Sample records for strobilurin fungicide azoxystrobin

  1. Azoxystrobin (a new evaluation)

    USDA-ARS?s Scientific Manuscript database

    Azoxystrobin is a systemic, broad-spectrum fungicide belonging to the class of methoxyacrylates, which are derived from the naturally-occurring strobilurins. It exerts its fungicidal activity by inhibiting mitochondrial respiration in fungi. This monograph provides a new evaluation of azoxystrobin...

  2. Activity of two strobilurin fungicides against three species of decay fungi in agar plate tests

    Treesearch

    Juliet D. Tang; Tina Ciaramitaro; Maria Tomaso-Peterson; Susan V. Diehl

    2017-01-01

    The objective of this study was to examine the toxicity of strobilurin fungicides against wood decay fungi in order to assess their potential to act as a co-biocide for copper-based wood protection. Two strobilurin fungicides, Heritage (50% azoxystrobin active ingredient) and Insignia (20% pyraclostrobin active ingredients), and copper sulfate pentahydrate were tested...

  3. Isolation and characterisation of azoxystrobin degrading bacteria from soil.

    PubMed

    Howell, Christopher C; Semple, Kirk T; Bending, Gary D

    2014-01-01

    The first strobilurin fungicides were introduced in 1996, and have since been used in a vast array of disease/plant systems worldwide. The strobilurins now consist of 16 compounds and represent the 2nd most important fungicide group worldwide with 15% of the total fungicide market share. Strobilurins are moderately persistent in soil, and some degradation products (e.g. azoxystrobin acid) have been detected as contaminants of freshwater systems. Little is currently known about the transformation processes involved in the biodegradation of strobilurins or the microbial groups involved. Using sequential soil and liquid culture enrichments, we isolated two bacterial strains which were able to degrade the most widely used strobilurin, azoxystrobin, when supplied as a sole carbon source. 16S rRNA showed that the strains showed homology to Cupriavidus sp. and Rhodanobacter sp. Both isolated strains were also able to degrade the related strobilurin compounds trifloxystrobin, pyraclostrobin, and kresoxim-methyl. An additional nitrogen source was required for degradation to occur, but the addition of a further carbon source reduced compound degradation by approximately 50%. However, (14)C radiometric analysis showed that full mineralisation of azosxystrobin to (14)CO2 was negligible for both isolates. 16S rRNA T-RFLP analysis using both DNA and RNA extracts showed that degradation of azoxystrobin in soil was associated with shifts in bacterial community structure. However, the phylotypes which proliferated during degradation could not be attributed to the isolated degraders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Sensitivity to azoxystrobin in Didymella bryoniae isolates collected before and after field use of strobilurin fungicides.

    PubMed

    Keinath, Anthony P

    2009-10-01

    Isolates of Didymella bryoniae (Auersw.) Rehm, causal agent of gummy stem blight on cucurbits, developed insensitivity to azoxystrobin in the eastern United States 2 years after first commercial use in 1998. Baseline sensitivity of this fungus to azoxystrobin has never been reported. The objectives were to compare baseline sensitivities of D. bryoniae from South Carolina and other locations to sensitivities of isolates exposed to azoxystrobin for one or more seasons, and to compare sensitivity in vitro and in vivo. Sixty-one isolates of D. bryoniae collected before 1998 were sensitive. Median EC50 was 0.055 mg L(-1) azoxystrobin (range 0.005 to 0.81). Forty isolates collected after exposure during 1998 also were sensitive. Fifty-three of 64 isolates collected in South and North Carolina between 2000 and 2006 were insensitive to 10 mg L(-1) azoxystrobin. Sensitive and insensitive isolates were distinguished by disease severity on Cucumis melo L. seedlings treated with azoxystrobin (20 or 200 mg L(-1)). An azoxystrobin baseline sensitivity distribution was established in vitro for isolates of D. bryoniae never exposed to strobilurins. Baseline values were comparable with those of other ascomycetes. Insensitive isolates were found in fields with a history of strobilurin applications. An in vivo method distinguished sensitive and insensitive isolates. Copyright 2009 Society of Chemical Industry.

  5. Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa

    PubMed Central

    Possiede, Y.M.; Gabardo, J.; Kava-Cordeiro, V.; Galli-Terasawa, L.V.; Azevedo, J.L.; Glienke, C.

    2009-01-01

    Citrus black spot (CBS) is a plant disease of worldwide occurrence, affecting crops in Africa, Oceania, and South America. In Brazil, climate provides favorable conditions and CBS has spread to the Southeast and South regions. CBS is caused by the fungus Guignardia citricarpa (anamorph: Phyllosticta citricarpa) and its control is based on the use of fungicides, such as benzimidazoles. In South Africa, the disease was kept under control for 10 years with benomyl, until cases of resistance to high concentrations of this fungicide were reported from all citrus-producing areas. Azoxystrobin (a strobilurin) has been found effective in controlling phytopathogens, including CBS, in a wide range of economically important crops. The present study investigated in vitro the effects of the fungicides benomyl and azoxystrobin on 10 strains of G. citricarpa isolated from lesions in citrus plants from Brazil and South Africa. Benomyl at 0.5 μg/mL inhibited mycelial growth in all strains except PC3C, of African origin, which exhibited resistance to concentrations of up to 100.0 μg/mL. The spontaneous mutation frequency for resistance to benomyl was 1.25 × 10-7. Azoxystrobin, even at high concentrations, did not inhibit mycelial growth in any of the strains, but significantly reduced sporulation rates, by as much as 100%, at a concentration of 5.0 μg/mL. Variations in sensitivity across strains, particularly to the strobilurin azoxystrobin, are possibly related to genetic variability in G. citricarpa isolates. PMID:24031363

  6. Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoxim-methyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles.

    PubMed

    Liu, Lei; Jiang, Chao; Wu, Zhuo-Qi; Gong, Yu-Xin; Wang, Gao-Xue

    2013-12-01

    The strobilurins are used widely in the world as effective fungicidal agents to control Asian soybean rust. In this study, the early life stage of grass carp (Ctenopharyngodon idella), which is one of the most important aquaculture species in China, was chosen to measure the acute toxicity of three common strobilurin-derived fungicides (trifloxystrobin (TFS), azoxystrobin (AZ) and kresoxim-methyl (KM)). As endpoints, normal developmental parameters (lethal concentration (LC₅₀) and average heart rate), expression of relative genes, and three antioxidant enzyme activities in the developing juveniles were recorded during a 48 h exposure. The results revealed that values of LC₅₀ were TFS 0.051 (0.046-0.058) mg L⁻¹, AZ 0.549 (0.419-0.771) mg L⁻¹ and KM 0.338 (0.284-0.407) mg L⁻¹ for juveniles. For the potential toxicity mechanisms, these three fungicides increased catalase (CAT) and peroxidase (POD) activity and decreased superoxide dismutase (SOD) activity, significantly inhibited expressions of three growth-related genes (IGF-1, IGF-2 and GHR) and two energy-related-genes (CCK and PYY), and caused pronounced up-regulation a stress-gene (HSP70). The present study demonstrated potential toxic effects of TFS, AZ and KM on the early development of C. idella. Overall, three strobilurins (TFS, AZ and KM) might cause serious damages to the aquatic species; therefore, their pollution supervision in water ecological environment should be strengthened.

  7. Leaching behaviour of azoxystrobin and metabolites in soil columns.

    PubMed

    Ghosh, Rakesh Kumar; Singh, Neera

    2009-09-01

    Azoxystrobin [methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate], a strobilurin fungicide, is a broad-spectrum, systemic and soil-applied fungicide. Azoxystrobin has been registered for rice cultivation in India, but no information is available on its leaching behaviour in Indian soils. Therefore, leaching behaviour of azoxystrobin was studied in packed and intact soil columns under different irrigation regimes. Azoxystrobin did not leach out of the 300 mm long columns after 126 and 362 mm rainfall. After percolating water equivalent to 362 mm rainfall, azoxystrobin leached down to 10-15 cm (packed columns) and 15-20 cm (intact columns) depth. Azoxystrobin was not detected in the leachate from the packed column leached with 94.5 mL water every week (140 mm rainfall per month) during the 28 weeks of the study period. However, azoxystrobin acid, formed by azoxystrobin degradation, was detected in the leachate after 18 weeks. At the end of the study, azoxystrobin had leached down to 5-10 cm depth, and only 60% of initially applied azoxystrobin was recovered from the soil. The results indicate that azoxystrobin is fairly immobile in sandy loam soil, but azoxystrobin acid, a major metabolite of azoxystrobin, is quite mobile and may pose a threat of soil and groundwater contamination. Copyright 2009 Society of Chemical Industry.

  8. Temporal Dynamics and Spatial Variation of Azoxystrobin and Propiconazole Resistance in Zymoseptoria tritici: A Hierarchical Survey of Commercial Winter Wheat Fields in the Willamette Valley, Oregon.

    PubMed

    Hagerty, Christina H; Anderson, Nicole P; Mundt, Christopher C

    2017-03-01

    Fungicide resistance can cause disease control failure in agricultural systems, and is particularly concerning with Zymoseptoria tritici, the causal agent of Septoria tritici blotch of wheat. In North America, the first quinone outside inhibitor resistance in Z. tritici was discovered in the Willamette Valley of Oregon in 2012, which prompted this hierarchical survey of commercial winter wheat fields to monitor azoxystrobin- and propiconazole-resistant Z. tritici. Surveys were conducted in June 2014, January 2015, May 2015, and January 2016. The survey was organized in a hierarchical scheme: regions within the Willamette Valley, fields within the region, transects within the field, and samples within the transect. Overall, frequency of azoxystrobin-resistant isolates increased from 63 to 93% from June 2014 to January 2016. Resistance to azoxystrobin increased over time even within fields receiving no strobilurin applications. Propiconazole sensitivity varied over the course of the study but, overall, did not significantly change. Sensitivity to both fungicides showed no regional aggregation within the Willamette Valley. Greater than 80% of spatial variation in fungicide sensitivity was at the smallest hierarchical scale (within the transect) of the survey for both fungicides, and the resistance phenotypes were randomly distributed within sampled fields. Results suggest a need for a better understanding of the dynamics of fungicide resistance at the landscape level.

  9. Clonal variation in physiological responses of Daphnia magna to the strobilurin fungicide azoxystrobin.

    PubMed

    Warming, Trine Perlt; Mulderij, Gabi; Christoffersen, Kirsten Seestern

    2009-02-01

    Because of its high grazing potential, Daphnia magna is an ecologically important species in aquatic food webs. This is especially true in small, shallow ponds lacking fish, where grazing by D. magna may have a relatively higher impact on water clarity as compared to larger lakes. Thus, a reduction in daphnid abundance may have dramatic ecological consequences for shallow ponds. At the same time, shallow ponds in close proximity to agricultural areas likely experience higher concentrations of pesticides because of runoff, spray drift, and drain flow. In the present study, the acute and chronic physiological effects of the strobilurin fungicide azoxystrobin on three clones of D. magna originating from different Danish lakes were evaluated. Significant clonal variation in the sensitivity of D. magna toward azoxystrobin was demonstrated. One clone had a 48-h median lethal concentration (LC50) of 0.277 mg/L (95% confidence limits [CL], 0.145 and 0.427 mg/L), which is comparable to the value widely used in risk assessments (0.259 mg/L). The two remaining clones were far more sensitive, however, and had LC50s of 0.071 mg/L (95% CL, 0.034 and 0.126 mg/L) and 0.098 mg/L (95% CL, 0.066 and 0.139 mg/L), respectively. Furthermore, through respiration measurements and life-table experiments, sublethal stress was shown to exist at exposure to an ecologically relevant concentration (0.026 microg/L). Based on these results, we may expect changes in daphnid populations at azoxystrobin concentrations much lower than previously thought. Thus, ponds in the agricultural areas may experience changes in food-web structure even at very low concentrations of azoxystrobin.

  10. Microscopic analysis of the effect of azoxystrobin treatments on Mycosphaerella graminicola infection using green fluorescent protein (GFP)-expressing transformants.

    PubMed

    Rohel, E A; Cavelier, N; Hollomon, D W

    2001-11-01

    Green fluorescent protein (GFP)-expressing transformants were used to investigate the effects of strobilurin fungicide azoxystrobin on Mycosphaerella graminicola infection. Azoxystrobin treatments (125 or 250 g AI ha-1) were applied at various stages of the infection process under controlled conditions. GFP transformants showed conserved in vitro sensitivity to azoxystrobin and pathogenicity. Azoxystrobin controlled over 90% of M graminicola infections when applied before or during penetration of the pathogen (15% of the incubation phase). Azoxystrobin also impaired the growth of intercellular hyphae in M graminicola post-penetration infection stages when applied at up to 50% of the incubation phase. Incubating infections observed in treated leaves were viable, but their growth was impaired and they did not induce necrosis under controlled conditions. Reduction by half of azoxystrobin dosage had little or no effect on azoxystrobin efficiency in controlling M graminicola. The contribution of post-penetration fungistatic effect to azoxystrobin curative properties toward M graminicola in a field situation is discussed.

  11. Assessment of Mycosphaerella graminicola resistance to azoxystrobin.

    PubMed

    Siah, A; Deweer, C; Morand, E; Reignault, Ph; Halama, P

    2008-01-01

    Azoxystrobin resistance levels of twenty two strains sampled from ten French locations and two reference isolates (IPO323 and IPO94269) of the wheat pathogen Mycosphaerella graminicola were investigated in vitro. French strains assayed were selected from twenty two genetic groups determined from three hundred sixty three strains previously characterised using microsatellites, actine and beta-tubuline markers. For the first time, the evaluation was carried out using four distinct methods: spotting on PDA medium, spore germination on PDA medium and using microtitre plates with and without Alamar blue, a growth indicator. From dose-response curve, half maximal inhibitory concentration (IC50) was determined for each strain. The results obtained using microtitre plates with the addition of Alamar blue displayed high standard deviations from the growth averages observed. Therefore, we suggest that this method is inadequate to assess M. graminicolo resistance to fungicides. However, a good correlation was observed between the rankings of strains according to their IC50 values with the three other methods used. The two reference isolates, as expected, were inhibited by low azoxystrobin concentrations. On the other hand, the IC50 values obtained showed presence of a threshold between sensitive and resistant strains that corroborates the disruptive resistance of M. graminicola against strobilurin fungicides. In addition, the strains showing resistance were those sampled mainly from northern France, where a high frequency of strobilurin resistant isolates among M. graminicola populations was reported by several studies.

  12. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities.

    PubMed

    Adetutu, E M; Ball, A S; Osborn, A M

    2008-12-01

    To provide an independent assessment of azoxystrobin effects on nontarget soil bacteria and fungi and generate some baseline information on azoxystrobin's persistence in soil. Plate based assay showed that azoxystrobin exhibited differential toxicity upon cultured fungi at different application rates. While (14)C labelled isotopes experiments showed that less than 1% of azoxystrobin was mineralized, degradation studies revealed over 60% azoxystrobin breakdown over 21 days. PCR DGGE analysis of 16S and 18S rRNA genes from different soil microcosms showed that azoxystrobin had some effects on fungal community after 21 days (up to 84 days) of incubation in either light or dark soil microcosms. Light incubations increased fungal diversity while dark incubations reduced fungal diversity. Bacterial diversity was unaffected. Significant biotic breakdown of parent azoxystrobin occurred within 21 days even in the absence of light. Azoxystrobin under certain conditions can reduce fungal soil diversity. One of the few independent assessments of azoxystrobin (a widely used strobilurins fungicide) effects on soil fungi when used at the recommended rate. Azoxystrobin and metabolites may persist after 21 days and affect soil fungi.

  13. Molecular characterization and biological response to respiration inhibitors of Pyricularia isolates from ctenanthe and rice plants.

    PubMed

    Paplomatas, Epaminondas J; Pappas, Athanasios C; Syranidou, Elene

    2005-07-01

    The molecular profile and the biological response of isolates of Pyricularia oryzae Cavara obtained from ctenanthe to two strobilurins (azoxystrobin, kresoxim-methyl) and the phenylpyridinamine fungicide fluazinam were characterized, and compared with isolates from rice plants. Five different isozymes (alpha-esterase, lactate, malate, isocitrate and sorbitol dehydrogenases) and five random decamer primers for RAPD-PCR were used to generate molecular markers. Using unweighted pair-group with arithmetic average analysis, ctenanthe isolates were found to form a separate group distinct from that of the rice isolates for both sets of markers. Amplified polymorphic sequences of mitochondrial cytochrome b that were digested with Fnu4HI or StyI revealed no differences among Pyricularia isolates at amino acid positions 143 or 129 which confer resistance to strobilurins in several fungi. In absence of the alternative respiration inhibitor salicylhydroxamic acid (SHAM) the three fungicides showed inferior and variable efficacy, with a trend toward the rice isolate being less sensitive. The addition of SHAM enhanced the effectiveness of all fungicides against isolates regardless of their origin. Appressorium formation was the most vulnerable target of action of the respiration inhibitors and azoxystrobin the most effective. This is the first report of a comparison between the molecular profiles and sensitivities to respiration inhibitors for Pyricularia oryzae isolates from a non-gramineous host and from rice. Copyright 2005 Society of Chemical Industry

  14. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio).

    PubMed

    Jia, Wei; Mao, Liangang; Zhang, Lan; Zhang, Yanning; Jiang, Hongyun

    2018-09-01

    Azoxystrobin and picoxystrobin are two primary strobilurin fungicides used worldwide. This study was conducted to test their effects on embryonic development and the activity of several enzyme in the zebrafish (Danio rerio). After fish eggs were separately exposed to azoxystrobin and picoxystrobin from 24 to 144 h post fertilization (hpf), the mortality, hatching, and teratogenetic rates were measured. Additionally, effects of azoxystrobin and picoxystrobin on activities of three important antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)] and two primary detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and malondialdehyde (MDA) content in zebrafish larvae (96 h) and livers of adult zebrafish of both sexes were also assessed for potential toxicity mechanisms. Based on the embryonic development test results, the mortality, hatching, and teratogenetic rates of eggs treated with azoxystrobin and picoxystrobin all showed significant dose- and time-dependent effects, and the 144-h LC 50 values of azoxystrobin and picoxystrobin were 1174.9 and 213.8 μg L -1 , respectively. In the larval zebrafish (96 h) test, activities of CAT, POD, CarE, and GST and MDA content in azoxystrobin and picoxystrobin-treated zebrafish larvae increased significantly with concentrations of the pesticides compared with those in the control. We further revealed that azoxystrobin and picoxystrobin exposure both caused significant oxidative stress in adult fish livers and the changes differed between the sexes. Our results indicated that picoxystrobin led to higher embryonic development toxicity and oxidative stress than azoxystrobin in zebrafish and the male zebrafish liver had stronger ability to detoxify than that of the females. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. In vitro effects of flutriafol and azoxystrobin on Beauvaria bassiana and its efficacy against Tetranychus urticae.

    PubMed

    Gatarayiha, Mutimura C; Laing, Mark D; Miller, Ray M

    2010-07-01

    Testing the compatibility of chemical pesticides and fungal biocontrol agents is necessary if these two agents are to be applied together in the integrated management of plant pests and diseases. In this study, the fungicides azoxystrobin (a strobilurin) and flutriafol (a triazole) were tested in vitro for their effects on germination of conidia and mycelial growth of Beauveria bassiana (Bals.) Vuill. and in bioassay for their effect on fungal activity against Tetranychus urticae Koch. The fungicides were tested at three different concentrations [recommended rate for field use (1 x X) and the dilutions 10(-1)x X and 10(-2)x X]. Flutriafol inhibited growth of mycelia and germination of the fungal conidia at all concentrations tested in vitro, and also reduced the efficacy of B. bassiana in bioassays against mites. The inhibitive effect of azoxystrobin in vitro varied with the concentration applied. A significant effect was observed at 1 x X and 10(-1)x X concentrations on both the germination of conidia and mycelia growth. At 10(-2)x X concentration, azoxystrobin showed little effect on B. bassiana. However, when this fungicide was tested in bioassays, none of the concentrations reduced B. bassiana activity against mites. Azoxystrobin was most compatible with B. bassiana, while flutriafol was the most harmful. Further studies are required to confirm the negative effect of flutriafol on B. bassiana activity. Copyright (c) 2010 Society of Chemical Industry.

  16. Individual and combined effects of dosages of azoxystrobin and epoxiconazole in wheat.

    PubMed

    Moreau, M; Bodson, B; Maraite, H; Vancutsem, F

    2005-01-01

    The effects of single fungicide applications on Mycosphaerella graminicola (septoria leaf blotch) control and winter wheat yield were evaluated in field trials conducted in central Belgium between 2000 and 2004. Individual applications of 25, 50, 75 and 100% of the manufacturer's recommended dose rates of azoxystrobin and epoxiconazole, and all the combinations of these treatments, were made at GS 39 in 2001 to 2004 and at GS 59 in 2000. Disease assessments were made at growth stage 75, some 7-8 weeks after the last applications. Between 2000 and 2003, no significant difference was observed for disease control between the products when applied alone. With regard to the dose responses, the differences between the recommended dose rates and the 50% reduced dosages were not important. In 2004, azoxystrobin was less effective than epoxiconazole. This was probably the result of strobilurin-resistant isolates of M. graminicola reaching an occurrence of 32% before fungicide application. The combination of different dosages of azoxystrobin and epoxiconazole revealed that there was very little synergy between these products when applied in a single application. The combinations of these products were better than individual applications only when high dosages of both compounds were used.

  17. Cytological evaluation of the effect of azoxystrobin and alternative oxidase inhibitors in Botrytis cinerea.

    PubMed

    Inoue, Kanako; Tsurumi, Tomohiro; Ishii, Hideo; Park, Pyoyun; Ikeda, Kenichi

    2012-01-01

    Azoxystrobin (AZ), a strobilurin-derived fungicide, is known to inhibit mitochondrial respiration in fungi by blocking the electron transport chain in the inner mitochondrial membrane. Germination was strongly inhibited when Botrytis cinerea spore suspension was treated with AZ and the alternative oxidase (AOX) inhibitors, salicylhydroxamic acid (SHAM) and n-propyl gallate. However, chemical death indicators trypan blue and propidium iodide showed that those spores were still alive. When the spore suspension in the AZ and SHAM solution was replaced with distilled water, the germination rate almost recovered, at least during the first 2 days of incubation with AZ and SHAM solution. No morphological alteration was detected in the cells treated with AZ and SHAM, especially in mitochondria, using transmission electron microscopy. Therefore, simultaneous application of AZ and AOX inhibitors has a fungistatic, rather than a fungicidal, action. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Resistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application

    PubMed Central

    Howell, Christopher C.; Hilton, Sally; Semple, Kirk T.; Bending, Gary D.

    2014-01-01

    The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. PMID:25048906

  19. Resistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application.

    PubMed

    Howell, Christopher C; Hilton, Sally; Semple, Kirk T; Bending, Gary D

    2014-10-01

    The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. Copyright © 2014. Published by Elsevier Ltd.

  20. Effect of moisture and compost on fate of azoxystrobin in soils.

    PubMed

    Singh, Neera; Singh, Shashi B

    2010-10-01

    The effect of compost-amendment and moisture status on the persistence of azoxystrobin [methyl (E)-2-{2-(6-(2-cyanophenoxy) pyrimidin-4-yloxy) phenyl}-3-methoxyacrylate], a strobilurin fungicide, in two rice-growing soils was studied. Azoxystrobin is more sorbed in the silt loam (K f – 4.66) soil than the sandy loam (K f – 2.98) soil. Compost-amendment at 5 % levels further enhanced the azoxystrobin sorption and the respective Kf values in silt loam and sandy loam soils were 8.48 and 7.6. Azoxystrobin was more persistent in the sandy loam soil than the silt loam soil. The half–life values of azoxystrobin in nonflooded and flooded silt loam soil were 54.7 and 46.3 days, respectively. The corresponding half–life values in the sandy loam soils were 64 and 62.7 days, respectively. Compost application enhanced persistence of azoxystrobin in the silt loam soil under both moisture regimes and half-life values in non–flooded and flooded soils were 115.7 and 52.8 days, respectively. However, compost enhanced azoxystrobin degradation in the sandy loam soil and half-life values were 59 (nonflooded) and 54.7 days (flooded). The study indicates that compost amendment enhanced azoxystrobin sorption in the soils. Azoxystrobin is more persistent in non-flooded soils than the flooded soils. Compost applications to soils had mixed effect on the azoxystrobin degradation.

