent years the scanning electron microscope has come to dominate the linewidth measurement application for wafer manufacturing, there are still many applications for optical metrology and alignment. These include mask metrology, stepper alignment, and overlay metrology. Most advanced non-optical lithographic technologies are also considering using topics for alignment. In addition, there have been a number of in-situ technologies proposed which use optical measurements to control one aspect or another of the semiconductor process. So optics is definitely not dying out in the semiconductor industry. In this paper a description of recent advances in optical metrology and alignment modeling is presented. The theory of high numerical aperture image simulation for partially coherent illumination is discussed. The implications of telecentric optics on the image simulation is also presented. Reciprocity tests are proposed as an important measure of numerical accuracy. Diffraction efficiencies for chrome gratings on reticles are one good way to test Kirchoff's approximation as compared to rigorous calculations. We find significant differences between the predictions of Kirchoff's approximation and rigorous methods. The methods for simulating brightfield, confocal, and coherence probe microscope imags are outlined, as are methods for describing aberrations such as coma, spherical aberration, and illumination aperture decentering.

    5. Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter

      NASA Technical Reports Server (NTRS)

      Ott, Jelanie; Matuszeski, Adam

      2011-01-01

      Custom fiber optic bundle array assemblies developed by the Photonics Group at NASA Goddard Space Flight Center were an enabling technology for both the Lunar Orbiter Laser Altimeter (LOLA) and the Laser Ranging (LR) Investigation on the Lunar Reconnaissance Orbiter (LRO) currently in operation. The unique assembly array designs provided considerable decrease in size and weight and met stringent system level requirements. This is the first time optical fiber array bundle assemblies were used in a high performance space flight application. This innovation was achieved using customized Diamond Switzerland AVIM optical connectors. For LOLA, a five fiber array was developed for the receiver telescope to maintain precise alignment for each of the 200/220 micron optical fibers collecting 1,064 nm wavelength light being reflected back from the moon. The array splits to five separate detectors replacing the need for multiple telescopes. An image illustration of the LOLA instrument can be found at the top of the figure. For the laser ranging, a seven-optical-fiber array of 400/440 micron fibers was developed to transmit light from behind the LR receiver telescope located on the end of the high gain antenna system (HGAS). The bundle was routed across two moving gimbals, down the HGAS boom arm, over a deployable mandrel and across the spacecraft to a detector on the LOLA instrument. The routing of the optical fiber bundle and its end locations is identified in the figure. The Laser Ranging array and bundle is currently accepting light at a wavelength of 532 nm sent to the moon from laser stations at Greenbelt MD and other stations around the world to gather precision ranging information from the Earth to the LRO spacecraft. The LR bundle assembly is capable of withstanding temperatures down to -55 C at the connectors, and 20,000 mechanical gimbal cycles at temperatures as cold as -20 C along the length of the seven-fiber bundle (that is packaged into the gimbals). The total bundle assembly is 10 meters long with two interconnections requiring precise clocking of the seven-fiber array pattern.

    6. Image-based overlay and alignment metrology through optically opaque media with sub-surface probe microscopy

      NASA Astrophysics Data System (ADS)

      van Es, Maarten H.; Mohtashami, Abbas; Piras, Daniele; Sadeghian, Hamed

      2018-03-01

      Nondestructive subsurface nanoimaging through optically opaque media is considered to be extremely challenging and is essential for several semiconductor metrology applications including overlay and alignment and buried void and defect characterization. The current key challenge in overlay and alignment is the measurement of targets that are covered by optically opaque layers. Moreover, with the device dimensions moving to the smaller nodes and the issue of the so-called loading effect causing offsets between between targets and product features, it is increasingly desirable to perform alignment and overlay on product features or so-called on-cell overlay, which requires higher lateral resolution than optical methods can provide. Our recently developed technique known as SubSurface Ultrasonic Resonance Force Microscopy (SSURFM) has shown the capability for high-resolution imaging of structures below a surface based on (visco-)elasticity of the constituent materials and as such is a promising technique to perform overlay and alignment with high resolution in upcoming production nodes. In this paper, we describe the developed SSURFM technique and the experimental results on imaging buried features through various layers and the ability to detect objects with resolution below 10 nm. In summary, the experimental results show that the SSURFM is a potential solution for on-cell overlay and alignment as well as detecting buried defects or voids and generally metrology through optically opaque layers.

    7. Optical and x-ray alignment approaches for off-plane reflection gratings

      NASA Astrophysics Data System (ADS)

      Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

      2015-09-01

      Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

    8. Optics Alignment Panel

      NASA Technical Reports Server (NTRS)

      Schroeder, Daniel J.

      1992-01-01

      The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.

    9. Novel low-cost 2D/3D switchable autostereoscopic system for notebook computers and other portable devices

      NASA Astrophysics Data System (ADS)

      Eichenlaub, Jesse B.

      1995-03-01

      Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.

    10. 76 FR 43267 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental To...

      Federal Register 2010, 2011, 2012, 2013, 2014

      2011-07-20

      ... optical and electronic sensors are also employed for target clearance. If any marine mammals are detected... events: (1) 30 min for take-off and to perform airborne sensor alignment, align electro- optical sensors... viewing window. The AC-130's optical and electronic sensors will also be employed for target clearance. If...

    11. Optical alignment using a CGH and an autostigmatic microscope

      NASA Astrophysics Data System (ADS)

      Parks, Robert E.

      2017-08-01

      We show how custom computer generated holograms (CGH) are used along with an autostigmatic microscope (ASM) to align both optical and mechanical components relative to the CGH. The patterns in the CGHs define points and lines in space when interrogated with the focus of the ASM. Once the ASM is aligned to the CGH, an optical or mechanical component such as a lens, a well-polished ball or a cylinder can be aligned to the ASM in 3 or 4 degrees of freedom and thus to the CGH. In this case we show how a CGH is used to make a fixture for cementing a doublet lens without the need for a rotary table or a precision vertical stage.

    12. Rotary target V-block

      NASA Technical Reports Server (NTRS)

      Mann, C. W. (Inventor)

      1984-01-01

      A device used in the optical alignment of machinery to maintain a measuring scale in the proper position for optical readings to be taken is described. The device consists of a block containing a notch in the shape of an inverted ""v'' and a rotatable plug positioned over the centerline of notch. The block is placed on the object to be aligned, the notch allows the block to be securely placed upon flat or curved surfaces. A weighted measuring scale is inserted through plug so that it contacts the object to be aligned. The scale and plug combination can be rotated so that the scale faces an optical aligning instrument. The instrument is then used in conjunction with the scale to measure the distance of the machinery from a reference plane.

    13. Orbital Verification of the CXO High-Resolution Mirror Assembly Alignment and Vignetting

      NASA Technical Reports Server (NTRS)

      Gaetz, T. J.; Jerius, D.; Edgar, R. J.; VanSpeybroeck, L. P.; Schwartz, D. A.; Markevitch, M.; Schulz, N. S.

      2000-01-01

      Prior to launch, the High Resolution Mirror Assembly (HRMA) of the Chandra X-ray Observatory underwent extensive ground testing at the X-ray Calibration Facility (XRCF) at the Marshall Space Flight Center in Huntsville. Observations made during the post-launch Orbital Activation and Calibration period, allow the on-orbit condition of the X-ray optics to be assessed. Based on these ground-based and on-orbit data, we examine the alignment of the x-ray optics based on the PSF, and the boresight and alignment of the optical axis alignment relative to the detectors. We examine the vignetting and the single reflection ghost suppression properties of the telescope. Slight imperfections in alignment lead to a small azimuthal dependence of the off-axis area; the morphology of off-axis images also shows an additional small azimuthal dependence varying as 1/2 the off-axis azimuth angle.

    14. THE DARK ENERGY CAMERA

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Flaugher, B.; Diehl, H. T.; Alvarez, O.

      2015-11-15

      The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuummore » Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel{sup −1}. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6–9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less

    15. The Dark Energy Camera

      DOE PAGES

      Flaugher, B.

      2015-04-11

      The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar.more » The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less

    16. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

      NASA Astrophysics Data System (ADS)

      Miyamura, Norihide

      2017-09-01

      For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

    17. Focal Plane Alignment Utilizing Optical CMM

      NASA Technical Reports Server (NTRS)

      Liebe, Carl Christian; Meras, Patrick L.; Clark, Gerald J.; Sedaka, Jack J.; Kaluzny, Joel V.; Hirsch, Brian; Decker, Todd A.; Scholtz, Christopher R.

      2012-01-01

      In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation is sketched in Figure 2(b) (the figure also shows the tapping tool and where to tap). At this point the fasteners for the PCB are torqued slightly so the PCB can still move. The PCB location is adjusted again with the tapping tool. This process is repeated 3 to 4 times until the final torque is achieved. The oversized mounting holes are then filled with a liquid bonding agent to secure the board in position (not shown in the sketch). A 10- to 30-micron mounting accuracy has been achieved utilizing this method..

    18. Study of optical techniques for the Ames unitary wind tunnels. Part 1: Schlieren

      NASA Technical Reports Server (NTRS)

      Lee, George

      1992-01-01

      Alignment procedures and conceptual designs for the rapid alignment of the Ames Unitary Wind Tunnel schlieren systems were devised. The schlieren systems can be aligned by translating the light source, the mirrors, and the knife edge equal distances. One design for rapid alignment consists of a manual pin locking scheme. The other is a motorized electronic position scheme. A study of two optical concepts which can be used with the schlieren system was made. These are the 'point diffraction interferometers' and the 'focus schlieren'. Effects of vibrations were studied.

    19. Alignment and qualification of the Gaia telescope using a Shack-Hartmann sensor

      NASA Astrophysics Data System (ADS)

      Dovillaire, G.; Pierot, D.

      2017-09-01

      Since almost 20 years, Imagine Optic develops, manufactures and offers to its worldwide customers reliable and accurate wavefront sensors and adaptive optics solutions. Long term collaboration between Imagine Optic and Airbus Defence and Space has been initiated on the Herschel program. More recently, a similar technology has been used to align and qualify the GAIA telescope.

    20. Latch fittings for the scientific instruments on the space telescope

      NASA Technical Reports Server (NTRS)

      Dozier, J. D.; Kaelber, E.

      1983-01-01

      Latch fittings which kinematically mount the replaceable scientific instruments onto the Space Telescope must maintain precise alignment and thermal stability for on-orbit observations. Design features which are needed to meet stringent criteria include the use of ceramic isolators for thermal and electrical insulation, materials with different coefficients of thermal expansion for athermalization, precision manufacturing procedures, and extremely tight tolerances. A specific latch fitting to be discussed is a ball-and-socket design. In addition, testing, crew aids, and problems will be covered.

    1. Aligning Optical Fibers by Means of Actuated MEMS Wedges

      NASA Technical Reports Server (NTRS)

      Morgan, Brian; Ghodssi, Reza

      2007-01-01

      Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

    2. Capabilities and challenges in transferring the wavefront-based alignment approach to small aperture multi-element optical systems

      NASA Astrophysics Data System (ADS)

      Krappig, Reik; Schmitt, Robert

      2017-02-01

      Present alignment methods already have an accuracy of some microns, allowing in general the fairly precise assembly of multi element optical systems. Nevertheless, they suffer decisive drawbacks, such as the necessity of an iterative process, stepping through all optical surfaces of the system when using autocollimation telescopes. In contrast to these limitations, the wavefront based alignment offers an elegant approach to potentially reach sub-µm accuracy in the alignment within a highly efficient process, that simultaneously acquires and evaluates the best optical solution possible. However, the practical use of these capabilities in corresponding alignment devices needs to take real sensor behavior into account. This publication will especially elaborate on the influence of the sensor properties in relation to the alignment process. The first dominant requirement is a highly stable measurement, since tiny perturbations in the optical system will have an also tiny influence on the wavefront. Secondly, the lateral sampling of the measured wavefront is supposed to be as high as possible, in order to be able to extract higher order Zernike coefficients reliable. The resulting necessity of using the largest sensor area possible conflicts with the requirement to allow a certain lateral displacement of the measured spot, indicating a perturbation. A movement of the sensor with suitable stages in turn leads to additional uncertainties connected to the actuators. Further factors include the SNR-ratio of the sensor as well as multiple measurements, in order to improve data repeatability. This publication will present a procedure of dealing with these relevant influence factors. Depending on the optical system and its properties the optimal adjustment of these parameters is derived.

    3. Trapped strontium ion optical clock

      NASA Astrophysics Data System (ADS)

      Barwood, G. P.; Gill, P.; Klein, H. A.; Hosaka, K.; Huang, G.; Lea, S. N.; Margolis, H. S.; Szymaniec, K.; Walton, B. R.

      2017-11-01

      Increasingly stringent demands on atomic timekeeping, driven by applications such as global navigation satellite systems (GNSS), communications, and very-long baseline interferometry (VBLI) radio astronomy, have motivated the development of improved time and frequency standards. There are many scientific applications of such devices in space.

    4. Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge.

      PubMed

      Korobenko, A; Milner, V

      2016-05-06

      We use an optical centrifuge to align asymmetric top SO_{2} molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light.

    5. Alignment Test Results of the JWST Pathfinder Telescope Mirrors in the Cryogenic Environment

      NASA Technical Reports Server (NTRS)

      Whitman, Tony L.; Wells, Conrad; Hadaway, James; Knight, J. Scott; Lunt, Sharon

      2016-01-01

      After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASAs Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the SI detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

    6. Hydra multiple head star sensor and its in-flight self-calibration of optical heads alignment

      NASA Astrophysics Data System (ADS)

      Majewski, L.; Blarre, L.; Perrimon, N.; Kocher, Y.; Martinez, P. E.; Dussy, S.

      2017-11-01

      HYDRA is EADS SODERN new product line of APS-based autonomous star trackers. The baseline is a multiple head sensor made of three separated optical heads and one electronic unit. Actually the concept which was chosen offers more than three single-head star trackers working independently. Since HYDRA merges all fields of view the result is a more accurate, more robust and completely autonomous multiple-head sensor, releasing the AOCS from the need to manage the outputs of independent single-head star trackers. Specific to the multiple head architecture and the underlying data fusion, is the calibration of the relative alignments between the sensor optical heads. The performance of the sensor is related to its estimation of such alignments. HYDRA design is first reminded in this paper along with simplification it can bring at system level (AOCS). Then self-calibration of optical heads alignment is highlighted through descriptions and simulation results, thus demonstrating the performances of a key part of HYDRA multiple-head concept.

    7. X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility

      NASA Technical Reports Server (NTRS)

      O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall

      2003-01-01

      In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary features --- fixed aperture mask and movable sub-aperture mask --- to facilitate X-ray characterization of the optics. Although the OAPZ was designed to- have low sensitivity to temperature offsets and gradients, analyses showed the necessity of active temperature control for the X-ray performance testing. Thus, the Smithsonian Astrophysical Observatory (SAO) implemented a thermal control and monitoring system, designed to hold the OAP2 close to its assembly.

    8. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

      NASA Astrophysics Data System (ADS)

      Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

      2016-07-01

      The James Webb Space Telescope (JWST) project is an international collaboration led by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, MD. JWST is NASA's flagship observatory that will operate nearly a million miles away from Earth at the L2 Lagrange point. JWST's optical design is a three-mirror anastigmat with four main optical components; 1) the eighteen Primary Mirror Segment Assemblies (PMSA), 2) a single Secondary Mirror Assembly (SMA), 3) an Aft-Optics Subsystem (AOS) consisting of a Tertiary Mirror and Fine Steering Mirror, and 4) an Integrated Science Instrument Module consisting of the various instruments for JWST. JWST's optical system has been designed to accommodate a significant amount of alignment capability and risk with the PMSAs and SMA having rigid body motion available on-orbit just for alignment purposes. However, the Aft-Optics Subsystem (AOS) and Integrated Science Instrument Module (ISIM) are essentially fixed optical subsystems within JWST, and therefore the cryogenic alignment of the AOS to the ISIM is critical to the optical performance and mission success of JWST. In support of this cryogenic alignment of the AOS to ISIM, an array of fiber optic sources, known as the AOS Source Plate Assembly (ASPA), are placed near the intermediate image location of JWST (between the secondary and tertiary mirrors) during thermal vacuum ground-test operations. The AOS produces images of the ASPA fiber optic sources at the JWST focal surface location, where they are captured by the various science instruments. In this manner, the AOS provides an optical yardstick by which the instruments within ISIM can evaluate their relative positions to and the alignment of the AOS to ISIM can be quantified. However, since the ASPA is located at the intermediate image location of the JWST three-mirror anastigmat design, the images of these fiber optic sources produced by the AOS are highly aberrated with approximately 2-3μm RMS wavefront error consisting mostly of 3rd-order astigmatism and coma. This is because the elliptical tertiary mirror of the AOS is used off of its ideal foci locations without the compensating wavefront effects of the JWST primary and secondary mirrors. Therefore, the PSFs created are highly asymmetric with relatively complex structure and the centroid and encircled energy analyses traditionally used to locate images are not sufficient for ensuring the AOS to ISIM alignment. A novel approach combining phase retrieval and spatial metrology was developed to both locate the images with respect to the AOS and provide calibration information for eventual AOS to ISIM alignment verification. During final JWST OTE and ISIM (OTIS) testing, only a single thru-focus image will be collected by the instruments. Therefore, tools and processes were developed to perform single-image phase retrieval on these highly aberrated images such that any single image of the ASPA source can provide calibrated knowledge of the instruments' position relative to the AOS. This paper discusses the results of the methodology, hardware, and calibration performed to ensure that the AOS and ISIM are aligned within their respective tolerances at JWST OTIS testing.

    9. Wavelength Independent Optical Lithography.

      DTIC Science & Technology

      1986-06-06

      lamp because it has a smooth, broadband output in the visible and near UV. High Density Optical Intormation Storage The NSOM concept can be combined...stringent control can be maintained over the temperature of the entire apparatus. Ideally, both of these methods should be used. - . * S P. .~ V: -:V- TwT ...DNA helixes : enantiomers of tris(4, 7-diphenylpheanthroline)ruthenium (II). Proc. Natl. Acad. Sci. U.S.A. 81, 7 (1984). 27. J.M. Fernandez, E. Neher

    10. Field alignment of bent-core smectic liquid crystals for analog optical phase modulation

      NASA Astrophysics Data System (ADS)

      Shen, Y.; Goodhew, L.; Shao, R.; Moran, M.; Korblova, E.; Walba, D. M.; Clark, N. A.; Maclennan, J. E.; Rudquist, P.

      2015-05-01

      A general method for aligning bent-core smectic liquid crystal materials is described. Alternating electric fields between interdigitated electrodes patterned on one cell surface create torques on the liquid crystal that result in uniform "bookshelf" orientation of the smectic layers. The aligned cell can then be driven in the conventional way by applying an electric field between all of the stripe electrodes connected together and a monolithic electrode on the other cell surface. Fast, analog, optical phase-only modulation is demonstrated in a device containing a polar, bent-core SmAPF material aligned using this technique.

    11. Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER

      NASA Astrophysics Data System (ADS)

      Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

      2015-10-01

      An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

    12. Associations of Varus Thrust and Alignment with Pain in Knee Osteoarthritis

      PubMed Central

      Lo, Grace H.; Harvey, William F.; McAlindon, Timothy E.

      2012-01-01

      Objective To compare associations of varus thrust and varus static alignment with pain in those with knee osteoarthritis (OA). Method This was a cross-sectional study of participants from a randomized controlled trial of vitamin D for knee OA. Participants were video recorded walking and scored for presence of varus thrust. Standard PA knee X-rays were measured for static alignment. Pain questions from the Western Ontario McMasters Osteoarthritis (WOMAC) questionnaire assessed symptoms. We calculated means for total WOMAC pain by varus thrust and varus alignment (i.e. corrected anatomic alignment < 178°). We performed ordinal logistic regressions; outcomes: individual WOMAC pain questions; predictors: varus thrust and varus alignment. Results There were 82 participants, mean age 65.1 (±8.5), mean body mass index 30.2 (±5.4), and 60% female. Total WOMAC pain was 6.3 versus 3.9, p = 0.007 in those with versus without definite varus thrust. For varus alignment, total WOMAC pain was 5.2 versus 4.2, p = 0.30. Odds ratios for pain with walking and standing were 5.5 (95%CI 2.0 – 15.1) and 6.0 (95%CI 2.2 – 16.2) in those with versus without definite varus thrust. There were no significant associations between varus alignment and individual WOMAC pain questions. Sensitivity analyses suggested a more stringent definition of varus might have been associated with walking and standing pain. Conclusion In those with knee OA, varus thrust and possibly varus static alignment, were associated with pain, specifically during weight-bearing activities. Treatment of varus thrust (e.g. via bracing or gait modification) may lead to improvement of symptoms. PMID:22307813

    13. The Alignment Test System for AXAF-I's High Resolution Mirror Assembly

      NASA Technical Reports Server (NTRS)

      Waldman, Mark

      1995-01-01

      The AXAF-1 High Resolution Mirror Assembly (HRMA) consists of four nested mirror pairs of Wolter Type-1 grazing incidence optics. The HRMA assembly and alignment will take place in a vibration-isolated, cleanliness class 100, 18 meter high tower at an Eastman Kodak Company facility in Rochester, NY. Each mirror pair must be aligned such that its image is coma-free, and the four pairs must be aligned such that their images are coincident. In addition, both the HRMA optical axis and focal point must be precisely known with respect to physical references on the HRMA. The alignment of the HRMA mirrors is measured by the HRMA Alignment Test System (HATS), which is an integral part of the tower facility. The HATS is configured as a double-pass, autocollimating Hartmann test where each mirror aperture is scanned to determine the state of alignment. This paper will describe the design and operation of the HATS.

    14. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST): V. Operational Alignment Updates

      NASA Technical Reports Server (NTRS)

      Howard, Joseph M.; Ha, Kong Q.; Shiri, Ron; Smith, J. Scott; Mosier, Gary; Muheim, Danniella

      2008-01-01

      This paper is part five of a series on the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory, and the fourth introduced the software toolkits used to perform much of the optical analysis for JWST. The work here models observatory operations by simulating line-of-sight image motion and alignment drifts over a two-week period. Alignment updates are then simulated using wavefront sensing and control processes to calculate and perform the corrections. A single model environment in Matlab is used for evaluating the predicted performance of the observatory during these operations.

    15. Experimental simulation of monogamy relation between contextuality and nonlocality in classical light.

      PubMed

      Li, Tao; Zhang, Xiong; Zeng, Qiang; Wang, Bo; Zhang, Xiangdong

      2018-04-30

      The Clauser-Horne-Shimony-Holt (CHSH) inequality and the Klyachko-Can-Binicioglu-Shumovski (KCBS) inequality present a tradeoff on the no-disturbance (ND) principle. Recently, the fundamental monogamy relation between contextuality and nonlocality in quantum theory has been demonstrated experimentally. Here we show that such a relation and tradeoff can also be simulated in classical optical systems. Using polarization, path and orbital angular momentum of the classical optical beam, in classical optical experiment we have observed the stringent monogamy relation between the two inequalities by implementing the projection measurement. Our results show the application prospect of the concepts developed recently in quantum information science to classical optical system and optical information processing.

    16. Homeotropic alignment of multiple bent-core liquid crystal phases using a polydimethylsiloxane alignment layer

      NASA Astrophysics Data System (ADS)

      Carlson, Eric D.; Foley, Lee M.; Guzman, Edward; Korblova, Eva D.; Visvanathan, Rayshan; Ryu, SeongHo; Gim, Min-Jun; Tuchband, Michael R.; Yoon, Dong Ki; Clark, Noel A.; Walba, David M.

      2017-08-01

      The control of the molecular orientation of liquid crystals (LCs) is important in both understanding phase properties and the continuing development of new LC technologies including displays, organic transistors, and electro-optic devices. Many techniques have been developed for successfully inducing alignment of calamitic LCs, though these techniques typically do not translate to the alignment of bent-core liquid crystals (BCLCs). Some techniques have been utilized to align various phases of BCLCs, but these techniques are often unsuccessful for general alignment of multiple materials and/or multiple phases. Here, we demonstrate that glass cells treated with polydimethylsiloxane (PDMS) thin films induce high quality homeotropic alignment of multiple mesophases of four BCLCs. On cooling to the lowest temperature phase the homeotropic alignment is lost, and spherulitic growth is seen in crystal and crystal-like phases including the dark conglomerate (DC) and helical nanofilament (HNF) phases. Evidence of homeotropic alignment is observed using polarized optical microscopy. We speculate that the methyl groups on the surface of the PDMS films strongly interact with the aliphatic tails of each mesogens, resulting in homeotropic alignment.

    17. Some aspects of SR beamline alignment

      NASA Astrophysics Data System (ADS)

      Gaponov, Yu. A.; Cerenius, Y.; Nygaard, J.; Ursby, T.; Larsson, K.

      2011-09-01

      Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.

    18. Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors

      NASA Astrophysics Data System (ADS)

      Lizotte, Todd E.

      2011-03-01

      There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can provide benefits covering eye safety, precise alignment and beam diagnostics.

    19. Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate.

      PubMed

      Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik

      2018-05-14

      Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.

    20. Laser beam centering and pointing system

      DOEpatents

      Rushford, Michael Charles

      2015-01-13

      An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and/or cryogenic atmospheres.

    1. DFB laser - External modulator fiber optic delay line for radar applications

      NASA Astrophysics Data System (ADS)

      Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.

      1989-09-01

      A new application of a long fiber-optic delay line as a radar repeater in a radar test set is described. The experimental 31.6-kilometer fiber-optic link includes an external modulator operating with a distributed-feedback laser and low-loss single-mode fiber matched to the laser wavelength to obtain low dispersion for achieving large bandwidth-length performance. The successful tests, in which pulse compression peak sidelobe measurements are used to confirm the link RF phase linearity and SNR performance, show that fiber-optic links can meet the stringent phase and noise requirements of modern radars at high microwave frequencies.

    2. Wavelength-addressed intra-board optical interconnection by plug-in alignment with a micro hole array

      NASA Astrophysics Data System (ADS)

      Nakama, Kenichi; Tokiwa, Yuu; Mikami, Osamu

      2010-09-01

      Intra-board interconnection between optical waveguide channels is suitable for assembling high-speed optoelectronic printed wiring boards (OE-PWB). Here, we propose a novel optical interconnection method combining techniques for both wavelength-based optical waveguide addressing and plug-in optical waveguide alignment with a micro-hole array (MHA). This array was fabricated by the mask transfer method. For waveguide addressing, we used a micro passive wavelength selector (MPWS) module, which is a type of Littrow mount monochromator consisting of an optical diffraction grating, a focusing lens, and the MHA. From the experimental results, we found that the wavelength addressing operation of the MPWS module was effective for intra-board optical interconnection.

    3. Self-Aligning Sensor-Mounting Fixture

      NASA Technical Reports Server (NTRS)

      Gilbert, Jeffrey L.; Mills, Rhonda J.

      1991-01-01

      Optical welding sensors replaced without realignment. Mounting fixture for optical weld-penetration sensor enables accurate and repeatable alignment. Simple and easy to use. Assembled on welding torch, it holds sensor securely and keeps it pointed toward weld pool. Designed for use on gas/tungsten arc-welding torch, fixture replaces multipiece bracket.

    4. Proton radiation effects on the optical properties of vertically aligned carbon nanotubes

      NASA Astrophysics Data System (ADS)

      Kuhnhenn, J.; Khavrus, V.; Leonhardt, A.; Eversheim, D.; Noll, C.; Hinderlich, S.; Dahl, A.

      2017-11-01

      This paper discusses proton-induced radiation effects in vertically aligned carbon nanotubes (VA-CNT). VACNTs exhibit extremely low optical reflectivity which makes them interesting candidates for use in spacecraft stray light suppression. Investigating their behavior in space environment is a precondition for the implementation on a satellite.

    5. RF Jitter Modulation Alignment Sensing

      NASA Astrophysics Data System (ADS)

      Ortega, L. F.; Fulda, P.; Diaz-Ortiz, M.; Perez Sanchez, G.; Ciani, G.; Voss, D.; Mueller, G.; Tanner, D. B.

      2017-01-01

      We will present the numerical and experimental results of a new alignment sensing scheme which can reduce the complexity of alignment sensing systems currently used, while maintaining the same shot noise limited sensitivity. This scheme relies on the ability of electro-optic beam deflectors to create angular modulation sidebands in radio frequency, and needs only a single-element photodiode and IQ demodulation to generate error signals for tilt and translation degrees of freedom in one dimension. It distances itself from current techniques by eliminating the need for beam centering servo systems, quadrant photodetectors and Gouy phase telescopes. RF Jitter alignment sensing can be used to reduce the complexity in the alignment systems of many laser optical experiments, including LIGO and the ALPS experiment.

    6. The center of curvature optical assembly for the JWST primary mirror cryogenic optical test: optical verification

      NASA Astrophysics Data System (ADS)

      Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron

      2010-08-01

      The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.

    7. Alignment test results of the JWST Pathfinder Telescope mirrors in the cryogenic environment

      NASA Astrophysics Data System (ADS)

      Whitman, Tony L.; Wells, Conrad; Hadaway, James B.; Knight, J. Scott; Lunt, Sharon

      2016-07-01

      After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the Science Instrument (SI) detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

    8. Automated Registration of Multimodal Optic Disc Images: Clinical Assessment of Alignment Accuracy.

      PubMed

      Ng, Wai Siene; Legg, Phil; Avadhanam, Venkat; Aye, Kyaw; Evans, Steffan H P; North, Rachel V; Marshall, Andrew D; Rosin, Paul; Morgan, James E

      2016-04-01

      To determine the accuracy of automated alignment algorithms for the registration of optic disc images obtained by 2 different modalities: fundus photography and scanning laser tomography. Images obtained with the Heidelberg Retina Tomograph II and paired photographic optic disc images of 135 eyes were analyzed. Three state-of-the-art automated registration techniques Regional Mutual Information, rigid Feature Neighbourhood Mutual Information (FNMI), and nonrigid FNMI (NRFNMI) were used to align these image pairs. Alignment of each composite picture was assessed on a 5-point grading scale: "Fail" (no alignment of vessels with no vessel contact), "Weak" (vessels have slight contact), "Good" (vessels with <50% contact), "Very Good" (vessels with >50% contact), and "Excellent" (complete alignment). Custom software generated an image mosaic in which the modalities were interleaved as a series of alternate 5×5-pixel blocks. These were graded independently by 3 clinically experienced observers. A total of 810 image pairs were assessed. All 3 registration techniques achieved a score of "Good" or better in >95% of the image sets. NRFNMI had the highest percentage of "Excellent" (mean: 99.6%; range, 95.2% to 99.6%), followed by Regional Mutual Information (mean: 81.6%; range, 86.3% to 78.5%) and FNMI (mean: 73.1%; range, 85.2% to 54.4%). Automated registration of optic disc images by different modalities is a feasible option for clinical application. All 3 methods provided useful levels of alignment, but the NRFNMI technique consistently outperformed the others and is recommended as a practical approach to the automated registration of multimodal disc images.

    9. Optical Alignment of the Global Precipitation Measurement (GPM) Star Trackers

      NASA Technical Reports Server (NTRS)

      Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; Mclean, Kyle

      2013-01-01

      The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite auto-collimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

    10. Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique.

      PubMed

      Bera, Subhabrata; Nie, Craig D; Soskind, Michael G; Harrington, James A

      2017-12-10

      The effect of misalignments of different optical components in the laser heated pedestal growth apparatus have been modeled using Zemax optical design software. By isolating the misalignments causing the non-uniformity in the melt zone, the alignment of the components was fine-tuned. Using this optimized alignment, low-loss YAG single crystal fibers of 120 μm diameter were grown, with total attenuation loss as low as 0.5 dB/m at 1064 nm.

    11. Optical tools and techniques for aligning solar payloads with the SPARCS control system. [Solar Pointing Aerobee Rocket Control System

      NASA Technical Reports Server (NTRS)

      Thomas, N. L.; Chisel, D. M.

      1976-01-01

      The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.

    12. Precision alignment device

      DOEpatents

      Jones, N.E.

      1988-03-10

      Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

    13. Precision alignment device

      DOEpatents

      Jones, Nelson E.

      1990-01-01

      Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

    14. Performance testing of a novel off-plane reflection grating and silicon pore optic spectrograph at PANTER

      NASA Astrophysics Data System (ADS)

      Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey; Miles, Drew M.; Donovan, Benjamin D.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

      2015-05-01

      An X-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

    15. Parallel alignment of bacteria using near-field optical force array for cell sorting

      NASA Astrophysics Data System (ADS)

      Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

      2017-08-01

      This paper presents a near-field approach to align multiple rod-shaped bacteria based on the interference pattern in silicon nano-waveguide arrays. The bacteria in the optical field will be first trapped by the gradient force and then rotated by the scattering force to the equilibrium position. In the experiment, the Shigella bacteria is rotated 90 deg and aligned to horizontal direction in 9.4 s. Meanwhile, 150 Shigella is trapped on the surface in 5 min and 86% is aligned with angle < 5 deg. This method is a promising toolbox for the research of parallel single-cell biophysical characterization, cell-cell interaction, etc.

    16. Fiber optics welder

      DOEpatents

      Higgins, R.W.; Robichaud, R.E.

      A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

    17. Photodetection and Photoswitch Based On Polarized Optical Response of Macroscopically Aligned Carbon Nanotubes.

      PubMed

      Zhang, Ling; Wu, Yang; Deng, Lei; Zhou, Yi; Liu, Changhong; Fan, Shoushan

      2016-10-12

      Light polarization is extensively applied in optical detection, industry processing and telecommunication. Although aligned carbon nanotube naturally suppresses the transmittance of light polarized parallel to its axial direction, there is little application regarding the photodetection of carbon nanotube based on this anisotropic interaction with linearly polarized light. Here, we report a photodetection device realized by aligned carbon nanotube. Because of the different absorption behavior of polarized light with respect to polarization angles, such device delivers an explicit response to specific light wavelength regardless of its intensity. Furthermore, combining both experimental and mathematical analysis, we found that the light absorption of different wavelength causes characteristic thermoelectric voltage generation, which makes aligned carbon nanotube promising in optical detection. This work can also be utilized directly in developing new types of photoswitch that features a broad spectrum application from near-ultraviolet to intermediate infrared with easy integration into practical electric devices, for instance, a "wavelength lock".

    18. Optical Bench Interferometer - From LISA Pathfinder to NGO/eLISA

      NASA Astrophysics Data System (ADS)

      Taylor, A.; d'Arcio, L.; Bogenstahl, J.; Danzmann, K.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Hennig, J.-S.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Tröbs, M.; Ward, H.; Weise, D.

      2013-01-01

      We present a short summary of some optical bench construction and alignment developments that build on experience gained during the LISA Pathfinder optical bench assembly. These include evolved fibre injectors, a new beam vector measurement system, and thermally stable mounting hardware. The beam vector measurement techniques allow the alignment of beams to targets with absolute accuracy of a few microns and 20 microradians. We also describe a newly designed ultra-low-return beam dump that is expected to be a crucial element in the control of ghost beams on the optical benches.