  1. Quantitative analysis of fungicide azoxystrobin in agricultural samples with rapid, simple and reliable monoclonal immunoassay.

    PubMed

    Watanabe, Eiki; Miyake, Shiro

    2013-01-15

    This work presents analytical performance of a kit-based direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for azoxystrobin detection in agricultural products. The dc-ELISA was sufficiently sensitive for analysis of residue levels close to the maximum residue limits. The dc-ELISA did not show cross-reactivity to other strobilurin analogues. Absorbance decreased with the increase of methanol concentration in sample solution from 2% to 40%, while the standard curve became most linear when the sample solution contained 10% methanol. Agricultural samples were extracted with methanol, and the extracts were diluted with water to 10% methanol adequate. No significant matrix interference was observed. Satisfying recovery was found for all of spiked samples and the results were well agreed with the analysis with liquid chromatography. These results clearly indicate that the kit-based dc-ELISA is suitable for the rapid, simple, quantitative and reliable determination of the fungicide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Metabolic effects of azoxystrobin and kresoxim-methyl against Fusarium kyushuense examined using the Biolog FF MicroPlate.

    PubMed

    Wang, Hancheng; Wang, Jin; Chen, Qingyuan; Wang, Maosheng; Hsiang, Tom; Shang, Shenghua; Yu, Zhihe

    2016-06-01

    Azoxystrobin and kresoxim-methyl are strobilurin fungicides, and are effective in controlling many plant diseases, including Fusarium wilt. The mode of action of this kind of chemical is inhibition of respiration. This research investigated the sensitivities of Fusarium kyushuense to azoxystrobin and kresoxim-methyl, and to the alternative oxidase inhibitor salicylhydroxamic acid (SHAM). The Biolog FF MicroPlate is designed to examine substrate utilization and metabolic profiling of micro-organisms, and was used here to study the activity of azoxystrobin, kresoxim-methyl and SHAM against F. kyushuense. Results presented that azoxystrobin and kresoxim-methyl strongly inhibited conidial germination and mycelial growth of F. kyushuense, with EC50 values of 1.60 and 1.79μgml(-1), and 6.25 and 11.43μgml(-1), respectively; while not for SHAM. In the absence of fungicide, F. kyushuense was able to metabolize 91.6% of the tested carbon substrates, including 69 effectively and 18 moderately. SHAM did not inhibit carbon substrate utilization. Under the selective pressure of azoxystrobin and kresoxim-methyl during mycelial growth (up to 100μgml(-1)) and conidial germination (up to 10μgml(-1)), F. kyushuense was unable to metabolize many substrates in the Biolog FF MicroPlate; while especially for carbon substrates in glycolysis and tricarboxylic acid cycle, with notable exceptions such as β-hydroxybutyric acid, y-hydroxybutyric acid, α-ketoglutaric acid, α-d-glucose-1-phosphate, d-saccharic acid and succinic acid in the mycelial growth stage, and β-hydroxybutyric acid, y-hydroxybutyric acid, α-ketoglutaric acid, tween-80, arbutin, dextrin, glycerol and glycogen in the conidial germination stage. This is a new finding for some effect of azoxystrobin and kresoxim-methyl on carbon substrate utilization related to glycolysis and tricarboxylic acid cycle and other carbons, and may lead to future applications of Biolog FF MicroPlate for metabolic effects of other fungicides and other fungi, as well as providing a carbon metabolic fingerprint of F. kyushuense that could be useful for identification. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. [Determination of strobilurin fungicides in fruits and their mass fragmentation routes by ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Zhou, Yao; Yang, Huiqin; Shi, Yiyin; Chen, Jiaxian; Zhu, Jian; Deng, Xiaojun; Guo, Dehua

    2017-09-08

    A method was developed for the simultaneous determination of six strobilurin fungicide ( E -metominostrobin, azoxystrobin, kresoxim-methyl, picoxystrobin, pyraclostrobin and trifloxystrobin) residues in orange, banana, apple and pineapple samples by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The fragmentation routes of all the compounds were explained by the aid of a fragment predicting software ACD Lab/MS Fragmenter. The samples were extracted by acetonitrile, then cleaned up by amino solid phase extraction cartridges (SupelClean LC-NH 2 ). The extracts were separated on a ACQUITY UPLC BEH C 18 column (50 mm×2.1 mm, 1.7 μm) with gradient elution. Acetonitrile containing 0.1% (v/v) formic acid and 10 mmol/L ammonium acetate containing 0.1% (v/v) formic acid were used as mobile phases. The samples were detected by electrospray ionization (ESI)-MS/MS in positive ion and multiple reaction monitoring (MRM) mode, quantified by external standard method. Good linearities were obtained in the range of 5-100 μg/L (for pyraclostrobin, 1-20 μg/L) with correlation coefficients ( r 2 ) greater than 0.999. The recoveries ranged from 60.4% to 120% with the relative standard deviations between 2.15% and 15.1% ( n =6). The developed method can meet the inspection of the six strobilurin residues in the orange, banana, apple and pineapple samples.

  4. DETERMINATION OF AZOXYSTROBIN AND DIFENOCONAZOLE IN PESTICIDE PRODUCTS.

    PubMed

    Lazić, S; Šunjka, D

    2015-01-01

    In this study a high performance liquid chromatographic (HPLC-DAD) procedure has been developed for the simultaneous determination of azoxystrobin and difenoconazole in suspension concentrate pesticide formulations, with the aim of the product quality control. Azoxystrobin, strobilurin fungicide and difenoconazole (cis,trans-3-chloro-4-[4-methyl-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl]phenyl 4-chlorophenyl ether), triazole fungicide, are used for the protection of plants from wide spectrum of fungal diseases. For the analysis LC system an Agilent Technologies 1100 Series was used. Good separation was achieved on a Zorbax SB-C18 column (5 μm, 250 mm x 3 mm internal diameter) using a mobile phase consisting of acetonitrile/ultrapure water (90:10, v/v), at a flow rate of 0.9 ml/minute and UV detection at 218 nm. Column temperature was 25 degrees C, injected volume was 1 μl. Retention times for azoxystrobin and difenoconazole were 2.504 min and 1.963 min, respectively. This method is validated according to the requirements for new methods, which include linearity, precision, accuracy and selectivity. The method demonstrates good linearity with r2 > 0.997. The repeatability of the method, expressed as relative standard deviation (RSD, %), was found to be 1.9% for azoxystrobin and 0.5% for difenoconazole. The precision of the method was also considered to be acceptable as the experimental repeatability relative standard deviation (RSD) was lower than the RSD calculated using the Horwitz equation of 1.7% and 1.4% for azoxystrobin and difenoconazole, respectively. The accuracy of the proposed method was determined from recovery experiments through standard addition procedure. The average recoveries of the three fortification levels were 101.9% for azoxystrobin and 103.2% for difenoconazole with RSDs of 1.1% and 1.2%. The method described in this paper is simple, precise, accurate and selective and represents a new and reliable way of simultaneous determination of azoxystrobin and difenoconazole in formulated products.

  5. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense.

    PubMed

    Garanzini, Daniela S; Menone, Mirta L

    2015-02-01

    Among the search for new types of pesticides, the fungicide azoxystrobin (AZX) was the first patent of the strobilurin compounds, entering in the market in 1996. Its use worldwide is growing, mainly linked to soybean production, although its effects in non-target organisms are almost unknown. The goal of the present work was to evaluate effects of short-term AZX exposure to the aquatic macrophyte Myriophyllum quitense, focusing on oxidative stress parameters and DNA fragmentation. Significant inhibition of the antioxidant enzyme systems were observed at 50 μg/L AZX for catalase and peroxidase (p < 0.05). Lipid and DNA damage were significant at 50 and 100 μg/L AZX. These biomarkers were sensitive to AZX and can be used in a battery to evaluate the occurrence of AZX in freshwater ecosystems.

  6. Direct and indirect effects of the fungicide azoxystrobin in outdoor brackish water microcosms.

    PubMed

    Gustafsson, Kerstin; Blidberg, Eva; Elfgren, Irene Karlsson; Hellström, Anna; Kylin, Henrik; Gorokhova, Elena

    2010-02-01

    The effects of the strobilurin fungicide azoxystrobin were studied in brackish water microcosms, with natural plankton communities and sediment. Two experiments were conducted: Experiment 1 (nominal conc. 0, 15 and 60 microg/L, 24-L outdoor microcosms for 21 days) and a second, follow-up, Experiment 2 (nominal conc. 0, 3, 7.5, 15 microg/L, 4-L indoor microcosms for 12 days). The microcosms represent a simplified brackish water community found in shallow semi-enclosed coastal areas in agricultural districts in the Baltic Sea region. Measured water concentrations of the fungicide (Experiment 1) were, on average, 83 and 62% of nominal concentrations directly after application, and 25 and 30% after 21 days, for the low and high dose treatments, respectively, corresponding to mean DT50-values of 15.1 and 25.8 days, for low and high dose treatments, respectively. In Experiment 1, direct toxic effects on calanoid copepods at both test concentrations were observed. Similarly, in Experiment 2, the copepod abundance was significantly reduced at all tested concentrations. There were also significant secondary effects on zooplankton and phytoplankton community structure, standing stocks and primary production. Very few ecotoxicological studies have investigated effects of plant protection products on Baltic organisms in general and effects on community structure and function specifically. Our results show that azoxystrobin is toxic to brackish water copepods at considerably lower concentrations than previously reported from single species tests on freshwater crustaceans, and that direct toxic effects on this ecologically important group may lead to cascade effects altering lower food webs and ecosystem functioning.

  7. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress.

    PubMed

    Nason, Mark A; Farrar, John; Bartlett, David

    2007-12-01

    The effects of five strobilurin (beta-methoxyacrylate) fungicides and one triazole fungicide on the physiological parameters of well-watered or water-stressed wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and soya (Glycine max Merr.) plants were compared. Water use efficiency (WUE) (the ratio of rate of transpiration, E, to net rate of photosynthesis, A(n)) of well-watered wheat plants was improved slightly by strobilurin fungicides, but was reduced in water-stressed plants, so there is limited scope for using strobilurins to improve the water status of crops grown under conditions of drought. The different strobilurin fungicides had similar effects on plant physiology but differed in persistence and potency. When applied to whole plants using a spray gun, they reduced the conductance of water through the epidermis (stomatal and cuticular transpiration), g(sw), of leaves. Concomitantly, leaves of treated plants had a lower rate of transpiration, E, a lower intercellular carbon dioxide concentration, c(i), and a lower net rate of photosynthesis, A(n), compared with leaves of control plants or plants treated with the triazole. The mechanism for the photosynthetic effects is not known, but it is hypothesised that they are caused either by strobilurin fungicides acting directly on ATP production in guard cell mitochondria or by stomata responding to strobilurin-induced changes in mesophyll photosynthesis. The latter may be important since, for leaves of soya plants, the chlorophyll fluorescence parameter F(v)/F(m) (an indication of the potential quantum efficiency of PSII photochemistry) was reduced by strobilurin fungicides. It is likely that the response of stomata to strobilurin fungicides is complex, and further research is required to elucidate the different biochemical pathways involved. Copyright (c) 2007 Society of Chemical Industry.

  8. Generation of anti-azoxystrobin monoclonal antibodies from regioisomeric haptens functionalized at selected sites and development of indirect competitive immunoassays.

    PubMed

    Parra, Javier; Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio

    2012-02-17

    Azoxystrobin is a modern strobilurin fungicide used around the world to combat prime diseases affecting highly valuable crops. Accordingly, residues of this chemical are frequently found in food, even though mostly under maximum tolerated levels. We herein describe the development of an indirect competitive immunoassay for the determination of azoxystrobin residues. A panel of monoclonal antibodies displaying subnanomolar affinity to azoxystrobin was generated using, as immunizing haptens in mice, four functionalized derivatives carrying the same spacer arm located at different rationally chosen positions. This collection of antibodies was thoroughly characterized with homologous and heterologous antigens, and the immunoassay consisting of monoclonal antibody AZo6#49 and the coating conjugate OVA-AZb6, which displayed an IC(50) value of 0.102 μg L(-1) and a LOD of 0.017 μg L(-1), was eventually optimized. The response to different pH and ionic strength conditions of the specific assay was studied using a biparametric approach. In addition, the influence of Tween 20 and organic solvents over the assay parameters was also evaluated. After optimization, the developed immunochemical assay was applied to the analysis of azoxystrobin in spiked juices of relevant fruits and vegetables, showing excellent recoveries between 2 and 500 μg L(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Development and comparison of three diagnostic immunoassay formats for the detection of azoxystrobin.

    PubMed

    Furzer, Gordon S; Veldhuis, Linda; Hall, J Christopher

    2006-02-08

    The currently accepted method of detection for azoxystrobin, a strobilurin fungicide, involves a labor-intensive organic solvent extraction and gas chromatography analysis. Three diagnostic assay formats, i.e., enzyme-linked immunosorbent assay (ELISA), fluorescence polarization (FP), and time-resolved fluorescence (TR-FIA), were developed and compared with regard to detection and quantification of azoxystrobin in grape extract and river, lake, and well water samples. These three assay formats require no initial sample extraction and were not affected by any of the environmental matrices tested, and each had a linear working range of 0-400 pg/mL. The polyclonal antibodies used for each of the immunoassays were specific to azoxystrobin; that is, the highest cross-reactivity to other pesticides observed was 5.7%. The limits of detection of the immunoassays were similar at 3 (ELISA), 46 (FP), and 28 (TR-FIA) pg/mL, as were the respective IC50 values of 306, 252, and 244 pg/mL. Each of the three immunoassays developed was less labor-intensive and approximately 100-fold more sensitive than the gas chromatographic method. While the three formats were comparable in terms of performance, the fluorescence polarization assay was the least labor-intensive and required the least time to perform.

  10. Residues of azoxystrobin from grapes to raisins.

    PubMed

    Lentza-Rizos, Chaido; Avramides, Elizabeth J; Kokkinaki, Kalliopi

    2006-01-11

    Azoxystrobin, a fungicide of the strobilurin group, has an European Union maximum residue level (MRL) of 2 mg/kg for grapes. This work aimed to assess residues on fresh and washed grapes and on raisins following processing with (i) alkali treatment and sun drying and (ii) sun drying only. QUADRIS 25% SC was applied according to good agricultural practice for two consecutive years on a typical cv. Thomson seedless and a seed-producing clone. Samples were collected 0, 15, and 21 days postapplication and analyzed using gas chromatography/electron capture detection; recoveries were 86 +/- 12% for grapes and 99 +/- 15% for raisins. Residues on grapes were 0.49-1.84 mg/kg, and washing removed 75% of the residue. Residues in raisins produced from seedless grapes were 0.51-1.49 (treatment 1) and 1.42-2.08 mg/kg (treatment 2), with residue transfer factors sometimes >1, even following alkali treatment, which reduced residues considerably. To avoid trade problems, a higher MRL for raisins is necessary.

  11. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity.

    PubMed

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (Biolog(TM)) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole-plate methods were observed regarding to the detection of Fusarium resistance to various fungicides and their concentrations. The tebuconazole was most potent, providing increased efficiency in the growth inhibition of all tested isolates. Almost all among tested isolates were resistant to azoxystrobin-based fungicide. Overall, the MT2 microplates method was effective and timesaving, alternative method for determining Fusarium resistance/sensitivity to fungicides, compering to traditional hole-plate approach.

  12. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity

    PubMed Central

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (BiologTM) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole-plate methods were observed regarding to the detection of Fusarium resistance to various fungicides and their concentrations. The tebuconazole was most potent, providing increased efficiency in the growth inhibition of all tested isolates. Almost all among tested isolates were resistant to azoxystrobin-based fungicide. Overall, the MT2 microplates method was effective and timesaving, alternative method for determining Fusarium resistance/sensitivity to fungicides, compering to traditional hole-plate approach. PMID:27092136

  13. Ecological impacts of time-variable exposure regimes to the fungicide azoxystrobin on freshwater communities in outdoor microcosms.

    PubMed

    Zafar, Mazhar Iqbal; Belgers, J Dick M; Van Wijngaarden, Rene P A; Matser, Arriënne; Van den Brink, Paul J

    2012-05-01

    This paper evaluates the effects of different time-varying exposure patterns of the strobilurin fungicide azoxystrobin on freshwater microsocosm communities. These exposure patterns included two treatments with a similar peak but different time-weighted average (TWA) concentrations, and two treatments with similar TWA but different peak concentrations. The experiment was carried out in outdoor microcosms under four different exposure regimes; (1) a continuous application treatment of 10 μg/L (CAT(10)) for 42 days (2), a continuous application treatment of 33 μg/L (CAT(33)) for 42 days (3), a single application treatment of 33 μg/L (SAT(33)) and (4) a four application treatment of 16 μg/L (FAT(16)), with a time interval of 10 days. Mean measured 42-d TWA concentrations in the different treatments were 9.4 μg/L (CAT(10)), 32.8 μg/L (CAT(33)), 14.9 μg/L (SAT(33)) and 14.7 μg/L (FAT(16)). Multivariate analyses demonstrated significant changes in zooplankton community structure in all but the CAT(10) treated microcosms relative to that of controls. The largest adverse effects were reported for zooplankton taxa belonging to Copepoda and Cladocera. By the end of the experimental period (day 42 after treatment), community effects were of similar magnitude for the pulsed treatment regimes, although the magnitude of the initial effect was larger in the SAT(33) treatment. This indicates that for long-term effects the TWA is more important for most zooplankton species in the test system than the peak concentration. Azoxystrobin only slightly affected some species of the macroinvertebrate, phytoplankton and macrophyte assemblages. The overall no observed ecologically adverse effect concentrations (NOEAEC) in this study was 10 µg/L.

  14. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    PubMed

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  15. Use of benzo anologs to enhance antimycotic activity of kresoxim methyl for control of aflatoxigenic fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    Potentiation of the conventional fungicide, strobilurin, was achieved by octylgallate-mediated chemosensitization. Octylgallate exhibited considerably higher antifungal activity compared to veratraldehyde. Octylgallate in concert with the fungicide, strobilurin (kresoxim methyl), greatly enhanced se...

  16. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    PubMed

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  17. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans

    PubMed Central

    Qin, Chun-Fang; He, Meng-Han; Chen, Feng-Ping; Zhu, Wen; Yang, Li-Na; Wu, E-Jiao; Guo, Zheng-Liang; Shang, Li-Ping; Zhan, Jiasui

    2016-01-01

    Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight. PMID:26853908

  18. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans.

    PubMed

    Qin, Chun-Fang; He, Meng-Han; Chen, Feng-Ping; Zhu, Wen; Yang, Li-Na; Wu, E-Jiao; Guo, Zheng-Liang; Shang, Li-Ping; Zhan, Jiasui

    2016-02-08

    Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight.

  19. Effect of organic manure on sorption and degradation of azoxystrobin in soil.

    PubMed

    Ghosh, Rakesh Kumar; Singh, Neera

    2009-01-28

    Information on pesticide degradation and factors influencing are important in predicting the levels of pesticide remaining in soils and allow assessment of potential risk associated with exposure. The present study reports the sorption and degradation of azoxystrobin [methyl (E)-2-{2-(6-(2-cyanophenoxy)pyrimidin-4-yloxy)phenyl}-3-methoxyacrylate] in a sandy loam soil. The fungicide was moderately sorbed, and the Freundlich adsorption parameter K(f) (1/n) values in natural and 5% compost-amended soils were 9.31 and 13.72, respectively. Sorption showed hysteresis with 32.5 and 14.7% of sorbed fungicide desorbed from the natural and 5% compost-amended soils, respectively. Azoxystrobin was more persistent in the aerobic soil than the anaerobic soil with half-life values of 107.47 and 62.69 days, respectively. Amendment of compost (5%) to the soil enhanced the degradation of fungicide, and the respective half-life values in aerobic and anaerobic soils were 73.39 and 38.58 days, respectively. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin degradation in soils. Both sunlight and UV light affected the persistence of azoxystrobin with fungicide degraded at a faster rate in UV light than in sunlight. Soil acts as a screen and slows the fungicide degradation under sunlight and UV light.

  20. Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos.

    PubMed

    Li, Hui; Cao, Fangjie; Zhao, Feng; Yang, Yang; Teng, Miaomiao; Wang, Chengju; Qiu, Lihong

    2018-05-25

    Strobilurins is the most widely used class of fungicides, but is reported highly toxic to some aquatic organisms. In this study, zebrafish embryos were exposed to a range concentrations of three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) for 96 h post-fertilization (hpf) to assess their aquatic toxicity. The 96-h LC 50 values of pyraclostrobin, trifloxystrobin and picoxystrobin to embryos were 61, 55, 86 μg/L, respectively. A series of symptoms were observed in developmental embryos during acute exposure, including decreased heartbeat, hatching inhibition, growth regression, and morphological deformities. Moreover, the three fungicides induced oxidative stress in embryos through increasing reactive oxygen species (ROS) and malonaldehyde (MDA) contents, inhibiting superoxide dismutase (SOD) activity and glutathione (GSH) content as well as differently changing catalase (CAT) activity and mRNA levels of genes related to antioxidant system (Mn-sod, Cu/Zn-sod, Cat, Nrf2, Ucp2 and Bcl2). In addition, exposure to the three strobilurins resulted in significant upregulation of IFN and CC-chem as well as differently changed expressions of TNFa, IL-1b, C1C and IL-8, which related to the innate immune system, suggesting that these fungicides caused immunotoxicity during zebrafish embryo development. The different response of enzymes and genes in embryos exposed to the three fungicides might be the cause that leads to the difference of their toxicity. This work made a comparison of the toxicity of three strobilurins to zebrafish embryos on multi-levels and would provide a better understanding of the toxic effects of strobilurins on aquatic organisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Involvement of alternative oxidase in the regulation of sensitivity of Sclerotinia sclerotiorum to the fungicides azoxystrobin and procymidone.

    PubMed

    Xu, Ting; Wang, Ya-Ting; Liang, Wu-Sheng; Yao, Fei; Li, Yong-Hong; Li, Dian-Rong; Wang, Hao; Wang, Zheng-Yi

    2013-06-01

    Sclerotinia sclerotiorum is a filamentous fungal pathogen that can infect many economically important crops and vegetables. Alternative oxidase is the terminal oxidase of the alternative respiratory pathway in fungal mitochondria. The function of alternative oxidase was investigated in the regulation of sensitivity of S. sclerotiorum to two commercial fungicides, azoxystrobin and procymidone which have different fungitoxic mechanisms. Two isolates of S. sclerotiorum were sensitive to both fungicides. Application of salicylhydroxamic acid, a specific inhibitor of alternative oxidase, significantly increased the values of effective concentration causing 50% mycelial growth inhibition (EC50) of azoxystrobin to both S. sclerotiorum isolates, whereas notably decreased the EC50 values of procymidone. In mycelial respiration assay azoxystrobin displayed immediate inhibitory effect on cytochrome pathway capacity, but had no immediate effect on alternative pathway capacity. In contrast, procymidone showed no immediate impact on capacities of both cytochrome and alternative pathways in the mycelia. However, alternative oxidase encoding gene (aox) transcript and protein levels, alternative respiration pathway capacity of the mycelia were obviously increased by pre-treatment for 24 h with both azoxystrobin and procymidone. These results indicate that alternative oxidase was involved in the regulation of sensitivity of S. sclerotiorum to the fungicides azoxystrobin and procymidone, and that both fungicides could affect aox gene expression and the alternative respiration pathway capacity development in mycelia of this fungal pathogen.