    19. Transplanting Sensitized Kidney Transplant Patients With Equivalent Outcomes Utilizing Stringent HLA Crossmatching.

      PubMed

      Rohan, Vinayak S; Taber, David J; Moussa, Omar; Pilch, Nicole A; Denmark, Signe; Meadows, Holly B; McGillicuddy, John W; Chavin, Kenneth D; Baliga, Prabhakar K; Bratton, Charles F

      2017-02-01

      Elevated panel reactive antibody levels have been traditionally associated with increased acute rejection rate and decreased long-term graft survival after kidney transplant. In this study, our objective was to determine patient and allograft outcomes in sensitized kidney transplant recipients with advanced HLA antibody detection and stringent protein sequence epitope analyses. This was a subanalysis of a prospective, risk-stratified randomized controlled trial that compared interleukin 2 receptor antagonist to rabbit antithymocyte globulin induction in 200 kidney transplant recipients, examining outcomes based on panel reactive antibody levels of < 20% (low) versus ≥ 20% (high, sensitized). The study was conducted between February 2009 and July 2011. All patients underwent solid-phase single antigen bead assays to detect HLA antibodies and stringent HLA epitope analyses with protein sequence alignment for virtual crossmatching. Delayed graft function, acute rejection rates, and graft loss were the main outcomes measured. Both the low (134 patients) and high (66 patients) panel reactive antibody level cohorts had equivalent induction and maintenance immunosuppression. Patients in the high-level group were more likely to be female (P < .001), African American (P < .001), and received a kidney from a deceased donor (P = .004). Acute rejection rates were similar between the low (rate of 8%) and high (rate of 9%) panel reactive antibody groups (P = .783). Delayed graft function, borderline rejection, graft loss, and death were not different between groups. Multivariate analyses demonstrated delayed graft function to be the strongest predictor of acute rejection (odds ratio, 5.7; P = .005); panel reactive antibody level, as a continuous variable, had no significant correlation with acute rejection (C statistic, 0.48; P = .771). Appropriate biologic matching with single antigen bead assays and stringent epitope analyses provided excellent outcomes in sensitized patients regardless of the induction therapy choice.

    20. Towards co-packaging of photonics and microelectronics in existing manufacturing facilities

      NASA Astrophysics Data System (ADS)

      Janta-Polczynski, Alexander; Cyr, Elaine; Bougie, Jerome; Drouin, Alain; Langlois, Richard; Childers, Darrell; Takenobu, Shotaro; Taira, Yoichi; Lichoulas, Ted W.; Kamlapurkar, Swetha; Engelmann, Sebastian; Fortier, Paul; Boyer, Nicolas; Barwicz, Tymon

      2018-02-01

      The impact of integrated photonics on optical interconnects is currently muted by challenges in photonic packaging and in the dense integration of photonic modules with microelectronic components on printed circuit boards. Single mode optics requires tight alignment tolerance for optical coupling and maintaining this alignment in a cost-efficient package can be challenging during thermal excursions arising from downstream microelectronic assembly processes. In addition, the form factor of typical fiber connectors is incompatible with the dense module integration expected on printed circuit boards. We have implemented novel approaches to interfacing photonic chips to standard optical fibers. These leverage standard high throughput microelectronic assembly tooling and self-alignment techniques resulting in photonic packaging that is scalable in manufacturing volume and in the number of optical IOs per chip. In addition, using dense optical fiber connectors with space-efficient latching of fiber patch cables results in compact module size and efficient board integration, bringing the optics closer to the logic chip to alleviate bandwidth bottlenecks. This packaging direction is also well suited for embedding optics in multi-chip modules, including both photonic and microelectronic chips. We discuss the challenges and rewards in this type of configuration such as thermal management and signal integrity.

    1. 4 channel × 10 Gb/s bidirectional optical subassembly using silicon optical bench with precise passive optical alignment.

      PubMed

      Kang, Eun Kyu; Lee, Yong Woo; Ravindran, Sooraj; Lee, Jun Ki; Choi, Hee Ju; Ju, Gun Wu; Min, Jung Wook; Song, Young Min; Sohn, Ik-Bu; Lee, Yong Tak

      2016-05-16

      We demonstrate an advanced structure for optical interconnect consisting of 4 channel × 10 Gb/s bidirectional optical subassembly (BOSA) formed using silicon optical bench (SiOB) with tapered fiber guiding holes (TFGHs) for precise and passive optical alignment of vertical-cavity surface-emitting laser (VCSEL)-to-multi mode fiber (MMF) and MMF-to-photodiode (PD). The co-planar waveguide (CPW) transmission line (Tline) was formed on the backside of silicon substrate to reduce the insertion loss of electrical data signal. The 4 channel VCSEL and PD array are attached at the end of CPW Tline using a flip-chip bonder and solder pad. The 12-channel ribbon fiber is simply inserted into the TFGHs of SiOB and is passively aligned to the VCSEL and PD in which no additional coupling optics are required. The fabricated BOSA shows high coupling efficiency and good performance with the clearly open eye patterns and a very low bit error rate of less than 10-12 order at a data rate of 10 Gb/s with a PRBS pattern of 231-1.

    2. Next-generation hollow retroreflectors for lunar laser ranging.

      PubMed

      Preston, Alix; Merkowitz, Stephen

      2013-12-20

      The three retroreflector arrays put on the Moon 40 years ago by the Apollo astronauts and the French-built arrays on the Soviet Lunokhod rovers continue to be useful targets, and have provided the most stringent tests of the Strong Equivalence Principle and the time variation of Newton's gravitational constant, as well as valuable insight into the Moon's interior. However, the precision of the ranging measurements are now being limited by the physical size of the arrays and a new generation of retroreflectors is required to make significant advances over current capabilities. Large single-cube retroreflectors represent the most promising approach to overcoming current limitations, and hollow retroreflectors in particular have the potential to maintain their good optical performance over the nearly 300 K temperature swing that occurs during the lunar cycle. Typically, epoxies are used for aligning and bonding hollow retroreflectors, but their thermal stability will predominantly be limited by the difference of the coefficient of thermal expansion (CTE) between the epoxy and the glass. A relatively new bonding method known as hydroxide catalysis bonding (HCB) has been used to adhere complex optical components for space-based missions. HCB has an extremely thin bond, a low CTE, and a high breaking strength that makes it an ideal candidate for bonding hollow retroreflectors for lunar laser ranging (LLR). In this work, we present results of a feasibility study of bonded Pyrex and fused silica hollow retroreflectors using both epoxy and HCB methods, including the results of thermally cycling the hollow retroreflectors from 295 to 185 K. Finally, we discuss the potential for using these retroreflectors for future LLR.

    3. Image correlation method for DNA sequence alignment.

      PubMed

      Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

      2012-01-01

      The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

    4. The development of alignment turning system for precision len cells

      NASA Astrophysics Data System (ADS)

      Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

      2017-08-01

      In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.

    5. Lithographic process window optimization for mask aligner proximity lithography

      NASA Astrophysics Data System (ADS)

      Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna; Erdmann, Andreas; Ünal, Nezih; Hofmann, Ulrich; Hennemeyer, Marc; Zoberbier, Ralph; Nguyen, David; Brugger, Juergen

      2014-03-01

      We introduce a complete methodology for process window optimization in proximity mask aligner lithography. The commercially available lithography simulation software LAB from GenISys GmbH was used for simulation of light propagation and 3D resist development. The methodology was tested for the practical example of lines and spaces, 5 micron half-pitch, printed in a 1 micron thick layer of AZ® 1512HS1 positive photoresist on a silicon wafer. A SUSS MicroTec MA8 mask aligner, equipped with MO Exposure Optics® was used in simulation and experiment. MO Exposure Optics® is the latest generation of illumination systems for mask aligners. MO Exposure Optics® provides telecentric illumination and excellent light uniformity over the full mask field. MO Exposure Optics® allows the lithography engineer to freely shape the angular spectrum of the illumination light (customized illumination), which is a mandatory requirement for process window optimization. Three different illumination settings have been tested for 0 to 100 micron proximity gap. The results obtained prove, that the introduced process window methodology is a major step forward to obtain more robust processes in mask aligner lithography. The most remarkable outcome of the presented study is that a smaller exposure gap does not automatically lead to better print results in proximity lithography - what the "good instinct" of a lithographer would expect. With more than 5'000 mask aligners installed in research and industry worldwide, the proposed process window methodology might have significant impact on yield improvement and cost saving in industry.

    6. Pupil Alignment Considerations for Large, Deployable Space Telescopes

      NASA Technical Reports Server (NTRS)

      Bos, Brent J.; Ohl, Raymond G.; Kubalak, Daivd A.

      2011-01-01

      For many optical systems the properties and alignment of the internal apertures and pupils are not critical or controlled with high precision during optical system design, fabrication or assembly. In wide angle imaging systems, for instance, the entrance pupil position and orientation is typically unconstrained and varies over the system s field of view in order to optimize image quality. Aperture tolerances usually do not receive the same amount of scrutiny as optical surface aberrations or throughput characteristics because performance degradation is typically graceful with misalignment, generally only causing a slight reduction in system sensitivity due to vignetting. But for a large deployable space-based observatory like the James Webb Space Telescope (JWST), we have found that pupil alignment is a key parameter. For in addition to vignetting, JWST pupil errors cause uncertainty in the wavefront sensing process that is used to construct the observatory on-orbit. Furthermore they also open stray light paths that degrade the science return from some of the telescope s instrument channels. In response to these consequences, we have developed several pupil measurement techniques for the cryogenic vacuum test where JWST science instrument pupil alignment is verified. These approaches use pupil alignment references within the JWST science instruments; pupil imaging lenses in three science instrument channels; and unique pupil characterization features in the optical test equipment. This will allow us to verify and crosscheck the lateral pupil alignment of the JWST science instruments to approximately 1-2% of their pupil diameters.

    7. Aligning Arrays of Lenses and Single-Mode Optical Fibers

      NASA Technical Reports Server (NTRS)

      Liu, Duncan

      2004-01-01

      A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted through the relay lenses and the beam compressor/expander, then split so that half goes to a detector and half to the interferometer. The output of the detector is used as a feedback control signal for the six-axis stage to effect alignment.

    8. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

      PubMed

      Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

      2017-03-01

      Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

    9. Prompt Optical Observations of Gamma-Ray Bursts

      NASA Astrophysics Data System (ADS)

      Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim

      2000-03-01

      The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

    10. Telescope Multi-Field Wavefront Control with a Kalman Filter

      NASA Technical Reports Server (NTRS)

      Lou, John Z.; Redding, David; Sigrist, Norbert; Basinger, Scott

      2008-01-01

      An effective multi-field wavefront control (WFC) approach is demonstrated for an actuated, segmented space telescope using wavefront measurements at the exit pupil, and the optical and computational implications of this approach are discussed. The integration of a Kalman Filter as an optical state estimator into the wavefront control process to further improve the robustness of the optical alignment of the telescope will also be discussed. Through a comparison of WFC performances between on-orbit and ground-test optical system configurations, the connection (and a possible disconnection) between WFC and optical system alignment under these circumstances are analyzed. Our MACOS-based computer simulation results will be presented and discussed.

    11. Optical alignment of the VLTI

      NASA Astrophysics Data System (ADS)

      Guisard, Stephane

      2003-02-01

      When completed the VLTI project will be composed by four 8.2 m Unit Telescopes (UT) and four 1.8 m Auxiliay Telescopes (AT) with their respective Coude trains and relay optics, two test siderostats, 6 (up to 8) Delay lines and 8 Beam compressors with their corresponding feeding mirrors. There will be more than 200 optical components, mirrors and lenses, with diameters ranging from 5 mm to 8200 mm. Their surface shapes range from flat to off-axis ellipsoid, including also spherical, on and off-axis hyperbolae and parabolas as well as cylindrical surfaces. Depending on the interferometer configuration, the different possible optical path lengths are of the order of 100 to 300 meters. We describe briefly the principles chosen as well as the types of criteria and method used for the alignment. The method can certainly be applied to other optical systems. The explanations given are understandable to the non-optician, this text is not intended to be an alignment procedure.

    12. Design and Performance of the Terrestrial Planet Finder Coronagraph

      NASA Technical Reports Server (NTRS)

      White, Mary L.; Shaklan, Stuart; Lisman, P. Doulas; Ho, Timothy; Mouroulis, Pantazis; Basinger, Scott; Ledeboer, Bill; Kwack, Eug; Kissil, Andy; Mosier, Gary; hide

      2004-01-01

      Terrestrial Planet Finder Coronagraph, one of two potential architectures, is described. The telescope is designed to make a visible wavelength survey of the habitable zones of at least thirty stars in search of earth-like planets. The preliminary system requirements, optical parameters, mechanical and thermal design, operations scenario and predicted performance is presented. The 6-meter aperture telescope has a monolithic primary mirror, which along with the secondary tower, are being designed to meet the stringent optical tolerances of the planet-finding mission. Performance predictions include dynamic and thermal finite element analysis of the telescope optics and structure, which are used to make predictions of the optical performance of the system.

    13. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation

      PubMed Central

      Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei

      2014-01-01

      Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5∘, and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems. PMID:24977504

    14. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation.

      PubMed

      Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei

      2014-06-16

      Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5° and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems.

    15. Statistical Significance of Optical Map Alignments

      PubMed Central

      Sarkar, Deepayan; Goldstein, Steve; Schwartz, David C.

      2012-01-01

      Abstract The Optical Mapping System constructs ordered restriction maps spanning entire genomes through the assembly and analysis of large datasets comprising individually analyzed genomic DNA molecules. Such restriction maps uniquely reveal mammalian genome structure and variation, but also raise computational and statistical questions beyond those that have been solved in the analysis of smaller, microbial genomes. We address the problem of how to filter maps that align poorly to a reference genome. We obtain map-specific thresholds that control errors and improve iterative assembly. We also show how an optimal self-alignment score provides an accurate approximation to the probability of alignment, which is useful in applications seeking to identify structural genomic abnormalities. PMID:22506568

    16. Kinematic Alignment and Bonding of Silicon Mirrors for High-Resolution Astronomical X-Ray Optics

      NASA Technical Reports Server (NTRS)

      Chan, Kai-Wing; Mazzarella, James R.; Saha, Timo T.; Zhang, William W.; Mcclelland, Ryan S.; Biskack, Michael P.; Riveros, Raul E.; Allgood, Kim D.; Kearney, John D.; Sharpe, Marton V.; hide

      2017-01-01

      Optics for the next generation's high-resolution, high throughput x-ray telescope requires fabrication of well-formed lightweight mirror segments and their integration at arc-second precision. Recent advances in the fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror alignment and integration. In this method, stiff silicon mirrors are aligned quasi-kinematically and are bonded in an interlocking fashion to produce a "meta-shell" with large collective area. We address issues of aligning and bonding mirrors with this method and show a recent result of 4 seconds-of-arc for a single pair of mirrors tested at soft x-rays.

    17. Systematic Image Based Optical Alignment and Tensegrity

      NASA Technical Reports Server (NTRS)

      Zeiders, Glenn W.; Montgomery, Edward E, IV (Technical Monitor)

      2001-01-01

      This presentation will review the objectives and current status of two Small Business Innovative Research being performed by the Sirius Group, under the direction of MSFC. They all relate to the development of advanced optical systems technologies for automated segmented mirror alignment techniques and fundamental design methodologies for ultralight structures. These are important to future astronomical missions in space.

    18. Third harmonic frequency generation by type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal.

      PubMed

      Gapontsev, Valentin P; Tyrtyshnyy, Valentin A; Vershinin, Oleg I; Davydov, Boris L; Oulianov, Dmitri A

      2013-02-11

      We present a method of third harmonic generation at 355 nm by frequency mixing of fundamental and second harmonic radiation of an ytterbium nanosecond pulsed all-fiber laser in a type-I phase-matched LiB(3)O(5) (LBO) crystal where originally orthogonal polarization planes of the fundamental and second harmonic beams are aligned by an optically active quartz crystal. 8 W of ultraviolet light at 355 nm were achieved with 40% conversion efficiency from 1064 nm radiation. The conversion efficiency obtained in a type-I phase-matched LBO THG crystal was 1.6 times higher than the one achieved in a type-II LBO crystal at similar experimental conditions. In comparison to half-wave plates traditionally used for polarization alignment the optically active quartz crystal has much lower temperature dependence and requires simpler optical alignment.

    19. Creating an optical spectroscopy system for use in a primary care clinical setting (Conference Presentation)

      NASA Astrophysics Data System (ADS)

      Eshein, Adam; Nguyen, The-Quyen; Radosevich, Andrew J.; Gould, Bradley; Wu, Wenli; Konda, Vani; Yang, Leslie W.; Koons, Ann; Feder, Seth; Valuckaite, Vesta; Roy, Hemant K.; Backman, Vadim

      2016-03-01

      While there are a plethora of in-vivo spectroscopic techniques that have demonstrated the ability to detect a number of diseases in research trials, very few techniques have successfully become a fully realized clinical technology. This is primarily due to the stringent demands on a clinical device for widespread implementation. Some of these demands include: simple operation requiring minimal or no training, safe for in-vivo patient use, no disruption to normal clinic workflow, tracking of system performance, warning for measurement abnormality, and meeting all FDA guidelines for medical use. Previously, our group developed a fiber optic probe-based optical sensing technique known as low-coherence enhanced backscattering spectroscopy (LEBS) to quantify tissue ultrastructure in-vivo. Now we have developed this technique for the application of prescreening patients for colonoscopy in a primary care (PC) clinical setting. To meet the stringent requirements for a viable medical device used in a PC clinical setting, we developed several novel components including an automated calibration tool, optical contact sensor for signal acquisition, and a contamination sensor to identify measurements which have been affected by debris. The end result is a state-of-the-art medical device that can be realistically used by a PC physician to assess a person's risk for harboring colorectal precancerous lesions. The pilot study of this system shows great promise with excellent stability and accuracy in identifying high-risk patients. While this system has been designed and optimized for our specific application, the system and design concepts are universal to most in-vivo fiber optic based spectroscopic techniques.

    20. Infrared images of distant 3C radio galaxies

      NASA Technical Reports Server (NTRS)

      Eisenhardt, Peter; Chokshi, Arati

      1990-01-01

      J (1.2-micron) and K (2.2 micron) images have been obtained for eight 3CR radio galaxies with redshifts from 0.7 to 1.8. Most of the objects were known to have extended asymmetric optical continuum or line emission aligned with the radio lobe axis. In general, the IR morphologies of these galaxies are just as peculiar as their optical morphologies. For all the galaxies, when asymmetric structure is present in the optical, structure with the same orientation is seen in the IR and must be accounted for in any model to explain the alignment of optical and radio emission.

    1. Alignment of the writing beam with the diffractive structure rotation axis in synthesis of diffractive optical elements in a polar coordinate system

      NASA Astrophysics Data System (ADS)

      Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.

      2017-03-01

      A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.

    2. Method And Apparatus For Coupling Optical Elements To Optoelectronic Devices For Manufacturing Optical Transceiver Modules

      DOEpatents

      Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; Giunta, Rachel Knudsen; Mitchell, Robert T.; McCormick, Frederick B.; Peterson, David W.; Rising, Merideth A.; Reber, Cathleen A.; Reysen, Bill H.

      2005-06-14

      A process is provided for aligning and connecting at least one optical fiber to at least one optoelectronic device so as to couple light between at least one optical fiber and at least one optoelectronic device. One embodiment of this process comprises the following steps: (1) holding at least one optical element close to at least one optoelectronic device, at least one optical element having at least a first end; (2) aligning at least one optical element with at least one optoelectronic device; (3) depositing a first non-opaque material on a first end of at least one optoelectronic device; and (4) bringing the first end of at least one optical element proximate to the first end of at least one optoelectronic device in such a manner that the first non-opaque material contacts the first end of at least one optoelectronic device and the first end of at least one optical element. The optical element may be an optical fiber, and the optoelectronic device may be a vertical cavity surface emitting laser. The first non-opaque material may be a UV optical adhesive that provides an optical path and mechanical stability. In another embodiment of the alignment process, the first end of at least one optical element is brought proximate to the first end of at least one optoelectronic device in such a manner that an interstitial space exists between the first end of at least one optoelectronic device and the first end of at least one optical element.

    3. Alignment and Calibration of an Airborne Infrared Spectrometer

      NASA Astrophysics Data System (ADS)

      Vira, A.

      2017-12-01

      The airborne infrared spectrometer (AIR-Spec) will measure the coronal plasma emission lines in the infrared at high spatial and spectral resolution. These results will enhance our understanding of the coronal dynamics and improve solar forecasting models. To measure the infrared coronal emission lines, the airborne system will fly on the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the total solar eclipse in August 2017. The flight path was calculated to maximize the observation time. A detailed analysis of our flight path will be reported. The optical system consists of a fast steering mirror, telescope, grating spectrometer, and slit-jaw imager. Light from the sun is directed into the f/15 telescope by a fast steering mirror. The telescope focuses the light on the slitjaw and the remaining light enters the grating spectrometer through the slit. The poster will include a discussion of the alignment procedures for the telescope and spectrograph. All of the spectrometer optics are cooled to cryogenic temperatures, which complicates the alignment process. After the telescope and spectrometer are aligned independently, the telescope needs to be precisely aligned to the spectrometer. Several alignment methods were used to ensure that the telescope is focused at the slitjaw and normal to the spectrometer. In addition to the optical alignment, there are a few calibrations to complete: 1) flat field, 2) spectral, and 3) radiometric. The flat field gives us a measure of the pixel to pixel variations. The spectral calibration is used to determine the conversion factor between wavelength and pixel. The radiometric calibration is used to map the camera output to radiance. All these calibrations are necessary for processing our data from the solar eclipse. We will report on our methods and results for the optical alignment and calibration for AIR-Spec. AIR-Spec is supported by NSF and Smithsonian Institution through the Major Research Instrumentation program. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

    4. Optical alignment of the Chromospheric Lyman-Alpha Spectro-Polarimeter using sophisticated methods to minimize activities under vacuum

      NASA Astrophysics Data System (ADS)

      Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchère, F.; Trujillo Bueno, J.

      2016-07-01

      The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The instrument main scientific goal is to achieve polarization measurement of the Lyman-α line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. The optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly-α profiles. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-α is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.

    5. Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head

      PubMed Central

      Jones, H. J.; Girard, M. J.; White, N.; Fautsch, M. P.; Morgan, J. E.; Ethier, C. R.; Albon, J.

      2015-01-01

      The aim of this study was to quantify connective tissue fibre orientation and alignment in young, old and glaucomatous human optic nerve heads (ONH) to understand ONH microstructure and predisposition to glaucomatous optic neuropathy. Transverse (seven healthy, three glaucomatous) and longitudinal (14 healthy) human ONH cryosections were imaged by both second harmonic generation microscopy and small angle light scattering (SALS) in order to quantify preferred fibre orientation (PFO) and degree of fibre alignment (DOFA). DOFA was highest within the peripapillary sclera (ppsclera), with relatively low values in the lamina cribrosa (LC). Elderly ppsclera DOFA was higher than that in young ppsclera (p < 0.00007), and generally higher than in glaucoma ppsclera. In all LCs, a majority of fibres had preferential orientation horizontally across the nasal–temporal axis. In all glaucomatous LCs, PFO was significantly different from controls in a minimum of seven out of 12 LC regions (p < 0.05). Additionally, higher fibre alignment was observed in the glaucomatous inferior–temporal LC (p < 0.017). The differences between young and elderly ONH fibre alignment within regions suggest that age-related microstructural changes occur within the structure. The additional differences in fibre alignment observed within the glaucomatous LC may reflect an inherent susceptibility to glaucomatous optic neuropathy, or may be a consequence of ONH remodelling and/or collapse. PMID:25808336

    6. Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head.

      PubMed

      Jones, H J; Girard, M J; White, N; Fautsch, M P; Morgan, J E; Ethier, C R; Albon, J

      2015-05-06

      The aim of this study was to quantify connective tissue fibre orientation and alignment in young, old and glaucomatous human optic nerve heads (ONH) to understand ONH microstructure and predisposition to glaucomatous optic neuropathy. Transverse (seven healthy, three glaucomatous) and longitudinal (14 healthy) human ONH cryosections were imaged by both second harmonic generation microscopy and small angle light scattering (SALS) in order to quantify preferred fibre orientation (PFO) and degree of fibre alignment (DOFA). DOFA was highest within the peripapillary sclera (ppsclera), with relatively low values in the lamina cribrosa (LC). Elderly ppsclera DOFA was higher than that in young ppsclera (p < 0.00007), and generally higher than in glaucoma ppsclera. In all LCs, a majority of fibres had preferential orientation horizontally across the nasal-temporal axis. In all glaucomatous LCs, PFO was significantly different from controls in a minimum of seven out of 12 LC regions (p < 0.05). Additionally, higher fibre alignment was observed in the glaucomatous inferior-temporal LC (p < 0.017). The differences between young and elderly ONH fibre alignment within regions suggest that age-related microstructural changes occur within the structure. The additional differences in fibre alignment observed within the glaucomatous LC may reflect an inherent susceptibility to glaucomatous optic neuropathy, or may be a consequence of ONH remodelling and/or collapse.

    7. Novel theory for propagation of tilted Gaussian beam through aligned optical system

      NASA Astrophysics Data System (ADS)

      Xia, Lei; Gao, Yunguo; Han, Xudong

      2017-03-01

      A novel theory for tilted beam propagation is established in this paper. By setting the propagation direction of the tilted beam as the new optical axis, we establish a virtual optical system that is aligned with the new optical axis. Within the first order approximation of the tilt and off-axis, the propagation of the tilted beam is studied in the virtual system instead of the actual system. To achieve more accurate optical field distributions of tilted Gaussian beams, a complete diffraction integral for a misaligned optical system is derived by using the matrix theory with angular momentums. The theory demonstrates that a tilted TEM00 Gaussian beam passing through an aligned optical element transforms into a decentered Gaussian beam along the propagation direction. The deviations between the peak intensity axis of the decentered Gaussian beam and the new optical axis have linear relationships with the misalignments in the virtual system. ZEMAX simulation of a tilted beam through a thick lens exposed to air shows that the errors between the simulation results and theoretical calculations of the position deviations are less than 2‰ when the misalignments εx, εy, εx', εy' are in the range of [-0.5, 0.5] mm and [-0.5, 0.5]°.

    8. Phased Array Mirror Extendible Large Aperture (PAMELA) Optics Adjustment

      NASA Technical Reports Server (NTRS)

      1995-01-01

      Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

    9. Eliminating crystals in non-oxide optical fiber preforms and optical fibers

      NASA Technical Reports Server (NTRS)

      LaPointe, Michael R. (Inventor); Tucker, Dennis S. (Inventor)

      2010-01-01

      A method is provided for eliminating crystals in non-oxide optical fiber preforms as well as optical fibers drawn therefrom. The optical-fiber-drawing axis of the preform is aligned with the force of gravity. A magnetic field is applied to the preform as it is heated to at least a melting temperature thereof. The magnetic field is applied in a direction that is parallel to the preform's optical-fiber-drawing axis. The preform is then cooled to a temperature that is less than a glass transition temperature of the preform while the preform is maintained in the magnetic field. When the processed preform is to have an optical fiber drawn therefrom, the preform's optical-fiber-drawing axis is again aligned with the force of gravity and a magnetic field is again applied along the axis as the optical fiber is drawn from the preform.

    10. Low cost, high performance, self-aligning miniature optical systems

      PubMed Central

      Kester, Robert T.; Christenson, Todd; Kortum, Rebecca Richards; Tkaczyk, Tomasz S.

      2009-01-01

      The most expensive aspects in producing high quality miniature optical systems are the component costs and long assembly process. A new approach for fabricating these systems that reduces both aspects through the implementation of self-aligning LIGA (German acronym for lithographie, galvanoformung, abformung, or x-ray lithography, electroplating, and molding) optomechanics with high volume plastic injection molded and off-the-shelf glass optics is presented. This zero alignment strategy has been incorporated into a miniature high numerical aperture (NA = 1.0W) microscope objective for a fiber confocal reflectance microscope. Tight alignment tolerances of less than 10 μm are maintained for all components that reside inside of a small 9 gauge diameter hypodermic tubing. A prototype system has been tested using the slanted edge modulation transfer function technique and demonstrated to have a Strehl ratio of 0.71. This universal technology is now being developed for smaller, needle-sized imaging systems and other portable point-of-care diagnostic instruments. PMID:19543344

    11. A comparison between using incoherent or coherent sources to align and test an adaptive optical telescope

      NASA Technical Reports Server (NTRS)

      Anderson, Richard

      1994-01-01

      The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.

    12. Experimental Estimation of CLASP Spatial Resolution: Results of the Instrument's Optical Alignment

      NASA Technical Reports Server (NTRS)

      Giono, Gabrial; Katsukawa, Yukio; Ishikawa, Ryoko; Narukage, Noriyuki; Bando, Takamasa; Kano, Ryohei; Suematsu, Yoshinori; Kobayashi, Ken; Winebarger, Amy; Auchere, Frederic

      2015-01-01

      The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding-rocket experiment currently being built at the National Astronomical Observatory of Japan. This instrument aims to probe for the first time the magnetic field strength and orientation in the solar upper-chromosphere and lower-transition region. CLASP will measure the polarization of the Lyman-Alpha line (121.6nm) with an unprecedented accuracy, and derive the magnetic field information through the Hanle effect. Although polarization accuracy and spectral resolution are crucial for the Hanle effect detection, spatial resolution is also important to get reliable context image via the slit-jaw camera. As spatial resolution is directly related with the alignment of optics, it is also a good way of ensuring the alignment of the instrument to meet the scientific requirement. This poster will detail the experiments carried out to align CLASP's optics (telescope and spectrograph), as both part of the instrument were aligned separately. The telescope was aligned in double-pass mode, and a laser interferometer (He-Ne) was used to measure the telescope's wavefront error (WFE). The secondary mirror tilt and position were adjusted to remove comas and defocus aberrations from the WFE. Effect of gravity on the WFE measurement was estimated and the final WFE derived in zero-g condition for CLASP telescope will be presented. In addition, an estimation of the spot shape and size derived from the final WFE will also be shown. The spectrograph was aligned with a custom procedure: because Ly-??light is absorbed by air, the spectrograph's off-axis parabolic mirrors were aligned in Visible Light (VL) using a custom-made VL grating instead of the flight Ly-? grating. Results of the alignment in Visible Light will be shown and the spot shape recorded with CCDs at various position along the slit will be displayed. Results from both alignment experiment will be compared to the design requirement, and will be combined in order to estimate CLASP spatial resolution after its alignment in visible light.

    13. Gold coatings for cube-corner retro-reflectors

      NASA Astrophysics Data System (ADS)

      Dligatch, Svetlana; Gross, Mark; Netterfield, Roger P.; Pereira, Nathan; Platt, Benjamin C.; Nemati, Bijan

      2005-09-01

      The Space Interferometry Mission (SIM) PlanetQuest is managed by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration. SIM requires, among other things, high precision double cube-corner retroreflectors. A test device has recently been fabricated for this project with demanding specifications on the optical surfaces and gold reflective coatings. Several gold deposition techniques were examined to meet the stringent specifications on uniformity, optical properties, micro-roughness and surface quality. We report on a comparative study of optical performance of gold films deposited by resistive and e-beam pvaporation, including measurements of the scattering from the coated surfaces. The effects of oxygen bombardment and titanium under-layer on optical properties and adhesion were evaluated. The influence of surface preparation on the optical properties was examined also.

    14. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Seiboth, Frank; Schropp, Andreas; Scholz, Maria

      2017-03-01

      Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today’s technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. As a result, this scheme can be applied tomore » any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.« less

    15. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

      PubMed Central

      Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C.; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G.

      2017-01-01

      Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers. PMID:28248317

    16. High-port low-latency optical switch architecture with optical feed-forward buffering for 256-node disaggregated data centers.

      PubMed

      Terzenidis, Nikos; Moralis-Pegios, Miltiadis; Mourgias-Alexandris, George; Vyrsokinos, Konstantinos; Pleros, Nikos

      2018-04-02

      Departing from traditional server-centric data center architectures towards disaggregated systems that can offer increased resource utilization at reduced cost and energy envelopes, the use of high-port switching with highly stringent latency and bandwidth requirements becomes a necessity. We present an optical switch architecture exploiting a hybrid broadcast-and-select/wavelength routing scheme with small-scale optical feedforward buffering. The architecture is experimentally demonstrated at 10Gb/s, reporting error-free performance with a power penalty of <2.5dB. Moreover, network simulations for a 256-node system, revealed low-latency values of only 605nsec, at throughput values reaching 80% when employing 2-packet-size optical buffers, while multi-rack network performance was also investigated.

    17. Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system

      DOEpatents

      Schmitt, Randal L [Tijeras, NM; Henson, Tammy D [Albuquerque, NM; Krumel, Leslie J [Cedar Crest, NM; Hargis, Jr., Philip J.

      2006-06-20

      A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.

    18. Cholesterol-Based Grafted Polymer Brushes as Alignment Coating with Temperature-Tuned Anchoring for Nematic Liquid Crystals.

      PubMed

      Stetsyshyn, Yurij; Raczkowska, Joanna; Budkowski, Andrzej; Awsiuk, Kamil; Kostruba, Andriy; Nastyshyn, Svyatoslav; Harhay, Khrystyna; Lychkovskyy, Edward; Ohar, Halyna; Nastishin, Yuriy

      2016-10-11

      Novel alignment coating with temperature-tuned anchoring for nematic liquid crystals (NLCs) was successfully fabricated in three step process, involving polymerization of poly(cholesteryl methacrylate) (PChMa) from oligoproxide grafted to the glass surface premodified with 3-aminopropyltriethoxysilane. Molecular composition, thickness, wettability of the PChMa coating and its alignment action for a NLC were examined with time of flight-secondary ion mass spectrometry, ellipsometry, contact angle measurements, polarization optical microscopy and commercially produced PolScope technique allowing for mapping of the optic axis and optical retardance within the microscope field view. We find that the PChMa coating provides a specific monotonous increase (decrease) in the tilt angle of the NLC director with respect to the substrates normal upon heating (cooling) referred to as anchoring tuning.

    19. Deformation effect in the fast neutron total cross section of aligned /sup 59/Co

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Fasoli, U.; Pavan, P.; Toniolo, D.

      1983-05-01

      The variation of the total neutron cross section, ..delta..sigma/sub align/, on /sup 59/Co due to nuclear alignment of the target has been measured over the energy range from 0.8 to 20 MeV employing a cobalt single crystal with a 34% nuclear alignment. The results show that ..delta..sigma/sub align/ oscillates from a minimum of -5% at about 2.5 MeV to a maximum of +1% at about 10 MeV. The data were successfully fitted by optical model coupled-channel calculations. The coupling terms were deduced from a model representing the /sup 59/Co nucleus as a vibrational /sup 60/Ni core coupled to a protonmore » hole in a (1f/sub 7/2/) shell, without free parameters. The optical model parameters were determined by fitting the total cross section, which was independently measured. The theoretical calculations show that, at lower energies, ..delta..sigma/sub align/ depends appreciably on the coupling with the low-lying levels.« less

    20. Laser-fiber coupling by means of a silicon micro-optical bench and a self-aligned soldering process

      NASA Astrophysics Data System (ADS)

      Schmidt, Jan P.; Cordes, A.; Mueller, Joerg; Burkhardt, Hans

      1995-02-01

      The alignment of laser diodes to monomode fibers has to meet extremely close tolerances for a low coupling loss. Typically < 0.5 micrometers in lateral and vertical direction and less than two degrees in angle deviation are allowed for a coupling loss below 2 dB. Presently such close tolerances can only be met by gluing or soldering both components on separate base plates and combining them via piezoactivated alignment monitoring the output of the circuit and then gluing them using UV-hardening epoxies. Such a procedure is not very economical and not useful for mass applications. This paper presents the principle and realization of a silicon micro-optical bench for laser-fiber-coupling, which avoids the above mentioned disadvantages. The micro-optical bench is realized using well controlled plasma etching processes to transfer the guiding patterns for the laser and the fiber into the silicon substrate, keeping geometry tolerances below +/- 0.5 micrometers in lateral and vertical direction. Mounting the laser diode by means of a self-aligned soldering process, an additional contribution to the precise alignment of the laser is further improved.

    1. Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices.

      PubMed

      Basu, Rajratan; Shalov, Samuel A

      2017-07-01

      In a conventional liquid crystal (LC) cell, polyimide layers are used to align the LC homogeneously in the cell, and transmissive indium tin oxide (ITO) electrodes are used to apply the electric field to reorient the LC along the field. It is experimentally presented here that monolayer graphene films on the two glass substrates can function concurrently as the LC aligning layers and the transparent electrodes to fabricate an LC cell, without using the conventional polyimide and ITO substrates. This replacement can effectively decrease the thickness of all the alignment layers and electrodes from about 100 nm to less than 1 nm. The interaction between LC and graphene through π-π electron stacking imposes a planar alignment on the LC in the graphene-based cell-which is verified using a crossed polarized microscope. The graphene-based LC cell exhibits an excellent nematic director reorientation process from planar to homeotropic configuration through the application of an electric field-which is probed by dielectric and electro-optic measurements. Finally, it is shown that the electro-optic switching is significantly faster in the graphene-based LC cell than in a conventional ITO-polyimide LC cell.

    2. Aligned Layers of Silver Nano-Fibers.

      PubMed

      Golovin, Andrii B; Stromer, Jeremy; Kreminska, Liubov

      2012-02-01

      We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

    3. Associations of varus thrust and alignment with pain in knee osteoarthritis.

      PubMed

      Lo, Grace H; Harvey, William F; McAlindon, Timothy E

      2012-07-01

      To investigate associations of varus thrust and varus static alignment with pain in patients with knee osteoarthritis (OA). This was a cross-sectional study of participants from a randomized controlled trial of vitamin D treatment for knee OA. Participants were video recorded while walking and scored for presence of varus thrust. Static alignment was measured on standard posteroanterior knee radiographs. Pain questions from the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire were used to assess symptoms. We calculated means for total WOMAC pain in relation to varus thrust and static varus alignment (i.e., corrected anatomic alignment<178 degrees). Ordinal logistic regressions were performed, with responses on individual WOMAC pain questions as the outcomes and varus thrust and varus alignment as the predictors. There were 82 participants, 60% of whom were female. The mean±SD age was 65.1±8.5 years, and the mean±SD body mass index was 30.2±5.4 kg/m2. The mean total WOMAC pain score was 6.3 versus 3.9, respectively, in those with versus without definite varus thrust (P=0.007) and 5.0 versus 4.2 in those with versus without varus alignment (P=0.36). Odds ratios for pain with walking and standing were 4.7 (95% confidence interval 1.8-11.9) and 5.5 (95% confidence interval 2.2-14.2), respectively, in those with and those without definite varus thrust. There were no significant associations between varus alignment and responses to individual WOMAC pain questions. Sensitivity analyses suggested that varus classified using a more stringent definition might have been associated with pain on walking and standing. In patients with knee OA, varus thrust, and possibly varus static alignment, were associated with pain, specifically during weight-bearing activities. Treatment of varus thrust (e.g., via bracing or gait modification) may lead to improvement of symptoms. Copyright © 2012 by the American College of Rheumatology.

    4. From optics testing to micro optics testing

      NASA Astrophysics Data System (ADS)

      Brock, Christian; Dorn, Ralf; Pfund, Johannes

      2017-10-01

      Testing micro optics, i.e. lenses with dimensions down to 0.1mm and less, with high precision requires a dedicated design of the testing device, taking into account propagation and wave-optical effects. In this paper, we discuss testing methods based on Shack-Hartmann wavefront technology for functional testing in transmission and for the measurement of surface shape in reflection. As a first example of more conventional optics testing, i.e. optics in the millimeter range, we present the measurement of binoculars in transmission, and discuss the measured wave aberrations and imaging quality. By repeating the measurement at different wavelengths, information on chromatic effects is retrieved. A task that is often tackled using Shack-Hartman wavefront sensors is the alignment of collimation optics in front of a light source. In case of a micro-optical collimation unit with a 1/e² beam diameter of ca. 1mm, we need adapted relay optics for suitable beam expansion and well-defined imaging conditions. In this example, we will discuss the alignment process and effects of the relay optics magnification, as well as typical performance data. Oftentimes, micro optics are fabricated not as single pieces, but as mass optics, e.g. by lithographic processes. Thus, in order to reduce tooling and alignment time, an automated test procedure is necessary. We present an approach for the automated testing of wafer- or tray-based micro optics, and discuss transmission and reflection measurement capabilities. Exemplary performance data is shown for a sample type with 30 microns in diameter, where typical repeatabilities of a few nanometers (rms) are reached.

    5. Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment.

      PubMed

      Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy

      2017-04-01

      We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.

    6. Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment

      NASA Astrophysics Data System (ADS)

      Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy

      2017-04-01

      We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.

    7. Optical properties of orthodontic aligners--spectrophotometry analysis of three types before and after aging.

      PubMed

      Lombardo, Luca; Arreghini, Angela; Maccarrone, Roberta; Bianchi, Anna; Scalia, Santo; Siciliani, Giuseppe

      2015-01-01

      The aim was to assess and compare absorbance and transmittance values of three types of clear orthodontic aligners before and after two cycles of in vitro aging. Nine samples of orthodontic aligners from three different manufacturers (Invisalign, Align Technology, Santa Clara, CA, USA; All-In, Micerium, Avegno, GE, Italy; F22 Aligner, Sweden & Martina, Due Carrare, PD, Italy) were selected, and each sample was subjected to spectrophotometry analysis of both its transmittance and absorbance a total of 27 times. Samples were subsequently aged in vitro at a constant temperature in artificial saliva supplemented with food colouring for two cycles of 14 days each. The spectrophotometry protocol was then repeated, and the resulting data were analysed and compared by means of ANOVA (p < 0.05). All types of aligners tested yielded lower transmittance and higher absorbance values after aging, but the difference was not significant in any case. That being said, the F22 aligners were found to be most transparent, both before and after aging, followed by Invisalign and All-In, and these differences were statistically significant. Commercial aligners possess significantly different optical, and therefore aesthetic, properties, both as delivered and following aging.

    8. Space Science

      NASA Image and Video Library

      1995-06-08

      Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

    9. Soft X-ray Foucault test: A path to diffraction-limited imaging

      NASA Astrophysics Data System (ADS)

      Ray-Chaudhuri, A. K.; Ng, W.; Liang, S.; Cerrina, F.

      1994-08-01

      We present the development of a soft X-ray Foucault test capable of characterizing the imaging properties of a soft X-ray optical system at its operational wavelength and its operational configuration. This optical test enables direct visual inspection of imaging aberrations and provides real-time feedback for the alignment of high resolution soft X-ray optical systems. A first application of this optical test was carried out on a Mo-Si multilayer-coated Schwarzschild objective as part of the MAXIMUM project. Results from the alignment procedure are presented as well as the possibility for testing in the hard X-ray regime.

    10. Optical interconnection for a polymeric PLC device using simple positional alignment.

      PubMed

      Ryu, Jin Hwa; Kim, Po Jin; Cho, Cheon Soo; Lee, El-Hang; Kim, Chang-Seok; Jeong, Myung Yung

      2011-04-25

      This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment.

    11. Coaxial fundus camera for opthalmology

      NASA Astrophysics Data System (ADS)

      de Matos, Luciana; Castro, Guilherme; Castro Neto, Jarbas C.

      2015-09-01

      A Fundus Camera for ophthalmology is a high definition device which needs to meet low light illumination of the human retina, high resolution in the retina and reflection free image1. Those constraints make its optical design very sophisticated, but the most difficult to comply with is the reflection free illumination and the final alignment due to the high number of non coaxial optical components in the system. Reflection of the illumination, both in the objective and at the cornea, mask image quality, and a poor alignment make the sophisticated optical design useless. In this work we developed a totally axial optical system for a non-midriatic Fundus Camera. The illumination is performed by a LED ring, coaxial with the optical system and composed of IR of visible LEDs. The illumination ring is projected by the objective lens in the cornea. The Objective, LED illuminator, CCD lens are coaxial making the final alignment easily to perform. The CCD + capture lens module is a CCTV camera with autofocus and Zoom built in, added to a 175 mm focal length doublet corrected for infinity, making the system easily operated and very compact.

    12. The Development of a Deflectometer for Accurate Surface Figure Metrology

      NASA Technical Reports Server (NTRS)

      Gubarev, Mikhail; Eberhardt, Andrew; Ramsey, Brian; Atkins, Carolyn

      2015-01-01

      Marshall Space Flight Center is developing the method of direct fabrication for high resolution full-shell x-ray optics. In this technique the x-ray optics axial profiles are figured and polished using a computer-controlled ZeekoIRP600X polishing machine. Based on the Chandra optics fabrication history about one third of the manufacturing time is spent on moving a mirror between fabrication and metrology sites, reinstallation and alignment with either the metrology or fabrication instruments. Also, the accuracy of the alignment significantly affects the ultimate accuracy of the resulting mirrors. In order to achieve higher convergence rate it is highly desirable to have a metrology technique capable of in situ surface figure measurements of the optics under fabrication, so the overall fabrication costs would be greatly reduced while removing the surface errors due to the re-alignment necessary after each metrology cycle during the fabrication. The goal of this feasibility study is to demonstrate if the Phase Measuring Deflectometry can be applied for in situ metrology of full shell x-ray optics. Examples of the full-shell mirror substrates suitable for the direct fabrication

    13. Assembly, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assemblies

      NASA Astrophysics Data System (ADS)

      Balonek, Gregory; Brown, Joshua J.; Andre, James E.; Chesbrough, Christian D.; Chrisp, Michael P.; Dalpiaz, Michael; Lennon, Joseph; Richards, B. C.; Clark, Kristin E.

      2017-08-01

      The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband, seven-element, refractive F/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the methods used for the assembly, alignment and test of the four flight optical assemblies. Prior to commencing the build of the four flight optical assemblies, a Risk Reduction Unit (RRU) was successfully assembled and tested [1]. The lessons learned from the RRU were applied to the build of the flight assemblies. The main modifications to the flight assemblies include the inking of the third lens element stray light mitigation, tighter alignment tolerances, and diamond turning for critical mechanical surfaces. Each of the optical assemblies was tested interferometrically and measured with a low coherence distance measuring interferometer (DMI) to predict the optimal shim thickness between the lens assembly and detector before -75°C environmental testing. In addition to individual test data, environmental test results from prior assemblies allow for the exploration of marginal performance differences between each of the optical assemblies.

    14. Alignment control study for the solar optical telescope

      NASA Technical Reports Server (NTRS)

      1976-01-01

      Analysis of the alignment and focus errors than can be tolerated, methods of sensing such errors, and mechanisms to make the necessary corrections were addressed. Alternate approaches and their relative merits were considered. The results of this study indicate that adequate alignment control can be achieved.

    15. Mounting and Alignment of Full-Shell Replicated X-Ray Optics

      NASA Technical Reports Server (NTRS)

      Gubarev, Mikhail; Arnold, William; Kester, Thomas; Ramsey, Brian; Smithers, Martin

      2007-01-01

      We are developing grazing-incidence x-ray optics for astronomy. The optics are full-cylinder mirror shells fabricated using electroformed-nickel replication off super-polished mandrels. For space-based applications where weight is at a premium, very-thin-walled, light-weight mirrors are required. Such shells have been fabricated at MSFC with greater than 15 arcsec resolution. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center to meet this challenge.

    16. Tilt-tuned etalon locking for tunable laser stabilization.

      PubMed

      Gibson, Bradley M; McCall, Benjamin J

      2015-06-15

      Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4  cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.

    17. Polarization (ellipsometric) measurements of liquid condensate deposition and evaporation rates and dew points in flowing salt/ash-containing combustion gases

      NASA Technical Reports Server (NTRS)

      Seshadri, K.; Rosner, D. E.

      1985-01-01

      An application of an optical polarization technique in a combustion environment is demonstrated by following, in real-time, growth rates of boric oxide condensate on heated platinum ribbons exposed to seeded propane-air combustion gases. The results obtained agree with the results of earlier interference measurements and also with theoretical chemical vapor deposition predictions. In comparison with the interference method, the polarization technique places less stringent requirements on surface quality, which may justify the added optical components needed for such measurements.

    18. X-ray laser microscope apparatus

      DOEpatents

      Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

      1990-01-01

      A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

    19. Study on the position accuracy of a mechanical alignment system

      NASA Astrophysics Data System (ADS)

      Cai, Yimin

      In this thesis, we investigated the precision level and established the baseline achieved by a mechanical alignment system using datums and reference surfaces. The factors which affect the accuracy of mechanical alignment system were studied and methodology was developed to suppress these factors so as to reach its full potential precision. In order to characterize the mechanical alignment system quantitatively, a new optical position monitoring system by using quadrant detectors has been developed in this thesis, it can monitor multi-dimensional degrees of mechanical workpieces in real time with high precision. We studied the noise factors inside the system and optimized the optical system. Based on the fact that one of the major limiting noise factors is the shifting of the laser beam, a noise cancellation technique has been developed successfully to suppress this noise, the feasibility of an ultra high resolution (<20 A) for displacement monitoring has been demonstrated. Using the optical position monitoring system, repeatability experiment of the mechanical alignment system has been conducted on different kinds of samples including steel, aluminum, glass and plastics with the same size 100mm x 130mm. The alignment accuracy was studied quantitatively rather than qualitatively before. In a controlled environment, the alignment precision can be improved 5 folds by securing the datum without other means of help. The alignment accuracy of an aluminum workpiece having reference surface by milling is about 3 times better than by shearing. Also we have found that sample material can have fairly significant effect on the alignment precision of the system. Contamination trapped between the datum and reference surfaces in mechanical alignment system can cause errors of registration or reduce the level of manufacturing precision. In the thesis, artificial and natural dust particles were used to simulate the real situations and their effects on system precision have been investigated. In this experiment, we discovered two effective cleaning processes.

    20. Optical Alignment of the Chromospheric Lyman-Alpha SpectroPolarimeter using Sophisticated Methods to Minimize Activities under Vacuum

      NASA Technical Reports Server (NTRS)

      Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; hide

      2016-01-01

      The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.

    1. New colored optical security elements using Rolic's LPP/LCP technology: devices for first- to third-level inspection

      NASA Astrophysics Data System (ADS)

      Moia, Franco

      2002-04-01

      With linear photo-polymerization (LPP) ROLIC has invented a photo-patternable technology enabling to align not only conventional liquid crystals but also liquid crystals polymers (LCP). ROLIC's optical security device technology derives from its LPP/LCP technology. LPP/LCP security devices are created by structured photo-alignment of an LPP layer through phot-masks, thus generating a high resolution, photo-patterned aligning layer which carries the aligning information of the image to be created. The subsequent LCP layer transforms the aligning information into an optical phase image with low and/or very high information content, such as invisible photographic pictures. The building block capability of the LPP/LCP technology allows the manufacturing of cholesteric and non-cholesteric LPP/LCP devices which cover 1st and/or 2nd level applications. Apart from black/white security devices colored information zones can be integrated. Moreover, we have developed an LPP/LCP security device which covers all three- 1st, 2nd and 3rd- inspection levels in one and the same authentication device: besides a color shift by tilting the device (1st level) and the detection of normally hidden information by use of a simple sheet polarizer (2nd level) the new device contains encrypted hidden information which can be visualized only by superimposing an LPP/LCP inspection tool (key) for decryption (3rd level). This optical key is also based on the LPP/LCP technology and is itself a 3rd level security device.

    2. Some Alignment Considerations for the Next Linear Collider

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Ruland, R

      Next Linear Collider type accelerators require a new level of alignment quality. The relative alignment of these machines is to be maintained in an error envelope dimensioned in micrometers and for certain parts in nanometers. In the nanometer domain our terra firma cannot be considered monolithic but compares closer to jelly. Since conventional optical alignment methods cannot deal with the dynamics and cannot approach the level of accuracy, special alignment and monitoring techniques must be pursued.

    3. Prompt optical emission from gamma-ray bursts

      NASA Astrophysics Data System (ADS)

      Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

      The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

    4. Theoferometer for the Construction of Precision Optomechanical Assemblies

      NASA Technical Reports Server (NTRS)

      Korzun, Ashley M.

      2006-01-01

      The increasing difficulty of metrology requirements on projects involving optics and the alignment of instrumentation on spacecraft has reached a turning point. Requirements as low as 0.1 arcseconds for the static, rotational alignment of components within a coordinate system cannot be met with a theodolite, the alignment tool currently in use. A "theoferometer" is an interferometer mounted on a rotation stage with degrees of freedom in azimuth and elevation for metrology and alignment applications. The success of a prototype theoferometer in approaching these metrology requirements led to a redesign stressing mechanical, optical, and software changes to increase the sensitivity and portability of the unit. This paper covers the improvements made to the first prototype theoferometer, characteristic testing, and demonstration of the redesigned theoferometer s capabilities as a "theodolite replacement" and low-uncertainty metrology tool.

    5. Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Liu, Yang; Lee, Ju Hwan; Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr

      2016-09-05

      Thin ion-beam (IB)-spurted dimethyl sulfate/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (DMS/PEDOT:PSS) layers with improved electro-optic performance are presented for aligning liquid crystals. IB spurting is effective for enhancing the conductivity of such layers, as well as the anchoring energy of the liquid crystals sandwiched between them. Compared with a commercial twisted-nematic cell assembled with polyimide alignment layers, the same cell assembled with 3.0-keV IB-spurted DMS/PEDOT:PSS alignment layers shows a 38% faster switching and a 93% lower residual direct current. The improved electro-optic performance here is likely due to the enhanced electric field effect and the charge-releasing ability of thin IB-spurted DMS/PEDOT:PSS layers.

    6. James Webb Space Telescope: Frequently Asked Questions for Scientists and Engineers

      NASA Technical Reports Server (NTRS)

      Gardner, Jonathan P.

      2008-01-01

      JWST will be tested incrementally during its construction, starting with individual mirrors and instruments (including cameras and spectrometers) and building up to the full observatory. JWST's mirrors and the telescope structure are first each tested individually, including optical testing of the mirrors and alignment testing of the structure inside a cold thermal-vacuum chamber. The mirrors are then installed on the telescope structure in a clean room at Goddard Space Flight Center (GSFC). In parallel to the telescope assembly and alignment, the instruments are being built and tested, again first individually, and then as part of an integrated instrument assembly. The integrated instrument assembly will be tested in a thermal-vacuum chamber at GSFC using an optical simulator of the telescope. This testing makes sure the instruments are properly aligned relative to each other and also provides an independent check of the individual tests. After both the telescope and the integrated instrument module are successfully assembled, the integrated instrument module will be installed onto the telescope, and the combined system will be sent to Johnson Space Flight Center (JSC) where it will be optically tested in one of the JSC chambers. The process includes testing the 18 primary mirror segments acting as a single primary mirror, and testing the end-to-end system. The final system test will assure that the combined telescope and instruments are focused and aligned properly, and that the alignment, once in space, will be within the range of the actively controlled optics. In general, the individual optical tests of instruments and mirrors are the most accurate. The final system tests provide a cost-effective check that no major problem has occurred during assembly. In addition, independent optical checks of earlier tests will be made as the full system is assembled, providing confidence that there are no major problems.

    7. Microoptical System And Fabrication Method Therefor

      DOEpatents

      Sweatt, William C.; Christenson, Todd R.

      2005-03-15

      Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

    8. Microoptical system and fabrication method therefor

      DOEpatents

      Sweatt, William C.; Christenson, Todd R.

      2003-07-08

      Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

    9. The Optical Design of a System using a Fresnel Lens that Gathers Light for a Solar Concentrator and that Feeds into Solar Alignment Optics

      NASA Technical Reports Server (NTRS)

      Wilkerson, Gary W.; Huegele, Vinson

      1998-01-01

      The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.

    10. Digital polarization holography advancing geometrical phase optics.

      PubMed

      De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

      2016-08-08

      Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

    11. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment.

      PubMed

      Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning

      2018-03-19

      Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.

    12. All-optical OFDM network coding scheme for all-optical virtual private communication in PON

      NASA Astrophysics Data System (ADS)

      Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong

      2014-03-01

      A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.

    13. Computer vision applications for coronagraphic optical alignment and image processing.

      PubMed

      Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

      2013-05-10

      Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

    14. Resonant optical alignment and orientation of Mn2+ spins in CdMnTe crystals

      NASA Astrophysics Data System (ADS)

      Baryshnikov, K. A.; Langer, L.; Akimov, I. A.; Korenev, V. L.; Kusrayev, Yu. G.; Averkiev, N. S.; Yakovlev, D. R.; Bayer, M.

      2015-11-01

      We report on spin orientation and alignment of Mn2 + ions in (Cd,Mn)Te diluted magnetic semiconductor crystals using resonant intracenter excitation with circular- and linear-polarized light. The resulting polarized emission of the magnetic ions is observed at low temperatures when the spin relaxation time of the Mn2 + ions is in the order of 1 ms , which considerably exceeds the photoluminescence decay time of 23 μ s . We demonstrate that the experimental data on optical orientation and alignment of Mn2 + ions can be explained using a phenomenological model that is based on the approximation of isolated centers.

    15. Flexible polymeric rib waveguide with self-align couplers system

      PubMed Central

      Huang, Cheng-Sheng; Wang, Wei-Chih

      2011-01-01

      The authors report a polymeric based rib waveguide with U shape self-align fiber couplers system using a simple micromolding process with SU8 as a molding material and polydimethysiloxane as a waveguide material. The material is used for its good optical transparency, low surface tension, biocompatibility, and durability. Furthermore, the material is highly formable. This unique fabrication molding technique provides a means of keeping the material and manufacturing costs to a minimum. The self-align fiber couplers system also proves a fast and simple means of light coupling. The flexible nature of the waveguide material makes this process ideal for a potential wearable optical sensor. PMID:22171151

    16. Focus determination for the James Webb Space Telescope Science Instruments: A Survey of Methods

      NASA Technical Reports Server (NTRS)

      Davila, Pamela S.; Bolcar, Matthew R.; Boss, B.; Dean, B.; Hapogian, J.; Howard, J.; Unger, B.; Wilson, M.

      2006-01-01

      The James Webb Space Telescope (JWST) is a segmented deployable telescope that will require on-orbit alignment using the Near Infrared Camera as a wavefront sensor. The telescope will be aligned by adjusting seven degrees of freedom on each of 18 primary mirror segments and five degrees of freedom on the secondary mirror to optimize the performance of the telescope and camera at a wavelength of 2 microns. With the completion of these adjustments, the telescope focus is set and the optical performance of each of the other science instruments should then be optimal without making further telescope focus adjustments for each individual instrument. This alignment approach requires confocality of the instruments after integration and alignment to the composite metering structure, which will be verified during instrument level testing at Goddard Space Flight Center with a telescope optical simulator. In this paper, we present the results from a study of several analytical approaches to determine the focus for each instrument. The goal of the study is to compare the accuracies obtained for each method, and to select the most feasible for use during optical testing.

    17. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems

      PubMed Central

      Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

      2016-01-01

      The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045

    18. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

      NASA Technical Reports Server (NTRS)

      Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

      2006-01-01

      An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

    19. Inverting Image Data For Optical Testing And Alignment

      NASA Technical Reports Server (NTRS)

      Shao, Michael; Redding, David; Yu, Jeffrey W.; Dumont, Philip J.

      1993-01-01

      Data from images produced by slightly incorrectly figured concave primary mirror in telescope processed into estimate of spherical aberration of mirror, by use of algorithm finding nonlinear least-squares best fit between actual images and synthetic images produced by multiparameter mathematical model of telescope optical system. Estimated spherical aberration, in turn, converted into estimate of deviation of reflector surface from nominal precise shape. Algorithm devised as part of effort to determine error in surface figure of primary mirror of Hubble space telescope, so corrective lens designed. Modified versions of algorithm also used to find optical errors in other components of telescope or of other optical systems, for purposes of testing, alignment, and/or correction.

    20. Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST

      NASA Technical Reports Server (NTRS)

      Hadjimichael, Theo

      2015-01-01

      The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.

    1. Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystals

      PubMed Central

      Hisano, Kyohei; Aizawa, Miho; Ishizu, Masaki; Kurata, Yosuke; Nakano, Wataru; Akamatsu, Norihisa; Barrett, Christopher J.; Shishido, Atsushi

      2017-01-01

      Hierarchical control of two-dimensional (2D) molecular alignment patterns over large areas is essential for designing high-functional organic materials and devices. However, even by the most powerful current methods, dye molecules that discolor and destabilize the materials need to be doped in, complicating the process. We present a dye-free alignment patterning technique, based on a scanning wave photopolymerization (SWaP) concept, that achieves a spatial light–triggered mass flow to direct molecular order using scanning light to propagate the wavefront. This enables one to generate macroscopic, arbitrary 2D alignment patterns in a wide variety of optically transparent polymer films from various polymerizable mesogens with sufficiently high birefringence (>0.1) merely by single-step photopolymerization, without alignment layers or polarized light sources. A set of 150,000 arrays of a radial alignment pattern with a size of 27.4 μm × 27.4 μm were successfully inscribed by SWaP, in which each individual pattern is smaller by a factor of 104 than that achievable by conventional photoalignment methods. This dye-free inscription of microscopic, complex alignment patterns over large areas provides a new pathway for designing higher-performance optical and mechanical devices. PMID:29152567

    2. Alignment and Integration of Lightweight Mirror Segments

      NASA Technical Reports Server (NTRS)

      Evans, Tyler; Biskach, Michael; Mazzarella, Jim; McClelland, Ryan; Saha, Timo; Zhang, Will; Chan, Kai-Wing

      2011-01-01

      The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it difficult not to impart distortion at the sub-arc-second level. This paper outlines the precise alignment, permanent bonding, and verification testing techniques developed at NASA's Goddard Space Flight Center (GSFC). Improvements in alignment include new hardware and automation software. Improvements in bonding include two module new simulators to bond mirrors into, a glass housing for proving single pair bonding, and a Kovar module for bonding multiple pairs of mirrors. Three separate bonding trials were x-ray tested producing results meeting the requirement of sub ten arc-second alignment. This paper will highlight these recent advances in alignment, testing, and bonding techniques and the exciting developments in thin x-ray optic technology development.

    3. An ultra stable optical bench for the magnetic survey satellite

      NASA Technical Reports Server (NTRS)

      Wingate, C. A., Jr.; Coughlin, T. B.; Sullivan, R. M.

      1978-01-01

      The Magsat optical bench has been designed and built to hold the alignment of five optical elements to deflections of 1-2 arcsec during orbital operation. The bench has been designed to withstand alignment changes during the launch and prestabilization phases of the mission. Severe weight constraints, in conjunction with the thermal and structural requirements, led to the choice of graphite-fiber-reinforced epoxy egg crate core and face sheets for the bench construction. Active temperature control was necessary to meet thermal deflection objectives, and novel kinematic mountings were required to prevent spacecraft bending from deflecting the bench.

    4. Linear and angular retroreflecting interferometric alignment target

      DOEpatents

      Maxey, L. Curtis

      2001-01-01

      The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.

    5. Housing And Mounting Structure

      DOEpatents

      Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

      2005-03-08

      This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

    6. Cost-effective parallel optical interconnection module based on fully passive-alignment process

      NASA Astrophysics Data System (ADS)

      Son, Dong Hoon; Heo, Young Soon; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Sung Chang

      2017-11-01

      In optical interconnection technology, high-speed and large data transitions with low error rate and cost reduction are key issues for the upcoming 8K media era. The researchers present notable types of optical manufacturing structures of a four-channel parallel optical module by fully passive alignment, which are able to reduce manufacturing time and cost. Each of the components, such as vertical-cavity surface laser/positive-intrinsic negative-photodiode array, microlens array, fiber array, and receiver (RX)/transmitter (TX) integrated circuit, is integrated successfully using flip-chip bonding, die bonding, and passive alignment with a microscope. Clear eye diagrams are obtained by 25.78-Gb/s (for TX) and 25.7-Gb/s (for RX) nonreturn-to-zero signals of pseudorandom binary sequence with a pattern length of 231 to 1. The measured responsivity and minimum sensitivity of the RX are about 0.5 A/W and ≤-6.5 dBm at a bit error rate (BER) of 10-12, respectively. The optical power margin at a BER of 10-12 is 7.5 dB, and cross talk by the adjacent channel is ≤1 dB.

    7. Platform technologies for hybrid optoelectronic integration and packaging

      NASA Astrophysics Data System (ADS)

      Datta, Madhumita

      In order to bring fiber-optics closer to individual home and business services, the optical network components have to be inexpensive and reliable. Integration and packaging of optoelectronic devices holds the key to high-volume low-cost component manufacturing. The goal of this dissertation is to propose, study, and demonstrate various ways to integrate optoelectronic devices on a packaging platform to implement cost-effective, functional optical modules. Two types of hybrid integration techniques have been proposed: flip-chip solder bump bonding for high-density two-dimensional array packaging of surface-emitting devices, and solder preform bonding for fiber-coupled edge-emitting semiconductor devices. For flip-chip solder bump bonding, we developed a simple, inexpensive remetallization process called "electroless plating", which converts the aluminum bond pads of foundry-made complementary metal oxide semiconductor (CMOS) chips into solder-bondable and wire-bondable gold surfaces. We have applied for a patent on this remetallization technique. For fiber-pigtailed edge-emitting laser modules, we have studied the coupling characteristics of different types of lensed single-mode fibers including semispherically lensed fiber, cylindrically lensed fiber and conically lensed fiber. We have experimentally demonstrated 66% coupling efficiency with semispherically lensed fiber and 50% efficiency with conically lensed fibers. We have proposed and designed a packaging platform on which lensed fibers can be actively aligned to a laser and solder-attached reliably to the platform so that the alignment is retained. We have designed thin-film nichrome heaters on fused quartz platforms as local heat source to facilitate on-board solder alignment and attachment of fiber. The thermal performance of the heaters was simulated using finite element analysis tool ANSYS prior to fabrication. Using the heater's reworkability advantage, we have estimated the shift of the fiber due to solder shrinkage and introduced a pre-correction in the alignment process to restore optimum coupling efficiency close to 50% with conically lensed fibers. We have applied for a patent on this unique active alignment method through the University of Maryland's Technology Commercialization Office. Although we have mostly concentrated on active alignment platforms, we have proposed the idea of combining the passive alignment advantages of silicon optical benches to the on-board heater-assisted active alignment technique. This passive-active alignment process has the potential of cost-effective array packaging of edge-emitting devices.

    8. Alignment reference device

      DOEpatents

      Patton, Gail Y.; Torgerson, Darrel D.

      1987-01-01

      An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

    9. Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process

      NASA Astrophysics Data System (ADS)

      Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.

      2017-09-01

      Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.

    10. Retro-detective control structures for free-space optical communication links.

      PubMed

      Jin, Xian; Barg, Jason E; Holzman, Jonathan F

      2009-12-21

      A corner-cube-based retro-detection photocell is introduced. The structure consists of three independent and mutually perpendicular photodiodes (PDs), whose differential photocurrents can be used to probe the alignment state of incident beams. These differential photocurrents are used in an actively-controlled triangulation procedure to optimize the communication channel alignment in a free-space optical (FSO) system. The active downlink and passive uplink communication capabilities of this system are demonstrated.

    11. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

      NASA Astrophysics Data System (ADS)

      Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

      1999-07-01

      The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

    12. Self-aligning LED-based optical link

      NASA Astrophysics Data System (ADS)

      Shen, Thomas C.; Drost, Robert J.; Rzasa, John R.; Sadler, Brian M.; Davis, Christopher C.

      2016-09-01

      The steady advances in light-emitting diode (LED) technology have motivated the use of LEDs in optical wireless communication (OWC) applications such as indoor local area networks (LANs) and communication between mobile platforms (e.g., robots, vehicles). In contrast to traditional radio frequency (RF) wireless communication, OWC utilizes electromagnetic spectrum that is largely unregulated and unrestricted. OWC communication may be especially useful in RF-denied environments, in which RF communication may be prohibited or undesirable. However, OWC does present some challenges, including the need to maintain alignment between potentially moving nodes. We describe a novel system for link alignment that is composed of a hyperboloidal mirror, camera, and gimbal. The experimental system is able to use the mirror and camera to detect an LED beacon of a neighboring node and estimate its bearing (azimuth and elevation), point the gimbal towards the beacon, and establish an optical link.

    13. Finding the optical axis of a distant object using an optical alignment system based on a holographic marker

      NASA Astrophysics Data System (ADS)

      Zhuk, D. I.; Denisyuk, I. Yu.; Gutner, I. E.

      2015-07-01

      A way to construct a holographic indicator of the position of the central axis of a distant object based on recording a transmission hologram in a layer of photosensitive material and forming a remote real image before a light source is considered. A light source with a holographically formed marker designed for visual guidance to the object axis; it can be used to simplify aircraft landing on a glide path, preliminary visual alignment of large coaxial details of various machines, etc. Specific features of the scheme of recording a holographic marker and the reconstruction of its image are considered. The possibility of forming a remote holographic image marker, which can be aligned with a simultaneously operating reference laser system for determining the direction to an object and its optical axis, has been demonstrated experimentally.

    14. Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope (Conference Presentation)

      NASA Astrophysics Data System (ADS)

      Spiga, D.; Della Monica Ferreira, D.; Shortt, B.; Bavdaz, M.; Bergback Knudsen, E.; Bianucci, G.; Christensen, F.; Civitani, M.; Collon, M.; Conconi, P.; Fransen, S.; Marioni, F.; Massahi, S.; Pareschi, G.; Salmaso, B.; Jegers, A. S.; Tayabaly, K.; Valsecchi, G.; Westergaard, N.; Wille, E.

      2017-09-01

      The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In the current configuration, the optical assembly has a 3 m diameter and a 2 m2 effective area at 1 keV, with a required angular resolution of 5 arcsec. The angular resolution that can be achieved is chiefly the combination of 1) the focal spot size determined by the pore diffraction, 2) the focus degradation caused by surface and profile errors, 3) the aberrations introduced by the misalignments between primary and secondary segments, 4) imperfections in the co-focality of the mirror modules in the optical assembly. A detailed simulation of these aspects is required in order to assess the fabrication and alignment tolerances; moreover, the achievable effective area and angular resolution depend on the mirror module design. Therefore, guaranteeing these optical performances requires: a fast design tool to find the most performing solution in terms of mirror module geometry and population, and an accurate point spread function simulation from local metrology and positioning information. In this paper, we present the results of simulations in the framework of ESA-financed projects (SIMPOSiuM, ASPHEA, SPIRIT), in preparation of the ATHENA X-ray telescope, analyzing the mentioned points: 1) we deal with a detailed description of diffractive effects in an SPO mirror module, 2) we show ray-tracing results including surface and profile defects of the reflective surfaces, 3) we assess the effective area and angular resolution degradation caused by alignment errors between SPO mirror module's segments, and 4) we simulate the effects of co-focality errors in X-rays and in the UV optical bench used to study the mirror module alignment and integration.

    15. Laser tweezer actuated microphotonic array devices for high resolution imaging and analysis in chip-based biosystems

      NASA Astrophysics Data System (ADS)

      Birkbeck, Aaron L.

      A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.

    16. Test Port for Fiber-Optic-Coupled Laser Altimeter

      NASA Technical Reports Server (NTRS)

      Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

      2011-01-01

      A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as compared to schemes where the aperture is only partially illuminated). Fiber-optic coupling the test port also allows for the modularity of testing the receiver detectors with a variety of background and signal laser sources without the need of using complex optical set-ups to optimize the efficiency of each source.