  2. Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Kunova, Andrea; Pizzatti, Cristina; Cortesi, Paolo

    2013-02-01

    Rice blast, caused by Magnaporthe oryzae B. Couch sp. nov., is one of the most destructive rice diseases worldwide, causing substantial yield losses every year. In Italy, its management is based mainly on the use of two fungicides, azoxystrobin and tricyclazole, that restrain the disease progress. The aim of this study was to investigate and compare the inhibitory effects of the two fungicides on the growth, sporulation and secondary infection of M. oryzae. Magnaporthe oryzae mycelium growth was inhibited at low concentrations of azoxystrobin and relatively high concentrations of tricyclazole, while sporulation was more sensitive to both fungicides and was affected at similarly low doses. Furthermore, infection efficiency of conidia obtained from mycelia exposed to tricyclazole was affected to a higher extent than for conidia produced on azoxystrobin-amended media, even though germination of such conidia was reduced after azoxystrobin treatment. This study presents for the first time detailed azoxystrobin and tricyclazole growth-response curves for M. oryzae mycelium growth and sporulation. Furthermore, high efficacy of tricyclazole towards inhibition of sporulation and secondary infection indicates an additional possible mode of action of this fungicide that is different from inhibition of melanin biosynthesis. Copyright © 2012 Society of Chemical Industry.

  3. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review.

    PubMed

    Rodrigues, Elsa Teresa; Lopes, Isabel; Pardal, Miguel Ângelo

    2013-03-01

    The use of pesticides for crop protection may result in the presence of toxic residues in environmental matrices. In the aquatic environment, pesticides might freely dissolve in the water or bind to suspended matter and to the sediments, and might be transferred to the organisms' tissues during bioaccumulation processes, resulting in adverse consequences to non-target species. One such group of synthetic organic pesticides widely used worldwide to combat pathogenic fungi affecting plants is the strobilurin chemical group. Whereas they are designed to control fungal pathogens, their general modes of action are not specific to fungi. Consequently, they can be potentially toxic to a wide range of non-target organisms. The present work had the intent to conduct an extensive literature review to find relevant research on the occurrence, fate and effects of azoxystrobin, the first patent of the strobilurin compounds, in aquatic ecosystems in order to identify strengths and gaps in the scientific database. Analytical procedures and existing legislation and regulations were also assessed. Data gathered in the present review revealed that analytical reference standards for the most relevant environmental metabolites of azoxystrobin are needed. Validated confirmatory methods for complex matrices, like sediment and aquatic organisms' tissues, are very limited. Important knowledge of base-line values of azoxystrobin and its metabolites in natural tropical and estuarine/marine ecosystems is lacking. Moreover, some environmental concentrations of azoxystrobin found in the present review are above the Regulatory Acceptable Concentration (RAC) in what concerns risk to aquatic invertebrates and the No Observed Ecologically Adverse Effect Concentration (NOEAEC) reported for freshwater communities. The present review also showed that there are very few data on azoxystrobin toxicity to different aquatic organisms, especially in what concerns estuarine/marine organisms. Besides, toxicity studies mostly address azoxystrobin and usually neglect the more relevant environmental metabolites. Further work is also required in what concerns effects of exposure to multi-stressors, e.g. pesticide mixtures. Even though Log K(ow) for azoxystrobin and R234886, the main metabolite of azoxystrobin in water, are below 3, the bio-concentration factor and the bioaccumulation potential for azoxystrobin are absent in the literature. Moreover, no single study on bioaccumulation and biomagnification processes was found in the present review. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Fungicide-induced transposon movement in Monilinia fructicola.

    PubMed

    Chen, Fengping; Everhart, Sydney E; Bryson, P Karen; Luo, Chaoxi; Song, Xi; Liu, Xili; Schnabel, Guido

    2015-12-01

    Repeated applications of fungicides with a single mode of action are believed to select for pre-existing resistant strains in a pathogen population, while the impact of sub-lethal doses of such fungicides on sensitive members of the population is unknown. In this study, in vitro evidence is presented that continuous exposure of Monilinia fructicola mycelium to some fungicides can induce genetic change in form of transposon transposition. Three fungicide-sensitive M. fructicola isolates were exposed in 12 weekly transfers of mycelia to a dose gradient of demethylation inhibitor fungicide (DMI) SYP-Z048 and quinone outside inhibitor fungicide (QoI) azoxystrobin in solo or mixture treatments. Evidence of mutagenesis was assessed by monitoring Mftc1, a multicopy transposable element of M. fructicola, by PCR and Southern blot analysis. Movement of Mftc1 was observed following azoxystrobin and azoxystrobin plus SYP-Z048 treatments in two of the three isolates, but not in the non-fungicide-treated controls. Interestingly, the upstream promoter region of MfCYP51 was a prime target for Mftc1 transposition in these isolates. Transposition of Mftc1 was verified by Southern blot in two of three isolates from another, similar experiment following prolonged, sublethal azoxystrobin exposure, although in these isolates movement of Mftc1 in the upstream MfCYP51 promoter region was not observed. More research is warranted to determine whether fungicide-induced mutagenesis may also happen under field conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Presence of Fungicides Used to Control Asian Soybean Rust in Streams in Agricultural Areas in the United States

    NASA Astrophysics Data System (ADS)

    Sandstrom, M. W.; Battaglin, W. A.

    2007-05-01

    Concentrations of 11 fungicides were measured in stream samples during 2 years in agricultural areas in the United States that grow predominantly corn and soybean. The fungicides are registered for control of Asian Soybean Rust (ASR), which entered the United States in 2004. Many of these fungicides were registered under an emergency exemption because evaluation of environmental risks related to their widespread use on soybeans had not been completed. Some of these fungicides are considered moderately to highly toxic to fish and aquatic invertebrates. We developed a solid-phase extraction and gas chromatography/mass spectrometry method for determining the fungicides at low concentrations (ng/L). Stream samples were collected 2 to 4 times at study areas during the late spring through fall season when fungicides are applied. Six fungicides registered for control of ASR (Phakospora pachyrhizi) in 2005 were measured in streams in Alabama, Georgia, North Carolina, South Carolina, and Mississippi during August-November, 2005. One or more fungicides were detected in 8 of the 12 streams sampled. Azoxystrobin, pyraclostrobin, propiconazole, tebuconazole, and myclobutanil were found in at least one of the 40 samples collected, while chlorothalonil was not found. Azoxystrobin was detected most frequently, in 35 percent of the samples. In 2006, five additional fungicides registered for use in control of ASR were included in the analytical method. One or more of the fungicides (azoxystrobin, pyraclostrobin, trifloxystrobin, metconazole, propiconazole, tebuconazole, tetraconazole, myclobutanil) were detected in 12 of the 16 streams sampled from areas in the South and Midwest during May-September, 2006. Azoxystrobin was detected most frequently (40 percent of the samples) and the highest concentration was 1.1 μg/L in a small predominantly cotton and soybean watershed. The highest concentrations of azoxystrobin were measured prior to the spread of ASR in 2006, and the detections in streams might be related to use on other crops. Concentrations of the fungicides measured were about 100 times lower than aquatic toxicity levels. These results show that ASR fungicides were found in streams before extensive spread of ASR in the United States.

  6. Microbial and enzymatic activity of soil contaminated with azoxystrobin.

    PubMed

    Baćmaga, Małgorzata; Kucharski, Jan; Wyszkowska, Jadwiga

    2015-10-01

    The use of fungicides in crop protection still effectively eliminates fungal pathogens of plants. However, fungicides may dissipate to various elements of the environment and cause irreversible changes. Considering this problem, the aim of the presented study was to evaluate changes in soil biological activity in response to contamination with azoxystrobin. The study was carried out in the laboratory on samples of sandy loam with a pH of 7.0 in 1 Mol KCl dm(-3). Soil samples were treated with azoxystrobin in one of four doses: 0.075 (dose recommended by the manufacturer), 2.250, 11.25 and 22.50 mg kg(-1) soil DM (dry matter of soil). The control soil sample did not contain fungicide. Bacteria were identified based on 16S rRNA gene sequencing, and fungi were identified by internal transcribed spacer (ITS) region sequencing. The study revealed that increased doses of azoxystrobin inhibited the growth of organotrophic bacteria, actinomycetes and fungi. The fungicide also caused changes in microbial biodiversity. The lowest values of the colony development (CD) index were recorded for fungi and the ecophysiological (EP) index for organotrophic bacteria. Azoxystrobin had an inhibitory effect on the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. Dehydrogenases were found to be most resistant to the effects of the fungicide, while alkaline phosphatase in the soil recovered the balance in the shortest time. Four species of bacteria from the genus Bacillus and two species of fungi from the genus Aphanoascus were isolated from the soil contaminated with the highest dose of azoxystrobin (22.50 mg kg(-1)).

  7. 40 CFR 180.507 - Azoxystrobin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Azoxystrobin; tolerances for residues... § 180.507 Azoxystrobin; tolerances for residues. (a) General. (1) Tolerances are established for residues of the fungicide, azoxystrobin, including its metabolites and degradates, in or on the commodities...

  8. 78 FR 32574 - Azoxystrobin; Pesticide Tolerance; Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2012-0283; FRL-9387-4] Azoxystrobin..., establishing new and modifying existing tolerances for residues of azoxystrobin. EPA inadvertently omitted the... for residues of the fungicide azoxystrobin in or on various commodities. EPA inadvertently omitted the...

  9. Fate and transport of agriculturally applied fungicidal compounds, azoxystrobin and propiconazole.

    PubMed

    Edwards, Paul G; Murphy, Tracye M; Lydy, Michael J

    2016-03-01

    Fungicidal active ingredients azoxystrobin and propiconazole, individually and in combination, have been marketed worldwide in a range of fungicide treatment products for preventative and curative purposes, respectively. Their presence in streams located throughout the midwestern and southeastern United States warrant the need for research into the potential routes of transport of these fungicides in an agricultural field setting. Potential canopy penetration and drift effects of these fungicides during aerial and ground applications were studied in the current project. Canopy penetration was observed for both application types, however drift was associated only with the aerial application of these fungicides. Azoxystrobin and propiconazole persisted in the soil up to 301 d, with peak concentrations occurring approximately 30 d after application. The predominant mode of transport for these compounds was agricultural runoff water, with the majority of the fungicidal active ingredients leaving the target area during the first rain event following application. The timing of application in relation to the first rain event significantly affected the amount of loss that occurred, implying application practices should follow manufacturer recommended guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Relations Among the Use, Occurrence, and Flux of Azoxystrobin, Propiconazole, and Other Fungicides in US Streams, 2005-06

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.; Sandstrom, M. W.

    2007-05-01

    Fungicides account for 10 percent of global pesticide use (0.25 million metric tons per year), and 6 percent of US use (33 thousand metric tons per year). Some fungicides such as chlorothalonil have been in use for decades (first US registration in 1966), while others such as azoxystrobin were introduced in the last decade (first US sales in 1996). Fungicide fate and transport is not well understood, but recent investigations have detected fungicides in precipitation, groundwater, streams, and streambed sediment. The occurrence of Asian soybean rust in the Southern US is of concern because of the increase in fungicide use that would result if it spreads to the Central US during the growing season. In the Central US many growers have never used fungicides to protect soybeans. The purpose of this study is to collect baseline data on fungicide occurrence in streams prior to the spread of Asian rust to soybeans in the Central US and the anticipated increase in fungicide use to control the rust. These data are then used to investigate relations among the occurrence and flux of fungicides in US streams, and the use of those products within the associated drainage basins. Water samples from streams in the Southern and Central US were collected in 2005 (26 sites, 40 samples) and 2006 (16 sites, 41 samples), and analyzed for up to 11 fungicides. This is the first study to monitor for several of these fungicides in environmental samples from locations in this region of the US. Chlorothalonil was used in all study basins but only detected in one sample from 2006. Azoxystrobin was detected in one or more samples from 12 of 26 sites in 2005 and 10 of 16 sites in 2006. Estimated daily fluxes of azoxystrobin ranged from zero to 440 grams/day but were not significantly correlated (p value = 0.3) with estimated azoxystrobin use in the upstream watershed. Estimated daily fluxes of propiconizole ranged from zero to 360 grams/day and were correlated (p value = <0.0001) with estimated propiconizole use. Results indicate that fungicides can readily enter aquatic systems where they may have toxic effects, and that their occurrence and flux in streams may be correlated with regional patterns of fungicide use.

  11. Lack of interaction between glyphosate and fungicide treatments on Rhizoctonia crown and root rot in glyphosate-resistant sugarbeet

    USDA-ARS?s Scientific Manuscript database

    A field experiment was conducted in 2008 and 2009 in the Saginaw Valley region of Michigan to determine if there were potential interactions between applications of glyphosate and the fungicide azoxystrobin and to determine the effectiveness of foliar and in-furrow azoxystrobin applications when Rhi...

  12. Effects of the fungicide azoxystrobin on Atlantic salmon (Salmo salar L.) smolt.

    PubMed

    Olsvik, Pål A; Kroglund, Frode; Finstad, Bengt; Kristensen, Torstein

    2010-11-01

    Atlantic salmon smolts were exposed to three doses of the fungicide azoxystrobin for 4 days, and physiological blood parameters and transcriptional effects in liver and muscle were evaluated in search for potential negative effects. Azoxystrobin exposure mediated up-regulation of catalase, MAPK1 and IGFBP1 in liver tissue. Catalase, transferrin, IGFBP1 and TNFR were up-regulated and CYP1A down-regulated in muscle tissue. Blood parameters glucose, hematocrit, pCO(2), HCO(3) and pH grouped together with transcripts levels of MnSOD, MAPK1, IGFBP1, MAP3K7 and GPx4 in liver of fish exposed to the highest azoxystrobin concentration (352 μgL(-1)) using principal component analysis (PCA). In muscle, the blood parameters glucose, hematocrit, pCO(2), HCO(3) and pH grouped together with transcript levels of heme oxygenase, thioredoxin, MnSOD, TNFR and MMP9. These results suggest that the fungicide azoxystrobin affects mitochondrial respiration and mechanisms controlling cell growth and proliferation in fish and may have negative effects on juvenile Atlantic salmon. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Activity of a novel strobilurin fungicide benzothiostrobin against Sclerotinia sclerotiorum.

    PubMed

    Xu, Congying; Hou, Yiping; Wang, Jianxin; Yang, Guangfu; Liang, Xiaoyu; Zhou, Mingguo

    2014-10-01

    Benzothiostrobin is a novel strobilurin fungicide. In this study, baseline sensitivity of Sclerotinia sclerotiorum (Lib.) de Bary to benzothiostrobin was determined using 100 strains collected during 2012 and 2013 from different geographical regions in Jiangsu Province of China, and the average EC50 value was 0.0218 (± 0.0111)μg/mL for mycelial growth. After benzothiostrobin treatment, hyphae were contorted with offshoot of top increasing and cell membrane permeability increased markedly, while sclerotial production and oxalic acid content significantly decreased. Benzothiostrobin strongly inhibited mycelial respiration within 12h and the oxygen consumption of the mycelia could not be inhibited after 24h. On detached rapeseed leaves, the protective and curative activity test of benzothiostrobin suggested that benzothiostrobin had good control efficiency against S. sclerotiorum, and protective activity was better than curative activity. These results will contribute to us evaluating the potential of the new strobilurin fungicide benzothiostrobin for management of diseases caused by S. sclerotiorum and understanding the mode of action of benzothiostrobin against S. sclerotiorum. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Genotoxicity and oxidative stress induced by the fungicide azoxystrobin in zebrafish (Danio rerio) livers.

    PubMed

    Han, Yingnan; Liu, Tong; Wang, Jinhua; Wang, Jun; Zhang, Cheng; Zhu, Lusheng

    2016-10-01

    Azoxystrobin is a frequently used fungicide in agriculture. Its toxicological effects on non-target organisms have aroused attention. In the present work, the toxic effects of azoxystrobin on zebrafish (Danio rerio) were investigated. Male and female zebrafish were separately exposed to a control solution and three azoxystrobin treatments (1, 10, and 100μg/L) and were sampled on days 7, 14, 21, and 28. Reactive oxygen species (ROS) were accumulated in excess in the zebrafish livers. Superoxide dismutase (SOD) activity was significantly inhibited in the male zebrafish. Moreover, a notable decrease was also observed after day 21 in the female zebrafish. Catalase (CAT) activity was induced by the azoxystrobin treatments with the exception of the 1μg/L treatment. A significant increase in glutathione-S-transferase (GST) activity was observed after day 21. Lipid peroxidation (LPO) was generated, and DNA damage was enhanced in a concentration-dependent manner. In conclusion, azoxystrobin induced oxidative stress and genotoxicity in zebrafish livers. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Reduced Virulence of Azoxystrobin-Resistant Zymoseptoria tritici Populations in Greenhouse Assays.

    PubMed

    Hagerty, Christina H; Mundt, Christopher C

    2016-08-01

    The development of resistance to multiple fungicide classes is currently limiting disease management options for many pathogens, while the discovery of new fungicide classes may become less frequent. In light of this, more research is needed to quantify virulence trade-offs of fungicide resistance in order to more fully understand the implications of fungicide resistance on pathogen fitness. The purpose of this study was to measure the virulence of azoxystrobin-resistant and -sensitive Zymoseptoria tritici populations collected from North and South Willamette Valley, Oregon, in 2012 and 2015. Inoculum mixtures of known fungicide-resistant phenotypes were used to simulate natural field conditions, where multiple genotypes exist and interact in close proximity. Six greenhouse inoculations were conducted over 2 years, and virulence of the isolate mixtures was evaluated in planta. We considered virulence to be "the degree of pathology caused by the organism" and visually estimated the percent area of leaf necrosis as a measure of virulence. In greenhouse conditions, a consistent association of reduced virulence with azoxystrobin-resistant Z. tritici isolate mixtures was observed. North Willamette Valley and South Willamette Valley populations did not differ in virulence.

  16. The influence of effective microorganisms (EM) and yeast on the degradation of strobilurins and carboxamides in leafy vegetables monitored by LC-MS/MS and health risk assessment.

    PubMed

    Wołejko, Elżbieta; Łozowicka, Bożena; Kaczyński, Piotr; Jankowska, Magdalena; Piekut, Jolanta

    2016-01-01

    The aim of this study was to determine the behaviour of strobilurin and carbocyamides commonly used in chemical protection of lettuce depending on carefully selected effective microorganisms (EM) and yeast (Y). Additionally, the assessment of the chronic health risk during a 2-week experiment was performed. The statistical method for correlation of physico-chemical parameters and time of degradation for pesticides was applied. In this study, the concentration of azoxystrobin, boscalid, pyraclostrobin and iprodione using liquid chromatography-mass spectrometry (LC-MS/MS) in the matrix of lettuce plants was performed, and there was no case of concentration above maximum residues levels. Before harvest, four fungicides and their mixture with EM (1 % and 10 %) and/or yeast 5 % were applied. In our work, the mixtures of 1%EM + Y and 10%EM + Y both stimulated and inhibited the degradation of the tested active substances. Adding 10%EM to the test substances strongly inhibited the degradation of iprodione, and its concentration decreased by 30 %, and in the case of other test substances, the degradation was approximately 60 %. Moreover, the addition of yeast stimulated the distribution of pyraclostrobin and boscalid in lettuce leaves. The risk assessment for the pesticides ranged from 0.4 to 64.8 % on day 1, but after 14 days, it ranged from 0.0 to 20.9 % for children and adults, respectively. It indicated no risk of adverse effects following exposure to individual pesticides and their mixtures with EM and yeast.

  17. Synthesis, fungicidal activity, structure-activity relationships (SARs) and density functional theory (DFT) studies of novel strobilurin analogues containing arylpyrazole rings.

    PubMed

    Liu, Yuanyuan; Lv, Kunzhi; Li, Yi; Nan, Qiuli; Xu, Jinyuan

    2018-05-18

    A series of novel strobilurin analogues (1a-1f, 2a-2e, 3a-3e) containing arylpyrazole rings were synthesized and characterized by NMR spectroscopy. The structures of 1f, 2b and 3b were also determined by single crystal X-ray diffraction analysis. These analogues were collected together with other twenty-eight similar compounds 4a-4f, 5a-5h, 6a-6h and 7a-7f from our previous studies, for in vitro bioassays and thorough structure-activity relationships (SARs) studies. Most compounds exhibited excellent-to-good fungicidal activity against Rhizoctonia solani, especially 5c, 7a, 6c, and 3b with 98.94%, 83.40%, 71.40% and 65.87% inhibition rates at 0.1 μg mL -1 , respectively, better than commercial pyraclostrobin. Comparative molecular field analysis (CoMFA) was employed to study three-dimensional quantitative structure-activity relationships (3D-QSARs). Density functional theory (DFT) calculation was also carried out to provide more information regarding SARs. The present work provided some hints for developing novel strobilurin fungicides.

  18. Quantitative PCR monitoring of the effect of azoxystrobin treatments on Mycosphaerella graminicola epidemics in the field.

    PubMed

    Rohel, Eric A; Laurent, Paul; Fraaije, Bart A; Cavelier, Nadine; Hollomon, Derek W

    2002-03-01

    Quantitative PCR and visual monitoring of Mycosphaerella graminicola epidemics were performed to investigate the effect of curative and preventative applications of azoxystrobin in wheat field crops. A non-systemic protectant and a systemic curative fungicide, chlorothalonil and epoxiconazole, respectively, were used as references. PCR diagnosis detected leaf infection by M graminicola 3 weeks before symptom appearance, thereby allowing a clear distinction between curative and preventative treatments. When applied 1 week after the beginning of infection, azoxystrobin curative activity was intermediate between chlorothalonil (low effect) and epoxiconazole. When applied preventatively, none of the fungicides completely prevented leaf infection. There was some indication that azoxystrobin preventative treatments may delay fungal DNA increase more than epoxiconazole at the beginning of leaf infection. Both curative and preventative treatments increased the time lapse between the earliest PCR detection and the measurement of a 10% necrotic leaf area. Azoxystrobin only slightly decreased the speed of necrotic area increase compared with epoxiconazole. Hence, azoxystrobin activity toward M graminicola mainly resides in lengthening the time lapse between the earliest PCR detection and the measurement of a 10% necrotic leaf area. Information generated in this way is useful for optimal positioning of azoxystrobin treatments on M graminicola.

  19. Phototransformation of azoxystrobin fungicide in organic solvents. Photoisomerization vs. photodegradation.

    PubMed

    Chastain, Jeoffrey; ter Halle, Alexandra; de Sainte Claire, Pascal; Voyard, Guillaume; Traikïa, Mounir; Richard, Claire

    2013-12-01

    Azoxystrobin is a systemic fungicide that has a tendency to accumulate at the surface of crop leaves or inside their cuticle where it undergoes photodegradation. Its photochemistry was investigated in n-heptane and isopropanol to mimic the polarity of wax leaves. Using analytical and kinetic data, we demonstrate that azoxystrobin (isomer E) undergoes efficient photoisomerization into the isomer Z with a quantum yield of 0.75 ± 0.08. This value is 30-fold higher than that reported in aqueous solution. The photoisomerization of isomer Z into azoxystrobin is more efficient with a chemical yield of 0.95 ± 0.1. In addition, a pseudo photostationary equilibrium is reached when the ratio [azoxystrobin]/[isomer Z] is 2.0 ± 0.1. Photodegradation also takes place from azoxystrobin (quantum yield = 0.073 ± 0.008). Photoproducts mainly arise from bond cleavage between rings and from demethylation of the ether with or without saturation of the acrylate double bond. Theoretical calculations were undertaken to investigate the photoisomerization mechanism and the solvent effect. These data show that the photochemical reactivity of azoxystrobin is enhanced when the solvent polarity decreases and thus should be significant in leaf waxes.