    17. Optical waveguide circuit board with a surface-mounted optical receiver array

      NASA Astrophysics Data System (ADS)

      Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.

      1994-03-01

      A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.

    18. Aural stealth of portable cryogenically cooled infrared imagers

      NASA Astrophysics Data System (ADS)

      Veprik, Alexander; Vilenchick, Herman; Broyde, Ramon; Pundak, Nachman

      2006-05-01

      Novel tactics for carrying out military and antiterrorist operations calls for the development of a new generation of portable infrared imagers, the focal plane arrays of which are maintained at a cryogenic temperature. The rotary Stirling cryogenic engines providing for this cooling are usually mounted directly upon the light thin-walled imager frame, which is used for optical alignment, mechanical stability and heat sinking. The known disadvantage of this design approach is that the wideband vibration export produced by the cooler results in structural resonances and therefore in excessive noise radiation from the above imagers. The "noisy" thermal imager may be detected from quite a long distance using acoustic equipment relying upon a high-sensitive unidirectional microphone or aurally spotted when used in a close proximity to the opponent force. As a result, aural stealth along with enhanced imagery, compact design, low power consumption and long life-times become a crucial figure of merit characterising the modern infrared imager. Achieving the desired inaudibility level is a challenging task. As a matter of fact, even the best examples of modern "should-be silent" infrared imagers are quite audible from as far as 50 meters away even when operating in a steady-state mode. The authors report on the successful effort of designing the inaudible at greater then 10 meters cryogenically cooled infrared imager complying with the stringent MIL-STD-1774D (Level II) requirements.

    19. Temporal laser pulse manipulation using multiple optical ring-cavities

      NASA Technical Reports Server (NTRS)

      Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

      2010-01-01

      An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

    20. A low-voltage three-axis electromagnetically actuated micromirror for fine alignment among optical devices

      NASA Astrophysics Data System (ADS)

      Cho, Il-Joo; Yoon, Euisik

      2009-08-01

      In this paper, a new three-axis electromagnetically actuated micromirror structure has been proposed and fabricated. It is electromagnetically actuated at low voltage using an external magnetic field. The main purpose of this work was to obtain a three-axis actuated micromirror in a mechanically robust structure with large static angular and vertical displacement at low actuation voltage for fine alignment among optical components in an active alignment module as well as conventional optical systems. The mirror plate and torsion bars are made of bulk silicon using a SOI wafer, and the actuation coils are made of electroplated Au. The maximum static deflection angles were measured as ±4.2° for x-axis actuation and ±9.2° for y-axis actuation, respectively. The maximum static vertical displacement was measured as ±42 µm for z-axis actuation. The actuation voltages were below 3 V for all actuation. The simulated resonant frequencies are several kHz, and these imply that the fabricated micromirror can be operated in sub-millisecond order. The measured radius of curvature (ROC) of the fabricated micromirror is 7.72 cm, and the surface roughness of the reflector is below 1.29 nm which ensure high optical performance such as high directionality and reflectivity. The fabricated micromirror has demonstrated large actuated displacement at low actuation voltage, and it enables us to compensate a larger misalignment value when it is used in an active alignment module. The robust torsion bar and lifting bar structure formed by bulk silicon allowed the proposed micromirror to have greater operating stability. The additional degree of freedom with z-axis actuation can decrease the difficulty in the assembly of optical components and increase the coupling efficiency between optical components.

    1. Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation

      NASA Astrophysics Data System (ADS)

      Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke

      2018-06-01

      We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.

    2. Optical and structural properties of amorphous Se x Te100- x aligned nanorods

      NASA Astrophysics Data System (ADS)

      Al-Agel, Faisal A.

      2013-12-01

      In the present work, we report studies on optical and structural phenomenon in as-deposited thin films composed of aligned nanorods of amorphous Se x Te100- x ( x = 3, 6, 9, and 12). In structural studies, field emission scanning electron microscopic (FESEM) images suggest that these thin films contain high yield of aligned nanorods. These nanorods show a completely amorphous nature, which is verified by X-ray diffraction patterns of these thin films. Optical studies include the measurement of spectral dependence of absorption, reflection, and transmission of these thin films, respectively. On the basis of optical absorption data, a direct optical band gap is observed. This observation of a direct optical band gap in these nanorods is interesting as chalcogenides normally show an indirect band gap, and due to this reason, these materials could not become very popular for semiconducting devices. Therefore, this is an important report and will open up new directions for the application of these materials in semiconducting devices. The value of this optical band gap is found to decrease with the increase in selenium (Se) concentration. The reflection and absorption data are employed to estimate the values of optical constants (extinction coefficient ( k) and refractive index ( n)). From the spectral dependence of these optical constants, it is found that the values of refractive index ( n) increase, whereas the values of extinction coefficient ( k) decrease with the increase in photon energy. The real and imaginary parts of dielectric constants calculated with the values of extinction coefficient ( k) and refractive index ( n), are found to vary with photon energy and dopant concentration.

    3. X-ray pore optic developments

      NASA Astrophysics Data System (ADS)

      Wallace, Kotska; Bavdaz, Marcos; Collon, Maximilien; Beijersbergen, Marco; Kraft, Stefan; Fairbend, Ray; Séguy, Julien; Blanquer, Pascal; Graue, Roland; Kampf, Dirk

      2017-11-01

      In support of future x-ray telescopes ESA is developing new optics for the x-ray regime. To date, mass and volume have made x-ray imaging technology prohibitive to planetary remote sensing imaging missions. And although highly successful, the mirror technology used on ESA's XMM-Newton is not sufficient for future, large, x-ray observatories, since physical limits on the mirror packing density mean that aperture size becomes prohibitive. To reduce telescope mass and volume the packing density of mirror shells must be reduced, whilst maintaining alignment and rigidity. Structures can also benefit from a modular optic arrangement. Pore optics are shown to meet these requirements. This paper will discuss two pore optic technologies under development, with examples of results from measurement campaigns on samples. One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology. A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.

    4. Sample holder with optical features

      DOEpatents

      Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

      2013-07-30

      A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

    5. Transmission electron microscope sample holder with optical features

      DOEpatents

      Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY

      2012-03-27

      A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

    6. Self-aligned grating couplers on template-stripped metal pyramids via nanostencil lithography

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Klemme, Daniel J.; Johnson, Timothy W.; Mohr, Daniel A.

      2016-05-23

      We combine nanostencil lithography and template stripping to create self-aligned patterns about the apex of ultrasmooth metal pyramids with high throughput. Three-dimensional patterns such as spiral and asymmetric linear gratings, which can couple incident light into a hot spot at the tip, are presented as examples of this fabrication method. Computer simulations demonstrate that spiral and linear diffraction grating patterns are both effective at coupling light to the tip. The self-aligned stencil lithography technique can be useful for integrating plasmonic couplers with sharp metallic tips for applications such as near-field optical spectroscopy, tip-based optical trapping, plasmonic sensing, and heat-assisted magneticmore » recording.« less

    7. Alignment of the Grating Wheel Mechanism for a Ground-Based, Cryogenic, Near-Infrared Astronomy Instrument

      NASA Technical Reports Server (NTRS)

      Gutkowski, Sharon M.; Ohl, Raymond G.; Hylan, Jason E.; Hagopian, John G.; Kraft, Stephen E.; Mentzell, J. Eric; Connelly, Joseph A.; Schepis, Joseph P.; Sparr, Leroy M.; Greenhouse, Matthew A.

      2003-01-01

      We describe the population, optomechanical alignment, and alignment verification of near-infrared gratings on the grating wheel mechanism (GWM) for the Infrared Multi-Object Spectrometer (IRMOS). IRMOS is a cryogenic (80 K), principle investigator-class instrument for the 2.1 m and Mayall 3.8 m telescopes at Kitt Peak National Observatory, and a MEMS spectrometer concept demonstrator for the James Webb Space Telescope. The GWM consists of 13 planar diffraction gratings and one flat imaging mirror (58 x 57 mm), each mounted at a unique compound angle on a 32 cm diameter gear. The mechanism is predominantly made of Al 6061. The grating substrates are stress relieved for enhanced cryogenic performance. The optical surfaces are replicated from off-the-shelf masters. The imaging mirror is diamond turned. The GWM spans a projected diameter of approx. 48 cm when fully assembled, utilizes several flexure designs to accommodate potential thermal gradients, and is controlled using custom software with an off-the-shelf controller. Under ambient conditions, each grating is aligned in six degrees of freedom relative to a coordinate system that is referenced to an optical alignment cube mounted at the center of the gear. The local tip/tilt (Rx/Ry) orientation of a given grating is measured using the zero-order return from an autocollimating theodolite. The other degrees of freedom are measured using a two-axis cathetometer and rotary table. Each grating's mount includes a one-piece shim located between the optic and the gear. The shim is machined to fine align each grating. We verify ambient alignment by comparing grating difractive properties to model predictions.

    8. Initial Navigation Alignment of Optical Instruments on GOES-R

      NASA Astrophysics Data System (ADS)

      Isaacson, P.; DeLuccia, F.; Reth, A. D.; Igli, D. A.; Carter, D.

      2016-12-01

      The GOES-R satellite is the first in NOAA's next-generation series of geostationary weather satellites. In addition to a number of space weather sensors, it will carry two principal optical earth-observing instruments, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM). During launch, currently scheduled for November of 2016, the alignment of these optical instruments is anticipated to shift from that measured during pre-launch characterization. While both instruments have image navigation and registration (INR) processing algorithms to enable automated geolocation of the collected data, the launch-derived misalignment may be too large for these approaches to function without an initial adjustment to calibration parameters. The parameters that may require adjustment are for Line of Sight Motion Compensation (LMC), and the adjustments will be estimated on orbit during the post-launch test (PLT) phase. We have developed approaches to estimate the initial alignment errors for both ABI and GLM image products. Our approaches involve comparison of ABI and GLM images collected during PLT to a set of reference ("truth") images using custom image processing tools and other software (the INR Performance Assessment Tool Set, or "IPATS") being developed for other INR assessments of ABI and GLM data. IPATS is based on image correlation approaches to determine offsets between input and reference images, and these offsets are the fundamental input to our estimate of the initial alignment errors. Initial testing of our alignment algorithms on proxy datasets lends high confidence that their application will determine the initial alignment errors to within sufficient accuracy to enable the operational INR processing approaches to proceed in a nominal fashion. We will report on the algorithms, implementation approach, and status of these initial alignment tools being developed for the GOES-R ABI and GLM instruments.

    9. Development of technology for lightweight Beryllium Cassegrain Telescope for space applications and lessons learnt

      NASA Astrophysics Data System (ADS)

      Greger, R.; Rugi, E.; Hausner, Th.; Jahnen, W.; Frei, S.; Pellaton, D.; Mueller, P.; Hollenbach, I.

      2017-11-01

      This paper gives an overview on the development of a light weighted Cassegrain telescope with a 200 mm optical aperture as one key element of the Laser Altimeter which will fly on the BepiColombo mission to Mercury (BELA).The Receiver Telescope (RTL) collects the light pulse transmitted to Mercury and reflected from the planet's surface. Mercury's challenging thermal environment, the thermo-mechanical stability of the telescope and the stringent instrument's mass budget require the implementation of an innovative design solution to achieve the requested optical performance over an extended temperature range.

    10. Towards a better control of optics cleanliness

      NASA Astrophysics Data System (ADS)

      Berlioz, P.

      2017-11-01

      The contamination of optics can considerably degrade the transmission and scattering of spacecraft optics. To prevent efficiently optics from contamination involves introducing since design phase requirements on materials and protections (covers…). Then, integration and test phase demands to implement heavy and stringent means (clean room, specific garment, covers…) and a permanent monitoring by fine contamination measurement of instrument environment and surfaces. Contamination budgets are drawn the project along, first prediction budgets based on analysis and potentially modeling, during design phase, then actual budgets based on contamination measurement during integration and test phase. Finally, the risk still exists to have to clean optics because of hazardous contamination, furthermore to dismount them. The cleanliness engineering set at ASTRIUM Toulouse is presented here, including the contamination monitoring via witness samples measured by IR spectrometry and via counters. ASTRIUM is presently focusing attention on no contact cleaning like the promising UV-ozone process.

    11. Contamination control program results from three years of ground operations on the Extreme Ultraviolet Explorer instruments

      NASA Technical Reports Server (NTRS)

      Ray, David C.; Jelinsky, Sharon; Welsh, Barry Y.; Malina, Roger F.

      1990-01-01

      A stringent contamination-control plan has been developed for the optical components of the Extreme Ultraviolet Explorer instruments, whose performance in the 80-900 A wavelength range is highly sensitive to particulate and molecular contamination. The contamination-control program has been implemented over the last three years during assembly, test and calibration phases of the instrument. These phases have now been completed and the optics cavities of the instruments have been sealed until deployment in space. Various approaches are discussed which have been used during ground operations to meet optics' contamination goals within the project schedule and budget. The measured optical properties of EUV witness mirrors are also presented which remained with the flight mirrors during ground operations. These were used to track optical degradation due to contamination from the cleanroom and high-vacuum test-chamber environments.

    12. SXI prototype mirror mount

      NASA Technical Reports Server (NTRS)

      1995-01-01

      The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve the design, assembly and alignment of the telescope. Finally, a high level assembly and alignment plan for the entire telescope was prepared by UAH. This plan addresses the sequence of assembly, the required assembly and alignment tolerances, and the methods to verify the alignment at each step during the assembly process. This assembly and alignment plan will be used to assemble and integrate the engineering model (EM) of the telescope. Later on, based on this plan more detailed assembly and alignment procedures will be developed for the lower-level assemblies of SXI.

    13. The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities

      NASA Astrophysics Data System (ADS)

      Dupraz, K.; Cassou, K.; Martens, A.; Zomer, F.

      2015-10-01

      The ABCD matrix for parabolic reflectors is derived for any incident angles. It is used in numerical studies of four-mirror cavities composed of two flat and two parabolic mirrors. Constraints related to laser beam injection efficiency, optical stability, cavity-mode, beam-waist size and high stacking power are satisfied. A dedicated alignment procedure leading to stigmatic cavity-modes is employed to overcome issues related to the optical alignment of parabolic reflectors.

    14. Wide-view transflective liquid crystal display for mobile applications

      NASA Astrophysics Data System (ADS)

      Kim, Hyang Yul; Ge, Zhibing; Wu, Shin-Tson; Lee, Seung Hee

      2007-12-01

      A high optical efficiency and wide-view transflective liquid crystal display based on fringe-field switching structure is proposed. The transmissive part has a homogenous liquid crystal (LC) alignment and is driven by a fringe electric field, which exhibits excellent electro-optic characteristics. The reflective part has a hybrid LC alignment with quarter-wave phase retardation and is also driven by a fringe electric field. Consequently, the transmissive and reflective parts have similar gamma curves.

    15. Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument

      NASA Astrophysics Data System (ADS)

      Evans, T.

      The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.

    16. Automatic alignment of double optical paths in excimer laser amplifier

      NASA Astrophysics Data System (ADS)

      Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

      2013-05-01

      A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

    17. Model-based estimation and control for off-axis parabolic mirror alignment

      NASA Astrophysics Data System (ADS)

      Fang, Joyce; Savransky, Dmitry

      2018-02-01

      This paper propose an model-based estimation and control method for an off-axis parabolic mirror (OAP) alignment. Current studies in automated optical alignment systems typically require additional wavefront sensors. We propose a self-aligning method using only focal plane images captured by the existing camera. Image processing methods and Karhunen-Loève (K-L) decomposition are used to extract measurements for the observer in closed-loop control system. Our system has linear dynamic in state transition, and a nonlinear mapping from the state to the measurement. An iterative extended Kalman filter (IEKF) is shown to accurately predict the unknown states, and nonlinear observability is discussed. Linear-quadratic regulator (LQR) is applied to correct the misalignments. The method is validated experimentally on the optical bench with a commercial OAP. We conduct 100 tests in the experiment to demonstrate the consistency in between runs.

    18. Stabilization of He2(A(sup 3)Sigma(sub u)(+)) molecules in liquid helium by optical pumping for vacuum UV laser

      NASA Technical Reports Server (NTRS)

      Zmuidzinas, J. S. (Inventor)

      1978-01-01

      A technique is disclosed for achieving large populations of metastable spin-aligned He2(a 3 Sigma u +) molecules in superfluid helium to obtain lasing in the vacuum ultraviolet wavelength regime around 0.0800 micron m by electronically exciting liquid (superfluid) helium with a comparatively low-current electron beam and spin aligning the metastable molecules by means of optical pumping with a modestly-powered (100mW) circularly-polarized continuous wave laser operating at, for example, 0.9096 or 0.4650 micron m. Once a high concentration of spin-aligned He2 (a 3 Sigma u +) is achieved with lifetimes of a few milliseconds, a strong microwave signal destroys the spin alignment and induces a quick collisional transition of He2 (a 3 Sigma u +) molecules to the a 1 Sigma u + state and thereby a lasing transition to the X 1 Sigma g + state.

    19. Magnetic quenching of photonic activity in Fe3O4-elastomer composite

      NASA Astrophysics Data System (ADS)

      Ma, Danhao; Hess, Dustin T.; Shetty, Pralav P.; Adu, Kofi W.; Bell, Richard C.; Terrones, Mauricio

      2016-01-01

      We report a quenching phenomenon within the visible region of the electromagnetic spectrum in the photonic response of a passive Fe3O4-silicone elastomer composite film due to magnetically aligned Fe3O4 nanoparticles. We performed systematic studies of the polarization dependence, the effect of particle size, and an in- and out-of-plane particle alignment on the optical response of the Fe3O4-silicone elastomer composites using a UV/vis/NIR spectrometer. We observed systematic redshifts in the response of the out-of-plane composite films with increasing particle alignment and weight that are attributed to dipole-induced effects. There were no observable shifts in the spectra of the in-plane films, suggesting the orientation of the magnetic dipole and the induced electric dipole play a crucial role in the optical response. A dramatic suppression to near quenching of the photonic response occurred in films containing moderate concentrations of the aligned nanoparticles. This is attributed to the interplay between the intra- and the interparticle dipoles. This occurred even when low magnetic fields were used during the curing process, suggesting that particle alignment and particle size limitation are critical in the manipulation of the photonic properties. A dipole approximation model is used to explain the quenching phenomenon. An active system of such a composite has a potential application in magneto-optic switches.

    20. Alignment of sensor arrays in optical instruments using a geometric approach.

      PubMed

      Sawyer, Travis W

      2018-02-01

      Alignment of sensor arrays in optical instruments is critical to maximize the instrument's performance. While many commercial systems use standardized mounting threads for alignment, custom systems require specialized equipment and alignment procedures. These alignment procedures can be time-consuming, dependent on operator experience, and have low repeatability. Furthermore, each alignment solution must be considered on a case-by-case basis, leading to additional time and resource cost. Here I present a method to align a sensor array using geometric analysis. By imaging a grid pattern of dots, I show that it is possible to calculate the misalignment for a sensor in five degrees of freedom simultaneously. I first test the approach by simulating different cases of misalignment using Zemax before applying the method to experimentally acquired data of sensor misalignment for an echelle spectrograph. The results show that the algorithm effectively quantifies misalignment in five degrees of freedom for an F/5 imaging system, accurate to within ±0.87  deg in rotation and ±0.86  μm in translation. Furthermore, the results suggest that the method can also be applied to non-imaging systems with a small penalty to precision. This general approach can potentially improve the alignment of sensor arrays in custom instruments by offering an accurate, quantitative approach to calculating misalignment in five degrees of freedom simultaneously.

    1. A near-Infrared SETI Experiment: Alignment and Astrometric precision

      NASA Astrophysics Data System (ADS)

      Duenas, Andres; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan

      2016-06-01

      Beginning in March 2015, a Near-InfraRed Optical SETI (NIROSETI) instrument aiming to search for fast nanosecond laser pulses, has been commissioned on the Nickel 1m-telescope at Lick Observatory. The NIROSETI instrument makes use of an optical guide camera, SONY ICX694 CCD from PointGrey, to align our selected sources into two 200µm near-infrared Avalanche Photo Diodes (APD) with a field-of-view of 2.5"x2.5" each. These APD detectors operate at very fast bandwidths and are able to detect pulse widths extending down into the nanosecond range. Aligning sources onto these relatively small detectors requires characterizing the guide camera plate scale, static optical distortion solution, and relative orientation with respect to the APD detectors. We determined the guide camera plate scale as 55.9+- 2.7 milli-arcseconds/pixel and magnitude limit of 18.15mag (+1.07/-0.58) in V-band. We will present the full distortion solution of the guide camera, orientation, and our alignment method between the camera and the two APDs, and will discuss target selection within the NIROSETI observational campaign, including coordination with Breakthrough Listen.

    2. COR1 Engineering Test Unit Measurements at the NCAR/HAO Vacuum Tunnel Facility, October-November 2002

      NASA Technical Reports Server (NTRS)

      Thompson, William

      2002-01-01

      The Engineering Test Unit (ETU) of COR1 was made in two configurations. The first configuration, ETU-1, was for vibration testing, while the second, ETU-2, was for optical testing. This is a report on the optical testing performed on ETU-2 at the NCAR/HAO Vacuum Tunnel Facility during the months of October and November, 2002. This was the same facility used to test the two previous breadboard models. In both configurations, the first two tube sections were complete, with all optical elements aligned. The vibration model ETU-1 had the remaining tube sections attached, with mass models for the remaining optics, for the various mechanisms, and for the focal plane assembly. It was then converted into the optical model ETU-2 by removing tube sections 3 to 5, and mounting the remaining optics on commercial mounts. (The bandpass filter was also installed into tube 2, which had been replaced in ETU-1 by a mass model, so that pre- and post-vibration optical measurements could be made.) Doublet 2 was installed in a Newport LP-2 carrier, and aligned to the other optics in the first two tube sections. The LP-2 adjustment screws were then uralened so that the alignment could be maintained during shipping. Because neither the flight polarizer nor Hollow Core Motor were available, they were simulated by a commercial polarizer and rotational mount, both from Oriel corporation. The Oriel rotational stage was not designed for vacuum use, but it was determined after consultation with the company, and lab testing, that the stage could be used in the moderate vacuum conditions at the NCAR/HAO facility. The shutter and focal plane assembly were simulated with the same camera used for the previous two breadboard tests. The focal plane mask was simulated with a plane of BK7 glass with a mask glued on, using the same procedure as for the Lyot spot on Doublet 1, and mounted in an adjustable LP-2 carrier. Two masks were made, one made to the precise specifications of the optical design, the other slightly bigger to make alignment easier.

    3. Conceptual design of a coherent optical system of modular imaging collectors (COSMIC). [telescope array deployed by space shuttle in 1990's

      NASA Technical Reports Server (NTRS)

      Nein, M. E.; Davis, B. G.

      1982-01-01

      The Coherent Optical System of Modular Imaging Collectors (COSMIC) is the design concept for a phase-coherent optical telescope array that may be placed in earth orbit by the Space Shuttle in the 1990s. The initial system module is a minimum redundancy array whose photon collecting area is three times larger than that of the Space Telescope, and possesses a one-dimensional resoution of better than 0.01 arcsec in the visible range. Thermal structural requirements are assessed. Although the coherent beam combination requirements will be met by an active control system, the COSMIC structural/thermal design must meet more stringent performance criteria than even those of the Space Telescope.

    4. Onorbit IMU alignment error budget

      NASA Technical Reports Server (NTRS)

      Corson, R. W.

      1980-01-01

      The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

    5. The use of Long-Lived Tracer Observations to Examine Transport Characteristics in the Lower Stratosphere

      NASA Astrophysics Data System (ADS)

      Lingenfelser, Gretchen Scott

      This thesis explores the problem of uniformly aligning Ferroelectric Liquid Crystals (FLCs) over large areas whilst retaining bistability. A novel high tilt alignment (HTA) is presented and its electro-optic performance is compared to the traditional surface stabilised (SS) alignment using three different devices; test cells, displays and all-fibre optic devices. Evidence is presented to show that the SS alignment has a small surface pretilt of the director which reduces the number of zig-zag defects in parallel aligned cells. This is related to the layer structure and a review of the latest proposed structures of SS devices is presented. The HTA device is shown to have many advantages over the SS device; no zig-zag defects, excellent bistability in up to 6 mum thick cells, good mechanical stability and excellent viewing characteristics when multiplexed. These properties are explored and culminate in the production of two FLC displays, one HTA and one SS aligned. The properties of these displays are compared. In order to improve the appearance and frame time of the displays, multiplexing schemes were investigated, including a novel two slot scheme that was successfully used to drive both displays. It was found that the SS display could be driven in a reverse contrast mode by taking advantage of the relaxation process. This decreased the line address time and produced a higher contrast display. A nematic LC all-fibre optic polariser was produced with excellent extinction ratio (45 dB) and low loss (0.2 dB) using evanescent field coupling. A nematic LC modulator was then demonstrated using a novel electrode arrangement. A modulation depth of 28 dB was achieved using low voltages ( 10V) but with 10 kHz but the modulation depth was poor (8.2 dB) because of the unsuitable refractive indices. The potential and uses of LC all-fibre optic devices are discussed.

    6. On-Orbit Multi-Field Wavefront Control with a Kalman Filter

      NASA Technical Reports Server (NTRS)

      Lou, John; Sigrist, Norbert; Basinger, Scott; Redding, David

      2008-01-01

      A document describes a multi-field wavefront control (WFC) procedure for the James Webb Space Telescope (JWST) on-orbit optical telescope element (OTE) fine-phasing using wavefront measurements at the NIRCam pupil. The control is applied to JWST primary mirror (PM) segments and secondary mirror (SM) simultaneously with a carefully selected ordering. Through computer simulations, the multi-field WFC procedure shows that it can reduce the initial system wavefront error (WFE), as caused by random initial system misalignments within the JWST fine-phasing error budget, from a few dozen micrometers to below 50 nm across the entire NIRCam Field of View, and the WFC procedure is also computationally stable as the Monte-Carlo simulations indicate. With the incorporation of a Kalman Filter (KF) as an optical state estimator into the WFC process, the robustness of the JWST OTE alignment process can be further improved. In the presence of some large optical misalignments, the Kalman state estimator can provide a reasonable estimate of the optical state, especially for those degrees of freedom that have a significant impact on the system WFE. The state estimate allows for a few corrections to the optical state to push the system towards its nominal state, and the result is that a large part of the WFE can be eliminated in this step. When the multi-field WFC procedure is applied after Kalman state estimate and correction, the stability of fine-phasing control is much more certain. Kalman Filter has been successfully applied to diverse applications as a robust and optimal state estimator. In the context of space-based optical system alignment based on wavefront measurements, a KF state estimator can combine all available wavefront measurements, past and present, as well as measurement and actuation error statistics to generate a Maximum-Likelihood optimal state estimator. The strength and flexibility of the KF algorithm make it attractive for use in real-time optical system alignment when WFC alone cannot effectively align the system.

    7. JWST-MIRI spectrometer main optics design and main results

      NASA Astrophysics Data System (ADS)

      Navarro, Ramón; Schoenmaker, Ton; Kroes, Gabby; Oudenhuysen, Ad; Jager, Rieks; Venema, Lars

      2017-11-01

      MIRI ('Mid InfraRed Instrument') is the combined imager and integral field spectrometer for the 5-29 micron wavelength range under development for the James Webb Space Telescope JWST. The flight acceptance tests of the Spectrometer Main Optics flight models (SMO), part of the MIRI spectrometer, are completed in the summer of 2008 and the system is delivered to the MIRI-JWST consortium. The two SMO arms contain 14 mirrors and form the MIRI optical system together with 12 selectable gratings on grating wheels. The entire system operates at a temperature of 7 Kelvin and is designed on the basis of a 'no adjustments' philosophy. This means that the optical alignment precision depends strongly on the design, tolerance analysis and detailed knowledge of the manufacturing process. Because in principle no corrections are needed after assembly, continuous tracking of the alignment performance during the design and manufacturing phases is important. The flight hardware is inspected with respect to performance parameters like alignment and image quality. The stability of these parameters is investigated after exposure to various vibration levels and successive cryogenic cool downs. This paper describes the philosophy behind the acceptance tests, the chosen test strategy and reports the results of these tests. In addition the paper covers the design of the optical test setup, focusing on the simulation of the optical interfaces of the SMO. Also the relation to the SMO qualification and verification program is addressed.

    8. Thermal Design to Meet Stringent Temperature Gradient/Stability Requirements of SWIFT BAT Detectors

      NASA Technical Reports Server (NTRS)

      Choi, Michael K.

      2000-01-01

      The Burst Alert Telescope (BAT) is an instrument on the National Aeronautics and Space Administration (NASA) SWIFT spacecraft. It is designed to detect gamma ray burst over a broad region of the sky and quickly align the telescopes on the spacecraft to the gamma ray source. The thermal requirements for the BAT detector arrays are very stringent. The maximum allowable temperature gradient of the 256 cadmium zinc telluride (CZT) detectors is PC. Also, the maximum allowable rate of temperature change of the ASICs of the 256 Detector Modules (DMs) is PC on any time scale. The total power dissipation of the DMs and Block Command & Data Handling (BCDH) is 180 W. This paper presents a thermal design that uses constant conductance heat pipes (CCHPs) to minimize the temperature gradient of the DMs, and loop heat pipes (LHPs) to transport the waste heat to the radiator. The LHPs vary the effective thermal conductance from the DMs to the radiator to minimize heater power to meet the heater power budget, and to improve the temperature stability. The DMs are cold biased, and active heater control is used to meet the temperature gradient and stability requirements.

    9. Cosmetic Regulations: A Comparative Study.

      PubMed

      Suhag, Jyoti; Dureja, Harish

      2015-01-01

      The regulatory framework, compliance requirement, efficacy, safety, and marketing of cosmetic products are considered the most important factors for growth of the cosmetic industry. There are different regulatory bodies across the globe that have their own insights for regulation; moreover, governments such as the United States, European Union, and Japan follow a stringent regulatory framework, whereas cosmetics are not so much strictly regulated in countries such as India, Brazil, and China. The alignment of a regulatory framework will play a significant role in the removal of barriers to trade, growth of market at an international level, innovation in the development and presentation of new products, and most importantly safety and efficacy of the marketed products. The present contribution gives insight into the important cosmetic regulations in areas of premarket approval, ingredient control, and labeling and warnings, with a special focus on the cosmetic regulatory environments in the United States, European Union, Japan, and India. Most importantly, the authors highlight the dark side of cosmetics associated with allergic reactions and even skin cancer. The importance of cosmetic regulations has been highlighted by dint of which the society can be healthier, accomplished by more stringent and harmonized regulations.

    10. Manufacturing considerations for AMLCD cockpit displays

      NASA Astrophysics Data System (ADS)

      Luo, Fang-Chen

      1995-06-01

      AMLCD cockpit displays need to meet more stringent requirements compared with AMLCD commercial displays in areas such as environmental conditions, optical performance and device reliability. Special considerations are required for the manufacturing of AMLCD cockpit displays in each process step to address these issues. Some examples are: UV stable polarizers, wide-temperature LC material, strong LC glue seal, ESS test system, gray scale voltage EEPROM, etc.

    11. The EUCLID NISP tolerancing concept and results

      NASA Astrophysics Data System (ADS)

      Grupp, Frank; Prieto, Eric; Geis, Norbert; Bode, Andreas; Katterloher, Reinhard; Bodendorf, Christof; Penka, Daniela; Bender, Ralf

      2014-08-01

      Within ESAs 2015 - 2025 Cosmic Vision framework the EUCLID mission satellite addresses cosmological questions related to dark matter and dark energy. EUCLID is equipped with two instruments that are simultaneously observing patches of > 0.5 square degree on the sky. The VIS visual light high spacial resolution imager and the NISP near infrared spectrometer and photometer are separated by a di-chroic beam splitter. Having a large FoV (larger than the full moon disk), together with high demands on the optical performance and strong requirements on in flight stability lead to very challenging demands on alignment and post launch { post cool-down optical element position. The role of an accurate and trust-worthy tolerance analysis which is well adopted to the stepwise integration and alignment concept, as well as to the missions stability properties is therefore crucial for the missions success. With this paper we present a new iteration of the baseline tolerancing concept for EUCLID NISP. All 7 operational modes being low resolution slit-less spectroscopy and three band Y, J& H+ band photometry are being toleranced together. During the design process it was noted that the desired performance can only be reached when alignment and tolerancing methods are closely connected and optimized together. Utilizing computer generated - multi zone - holograms to align and cross reference the four lenses of the NISP optical system. We show our plan to verify these holograms and what alignment sensitivities we reach. In the main section we present the result of the tolerancing and the main contributers that drive the mechanical and thermal design of the NISO optical subsystems. This analysis presents the design status of NISP at the system PDR of the mission.

    12. Alignment and use of the optical test for the 8.4-m off-axis primary mirrors of the Giant Magellan Telescope

      NASA Astrophysics Data System (ADS)

      West, S. C.; Burge, J. H.; Cuerden, B.; Davison, W.; Hagen, J.; Martin, H. M.; Tuell, M. T.; Zhao, C.; Zobrist, T.

      2010-07-01

      The Giant Magellan Telescope has a 25 meter f/0.7 near-parabolic primary mirror constructed from seven 8.4 meter diameter segments. Several aspects of the interferometric optical test used to guide polishing of the six off-axis segments go beyond the demonstrated state of the art in optical testing. The null corrector is created from two obliquelyilluminated spherical mirrors combined with a computer-generated hologram (the measurement hologram). The larger mirror is 3.75 m in diameter and is supported at the top of a test tower, 23.5 m above the GMT segment. Its size rules out a direct validation of the wavefront produced by the null corrector. We can, however, use a reference hologram placed at an intermediate focus between the two spherical mirrors to measure the wavefront produced by the measurement hologram and the first mirror. This reference hologram is aligned to match the wavefront and thereby becomes the alignment reference for the rest of the system. The position and orientation of the reference hologram, the 3.75 m mirror and the GMT segment are measured with a dedicated laser tracker, leading to an alignment accuracy of about 100 microns over the 24 m dimensions of the test. In addition to the interferometer that measures the GMT segment, a separate interferometer at the center of curvature of the 3.75 m sphere monitors its figure simultaneously with the GMT measurement, allowing active correction and compensation for residual errors. We describe the details of the design, alignment, and use of this unique off-axis optical test.

    13. A two-in-one Faraday rotator mirror exempt of active optical alignment.

      PubMed

      Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming

      2014-02-10

      A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.

    14. Using naturally occurring polysaccharides to align molecules with nonlinear optical activity

      NASA Technical Reports Server (NTRS)

      Prasthofer, Thomas

      1996-01-01

      The Biophysics and Advanced Materials Branch of the Microgravity Science and Applications Division at Marshall Space Flight Center has been investigating polymers with the potential for nonlinear optical (NLO) applications for a number of years. Some of the potential applications for NLO materials include optical communications, computing, and switching. To this point the branch's research has involved polydiacetylenes, phthalocyanins, and other synthetic polymers which have inherent NLO properties. The aim of the present research is to investigate the possibility of using naturally occurring polymers such as polysaccharides or proteins to trap and align small organic molecules with useful NLO properties. Ordering molecules with NLO properties enhances 3rd order nonlinear effects and is required for 2nd order nonlinear effects. Potential advantages of such a system are the flexibility to use different small molecules with varying chemical and optical properties, the stability and cost of the polymers, and the ability to form thin, optically transparent films. Since the quality of any polymer films depends on optimizing ordering and minimizing defects, this work is particularly well suited for microgravity experiments. Polysaccharide and protein polymers form microscopic crystallites which must align to form ordered arrays. The ordered association of crystallites is disrupted by gravity effects and NASA research on protein crystal growth has demonstrated that low gravity conditions can improve crystal quality.