  20. Improved tolerance to transplanting injury and chilling stress in rice seedlings treated with orysastrobin.

    PubMed

    Takahashi, Naoto; Sunohara, Yukari; Fujiwara, Masami; Matsumoto, Hiroshi

    2017-04-01

    In addition to their fungicidal activity, strobilurin-type fungicides are reported to show enhancing effects on crop growth and yield. Previous studies suggested that the fungicide has a mitigating effect on abiotic stresses. However, there are few reports about growth enhancement through abiotic stress alleviation by strobilurin-type fungicides, but the mechanism of action of the growth enhancement is still not clear. The present study revealed that orysastrobin enhanced rice seedling growth after root cutting injury and chilling stress. We also found that orysastrobin decreased the transpiration rate and increased ascorbate peroxidase and glutathione reductase activities. This stress alleviation was eliminated by the application of naproxen, a putative abscisic acid biosynthesis inhibitor. These results suggested that orysastrobin improved tolerance against transplanting injury and chilling stress in rice seedlings by inducing water-retaining activity through the suppression of transpiration, and also by inducing reactive oxygen scavenging activity thus inhibiting reactive oxygen species accumulation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Characterization of spontaneous mutants of Magnaporthe grisea expressing stable resistance to the Qo-inhibiting fungicide azoxystrobin.

    PubMed

    Avila-Adame, Cruz; Köller, Wolfram

    2003-03-01

    The class of Qo-inhibiting fungicides (QoIs) act as respiration inhibitors by binding to the Qo center of cytochrome b. The longevity of these fungicides has been challenged by the selection of fungal sub-populations resisting high doses of QoI fungicides, with a G143A amino acid exchange in the cytochrome b target site identified as the most common cause of resistance. In contrast, the mechanism of alternative respiration, as another mechanism of fungal QoI resistance, has thus far not been affiliated with practical resistance. In the present study, azoxystrobin-resistant mutants of Magnaporthe grisea were generated and characterized. Emergence of these spontaneous mutants was facilitated when resting melanized mycelia were allowed to escape full inhibition by azoxystrobin. This escape was related to the intactness of alternative respiration, indicating that residual expression of this rescue mechanism was involved in the spontaneous emergence of target-site mutants. The two mutants characterized resisted high doses of the QoI, azoxystrobin, with resistance factors exceeding 1,000. Two different mutations of the cytochrome b gene were identified as exchanges of guanine, leading to a G143A or a G143S amino acid exchange. Resistance of both target-site mutants remained stable during four consecutive disease cycles in the absence of azoxystrobin. Several parameters tested to measure fitness penalties inherent to the mutational changes revealed that the G143A mutant was not compromised. In contrast, the conidia production of the G143S mutant was significantly lower under both saprophytic and pathogenic conditions of reproduction.

  2. Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil.

    PubMed

    Herrero-Hernández, E; Marín-Benito, J M; Andrades, M S; Sánchez-Martín, M J; Rodríguez-Cruz, M S

    2015-11-01

    This study reports the effect that adding spent mushroom substrate (SMS) to a representative vineyard soil from La Rioja region (Spain) has on the behaviour of azoxystrobin in two different environmental scenarios. Field dissipation experiments were conducted on experimental plots amended at rates of 50 and 150 t ha(-1), and similar dissipation experiments were simultaneously conducted in the laboratory to identify differences under controlled conditions. Azoxystrobin dissipation followed biphasic kinetics in both scenarios, although the initial dissipation phase was much faster in the field than in the laboratory experiments, and the half-life (DT50) values obtained in the two experiments were 0.34-46.3 days and 89.2-148 days, respectively. Fungicide residues in the soil profile increased in the SMS amended soil and they were much higher in the top two layers (0-20 cm) than in deeper layers. The persistence of fungicide in the soil profile is consistent with changes in azoxystrobin adsorption by unamended and amended soils over time. Changes in the dehydrogenase activity (DHA) of soils under different treatments assayed in the field and in the laboratory indicated that SMS and the fungicide had a stimulatory effect on soil DHA. The results reveal that the laboratory studies usually reported in the literature to explain the fate of pesticides in amended soils are insufficient to explain azoxystrobin behaviour under real conditions. Field studies are necessary to set up efficient applications of SMS and fungicide, with a view to preventing the possible risk of water contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves.

    PubMed

    Liang, Shuang; Xu, Xuanwei; Lu, Zhongbin

    2018-04-01

    The impact of fungicide azoxystrobin, applied as foliar spray, on the physiological and biochemical indices and ginsenoside contents of ginseng was studied in ginseng ( Panax ginseng Mey. cv. "Ermaya") under natural environmental conditions. Different concentrations of 25% azoxystrobin SC (150 g a.i./ha and 225 g a.i./ha) on ginseng plants were sprayed three times, and the changes in physiological and biochemical indices and ginsenoside contents of ginseng leaves were tested. Physiological and biochemical indices were measured using a spectrophotometer (Shimadzu UV-2450). Every index was determined three times per replication. Extracts of ginsenosides were analyzed by HPLC (Shimadzu LC20-AB) utilizing a GL-Wondasil C 18 column. Chlorophyll and soluble protein contents were significantly ( p  = 0.05) increased compared with the control by the application of azoxystrobin. Additionally, activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, and ginsenoside contents in azoxystrobin-treated plants were improved, and malondialdehyde content and O 2 - contents were reduced effectively. Azoxystrobin treatments to ginseng plants at all growth stages suggested that the azoxystrobin-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species. When the dose of azoxystrobin was 225 g a.i./ha, the effect was more significant. This work suggested that azoxystrobin played a role in delaying senescence by changing physiological and biochemical indices and improving ginsenoside contents in ginseng leaves.

  4. Dissipation rates and residues of fungicide azoxystrobin in ginseng and soil at two different cultivated regions in China.

    PubMed

    Hou, Zhiguang; Wang, Xiumei; Zhao, Xiaofeng; Wang, Xinhong; Yuan, Xing; Lu, Zhongbin

    2016-07-01

    The maximum residue limit (MRL) for fungicide azoxystrobin in ginseng has not yet been established in China. This is partially due to the lack of its dissipation and residue data at China's main ginseng production areas. In this work, the dissipation rates and residue levels of azoxystrobin in ginseng roots, plant parts (stems and leaves), and soil in Beijing and Jilin Province, China were determined using gas chromatograph-mass spectrometry (GC-MS). The mean half-life of azoxystrobin in ginseng plant parts was 1.6 days with a dissipation rate of 90 % over 21 days. The mean half-life in soil was 2.8 days with a dissipation rate of 90 % over 30 days. Dissipation rates from two geographically separated experimental fields differed, suggesting that these were affected by local soil characteristics and climate. Maximum final residues of azoxystrobin in ginseng roots, plant parts, and soil were determined to be 0.343, 9.40, and 0.726 mg kg(-1), respectively. Our results, particularly the high residues of azoxystrobin observed in ginseng plant parts, provide a quantitative basis for revising the application of this pesticide to ginseng.

  5. Characterization of the Maize Stalk Rot Pathogens Fusarium subglutinans and F. temperatum and the Effect of Fungicides on Their Mycelial Growth and Colony Formation

    PubMed Central

    Shin, Jong-Hwan; Han, Joon-Hee; Lee, Ju Kyong; Kim, Kyoung Su

    2014-01-01

    Maize is a socioeconomically important crop in many countries. Recently, a high incidence of stalk rot disease has been reported in several maize fields in Gangwon province. In this report, we show that maize stalk rot is associated with the fungal pathogens Fusarium subglutinans and F. temperatum. Since no fungicides are available to control these pathogens on maize plants, we selected six fungicides (tebuconazole, difenoconazole, fluquinconazole, azoxystrobin, prochloraz and kresoxim-methyl) and examined their effectiveness against the two pathogens. The in vitro antifungal effects of the six fungicides on mycelial growth and colony formation were investigated. Based on the inhibition of mycelial growth, the most toxic fungicide was tebuconazole with 50% effective concentrations (EC50) of <0.1 μg/ml and EC90 values of 0.9 μg/ml for both pathogens, while the least toxic fungicide was azoxystrobin with EC50 values of 0.7 and 0.5 μg/ml for F. subglutinans and F. temperatum, respectively, and EC90 values of >3,000 μg/ml for both pathogens. Based on the inhibition of colony formation by the two pathogens, kresoxim-methyl was the most toxic fungicide with complete inhibition of colony formation at concentrations of 0.1 and 0.01 μg/ml for F. subglutinans and F. temperatum, respectively, whereas azoxystrobin was the least toxic fungicide with complete inhibition of colony formation at concentrations >3,000 μg/ml for both pathogens. PMID:25506304

  6. Impacts of biochar on bioavailability of the fungicide azoxystrobin: a comparison of the effect on biodegradation rate and toxicity to the fungal community.

    PubMed

    Sopeña, Fatima; Bending, Gary D

    2013-06-01

    There is great interest in using biochar (BC) as a soil amendment to provide a long-term repository of carbon to mitigate climate change. BC can have major impacts on soil biogeochemical cycling processes, largely by the sorption and protection of organic matter from microbial turnover. Application of BC to agricultural soil could also affect the efficacy, fate and environmental impact of pesticides. In the current study we investigated the effect of BC on bioavailability of the fungicide azoxystrobin in soil. We found that application of BC had no effect on sorption or degradation of azoxystrobin, even at a rate of 2% w/w. While azoxystrobin reduced dehydrogenase activity, BC addition greatly increased dehydrogenase, although the inhibitory effect of azoxystrobin was still evident in BC amended soil. Using Terminal Restriction Fragment Length Polymorphism of fungal SSU rRNA gene ITS regions it was found that azoxystrobin altered the structure of the soil fungal community, although this effect was dampened by BC addition. BC application had minor effects on fungal community structure. We conclude that measurement of the effect of BC on pesticide bioavailability by analysis of biodegradation rate and non-target effects on fungal community structure gave contrasting conclusions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. trans-Cinnamic acid and Xenorhabdus szentirmaii metabolites synergize the potency of some commercial fungicides

    USDA-ARS?s Scientific Manuscript database

    In this study we explored the efficacy of commercial fungicide interactions when combined with either TCA or X. szentirmaii. Fungicides (active ingredient) included Abound® (Azoxystrobin), Serenade® (Bacillus subtilis), Elast® (dodine), Regalia® (extract of Reynoutria sachalinensis), Prophyt® (potas...

  8. Azoxystrobin Induces Apoptosis of Human Esophageal Squamous Cell Carcinoma KYSE-150 Cells through Triggering of the Mitochondrial Pathway.

    PubMed

    Shi, Xiao-Ke; Bian, Xiao-Bo; Huang, Tao; Wen, Bo; Zhao, Ling; Mu, Huai-Xue; Fatima, Sarwat; Fan, Bao-Min; Bian, Zhao-Xiang; Huang, Lin-Fang; Lin, Cheng-Yuan

    2017-01-01

    Recent studies indicate that mitochondrial pathways of apoptosis are potential chemotherapeutic target for the treatment of esophageal cancer. Azoxystrobin (AZOX), a methoxyacrylate derived from the naturally occurring strobilurins, is a known fungicide acting as a ubiquinol oxidation (Qo) inhibitor of mitochondrial respiratory complex III. In this study, the effects of AZOX on human esophageal squamous cell carcinoma KYSE-150 cells were examined and the underlying mechanisms were investigated. AZOX exhibited inhibitory effects on the proliferation of KYSE-150 cells with inhibitory concentration 50% (IC 50 ) of 2.42 μg/ml by 48 h treatment. Flow cytometry assessment revealed that the inhibitory effect of AZOX on KYSE-150 cell proliferation occurred with cell cycle arrest at S phase and increased cell apoptosis in time-dependent and dose-dependent manners. Cleaved poly ADP ribose polymerase (PARP), caspase-3 and caspase-9 were increased significantly by AZOX. It is worth noted that the Bcl-2/Bax ratios were decreased because of the down-regulated Bcl-2 and up-regulated Bax expression level. Meanwhile, the cytochrome c release was increased by AZOX in KYSE-150 cells. AZOX-induced cytochrome c expression and caspase-3 activation was significantly blocked by Bax Channel Blocker. Intragastric administration of AZOX effectively decreased the tumor size generated by subcutaneous inoculation of KYSE-150 cells in nude mice. Consistently, decreased Bcl-2 expression, increased cytochrome c and PARP level, and activated caspase-3 and caspase-9 were observed in the tumor samples. These results indicate that AZOX can effectively induce esophageal cancer cell apoptosis through the mitochondrial pathways of apoptosis, suggesting AZOX or its derivatives may be developed as potential chemotherapeutic agents for the treatment of esophageal cancer.

  9. Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa.

    PubMed

    Lu, Tao; Zhu, Youchao; Xu, Jiahui; Ke, Mingjing; Zhang, Meng; Tan, Chengxia; Fu, Zhengwei; Qian, Haifeng

    2018-03-01

    The top-selling strobilurin, azoxystrobin (AZ), is a broad-spectrum fungicide that protects against many kinds of pathogenic fungi by preventing their ATP production. The extensive use of AZ can have negative consequences on non-target species and its effects and toxic mechanisms on algae are still poorly understood. In this work, Chlorella pyrenoidosa that had been grown in BG-11 medium was exposed to AZ (0.5-10 mg L -1 ) for 10 d. The physiological and molecular responses of the algae to AZ treatment, including photosynthetic efficiency, lipid peroxidation level, antioxidant enzyme activities, as well as transcriptome-based analysis of gene expression, were examined to investigate the potential toxic mechanism. Results shows that the photosynthetic pigment (per cell) increased slightly after AZ treatments, indicating that the photosystem of C. pyrenoidosa may have been strengthened. Glutathione and ascorbate contents were increased, and antioxidant enzyme activities were induced to relieve oxidative damage (e.g., from lipid peroxidation) in algae after AZ treatment. Transcriptome-based analysis of gene expression combined with physiological verification suggested that the 5 mg L -1 AZ treatment did not inhibit ATP generation in C. pyrenoidosa, but did significantly alter amino acid metabolism, especially in aspartate- and glutamine-related reactions. Moreover, perturbation of ascorbate synthesis, fat acid metabolism, and RNA translation was also observed, suggesting that AZ inhibits algal cell growth through multiple pathways. The identification of AZ-responsive genes in the eukaryotic alga C. pyrenoidosa provides new insight into AZ stress responses in a non-target organism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Azoxystrobin Induces Apoptosis of Human Esophageal Squamous Cell Carcinoma KYSE-150 Cells through Triggering of the Mitochondrial Pathway

    PubMed Central

    Shi, Xiao-ke; Bian, Xiao-bo; Huang, Tao; Wen, Bo; Zhao, Ling; Mu, Huai-xue; Fatima, Sarwat; Fan, Bao-min; Bian, Zhao-xiang; Huang, Lin-fang; Lin, Cheng-yuan

    2017-01-01

    Recent studies indicate that mitochondrial pathways of apoptosis are potential chemotherapeutic target for the treatment of esophageal cancer. Azoxystrobin (AZOX), a methoxyacrylate derived from the naturally occurring strobilurins, is a known fungicide acting as a ubiquinol oxidation (Qo) inhibitor of mitochondrial respiratory complex III. In this study, the effects of AZOX on human esophageal squamous cell carcinoma KYSE-150 cells were examined and the underlying mechanisms were investigated. AZOX exhibited inhibitory effects on the proliferation of KYSE-150 cells with inhibitory concentration 50% (IC50) of 2.42 μg/ml by 48 h treatment. Flow cytometry assessment revealed that the inhibitory effect of AZOX on KYSE-150 cell proliferation occurred with cell cycle arrest at S phase and increased cell apoptosis in time-dependent and dose-dependent manners. Cleaved poly ADP ribose polymerase (PARP), caspase-3 and caspase-9 were increased significantly by AZOX. It is worth noted that the Bcl-2/Bax ratios were decreased because of the down-regulated Bcl-2 and up-regulated Bax expression level. Meanwhile, the cytochrome c release was increased by AZOX in KYSE-150 cells. AZOX-induced cytochrome c expression and caspase-3 activation was significantly blocked by Bax Channel Blocker. Intragastric administration of AZOX effectively decreased the tumor size generated by subcutaneous inoculation of KYSE-150 cells in nude mice. Consistently, decreased Bcl-2 expression, increased cytochrome c and PARP level, and activated caspase-3 and caspase-9 were observed in the tumor samples. These results indicate that AZOX can effectively induce esophageal cancer cell apoptosis through the mitochondrial pathways of apoptosis, suggesting AZOX or its derivatives may be developed as potential chemotherapeutic agents for the treatment of esophageal cancer. PMID:28567017

  11. Greenhouse and Field Evaluation of the Natural Saponin CAY-1, for Control of Several Strawberry Diseases

    USDA-ARS?s Scientific Manuscript database

    The steroidal saponin from cayenne pepper, CAY-1, was tested as a potential fungicide in detached leaf assays and field trials. Efficacy of CAY-1 against strawberry anthracnose was compared to the commercial fungicide azoxystrobin. Both fungicides prevented anthracnose leaf lesions when applied to...

  12. Binding of the respiratory chain inhibitor ametoctradin to the mitochondrial bc1 complex.

    PubMed

    Fehr, Marcus; Wolf, Antje; Stammler, Gerd

    2016-03-01

    Ametoctradin is an agricultural fungicide that inhibits the mitochondrial bc1 complex of oomycetes. The bc1 complex has two quinone binding sites that can be addressed by inhibitors. Depending on their binding sites and binding modes, the inhibitors show different degrees of cross-resistance that need to be considered when designing spray programmes for agricultural fungicides. The binding site of ametoctradin was unknown. Cross-resistance analyses, the reduction of isolated Pythium sp. bc1 complex in the presence of different inhibitors and molecular modelling studies were used to analyse the binding site and binding mode of ametoctradin. All three approaches provide data supporting the argument that ametoctradin binds to the Pythium bc1 complex similarly to stigmatellin. The binding mode of ametoctradin differs from other agricultural fungicides such as cyazofamid and the strobilurins. This explains the lack of cross-resistance with strobilurins and related inhibitors, where resistance is mainly caused by G143A amino acid exchange. Accordingly, mixtures or alternating applications of these fungicides and ametoctradin can help to minimise the risk of the emergence of new resistant isolates. © 2015 Society of Chemical Industry.

  13. Cloning and expression analysis of the ATP-binding cassette transporter gene MFABC1 and the alternative oxidase gene MfAOX1 from Monilinia fructicola.

    PubMed

    Schnabel, Guido; Dait, Qun; Paradkar, Manjiri R

    2003-10-01

    Brown rot, caused by Moniliniafructicola (G Wint) Honey, is a serious disease of peach in all commercial peach production areas in the USA, including South Carolina where it has been primarily controlled by pre-harvest application of 14-alpha demethylation (DMI) fungicides for more than 15 years. Recently, the Qo fungicide azoxystrobin was registered for brown rot control and is currently being investigated for its potential as a DMI fungicide rotation partner because of its different mode of action. In an effort to investigate molecular mechanisms of DMI and Qo fungicide resistance in M fructicola, the ABC transporter gene MfABC1 and the alternative oxidase gene MfAOX1 were cloned to study their potential role in conferring fungicide resistance. The MfABC1 gene was 4380 bp in length and contained one intron of 71 bp. The gene revealed high amino acid homologies with atrB from Aspergillus nidulans (Eidam) Winter, an ABC transporter conferring resistance to many fungicides, including DMI fungicides. MfABC1 gene expression was induced after myclobutanil and propiconazole treatment in isolates with low sensitivity to the same fungicides, and in an isolate with high sensitivity to propiconazole. The results suggest that the MfABC1 gene may be a DMI fungicide resistance determinant in M fructicola. The alternative oxidase gene MfAOX1 from M fructicola was cloned and gene expression was analyzed. The MfAOX1 gene was 1077 bp in length and contained two introns of 54 and 67 bp. The amino acid sequence was 63.8, 63.8 and 57.7% identical to alternative oxidases from Venturia inaequalis (Cooke) Winter, Aspergillus niger van Teighem and A nidulans, respectively. MfAOX1 expression in some but not all M fructicola isolates was induced in mycelia treated with azoxystrobin. Azoxystrobin at 2 microg ml(-1) significantly induced MfAOX1 expression in isolates with low MfAOX1 constitutive expression levels.

  14. Chronic toxicity of azoxystrobin to freshwater amphipods, midges, cladocerans, and mussels in water-only exposures.

    PubMed

    Kunz, James L; Ingersoll, Chris G; Smalling, Kelly L; Elskus, Adria A; Kuivila, Kathryn M

    2017-09-01

    Understanding the effects of fungicides on nontarget organisms at realistic concentrations and exposure durations is vital for determining potential impacts on aquatic ecosystems. Environmental concentrations of the fungicide azoxystrobin have been reported up to 4.6 μg/L in the United States and 30 μg/L in Europe. The objective of the present study was to evaluate the chronic toxicity of azoxystrobin in water-only exposures with an amphipod (Hyalella azteca; 42-d exposure), a midge (Chironomus dilutus; 50-d exposure), a cladoceran (Ceriodaphnia dubia; 7-d exposure), and a unionid mussel (Lampsilis siliquoidea; 28-d exposure) at environmentally relevant concentrations. The potential photo-enhanced toxicity of azoxystrobin accumulated by C. dubia and L. siliquoidea following chronic exposures to azoxystrobin was also evaluated. The 20% effect concentrations (EC20s) based on the most sensitive endpoint were 4.2 μg/L for H. azteca reproduction, 12 μg/L for C. dubia reproduction and C. dilutus emergence, and >28 μg/L for L. siliquoidea. Hyalella azteca was more sensitive to azoxystrobin compared with the other 3 species in the chronic exposures. No photo-enhanced toxicity was observed for either C. dubia or L. siliquoidea exposed to ultraviolet light in control water following azoxystrobin tests. The results of the present study indicate chronic effects of azoxystrobin on 3 of 4 invertebrates tested at environmentally relevant concentrations. The changes noted in biomass and reproduction have the potential to alter the rate of ecological processes driven by aquatic invertebrates. Environ Toxicol Chem 2017;36:2308-2315. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2017 SETAC.

  15. Assessment of strobilurin fungicides' content in soya-based drinks by liquid micro-extraction and liquid chromatography with tandem mass spectrometry.

    PubMed

    Campillo, Natalia; Iniesta, María Jesús; Viñas, Pilar; Hernández-Córdoba, Manuel

    2015-01-01

    Seven strobilurin fungicides were pre-concentrated from soya-based drinks using dispersive liquid-liquid micro-extraction (DLLME) with a prior protein precipitation step in acid medium. The enriched phase was analysed by liquid chromatography (LC) with dual detection, using diode array detection (DAD) and electrospray-ion trap tandem mass spectrometry (ESI-IT-MS/MS). After selecting 1-undecanol and methanol as the extractant and disperser solvents, respectively, for DLLME, the Taguchi experimental method, an orthogonal array design, was applied to select the optimal solvent volumes and salt concentration in the aqueous phase. The matrix effect was evaluated and quantification was carried out using external aqueous calibration for DAD and matrix-matched calibration method for MS/MS. Detection limits in the 4-130 and 0.8-4.5 ng g(-1) ranges were obtained for DAD and MS/MS, respectively. The DLLME-LC-DAD-MS method was applied to the analysis of 10 different samples, none of which was found to contain residues of the studied fungicides.

  16. Fate of a novel strobilurin fungicide pyraoxystrobin in flooded soil.

    PubMed

    Yang, Tilong; Xu, Chao; Liu, Xunyue; Chen, Xia; Zhang, Jianbo; Ding, Xingcheng

    2014-05-01

    Pyraoxystrobin, ((E)-2-(2-((3-(4-chlorophenyl)-1-methyl-1H-pyrazol-5-yloxy) methyl) phenyl)-3-methoxyacrylate) is a novel strobilurin fungicide with excellent and broad spectrum antifungal efficiency. Environmental behaviors of the new fungicide must be assessed to understand its potential risks to the environment. In this study, the extractable residues, bound residues and mineralization, as well as the dissipation rates of pyraoxystrobin were investigated in three flooded soils using a (14)C tracing technique. Results showed that pyraoxystrobin didn't undergo appreciable dissipation during the 100 day incubation period in some tested soils, with 70.01%, 28.58% and 83.85% of the parent compound remaining in the solonchak, cambisol and acrisol soils at the end of the experiment, respectively. Almost no (14)C-pyraoxystrobin was mineralized to (14)CO2 (<0.5%) over the experimental period. Organic matter had a dominating influence on the bound residues formation and the fractions of bound residues increased as the soil organic matter content increased. Less than 9% of the radioactivity was found in the aqueous phase, while the majority of extractable residues (>65.39%) were recovered in the organic extracts. This study aims to give a deep insight into the environmental behaviors of pyraoxystrobin and may be beneficial for the risk assessment of other analogous fungicides.

  17. Biochemical and physiological responses of Carcinus maenas to temperature and the fungicide azoxystrobin.

    PubMed

    Rodrigues, Elsa Teresa; Moreno, António; Mendes, Tito; Palmeira, Carlos; Pardal, Miguel Ângelo

    2015-08-01

    Research on the effects of thermal stress is currently pertinent as climate change is expected to cause more severe climate-driven events. Carcinus maenas, a recognised estuarine model organism, was selected to test temperature-dependence of azoxystrobin toxicity, a widely applied fungicide. Crabs' responses were assessed after a 10-d acclimation at different temperatures (5°C, 22°C, and 27°C) of which the last 72h were of exposure to an environmental concentration of azoxystrobin. SOD and GST activities, mitochondrial oxygen consumption rates and protein content, as well as the Coupling Index were determined. The hypothesis proposed that extreme temperatures (5°C and 27°C) and azoxystrobin would affect crabs' responses. Results showed statistically significant different effects of SOD and all oxygen rates measured promoted by temperature, and that neither 30.3μgL(-1) of azoxystrobin nor the combined effect were crab-responsive. Protein content at 5°C was statistically higher when compared with the control temperature (22°C). The Coupling Index revealed both a slight and a drastic decrease of this index promoted by 5°C and 27°C, respectively. Regarding azoxystrobin effects, at 22°C, this index only decreased slightly. However, at extreme temperatures it fell 47% at 5°C and slightly increased at 27°C. Results provided evidence that crabs' responses to cope with low temperatures were more effective than their responses to cope with high temperatures, which are expected in future climate projections. Moreover, crabs are capable of handling environmental concentrations of azoxystrobin. However, the Coupling Index showed that combined stress factors unbalance crabs' natural capability to handle a single stressor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Screening of grapes and wine for azoxystrobin, kresoxim-methyl and trifloxystrobin fungicides by HPLC with diode array detection.

    PubMed

    De Melo Abreu, Susana; Correia, Manuela; Herbert, Paulo; Santos, Lúcia; Alves, Arminda

    2005-06-01

    The Quinone outside Inhibitors (QoI) are one of the most important and recent fungicide groups used in viticulture and also allowed by Integrated Pest Management. Azoxystrobin, kresoxim-methyl and trifloxystrobin are the main active ingredients for treating downy and powdery mildews that can be present in grapes and wines. In this paper, a method is reported for the analysis of these three QoI-fungicides in grapes and wine. After liquid-liquid extraction and a clean-up on commercial silica cartridges, analysis was by isocratic HPLC with diode array detection (DAD) with a run time of 13 min. Confirmation was by solid-phase micro-extraction (SPME), followed by GC/MS determination. The main validation parameters for the three compounds in grapes and wine were a limit of detection up to 0.073 mg kg(-1), a precision not exceeding 10.0% and an average recovery of 93% +/- 38.

  19. Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent.

    PubMed

    Catalá-Icardo, Mónica; Gómez-Benito, Carmen; Simó-Alfonso, Ernesto Francisco; Herrero-Martínez, José Manuel

    2017-01-01

    This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such as the eluent volume, sample flow rate, and salt addition were optimized. Under the optimal conditions, the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent reusability (>120 re-uses). The proposed method allowed the detection of 0.05 μg L -1 of the fungicides and gave satisfactory recoveries (75-95 %) when it was applied to drinking and environmental water samples (river, well, tap, irrigation, spring, and sea waters).

  20. Flood Stress as a Technique to Assess Preventive Insecticide and Fungicide Treatments for Protecting Trees against Ambrosia Beetles

    PubMed Central

    Ranger, Christopher M.; Schultz, Peter B.; Reding, Michael E.; Frank, Steven D.; Palmquist, Debra E.

    2016-01-01

    Ambrosia beetles tunnel into the heartwood of trees where they cultivate and feed upon a symbiotic fungus. We assessed the effectiveness of flood stress for making Cercis canadensis L. and Cornus florida L. trees attractive to attack as part of insecticide and fungicide efficacy trials conducted in Ohio and Virginia. Since female ambrosia beetles will not begin ovipositing until their symbiotic fungus is established within the host, we also assessed pre-treatment of trees with permethrin, azoxystrobin, and potassium phosphite on fungal establishment and beetle colonization success. Permethrin reduced attacks on flooded trees, yet no attacks occurred on any of the non-flooded trees. Fewer galleries created within flooded trees pre-treated with permethrin, azoxystrobin, and potassium phosphite contained the purported symbiotic fungus; foundress’ eggs were only detected in flooded but untreated trees. While pre-treatment with permethrin, azoxystrobin, and potassium phosphite can disrupt colonization success, maintaining tree health continues to be the most effective and sustainable management strategy. PMID:27548230

  1. Chronic toxicity of azoxystrobin to freshwater amphipods, midges, cladocerans, and mussels in water-only exposures

    USGS Publications Warehouse

    Kunz, James L.; Ingersoll, Christopher G.; Smalling, Kelly; Elskus, Adria; Kuivila, Kathryn

    2017-01-01

    Understanding the effects of fungicides on nontarget organisms at realistic concentrations and exposure durations is vital for determining potential impacts on aquatic ecosystems. Environmental concentrations of the fungicide azoxystrobin have been reported up to 4.6 μg/L in the United States and 30 μg/L in Europe. The objective of the present study was to evaluate the chronic toxicity of azoxystrobin in water-only exposures with an amphipod (Hyalella azteca; 42-d exposure), a midge (Chironomus dilutus; 50-d exposure), a cladoceran (Ceriodaphnia dubia; 7-d exposure), and a unionid mussel (Lampsilis siliquoidea; 28-d exposure) at environmentally relevant concentrations. The potential photo-enhanced toxicity of azoxystrobin accumulated by C. dubiaand L. siliquoidea following chronic exposures to azoxystrobin was also evaluated. The 20% effect concentrations (EC20s) based on the most sensitive endpoint were 4.2 μg/L for H. aztecareproduction, 12 μg/L for C. dubia reproduction and C. dilutus emergence, and >28 μg/L for L. siliquoidea. Hyalella azteca was more sensitive to azoxystrobin compared with the other 3 species in the chronic exposures. No photo-enhanced toxicity was observed for either C. dubia or L. siliquoidea exposed to ultraviolet light in control water following azoxystrobin tests. The results of the present study indicate chronic effects of azoxystrobin on 3 of 4 invertebrates tested at environmentally relevant concentrations. The changes noted in biomass and reproduction have the potential to alter the rate of ecological processes driven by aquatic invertebrates. Environ Toxicol Chem 2017;9999:1–8. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  2. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    Seedborne fungi can reduce survival, growth, and yield of maize (Zea mays L.). Laboratory, field, and growth chamber experiments were conducted to determine the effects of the seed treatment fungicides fludioxonil, mefenoxam, and azoxystrobin on germination, plant population, and grain yield of maiz...

  3. Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana.

    PubMed

    Dvorak, P; Zdarsky, M; Benova, K; Falis, M; Tomko, M

    2016-06-01

    Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L(-1) irradiated with (60)Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1-5 kGy for an azoxystrobin initial concentration of 0.4 mg L(-1) and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.

  4. A novel green analytical procedure for monitoring of azoxystrobin in water samples by a flow injection chemiluminescence method with off-line ultrasonic treatment.

    PubMed

    Yang, Xin-an; Zhang, Wang-bing

    2013-01-01

    A simple and green flow injection chemiluminescence (FI-CL) method for determination of the fungicide azoxystrobin was described for the first time. CL signal was generated when azoxystrobin was injected into a mixed stream of luminol and KMnO4 . The CL signal of azoxystrobin could be greatly improved when an off-line ultrasonic treatment was adopted. Meanwhile, the signal intensity increases with the analyte concentration proportionally. Several variables, such as the ultrasonic parameters, flow rate of reagents, concentrations of sodium hydroxide solution and CL reagents (potassium permanganate, luminol) were investigated, and the optimal CL conditions were obtained. Under optimal conditions, the linear range of 1-100 ng/mL for azoxystrobin was obtained and the detection limit (3σ) was determined as 0.13 ng/mL. The relative standard deviation was 1.5% for 10 consecutive measurements of 20 ng/mL azoxystrobin. The method has been applied to the determination of azoxystrobin residues in water samples. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Dissipation and residues of difenoconazole and azoxystrobin in bananas and soil in two agro-climatic zones of China.

    PubMed

    Huan, Zhibo; Xu, Zhi; Lv, Daizhu; Xie, Defang; Luo, Jinhui

    2013-12-01

    Residues of a fungicide suspension (12 % difenoconazole, 18 % azoxystrobin) in bananas and soil were studied under tropical and subtropical monsoon climates, in Hainan and Yunnan provinces, respectively. The half-lives in bananas were shorter in Hainan (difenoconazole: 8.4-10.7 days; azoxystrobin: 7.8-8.4 days) than Yunnan (difenoconazole: 11.3-13.0 days; azoxystrobin: 10.4-11.6 days), possibly because of the higher temperatures and solar radiation levels in Hainan. The half-lives in soil were shorter in Yunnan (difenoconazole: 15.5-16.7; azoxystrobin: 11.9-13.9 days) than Hainan (difenoconazole: 23.1-23.2 days; azoxystrobin: 16.0-16.1 days), possibly because the organic carbon content was higher and rainfall lower in Yunnan than Hainan. Their physico-chemical properties suggest difenoconazole and azoxystrobin should be stable in bananas and soil, but both decreased to safe concentrations by the minimum harvest time after spraying the mixture at the recommended dosage and 1.5 times that dosage, through physical, chemical, and biological processes.

  6. Chronic aquatic effect assessment for the fungicide azoxystrobin.

    PubMed

    van Wijngaarden, Rene P A; Belgers, Dick J M; Zafar, Mazhar I; Matser, Arrienne M; Boerwinkel, Marie-Claire; Arts, Gertie H P

    2014-12-01

    The present study examined the ecological effects of a range of chronic exposure concentrations of the fungicide azoxystrobin in freshwater experimental systems (1270-L outdoor microcosms). Intended and environmentally relevant test concentrations of azoxystrobin were 0 µg active ingredient (a.i.)/L, 0.33 µg a.i./L, 1 µg a.i./L, 3.3 µg a.i./L, 10 µg a.i./L, and 33 µg a.i./L, kept at constant values. Responses of freshwater populations and community parameters were studied. During the 42-d experimental period, the time-weighted average concentrations of azoxystrobin ranged from 93.5% to 99.3% of intended values. Zooplankton, especially copepods and the Daphnia longispina group, were the most sensitive groups. At the population level, a consistent no-observed-effect concentration (NOEC) of 1 µg a.i./L was calculated for Copepoda. The NOEC at the zooplankton community level was 10 µg azoxystrobin/L. The principle of the European Union pesticide directive is that lower-tier regulatory acceptable concentrations (RACs) are protective of higher-tier RACs. This was tested for chronic risks from azoxystrobin. With the exception of the microcosm community chronic RAC (highest tier), all other chronic RAC values were similar to each other (0.5-1 µg a.i./L). The new and stricter first-tier species requirements of the European Union pesticide regulation (1107/2009/EC) are not protective for the most sensitive populations in the microcosm study, when based on the higher tier population RAC. In comparison, the Water Framework Directive generates environmental quality standards that are 5 to 10 times lower than the derived chronic RACs. © 2014 SETAC.

  7. Bioaugmentation of Soil Contaminated with Azoxystrobin.

    PubMed

    Baćmaga, Małgorzata; Wyszkowska, Jadwiga; Kucharski, Jan

    2017-01-01

    The presence of fungicides in the natural environment, either resulting from deliberate actions or not, has become a serious threat to many ecosystems, including soil. This can be prevented by taking appropriate measures to clear the environment of organic contamination, including fungicides. Therefore, a study was conducted aimed at determining the effect of bioaugmentation of soil exposed to azoxystrobin on its degradation and activity of selected enzymes (dehydrogenases, catalase, urease, acidic phosphatase, alkaline phosphatase). A model experiment was conducted for 90 days on two types of soil: loamy sand (pH KCl -5.6) and sandy loam (pH KCl -7.0), which were contaminated by azoxystrobin at 22.50 mg kg -1 DM of soil and inoculated with a specific consortium of microorganisms. Four strains of bacteria were used in the experiment ( Bacillus sp. LM655314.1, B. cereus KC848897.1, B. weihenstephanensis KF831381.1, B. megaterium KJ843149.1) and two strains of mould fungi ( Aphanoascus terreus AB861677.1, A. fulvescens JN943451.1). Inoculation of soil with the consortium of microorganisms accelerated the degradation of azoxystrobin. The isolated microorganisms were more active in loamy sand because within 90 days azoxystrobin was degraded by 24% ( Bacillus sp., B. cereus , B. weihenstephanensis , B. megaterium ) to 78% ( Aphanoascus terreus , A. fulvescens ). In sandy loam, azoxystrobin was degraded by 9% ( Aphanoascus terreus , A. fulvescens ) to 29% ( Bacillus sp., B. cereus , B. weihenstephanensis , B. megaterium and Aphanoascus terreus , A. fulvescens ). The activity of soil enzymes was also changed as a result of inoculation of soil with microorganisms. The activity of all of the enzymes under study was found to have increased when soil augmentation was performed.

  8. Insecticidal, Repellent and Fungicidal Properties of Novel Trifluoromethylphenyl Amides

    DTIC Science & Technology

    2013-01-01

    strawberry at relative high rates, in the range of 1.64 kg (ai/ha), and azoxystrobin, a QoI (quinone outside inhib- itor) is applied at 0.131 oz (ai/ha...1980, pp. 172–194. [23] D.E. Wedge, B.J. Smith, J.P. Quebedeaux, R.J. Constain, Fungicide management strategies for control of strawberry fruit rot

  9. Synthesis of azoxystrobin transformation products and selection of monoclonal antibodies for immunoassay development.

    PubMed

    Parra, Javier; Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio

    2012-04-25

    The use of agrochemicals for crop protection may result in the presence of toxic residues in soils and aquatic environments, besides in foodstuffs. Most often just the parent compound is included in the definition of pesticide residue, even though chemicals resulting from biotransformation and degradation routes might also be of toxicological relevance. Azoxystrobin is a broad-spectrum systemic fungicide widely used worldwide to combat pathogenic fungi affecting plants. We herein report the synthesis and detailed chemical characterization of several of the most relevant metabolites and degradates of azoxystrobin. These compounds were further employed as ligands for screening a collection of monoclonal antibodies to azoxystrobin, which had been previously generated from haptens functionalized at different positions of the target chemical. As a result, an antibody was identified capable of binding, with subnanomolar affinity, not only azoxystrobin but also its main transformation products, such as the so-called acid and enol derivatives, as well as the azoxystrobin (Z)-isomer. The selected binder was demonstrated as a useful immunoreagent for the development of immunochemical assays as novel analytical tools for the qualitative determination of azoxystrobin and its metabolites and degradates. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Development of an enzyme-linked immunosorbent assay (ELISA) for residue analysis of the fungicide azoxystrobin in agricultural products.

    PubMed

    Kondo, Mika; Tsuzuki, Kazuyuki; Hamada, Hiroshi; Yamaguchi Murakami, Yukie; Uchigashima, Mikiko; Saka, Machiko; Watanabe, Eiki; Iwasa, Seiji; Narita, Hiroshi; Miyake, Shiro

    2012-02-01

    A direct competitive enzyme-linked immunosorbent assay (dc-ELISA) was developed for residue analysis of azoxystrobin in garden crops, for which the maximum residue limits (MRLs) are 0.5-50 mg/kg in Japan. For hapten synthesis, an ethyl carboxyl group was introduced to the 4-position of the 2-cyanophenoxy group in azoxystrobin, and its cyano group was changed to a methyl group. An anti-azoxystrobin monoclonal antibody was prepared from mice immunized with hapten-keyhole limpet hemocyanin conjugate. The dc-ELISA using prepared antibody showed 50-250-fold higher sensitivity compared to the MRLs. The working range of the dc-ELISA was 10-200 ng/mL. The dc-ELISA showed high specificity to azoxystrobin. When methanol extracts from nine kinds of garden crops spiked with azoxystrobin ranging near the MRLs were analyzed, the determined results by the dc-ELISA agreed well with the results of their controls. In addition, azoxystrobin spiked in garden crops homogenates was satisfactorily extracted by methanol solution and easily analyzed. The recovery rate of dc-ELISA was 96-109% and correlated well with the results obtained by HPLC analysis.

  11. Leaching of azoxystrobin and its degradation product R234886 from Danish agricultural field sites.

    PubMed

    Jørgensen, Lisbeth Flindt; Kjær, Jeanne; Olsen, Preben; Rosenbom, Annette Elisabeth

    2012-07-01

    The objective was to estimate leaching of the fungicide azoxystrobin (methyl (αE)-2-[[6-(2-cyanophenoxy)-4-pyrimidinyl]oxy]-α-(methoxymethylene)benzene-acetate) and one of its primary degradation products R234886 ([(E)-2-(2-[6-cyanophenoxy)-pyrimidin-4-yloxyl]-phenyl-3-methoxyacrylic acid], major fraction) at four agricultural research fields (one sandy and three loamy) in Denmark. Water was sampled from tile drains, suction cups and groundwater wells for a minimum period of two years after application of azoxystrobin. Neither azoxystrobin nor R234886 were detected at the sandy site, but did leach through loamy soils. While azoxystrobin was generally only detected during the first couple of months following application, R234886 leached for a longer period of time and at higher concentrations (up to 2.1μgL(-1)). Azoxystrobin is classified as very toxic to aquatic organisms and R234886 as very harmful. Our study shows that azoxystrobin and R234886 can leach through loamy soils for a long period of time following application of the pesticide and thereby pose a potential threat to vulnerable aquatic environments and drinking water resources. We thus recommend the inclusion of azoxystrobin and R234886 in pesticide monitoring programmes and further investigation of their long-term ecotoxicological effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. In-syringe demulsified dispersive liquid-liquid microextraction and high performance liquid chromatography-mass spectrometry for the determination of trace fungicides in environmental water samples.

    PubMed

    Xia, Yating; Cheng, Min; Guo, Feng; Wang, Xiangfang; Cheng, Jing

    2012-04-29

    An in-syringe demulsified dispersive liquid-liquid microextraction (ISD-DLLME) technique was developed using low-density extraction solvents for the highly sensitive determination of the three trace fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water samples by high performance liquid chromatography-mass spectrometry chromatography-diode array detector/electrospray ionisation mass spectrometry. In the proposed technique, a 5-mL syringe was used as an extraction, separation and preconcentration container. The emulsion was obtained after the mixture of toluene (extraction solvent) and methanol (dispersive solvent) was injected into the aqueous bulk of the syringe. The obtained emulsion cleared into two phases without centrifugation, when an aliquot of methanol was introduced as a demulsifier. The separated floating organic extraction solvent was impelled and collected into a pipette tip fitted to the tip of the syringe. Under the optimal conditions, the enrichment factors for azoxystrobin, diethofencarb and pyrimethanil were 239, 200, 195, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (SN(-1)), were 0.026 μg L(-1) for azoxystrobin, 0.071 μg L(-1) for diethofencarb and 0.040 μg L(-1) for pyrimethanil. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 0.02 μg mL(-1) for all the three fungicides. The relative standard deviations varied between 4.9 and 8.2% (n=5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 0.2, 1, 5 μg L(-1) were in the range of 90.0-105.0%, 86.0-114.0% and 88.6-110.0%, respectively. The proposed ISD-DLLME technique was demonstrated to be simple, practical and efficient for the determination of different kinds of fungicide residues in real water samples. Copyright © 2012. Published by Elsevier B.V.

  13. A molecular mechanism of azoxystrobin resistance in Penicillium digitatum UV mutants and a PCR-based assay for detection of azoxystrobin-resistant strains in packing- or store-house isolates.

    PubMed

    Zhang, Zhifang; Zhu, Zengrong; Ma, Zhonghua; Li, Hongye

    2009-05-31

    Sixty-five isolates of Pencillium digitatum (Pers.:Fr) Sacc., a causative agent of green mold of postharvest citrus, were collected from various locations in Zhejiang province in 2000, 2005 and 2006, and assayed for their sensitivity to the quinone outside inhibitor (QoI) fungicide azoxystrobin. The results showed that azoxystrobin is highly effective against P. digitatum, in vitro, and that the effective concentrations resulting in reduction of conidial germination and mycelial growth by 50% (EC(50)) averaged 0.0426 microg/ml and 0.0250 microg/ml, respectively. Twenty-eight azoxystrobin-resistant mutants were obtained by UV mutagenesis and subsequent selection on medium amended with azoxystrobin (12 microg/ml) and salicylhydroxamic acid. All obtained mutants were highly resistant to azoxystrobin and their resistance was genetically stable. Analysis of the cytochrome b gene structure of P. digitatum (Pdcyt b) showed the absence of type I intron in the first hot spot region of mutation. These results indicate that P. digitatum is likely to evolve high levels of resistance to azoxystrobin after its application. Analysis of partial sequences of Pdcyt b from both the azoxystrobin-sensitive parental isolate and the 28 azoxystrobin-resistant mutants revealed that a point mutation, which leads to the substitution at code 143 of alanine for glycine (G143A), is responsible for the observed azoxystrobin resistance in the laboratory mutants. Based on this point mutation, two allele-specific PCR primers were designed and optimized for allele-specific PCR detection of azoxystrobin-resistant isolates of P. digitatum.

  14. Inhibition of Efflux Transporter-Mediated Fungicide Resistance in Pyrenophora tritici-repentis by a Derivative of 4′-Hydroxyflavone and Enhancement of Fungicide Activity

    PubMed Central

    Reimann, Sven; Deising, Holger B.

    2005-01-01

    Populations of the causal agent of wheat tan spot, Pyrenophora tritici-repentis, that are collected from fields frequently treated with reduced fungicide concentrations have reduced sensitivity to strobilurin fungicides and azole fungicides (C14-demethylase inhibitors). Energy-dependent efflux transporter activity can be induced under field conditions and after in vitro application of sublethal amounts of fungicides. Efflux transporters can mediate cross-resistance to a number of fungicides that belong to different chemical classes and have different modes of action. Resistant isolates can grow on substrata amended with fungicides and can infect plants treated with fungicides at levels above recommended field concentrations. We identified the hydroxyflavone derivative 2-(4-ethoxy-phenyl)-chromen-4-one as a potent inhibitor of energy-dependent fungicide efflux transporters in P. tritici-repentis. Application of this compound in combination with fungicides shifted fungicide-resistant P. tritici-repentis isolates back to normal sensitivity levels and prevented infection of wheat leaves. These results highlight the role of energy-dependent efflux transporters in fungicide resistance and could enable a novel disease management strategy based on the inhibition of fungicide efflux to be developed. PMID:15933029

  15. Fungicide Sprays Can Injure the Stigmatic Surface During Receptivity in Almond Flowers

    PubMed Central

    YI, WEIGUANG; LAW, S. EDWARD; WETZSTEIN, HAZEL Y.