    15. Initial alignment method for free space optics laser beam

      NASA Astrophysics Data System (ADS)

      Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

      2016-08-01

      The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

    16. Method and apparatus for staking optical elements

      DOEpatents

      Woods, Robert O.

      1988-01-01

      A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.

    17. Method and apparatus for staking optical elements

      DOEpatents

      Woods, Robert O.

      1988-10-04

      A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.

    18. Simulation studies on the effect of positioning tolerances on optical coupling efficiency

      NASA Astrophysics Data System (ADS)

      Pamidighantam, Ramana V.; Yeo, Yongkee; Sudharsanam, Krishnamachari; Lee, Sik Pong; Iyer, Mahadevan K.

      2002-08-01

      The development of Optoelectronic components for communications is converging towards access networks where device cost makes a significant impact on the market acceptance. Thus, the device design engineer needs to input assembly, fabrication and process constraints into the design at an early stage. The present study is part of a Project on Packaging of Optical Components that IME, Singapore has initiated as part of an ongoing Electronics Packaging Research Consortium with industry partnership. In the present study, the coupling of optical radiation from a laser diode to optical fiber is simulated for a fiber optic transmitter component development project. Different optical configurations based on direct coupling, spherical ball lenses, integral lensed fibers and thermally expanded fibers are created within the commercially available transmitter package space. The effect of optical element variables on the placement tolerance is analyzed and will be reported. The effect of alignment tolerances on the optical coupling is analyzed. Simulation results are presented recommending realizable alignment and placement tolerances to develop a low cost short range link distance transmitter.

    19. Photoaligning and photopatterning technology: applications in displays and photonics

      NASA Astrophysics Data System (ADS)

      Chigrinov, Vladimir

      2016-03-01

      The advantages of LC photoalignment technology in comparison with common "rubbing" alignment methods tend to the continuation of the research in this field. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. Nowadays azo-dye alignment materials can be already used in LCD manufacturing, e.g. for the alignment of monomers in LCP films for new generations of photonics and optics devices. Recently the new application of photoaligned technology for the tunable LC lenses with a variable focal distance was proposed. New optically rewritable (ORW) liquid crystal display and photonics devices with a light controllable structure may include LC E-paper screens, LC lenses with a variable focal distance etc. Fast ferroelectric liquid crystal devices (FLCD) are achieved through the application of nano-scale photo aligning (PA) layers in FLC cells. The novel photoaligned FLC devices may include field sequential color (FSC) FLC with a high resolution, high brightness, low power consumption and extended color gamut to be used for PCs, PDAs, switchable goggles, and new generation of switchable 2D/3D LCD TVs, as well as photonics elements.

    20. Recent advances in automatic alignment system for the National Ignition Facility

      NASA Astrophysics Data System (ADS)

      Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki

      2011-03-01

      The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.

    1. Growth mechanism and optical properties of aligned hexagonal ZnO nanoprisms synthesized by noncatalytic thermal evaporation.

      PubMed

      Umar, Ahmad; Karunagaran, B; Kim, S H; Suh, E-K; Hahn, Y B

      2008-05-19

      Vertically aligned perfectly hexagonal-shaped ZnO nanoprisms have been grown on a Si(100) substrate via a noncatalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen gas. The as-grown nanoprisms consist of ultra smooth Zn-terminated (0001) facets bounded with the {0110} surfaces. The as-synthesized products are single-crystalline with the wurtzite hexagonal phase and grown along the [0001] direction, as confirmed from the detailed structural investigations. The presence of a sharp and strong nonpolar optical phonon high-E2 mode at 437 cm(-1) in the Raman scattering spectrum further confirms good crystallinity and wurtzite hexagonal phase for the as-grown products. The as-grown nanoprisms exhibit a strong near-band-edge emission with a very weak deep-level emission in the room-temperature and low-temperature photoluminescence measurements, confirming good optical properties for the deposited products. Moreover, systematic time-dependent experiments were also performed to determine the growth process of the grown vertically aligned nanoprisms.

    2. Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode

      NASA Astrophysics Data System (ADS)

      Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.

      2000-06-01

      We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.

    3. Low-temperature growth of aligned ZnO nanorods: effect of annealing gases on the structural and optical properties.

      PubMed

      Umar, Ahmad; Hahn, Yoon-Bong; Al-Hajry, A; Abaker, M

      2014-06-01

      Aligned ZnO nanorods were grown on ZnO/Si substrate via simple aqueous solution process at low-temperature of - 65 degrees C by using zinc nitrate and hexamethylenetetramine (HMTA). The detailed morphological and structural properties measured by FESEM, XRD, EDS and TEM confirmed that the as-grown nanorods are vertically aligned, well-crystalline possessing wurtzite hexagonal phase and grown along the [0001] direction. The room-temperature photoluminescence spectrum of the grown nanorods exhibited a strong and broad green emission and small ultraviolet emission. The as-prepared ZnO nanorods were post-annealed in nitrogen (N2) and oxygen (O2) environments and further characterized in terms of their morphological, structural and optical properties. After annealing the nanorods exhibit well-crystallinity and wurtzite hexagonal phase. Moreover, by annealing the PL spectra show the enhancement in the UV emission and suppression in the green emission. The presented results demonstrate that simply by post-annealing process, the optical properties of ZnO nanostructures can be controlled.

    4. A precise method for adjusting the optical system of laser sub-aperture

      NASA Astrophysics Data System (ADS)

      Song, Xing; Zhang, Xue-min; Yang, Jianfeng; Xue, Li

      2018-02-01

      In order to adapt to the requirement of modern astronomical observation and warfare, the resolution of the space telescope is needed to improve, sub-aperture stitching imaging technique is one method to improve the resolution, which could be used not only the foundation and space-based large optical systems, also used in laser transmission and microscopic imaging. A large aperture main mirror of sub-aperture stitching imaging system is composed of multiple sub-mirrors distributed according to certain laws. All sub-mirrors are off-axis mirror, so the alignment of sub-aperture stitching imaging system is more complicated than a single off-axis optical system. An alignment method based on auto-collimation imaging and interferometric imaging is introduced in this paper, by using this alignment method, a sub-aperture stitching imaging system which is composed of 12 sub-mirrors was assembled with high resolution, the beam coincidence precision is better than 0.01mm, and the system wave aberration is better than 0.05λ.

    5. Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching

      NASA Astrophysics Data System (ADS)

      Basu, Rajratan

      2017-07-01

      A small quantity of monolayer graphene flakes is doped in a nematic liquid crystal (LC), and the effective polar anchoring strength coefficient between the LC and the alignment substrate is found to increase by an order of magnitude. The hexagonal pattern of graphene can interact with the LC's benzene rings via π -π electron stacking, enabling the LC to anchor to the graphene surface homogeneously (i.e., planar anchoring). When the LC cell is filled with the graphene-doped LC, some graphene flakes are preferentially attached to the alignment layer and modify the substrate's anchoring property. These spontaneously deposited graphene flakes promote planar anchoring at the substrate and the polar anchoring energy at alignment layer is enhanced significantly. The enhanced anchoring energy is found to impact favorably on the electro-optic response of the LC. Additional studies reveal that the nematic electro-optic switching is significantly faster in the LC-graphene hybrid than that of the pure LC.

    6. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

      NASA Technical Reports Server (NTRS)

      Taylor, Jaime R.

      2003-01-01

      NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

    7. Antares alignment gimbal positioner

      NASA Astrophysics Data System (ADS)

      Day, R. D.; Viswanathan, V. K.; Saxman, A. C.; Lujan, R. E.; Woodfin, W. C.; Sweatt, W. C.

      Antares is a 24-beam 40-TW carbon dioxide (CO2) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, an wavefront optical path difference, as well as aberration information at both helium neon (He-Ne) and CO2 wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1 cm cube to a tolerance of 10 micrometers.

    8. Integrated wide-angle scanner based on translating a curved mirror of acylindrical shape.

      PubMed

      Sabry, Yasser M; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik

      2013-06-17

      A wide angle microscanning architecture is presented in which the angular deflection is achieved by displacing the principle axis of a curved silicon micromirror of acylindrical shape, with respect to the incident beam optical axis. The micromirror curvature is designed to overcome the possible deformation of the scanned beam spot size during scanning. In the presented architecture, the optical axis of the beam lays in-plane with respect to the substrate opening the door for a completely integrated and self-aligned miniaturized scanner. A micro-optical bench scanning device, based on translating a 200 μm focal length micromirror by an electrostatic comb-drive actuator, is implemented on a silicon chip. The microelectromechanical system has a resonance frequency of 329 Hz and a quality factor of 22. A single-mode optical fiber is used as the optical source and inserted into a micromachined groove fabricated and lithographically aligned with the microbench. Optical deflection angles up to 110 degrees are demonstrated.

    9. Aperture alignment in autocollimator-based deflectometric profilometers

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Geckeler, R. D., E-mail: Ralf.Geckeler@ptb.de; Just, A.; Kranz, O.

      2016-05-15

      During the last ten years, deflectometric profilometers have become indispensable tools for the precision form measurement of optical surfaces. They have proven to be especially suitable for characterizing beam-shaping optical surfaces for x-ray beamline applications at synchrotrons and free electron lasers. Deflectometric profilometers use surface slope (angle) to assess topography and utilize commercial autocollimators for the contactless slope measurement. To this purpose, the autocollimator beam is deflected by a movable optical square (or pentaprism) towards the surface where a co-moving aperture limits and defines the beam footprint. In this paper, we focus on the precise and reproducible alignment of themore » aperture relative to the autocollimator’s optical axis. Its alignment needs to be maintained while it is scanned across the surface under test. The reproducibility of the autocollimator’s measuring conditions during calibration and during its use in the profilometer is of crucial importance to providing precise and traceable angle metrology. In the first part of the paper, we present the aperture alignment procedure developed at the Advanced Light Source, Lawrence Berkeley National Laboratory, USA, for the use of their deflectometric profilometers. In the second part, we investigate the topic further by providing extensive ray tracing simulations and calibrations of a commercial autocollimator performed at the Physikalisch-Technische Bundesanstalt, Germany, for evaluating the effects of the positioning of the aperture on the autocollimator’s angle response. The investigations which we performed are crucial for reaching fundamental metrological limits in deflectometric profilometry.« less

    10. A method for optical ground station reduce alignment error in satellite-ground quantum experiments

      NASA Astrophysics Data System (ADS)

      He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei

      2018-03-01

      A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.

    11. An improved Michelson interferometer: smoothing out the rough spots for a more effective teaching tool

      NASA Astrophysics Data System (ADS)

      Eastman, Clarke K.

      2017-08-01

      The Michelson interferometer is a classic tool for demonstrating the wave nature of light, and it is a cornerstone of the optics curriculum. But many students' experiences with this device are higher in frustration than they are in learning. That situation motivated an effort to make aligning the tool less a test of a visual acuity and patience, and more of an introduction to optics phenomena and optical engineering. Key improvements included an added beam-splitter to accommodate multiple observers, a modified telescope to quickly and reliably obtain parallel mirrors, and a series of increasing spectral-width light sources to obtain equal path lengths. This greatly improved students' chances of success, as defined by achieving "white light fringes". When presenting these new features to the students, high importance is placed on understanding why alignment was so difficult with the original design, and why the changes made alignment easier. By exposing the rationale behind the improvements, students can observe the process of problem-solving in an optical engineering scenario. Equally important is the demonstration that solutions can be devised or adapted based on the parts at hand, and that implementations only achieve a highly "polished' state after several design iterations.

    12. Tuning charge carrier transport and optical birefringence in liquid-crystalline thin films: A new design space for organic light-emitting diodes.

      PubMed

      Keum, Chang-Min; Liu, Shiyi; Al-Shadeedi, Akram; Kaphle, Vikash; Callens, Michiel Koen; Han, Lu; Neyts, Kristiaan; Zhao, Hongping; Gather, Malte C; Bunge, Scott D; Twieg, Robert J; Jakli, Antal; Lüssem, Björn

      2018-01-15

      Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the liquid-crystalline semiconductor improves charge transport in single charge carrier devices profoundly. Comparing the current-voltage characteristics of single charge carrier devices with simulations shows an excellent agreement and from this an in-depth understanding of single charge carrier transport in two-terminal devices is obtained. Finally, p-i-n type organic light-emitting diodes (OLEDs) compatible with vacuum processing techniques used in state-of-the-art OLEDs are demonstrated employing liquid-crystalline host matrix in the emission layer.

    13. Optical control of ground-state atomic orbital alignment: Cl(2P3/2) atoms from HCl(v=2,J=1) photodissociation.

      PubMed

      Sofikitis, Dimitris; Rubio-Lago, Luis; Martin, Marion R; Ankeny Brown, Davida J; Bartlett, Nathaniel C-M; Alexander, Andrew J; Zare, Richard N; Rakitzis, T Peter

      2007-10-14

      H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.

    14. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker.

      PubMed

      Teng, Tun-Chien; Lai, Wei-Che

      2014-12-15

      This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).

    15. Novel process for production of micro lenses with increased centering accuracy and imaging performance

      NASA Astrophysics Data System (ADS)

      Wilde, C.; Langehanenberg, P.; Schenk, T.

      2017-10-01

      For modern production of micro lens systems, such as cementing of doublets or more lenses, precise centering of the lens edge is crucial. Blocking the lens temporarily on a centering arbor ensures that the centers of all optical lens surfaces coincide with the lens edge, while the arbor's axis serves as reference for both alignment and edging process. This theoretical assumption of the traditional cementing technology is not applicable for high-end production. In reality cement wedges between the bottom lens surface and the arbor's ring knife edge may occur and even expensive arbors with single-micron precision suffer from reduced quality of the ring knife edge after multiple usages and cleaning cycles. Consequently, at least the position of the bottom lens surface is undefined and the optical axis does not coincide with the arbor's reference axis! In order to overcome this basic problem in using centering arbors, we present a novel and efficient technique which can measure and align both surfaces of a lens with respect to the arbor axis with high accuracy and furthermore align additional lenses to the optical axis of the bottom lens. This is accomplished by aligning the lens without mechanical contact to the arbor. Thus the lens can be positioned in four degrees of freedom, while the centration errors of all lens surfaces are measured and considered. Additionally the arbor's reference axis is not assumed to be aligned to the rotation axis, but simultaneously measured with high precision.

    16. Cryogenic Pupil Alignment Test Architecture for Aberrated Pupil Images

      NASA Technical Reports Server (NTRS)

      Bos, Brent; Kubalak, David A.; Antonille, Scott; Ohl, Raymond; Hagopian, John G.

      2009-01-01

      A document describes cryogenic test architecture for the James Webb Space Telescope (JWST) integrated science instrument module (ISIM). The ISIM element primarily consists of a mechanical metering structure, three science instruments, and a fine guidance sensor. One of the critical optomechanical alignments is the co-registration of the optical telescope element (OTE) exit pupil with the entrance pupils of the ISIM instruments. The test architecture has been developed to verify that the ISIM element will be properly aligned with the nominal OTE exit pupil when the two elements come together. The architecture measures three of the most critical pupil degrees-of-freedom during optical testing of the ISIM element. The pupil measurement scheme makes use of specularly reflective pupil alignment references located inside the JWST instruments, ground support equipment that contains a pupil imaging module, an OTE simulator, and pupil viewing channels in two of the JWST flight instruments. Pupil alignment references (PARs) are introduced into the instrument, and their reflections are checked using the instrument's mirrors. After the pupil imaging module (PIM) captures a reflected PAR image, the image will be analyzed to determine the relative alignment offset. The instrument pupil alignment preferences are specularly reflective mirrors with non-reflective fiducials, which makes the test architecture feasible. The instrument channels have fairly large fields of view, allowing PAR tip/tilt tolerances on the order of 0.5deg.

    17. Quantitative DIC microscopy using an off-axis self-interference approach.

      PubMed

      Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S

      2010-07-15

      Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.

    18. Fiber optic coupled optical sensor

      DOEpatents

      Fleming, Kevin J.

      2001-01-01

      A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

    19. Advanced Space-Based Detector Research at the Air Force Research Laboratory

      DTIC Science & Technology

      2009-03-04

      purposes. The dark backgrounds place very stringent requirements on the noise characteristics of the sensor system, resulting in FPAs that must be...signal within a single pixel of a detector. 2. Optical signal amplification 2.1. Quantum interference Quantum well infrared photodetectors ( QWIPs ) are...are now extremely attractive for a growing number of sensor applications. Although considerable progress has been made in QWIPs , their relatively low

    20. On the alignment and focusing of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

      NASA Astrophysics Data System (ADS)

      Champey, Patrick; Winebarger, Amy; Kobayashi, Ken; Savage, Sabrina; Cirtain, Jonathan; Cheimets, Peter; Hertz, Edward; Golub, Leon; Ramsey, Brian; McCracken, Jeff; Marquez, Vanessa; Allured, Ryan; Heilmann, Ralf K.; Schattenburg, Mark; Bruccoleri, Alexander

      2016-07-01

      The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument that is designed to observe soft X-ray emissions from 24 - 6.0 Å (0.5 - 2.0 keV energies) in the solar atmosphere. For the first time, high-temperature, low-emission plasma will be observed directly with 5 arcsecond spatial resolution and 22 mÅ spectral resolution. The unique optical design consists of a Wolter - I telescope and a 3-optic grazing- incidence spectrometer. The spectrometer utilizes a finite conjugate mirror pair and a blazed planar, varied line spaced grating, which is directly printed on a silicon substrate using e-beam lithography. The grating design is being finalized and the grating will be fabricated by the Massachusetts Institute of Technology (MIT) and Izentis LLC. Marshall Space Flight Center (MSFC) is producing the nickel replicated telescope and spectrometer mirrors using the same facilities and techniques as those developed for the ART-XC and FOXSI mirrors. The Smithsonian Astrophysical Observatory (SAO) will mount and align the optical sub-assemblies based on previous experience with similar instruments, such as the Hinode X-Ray Telescope (XRT). The telescope and spectrometer assembly will be aligned in visible light through the implementation of a theodolite and reference mirrors, in addition to the centroid detector assembly (CDA) - a device designed to align the AXAF-I nested mirrors. Focusing of the telescope and spectrometer will be achieved using the X-ray source in the Stray Light Facility (SLF) at MSFC. We present results from an alignment sensitivity analysis performed on the on the system and we also discuss the method for aligning and focusing MaGIXS.

    1. Face landmark point tracking using LK pyramid optical flow

      NASA Astrophysics Data System (ADS)

      Zhang, Gang; Tang, Sikan; Li, Jiaquan

      2018-04-01

      LK pyramid optical flow is an effective method to implement object tracking in a video. It is used for face landmark point tracking in a video in the paper. The landmark points, i.e. outer corner of left eye, inner corner of left eye, inner corner of right eye, outer corner of right eye, tip of a nose, left corner of mouth, right corner of mouth, are considered. It is in the first frame that the landmark points are marked by hand. For subsequent frames, performance of tracking is analyzed. Two kinds of conditions are considered, i.e. single factors such as normalized case, pose variation and slowly moving, expression variation, illumination variation, occlusion, front face and rapidly moving, pose face and rapidly moving, and combination of the factors such as pose and illumination variation, pose and expression variation, pose variation and occlusion, illumination and expression variation, expression variation and occlusion. Global measures and local ones are introduced to evaluate performance of tracking under different factors or combination of the factors. The global measures contain the number of images aligned successfully, average alignment error, the number of images aligned before failure, and the local ones contain the number of images aligned successfully for components of a face, average alignment error for the components. To testify performance of tracking for face landmark points under different cases, tests are carried out for image sequences gathered by us. Results show that the LK pyramid optical flow method can implement face landmark point tracking under normalized case, expression variation, illumination variation which does not affect facial details, pose variation, and that different factors or combination of the factors have different effect on performance of alignment for different landmark points.

    2. On the Alignment and Focusing of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

      NASA Technical Reports Server (NTRS)

      Champey, Patrick; Winebarger, Amy; Kobayashi, Ken; Savage, Sabrina; Cirtain, Jonathan; Cheimets, Peter; Hertz, Edward; Golub, Leon; Ramsey, Brian; McCracken, Jeff

      2016-01-01

      The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument that is designed to observe soft X-ray emissions from 24 - 6.0 A (0.5 - 2.0 keV energies) in the solar atmosphere. For the rst time, high-temperature, low-emission plasma will be observed directly with 5 arcsecond spatial resolution and 22 mA spectral resolution. The unique optical design consists of a Wolter - I telescope and a 3-optic grazing- incidence spectrometer. The spectrometer utilizes a nite conjugate mirror pair and a blazed planar, varied line spaced grating, which is directly printed on a silicon substrate using e-beam lithography. The grating design is being nalized and the grating will be fabricated by the Massachusetts Institute of Technology (MIT) and Izentis LLC. Marshall Space Flight Center (MSFC) is producing the nickel replicated telescope and spectrometer mirrors using the same facilities and techniques as those developed for the ART-XC and FOXSI mirrors. The Smithsonian Astrophysical Observatory (SAO) will mount and align the optical sub-assemblies based on previous experience with similar instruments, such as the Hinode X-Ray Telescope (XRT). The telescope and spectrometer assembly will be aligned in visible light through the implementation of a theodolite and reference mirrors, in addition to the centroid detector assembly (CDA) { a device designed to align the AXAF-I nested mirrors. Focusing of the telescope and spectrometer will be achieved using the X-ray source in the Stray Light Facility (SLF) at MSFC. We present results from an alignment sensitivity analysis performed on the on the system and we also discuss the method for aligning and focusing MaGIXS.

    3. The fiber optic system for the advanced topographic laser altimeter system instrument (ATLAS)

      NASA Astrophysics Data System (ADS)

      Ott, Melanie N.; Thomes, W. Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

      2016-09-01

      The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

    4. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument

      PubMed Central

      Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

      2017-01-01

      The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite – 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the “cryosphere” (as well as terrain) to provide data for assessing the earth’s global climate changes. Where ICESat’s instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here. PMID:28280284

    5. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

      PubMed

      Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

      2016-08-28

      The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

    6. The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument

      NASA Technical Reports Server (NTRS)

      Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

      2016-01-01

      The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

    7. Precision mechanisms for optics in a vacuum cryogenic environment

      NASA Astrophysics Data System (ADS)

      Navarro, R.; Elswijk, E.; Tromp, N.; Kragt, J.; Kroes, G.; Hanenburg, H.; de Haan, M.; Schuil, M.; Teuwen, M.; Janssen, H.; Venema, L.

      2017-11-01

      To achieve superb stability in cryogenic optical systems, NOVA-ASTRON generally designs optical instruments on the basis of a 'no adjustments' philosophy. This means that in principle no corrections are possible after assembly. The alignment precision and consequently the performance of the instrument is guaranteed from the design, the tolerance analysis and the detailed knowledge of the material behavior and manufacturing process. This resulted in a higher degree of integrated optomechanical-cryogenic design with fewer parts, but with a higher part complexity. The 'no adjustments' strategy is successful because in the end the risk on instrument performance and project delays is much reduced. Astronomical instrument specifications have become more challenging over the years. Recent designs of the European Southern Observatory Very Large Telescope Interferometer (ESO VLTI) 4 Telescope combiner MATISSE include hundreds of optical components in a cryogenic environment. Despite the large number of optical components the alignment accuracy and stability requirements are in the order of nanometers. The 'no adjustments' philosophy would be too costly in this case, because all components would need to meet extremely tight manufacturing specifications. These specifications can be relaxed dramatically if cryogenic mechanisms are used for alignment. Several mechanisms have been developed: a tip-tilt mirror mechanism, an optical path distance mechanism, a slider mechanism, a bistable cryogenic shutter and a mirror mounting clip. Key aspects of these mechanisms are that the optical element and mechanism are combined in a compact single component, driven by e.g. self braking piezo actuators in order to hold position without power. The design, realization and test results of several mechanisms are presented in this paper.

    8. Honing the accuracy of extreme-ultraviolet optical system testing: at-wavelength and visible-light measurements of the ETS Set-2 projection optic

      NASA Astrophysics Data System (ADS)

      Goldberg, Kenneth A.; Naulleau, Patrick P.; Bokor, Jeffrey; Chapman, Henry N.

      2002-07-01

      As the quality of optical systems for extreme ultraviolet lithography improves, high-accuracy wavefront metrology for alignment and qualification becomes ever more important. To enable the development of diffraction-limited EUV projection optics, visible-light and EUV interferometries must work in close collaboration. We present a detailed comparison of EUV and visible-light wavefront measurements performed across the field of view of a lithographic-quality EUV projection optical system designed for use in the Engineering Test Stand developed by the Virtual National Laboratory and the EUV Limited Liability Company. The comparisons reveal that the present level of RMS agreement lies in the 0.3-0.4-nm range. Astigmatism is the most significant aberration component for the alignment of this optical system; it is also the dominant term in the discrepancy, and the aberration with the highest measurement uncertainty. With EUV optical systems requiring total wavefront quality in the (lambda) EUV/50 range, and even higher surface-figure quality for the individual mirror elements, improved accuracy through future comparisons, and additional studies, are required.

    9. Micro-optics: enabling technology for illumination shaping in optical lithography

      NASA Astrophysics Data System (ADS)

      Voelkel, Reinhard

      2014-03-01

      Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.

    10. Virtual optical interfaces for the transportation industry

      NASA Astrophysics Data System (ADS)

      Hejmadi, Vic; Kress, Bernard

      2010-04-01

      We present a novel implementation of virtual optical interfaces for the transportation industry (automotive and avionics). This new implementation includes two functionalities in a single device; projection of a virtual interface and sensing of the position of the fingers on top of the virtual interface. Both functionalities are produced by diffraction of laser light. The device we are developing include both functionalities in a compact package which has no optical elements to align since all of them are pre-aligned on a single glass wafer through optical lithography. The package contains a CMOS sensor which diffractive objective lens is optimized for the projected interface color as well as for the IR finger position sensor based on structured illumination. Two versions are proposed: a version which senses the 2d position of the hand and a version which senses the hand position in 3d.

    11. Practical UAV Optical Sensor Bench with Minimal Adjustability

      NASA Technical Reports Server (NTRS)

      Pilgrim, Jeffrey; Gonzales, Paula

      2013-01-01

      A multiple-pass optical platform eliminates essentially all optical alignment degrees of freedom, save one. A four-pass absorption spectrometer architecture is made rigid by firmly mounting dielectric-coated mirror prisms with no alignment capability to the platform. The laser diode beam is collimated by a small, custom-developed lens, which has only a rotational degree of freedom along the standard optical "z" axis. This degree is itself eliminated by adhesive after laser collimation. Only one degree of freedom is preserved by allowing the laser diode chip and mount subassembly to move relative to the collimating lens by using over-sized mounting holes. This allows full 360 deg motion of a few millimeters relative to the lens, which, due to the high numerical aperture of the lens, provides wide directional steering of the collimated laser beam.

    12. Resolving the Southern African Large Telescope's image quality problems

      NASA Astrophysics Data System (ADS)

      O'Donoghue, Darragh E.; Crause, Lisa A.; O'Connor, James; Strümpfer, Francois; Strydom, Ockert J.; Sass, Craig; Brink, Janus D.; Plessis, Charl du; Wiid, Eben; Love, Jonathan

      2013-08-01

      Images obtained with the Southern African Large Telescope (SALT) during its commissioning phase in 2006 showed degradation due to a large focus gradient, astigmatism, and higher order optical aberrations. An extensive forensic investigation exonerated the primary mirror and the science instruments before pointing to the mechanical interface between the telescope and the spherical aberration corrector, the complex optical subassembly which corrects the spherical aberration introduced by the 11-m primary mirror. Having diagnosed the problem, a detailed repair plan was formulated and implemented when the corrector was removed from the telescope in April 2009. The problematic interface was replaced, and the four aspheric mirrors were optically tested and re-aligned. Individual mirror surface figures were confirmed to meet specification, and a full system test after the re-alignment yielded a root mean square wavefront error of 0.15 waves. The corrector was reinstalled in August 2010 and aligned with respect to the payload and primary mirror. Subsequent on-sky tests revealed spurious signals being sent to the tracker by the auto-collimator, the instrument that maintains the alignment of the corrector with respect to the primary mirror. After rectifying this minor issue, the telescope yielded uniform 1.1 arcsec star images over the full 10-arcmin field of view.

    13. Atom guidance in the TE01 donut mode of a large-core hollow fiber

      NASA Astrophysics Data System (ADS)

      Pechkis, J. A.; Fatemi, F. K.

      2011-05-01

      We report on our progress towards low-light-level nonlinear optics experiments by optically guiding atoms in the TE01 donut mode of a hollow fiber. Atoms are transported over 12 cm from a ``source'' magneto-optical trap (MOT) through a 100- μm-diameter hollow fiber and are recaptured by a ``collection'' MOT situated directly below the fiber. For red-detuned guiding, we compare the guiding efficiency between the fundamental (Gaussian-like) mode and this donut mode, which has a larger guiding area but lower peak intensity. We also discuss our progress in transporting atoms in the dark core of this mode using blue-detuned light, which has more stringent constraints to atom guidance compared to red-detuned light. This work is supported by ONR.

    14. "Reliability Of Fiber Optic Lans"

      NASA Astrophysics Data System (ADS)

      Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan

      1987-02-01

      Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.

    15. Precision lens assembly with alignment turning system

      NASA Astrophysics Data System (ADS)

      Ho, Cheng-Fang; Huang, Chien-Yao; Lin, Yi-Hao; Kuo, Hui-Jean; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

      2017-10-01

      The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.

    16. OAJ 2.6m survey telescope: optical alignment and on-sky evaluation of IQ performances

      NASA Astrophysics Data System (ADS)

      Lousberg, Gregory P.; Bastin, Christian; Moreau, Vincent; Pirnay, Olivier; Flebus, Carlo; Chueca, Sergio; Iñiguez, César; Ederoclite, Alessandro; Ramió, Héctor V.; Cenarro, A. Javier

      2016-08-01

      AMOS has recently completed the alignment campaign of the 2.6m telescope for the Observatorio Astrofisico de Javalambre (OAJ). AMOS developed an innovative alignment technique for wide field-of-view telescopes that has been successfully implemented on the OAJ 2.6m telescope with the active support of the team of CEFCA (Centro de Estudios de Física del Cosmos de Aragón). The alignment relies on two fundamental techniques: (1) the wavefront-curvature sensing (WCS) for the evaluation of the telescope aberrations at arbitrary locations in the focal plane, and (2) the comafree point method for the adjustment of the position of the secondary mirror (M2) and of the focal plane (FP). The alignment campaign unfolds in three steps: (a) analysis of the repeatability of the WCS measurements, (b) assessment of the sensitivity of telescope wavefront error to M2 and FP position adjustments, and (c) optical alignment of the telescope. At the end of the campaign, seeing-limited performances are demonstrated in the complete focal plane. With the help of CEFCA team, the image quality of the telescope are investigated with a lucky-imaging method. Image sizes of less than 0.3 arcsec FWHM are obtained, and this excellent image quality is observed over the complete focal plane.

    17. Testing Instrument for Flight-Simulator Displays

      NASA Technical Reports Server (NTRS)

      Haines, Richard F.

      1987-01-01

      Displays for flight-training simulators rapidly aligned with aid of integrated optical instrument. Calibrations and tests such as aligning boresight of display with respect to user's eyes, checking and adjusting display horizon, checking image sharpness, measuring illuminance of displayed scenes, and measuring distance of optical focus of scene performed with single unit. New instrument combines all measurement devices in single, compact, integrated unit. Requires just one initial setup. Employs laser and produces narrow, collimated beam for greater measurement accuracy. Uses only one moving part, double right prism, to position laser beam.

    18. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.

      PubMed

      Tsang, Sai-Wing; Chen, Song; So, Franky

      2013-05-07

      Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    19. Switchable polarization-sensitive surface plasmon resonance of highly stable gold nanorods liquid crystals composites

      NASA Astrophysics Data System (ADS)

      Liu, Qingkun; Qian, Jun; Cai, Fuhong; Smalyukh, Ivan I.; He, Sailing

      2011-12-01

      In this work, we demonstrate the bulk self-alignment of gold nanorods (GNRs) dispersed in lyotropic nematic liquid crystals (LCs) with high optical absorption coefficient at the surface plasmon resonant wavelength. The polymer-coated GNRs which show spontaneous long-range orientational ordering along the director of LC host exhibit long-term stability as well as high concentration. External magnetic field and shearing allow for alignment and realignment of the orientation of gold nanorods by changing the director of the liquid crystal matrix. This results in a switchable polarization-sensitive surface plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The devise-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of surface plasmon resonance of nanoparticles.

    20. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei

      2016-03-28

      A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less

    1. SIM Lite: Ground Alignment of the Instrument

      NASA Technical Reports Server (NTRS)

      Dekens, Frank G.; Goullioud, Renaud; Nicaise, Fabien; Kuan, Gary; Morales, Mauricio

      2010-01-01

      We present the start of the ground alignment plan for the SIM Lite Instrument. We outline the integration and alignment of the individual benches on which all the optics are mounted, and then the alignment of the benches to form the Science and Guide interferometers. The Instrument has a guide interferometer with only a 40 arc-seconds field of regard, and 200 arc-seconds of alignment adjustability. This requires each sides of the interferometer to be aligned to a fraction of that, while at the same time be orthogonal to the baseline defined by the External Metrology Truss. The baselines of the Science and Guide interferometers must also be aligned to be parallel. The start of these alignment plans is captured in a SysML Instrument System model, in the form of activity diagrams. These activity diagrams are then related to the hardware design and requirements. We finish with future plans for the alignment and integration activities and requirements.

    2. SIM Lite: ground alignment of the instrument

      NASA Astrophysics Data System (ADS)

      Dekens, Frank G.; Goullioud, Renaud; Nicaise, Fabien; Kuan, Gary; Morales, Mauricio

      2010-07-01

      We present the start of the ground alignment plan for the SIM Lite Instrument. We outline the integration and alignment of the individual benches on which all the optics are mounted, and then the alignment of the benches to form the Science and Guide interferometers. The Instrument has a guide interferometer with only a 40 arc-seconds field of regard, and 200 arc-seconds of alignment adjustability. This requires each sides of the interferometer to be aligned to a fraction of that, while at the same time be orthogonal to the baseline defined by the External Metrology Truss. The baselines of the Science and Guide interferometers must also be aligned to be parallel. The start of these alignment plans is captured in a SysML Instrument System model, in the form of activity diagrams. These activity diagrams are then related to the hardware design and requirements. We finish with future plans for the alignment and integration activities and requirements.

    3. Detecting fiducials affected by trombone delay in ARC and the main laser alignment at the National Ignition Facility

      NASA Astrophysics Data System (ADS)

      Awwal, Abdul A. S.; Bliss, Erlan S.; Miller Kamm, Victoria; Leach, Richard R.; Roberts, Randy; Rushford, Michael C.; Lowe-Webb, Roger; Wilhelmsen, Karl

      2015-09-01

      Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.

    4. Polyhedral integrated and free space optical interconnection

      DOEpatents

      Erteza, I.A.

      1998-01-06

      An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment. 7 figs.

    5. Polyhedral integrated and free space optical interconnection

      DOEpatents

      Erteza, Ireena A.

      1998-01-01

      An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment.

    6. Fourier-transform and global contrast interferometer alignment methods

      DOEpatents

      Goldberg, Kenneth A.