    2003-01-01

    Fungicides can be detrimental to flower development, pollen function and fruit set in a number of crops. Almond is a self‐incompatible nut crop that has a fruit set of only approx. 30 % of the total number of flowers. Thus, interference of pollination and fertilization by fungicide sprays is of concern, and identification of chemicals having the least detrimental effects would be desirable. The objective of this study was to evaluate the effect of fungicide sprays on stigma morphology in almond using a laboratory spray apparatus that simulated field applications. Four fungicides (azoxystrobin, myclobutanil, iprodione and cyprodinil) were applied, and fresh, unfixed stigmatic surfaces were observed using a scanning electron microscope at 4 and 24 h after spraying. Increased exudate accumulation was induced by azoxystrobin at both time periods, and localized damage and collapse of stigmatic cells were observed after 24 h. Damaged stigmatic papillae exhibited wrinkling, surface distortion or collapse. Likewise, myclobutanil caused significant damage to and collapse of papillae; these were more extensive at later observations. Iprodione had no effect on exudate accumulation but caused marked and severe collapse of stigmatic papillae which was pronounced at 24 h. Cyprodinil promoted a copious increase in exudate secretion and caused the most severe collapse of stigmatic cells of all the fungicides evaluated. Damage was somewhat localized at 4 h but more global at 24 h. This study has verified that certain fungicide sprays have direct detrimental effects on stigma morphology and enhance exudate production in almond flowers. PMID:12547686

  16. Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005-2006

    USGS Publications Warehouse

    Battaglin, William A.; Sandstrom, Mark W.; Kuivila, Kathryn; Kolpin, Dana W.; Meyer, Michael T.

    2011-01-01

    Fungicides are used to prevent foliar diseases on a wide range of vegetable, field, fruit, and ornamental crops. They are generally more effective as protective rather than curative treatments, and hence tend to be applied before infections take place. Less than 1% of US soybeans were treated with a fungicide in 2002 but by 2006, 4% were treated. Like other pesticides, fungicides can move-off of fields after application and subsequently contaminate surface water, groundwater, and associated sediments. Due to the constant pressure from fungal diseases such as the recent Asian soybean rust outbreak, and the always-present desire to increase crop yields, there is the potential for a significant increase in the amount of fungicides used on US farms. Increased fungicide use could lead to increased environmental concentrations of these compounds. This study documents the occurrence of fungicides in select US streams soon after the first documentation of soybean rust in the US and prior to the corresponding increase in fungicide use to treat this problem. Water samples were collected from 29 streams in 13 states in 2005 and/or 2006, and analyzed for 12 target fungicides. Nine of the 12 fungicides were detected in at least one stream sample and at least one fungicide was detected in 20 of 29 streams. At least one fungicide was detected in 56% of the 103 samples, as many as five fungicides were detected in an individual sample, and mixtures of fungicides were common. Azoxystrobin was detected most frequently (45% of 103 samples) followed by metalaxyl (27%), propiconazole (17%), myclobutanil (9%), and tebuconazole (6%). Fungicide detections ranged from 0.002 to 1.15 μ/L. There was indication of a seasonal pattern to fungicide occurrence, with detections more common and concentrations higher in late summer and early fall than in spring. At a few sites, fungicides were detected in all samples collected suggesting the potential for season-long occurrence in some streams. Fungicide occurrence appears to be related to fungicide use in the associated drainage basins; however, current use information is generally lacking and more detailed occurrence data are needed to accurately quantify such a relation. Maximum concentrations of fungicides were typically one or more orders of magnitude less than current toxicity estimates for freshwater aquatic organisms or humans; however, gaps in current toxicological understandings of the effects of fungicides in the environment limit these interpretations.

  17. Preparation, characterization, and evaluation of azoxystrobin nanosuspension produced by wet media milling

    NASA Astrophysics Data System (ADS)

    Yao, Junwei; Cui, Bo; Zhao, Xiang; Wang, Yan; Zeng, Zhanghua; Sun, Changjiao; Yang, Dongsheng; Liu, Guoqiang; Gao, Jinming; Cui, Haixin

    2018-04-01

    To improve the bioavailability of the poorly water-soluble fungicide, an azoxystrobin nanosuspension was prepared by the wet media milling method. Due to their reduced mean particle size and polydispersity index, 1-Dodecanesulfonic acid sodium salt and polyvinylpyrrolidone K30 were selected from six conventional surfactants, the content only accounting for 15% of the active compound. The mean particle size, polydispersity index, and ζ potential of the nanosuspension were determined to be 238.1 ± 1.5 nm, 0.17 ± 0.02 and - 31.8 ± 0.3 mV, respectively. The lyophilized nanosuspension mainly retained crystalline state, with only a little amorphous content as determined by powder X-ray diffraction. Compared to conventional fungicide formulations, the nanosuspension presented an increased retention volume and a reduced contact angle, indicating enhanced wettability and adhesion. In addition, the azoxystrobin nanosuspension showed the highest antifungal activity, with a medial lethal concentration of 1.4243 μg/mL against Fusarium oxysporum. In optical micrographs, hyphal deformations of thinner and intertwined hyphae were detected in the exposed group. Compared to the control group, the total soluble protein content, superoxide dismutase, and catalase activities were initially increased and then decreased with prolonged exposure time. The azoxystrobin nanosuspension reduced the defensive antioxidant capability of Fusarium oxysporum and resulted in the generation of excessive reactive oxygen species. This study provides a novel method for preparing nanosuspension formulation of poorly soluble antifungal agents to enhance the biological activity and decrease the negative environmental impact.

  18. Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum.

    PubMed

    Amaradasa, B Sajeewa; Everhart, Sydney E

    2016-01-01

    Pathogen exposure to sublethal doses of fungicides may result in mutations that may represent an important and largely overlooked mechanism of introducing new genetic variation into strictly clonal populations, including acquisition of fungicide resistance. We tested this hypothesis using the clonal plant pathogen, Sclerotinia sclerotiorum. Nine susceptible isolates were exposed independently to five commercial fungicides with different modes of action: boscalid (respiration inhibitor), iprodione (unclear mode of action), thiophanate methyl (inhibition of microtubulin synthesis) and azoxystrobin and pyraclostrobin (quinone outside inhibitors). Mycelium of each isolate was inoculated onto a fungicide gradient and sub-cultured from the 50-100% inhibition zone for 12 generations and experiment repeated. Mutational changes were assessed for all isolates at six neutral microsatellite (SSR) loci and for a subset of isolates using amplified fragment length polymorphisms (AFLPs). SSR analysis showed 12 of 85 fungicide-exposed isolates had a total of 127 stepwise mutations with 42 insertions and 85 deletions. Most stepwise deletions were in iprodione- and azoxystrobin-exposed isolates (n = 40/85 each). Estimated mutation rates were 1.7 to 60-fold higher for mutated loci compared to that expected under neutral conditions. AFLP genotyping of 33 isolates (16 non-exposed control and 17 fungicide exposed) generated 602 polymorphic alleles. Cluster analysis with principal coordinate analysis (PCoA) and discriminant analysis of principal components (DAPC) identified fungicide-exposed isolates as a distinct group from non-exposed control isolates (PhiPT = 0.15, P = 0.001). Dendrograms based on neighbor-joining also supported allelic variation associated with fungicide-exposure. Fungicide sensitivity of isolates measured throughout both experiments did not show consistent trends. For example, eight isolates exposed to boscalid had higher EC50 values at the end of the experiment, and when repeated, only one isolate had higher EC50 while most isolates showed no difference. Results of this support the hypothesis that sublethal fungicide stress increases mutation rates in a largely clonal plant pathogen under in vitro conditions. Collectively, this work will aid our understanding how non-lethal fungicide exposure may affect genomic variation, which may be an important mechanism of novel trait emergence, adaptation, and evolution for clonal organisms.

  19. Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum

    PubMed Central

    Amaradasa, B. Sajeewa

    2016-01-01

    Pathogen exposure to sublethal doses of fungicides may result in mutations that may represent an important and largely overlooked mechanism of introducing new genetic variation into strictly clonal populations, including acquisition of fungicide resistance. We tested this hypothesis using the clonal plant pathogen, Sclerotinia sclerotiorum. Nine susceptible isolates were exposed independently to five commercial fungicides with different modes of action: boscalid (respiration inhibitor), iprodione (unclear mode of action), thiophanate methyl (inhibition of microtubulin synthesis) and azoxystrobin and pyraclostrobin (quinone outside inhibitors). Mycelium of each isolate was inoculated onto a fungicide gradient and sub-cultured from the 50–100% inhibition zone for 12 generations and experiment repeated. Mutational changes were assessed for all isolates at six neutral microsatellite (SSR) loci and for a subset of isolates using amplified fragment length polymorphisms (AFLPs). SSR analysis showed 12 of 85 fungicide-exposed isolates had a total of 127 stepwise mutations with 42 insertions and 85 deletions. Most stepwise deletions were in iprodione- and azoxystrobin-exposed isolates (n = 40/85 each). Estimated mutation rates were 1.7 to 60-fold higher for mutated loci compared to that expected under neutral conditions. AFLP genotyping of 33 isolates (16 non-exposed control and 17 fungicide exposed) generated 602 polymorphic alleles. Cluster analysis with principal coordinate analysis (PCoA) and discriminant analysis of principal components (DAPC) identified fungicide-exposed isolates as a distinct group from non-exposed control isolates (PhiPT = 0.15, P = 0.001). Dendrograms based on neighbor-joining also supported allelic variation associated with fungicide-exposure. Fungicide sensitivity of isolates measured throughout both experiments did not show consistent trends. For example, eight isolates exposed to boscalid had higher EC50 values at the end of the experiment, and when repeated, only one isolate had higher EC50 while most isolates showed no difference. Results of this support the hypothesis that sublethal fungicide stress increases mutation rates in a largely clonal plant pathogen under in vitro conditions. Collectively, this work will aid our understanding how non-lethal fungicide exposure may affect genomic variation, which may be an important mechanism of novel trait emergence, adaptation, and evolution for clonal organisms. PMID:27959950

  20. Simultaneous determination and risk assessment of metalaxyl and azoxystrobin in potato by liquid chromatography with tandem mass spectrometry.

    PubMed

    Yu, Weiwei; Luo, Xiaoshuang; Qin, Xinxian; Huang, Min; Li, Jian; Zeng, Song; Zhang, Kankan; Hu, Deyu

    2018-05-09

    A liquid chromatography with tandem mass spectrometry method was developed and validated to simultaneously determine metalaxyl and azoxystrobin in soil, potato, and potato foliage samples. The samples were extracted by 20 mL of acetonitrile and purified with dispersive solid-phase extraction using octadecyl silane as sorbent. The method showed good linearity (determination coefficients ≥ 0.9926) for metalaxyl (2.5-500 ng/mL) and azoxystrobin (5-1000 ng/mL). The limits of detection and quantification for both fungicides were 1.5-20 μg/kg. The average recoveries in soil, potato, and potato foliage were 83.07-92.87% for metalaxyl and 82.71-98.53% for azoxystrobin. The intra- and inter-day relative standard deviations were all less than 9%. The method was successfully applied on the residual analysis of metalaxyl and azoxystrobin in field trial samples. The results showed that the concentrations of metalaxyl and azoxystrobin in potato samples collected from Guizhou and Hunan were below 50 and 100 μg/kg (maximum residue limit set by China), respectively, at 5 days after the last application. When following the recommended application manual, metalaxyl and azoxystrobin do not present health concerns to the population because the risk quotients are far below 100%. All the above data could help and promote the safe and proper use of metalaxyl and azoxystrobin in potato.

  1. Two new fatty acids esters were detected in ginseng stems by the application of azoxystrobin and the increasing of antioxidant enzyme activity and ginsenosides content.

    PubMed

    Liang, Shuang; Xu, Xuan-Wei; Zhao, Xiao-Feng; Hou, Zhi-Guang; Wang, Xin-Hong; Lu, Zhong-Bin

    2016-11-01

    Panax ginseng C.A. Meyer is a valuable herb in China that has also gained popularity in the West because of its pharmacological properties. The constituents isolated and characterized in ginseng stems include ginsenosides, fatty acids, amino acids, volatile oils, and polysaccharides. In this study, the effects of fungicide azoxystrobin applied on antioxidant enzyme activity and ginsenosides content in ginseng stems was studied by using Panax ginseng C. A. Mey. cv. (the cultivar of Ermaya) under natural environmental conditions. The azoxystrobin formulation (25% SC) was sprayed three times on ginseng plants at different doses (150ga.i./ha and 225ga.i./ha), respectively. Two new fatty acids esters (ethyl linoleate and methyl linolenate) were firstly detected in ginseng stems by the application of azoxystrobin as foliar spray. The results indicated that activities of enzymatic antioxidants, the content of ginsenosides and two new fatty acids esters in ginseng stems in azoxystrobin-treated plants were increased. Azoxystrobin treatments to ginseng plants at all growth stages suggest that the azoxystrobin-induced delay of senescence is due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species (AOS). The activity of superoxide dismutase (SOD) in azoxystrobin-treated plants was about 1-3 times higher than that in untreated plants. And the effects was more significant (P=0.05) when azoxystrobin was applied at dose of 225ga.i./ha. This work suggests that azoxystrobin plays an important role in delaying of senescence by changing physiological and biochemical indicators and increasing ginsenosides content in ginseng stems. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The effect of synthetic pesticides and sulfur used in conventional and organically grown strawberry and soybean on Neozygites floridana, a natural enemy of spider mites.

    PubMed

    Castro, Thiago; Roggia, Samuel; Wekesa, Vitalis W; de Andrade Moral, Rafael; Gb Demétrio, Clarice; Delalibera, Italo; Klingen, Ingeborg

    2016-09-01

    The beneficial fungus Neozygites floridana kills the two-spotted spider mite Tetranychus urticae, which is a serious polyphagous plant pest worldwide. Outbreaks of spider mites in strawberry and soybean have been associated with pesticide applications. Pesticides may affect N. floridana and consequently the natural control of T. urticae. N. floridana is a fungus difficult to grow in artificial media, and for this reason, very few studies have been conducted with this fungus, especially regarding the impact of pesticides. The aim of this study was to conduct a laboratory experiment to evaluate the effect of pesticides used in strawberry and soybean crops on N. floridana. Among the pesticides used in strawberry, the fungicides sulfur and cyprodinil + fludioxonil completely inhibited both the sporulation and conidial germination of N. floridana. The fungicide fluazinam affected N. floridana drastically. The application of the fungicide tebuconazole and the insecticides fenpropathrin and abamectin resulted in a less pronounced negative effect on N. floridana. Except for epoxiconazole and cyproconazole, all tested fungicides used in soybean resulted in a complete inhibition of N. floridana. Among the three insecticides used in soybean, lambda-cyhalothrin and deltamethrin resulted in a significant inhibition of N. floridana. The insecticides/ acaricides abamectin and lambda-cyhalothrin at half concentrations and fenpropathrin and permethrin and the fungicide tebuconazole at the recommended concentrations resulted in the lowest impact on N. floridana. The fungicides with the active ingredients sulfur, cyprodinil + fludioxonil, azoxystrobin, azoxystrobin + cyproconazole, trifloxystrobin + tebuconazole and pyraclostrobin + epoxiconazole negatively affected N. floridana. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Signum, a new fungicide for control of leaf diseases in outdoor vegetables.

    PubMed

    Callens, D; Sarrazyn, R; Evens, W

    2005-01-01

    During three years, the new fungicide Signum, containing 6.7% pyraclostrobine + 26.7 % boscalid and developed by BASF. has been evaluated in leek, carrots and cabbages in several outdoor field experiments under practical conditions and during one year in outdoor lettuce. In leek, Phytophthora porri is one of the major leaf diseases causing lesions on differ ent places on the leaves, resulting in at least extra labour costs for trimming or even worse sometimes resulting in complete crop loss. So far, crop protection consists of repeated applications of fungicides especially during autumn and winter. Pyraclostrobin + boscalid has been evaluated in comparison with the fungicides mancozeb, mancozeb + metalaxyl-M and azoxystrobin. The progress of the disease during the growth season is discussed. For all parameters evaluated, pyraclostrobin + boscalid gave comparable or even better results than reference products. Especially during 2003, a small drop of the activity of benalaxyl against P. porri has been observed after repeated applications. In carrots, Erisiphe heraclei and Alternaria dauci are both the most common leaf diseases causing yield and quality loss. During periods of very high pressure of A. dauci, pyraclostrobin + boscalid, applied in a three weeks interval, revealed a superior activity compared with triazole references or compared with azoxystrobin. Against E. heraclei, a good control but also a clear dose response activity have been observed with pyraclostrobin + boscalid. Yield gain was approximately 30 ton /ha compared wih untreated. In Brussels sprouts, good efficacy was obtained against Mycosphaerella spp., Albugo candida and Alternaria spp. In outdoor lettuce Botrytis cinerea and Sclerotinia sclerotiorum are the most important diseases causing crop damage and reducing the quality of the heads. Pyraclostrobin + boscalid was evaluated in comparison with the standard fungicide iprodione. The plant protection was better with the new fungicide pyraclostrobin + boscalid.

  4. Timing and Methodology of Application of Azoxystrobin to Control Rhizoctonia Solani in Sugarbeet

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani AG 2-2 is the causal agent of Rhizoctonia root and crown rot of sugar beet (Beta vulgaris) in North Dakota and Minnesota. This disease is a major limiting factor to sugar beet production. Management strategies currently include using partially resistant cultivars and fungicides. ...

  5. Resistance Mechanisms and Molecular Docking Studies of Four Novel QoI Fungicides in Peronophythora litchii

    PubMed Central

    Zhou, Yuxin; Chen, Lei; Hu, Jian; Duan, Hongxia; Lin, Dong; Liu, Pengfei; Meng, Qingxiao; Li, Bin; Si, Naiguo; Liu, Changling; Liu, Xili

    2015-01-01

    Peronophythora litchii is the causal agent of litchi downy blight. Enestroburin, SYP-1620, SYP-2815 and ZJ0712 are four novel QoI fungicides developed by China. Eight mutants of P. litchii resistant to these QoI fungicides and azoxystrobin (as a known QoI fungicide) were obtained in our preliminary work. In this study, the full length of the cytochrome b gene in P. litchii, which has a full length of 382 amino acids, was cloned from both sensitive isolates and resistant mutants, and single-site mutations G142A, G142S, Y131C, or F128S were found in resistant mutants. Molecular docking was used to predict how the mutations alter the binding of the five QoI fungicides to the Qo-binding pockets. The results have increased our understanding of QoI fungicide-resistance mechanisms and may help in the development of more potent inhibitors against plant diseases in the fields. PMID:26657349

  6. Postinfection activity, residue levels, and persistence of azoxystrobin, fludioxonil, and pyrimethanil applied alone or in combination with heat and imazalil for green mold control on inoculated oranges.

    PubMed

    Schirra, Mario; Palma, Amedeo; Barberis, Antonio; Angioni, Alberto; Garau, Vincenzo Luigi; Cabras, Paolo; D'Aquino, Salvatore

    2010-03-24

    The postinfection activity of azoxystrobin (AZX), fludioxonil (FLU), and pyrimethanil (PYR), applied alone or in combination with imazalil (IMZ), in controlling postharvest green mold in 'Salustiana' oranges inoculated with Penicillium digitatum was studied. Fruits were immersed for 30 or 60 s in (i) water or water mixtures at 20 degrees C containing AZX, FLU, or PYR at 600 mg/L; and (ii) IMZ at 600 mg/L, alone or in combination with AZX, FLU, or PYR at 600 mg/L. Similar treatments were performed at 50 degrees C using the active ingredients at half rates with respect to the treatments at 20 degrees C. Fungicide residues in fruits were analyzed following treatments and after 14 days of simulated shelf life at 17 degrees C. AZX or FLU mixtures at 20 degrees C for 30-60 s similarly but moderately reduced green mold decay with respect to control fruit; differences due to dip time were not significant. Superior control of decay was achieved by PYR and, especially, IMZ, applied alone or in combination with AZX, FLU, or PYR. The activity of PYR at 20 degrees C was significantly dependent on treatment time, whereas that of IMZ and combined treatments at 20 degrees C was not. The effectiveness of FLU or PYR mixtures at 50 degrees C in controlling decay was similar and superior to that of AZX. The action of single- or double-fungicide application was not dependent on dip time in most samples. IMZ or combined mixtures at 50 degrees C were consistently more effective with respect to single-fungicide treatments with AZX, FLU, or PYR. The application of heated fungicide mixtures resulted in significantly higher residue accumulation in most fruit samples compared to treatments performed at 20 degrees C. The degradation rate of fungicides was generally low and dependent on treatment conditions such as time, temperature, and the presence or not of other fungicides.

  7. Design, synthesis, and fungicidal activities of imino diacid analogs of valine amide fungicides.

    PubMed

    Sun, Man; Yang, Hui-Hui; Tian, Lei; Li, Jian-Qiang; Zhao, Wei-Guang

    2015-12-15

    The novel imino diacid analogs of valine amides were synthesized via several steps, including the protection, amidation, deprotection, and amino alkylation of valine, with the resulting structures confirmed by (1)H and (13)C NMR and HRMS. Bioassays showed that some of these compounds exhibited good fungicidal activity. Notably, isopropyl 2-((1-((1-(3-fluorophenyl)ethyl)amino)-3-methyl-1-oxobutan-2-yl)amino)propanoate 5i displayed significant levels of control, at 50%, against Erysiphe graminis at 3.9μM as well as a level of potency very similar to the reference azoxystrobin, which gave 60% activity at this concentration. The present work demonstrates that imino diacid analogs of valine amides could be potentially useful key compounds for the development of novel fungicides against wheat powdery mildew. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Quantification of Trichothecene-Producing Fusarium Species in Harvested Grain by Competitive PCR To Determine Efficacies of Fungicides against Fusarium Head Blight of Winter Wheat

    PubMed Central

    Edwards, S. G.; Pirgozliev, S. R.; Hare, M. C.; Jenkinson, P.

    2001-01-01

    We developed a PCR-based assay to quantify trichothecene-producing Fusarium based on primers derived from the trichodiene synthase gene (Tri5). The primers were tested against a range of fusarium head blight (FHB) (also known as scab) pathogens and found to amplify specifically a 260-bp product from 25 isolates belonging to six trichothecene-producing Fusarium species. Amounts of the trichothecene-producing Fusarium and the trichothecene mycotoxin deoxynivalenol (DON) in harvested grain from a field trial designed to test the efficacies of the fungicides metconazole, azoxystrobin, and tebuconazole to control FHB were quantified. No correlation was found between FHB severity and DON in harvested grain, but a good correlation existed between the amount of trichothecene-producing Fusarium and DON present within grain. Azoxystrobin did not affect levels of trichothecene-producing Fusarium compared with those of untreated controls. Metconazole and tebuconazole significantly reduced the amount of trichothecene-producing Fusarium in harvested grain. We hypothesize that the fungicides affected the relationship between FHB severity and the amount of DON in harvested grain by altering the proportion of trichothecene-producing Fusarium within the FHB disease complex and not by altering the rate of DON production. The Tri5 quantitative PCR assay will aid research directed towards reducing amounts of trichothecene mycotoxins in food and animal feed. PMID:11282607

  9. Effects of single pesticides and binary pesticide mixtures on estrone production in H295R cells.

    PubMed

    Prutner, Wiebke; Nicken, Petra; Haunhorst, Eberhard; Hamscher, Gerd; Steinberg, Pablo

    2013-12-01

    The aim of the present study was to determine whether the human adrenocortical carcinoma cell line H295R can be used as an in vitro test system to investigate the effects of binary pesticide combinations on estrone production as biological endpoint. In the first step ten pesticides selected according to a tiered approach were tested individually. The anilinopyrimidines cyprodinil and pyrimethanil as well as the dicarboximides iprodione and procymidone increased estrone concentration, while the triazoles myclobutanil and tebuconazole as well as the strobilurins azoxystrobin and kresoxim-methyl decreased estrone concentration in the supernatant of H295R cells. The N-methylcarbamate methomyl did not show any effects, and the phthalimide captan reduced estrone concentration unspecifically due to its detrimental impact on cellular viability. When cyprodinil and pyrimethanil, which belong to the same chemical group and increase estrone production, were combined, in most of the cases the overall effect was solely determined by the most potent compound in the mixture (i.e., cyprodinil). When cyprodinil and procymidone, which belong to different chemical groups but increase estrone production, were combined, in most cases an additive effect was observed. When cyprodinil, which increased estrone production, was combined with either myclobutanil or azoxystrobin, which decreased estrone production, the overall effect of the mixture was in most cases either entirely determined by myclobutanil or at least partially modulated by azoxystrobin. In conclusion, H295R cells appear to be an adequate in vitro test system to study the effect of combining two pesticides affecting estrone production.

  10. Occurrence and Environmental Effects of Boscalid and Other Fungicides in Three Targeted Use Areas in the United States

    NASA Astrophysics Data System (ADS)

    Reilly, T. J.; Smalling, K. L.; Wilson, E. R.

    2011-12-01

    Fungicides are typically used to control the outbreak of persistent, historically significant plant diseases like late blight (caused by Phytophthora infestans and responsible for the Irish Potato famine of 1846) and newer plant diseases like Asian Soy Rust, both of which are potentially devastating if not controlled. Of the more than 67,000 pesticide products currently registered for use in the United States, over 3,600 are used to combat fungal diseases. Although they are widely used, relatively little is known about the fate and potential secondary effects of fungicides in the aquatic environment. Even less is known about the fate and environmental occurrence of recently registered fungicides including boscalid, which was first registered for use in the US in 2003. Unlike most other pesticides, multiple fungicides are typically applied as a prophylactic crop protectant upwards of ten times per season (depending upon conditions and crop type), but at lower application rates than herbicides or insecticides. This difference in usage increases the likelihood of chronic exposure of aquatic ecosystems to low concentrations of fungicides. Using a newly developed analytical method, the U.S. Geological Survey measured 33 fungicides in surface water and shallow groundwater in three geographic areas of intense fungicide use across the US. Sampling sites were selected near or within farms using prophylactic fungicides at rates and types typical of the crop type and their geographic location. At least one fungicide was detected in 75% of the surface waters (n=60) and 58% of the groundwater (n=12) samples. Twelve fungicides were detected in surface- and groundwater including boscalid (72%), azoxystrobin (51%), pyraclostrobin (40%), chlorothalonil (38%) and pyrimethanil (28%). Boscalid was the most frequently detected pesticide and has not been previously documented in the aquatic environment. In this study, an average of 44% of the pesticide concentration in a water sample was derived from a mixture of fungicides. Ongoing studies are also evaluating the occurrence of fungicides in aquatic insect larvae and the effects of fungicides on the obligate endosymbiont fungi (Trichomycetes) which reside in their guts. Surface water samples and larval hosts of gut fungi were collected from impaired and reference sites between April and December 2010 in southwestern Idaho, USA. Several fungicides (including azoxystrobin, boscalid and pyraclostrobin) were detected in black fly larvae collected from streams adjacent to agricultural fields where fungicides were being applied throughout the growing season. Hosts from control sites contained gut fungi with higher density, diversity and spore production, while those collected from the two impacted sites typically had lower diversity and fecundity (spore production) of native gut fungi. This study provides one of the first multi-regional assessments of the environmental occurrence of fungicides in the US and indicates that fungicides directly affect the non-target fungal communities commonly found in the guts of stream invertebrates.

  11. Chemical control of downy mildew on lettuce and basil under greenhouse.

    PubMed

    Gullino, M L; Gilardi, G; Garibaldi, A

    2009-01-01

    Eight experimental trials were carried out during 2007 and 2008 to evaluate the efficacy of different fungicides against downy mildew of lettuce (Bremia lactucae) and basil (Peronospora belbahrii) under greenhouse conditions, at temperatures ranging from 19 to 24 degrees C. The mixture fluopicolide (fungicide belonging to the + propamocarb hydrochloride (fungicide belonging to the new chemical class of acyl-picolides) was compared with metalaxyl m + copper, zoxamide + mancozeb, iprovalicarb + Cu, fenamidone + fosetyl-Al and azoxystrobin. Two treatments were carried out at 8-12 day interval on lettuce and basil. The artificial inoculation of B. lactucae on lettuce (cv Cobham Green) and P. belbahrii. on basil (cv Genovese gigante) was carried out by using 1 x 10(5) CFU/ml 24 h after the first treatment. In the presence of a medium-high disease severity, all fungicides tested in these trials were effective against downy mildew on lettuce and basil as the other fungicides already available. The importance of the availability of a number of different chemicals to control downy mildews is discussed.

  12. The Effect of Fungicides on Mycelial Growth and Conidial Germination of the Ginseng Root Rot Fungus, Cylindrocarpon destructans

    PubMed Central

    Shin, Jong-Hwan; Fu, Teng; Park, Kyeong Hun

    2017-01-01

    Ginseng root rot caused by Cylindrocarpon destructans is the most destructive disease of ginseng. Six different fungicides (thiophanate-methyl, benomyl, prochloraz, mancozeb, azoxystrobin, and iprodione) were selected to evaluate the inhibitory effect on the mycelial growth and conidial germination of C. destructans isolates. Benomyl and prochloraz were found to be the most effective fungicides in inhibiting mycelial growth of all tested isolates, showing 64.7% to 100% inhibition at a concentration of 10 µg/mL, whereas thiophanate-methyl was the least effective fungicide, showing less than 50% inhibition even at a higher concentration of 100 µg/mL. The tested fungicides exhibited less than 20% inhibition of conidium germination at concentrations of 0.01, 0.1, and 1 µg/mL. However, the inhibition effect of mancozeb on condium germination of C. destructans was significantly increased to 92% to 99% at a higher concentration of 100 µg/mL, while the others still showed no higher than 30% inhibition. PMID:29138629

  13. Occurrence and persistence of fungicides in bed sediments and suspended solids from three targeted use areas in the United States

    USGS Publications Warehouse

    Smalling, Kelly L.; Reilly, Timothy J.; Sandstrom, Mark W.; Kuivila, Kathryn

    2013-01-01

    To document the environmental occurrence and persistence of fungicides, a robust and sensitive analytical method was used to measure 34 fungicides and an additional 57 current-use pesticides in bed sediments and suspended solids collected from areas of intense fungicide use within three geographic areas across the United States. Sampling sites were selected near or within agricultural research farms using prophylactic fungicides at rates and types typical of their geographic location. At least two fungicides were detected in 55% of the bed and 83% of the suspended solid samples and were detected in conjunction with herbicides and insecticides. Six fungicides were detected in all samples including pyraclostrobin (75%), boscalid (53%), chlorothalonil (41%) and zoxamide (22%). Pyraclostrobin, a strobilurin fungicide, used frequently in the United States on a variety of crops, was detected more frequently than p,p′-DDE, the primary degradate of p,p′-DDT, which is typically one of the most frequently occurring pesticides in sediments collected within highly agricultural areas. Maximum fungicide concentrations in bed sediments and suspended solids were 198 and 56.7 μg/kg dry weight, respectively. There is limited information on the occurrence, fate, and persistence of many fungicides in sediment and the environmental impacts are largely unknown. The results of this study indicate the importance of documenting the persistence of fungicides in the environment and the need for a better understanding of off-site transport mechanisms, particularly in areas where crops are grown that require frequent treatments to prevent fungal diseases.

  14. Early signs of lethal effects in Daphnia magna (Branchiopoda, Cladocera) exposed to the insecticide cypermethrin and the fungicide azoxystrobin.

    PubMed

    Friberg-Jensen, Ursula; Nachman, Gösta; Christoffersen, Kirsten S

    2010-10-01

    This study presents the effects of sublethal concentrations of pesticides cypermethrin and azoxystrobin on the activity of several physiological parameters of egg-carrying Daphnia magna studied using a video-image technique. Single tethered daphnids were continuously recorded for 24 h of pesticide exposure, and the activity of the heart, the filtering limbs, the mandibles, and the focal spine were subsequently analyzed. Acute toxicity tests based on the criteria of immobilization were performed on egg-carrying D. magna, and sublethal concentrations of 0.1, 1.0, and 10 µg/L cypermethrin and 0.5, 1.0, and 2.0 mg/L azoxystrobin were established. At a concentration as low as 0.1 µg/L cypermethrin, the 5% effective concentration after 24 h of exposure (EC5,24h), the activity of the focal spine increased and the filtering limb activity decreased. The activity of the mandibles was reduced by exposure to 1.0 (EC18,24 h) and 10 µg/L (EC41,24 h) cypermethrin, whereas heart activity increased at a concentration of 10 µg/L (EC41,24 h). With regard to azoxystrobin, the activity of all response parameters except the focal spine decreased by exposure to 0.5 mg/L (EC4,24h) azoxystrobin. The focal spine was not affected by azoxystrobin. The results show that physiological mechanisms important for ingestion of food in D. magna may be impaired by low concentrations of commonly used pesticides. Environ. Toxicol. Chem. 2010;29:2371-2378. © 2010 SETAC.

  15. Phytoremediation of azoxystrobin and its degradation products in soil by P. major L. under cold and salinity stress.

    PubMed

    Romeh, Ahmed Ali Ali

    2017-10-01

    Azoxystrobin is a broad-spectrum, systemic and soil-applied fungicide used for crop protection against the four major classes of pathogenic fungi. The use of azoxystrobin use has induced water pollution and ecotoxicological effects upon aquatic organisms, long half-life in soils, as well as heath issues. Such issues may be solved by phytoremediation. Here, we tested the uptake and translocation of azoxystrobin and its degradation products by Plantago major, under cold stress and salt stress. The result demonstrated that azoxystrobin significantly accumulated in P. major roots under salinity conditions more than that in the P. major roots under cold conditions and natural condition within two days of experimental period. In P. major roots and leaves, the chromatograms of HPLC for azoxystrobin and metabolites under natural condition (control) and stressed samples (cold stress and salt stress) show different patterns of metabolism pathways reflecting changes in the degradation products. Azoxystrobin carboxylic acid (AZ-acid) formed by methyl ester hydrolysis was an important route in the roots and the leaves. AZ-pyOH and AZ-benzoic were detected in P. major roots under cold and salt stress, while did not detected in P. major roots under natural condition. In the leaves, AZ-pyOH and AZ-benzoic were detected in all treatments between 4 and 12days of exposure. Shoots of the stressed plants had greater H 2 O 2 and proline contents than was observed in the control plants. The level of 100mM NaCl treatment induced significantly higher peroxidase (POD) activity than the non-treated control group. Leaf Chlorophyll contents in the plants at 80 and 100mM NaCl were significantly reduced than was observed in the control plants. I concluded that P. major had a high potential to contribute to remediation of saline-soil contaminated with azoxystrobin. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effects of Fungicides on Aquatic Fungi and Bacteria

    NASA Astrophysics Data System (ADS)

    Conners, D. E.; Rosemond, A. D.; Black, M. C.

    2005-05-01

    Aquatic microorganisms play an important role in conditioning leaf litter that enters streams and serves as an important base of production for consumers. Contamination of streams by fungicides may adversely affect microorganisms and alter leaf litter processing rates. Unfortunately, microorganisms are rarely used in acute toxicity tests for fungicide evaluation and registration. We adapted the resazurin reduction assay, which is used in medical microbiology, to assess the acute toxicity of four fungicides (azoxystrobin, trifloxystrobin, kresoxim-methyl and chlorothalonil) to aquatic fungi (Articulospora tetracladia) and bacteria (Cytophaga spp.), and investigated the ability of the toxicants to inhibit leaf breakdown in microcosms. Fungi were more sensitive to fungicides than many standard test organisms (cladocerans, green algae, trout), while bacteria were often the least sensitive. All of the fungicides except kresoxim-methyl, when added to microcosms at concentrations that inhibited the fungi by 90 percent in acute tests, reduced leaf breakdown rates by an average of 14.7 percent. Thus, aquatic fungi and their associated functions in streams may be relatively sensitive to fungicides applied terrestrially that enter streams through non-point sources. These data highlight the importance of including aquatic fungi in safety assessments of pesticides for protection of microbial function.

  17. Dissolved pesticide concentrations in the Sacramento-San Joaquin Delta and Grizzly Bay, California, 2011-12

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2013-01-01

    Surface-water samples were collected from sites within the Sacramento-San Joaquin Delta and Grizzly Bay, California, during the spring in 2011 and 2012, and they were analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected and analyzed as part of a collaborative project studying the occurrence and characteristics of phytoplankton in the San Francisco Estuary. Samples were analyzed by two separate laboratory methods employing gas chromatography/mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). Eighteen pesticides were detected in samples collected during 2011, and the most frequently detected compounds were the herbicides clomazone, diuron, hexazinone and metolachlor, and the diuron degradates 3,4-dichloroaniline and N-(3,4-dichlorophenyl)-N’-methylurea (DCPMU). Concentrations for all compounds were less than 75 ng/L, except for the rice herbicide clomazone and the fungicide tetraconazole, which had maximum concentrations of 535 and 511 ng/L, respectively. In samples collected in 2012, a total of 16 pesticides were detected. The most frequently detected compounds were the fungicides azoxystrobin and boscalid and the herbicides diuron, hexazinone, metolachlor, and simazine. Maximum concentrations for all compounds detected in 2012 were less than 75 ng/L, except for the fungicide azoxystrobin and the herbicides hexazinone and simazine, which were detected at up to 188, 134, and 140 ng/L, respectively.

  18. Degradation and metabolic profiling for benzene kresoxim-methyl using carbon-14 tracing.

    PubMed

    Wang, Likun; Zhao, Jinhao; Delgado-Moreno, Laura; Cheng, Jingli; Wang, Yichen; Zhang, Sufen; Ye, Qingfu; Wang, Wei

    2018-10-01

    Benzene kresoxim-methyl (BKM) is an effective strobilurin fungicide for controlling fungal pathogens but limited information is available on its degradation and metabolism. This study explored the degradation and metabolic profiling for BKM in soils by carbon-14 tracing and HPLC-TOF-MS 2 analyzing. Results indicated that 88%-98% of 14 C-BKM remained as parent or incomplete intermediates after 100 days. Three main radioactive metabolites (M1 to M3, ≥90%) and three subordinate radioactive metabolites (Ma to Mc, ≤2%) were observed, along with a non-radioactive metabolite M4. The main intermediates were further confirmed by self-synthesizing their authentic standards, and BKM was proposed to degrade via pathways including: 1) the oxidative cleavage of the acrylate double bond to give BKM-enol (M1); 2) the hydrolysis of the methyl ester to give BKM acid (M2); 3) the cleavage of M1 and M2 to yield Mc, which could be decarboxylated to give M3; and 4) the ether cleavage between aromatic rings to form M4. This study builds a solid metabolic profiling method for strobilurins and gives a deeper insight into the eventual fate of BKM by demonstrating its transformation pathways for the first time, which may also be beneficial for understanding the risks of other analogous strobilurins. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Environmental fate of fungicides and other current-use pesticides in a central California estuary

    USGS Publications Warehouse

    Smalling, Kelly L.; Kuivila, Kathryn; Orlando, James L.; Phillips, Bryn M.; Anderson, Brian S.; Siegler, Katie; Hunt, John W.; Hamilton, Mary

    2013-01-01

    The current study documents the fate of current-use pesticides in an agriculturally-dominated central California coastal estuary by focusing on the occurrence in water, sediment and tissue of resident aquatic organisms. Three fungicides (azoxystrobin, boscalid, and pyraclostrobin), one herbicide (propyzamide) and two organophosphate insecticides (chlorpyrifos and diazinon) were detected frequently. Dissolved pesticide concentrations in the estuary corresponded to the timing of application while bed sediment pesticide concentrations correlated with the distance from potential sources. Fungicides and insecticides were detected frequently in fish and invertebrates collected near the mouth of the estuary and the contaminant profiles differed from the sediment and water collected. This is the first study to document the occurrence of many current-use pesticides, including fungicides, in tissue. Limited information is available on the uptake, accumulation and effects of current-use pesticides on non-target organisms. Additional data are needed to understand the impacts of pesticides, especially in small agriculturally-dominated estuaries.

  20. Assessment of Protective Effect of Some Modern Agrochemicals against Ozone-Induced Stress in Sensitive Clover and Tobacco Cultivars.

    PubMed

    Blum, Oleg; Didyk, Nataliya; Pavluchenko, Nataliya; Godzik, Barbara

    2011-01-01

    Some modern agrochemicals with antioxidant potential were tested for their protective effect against ozone injury using clover and tobacco ozone-sensitive cultivars as model plants subjected to ambient ozone at two sites (Kyiv city in Ukraine and Szarów village in Poland). All used agrochemicals showed partial protective effects against ozone injury on clover and tobacco. Conducted studies confirmed the effectiveness of modern fungicides belonging to strobilurin group as protectants of sensitive crops against ozone damage. The effectiveness of new growth regulators "Emistym C" and "Agrostymulin" was showed for the first time. Out of the studied agrochemicals, fungicide "Strobi" and natural growth regulator "Emistym C" demonstrated the best protective effects. These agrochemicals present promise for further studies of their possible utilization for enhancement of ozone tolerance of sensitive crops.

  1. Natural toxins for use in pest management.

    PubMed

    Duke, Stephen O; Cantrell, Charles L; Meepagala, Kumudini M; Wedge, David E; Tabanca, Nurhayat; Schrader, Kevin K

    2010-08-01

    Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly successful products based on natural compounds in the major pesticide classes. These include the herbicide glufosinate (synthetic phosphinothricin), the spinosad insecticides, and the strobilurin fungicides. These and other examples of currently marketed natural product-based pesticides, as well as natural toxins that show promise as pesticides from our own research are discussed.

  2. Combination of solvent extractants for dispersive liquid-liquid microextraction of fungicides from water and fruit samples by liquid chromatography with tandem mass spectrometry.

    PubMed

    Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José

    2017-10-15

    A multiresidue method was developed to determine twenty-five fungicides belonging to three different chemical families, oxazoles, strobilurins and triazoles, in water and fruit samples, using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography/tandem mass spectrometry (LC-MS 2 ). Solid-liquid extraction with acetonitrile was used for the analysis in fruits, the extract being used as dispersant solvent in DLLME. Since some of the analytes showed high affinity for chloroform and the others were more efficiently extracted with undecanol, a mixture of both solvents was used as extractant in DLLME. After evaporation of CHCl 3 , the enriched phase was analyzed. Enrichment factors in the 23-119 and 12-60 ranges were obtained for waters and fruits, respectively. The approach was most sensitive for metominostrobin with limits of quantification of 1ngL -1 and 5ngkg -1 in waters and fruits, respectively, while a similar sensitivity was attained for tebuconazole in fruits. Recoveries of the fungicides varied between 86 and 116%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dissolved pesticide concentrations entering the Sacramento-San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012-13

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2014-01-01

    Surface-water samples were collected from the Sacramento and San Joaquin Rivers where they enter the Sacramento–San Joaquin Delta, and analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected twice per month from May 2012 through July 2013 and from May 2012 through April 2013 at the Sacramento River at Freeport, and the San Joaquin River near Vernalis, respectively. Samples were analyzed by two separate laboratory methods by using gas chromatography with mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). A total of 37 pesticides and degradates were detected in water samples collected during the study (18 herbicides, 11 fungicides, 7 insecticides, and 1 synergist). The most frequently detected pesticides overall were the herbicide hexazinone (detected in 100 percent of the samples); 3,4-dichloroaniline (97 percent), which is a degradate of the herbicides diuron and propanil; the fungicide azoxystrobin (83 percent); and the herbicides diuron (72 percent), simazine (66 percent), and metolachlor (64 percent). Insecticides were rarely detected during the study. Pesticide concentrations varied from below the method detection limits to 984 ng/L (hexazinone). Twenty seven pesticides and (or) degradates were detected in Sacramento River samples, and the average number of pesticides per sample was six. The most frequently detected compounds in these samples were hexazinone (detected in 100 percent of samples), 3,4-dichloroaniline (97 percent), azoxystrobin (88 percent), diuron (56 percent), and simazine (50 percent). Pesticides with the highest detected maximum concentrations in Sacramento River samples included the herbicide clomazone (670 ng/L), azoxystrobin (368 ng/L), 3,4-dichloroaniline (364 ng/L), hexazinone (130 ng/L), and propanil (110 ng/L), and all but hexazinone are primarily associated with rice agriculture. In addition to the twice monthly sampling, surface-water samples were collected from the Sacramento River on 5 consecutive days following a rainfall event in the Sacramento urban area. Samples collected following this event contained an average of 11 pesticides. The insecticides carbaryl, fipronil, and imidacloprid; the herbicide DCPA; and the fungicide imazalil were only detected in the Sacramento River during this storm-runoff event, and two detections of fipronil during this period exceeded the U.S. Environmental Protection Agency Aquatic Life Benchmark (11 ng/L) for chronic toxicity to invertebrates in freshwater. In San Joaquin River samples, 26 pesticides and (or) degradates were detected, and the average number detected per sample was 9. The most frequently detected compounds in these samples were hexazinone and metolachlor (detected in 100 percent of samples); diuron (96 percent); the fungicide boscalid (96 percent); the degradates 3,4-dicloroaniline (92 percent) and NN-(3,4-Dichlorophenyl)-N’-methylurea (DCPMU; 83 percent); simazine (83 percent); and azoxystrobin (75 percent). The pesticides with the highest detected maximum concentrations were hexazinone (984 ng/L), diuron (695 ng/L), simazine (524 ng/L), the herbicide prometryn (155 ng/L), metolachlor (127 ng/L), boscalid (112 ng/L), DCPMU (111 ng/L), and the herbicide pendimethalin (108 ng/L).

  4. Differentiation of Pythium spp. from vegetable crops with molecular markers and sensitivity to azoxystrobin and mefenoxam.

    PubMed

    Matić, Slavica; Gilardi, Giovanna; Gisi, Ulrich; Gullino, Maria Lodovica; Garibaldi, Angelo

    2018-06-11

    Pythium species attack various vegetable crops causing seed, stem and root rot, and 'damping-off' after germination. Pythium diseases are prevalently controlled by two classes of fungicides, QoIs with azoxystrobin and phenlyamides with mefenoxam as representatives. The present study aims at testing the sensitivity of six Pythium species from different vegetable crops to azoxystrobin and mefenoxam and differentiating species based on ITS, cytochrome b and RNA polymerase I gene sequences. The inter- and intra-species sensitivity to azoxystrobin was found to be rather stable, with exception of one Pythium paroecandrum isolate which showed reduced sensitivity and two cytochrome b amino acid changes. For mefenoxam, the inter-species sensitivity was quite variable and besides sensitive also many resistant isolates were found in all six Pythium species, but no RNA polymerase I amino acid changes were observed in them. ITS and cytochrome b phylogenetic analyses permitted a clear separation of Pythium species corresponding to globose- and filamentous- sporangia clusters. The results document the necessity of well-defined chemical control strategies adapted to different Pythium species. Since the intrinsic activity of azoxystrobin among species was quite stable and no resistant isolates were found, it may be applied without species differentiation provided it is used preventatively to also control highly aggressive isolates. For a reliable use of mefenoxam, precise identification and sensitivity tests of Pythium species are crucial because its intrinsic activity is quite variable and resistant isolates may exist. Appropriate mixtures and/or alternation of products may help to further delay resistance development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Evaluation of Self-Propelled High-Energy Ultrasonic Atomizer on Azoxystrobin and Tebuconazole Application in Sunlit Greenhouse Tomatoes.

    PubMed

    Li, Yan-Jie; Li, Yi-Fan; Chen, Rong-Hua; Li, Xue-Sheng; Pan, Can-Ping; Song, Jian-Li

    2018-05-28

    In this study, a self-propelled high-energy ultrasonic atomizer was evaluated in terms of deposition on the canopy, the loss to the ground, and fungicide residues in cherry tomato and tomato. Artificial collectors fixed to the upper side and underside of the leaves at different depths and heights were used to collect the depositions. A reliable analytical method for determination of azoxystrobin and tebuconazole in artificial collectors and residue samples was developed by using liquid chromatography triple-quadrupole mass spectrometry. The results showed that the atomizer distributed the droplets evenly throughout the greenhouse with good uniformity (CVs below 39%). The ratio of depositions on the internal and external sides was 66⁻83%, and the ratio of depositions on the underside and upper side was 39⁻50%. There were no significant differences in depositions between two different height crops. The residues of azoxystrobin and tebuconazole in tomato and cherry tomato fruits were far below the maximum residue limits at harvest time. In general, self-propelled high-energy ultrasonic atomizer used in a greenhouse could increase the depositions, especially on the underside and internal side of the canopies, and lead to a reduction of operator exposure risk.