      2001-01-01

      Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

    7. High-resolution dual-trap optical tweezers with differential detection: alignment of instrument components.

      PubMed

      Bustamante, Carlos; Chemla, Yann R; Moffitt, Jeffrey R

      2009-10-01

      Optical traps or "optical tweezers" have become an indispensable tool in understanding fundamental biological processes. Using our design, a dual-trap optical tweezers with differential detection, we can detect length changes to a DNA molecule tethering the trapped beads of 1 bp. By forming two traps from the same laser and maximizing the common optical paths of the two trapping beams, we decouple the instrument from many sources of environmental and instrumental noise that typically limit spatial resolution. The performance of a high-resolution instrument--the formation of strong traps, the minimization of background signals from trap movements, or the mitigation of the axial coupling, for example--can be greatly improved through careful alignment. This procedure, which is described in this article, starts from the laser and advances through the instrument, component by component. Alignment is complicated by the fact that the trapping light is in the near infrared (NIR) spectrum. Standard infrared viewing cards are commonly used to locate the beam, but unfortunately, bleach quickly. As an alternative, we use an IR-viewing charge-coupled device (CCD) camera equipped with a C-mount telephoto lens and display its image on a monitor. By visualizing the scattered light on a pair of irises of identical height separated by >12 in., the beam direction can be set very accurately along a fixed axis.

    8. Global VLBI Observations of Weak Extragalactic Radio Sources: Imaging Candidates to Align the VLBI and Gaia Frames

      NASA Technical Reports Server (NTRS)

      Bourda, Geraldine; Collioud, Arnaud; Charlot, Patrick; Porcas, Richard; Garrington, Simon

      2010-01-01

      The space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the Gaia and VLBI frames (International Celestial Reference Frame) with the highest accuracy. In this respect, it is found that only 10% of the ICRF sources are suitable to establish this link (70 sources), either because most of the ICRF sources are not bright enough at optical wavelengths or because they show extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we initiated a multi-step VLBI observational project, dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 optically-bright radio sources, typically 20 times weaker than the ICRF sources, which have been selected by cross-correlating optical and radio catalogs. The initial observations, aimed at checking whether these sources are detectable with VLBI, and conducted with the European VLBI Network (EVN) in 2007, showed an excellent 90% detection rate. This paper reports on global VLBI observations carried out in March 2008 to image 105 from the 398 previously detected sources. All sources were successfully imaged, revealing compact VLBI structure for about half of them, which is very promising for the future.

    9. Antares Alignment Gimbal Positioner

      NASA Astrophysics Data System (ADS)

      Day, R. D.; Viswanathan, V. K.; Saxman, A. C.; Lujan, R. E.; Woodfin, G. L.; Sweatt, W. C.

      1981-12-01

      Antares is a 24-beam 40-TW carbon-dioxide (CO2) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, and wavefront optical path difference, as well as aberration information at both helium-neon (He-Ne) and CO2 wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1-cm cube to a tolerance of 10 μm.

    10. Selected technologies for integration of the ALADIN transmitreceive optics (TRO)

      NASA Astrophysics Data System (ADS)

      Bittner, Hermann; Mosebach, Herbert; Sang, Bernhard; Erhard, Markus; Hilbrand, Bernhard; Mazuray, Laurent; Thibault, Dominique

      2017-11-01

      Selected technologies for the integration of the TRANSMIT/RECEIVE OPTICS (TRO) are presented. One of the challenging characteristics of the TRO is its stringent requirement on opto-mechanical stability. The stability performance of the TRO must be ensured for the relevant interface environments (thermal, structural) over the 3 years mission lifetime. Comprehensive analyses have been conducted, which have confirmed the need for the development of special integration technologies. Also, dedicated test equipment has been developed to precisely verify the TRO's optomechanical stability. Another important feature of the TRO is its exposure to the high power laser beam of the ADALIN instrument. The corresponding optical elements and their mounts must survive exposure to light intensities up to the required laser-induced damage thresholds (LIDT). Two types of adhesives for gluing of the TRO optics have been selected. Their qualification w.r.t. outgassing was necessary since LIDT's of optical surfaces are significantly reduced when organic outgassing products are deposited there.

    11. The advanced LIGO input optics

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Mueller, Chris L., E-mail: cmueller@phys.ufl.edu; Arain, Muzammil A.; Ciani, Giacomo

      The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions requiredmore » every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.« less

    12. The potential benefits of photonics in the computing platform

      NASA Astrophysics Data System (ADS)

      Bautista, Jerry

      2005-03-01

      The increase in computational requirements for real-time image processing, complex computational fluid dynamics, very large scale data mining in the health industry/Internet, and predictive models for financial markets are driving computer architects to consider new paradigms that rely upon very high speed interconnects within and between computing elements. Further challenges result from reduced power requirements, reduced transmission latency, and greater interconnect density. Optical interconnects may solve many of these problems with the added benefit extended reach. In addition, photonic interconnects provide relative EMI immunity which is becoming an increasing issue with a greater dependence on wireless connectivity. However, to be truly functional, the optical interconnect mesh should be able to support arbitration, addressing, etc. completely in the optical domain with a BER that is more stringent than "traditional" communication requirements. Outlined are challenges in the advanced computing environment, some possible optical architectures and relevant platform technologies, as well roughly sizing these opportunities which are quite large relative to the more "traditional" optical markets.

    13. Novel optical interconnect devices applying mask-transfer self-written method

      NASA Astrophysics Data System (ADS)

      Ishizawa, Nobuhiko; Matsuzawa, Yusuke; Tokiwa, Yu; Nakama, Kenichi; Mikami, Osamu

      2012-01-01

      The introduction of optical interconnect technology is expected to solve problems of conventional electric wiring. One of the promising technologies realizing optical interconnect is the self-written waveguide (SWW) technology with lightcurable resin. We have developed a new technology of the "Mask-Transfer Self-Written (MTSW)" method. This new method enables fabrication of arrayed M x N optical channels at one shot of UV-light. Using this technology, several new optical interconnect devices and connection technologies have been proposed and investigated. In this paper, first, we introduce MTSW method briefly. Next, we show plug-in alignment approach using optical waveguide plugs (OWP) and a micro-hole array (MHA) which are made of the light-curable resin. Easy and high efficiency plug-in alignment between fibers and an optoelectronic-printed wiring board (OE-PWB), between a fiber and a VCSEL, so on will be feasible. Then, we propose a new three-dimensional (3D) branch waveguide. By controlling the irradiating angle through the photomask aperture, it will be possible to fabricate 2-branch and 4-branch waveguides with a certain branch angle. The 3D branch waveguide will be very promising in the future optical interconnects and coupler devices of the multicore optical fiber.

    14. Torque Induced on Lipid Microtubules with Optical Tweezers

      NASA Astrophysics Data System (ADS)

      wichean, T. Na; Charrunchon, S.; Pattanaporkratana, A.; Limtrakul, J.; Chattham, N.

      2017-09-01

      Chiral Phospholipids are found self-assembled into cylindrical tubules of 500 nm in diameter by helical winding of bilayer stripes under cooling in ethanol and water solution. Theoretical prediction and experimental evidence reported so far confirmed the modulated tilt direction in a helical striped pattern of the tubules. This molecular orientation morphology results in optically birefringent tubules. We investigate an individual lipid microtubule under a single optical trap of 532 nm linearly polarized laser. Spontaneous rotation of a lipid tubule induced by radiation torque was observed with only one sense of rotation caused by chirality of a lipid tubule. Rotation discontinued once the high refractive index axis of a lipid tubule aligned with a polarization axis of the laser. We further explored a lipid tubule under circularly polarized optical trap. It was found that a lipid tubule was continuously rotated confirming the tubule birefringent property. We modified the shape of optical trap by cylindrical lens obtaining an elliptical profile optical trap. A lipid tubule can be aligned along the elongated length of optical trap. We reported an investigation of competition between polarized light torque on a birefringent lipid tubule versus torque from intensity gradient of an elongated optical trap.

    15. Flow cytometry without alignment of collection optics.

      PubMed

      Sitton, Greg; Srienc, Friedrich

      2009-12-01

      This study describes the performance of a new waveguide flow cell constructed from Teflon AF (TFC) and the potential use of fiber optic splitters to replace collection objectives and dichroic mirrors. The TFC has the unique optical property that the refractive index of the polymer is lower than water and therefore, water filled TFC behaves and functions as a liquid core waveguide. Thus, as cells flow through the TFC and are illuminated by a laser orthogonal to the flow direction, scattered and fluorescent light is directed down the axis of the TFC to a fiber optic. The total signal in the fiber optic is then split into multiple fibers by fiber optic splitters to enable measurement of signal intensities at different wavelengths. Optical filters are placed at the terminus of each fiber before measurement of specific wavelengths by a PMT. The constructed system was used to measure DNA content of CHO and yeast cells. Polystyrene beads were used for alignment and to assess the performance of the system. Polystyrene beads were observed to produce light scattering signals with unique bimodal characteristics dependent on the direction of flow relative to the collecting fiber optic.

    16. Talking over a beam of light: electro-optics suitable for K-12

      NASA Astrophysics Data System (ADS)

      Nofziger, Michael J.

      1995-10-01

      A kit of electro-optical components is described which, when assembled and aligned, allows one to transmit voice signals over a beam of light. The kits were developed for TOPTICS '92, an optics convention held in the city of Tucson to showcase local optical companies and education opportunities to the public-at-large. One aspect of the convention was to involve school children with the world of optics. These kits proved to be an excellent way to link educators and their students with parents, optics professionals, and even the local media. The kits consist of all the necessary electrical components to build a transmitter (using an LED) and a receiver (using a phototransistor). The circuits are assembled on an electronic breadboard which is part of the storage case for the parts themselves. Optically, the light beam is collimated and focused using inexpensive Fresnel lenses. Distances over which one's voice may be sent are variable, determined by one's ability in optical alignment. Students in the 5th grade were the first to use the kits, sending their voices about 200 feet. The educational success of these kits is described in this paper.

    17. Relationship between tribology and optics in thin films of mechanically oriented nanocrystals.

      PubMed

      Wong, Liana; Hu, Chunhua; Paradise, Ruthanne; Zhu, Zina; Shtukenberg, Alexander; Kahr, Bart

      2012-07-25

      Many crystalline dyes, when rubbed unidirectionally with cotton on glass slides, can be organized as thin films of highly aligned nanocrystals. Commonly, the linear birefringence and linear dichroism of these films resemble the optical properties of single crystals, indicating precisely oriented particles. Of 186 colored compounds, 122 showed sharp extinction and 50 were distinctly linearly dichroic. Of the latter 50 compounds, 88% were more optically dense when linearly polarized light was aligned with the rubbing axis. The mechanical properties of crystals that underlie the nonstatistical correlation between tribological processes and the direction of electron oscillations in absorption bands are discussed. The features that give rise to the orientation of dye crystallites naturally extend to colorless molecular crystals.

    18. In situ focus characterization by ablation technique to enable optics alignment at an XUV FEL source

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Gerasimova, N.; Dziarzhytski, S.; Weigelt, H.

      2013-06-15

      In situ focus characterization is demonstrated by working at an extreme ultraviolet (XUV) free-electron laser source using ablation technique. Design of the instrument reported here allows reaching a few micrometres resolution along with keeping the ultrahigh vacuum conditions and ensures high-contrast visibility of ablative imprints on optically transparent samples, e.g., PMMA. This enables on-line monitoring of the beam profile changes and thus makes possible in situ alignment of the XUV focusing optics. A good agreement between focal characterizations retrieved from in situ inspection of ablative imprints contours and from well-established accurate ex situ analysis with Nomarski microscope has been observedmore » for a typical micro-focus experiment.« less

    19. Toward Large-Area Sub-Arcsecond X-Ray Telescopes

      NASA Technical Reports Server (NTRS)

      O'Dell, Stephen L.; Aldcroft, Thomas L.; Allured, Ryan; Atkins, Carolyn; Burrows, David N.; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Cotroneo, Vincenzo; Elsner, Ronald F.; hide

      2014-01-01

      The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (>1 sq m) and finer angular resolution(<1).Combined with the special requirements of nested grazing incidence optics, the mass and envelope constraints of spaceborne telescopes render such advances technologically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (>100 sq m) of lightweight (1 kg/sq m areal density) high quality mirrors-possibly entailing active (in-space adjustable) alignment and figure correction. This paper discusses relevant programmatic and technological issues and summarizes progress toward large area sub-arcsecond x-ray telescopes. Key words: X-ray telescopes, x-ray optics, active optics, electroactive devices, silicon mirrors, differential deposition, ion implantation.

    20. Atmospheric lidar co-alignment sensor: flight model electro-optical characterization campaign

      NASA Astrophysics Data System (ADS)

      Valverde Guijarro, Ángel Luis; Belenguer Dávila, Tomás.; Laguna Hernandez, Hugo; Ramos Zapata, Gonzalo

      2017-10-01

      Due to the difficulty in studying the upper layer of the troposphere by using ground-based instrumentation, the conception of a space-orbit atmospheric LIDAR (ATLID) becomes necessary. ATLID born in the ESA's EarthCare Programme framework as one of its payloads, being the first instrument of this kind that will be in the Space. ATLID will provide vertical profiles of aerosols and thin clouds, separating the relative contribution of aerosol and molecular scattering to know aerosol optical depth. It operates at a wavelength of 355 nm and has a high spectral resolution receiver and depolarization channel with a vertical resolution up to 100m from ground to an altitude of 20 km and, and up to 500m from 20km to 40km. ATLID measurements will be done from a sun-synchronous orbit at 393 km altitude, and an alignment (co-alignment) sensor (CAS) is revealed as crucial due to the way in which LIDAR analyses the troposphere. As in previous models, INTA has been in charge of part of the ATLID instrument co-alignment sensor (ATLID-CAS) electro-optical characterization campaign. CAS includes a set of optical elements to take part of the useful signal, to direct it onto the memory CCD matrix (MCCD) used for the co-alignment determination, and to focus the selected signal on the MCCD. Several tests have been carried out for a proper electro-optical characterization: CAS line of sight (LoS) determination and stability, point spread function (PSF), absolute response (AbsRes), pixel response non uniformity (PRNU), response linearity (ResLin) and spectral response. In the following lines, a resume of the flight model electrooptical characterization campaign is reported on. In fact, results concerning the protoflight model (CAS PFM) will be summarized. PFM requires flight-level characterization, so most of the previously mentioned tests must be carried out under simulated working conditions, i.e., the vacuum level (around 10-5 mbar) and temperature range (between 50°C and -30°C) that are expected during ATLID Space operation.

    1. X-ray verification of an optically-aligned off-plane grating module

      NASA Astrophysics Data System (ADS)

      Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery

      2017-08-01

      The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.

    2. Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.

      PubMed

      Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes

      2018-01-01

      Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.

    3. Optical characterization of type-I to type-II band alignment transition in GaAs/Al x Ga1-x As quantum rings grown by droplet epitaxy

      NASA Astrophysics Data System (ADS)

      Su, Linlin; Wang, Ying; Guo, Qinglin; Li, Xiaowei; Wang, Shufang; Fu, Guangsheng; Mazur, Yuriy I.; E Ware, Morgan; Salamo, Gregory J.; Liang, Baolai; Huffaker, Diana L.

      2017-08-01

      Optical properties of GaAs/Al x Ga1-x As quantum rings (QRs) grown on GaAs (1 0 0) by droplet epitaxy have been investigated as a function of the Al-composition in the Al x Ga1-x As barrier. A transition from type-I to type-II band alignment is observed for the QRs via photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. While x  ⩽  0.45, the QR PL spectra show a blue-shift and an increasing intensity with increasing Al-composition, revealing the enhancement of quantum confinement in the QRs with type-I band alignment. While x  ⩾  0.60, the characteristic large blue-shift with excitation intensity and the much longer lifetime indicate the realization of a type-II band alignment. Due to the height fluctuation of QR structures grown by droplet epitaxy mode, it is not the large blue-shift of emission energy, but the long lifetime that becomes the more important feature to identify the type-II band alignment.

    4. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

      DOEpatents

      Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

      2005-02-15

      An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

    5. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

      DOEpatents

      Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

      2005-05-17

      An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

    6. Ultrathin optical panel and a method of making an ultrathin optical panel

      DOEpatents

      Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

      2003-02-11

      An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

    7. Ultrathin optical panel and a method of making an ultrathin optical panel

      DOEpatents

      Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

      2001-10-09

      An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

    8. Ultrathin optical panel and a method of making an ultrathin optical panel

      DOEpatents

      Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

      2002-01-01

      An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated With a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

    9. Design and fabrication of N x N optical couplers based on organic polymer optical waveguides

      NASA Astrophysics Data System (ADS)

      Krchnavek, Robert R.; Rode, Daniel L.

      1994-08-01

      In this report, we examine the design and fabrication of a planar, 10x10 optical coupler utilizing photopolymerizable organic polymers. Background information on the theory of operation of the coupler culminating in a set of design equations is presented. The details of the material processing are described, including the preparation of monomer mixtures that result in single-mode polymer waveguides (lambda = 1300 nm) that have core dimensions approximately equal to those of single-mode fiber. This is necessary to insure high coupling efficiency between the planar device and optical fiber. A unique method of aligning and attaching optical fibers to the coupler is demonstrated. This method relies on patterned alignment ways, a transcision cut, and single-mode D-fiber. A theoretical analysis of the in situ monitoring technique used to fabricate the single-mode D-fiber is presented and compared favorably with the experimental results. Finally, the 10x10 coupler is characterized. We have measured an excess loss of approximately 8 dB.

    10. A statistical method for determining the dimensions, tolerances and specification of optics for the Laser Megajoule facility (LMJ)

      NASA Astrophysics Data System (ADS)

      Denis, Vincent

      2008-09-01

      This paper presents a statistical method for determining the dimensions, tolerance and specifications of components for the Laser MegaJoule (LMJ). Numerous constraints inherent to a large facility require specific tolerances: the huge number of optical components; the interdependence of these components between the beams of same bundle; angular multiplexing for the amplifier section; distinct operating modes between the alignment and firing phases; the definition and use of alignment software in the place of classic optimization. This method provides greater flexibility to determine the positioning and manufacturing specifications of the optical components. Given the enormous power of the Laser MegaJoule (over 18 kJ in the infrared and 9 kJ in the ultraviolet), one of the major risks is damage the optical mounts and pollution of the installation by mechanical ablation. This method enables estimation of the beam occultation probabilities and quantification of the risks for the facility. All the simulations were run using the ZEMAX-EE optical design software.

    11. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

      PubMed

      Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

      2015-06-29

      Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

    12. Connector For Embedded Optical Fiber

      NASA Technical Reports Server (NTRS)

      Wilkerson, Charles; Hiles, Steven; Houghton, J. Richard; Holland, Brent W.

      1994-01-01

      Partly embedded fixture is simpler and sturdier than other types of outlets for optical fibers embedded in solid structures. No need to align coupling prism and lenses. Fixture includes base, tube bent at 45 degree angle, and ceramic ferrule.

    13. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials

      NASA Astrophysics Data System (ADS)

      De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio

      2017-07-01

      Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.

    14. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

      NASA Technical Reports Server (NTRS)

      Taylor, Jaime; Rakoczy, John; Steincamp, James

      2003-01-01

      Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

    15. Label-free optical imaging of membrane patches for atomic force microscopy

      PubMed Central

      Churnside, Allison B.; King, Gavin M.; Perkins, Thomas T.

      2010-01-01

      In atomic force microscopy (AFM), finding sparsely distributed regions of interest can be difficult and time-consuming. Typically, the tip is scanned until the desired object is located. This process can mechanically or chemically degrade the tip, as well as damage fragile biological samples. Protein assemblies can be detected using the back-scattered light from a focused laser beam. We previously used back-scattered light from a pair of laser foci to stabilize an AFM. In the present work, we integrate these techniques to optically image patches of purple membranes prior to AFM investigation. These rapidly acquired optical images were aligned to the subsequent AFM images to ~40 nm, since the tip position was aligned to the optical axis of the imaging laser. Thus, this label-free imaging efficiently locates sparsely distributed protein assemblies for subsequent AFM study while simultaneously minimizing degradation of the tip and the sample. PMID:21164738

    16. Optical design concept for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS)

      NASA Astrophysics Data System (ADS)

      Schmidt, Luke M.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Prochaska, Travis; DePoy, Darren L.; Marshall, Jennifer L.; Cook, Erika; Froning, Cynthia; Ji, Tae-Geun; Lee, Hye-In; Mendes de Oliveira, Claudia; Pak, Soojong; Papovich, Casey

      2016-08-01

      We present a preliminary conceptual optical design for GMACS, a wide field, multi-object, optical spectrograph currently being developed for the Giant Magellan Telescope (GMT). We include details of the optical design requirements derived from the instrument scientific and technical objectives and demonstrate how these requirements are met by the current design. Detector specifications, field acquisition/alignment optics, and optical considerations for the active flexure control system are also discussed.

    17. Wave-optical assessment of alignment tolerances in nano-focusing with ellipsoidal mirror

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi

      2016-01-28

      High-precision ellipsoidal mirrors, which can efficiently focus X-rays to the nanometer dimension with a mirror, have not been realized because of the difficulties in the fabrication process. The purpose of our study was to develop nano-focusing ellipsoidal mirrors in the hard X-ray region. We developed a wave-optical focusing simulator for investigating alignment tolerances in nano-focusing with a designed ellipsoidal mirror, which produce a diffraction-limited focus size of 30 × 35 nm{sup 2} in full width at half maximum at an X-ray energy of 7 keV. The simulator can calculate focusing intensity distributions around the focal point under conditions of misalignment. Themore » wave-optical simulator enabled the calculation of interference intensity distributions, which cannot be predicted by the conventional ray-trace method. The alignment conditions with a focal length error of ≲ ±10 µm, incident angle error of ≲ ±0.5 µrad, and in-plane rotation angle error of ≲ ±0.25 µrad must be satisfied for nano-focusing.« less

    18. Real-time sensing of optical alignment

      NASA Technical Reports Server (NTRS)

      Stier, Mark T.; Wissinger, Alan B.

      1988-01-01

      The Large Deployable Reflector and other future segmented optical systems may require autonomous, real-time alignment of their optical surfaces. Researchers have developed gratings located directly on a mirror surface to provide interferometric sensing of the location and figure of the mirror. The grating diffracts a small portion of the incident beam to a diffractive focus where the designed diagnostics can be performed. Mirrors with diffraction gratings were fabricated in two separate ways. The formation of a holographic grating over the entire surface of a mirror, thereby forming a Zone Plate Mirror (ZPM) is described. Researchers have also used computer-generated hologram (CGH) patches for alignment and figure sensing of mirrors. When appropriately illuminated, a grid of patches spread over a mirror segment will yield a grid of point images at a wavefront sensor, with the relative location of the points providing information on the figure and location of the mirror. A particular advantage of using the CGH approach is that the holographic patches can be computed, fabricated, and replicated on a mirror segment in a mass production 1-g clean room environment.

    19. Structural alignment sensor. [laser applications and interferometry

      NASA Technical Reports Server (NTRS)

      Davis, L.; Buholz, N. E.; Gillard, C. W.; Huang, C. C.; Wells, W. M., III

      1978-01-01

      Comparative Michelson interferometers are discussed as well as the operating range potential of a structural alignment sensor (SAS) which requires only one laser mode. Schematics are presented for the distance measurement logic, the basic SAS system, the SAS optical layout, the coarse measurement signal processor, and the measured range resolution.

    20. Optical alignment of electrodes on electrical discharge machines

      NASA Technical Reports Server (NTRS)

      Boissevain, A. G.; Nelson, B. W.

      1972-01-01

      Shadowgraph system projects magnified image on screen so that alignment of small electrodes mounted on electrical discharge machines can be corrected and verified. Technique may be adapted to other machine tool equipment where physical contact cannot be made during inspection and access to tool limits conventional runout checking procedures.

    1. Precise Alignment and Permanent Mounting of Thin and Lightweight X-ray Segments

      NASA Technical Reports Server (NTRS)

      Biskach, Michael P.; Chan, Kai-Wing; Hong, Melinda N.; Mazzarella, James R.; McClelland, Ryan S.; Norman, Michael J.; Saha, Timo T.; Zhang, William W.

      2012-01-01

      To provide observations to support current research efforts in high energy astrophysics. future X-ray telescope designs must provide matching or better angular resolution while significantly increasing the total collecting area. In such a design the permanent mounting of thin and lightweight segments is critical to the overall performance of the complete X-ray optic assembly. The thin and lightweight segments used in the assemhly of the modules are desigued to maintain and/or exceed the resolution of existing X-ray telescopes while providing a substantial increase in collecting area. Such thin and delicate X-ray segments are easily distorted and yet must be aligned to the arcsecond level and retain accurate alignment for many years. The Next Generation X-ray Optic (NGXO) group at NASA Goddard Space Flight Center has designed, assembled. and implemented new hardware and procedures mth the short term goal of aligning three pairs of X-ray segments in a technology demonstration module while maintaining 10 arcsec alignment through environmental testing as part of the eventual design and construction of a full sized module capable of housing hundreds of X-ray segments. The recent attempts at multiple segment pair alignment and permanent mounting is described along with an overview of the procedure used. A look into what the next year mll bring for the alignment and permanent segment mounting effort illustrates some of the challenges left to overcome before an attempt to populate a full sized module can begin.

    2. Design of an x-ray telescope optics for XEUS

      NASA Astrophysics Data System (ADS)

      Graue, Roland; Kampf, Dirk; Wallace, Kotska; Lumb, David; Bavdaz, Marcos; Freyberg, Michael

      2017-11-01

      The X-ray telescope concept for XEUS is based on an innovative high performance and light weight Silicon Pore Optics technology. The XEUS telescope is segmented into 16 radial, thermostable petals providing the rigid optical bench structure of the stand alone XRay High Precision Tandem Optics. A fully representative Form Fit Function (FFF) Model of one petal is currently under development to demonstrate the outstanding lightweight telescope capabilities with high optically effective area. Starting from the envisaged system performance the related tolerance budgets were derived. These petals are made from ceramics, i.e. CeSiC. The structural and thermal performance of the petal shall be reported. The stepwise alignment and integration procedure on petal level shall be described. The functional performance and environmental test verification plan of the Form Fit Function Model and the test set ups are described in this paper. In parallel to the running development activities the programmatic and technical issues wrt. the FM telescope MAIT with currently 1488 Tandem Optics are under investigation. Remote controlled robot supported assembly, simultaneous active alignment and verification testing and decentralised time effective integration procedures shall be illustrated.

    3. Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45 degrees micro-reflector.

      PubMed

      Lan, Hsiao-Chin; Hsiao, Hsu-Liang; Chang, Chia-Chi; Hsu, Chih-Hung; Wang, Chih-Ming; Wu, Mount-Learn

      2009-11-09

      A monolithically integrated micro-optical element consisting of a diffractive optical element (DOE) and a silicon-based 45 degrees micro-reflector is experimentally demonstrated to facilitate the optical alignment of non-coplanar fiber-to-fiber coupling. The slanted 45 degrees reflector with a depth of 216 microm is fabricated on a (100) silicon wafer by anisotropic wet etching. The DOE with a diameter of 174.2 microm and a focal length of 150 microm is formed by means of dry etching. Such a compact device is suitable for the optical micro-system to deflect the incident light by 90 degrees and to focus it on the image plane simultaneously. The measured light pattern with a spot size of 15 microm has a good agreement with the simulated result of the elliptic-symmetry DOE with an off-axis design for eliminating the strongly astigmatic aberration. The coupling efficiency is enhanced over 10-folds of the case without a DOE on the 45 degrees micro-reflector. This device would facilitate the optical alignment of non-coplanar light coupling and further miniaturize the volume of microsystem.

    4. Compact laser transmitter delivering a long-range infrared beam aligned with a monitoring visible beam.

      PubMed

      Lee, Hong-Shik; Kim, Haeng-In; Lee, Sang-Shin

      2012-06-10

      A compact laser transmitter, which takes advantage of an optical subassembly module, was proposed and demonstrated, providing precisely aligned collinear IR and visible beams. The collimated IR beam acts as a long-range projectile for simulated combat, carrying an optical pulsed signal, whereas the visible beam plays the role of tracking the IR beam. The proposed laser transmitter utilizes IR (λ(1)=905 nm) and visible (λ(2)=660 nm) light sources, a fiber-optic collimator, and a beam combiner, which includes a wavelength division multiplexing (WDM) filter in conjunction with optical fiber. The device was built via the laser welding technique and then evaluated by investigating the characteristics of the generated light beams. The IR collimated beam produced had a Gaussian profile and a divergence angle of ~1.3 mrad, and the visible monitoring beam was appropriately collimated to be readily discernible in the vicinity of the transmitter. The two beams were highly aligned within an angle of 0.004 deg as anticipated. Finally, we performed a practical outdoor field test to assess the IR beam with the help of a receiver. An effective trajectory was observed ranging up to 660 m with an overall detectable beam width of ~60 cm.

    5. The ``Music'' of Light: Optical Resonances for Fun and Profit

      NASA Astrophysics Data System (ADS)

      Beausoleil, Raymond

      Moore's Law has set great expectations that the performance/price ratio of commercially available semiconductor devices will continue to improve exponentially at least until the end of this decade. But the physics of the metal wires that connect the transistors on a silicon chip already places stringent limits on the performance of integrated circuits, making their continued dramatic improvement highly unlikely. In this talk, I will introduce the basic concept of an optical resonance in a microscopic dielectric cavity in the context of the same type of spatial boundary conditions that give each musical instrument its unique sound. Then I will illustrate applications of these resonances to information technology in a variety of forms and functions using examples from my own laboratory at HP, such as chip-scale optical networks, quantum bits based on spins in diamond, and ultrafast optical switches that could become the foundation for a new generation of optical computers. Our goal is to conduct advanced research that could precipitate an ``optical Moore's Law'' and allow exponential performance gains to continue through the end of the next decade.

    6. Development of at-wavelength metrology for x-ray optics at the ALS

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Yuan, Sheng

      2010-07-09

      The comprehensive realization of the exciting advantages of new third- and forth-generation synchrotron radiation light sources requires concomitant development of reflecting and diffractive x-ray optics capable of micro- and nano-focusing, brightness preservation, and super high resolution. The fabrication, tuning, and alignment of the optics are impossible without adequate metrology instrumentation, methods, and techniques. While the accuracy of ex situ optical metrology at the Advanced Light Source (ALS) has reached a state-of-the-art level, wavefront control on beamlines is often limited by environmental and systematic alignment factors, and inadequate in situ feedback. At ALS beamline 5.3.1, we are developing broadly applicable, high-accuracy,more » in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of tests with increasing accuracy and sensitivity. Geometric Hartmann tests, performed with a scanning illuminated sub-aperture determine the wavefront slope across the full mirror aperture. Shearing interferometry techniques use coherent illumination and provide higher sensitivity wavefront measurements. Combining these techniques with high precision optical metrology and experimental methods will enable us to provide in situ setting and alignment of bendable x-ray optics to realize diffraction-limited, sub 50 nm focusing at beamlines. We describe here details of the metrology beamline endstation, the x-ray beam diagnostic system, and original experimental techniques that have already allowed us to precisely set a bendable KB mirror to achieve a focused spot size of 150 nm.« less

    7. 3D MOEMS-based optical micro-bench platform for the miniaturization of sensing devices

      NASA Astrophysics Data System (ADS)

      Garcia-Blanco, Sonia; Caron, Jean-Sol; Leclair, Sébastien; Topart, Patrice A.; Jerominek, Hubert

      2008-02-01

      As we enter into the 21st century, the need for miniaturized portable diagnostic devices is increasing continuously. Portable devices find important applications for point-of-care diagnostics, patient self-monitoring and in remote areas, such as unpopulated regions where the cost of large laboratory facilities is not justifiable, underdeveloped countries and other remote locations such as space missions. The advantage of miniaturized sensing optical systems includes not only the reduced weight and size but also reduced cost, decreased time to results and robustness (e.g. no need for frequent re-alignments). Recent advances in micro-fabrication and assembly technologies have enabled important developments in the field of miniaturized sensing systems. INO has developed a technology platform for the three dimensional integration of MOEMS on an optical microbench. Building blocks of the platform include microlenses, micromirrors, dichroic beamsplitters, filters and optical fibers, which can be positioned using passive alignment structures to build the desired miniaturised system. The technology involves standard microfabrication, thick resist UV-lithography, thick metal electroplating, soldering, replication in sol-gel materials and flip-chip bonding processes. The technology is compatible with wafer-to-wafer bonding. A placement accuracy of +/- 5 μm has been demonstrated thanks to the integration of alignment marks co registered with other optical elements fabricated on different wafers. In this paper, the building blocks of the technology will be detailed. The design and fabrication of a 5x5 channels light processing unit including optical fibers, mirrors and collimating microlenses will be described. Application of the technology to various kinds of sensing devices will be discussed.

    8. Optical keyboard

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

      2001-01-01

      An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

    9. Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System

      DTIC Science & Technology

      2015-03-26

      through the fiber , we assume Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon detection...optical components ( laser , polarization modulator, electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter...generated by the laser in the CPG propagate through multiple optical components, each with a unique propagation delay before reaching the OPM. Timing

    10. Development of microchannel plate x-ray optics

      NASA Technical Reports Server (NTRS)

      Kaaret, Philip; Chen, Andrew

      1994-01-01

      The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further factor of three improvement in surface quality is required for the production of efficient x-ray optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics.

    11. Antares alignment gimbal positioner

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Day, R.D.; Viswanathan, V.K.; Saxman, A.C.

      1981-01-01

      Antares is a 24-beam 40-TW carbon-dioxide (CO/sub 2/) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, and wavefront optical path difference, as well as aberration information at both helium-neon (He-Ne) and CO/sub 2/ wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1-cm cube to a tolerance of 10more » ..mu..m.« less

    12. Spoof four-wave mixing for all-optical wavelength conversion.

      PubMed

      Gong, Yongkang; Huang, Jungang; Li, Kang; Copner, Nigel; Martinez, J J; Wang, Leirang; Duan, Tao; Zhang, Wenfu; Loh, W H

      2012-10-08

      We present for the first time an all-optical wavelength conversion (AOWC) scheme supporting modulation format independency without requiring phase matching. The new scheme is named "spoof" four wave mixing (SFWM) and in contrast to the well-known FWM theory, where the induced dynamic refractive index grating modulates photons to create a wave at a new frequency, the SFWM is different in that the dynamic refractive index grating is generated in a nonlinear Bragg Grating (BG) to excite additional reflective peaks at either side of the original BG bandgap in reflection spectrum. This fundamental difference enable the SFWM to avoid the intrinsic shortcoming of stringent phase matching required in the conventional FWM, and allows AOWC with modulation format transparency and ultrabroad conversion range, which may have great potential applications for next generation of all-optical networks.

    13. Fusion bonding and alignment fixture

      DOEpatents

      Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

      2000-01-01

      An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

    14. Electro-optical characterization system develped for ATLIDCAS AIV: flat field and collimated beam injections

      NASA Astrophysics Data System (ADS)

      Ramos, G.; Laguna, H.; Torres, J.; Belenguer, T.

      2017-11-01

      In the framework of the ESA EarthCare Mission, an atmospheric LIDAR (ATLID) was included as a payload. CAS is the co-alignment system of such a LIDAR instrument, the system responsible of guaranteeing the proper alignment of the projected laser beam and the reflected light collected. Within CAS, in which a consortium leaded by ASTRIUM France is working in, as well as CRISA (electronics) and LIDAX (mechanical engineering), INTA is in charge of the development of the instrumentation to be used on ground (on ground support equipments, OGSEs) needed for the proper electro-optical characterization.

    15. FALCON Remote Laser Alignment System

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Hamilton, T.W.; Hebner, G.A.

      1993-01-01

      The FALCON Remote Laser Alignment System is used in a high radiation environment to adjust an optical assembly. The purpose of this report is to provide a description of the hardware used and to present the system configuration. Use of the system has increased the reliability and reproducibility of data as well as significantly reducing personnel radiation exposure. Based upon measured radiation dose, radiation exposure was reduced by at least a factor of two after implementing the remote alignment system.

    16. FALCON Remote Laser Alignment System

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Hamilton, T.W.; Hebner, G.A.

      1993-02-01

      The FALCON Remote Laser Alignment System is used in a high radiation environment to adjust an optical assembly. The purpose of this report is to provide a description of the hardware used and to present the system configuration. Use of the system has increased the reliability and reproducibility of data as well as significantly reducing personnel radiation exposure. Based upon measured radiation dose, radiation exposure was reduced by at least a factor of two after implementing the remote alignment system.

    17. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

      NASA Astrophysics Data System (ADS)

      Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

      2015-09-01

      Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

    18. Automated assembly of camera modules using active alignment with up to six degrees of freedom

      NASA Astrophysics Data System (ADS)

      Bräuniger, K.; Stickler, D.; Winters, D.; Volmer, C.; Jahn, M.; Krey, S.

      2014-03-01

      With the upcoming Ultra High Definition (UHD) cameras, the accurate alignment of optical systems with respect to the UHD image sensor becomes increasingly important. Even with a perfect objective lens, the image quality will deteriorate when it is poorly aligned to the sensor. For evaluating the imaging quality the Modulation Transfer Function (MTF) is used as the most accepted test. In the first part it is described how the alignment errors that lead to a low imaging quality can be measured. Collimators with crosshair at defined field positions or a test chart are used as object generators for infinite-finite or respectively finite-finite conjugation. The process how to align the image sensor accurately to the optical system will be described. The focus position, shift, tilt and rotation of the image sensor are automatically corrected to obtain an optimized MTF for all field positions including the center. The software algorithm to grab images, calculate the MTF and adjust the image sensor in six degrees of freedom within less than 30 seconds per UHD camera module is described. The resulting accuracy of the image sensor rotation is better than 2 arcmin and the accuracy position alignment in x,y,z is better 2 μm. Finally, the process of gluing and UV-curing is described and how it is managed in the integrated process.

    19. A 3D metrology system for the GMT

      NASA Astrophysics Data System (ADS)

      Rakich, A.; Dettmann, Lee; Leveque, S.; Guisard, S.

      2016-08-01

      The Giant Magellan Telescope (GMT)1 is a 25 m telescope composed of seven 8.4 m "unit telescopes", on a common mount. Each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and co-phased. During telescope operation, the alignment of the optical components will deflect due to variations in thermal environment and gravity induced structural flexure of the mount. The ultimate co-alignment and co-phasing of the telescope is achieved by a combination of the Acquisition Guiding and Wavefront Sensing system and two segment edge-sensing systems2. An analysis of the capture range of the wavefront sensing system indicates that it is unlikely that that system will operate efficiently or reliably with initial mirror positions provided by open-loop corrections alone3. The project is developing a Telescope Metrology System (TMS) which incorporates a large number of absolute distance measuring interferometers. The system will align optical components of the telescope to the instrument interface to (well) within the capture range of the active optics wavefront sensing systems. The advantages offered by this technological approach to a TMS, over a network of laser trackers, are discussed. Initial investigations of the Etalon Absolute Multiline Technology™ by Etalon Ag4 show that a metrology network based on this product is capable of meeting requirements. A conceptual design of the system is presented and expected performance is discussed.

    20. Alignment error of mirror modules of advanced telescope for high-energy astrophysics due to wavefront aberrations

      NASA Astrophysics Data System (ADS)

      Zocchi, Fabio E.

      2017-10-01

      One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.

    1. Overcoming low-alignment signal contrast induced alignment failure by alignment signal enhancement

      NASA Astrophysics Data System (ADS)

      Lee, Byeong Soo; Kim, Young Ha; Hwang, Hyunwoo; Lee, Jeongjin; Kong, Jeong Heung; Kang, Young Seog; Paarhuis, Bart; Kok, Haico; de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; Mason, Christopher; Aarts, Igor; de Boeij, Wim P.

      2016-03-01

      Overlay is one of the key factors which enables optical lithography extension to 1X node DRAM manufacturing. It is natural that accurate wafer alignment is a prerequisite for good device overlay. However, alignment failures or misalignments are commonly observed in a fab. There are many factors which could induce alignment problems. Low alignment signal contrast is one of the main issues. Alignment signal contrast can be degraded by opaque stack materials or by alignment mark degradation due to processes like CMP. This issue can be compounded by mark sub-segmentation from design rules in combination with double or quadruple spacer process. Alignment signal contrast can be improved by applying new material or process optimization, which sometimes lead to the addition of another process-step with higher costs. If we can amplify the signal components containing the position information and reduce other unwanted signal and background contributions then we can improve alignment performance without process change. In this paper we use ASML's new alignment sensor (as was introduced and released on the NXT:1980Di) and sample wafers with special stacks which can induce poor alignment signal to demonstrate alignment and overlay improvement.

    2. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

      NASA Technical Reports Server (NTRS)

      Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

      2015-01-01

      In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the alpha-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned following four steps in order to reduce standing time alignment me. 1: is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm). 2: The mirror structure CLASP before mounting unit standing, dummy slit and camera standing prescribed position in leading frame is, to complete the internal alignment adjustment. 3: CLASP structure F mirror unit and by attaching the visible light filter, as will plague the focus is carried out in standing position adjustment visible flight products camera. 4: Replace the Lyman alpha transmission filter, it is confirmed by Lyman alpha wavelength (under vacuum) the requested optical performance have come. Currently, up to 3 of the steps completed, it was confirmed in the visible light optical performance that satisfies the required value sufficiently extended. Also, put in Slit-jaw optical system the sunlight through the telescope of CLASP, it is also confirmed that and that stray light rejection no vignetting is in the field of view meets request standing.

    3. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

      NASA Technical Reports Server (NTRS)

      Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

      2015-01-01

      In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the a-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned 'following four steps in order to reduce standing time alignment me. 1. is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm).2. The mirror structure CLASP before mounting unit standing, dummy slit and camera standing prescribed position in leading frame is, to complete the internal alignment adjustment. 3. CLASP structure F mirror unit and by attaching the visible light filter, as will plague the focus is carried out in standing position adjustment visible flight products camera. 4. Replace the Lyman alpha transmission filter, it is confirmed by Lyman alpha wavelength (under vacuum) the requested optical performance have come. Currently, up to 3 of the steps completed, it was confirmed in the visible light optical performance that satisfies the required value sufficiently extended. Also, put in Slit-jaw optical system the sunlight through the telescope of CLASP, it is also confirmed that and that stray light rejection no vignetting is in the field of view meets request standing.

    4. Diffractive optics fabricated by direct write methods with an electron beam

      NASA Technical Reports Server (NTRS)

      Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.

      1993-01-01

      State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.

    5. Monitoring the fabrication of tapered optical fibres

      NASA Astrophysics Data System (ADS)

      Mullaney, K.; Correia, R.; Staines, S. E.; James, S. W.; Tatam, R. P.

      2017-04-01

      A variety of optical methods to enhance the process of making optical fibre tapers are explored. A thermal camera was used to both refine the alignment of the optical components and optimize the laser power profile during the tapering process. The fibre transmission was measured to verify that the tapers had the requisite optical characteristics while the strain experienced by the fibre while tapering was assessed using an optical fibre Bragg grating. Using these techniques, adiabatic tapers were fabricated with a 2% insertion loss.

    6. Deep WFPC2 and Ground-Based Imaging of a Complete Sample of 3C Quasars and Galaxies

      NASA Technical Reports Server (NTRS)

      Ridgway, Susan E.; Stockton, Alan

      1997-01-01

      We present the results of an HST and ground-based imaging study of a complete 3C sample of zeta approx. equal to 1 sources, comprising 5 quasars and 5 radio galaxies. We have observed all of the sample in essentially line-free bands at rest-frame 0.33 micrometers with WFPC2 and in rest-frame 1 micrometer images from the ground; we have also observed most of the sample in narrow-band filters centered on [O II]. We resolve continuum structure around all of our quasars in the high-resolution WFPC2 images, and in four of the five ground-based K' images. All of the quasars have some optical continuum structure that is aligned with the radio axis. In at least 3 of these cases, some of this optical structure is directly coincident with a portion of the radio structure, including optical counterparts to radio jets in 3C212 and 3C245 and an optical counterpart to a radio lobe in 3C2. These are most likely due to optical synchrotron radiation, and the radio and optical spectral indices in the northern lobe of 3C2 are consistent with this interpretation. The fact that we see a beamed optical synchotron component in the quasars but not in the radio galaxies complicates both the magnitude and the alignment comparisons. Nonetheless, the total optical and K' flux densities of the quasar hosts are consistent with those of the radio galaxies within the observed dispersion in our sample. The distributions of K' flux densities of both radio galaxies and quasar hosts exhibit similar mean and dispersion to that found for other radio galaxies at this redshift, and the average host galaxy luminosity is equivalent to, or a little fainter than, L*. The formal determination of the alignment in the optical and infrared in the two subsamples yields no significant difference between the radio galaxy and quasar subsamples, and the quasars 3C 196 and 3C 336 have aligned continuum and emission-line structure that is probably not due to beamed optical synchrotron emission. Very blue and/or edge-brightened structures are present in some objects within the probable quasar opening angle; these are possibly the result of illumination effects from the active nucleus, i.e., scattered quasar light or photoionization. In 3C 212, we see an optical object that lies 3 min. beyond the radio lobe, but which looks morphologically quite similar to the radio lobe itself. This object is bright in the infrared and has a steep spectral gradient along its length. A striking, semi-circular arc seen associated with 3C 280 may possibly be a tidal tail from a companion, enhanced in brightness by scattering or photoionization. In the near-infrared, most of the radio galaxies have elliptical morphologies with profiles that are well-fit by de Vaucouleurs r(exp 1/4)-laws and colors that are consistent with an old stellar population. All components around the quasars have optical-infrared colors that are redder than or similar to the colors of their respective nuclei; this is more consistent with a stellar origin for the emission than with a dominant scattering contribution. From the correspondence between the total magnitudes in the galaxies and quasars and the detection of aligned components in the quasars, we conclude that this study provides general support for the unification of FR II radio galaxies and quasars. Some of the objects in the sample (e.g, 3C 212) have properties that may be difficult to explain with our current understanding of the nature of FR II radio sources and the alignment effect.

    7. Fast Response and Spontaneous Alignment in Liquid Crystals Doped with 12-Hydroxystearic Acid Gelators.

      PubMed

      Lin, Hui-Chi; Wang, Chih-Hung; Wang, Jyun-Kai; Tsai, Sheng-Feng

      2018-05-07

      The spontaneous vertical alignment of liquid crystals (LCs) in gelator (12-hydroxystearic acid)-doped LC cells was studied. Gelator-induced alignment can be used in both positive and negative LC cells. The electro-optical characteristics of the gelator-doped negative LC cell were similar to those of an LC cell that contained a vertically aligned (VA) host. The rise time of the gelator-doped LC cell was two orders of magnitude shorter than that of the VA host LC cell. The experimental results indicate that the gelator-induced vertical alignment of LC molecules occurred not only on the surface of the indium tin oxide (ITO) but also on the homogeneous alignment layer. Various LC alignments (planar, hybrid, multistable hybrid, and vertical alignments) were achieved by modulating the doped gelator concentrations. The multistable characteristic of LCs doped with the gelator is also presented. The alignment by doping with a gelator reduces the manufacturing costs and provides a means of fabricating fast-responding, flexible LC displays using a low-temperature process.

    8. Ray-tracing as a tool for efficient specification of beamline optical components

      NASA Astrophysics Data System (ADS)

      Pedreira, P.; Sics, I.; Llonch, M.; Ladrera, J.; Ribó, Ll.; Colldelram, C.; Nicolas, J.

      2016-09-01

      We propose a method to determine the required performances of the positioning mechanics of the optical elements of a beamline. Generally, when designing and specifying a beamline, one assumes that the position and orientations of the optical elements should be aligned to its ideal position. For this, one would generally require six degrees of freedom per optical element. However, this number is reduced due to symmetries (e.g. a flat mirror does not care about yaw). Generally, one ends up by motorizing many axes, with high resolution and a large motion range. On the other hand, the diagnostics available at a beamline provide much less variables than the available motions. Moreover, the actual parameters that one wants to optimize are reduced to a very few. These are basically, spot size and size at the sample, flux, and spectral resolution. The result is that many configurations of the beamline are actually equivalent, and therefore indistinguishable from the ideal alignment in terms of performance.We propose a method in which the effect of misalignment of each one of the degrees of freedom of the beamline is scanned by ray tracing. This allows building a linear system in which one can identify and select the best set of motions to control the relevant parameters of the beam. Once the model is built it provides the required optical pseudomotors as well as the requirements in alignment and manufacturing, for all the motions, as well as the range, resolution and repeatability of the motorized axes.

    9. Hot-embossing replication of self-centering optical fiber alignment structures prototyped by deep proton writing

      NASA Astrophysics Data System (ADS)

      Ebraert, Evert; Wissmann, Markus; Guttmann, Markus; Kolew, Alexander; Worgull, Matthias; Barié, Nicole; Schneider, Marc; Hofmann, Andreas; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

      2016-07-01

      This paper presents the hot-embossing replication of self-centering fiber alignment structures for high-precision, single-mode optical fiber connectors. To this end, a metal mold insert was fabricated by electroforming a polymer prototype patterned by means of deep proton writing (DPW). To achieve through-hole structures, we developed a postembossing process step to remove the residual layer inherently present in hot-embossed structures. The geometrical characteristics of the hot-embossed replicas are compared, before and after removal of the residual layer, with the DPW prototypes. Initial measurements on the optical performance of the replicas are performed. The successful replication of these components paves the way toward low-cost mass replication of DPW-fabricated prototypes in a variety of high-tech plastics.

    10. Propagation of high-energy laser beams through the earth's atmosphere II; Proceedings of the Meeting, Los Angeles, CA, Jan. 21-23, 1991

      NASA Technical Reports Server (NTRS)

      Ulrich, Peter B. (Editor); Wilson, Leroy E. (Editor)

      1991-01-01

      Consideration is given to turbulence at the inner scale, modeling turbulent transport in laser beam propagation, variable wind direction effects on thermal blooming correction, realistic wind effects on turbulence and thermal blooming compensation, wide bandwidth spectral measurements of atmospheric tilt turbulence, remote alignment of adaptive optical systems with far-field optimization, focusing infrared laser beams on targets in space without using adaptive optics, and a simplex optimization method for adaptive optics system alignment. Consideration is also given to ground-to-space multiline propagation at 1.3 micron, a path integral approach to thermal blooming, functional reconstruction predictions of uplink whole beam Strehl ratios in the presence of thermal blooming, and stability analysis of semidiscrete schemes for thermal blooming computation.

    11. Enhanced Alignment Techniques for the Thomson Scattering Diagnostic on the Lithium Tokamak eXperiment (LTX)

      NASA Astrophysics Data System (ADS)

      Merino, Enrique; Kozub, Tom; Boyle, Dennis; Lucia, Matthew; Majeski, Richard; Kaita, Robert; Schmitt, John C.; Leblanc, Benoit; Diallo, Ahmed; Jacobson, C. M.

      2014-10-01

      The Thomson Scattering (TS) System in LTX is used to measure electron temperature and density profiles of core and edge plasmas. In view of TS measurements showing low signal-to-noise and high stray light, numerous improvements were performed in recent months. These will allow for better measurements. Due to the nature of LTX's lithium coated walls, a particular challenge was presented by alignment procedures which required insertion and precise positioning of equipment in the vacuum vessel without breaking vacuum. To overcome these difficulties, the laser flight tubes were removed and an alignment probe setup placed along the beam line on a differentially pumped assembly. The probe was then driven into the vacuum vessel and back-illumination of the viewing optics on it allowed for alignment and spatial calibration. Other upgrades included better bracing of flight tubes and viewing optics as well as a redesigned beam dump. An overview of these improvements will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

    12. Optical derotator alignment using image-processing algorithm for tracking laser vibrometer measurements of rotating objects.

      PubMed

      Khalil, Hossam; Kim, Dongkyu; Jo, Youngjoon; Park, Kyihwan

      2017-06-01

      An optical component called a Dove prism is used to rotate the laser beam of a laser-scanning vibrometer (LSV). This is called a derotator and is used for measuring the vibration of rotating objects. The main advantage of a derotator is that it works independently from an LSV. However, this device requires very specific alignment, in which the axis of the Dove prism must coincide with the rotational axis of the object. If the derotator is misaligned with the rotating object, the results of the vibration measurement are imprecise, owing to the alteration of the laser beam on the surface of the rotating object. In this study, a method is proposed for aligning a derotator with a rotating object through an image-processing algorithm that obtains the trajectory of a landmark attached to the object. After the trajectory of the landmark is mathematically modeled, the amount of derotator misalignment with respect to the object is calculated. The accuracy of the proposed method for aligning the derotator with the rotating object is experimentally tested.

    13. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

      PubMed

      Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

      2015-06-25

      Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.

    14. Development of integrated optical tracking sensor by planar optics

      NASA Astrophysics Data System (ADS)

      Kawano, Hiroyuki; Sasagawa, Tomohiro; Nishimae, Junichi; Sato, Yukio

      1999-03-01

      A compact and light weight optical tracking sensor for a large capacity flexible disk drive is demonstrated. The size of the optical element is no larger than 5.4 mm in length X 3.6 mm in width X 1.2 mm in height and the weight is only 18 mg. The application of the planar optical technique makes it possible to integrate all passive optical elements onto one transparent substrate. These features are useful for high- speed access, easy optical alignment, mass production, and miniaturization. The design and optical characteristics of the optical tracking sensor are described.

    15. Calibration of the SNO+ experiment

      NASA Astrophysics Data System (ADS)

      Maneira, J.; Falk, E.; Leming, E.; Peeters, S.; SNO+ Collaboration.

      2017-09-01

      The main goal of the SNO+ experiment is to perform a low-background and high-isotope-mass search for neutrinoless double-beta decay, employing 780 tonnes of liquid scintillator loaded with tellurium, in its initial phase at 0.5% by mass for a total mass of 1330 kg of 130Te. The SNO+ physics program includes also measurements of geo- and reactor neutrinos, supernova and solar neutrinos. Calibrations are an essential component of the SNO+ data-taking and analysis plan. The achievement of the physics goals requires both an extensive and regular calibration. This serves several goals: the measurement of several detector parameters, the validation of the simulation model and the constraint of systematic uncertainties on the reconstruction and particle identification algorithms. SNO+ faces stringent radiopurity requirements which, in turn, largely determine the materials selection, sealing and overall design of both the sources and deployment systems. In fact, to avoid frequent access to the inner volume of the detector, several permanent optical calibration systems have been developed and installed outside that volume. At the same time, the calibration source internal deployment system was re-designed as a fully sealed system, with more stringent material selection, but following the same working principle as the system used in SNO. This poster described the overall SNO+ calibration strategy, discussed the several new and innovative sources, both optical and radioactive, and covered the developments on source deployment systems.

    16. Large optics for the National Ignition Facility

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Baisden, P.

      2015-01-12

      The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advancedmore » optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.« less

    17. Interactive display system having a matrix optical detector

      DOEpatents

      Veligdan, James T.; DeSanto, Leonard

      2007-01-23

      A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.

    18. Automated interferometric alignment system for paraboloidal mirrors

      DOEpatents

      Maxey, L.C.

      1993-09-28

      A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.

    19. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen

      2011-03-15

      High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less

    20. Alignment and Distortion-Free Integration of Lightweight Mirrors into Meta-Shells for High-Resolution Astronomical X-Ray Optics

      NASA Technical Reports Server (NTRS)

      Chan, Kai-Wing; Zhang, William W.; Schofield, Mark J.; Numata, Ai; Mazzarella, James R.; Saha, Timo T.; Biskach, Michael P.; McCelland, Ryan S.; Niemeyer, Jason; Sharpe, Marton V.; hide

      2016-01-01

      High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1" and bonding error 2" can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole "meta-shell".

    1. Diffraction phase microscopy realized with an automatic digital pinhole

      NASA Astrophysics Data System (ADS)

      Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Zhang, Zhimin; Liu, Xu

      2017-12-01

      We report a novel approach to diffraction phase microscopy (DPM) with automatic pinhole alignment. The pinhole, which serves as a spatial low-pass filter to generate a uniform reference beam, is made out of a liquid crystal display (LCD) device that allows for electrical control. We have made DPM more accessible to users, while maintaining high phase measurement sensitivity and accuracy, through exploring low cost optical components and replacing the tedious pinhole alignment process with an automatic pinhole optical alignment procedure. Due to its flexibility in modifying the size and shape, this LCD device serves as a universal filter, requiring no future replacement. Moreover, a graphic user interface for real-time phase imaging has been also developed by using a USB CMOS camera. Experimental results of height maps of beads sample and live red blood cells (RBCs) dynamics are also presented, making this system ready for broad adaption to biological imaging and material metrology.

    2. Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope

      NASA Astrophysics Data System (ADS)

      Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.

      2000-07-01

      A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.

    3. Alignment of a multilayer-coated imaging system using extreme ultraviolet Foucault and Ronchi interferometric testing

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Ray-Chaudhuri, A.K.; Ng, W.; Cerrina, F.

      1995-11-01

      Multilayer-coated imaging systems for extreme ultraviolet (EUV) lithography at 13 nm represent a significant challenge for alignment and characterization. The standard practice of utilizing visible light interferometry fundamentally provides an incomplete picture since this technique fails to account for phase effects induced by the multilayer coating. Thus the development of optical techniques at the functional EUV wavelength is required. We present the development of two EUV optical tests based on Foucault and Ronchi techniques. These relatively simple techniques are extremely sensitive due to the factor of 50 reduction in wavelength. Both techniques were utilized to align a Mo--Si multilayer-coated Schwarzschildmore » camera. By varying the illumination wavelength, phase shift effects due to the interplay of multilayer coating and incident angle were uniquely detected. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less

    4. IFU simulator: a powerful alignment and performance tool for MUSE instrument

      NASA Astrophysics Data System (ADS)

      Laurent, Florence; Boudon, Didier; Daguisé, Eric; Dubois, Jean-Pierre; Jarno, Aurélien; Kosmalski, Johan; Piqueras, Laure; Remillieux, Alban; Renault, Edgard

      2014-07-01

      MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way without dismounting onto VLT telescope where the first light was overcame. This talk describes the IFU Simulator which is the main alignment and performance tool for MUSE instrument. The IFU Simulator mimics the optomechanical interface between the MUSE pre-optic and the 24 IFUs. The optomechanical design is presented. After, the alignment method of this innovative tool for identifying the pupil and image planes is depicted. At the end, the internal test report is described. The success of the MUSE alignment using the IFU Simulator is demonstrated by the excellent results obtained onto MUSE positioning, image quality and throughput. MUSE commissioning at the VLT is planned for September, 2014.

    5. Transmission Grating and Optics Technology Development for the Arcus Explorer Mission

      NASA Astrophysics Data System (ADS)

      Heilmann, Ralf; Arcus Team

      2018-01-01

      Arcus is a high-resolution x-ray spectroscopy MIDEX mission selected for a Phase A concept study. It is designed to explore structure formation through measurements of hot baryon distributions, feedback from black holes, and the formation and evolution of stars, disks, and exoplanet atmospheres. The design provides unprecedented sensitivity in the 1.2-5 nm wavelength band with effective area above 450 sqcm and spectral resolution R > 2500. The Arcus technology is based on 12 m-focal length silicon pore optics (SPO) developed for the European Athena mission, and critical-angle transmission (CAT) x-ray diffraction gratings and x-ray CCDs developed at MIT. The modular design consists of four parallel channels, each channel holding an optics petal, followed by a grating petal. CAT gratings are lightweight, alignment insensitive, high-efficiency x-ray transmission gratings that blaze into high diffraction orders, leading to high spectral resolution. Each optics petal represents an azimuthal sub-aperture of a full Wolter optic. The sub-aperturing effect increases spectral resolving power further. Two CCD readout strips receive photons from each channel, including higher-energy photons in 0th order. Each optics petal holds 34 SPO modules. Each grating petal holds 34 grating windows, and each window holds 4-6 grating facets. A grating facet consists of a silicon grating membrane, bonded to a flexure frame that interfaces with the grating window. We report on a sequence of tests with increasing complexity that systematically increase the Technology Readiness Level (TRL) for the combination of CAT gratings and SPOs towards TLR 6. CAT gratings have been evaluated in x rays for diffraction efficiency (> 30% at 2.5 nm) and for resolving power (R> 10,000). A CAT grating/SPO combination was measured at R ~ 3100 at blaze angles smaller than design values, exceeding Arcus requirements. Efficiency and resolving power were not impacted by vibration and thermal testing of gratings. A pair of large (32 mm x 32 mm) gratings was aligned using laser metrology, and alignment was verified under x rays. We present results on simultaneous illumination of the aligned grating pair, and describe our progress towards further tests.

    6. Optical alignment procedure utilizing neural networks combined with Shack-Hartmann wavefront sensor

      NASA Astrophysics Data System (ADS)

      Adil, Fatime Zehra; Konukseven, Erhan İlhan; Balkan, Tuna; Adil, Ömer Faruk

      2017-05-01

      In the design of pilot helmets with night vision capability, to not limit or block the sight of the pilot, a transparent visor is used. The reflected image from the coated part of the visor must coincide with the physical human sight image seen through the nonreflecting regions of the visor. This makes the alignment of the visor halves critical. In essence, this is an alignment problem of two optical parts that are assembled together during the manufacturing process. Shack-Hartmann wavefront sensor is commonly used for the determination of the misalignments through wavefront measurements, which are quantified in terms of the Zernike polynomials. Although the Zernike polynomials provide very useful feedback about the misalignments, the corrective actions are basically ad hoc. This stems from the fact that there exists no easy inverse relation between the misalignment measurements and the physical causes of the misalignments. This study aims to construct this inverse relation by making use of the expressive power of the neural networks in such complex relations. For this purpose, a neural network is designed and trained in MATLAB® regarding which types of misalignments result in which wavefront measurements, quantitatively given by Zernike polynomials. This way, manual and iterative alignment processes relying on trial and error will be replaced by the trained guesses of a neural network, so the alignment process is reduced to applying the counter actions based on the misalignment causes. Such a training requires data containing misalignment and measurement sets in fine detail, which is hard to obtain manually on a physical setup. For that reason, the optical setup is completely modeled in Zemax® software, and Zernike polynomials are generated for misalignments applied in small steps. The performance of the neural network is experimented and found promising in the actual physical setup.

    7. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

      NASA Astrophysics Data System (ADS)

      Weng, Libo

      There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.

    8. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

      NASA Astrophysics Data System (ADS)

      Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

      2016-05-01

      Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.

    9. MUSE alignment onto VLT

      NASA Astrophysics Data System (ADS)

      Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

      2014-07-01

      MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success of the MUSE alignment is demonstrated by the excellent results obtained onto MUSE image quality and throughput directly onto the sky.

    10. Analysis of multiuser mixed RF/FSO relay networks for performance improvements in Cloud Computing-Based Radio Access Networks (CC-RANs)

      NASA Astrophysics Data System (ADS)

      Alimi, Isiaka A.; Monteiro, Paulo P.; Teixeira, António L.

      2017-11-01

      The key paths toward the fifth generation (5G) network requirements are towards centralized processing and small-cell densification systems that are implemented on the cloud computing-based radio access networks (CC-RANs). The increasing recognitions of the CC-RANs can be attributed to their valuable features regarding system performance optimization and cost-effectiveness. Nevertheless, realization of the stringent requirements of the fronthaul that connects the network elements is highly demanding. In this paper, considering the small-cell network architectures, we present multiuser mixed radio-frequency/free-space optical (RF/FSO) relay networks as feasible technologies for the alleviation of the stringent requirements in the CC-RANs. In this study, we use the end-to-end (e2e) outage probability, average symbol error probability (ASEP), and ergodic channel capacity as the performance metrics in our analysis. Simulation results show the suitability of deployment of mixed RF/FSO schemes in the real-life scenarios.

    11. Contamination control program for the Cosmic Background Explorer

      NASA Technical Reports Server (NTRS)

      Barney, Richard D.

      1991-01-01

      Each of the three state of the art instruments flown aboard NASA's Cosmic Background Explorer (COBE) were designed, fabricated, and integrated using unique contamination control procedures to ensure accurate characterization of the diffuse radiation in the universe. The most stringent surface level cleanliness specifications ever attempted by NASA were required by the Diffuse Infrared Background Experiment (DRIBE) which is located inside a liquid helium cooled dewar along with the Far Infrared Absolute Spectrophotometer (FIRAS). The DRIBE instrument required complex stray radiation suppression that defined a cold primary optical baffle system surface cleanliness level of 100A. The cleanliness levels of the cryogenic FIRAS instrument and the Differential Microwave Radiometer (DMR) which were positioned symmetrically around the dewar were less stringent ranging from 300 to 500A. To achieve these instrument cleanliness levels, the entire flight spacecraft was maintained at level 500A throughout each phase of development. The COBE contamination control program is described along with the difficulties experienced in maintaining the cleanliness quality of personnel and flight hardware throughout instrument assembly.

    12. Structural Feasibility Analysis of a Robotically Assembled Very Large Aperture Optical Space Telescope

      NASA Technical Reports Server (NTRS)

      Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.

      2007-01-01

      This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.

    13. Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.

      PubMed

      Teo, Audrey S M; Verzotto, Davide; Yao, Fei; Nagarajan, Niranjan; Hillmer, Axel M

      2015-01-01

      Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35-300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116. High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥ 150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software. Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.

    14. Cultivation mode research of practical application talents for optical engineering major

      NASA Astrophysics Data System (ADS)

      Liu, Zhiying

      2017-08-01

      The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students' foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student talents and employer.

    15. In Situ alignment system for phase-shifting point-diffraction interferometry

      DOEpatents

      Goldberg, Kenneth Alan; Naulleau, Patrick P.

      2000-01-01

      A device and method to facilitate the gross alignment of patterned object- and image-plane masks in optical systems such as the phase-shifting point diffraction interferometer are provided. When an array of similar pinholes or discreet mask fields is used, confusion can occur over the alignment of the focused beams within the field. Adding to the mask pattern a circumscribed or inscribed set of symbols that are identifiable in situ facilitates the unambiguous gross alignment of the object- and/or image-plane masks. Alternatively, a system of markings can be encoded directly into the window shape to accomplish this same task.

    16. X-ray microprobe of orbital alignment in strong-field ionized atoms.

      PubMed

      Young, L; Arms, D A; Dufresne, E M; Dunford, R W; Ederer, D L; Höhr, C; Kanter, E P; Krässig, B; Landahl, E C; Peterson, E R; Rudati, J; Santra, R; Southworth, S H

      2006-08-25

      We have developed a synchrotron-based, time-resolved x-ray microprobe to investigate optical strong-field processes at intermediate intensities (10(14) - 10(15) W/cm2). This quantum-state specific probe has enabled the direct observation of orbital alignment in the residual ion produced by strong-field ionization of krypton atoms via resonant, polarized x-ray absorption. We found strong alignment to persist for a period long compared to the spin-orbit coupling time scale (6.2 fs). The observed degree of alignment can be explained by models that incorporate spin-orbit coupling. The methodology is applicable to a wide range of problems.

    17. Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue.

      PubMed

      York, Timothy; Kahan, Lindsey; Lake, Spencer P; Gruev, Viktor

      2014-06-01

      A technique for creating maps of the direction and strength of fiber alignment in collagenous soft tissues is presented. The method uses a division of focal plane polarimeter to measure circularly polarized light transmitted through the tissue. The architecture of the sensor allows measurement of the retardance and fiber alignment at the full frame rate of the sensor without any moving optics. The technique compares favorably to the standard method of using a rotating polarizer. How the new technique enables real-time capture of the full angular spread of fiber alignment and retardance under various cyclic loading conditions is illustrated.

    18. Optical Testing Using Portable Laser Coordinate Measuring Instruments

      NASA Technical Reports Server (NTRS)

      Khreishi, Manal; Ohl, Raymond G.; Mclean, Kyle F.; Hadjimichael, Theodore J.; Hayden, Joseph E.

      2017-01-01

      High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LR's ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikon's MV-224/350 LR and Leica's Absolute Tracker AT401/402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the "direct and through" (D&T), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the D&T shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.

    19. Solar adaptive optics with the DKIST: status report

      NASA Astrophysics Data System (ADS)

      Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Gregory, Scott; Hegwer, Steve; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

      2014-08-01

      The DKIST wavefront correction system will be an integral part of the telescope, providing active alignment control, wavefront correction, and jitter compensation to all DKIST instruments. The wavefront correction system will operate in four observing modes, diffraction-limited, seeing-limited on-disk, seeing-limited coronal, and limb occulting with image stabilization. Wavefront correction for DKIST includes two major components: active optics to correct low-order wavefront and alignment errors, and adaptive optics to correct wavefront errors and high-frequency jitter caused by atmospheric turbulence. The adaptive optics system is built around a fast tip-tilt mirror and a 1600 actuator deformable mirror, both of which are controlled by an FPGA-based real-time system running at 2 kHz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). We present the current status of the DKIST high-order adaptive optics, focusing on system design, hardware procurements, and error budget management.

    20. Optical Testing Using Portable Laser Coordinate Measuring Instruments

      NASA Technical Reports Server (NTRS)

      Khreishi, M.; Ohl, R.; Mclean, K.; Hadjimichael, T.; Hayden, J.

      2017-01-01

      High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LRs ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikons MV-224350 LR and Leicas Absolute Tracker AT401402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the direct and through (DT), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the DT shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.

    1. Performance of a laser microsatellite network with an optical preamplifier.

      PubMed

      Arnon, Shlomi

      2005-04-01

      Laser satellite communication (LSC) uses free space as a propagation medium for various applications, such as intersatellite communication or satellite networking. An LSC system includes a laser transmitter and an optical receiver. For communication to occur, the line of sight of the transmitter and the receiver must be aligned. However, mechanical vibration and electronic noise in the control system reduce alignment between the transmitter laser beam and the receiver field of view (FOV), which results in pointing errors. The outcome of pointing errors is fading of the received signal, which leads to impaired link performance. An LSC system is considered in which the optical preamplifier is incorporated into the receiver, and a bit error probability (BEP) model is derived that takes into account the statistics of the pointing error as well as the optical amplifier and communication system parameters. The model and the numerical calculation results indicate that random pointing errors of sigma(chi)2G > 0.05 penalize communication performance dramatically for all combinations of optical amplifier gains and noise figures that were calculated.

    2. Large space telescope, phase A. Volume 3: Optical telescope assembly

      NASA Technical Reports Server (NTRS)

      1972-01-01

      The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

    3. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

      DTIC Science & Technology

      2016-04-30

      adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The

    4. Fiber optic sensor system for detecting movement or position of a rotating wheel bearing

      DOEpatents

      Veeser, Lynn R.; Rodriguez, Patrick J.; Forman, Peter R.; Monahan, Russell E.; Adler, Jonathan M.

      1997-01-01

      An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.

    5. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

      NASA Technical Reports Server (NTRS)

      Thelen, Michael P.; Moore, Donald M.

      2009-01-01

      The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

    6. A happy conclusion to the SALT image quality saga

      NASA Astrophysics Data System (ADS)

      Crause, Lisa A.; O'Donoghue, Darragh E.; O'Connor, James E.; Strumpfer, Francois; Strydom, Ockert J.; Sass, Craig; du Plessis, Charl A.; Wiid, Eben; Love, Jonathan; Brink, Janus D.; Wilkinson, Martin; Coetzee, Chris

      2012-09-01

      Images obtained with the Southern African Large Telescope (SALT) during its commissioning phase showed degradation due to a large focus gradient and a variety of other optical aberrations. An extensive forensic investigation eventually traced the problem to the mechanical interface between the telescope and the secondary optics that form the Spherical Aberration Corrector (SAC). The SAC was brought down from the telescope in 2009 April, the problematic interface was replaced and the four corrector mirrors were optically tested and re-aligned. The surface figures of the SAC mirrors were confirmed to be within specification and a full system test following the re-alignment process yielded a RMS wavefront error of just 0.15 waves. The SAC was re-installed on the tracker in 2010 August and aligned with respect to the payload and primary mirror. Subsequent on-sky tests produced alarming results which were due to spurious signals being sent to the tracker by the auto-collimator, the instrument responsible for controlling the attitude of the SAC with respect to the primary mirror. Once this minor issue was resolved, we obtained uniform 1.1 arcsecond star images over the full 10 arcminute field of view of the telescope.

    7. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.

      PubMed

      Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo

      2012-01-15

      We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.

    8. Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems.

      PubMed

      Cai, Yangjian; Lin, Qiang

      2004-06-01

      A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.

    9. Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems

      NASA Astrophysics Data System (ADS)

      Cai, Yangjian; Lin, Qiang

      2004-06-01

      A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.

    10. Automated alignment system for optical wireless communication systems using image recognition.

      PubMed

      Brandl, Paul; Weiss, Alexander; Zimmermann, Horst

      2014-07-01

      In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.

    11. Laser-assisted marking for toric intraocular lens alignment.

      PubMed

      Dick, H Burkhard; Schultz, Tim

      2016-01-01

      We describe a technique of 3-dimensional spectral-domain optical coherence tomography-controlled laser-assisted corneal marking for toric intraocular lens implantation. To facilitate accurate alignment, the technique creates 2 perpendicular intrastromal incisions (width 0.75 mm) using an image-guided femtosecond laser. This was performed in a case series comprising 10 eyes of 10 patients. No posterior corneal perforation or epithelial alterations occurred. The incisions were plainly visible under the operating microscope, and no optical phenomena were reported 6 weeks after surgery. Laser-assisted marking can be performed safely and has the potential to enable precise axis marking. Dr. Dick is a paid consultant to Abbott Medical Optics, Inc. Dr. Schultz has no financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

    12. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

      NASA Technical Reports Server (NTRS)

      Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

      2000-01-01

      The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

    13. Modification of the surface properties of glass-ceramic materials at low-pressure RF plasma stream

      NASA Astrophysics Data System (ADS)

      Tovstopyat, Alexander; Gafarov, Ildar; Galeev, Vadim; Azarova, Valentina; Golyaeva, Anastasia

      2018-05-01

      The surface roughness has a huge effect on the mechanical, optical, and electronic properties of materials. In modern optical systems, the specifications for the surface accuracy and smoothness of substrates are becoming even more stringent. Commercially available pre-polished glass-ceramic substrates were treated with the radio frequency (RF) inductively coupled (13.56 MHz) low-pressure plasma to clean the surface of the samples and decrease the roughness. Optical emission spectroscopy was used to investigate the plasma stream parameters and phase-shifted interferometry to investigate the surface of the specimen. In this work, the dependence of RF inductively coupled plasma on macroscopic parameters was investigated with the focus on improving the surfaces. The ion energy, sputtering rate, and homogeneity were investigated. The improvements of the glass-ceramic surfaces from 2.6 to 2.2 Å root mean square by removing the "waste" after the previous operations had been achieved.

    14. Accuracy assessment for a multi-parameter optical calliper in on line automotive applications

      NASA Astrophysics Data System (ADS)

      D'Emilia, G.; Di Gasbarro, D.; Gaspari, A.; Natale, E.

      2017-08-01

      In this work, a methodological approach based on the evaluation of the measurement uncertainty is applied to an experimental test case, related to the automotive sector. The uncertainty model for different measurement procedures of a high-accuracy optical gauge is discussed in order to individuate the best measuring performances of the system for on-line applications and when the measurement requirements are becoming more stringent. In particular, with reference to the industrial production and control strategies of high-performing turbochargers, two uncertainty models are proposed, discussed and compared, to be used by the optical calliper. Models are based on an integrated approach between measurement methods and production best practices to emphasize their mutual coherence. The paper shows the possible advantages deriving from the considerations that the measurement uncertainty modelling provides, in order to keep control of the uncertainty propagation on all the indirect measurements useful for production statistical control, on which basing further improvements.

    15. Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle.

      PubMed

      Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico

      2018-06-01

      Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.

    16. Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle

      NASA Astrophysics Data System (ADS)

      Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico

      2018-06-01

      Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.

    17. Prediction and Characterization of NaGaS2, A High Thermal Conductivity Mid-Infrared Nonlinear Optical Material for High-Power Laser Frequency Conversion.

      PubMed

      Hou, Dianwei; Nissimagoudar, Arun S; Bian, Qiang; Wu, Kui; Pan, Shilie; Li, Wu; Yang, Zhihua

      2018-06-15

      Infrared nonlinear optical (IR NLO) crystals are the major materials to widen the output range of solid-state lasers to mid- or far-infrared regions. The IR NLO crystals used in the middle IR region are still inadequate for high-power laser applications because of deleterious thermal effects (lensing and expansion), low laser-induced damage threshold, and two-photon absorption. Herein, the unbiased global minimum search method was used for the first time to search for IR NLO optical materials and ultimately found a new IR NLO material NaGaS 2 . It meets the stringent demands for IR NLO materials pumped by high-power laser with the highest thermal conductivity among common IR NLO materials able to avoid two-photon absorption, a classic nonlinear coefficient, and wide infrared transparency.

    18. Alignment of optical system components using an ADM beam through a null assembly

      NASA Technical Reports Server (NTRS)

      Hayden, Joseph E. (Inventor); Olczak, Eugene G. (Inventor)

      2010-01-01

      A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam.

    19. Monitoring techniques for the manufacture of tapered optical fibers.

      PubMed

      Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

      2015-10-01

      The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

    20. Toward Adaptive X-Ray Telescopes

      NASA Technical Reports Server (NTRS)

      O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

      2011-01-01

      Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

    1. Toward active x-ray telescopes

      NASA Astrophysics Data System (ADS)

      O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

      2011-09-01

      Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

    2. Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues

      PubMed Central

      Leigh, Steven Y.; Chen, Ye; Liu, Jonathan T.C.

      2014-01-01

      A strategy is presented to enable optical-sectioning microscopy with improved contrast and imaging depth using low-power (0.5 - 1 mW) diode laser illumination. This technology combines the inherent strengths of focal-modulation microscopy and dual-axis confocal (DAC) microscopy for rejecting out-of-focus and multiply scattered background light in tissues. The DAC architecture is unique in that it utilizes an intersecting pair of illumination and collection beams to improve the spatial-filtering and optical-sectioning performance of confocal microscopy while focal modulation selectively ‘labels’ in-focus signals via amplitude modulation. Simulations indicate that modulating the spatial alignment of dual-axis beams at a frequency f generates signals from the focal volume of the microscope that are modulated at 2f with minimal modulation of background signals, thus providing nearly an order-of-magnitude improvement in optical-sectioning contrast compared to DAC microscopy alone. Experiments show that 2f lock-in detection enhances contrast and imaging depth within scattering phantoms and fresh tissues. PMID:24940534

    3. Demonstration of a Monolithic Micro-Spectrometer System

      NASA Technical Reports Server (NTRS)

      Rajic, S.; Egert, C. M.

      1995-01-01

      The starting design of a spectrometer based on a modified Czerny-Turner configuration containing five precision surfaces encapsulated in a monolithic structure is described. Since the purpose at the early stages of the development was to demonstrate the feasibility of the technology and not an attempt to address a specific sensing problem, the first substrate material chosen was optical quality polymethyl methacrylate (PMMA). The final system design decision was narrowed down to two possible configurations containing five and six precision surfaces. The five surface design was chosen since it contained one less precision optical surface, yet included multiple off-axis spheres. In this particular design and material system, the mass was kept below 7 g. The wavelength range (bandpass) design goal was 1 micrometer (0.6 - 1.6 micrometers). The PMMA is particularly transparent in this wavelength region and there are interesting effects to monitor within this band. The optical system was designed and optimized using the ZEMAX optical design software program to be entirely alignment free (self aligning).

    4. Photo-switchable bistable twisted nematic liquid crystal optical switch.

      PubMed

      Wang, Chun-Ta; Wu, Yueh-Chi; Lin, Tsung-Hsien

      2013-02-25

      This work demonstrates a photo-switchable bistable optical switch that is based on an azo-chiral doped liquid crystal (ACDLC). The photo-induced isomerization of the azo-chiral dopant can change the chirality of twisted nematic liquid crystal and the gap/pitch ratio of an ACDLC device, enabling switching between 0° and 180° twist states in a homogeneous aligned cell. The bistable 180° and 0° twist states of the azo-chiral doped liquid crystal between crossed polarizers correspond to the ON and OFF states of a light shutter, respectively, and they can be maintained stably for tens of hours. Rapid switching between 180° and 0° twist states can be carried out using 408 and 532 nm addressing light. Such a photo-controllable optical switch requires no specific asymmetric alignment layer or precise control of the cell gap/pitch ratio, so it is easily fabricated and has the potential for use in optical systems.

    5. Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves

      NASA Astrophysics Data System (ADS)

      Sasaki, Tomoyuki; Okuyama, Hiroki; Sakamoto, Moritsugu; Noda, Kohei; Okamoto, Hiroyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

      2017-04-01

      We fabricated a terahertz (THz) polarization converter using a twisted nematic (TN) liquid crystal (LC) cell. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) films coated on quartz glass substrates were used as electrode layers in the TN LC cell. The PEDOT/PSS films were rubbed unidirectionally using a rayon cloth to align the nematic LC, thereby also serving as an alignment layer. The azimuthal surface anchoring strength of the PEDOT/PSS films was measured to be 5 × 10-4 J/m2 using the Néel wall method, which is similar to that of typical polymeric alignment layers. The optical constants of the PEDOT/PSS film in the THz range were also characterized using the Drude-Smith model, and the results indicated that the PEDOT/PSS films could be used both as transparent electrodes in the THz range and as alignment layers for the LC. The electro-optical properties of the fabricated TN LC cell were also investigated using a polarized visible laser and THz time-domain spectroscopic system. In particular, the transmission spectra and polarization conversion property of the TN LC cell in the THz range were theoretically analyzed based on a stratified model that considers optical anisotropy, absorption, and multiple interference. This work substantiates the advantages of TN LC cells with rubbed PEDOT/PSS films useful for THz polarization converters with electrical tunability.

    6. A new method and device of aligning patient setup lasers in radiation therapy.

      PubMed

      Hwang, Ui-Jung; Jo, Kwanghyun; Lim, Young Kyung; Kwak, Jung Won; Choi, Sang Hyuon; Jeong, Chiyoung; Kim, Mi Young; Jeong, Jong Hwi; Shin, Dongho; Lee, Se Byeong; Park, Jeong-Hoon; Park, Sung Yong; Kim, Siyong

      2016-01-08

      The aim of this study is to develop a new method to align the patient setup lasers in a radiation therapy treatment room and examine its validity and efficiency. The new laser alignment method is realized by a device composed of both a metallic base plate and a few acrylic transparent plates. Except one, every plate has either a crosshair line (CHL) or a single vertical line that is used for alignment. Two holders for radiochromic film insertion are prepared in the device to find a radiation isocenter. The right laser positions can be found optically by matching the shadows of all the CHLs in the gantry head and the device. The reproducibility, accuracy, and efficiency of laser alignment and the dependency on the position error of the light source were evaluated by comparing the means and the standard deviations of the measured laser positions. After the optical alignment of the lasers, the radiation isocenter was found by the gantry and collimator star shots, and then the lasers were translated parallel to the isocenter. In the laser position reproducibility test, the mean and standard deviation on the wall of treatment room were 32.3 ± 0.93 mm for the new method whereas they were 33.4 ± 1.49 mm for the conventional method. The mean alignment accuracy was 1.4 mm for the new method, and 2.1 mm for the conventional method on the walls. In the test of the dependency on the light source position error, the mean laser position was shifted just by a similar amount of the shift of the light source in the new method, but it was greatly magnified in the conventional method. In this study, a new laser alignment method was devised and evaluated successfully. The new method provided more accurate, more reproducible, and faster alignment of the lasers than the conventional method.

    7. A Fiber-Optic Coupled Telescope for Water Vapor DIAL Receivers

      NASA Technical Reports Server (NTRS)

      DeYoung, Russell J.; Lonn, Frederick

      1998-01-01

      A fiber-optic coupled telescope of low complexity was constructed and tested. The major loss mechanisms of the optical system have been characterized. Light collected by the receiver mirror is focused onto an optical fiber, and the output of the fiber is filtered by an interference filter and then focused onto an APD detector. This system was used in lidar field measurements with a 532-nm Nd:YAG laser beam. The results were encouraging. A numerical model used for calculation of the expected return signal agreed with the lidar return signal obtained. The assembled system was easy to align and operate and weighed about 8 kg for a 30 cm (12") mirror system. This weight is low enough to allow mounting of the fiber-optic telescope receiver system in a UAV. Furthermore, the good agreement between the numerical lidar model and the performance of the actual receiver system, suggests that this model may be used for estimation of the performance of this and other lidar systems in the future. Such telescopes are relatively easy to construct and align. The fiber optic cable allows easy placement of the optical detector in any position. These telescope systems should find widespread use in aircraft and space home DIAL water vapor receiver systems.

    8. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

      PubMed Central

      Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

      2009-01-01

      We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271

    9. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.

      PubMed

      Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

      2016-09-19

      Dual-comb spectroscopy holds the promise as real-time, high-resolution spectroscopy tools. However, in its conventional schemes, the stringent requirement on the coherence between two lasers requires sophisticated control systems. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using one dual-wavelength, passively mode-locked fiber laser. Pulses with a intracavity-dispersion-determined repetition-frequency difference are shown to have good mutual coherence and stability. Capability to resolve the comb teeth and a picometer-wide optical spectral resolution are demonstrated using a simple data acquisition system. Energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable low-cost dual-comb systems.

    10. The effect of timing errors in optical digital systems.

      NASA Technical Reports Server (NTRS)

      Gagliardi, R. M.

      1972-01-01

      The use of digital transmission with narrow light pulses appears attractive for data communications, but carries with it a stringent requirement on system bit timing. The effects of imperfect timing in direct-detection (noncoherent) optical binary systems are investigated using both pulse-position modulation and on-off keying for bit transmission. Particular emphasis is placed on specification of timing accuracy and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors from which average error probabilities can be computed for specific synchronization methods. Of significance is the presence of a residual or irreducible error probability in both systems, due entirely to the timing system, which cannot be overcome by the data channel.

    11. DLMS-Based Optical Memories.

      DTIC Science & Technology

      1995-03-01

      data so-rces. gw’wrgv d l" M t fi the dat rme, and ccr’•kp~ g a"i revwr’g bdhiecs, of kfc •- ’adm Sei ccrrrrarts regarding &ins burde erante or anry oter...too stringent for the commercial market . For practical high- density storage applications, it has even been suggested to pursue higher operation...several techniques for mixing micro spheres with a host matrix. These include: (a) high shear mixing in the presence of antioxidant, (b) the suspension

    12. Fast Response and Spontaneous Alignment in Liquid Crystals Doped with 12-Hydroxystearic Acid Gelators

      PubMed Central

      Lin, Hui-Chi; Wang, Chih-Hung; Wang, Jyun-Kai; Tsai, Sheng-Feng

      2018-01-01

      The spontaneous vertical alignment of liquid crystals (LCs) in gelator (12-hydroxystearic acid)-doped LC cells was studied. Gelator-induced alignment can be used in both positive and negative LC cells. The electro-optical characteristics of the gelator-doped negative LC cell were similar to those of an LC cell that contained a vertically aligned (VA) host. The rise time of the gelator-doped LC cell was two orders of magnitude shorter than that of the VA host LC cell. The experimental results indicate that the gelator-induced vertical alignment of LC molecules occurred not only on the surface of the indium tin oxide (ITO) but also on the homogeneous alignment layer. Various LC alignments (planar, hybrid, multistable hybrid, and vertical alignments) were achieved by modulating the doped gelator concentrations. The multistable characteristic of LCs doped with the gelator is also presented. The alignment by doping with a gelator reduces the manufacturing costs and provides a means of fabricating fast-responding, flexible LC displays using a low-temperature process. PMID:29735937

    13. Call for Papers: Photonics in Switching

      NASA Astrophysics Data System (ADS)

      Wosinska, Lena; Glick, Madeleine

      2006-04-01

      Call for Papers: Photonics in Switching

      Guest Editors:

      Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK

      Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks.

      Scope of Submission

      The scope of the papers includes, but is not limited to, the following topics:
      • WDM node architectures
      • Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion
      • Routing protocols
      • WDM switching and routing
      • Quality of service
      • Performance measurement and evaluation
      • Next-generation optical networks: architecture, signaling, and control
      • Traffic measurement and field trials
      • Optical burst and packet switching
      • OBS/OPS node architectures
      • Burst/Packet scheduling and routing algorithms
      • Contention resolution/avoidance strategies
      • Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.)
      • Burst assembly and ingress traffic shaping
      • Hybrid OBS/TDM or OBS/wavelength routing

      Manuscript Submission

      To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line ``Photonics in Switching.' Additional information can be found on the JON website: http://www.osa-jon.org/journal/jon/author.cfm. Submission Deadline: 15 September 2006

    14. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

      NASA Technical Reports Server (NTRS)

      Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

      2005-01-01

      While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

    15. Single crystalline growth of a soluble organic semiconductor in a parallel aligned liquid crystal solvent using rubbing-treated polyimide films

      NASA Astrophysics Data System (ADS)

      Matsuzaki, Tomoya; Shibata, Yosei; Takeda, Risa; Ishinabe, Takahiro; Fujikake, Hideo

      2017-01-01

      For directional control of organic single crystals, we propose a crystal growth method using liquid crystal as the solvent. In this study, we examined the formation of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single crystals using a parallel aligned liquid crystal (LC) cell and rubbing-treated polyimide films in order to clarify the effects of LC alignment on anisotropic C8-BTBT crystal growth. Based on the results, we found that the crystal growth direction of C8-BTBT single crystals was related to the direction of the aligned LC molecules because of rubbing treatment. Moreover, by optical evaluation, we found that the C8-BTBT single crystals have a aligned molecular structure.

    16. Dynamic interferometer alignment and its utility in UV Fourier transform spectrometer systems

      NASA Technical Reports Server (NTRS)

      Dorval, Rick K.; Engel, James R.; Wyntjes, Geert J.

      1993-01-01

      Dynamic alignment has been demonstrated as a practical approach to alignment maintenance for systems in the infrared region of the spectrum. On the basis of work done by OPTRA, this technique was introduced in commercial Fourier transform spectrometer systems in 1982 and in various forms is now available from a number of manufacturers. This paper reports on work by OPTRA to extend the basic technique to systems operating in the ultraviolet. In addition, this paper reports the preliminary results of the development of an alignment system using a laser diode in place of a gas laser normally found in dynamic alignment systems. A unique optical system and spatial heterodyne technique allows for achievement of a metrology system with characteristics that fully satisfy the requirements of an ultraviolet spectrometer system.

    17. Conceptual design of the cryostat for the new high luminosity (HL-LHC) triplet magnets

      NASA Astrophysics Data System (ADS)

      Ramos, D.; Parma, V.; Moretti, M.; Eymin, C.; Todesco, E.; Van Weelderen, R.; Prin, H.; Berkowitz Zamora, D.

      2017-12-01

      The High Luminosity LHC (HL-LHC) is a project to upgrade the LHC collider after 2020-2025 to increase the integrated luminosity by about one order of magnitude and extend the physics production until 2035. An upgrade of the focusing triplets insertion system for the ATLAS and CMS experiments is foreseen using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. This will require the design and construction of four continuous cryostats, each about sixty meters in length and one meter in diameter, for the final beam focusing quadrupoles, corrector magnets and beam separation dipoles. The design is constrained by the dimensions of the existing tunnel and accessibility restrictions imposing the integration of cryogenic piping inside the cryostat, thus resulting in a very compact integration. As the alignment and position stability of the magnets is crucial for the luminosity performance of the machine, the magnet support system must be carefully designed in order to cope with parasitic forces and thermo-mechanical load cycles. In this paper, we present the conceptual design of the cryostat and discuss the approach to address the stringent and often conflicting requirements of alignment, integration and thermal aspects.

    18. Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Tahara, Kosuke; Ozawa, Hayato; Iwasaki, Takayuki

      2015-11-09

      Selective alignment of nitrogen-vacancy (NV) centers in diamond is an important technique towards its applications. Quantification of the alignment ratio is necessary to design the optimized diamond samples. However, this is not a straightforward problem for dense ensemble of the NV centers. We estimate the alignment ratio of ensemble NV centers along the [111] direction in (111) diamond by optically detected magnetic resonance measurements. Diamond films deposited by N{sub 2} doped chemical vapor deposition have NV center densities over 1 × 10{sup 15 }cm{sup −3} and alignment ratios over 75%. Although spin coherence time (T{sub 2}) is limited to a few μs bymore » electron spins of nitrogen impurities, the combination of the selective alignment and the high density can be a possible way to optimize NV-containing diamond samples for the sensing applications.« less

    19. Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Ma, Ying; Srivastava, A. K., E-mail: abhishek-srivastava-lu@yahoo.co.in; Chigrinov, V. G.

      In this article, we reveal a theoretical and experimental illustration of the Ferroelectric liquid crystal (FLC) grating fabricated by mean of patterned alignment based on photo-alignment. The complexity related to the mismatching of the predefined alignment domains on the top and bottom substrate has been avoided by incorporating only one side photo aligned substrate while the other substrate does not have any alignment layer. Depending on the easy axis in the said alignment domains and the azimuth plane of the impinging polarized light, the diffracting element can be tuned in two modes i.e. DIFF/OFF switchable and DIFF/TRANS switchable modes, whichmore » can be applied to different applications. The diffraction profile has been illustrated theoretically that fits well with the experimental finding and thus the proposed diffraction elements with fast response time and high diffraction efficiency could find application in many modern devices.« less

    20. Automated interferometric alignment system for paraboloidal mirrors

      DOEpatents

      Maxey, L. Curtis

      1993-01-01

      A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aigning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront.

    1. The deterministic optical alignment of the HERMES spectrograph

      NASA Astrophysics Data System (ADS)

      Gers, Luke; Staszak, Nicholas

      2014-07-01

      The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

    2. Tunable graded rod laser assembly

      NASA Technical Reports Server (NTRS)

      AuYeung, John C. (Inventor)

      1985-01-01

      A tunable laser assembly including a pair of radially graded indexed optical segments aligned to focus the laser to form an external resonant cavity with an optical axis, the respective optical segments are retativity moveable along the optical axis and provide a variable et aion gap sufficient to permit variable tuning of the laser wavelength without altering the effective length of the resonant cavity. The gap also include a saturable absorbing material providing a passive mode-locking of the laser.

    3. Improved Fiber-Optic-Coupled Pressure And Vibration Sensors

      NASA Technical Reports Server (NTRS)

      Zuckerwar, Allan J.; Cuomo, Frank W.

      1994-01-01

      Improved fiber-optic coupler enables use of single optical fiber to carry light to and from sensor head. Eliminates problem of alignment of multiple fibers in sensor head and simplifies calibration by making performance both more predictable and more stable. Sensitivities increased, sizes reduced. Provides increased margin for design of compact sensor heads not required to contain amplifier circuits and withstand high operating temperatures.

    4. NLO 󈨞. Nonlinear Optics: Materials, Phenomena and Devices Digest. Internation Meeting on Nonlinear Optics (1st) Held in Kauai, Hawaii on 16-20 July 1990

      DTIC Science & Technology

      1991-03-13

      combination50 with a dynamic grating diffraction modelO . Considering o 0 a polarlsatlon grating on a homoetropic aligned nematlc ’-i 40 filmi the optical...nonlinearities of solutions of chloroaluminumphthalocyanine (CAP) in methanol and a silicon naphthalocyanine (Nc) derivative, SiNc( OSi (hexyl)3)2 or

    5. Polymeric variable optical attenuators based on magnetic sensitive stimuli materials

      NASA Astrophysics Data System (ADS)

      de Pedro, S.; Cadarso, V. J.; Ackermann, T. N.; Muñoz-Berbel, X.; Plaza, J. A.; Brugger, J.; Büttgenbach, S.; Llobera, A.

      2014-12-01

      Magnetically-actuable, polymer-based variable optical attenuators (VOA) are presented in this paper. The design comprises a cantilever which also plays the role of a waveguide and the input/output alignment elements for simple alignment, yet still rendering an efficient coupling. Magnetic properties have been conferred to these micro-opto-electromechanical systems (MOEMS) by implementing two different strategies: in the first case, a magnetic sensitive stimuli material (M-SSM) is obtained by a combination of polydimethylsiloxane (PDMS) and ferrofluid (FF) in ratios between 14.9 wt % and 29.9 wt %. An M-SSM strip under the waveguide-cantilever, defined with soft lithography (SLT), provides the required actuation capability. In the second case, specific volumes of FF are dispensed at the end of the cantilever tip (outside the waveguide) by means of inkjet printing (IJP), obtaining the required magnetic response while holding the optical transparency of the waveguide-cantilever. In the absence of a magnetic field, the waveguide-cantilever is aligned with the output fiber optics and thus the intrinsic optical losses can be obtained. Numerical simulations, validated experimentally, have shown that, for any cantilever length, the VOAs defined by IJP present lower intrinsic optical losses than their SLT counterparts. Under an applied magnetic field (Bapp), both VOA configurations experience a misalignment between the waveguide-cantilever and the output fiber optics. Thus, the proposed VOAs modulate the output power as a function of the cantilever displacement, which is proportional to Bapp. The experimental results for the three different waveguide-cantilever lengths and six different FF concentrations (three per technology) show maximum deflections of 220 µm at 29.9 wt % of FF for VOASLT and 250 µm at 22.3 wt % FF for VOAIJP, at 0.57 kG for both. These deflections provide maximum actuation losses of 16.1 dB and 18.9 dB for the VOASLT and VOAIJP, respectively.

    6. Optical coating on a corrugated surface to align the polarization of an unpolarized wave without loss

      NASA Astrophysics Data System (ADS)

      Jen, Yi Jun

      2017-12-01

      A multilayer comprising birefringent thin films is devised to present to function as a polarization beam splitter and waveplate simultaneously. By arranging such a multilayer on a right triangle-shaped corrugated surface, a polarizer is realized to align the randomly oscillating electric field of an unpolarized wave into a linear polarized wave without loss.

    7. Silicon nitride back-end optics for biosensor applications

      NASA Astrophysics Data System (ADS)

      Romero-García, Sebastian; Merget, Florian; Zhong, Frank C.; Finkelstein, Hod; Witzens, Jeremy

      2013-05-01

      Silicon nitride (SiN) is a promising candidate material for becoming a standard high-performance solution for integrated biophotonics applications in the visible spectrum. As a key feature, its compatibility with the complementary-oxidemetal- semiconductor (CMOS) technology permits cost reduction at large manufacturing volumes that is particularly advantageous for manufacturing consumables. In this work, we show that the back-end deposition of a thin SiN film enables the large light-cladding interaction desirable for biosensing applications while the refractive index contrast of the technology (Δn ≍ 0.5) also enables a considerable level of integration with reduced waveguide bend radii. Design and experimental validation also show that several advantages are derived from the moderate SiN/SiO2 refractive index contrast, such as lower scattering losses in interconnection waveguides and relaxed tolerances to fabrication imperfections as compared to higher refractive index contrast material systems. As a drawback, a moderate refractive index contrast also makes the implementation of compact grating couplers more challenging, due to the fact that only a relatively weak scattering strength can be achieved. Thereby, the beam diffracted by the grating tends to be rather large and consequently exhibit stringent angular alignment tolerances. Here, we experimentally demonstrate how a proper design of the bottom and top cladding oxide thicknesses allows reduction of the full-width at half maximum (FWHM) and alleviates this problem. Additionally, the inclusion of a CMOS-compatible AlCu/TiN bottom reflector further decreases the FWHM and increases the coupling efficiency. Finally, we show that focusing grating designs greatly reduce the device footprint without penalizing the device metrics.

    8. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

      NASA Astrophysics Data System (ADS)

      Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

      2016-04-01

      Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

    9. Pinned, optically aligned diagnostic dock for use on the Z facility.

      PubMed

      Gomez, M R; Rochau, G A; Bailey, J E; Dunham, G S; Kernaghan, M D; Gard, P; Robertson, G K; Owen, A C; Argo, J W; Nielsen, D S; Lake, P W

      2012-10-01

      The pinned optically aligned diagnostic dock (PODD) is a multi-configuration diagnostic platform designed to measure x-ray emission on the Z facility. The PODD houses two plasma emission acquisition (PEA) systems, which are aligned with a set of precision machined pins. The PEA systems are modular, allowing a single diagnostic housing to support several different diagnostics. The PEA configurations fielded to date include both time-resolved and time-integrated, 1D spatially resolving, elliptical crystal spectrometers, and time-integrated, 1D spatially resolving, convex crystal spectrometers. Additional proposed configurations include time-resolved, monochromatic mirrored pinhole imagers and arrays of filtered x-ray diodes, diamond photo-conducting diode detectors, and bolometers. The versatility of the PODD system will allow the diagnostic configuration of the Z facility to be changed without significantly adding to the turn-around time of the machine. Additionally, the PODD has been designed to allow instrument setup to be completed entirely off-line, leaving only a refined alignment process to be performed just prior to a shot, which is a significant improvement over the instrument the PODD replaces. Example data collected with the PODD are presented.

    10. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications.

      PubMed

      Liu, Qingkun; Cui, Yanxia; Gardner, Dennis; Li, Xin; He, Sailing; Smalyukh, Ivan I

      2010-04-14

      We demonstrate the bulk self-alignment of dispersed gold nanorods imposed by the intrinsic cylindrical micelle self-assembly in nematic and hexagonal liquid crystalline phases of anisotropic fluids. External magnetic field and shearing allow for alignment and realignment of the liquid crystal matrix with the ensuing long-range orientational order of well-dispersed plasmonic nanorods. This results in a switchable polarization-sensitive plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The device-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of properties arising from combining the switchable nanoscale structure of anisotropic fluids with the surface plasmon resonance properties of the plasmonic nanorods.

    11. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

      NASA Technical Reports Server (NTRS)

      Calhoun, Philip; Novo-Gradac, Anne-Marie; Shah, Neerav

      2017-01-01

      Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m-500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as microthruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

    12. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

      NASA Technical Reports Server (NTRS)

      Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav

      2017-01-01

      Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

    13. Macroscopic Ensembles of Aligned Carbon Nanotubes in Bubble Imprints Studied by Polarized Raman Microscopy

      DOE PAGES

      Ushiba, Shota; Hoyt, Jordan; Masui, Kyoko; ...

      2014-01-01

      We study the alignment of single-wall carbon nanotubes (SWCNTs) in bubble imprints through polarized Raman microscopy. A hemispherical bubble containing SWCNTs is pressed against a glass substrate, resulting in an imprint of the bubble membrane with a coffee ring on the substrate. We find that macroscopic ensembles of aligned SWCNTs are obtained in the imprints, in which there are three patterns of orientations: (i) azimuthal alignment on the coffee ring, (ii) radial alignment at the edge of the membrane, and (iii) random orientation at the center of the membrane. We also find that the alignment of SWCNTs in the imprintsmore » can be manipulated by spinning bubbles. The orientation of SWCNTs on the coffee ring is directed radially, which is orthogonal to the case of unspun bubbles. This approach enables one to align SWCNTs in large quantities and in a short time, potentially opening up a wide range of CNT-based electronic and optical applications.« less

    14. Opticalman 1 and C, Rate Training Manual. [1972 Revised Edition].

      ERIC Educational Resources Information Center

      Naval Personnel Program Support Activity, Washington, DC.

      In this revised edition of an earlier publication (ED 070 574), fundamentals of optical instruments on board ships are presented in this rate training manual for regular navy and naval reserve personnel. The manual includes nine chapters: Introduction; Administration and Supervision; Nature of Light; Optical Alignment Instruments; Night Vision…

    15. Polar self-assembled thin films for non-linear optical materials

      DOEpatents

      Yang, XiaoGuang; Swanson, Basil I.; Li, DeQuan

      2000-01-01

      The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-.pi.-A units bridged by methylene groups. These molecules were synthesized such that four D-.pi.-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d.sub.33, and the average molecular alignment, .PSI.. A value of d.sub.33 =60 pm/V at a fundamental wavelength of 890 nm, and .PSI..about.36.degree. was found with respect to the surface normal.

    16. Optical analysis of AlGaInP laser diodes with real refractive index guided self-aligned structure

      NASA Astrophysics Data System (ADS)

      Xu, Yun; Zhu, Xiaopeng; Ye, Xiaojun; Kang, Xiangning; Cao, Qing; Guo, Liang; Chen, Lianghui

      2004-05-01

      Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.

    17. Dichroic beamsplitter for high energy laser diagnostics

      DOEpatents

      LaFortune, Kai N [Livermore, CA; Hurd, Randall [Tracy, CA; Fochs, Scott N [Livermore, CA; Rotter, Mark D [San Ramon, CA; Hackel, Lloyd [Livermore, CA

      2011-08-30

      Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

    18. Metrology for Trending Alignment of the James Webb Space Telescope Before and After Ambient Environmental Testing

      NASA Technical Reports Server (NTRS)

      Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeffery; Hayden, Joseph; Khreishi, Manal; McLean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg; hide

      2017-01-01

      NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, theJWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.

    19. Alignment System for Full-Shell Replicated X-Ray Mirrors

      NASA Technical Reports Server (NTRS)

      Gubarev, Mikhail; Arnold, William; Ramsey, Brian

      2009-01-01

      We are developing grazing-incidence x-ray optics for high-energy astrophysical applications using the electroformnickel replication process. For space-based applications these optics must be light-weight yet stable, which dictates the use of very-thin-walled full-shell mirrors. Such shells have been fabricated with resolution as good as 11 arcsec for hard x-rays, and technology enhancements under development at MSFC are aimed at producing mirrors with resolution better than 10 arcsec. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center designed to meet this challenge.

    20. Alignment of a vector magnetometer to an optical prism

      NASA Astrophysics Data System (ADS)

      Dietrich, M. R.; Bailey, K. G.; O'Connor, T. P.

      2017-05-01

      A method for alignment of a vector magnetometer to a rigidly attached prism is presented. This enables optical comparison of the magnetometer axes to physical surfaces in the apparatus, and thus an absolute determination of the magnetic field direction in space. This is in contrast with more common techniques, which focus on precise determination of the relative angles between magnetometer axes, and so are more suited to measuring differences in the direction of magnetic fields. Here we demonstrate precision better than 500 μrad on a fluxgate magnetometer, which also gives the coil orthogonality errors to a similar precision. The relative sensitivity of the three axes is also determined, with a precision of about 5 ×10 -4 .

    Top