  6. Effects of agricultural fungicides on microorganisms associated with floral nectar: susceptibility assays and field experiments.

    PubMed

    Bartlewicz, Jacek; Pozo, María I; Honnay, Olivier; Lievens, Bart; Jacquemyn, Hans

    2016-10-01

    Pesticides have become an inseparable element of agricultural intensification. While the direct impact of pesticides on non-target organisms, such as pollinators, has recently received much attention, less consideration has been given to the microorganisms that are associated with them. Specialist yeasts and bacteria are known to commonly inhabit floral nectar and change its chemical characteristics in numerous ways, possibly influencing pollinator attraction. In this study, we investigated the in vitro susceptibility of nectar yeasts Metschnikowia gruessi, Metschnikowia reukaufii, and Candida bombi to six widely used agricultural fungicides (prothioconazole, tebuconazole, azoxystrobin, fenamidone, boscalid, and fluopyram). Next, a commercial antifungal mixture containing tebuconazole and trifloxystrobin was applied to natural populations of the plant Linaria vulgaris and the occurrence, abundance, and diversity of nectar-inhabiting yeasts and bacteria was compared between treated and untreated plants. The results showed that prothioconazole and tebuconazole were highly toxic to nectar yeasts, inhibiting their growth at concentrations varying between 0.06 and 0.5 mg/L. Azoxystrobin, fenamidone, boscalid, and fluopyram on the other hand exhibited considerably lower toxicity, inhibiting yeast growth at concentrations between 1 and 32 mg/L or in many cases not inhibiting microbial growth at all. The application of the antifungal mixture in natural plant populations resulted in a significant decrease in the occurrence and abundance of yeasts in individual flowers, but this did not translate into noticeable changes in bacterial incidence and abundance. Yeast and bacterial species richness and distribution did not also differ between treated and untreated plants. We conclude that the application of fungicides may have negative effects on the abundance of nectar yeasts in floral nectar. The consequences of these effects on plant pollination processes in agricultural systems warrant further investigation.

  7. Natural Toxins for Use in Pest Management

    PubMed Central

    Duke, Stephen O.; Cantrell, Charles L.; Meepagala, Kumudini M.; Wedge, David E.; Tabanca, Nurhayat; Schrader, Kevin K.

    2010-01-01

    Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly successful products based on natural compounds in the major pesticide classes. These include the herbicide glufosinate (synthetic phosphinothricin), the spinosad insecticides, and the strobilurin fungicides. These and other examples of currently marketed natural product-based pesticides, as well as natural toxins that show promise as pesticides from our own research are discussed. PMID:22069667

  8. Biological characterization of fenpicoxamid, a new fungicide with utility in cereals and other crops

    PubMed Central

    Yao, Chenglin; Myung, Kyung; Kemmitt, Greg; Leader, Andrew; Meyer, Kevin G; Bowling, Andrew J; Slanec, Thomas; Kramer, Vincent J

    2017-01-01

    Abstract BACKGROUND The development of novel highly efficacious fungicides that lack cross‐resistance is extremely desirable. Fenpicoxamid (Inatreq™ active) possesses these characteristics and is a member of a novel picolinamide class of fungicides derived from the antifungal natural product UK‐2A. RESULTS Fenpicoxamid strongly inhibited in vitro growth of several ascomycete fungi, including Zymoseptoria tritici (EC50, 0.051 mg L−1). Fenpicoxamid is converted by Z. tritici to UK‐2A, a 15‐fold stronger inhibitor of Z. tritici growth (EC50, 0.0033 mg L−1). Strong fungicidal activity of fenpicoxamid against driver cereal diseases was confirmed in greenhouse tests, where activity on Z. tritici and Puccinia triticina matched that of fluxapyroxad. Due to its novel target site (Qi site of the respiratory cyt bc1 complex) for the cereals market, fenpicoxamid is not cross‐resistant to Z. tritici isolates resistant to strobilurin and/or azole fungicides. Across multiple European field trials Z. tritici was strongly controlled (mean, 82%) by 100 g as ha−1 applications of fenpicoxamid, which demonstrated excellent residual activity. CONCLUSIONS The novel chemistry and biochemical target site of fenpicoxamid as well as its lack of cross‐resistance and strong efficacy against Z. tritici and other pathogens highlight the importance of fenpicoxamid as a new tool for controlling plant pathogenic fungi. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28471527

  9. Chemical management in fungicide sensivity of Mycosphaerella fijiensis collected from banana fields in México

    PubMed Central

    Aguilar-Barragan, Alejandra; García-Torres, Ana Elisa; Odriozola-Casas, Olga; Macedo-Raygoza, Gloria; Ogura, Tetsuya; Manzo-Sánchez, Gilberto; James, Andrew C.; Islas-Flores, Ignacio; Beltrán-García, Miguel J.

    2014-01-01

    The chemical management of the black leaf streak disease in banana caused by Mycosphaerella fijiensis (Morelet) requires numerous applications of fungicides per year. However this has led to fungicide resistance in the field. The present study evaluated the activities of six fungicides against the mycelial growth by determination of EC50 values of strains collected from fields with different fungicide management programs: Rustic management (RM) without applications and Intensive management (IM) more than 25 fungicide application/year. Results showed a decreased sensitivity to all fungicides in isolates collected from IM. Means of EC50 values in mg L−1 for RM and IM were: 13.25 ± 18.24 and 51.58 ± 46.14 for azoxystrobin, 81.40 ± 56.50 and 1.8575 ± 2.11 for carbendazim, 1.225 ± 0.945 and 10.01 ± 8.55 for propiconazole, 220 ± 67.66 vs. 368 ± 62.76 for vinclozolin, 9.862 ± 3.24 and 54.5 ± 21.08 for fludioxonil, 49.2125 ± 34.11 and 112.25 ± 51.20 for mancozeb. A molecular analysis for β-tubulin revealed a mutation at codon 198 in these strains having an EC50 greater than 10 mg L−1 for carbendazim. Our data indicate a consistency between fungicide resistance and intensive chemical management in banana fields, however indicative values for resistance were also found in strains collected from rustic fields, suggesting that proximity among fields may be causing a fungus interchange, where rustic fields are breeding grounds for development of resistant strains. Urgent actions are required in order to avoid fungicide resistance in Mexican populations of M. fijiensis due to fungicide management practices. PMID:24948956

  10. Effects of 2 fungicide formulations on microbial and macroinvertebrate leaf decomposition under laboratory conditions

    USGS Publications Warehouse

    Elskus, Adria; Smalling, Kelly L.; Hladik, Michelle; Kuivila, Kathryn

    2016-01-01

    Aquatic fungi contribute significantly to the decomposition of leaves in streams, a key ecosystem service. However, little is known about the effects of fungicides on aquatic fungi and macroinvertebrates involved with leaf decomposition. Red maple (Acer rubrum) leaves were conditioned in a stream to acquire microbes (bacteria and fungi), or leached in tap water (unconditioned) to simulate potential reduction of microbial biomass by fungicides. Conditioned leaves were exposed to fungicide formulations QUILT (azoxystrobin + propiconazole) or PRISTINE (boscalid + pyraclostrobin), in the presence and absence of the leaf shredder, Hyalella azteca (amphipods; 7-d old at start of exposures) for 14 d at 23 °C. QUILT formulation (~ 0.3 μg/L, 1.8 μg/L, 8 μg/L) tended to increase leaf decomposition by amphipods (not significant) without a concomitant increase in amphipod biomass, indicating potential increased consumption of leaves with reduced nutritional value. PRISTINE formulation (~ 33 μg/L) significantly reduced amphipod growth and biomass (p<0.05), effects similar to those observed with unconditioned controls. The significant suppressive effects of PRISTINE on amphipod growth, and the trend towards increased leaf decomposition with increasing QUILT concentration, indicate the potential for altered leaf decay in streams exposed to fungicides. Further work is needed to evaluate fungicide effects on leaf decomposition under conditions relevant to stream ecosystems, including temperature shifts and pulsed exposures to pesticide mixtures.

  11. Toxicity of Pesticide Tank Mixtures from Rice Crops Against Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    PubMed

    de B Pazini, J; Pasini, R A; Rakes, M; de Armas, F S; Seidel, E J; da S Martins, J F; Grützmacher, A D

    2017-08-01

    The use of insecticides, herbicides, and fungicides commonly occurs in mixtures in tanks in order to control phytosanitary problems in crops. However, there is no information regarding the effects of these mixtures on non-target organisms associated to the rice agroecosystem. The aim of this study was to know the toxicity of pesticide tank mixtures from rice crops against Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Based on the methods adapted from the International Organisation for Biological and Integrated Control of Noxious Animals and Plants (IOBC), adults of T. podisi were exposed to residues of insecticides, herbicides, and fungicides, individually or in mixture commonly used by growers, in laboratory and on rice plants in a greenhouse. The mixture between fungicides tebuconazole, triclyclazole, and azoxystrobin and the mixture between herbicides cyhalofop-butyl, imazethapyr, imazapyr/imazapic, and penoxsulam are harmless to T. podisi and can be used in irrigated rice crops without harming the natural biological control. The insecticides cypermethin, thiamethoxam, and bifenthrin/carbosulfan increase the toxicity of the mixtures in tank with herbicides and fungicides, being more toxic to T. podisi and less preferred for use in phytosanitary treatments in the rice crop protection.

  12. A pesticide paradox: Fungicides indirectly increase fungal infections

    USGS Publications Warehouse

    Rohr, Jason R.; Brown, Jenise; Battaglin, William A.; McMahon, Teagan A.; Reylea, Rick A.

    2017-01-01

    There are many examples where the use of chemicals have had profound unintended consequences, such as fertilizers reducing crop yields (paradox of enrichment) and insecticides increasing insect pests (by reducing natural biocontrol). Recently, the application of agrochemicals, such as agricultural disinfectants and fungicides, has been explored as an approach to curb the pathogenic fungus, Batrachochytrium dendrobatidis (Bd), which is associated with worldwide amphibian declines. However, the long-term, net effects of early-life exposure to these chemicals on amphibian disease risk have not been thoroughly investigated. Using a combination of laboratory experiments and analysis of data from the literature, we explored the effects of fungicide exposure on Bd infections in two frog species. Extremely low concentrations of the fungicides azoxystrobin, chlorothalonil, and mancozeb were directly toxic to Bd in culture. However, estimated environmental concentrations of the fungicides did not reduce Bd on Cuban tree frog (Osteopilus septentrionalis) tadpoles exposed simultaneously to any of these fungicides and Bd, and fungicide exposure actually increased Bd-induced mortality. Additionally, exposure to any of these fungicides as tadpoles resulted in higher Bd abundance and greater Bd-induced mortality when challenged with Bd post-metamorphosis, an average of 71 d after their last fungicide exposure. Analysis of data from the literature revealed that previous exposure to the fungicide itraconazole, which is commonly used to clear Bd infections, made the critically endangered booroolong frog (Litoria booroolongensis) more susceptible to Bd. Finally, a field survey revealed that Bd prevalence was positively associated with concentrations of fungicides in ponds. Although fungicides show promise for controlling Bd, these results suggest that, if fungicides do not completely eliminate Bd or if Bd recolonizes, exposure to fungicides has the potential to do more harm than good. To ensure that fungicide applications have the intended consequence of curbing amphibian declines, researchers must identify which fungicides do not compromise the pathogen resistance mechanisms of amphibians.

  13. Biological characterization of fenpicoxamid, a new fungicide with utility in cereals and other crops.

    PubMed

    Owen, W John; Yao, Chenglin; Myung, Kyung; Kemmitt, Greg; Leader, Andrew; Meyer, Kevin G; Bowling, Andrew J; Slanec, Thomas; Kramer, Vincent J

    2017-10-01

    The development of novel highly efficacious fungicides that lack cross-resistance is extremely desirable. Fenpicoxamid (Inatreq™ active) possesses these characteristics and is a member of a novel picolinamide class of fungicides derived from the antifungal natural product UK-2A. Fenpicoxamid strongly inhibited in vitro growth of several ascomycete fungi, including Zymoseptoria tritici (EC 50 , 0.051 mg L -1 ). Fenpicoxamid is converted by Z. tritici to UK-2A, a 15-fold stronger inhibitor of Z. tritici growth (EC 50 , 0.0033 mg L -1 ). Strong fungicidal activity of fenpicoxamid against driver cereal diseases was confirmed in greenhouse tests, where activity on Z. tritici and Puccinia triticina matched that of fluxapyroxad. Due to its novel target site (Q i site of the respiratory cyt bc1 complex) for the cereals market, fenpicoxamid is not cross-resistant to Z. tritici isolates resistant to strobilurin and/or azole fungicides. Across multiple European field trials Z. tritici was strongly controlled (mean, 82%) by 100 g as ha -1 applications of fenpicoxamid, which demonstrated excellent residual activity. The novel chemistry and biochemical target site of fenpicoxamid as well as its lack of cross-resistance and strong efficacy against Z. tritici and other pathogens highlight the importance of fenpicoxamid as a new tool for controlling plant pathogenic fungi. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    USGS Publications Warehouse

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to organic matter in sediment and soils, it is particularly important to determine their effects on freshwater mussels and other freshwater benthic invertebrates in contact with sediments, as available toxicity studies with pelagic species, mainly Daphnia magna, may not be representative of these benthic organisms. Finally, there is a critical need for studies of the chronic effects of fungicides on reproduction, immunocompetence, and ecosystem function; sublethal endpoints with population and community-level relevance.

  15. The evaluation of trifloxystrobin in protection of Calendula officinalis (Pot marigold) against Erysiphe cichoracearum DC.

    PubMed

    Kurzawińska, H; Duda-Surman, J

    2006-01-01

    The aim of the two-years field's examinations was the evaluation of the fungicide Zato 50 WG (biologically active substances BAS--trifloxystrobin 50%) in protection of Calendula officinalis (Pot marigold) against Erysiphe cichoracearum. Mentioned fungicide was applied at three concentrations: 0.1, 0.15 and 0.2%. As the standard fungicide Amistar 250 SC (biologically active substances BAS - azoxystrobin 250 g/dm3) was used. In every year of research work the four protective treatments were carried out. The estimation of infestation degree of Calendula officinalis leafs by the Erysiphe cichoracearum was made 5 times. Before each treatment four analysis were done, whereas the last analysis--the fifth one was executed after 10 days from the last protective spraying. According to the results, it was found that investigated preparations significant reduced the mean infestation degree of Calendula officinalis leafs by the Erysiphe cichoracearum compared to the control. The results pointed, that in protection of the mentioned plant by the powdery mildew the 0.2% dose of Zato 50WG showed the best suitability.

  16. Dissipation and distribution behavior of azoxystrobin, carbendazim, and difenoconazole in pomegranate fruits.

    PubMed

    Utture, Sagar C; Banerjee, Kaushik; Dasgupta, Soma; Patil, Sangram H; Jadhav, Manjusha R; Wagh, Sameer S; Kolekar, Sanjay S; Anuse, Mansing A; Adsule, Pandurang G

    2011-07-27

    The dissipation behavior and degradation kinetics of azoxystrobin, carbendazim, and difenoconazole in pomegranate are reported. Twenty fruits/hectare (5 kg) were collected at random, ensuring sample-to-sample relative standard deviation (RSD) within 20-25%. Each fruit was cut into eight equal portions, and two diagonal pieces per fruit were drawn and combined to constitute the laboratory sample, resulting in RSDs <6% (n = 6). Crushed sample (15 g) was extracted with 10 mL of ethyl acetate (+ 10 g Na(2)SO(4)), cleaned by dispersive solid phase extraction on primary secondary amine (25 mg) and C(18) (25 mg), and measured by liquid chromatography tandem mass spectrometry. The limit of quantification was ≤0.0025 μg g(-1) for all the three fungicides, with calibration linearity in the concentration range of 0.001-0.025 μg mL(-1) (r(2) ≥ 0.999). The recoveries of each chemical were 75-110% at 0.0025, 0.005, and 0.010 μg g(-1) with intralaboratory Horwitz ratio <0.32 at 0.0025 μg g(-1). Variable matrix effects were recorded in different fruit parts viz rind, albedo, membrane, and arils, which could be correlated to their biochemical constituents as evidenced from accurate mass measurements on a Q-ToF LC-MS. The residues of carbendazim and difenoconazole were confined within the outer rind of pomegranate; however, azoxystrobin penetrated into the inner fruit parts. The dissipation of azoxystrobin, carbendazim, and difenoconazole followed first + first order kinetics at both standard and double doses, with preharvest intervals being 9, 60, and 26 days at standard dose. At double dose, the preharvest intervals extended to 20.5, 100, and 60 days, respectively.

  17. The evil within? Systemic fungicide application in trees enhances litter quality for an aquatic decomposer-detritivore system.

    PubMed

    Newton, Kymberly; Zubrod, Jochen P; Englert, Dominic; Lüderwald, Simon; Schell, Theresa; Baudy, Patrick; Konschak, Marco; Feckler, Alexander; Schulz, Ralf; Bundschuh, Mirco

    2018-06-05

    Waterborne exposure towards fungicides is known to trigger negative effects in aquatic leaf-associated microbial decomposers and leaf-shredding macroinvertebrates. We expected similar effects when these organisms use leaf material from terrestrial plants that were treated with systemic fungicides as a food source since the fungicides may remain within the leaves when entering aquatic systems. To test this hypothesis, we treated black alder (Alnus glutinosa) trees with a tap water control or a systemic fungicide mixture (azoxystrobin, cyprodinil, quinoxyfen, and tebuconazole) at two worst-case application rates. Leaves of these trees were used in an experiment targeting alterations in two functions provided by leaf-associated microorganisms, namely the decomposition and conditioning of leaf material. The latter was addressed via the food-choice response of the amphipod shredder Gammarus fossarum. During a second experiment, the potential impact of long-term consumption of leaves from trees treated with systemic fungicides on G. fossarum was assessed. Systemic fungicide treatment altered the resource quality of the leaf material resulting in trends of increased fungal spore production and an altered community composition of leaf-associated fungi. These changes in turn caused a significant preference of Gammarus for microbially conditioned leaves that had received the highest fungicide treatment over control leaves. This higher food quality ultimately resulted in a higher gammarid growth (up to 300% increase) during the long-term feeding assay. Although the underlying mechanisms still need to be addressed, the present study demonstrates a positive indirect response in aquatic organisms due to systemic pesticide application in a terrestrial system. As the effects from the introduction of plant material treated with systemic fungicides strongly differ from those mediated via other pathways (e.g., waterborne exposure), our study provides a novel perspective of fungicide-triggered effects in aquatic detritus-based food webs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Signum, a new fungicide with interesting properties in resistance management of fungal diseases in strawberries.

    PubMed

    Hauke, K; Creemers, P; Brugmans, W; Van Laer, S

    2004-01-01

    Signum, a new fungicide developed by BASF, was applied during 6 successive years against fungal diseases in strawberries. The product is formulated as a water dispersible granule, containing 6.7 % pyraclostrobin and 26.7 % boscalid. Pyraclostrobin is similar in chemistry to other strobilurin fungicides like kresoxim-methyl and trifloxystrobin, registered for fruit disease control. Boscalid belongs to the class of carboxyanilides. Both components in the premix formulation combine two different biochemical modes of action in the fungal cell respiration. Therefore, this co-formulation gives a broad-spectrum activity and also a reduced resistance risk for different target pathogens. Botrytis cinerea is the most important disease on strawberry-fruits and thus the control of fruit rot is mainly focused on this fungus. In average over 6 years, Signum has not only given a very good control against Botrytis fruit rot, but it has also shown a high performance in the control of Colletotrichum. Besides, Signum provides good control of powdery mildew (Podosphaera aphanis) and limits the shift to other fruit rots like leather rot (Phytophthora cactorum and leak (Rhizopus, Mucor). The availability of several categories of fungicide families with a different mode of action gives opportunities in alternating different fungicides and is the best guarantee for a sustainable control of fruit rot in all kinds of strawberry production methods. Signum should be integrated in an overall disease management program. Trials, in which the applications of Signum were timed on disease forecasting, based on environmental factors favorable for Botrytis development, were very promising. This tool can also help in establishing the IPM-concept in the production of strawberries.

  19. Photochemical transformation of azoxystrobin in aqueous solutions.

    PubMed

    Boudina, A; Emmelin, C; Baaliouamer, A; Païssé, O; Chovelon, J M

    2007-07-01

    The photochemical behaviour of azoxystrobin fungicide (AZX) in water was studied under laboratory conditions. Photodegradation was initiated using a solar simulator (xenon arc lamp) or a jacketed Pyrex reaction cell equipped with a 125 W, high-pressure mercury lamp. HPLC/MS analysis (APCI and ESI in positive and negative modes) was used to identify AZX photoproducts. The calculated polychromatic quantum efficiencies (phi) of AZX at pH 4.5, 7 and 9 were 5.42 x 10(-3), 3.47 x 10(-3) and 3.06 x 10(-3) (degraded molecules per absorbed photon), respectively. The relatively narrow range of values indicates the stability of AZX with respect to photodegradation in the studied pH range. Results from the HPLC/MS analysis suggest that the phototransformation of AZX proceeds via multiple, parallel reaction pathways including: (1) photo-isomerization (E-->Z), (2) photo-hydrolysis of the methyl ester and of the nitrile group, (3) cleavage of the acrylate double bond, (4) photohydrolytic ether cleavage between the aromatic ring giving phenol, and (5) oxidative cleavage of the acrylate double bond.

  20. Efficacy of different fungicides against Rhizoctonia brown patch and Pythium blight on turfgrass in Italy.

    PubMed

    Mocioni, M; Titone, P; Garibaldi, A; Gullino, M L

    2003-01-01

    Brown patch, incited by Rhizoctonia solani Kuhn, and Pythium blight, caused by Pythium spp. are two of the diseases most frequently observed on turfgrass in high maintenance stands, as on golf courses. In such conditions the control strategies, based on chemicals, are particularly difficult due to the scarcity of fungicides registered for turf in Italy. The results obtained in experimental trials carried out to evaluate the efficacy of chemical and biological products against brown patch and Pythium blight are reported. On mature turfgrass, maintained under fairway conditions, azoxystrobin, and trifoxystrobin, not yet registered on turf, were very effective against brown patch. Tebuconazole, applied in three different formulations, was very effective against R. solani, while Trichoderma spp. and azadiractine did not control the pathogen. In greenhouse conditions on Agrostis stolonifera, in the presence of severe disease incidence, due to artificial inoculation, benalaxyl-M satisfactorily controlled Pythium blight; Trichoderma spp. as well as a commercial formulation of T. harzianum, applied one week before the inoculation, were not effective. Among the fungicides not yet registered for use on turfgrass in Italy, metalaxyl-M + mancozeb was effective against Pythium blight.

  1. Rational Design of Highly Potent and Slow-Binding Cytochrome bc1 Inhibitor as Fungicide by Computational Substitution Optimization

    PubMed Central

    Hao, Ge-Fei; Yang, Sheng-Gang; Huang, Wei; Wang, Le; Shen, Yan-Qing; Tu, Wen-Long; Li, Hui; Huang, Li-Shar; Wu, Jia-Wei; Berry, Edward A.; Yang, Guang-Fu

    2015-01-01

    Hit to lead (H2L) optimization is a key step for drug and agrochemical discovery. A critical challenge for H2L optimization is the low efficiency due to the lack of predictive method with high accuracy. We described a new computational method called Computational Substitution Optimization (CSO) that has allowed us to rapidly identify compounds with cytochrome bc1 complex inhibitory activity in the nanomolar and subnanomolar range. The comprehensively optimized candidate has proved to be a slow binding inhibitor of bc1 complex, ~73-fold more potent (Ki = 4.1 nM) than the best commercial fungicide azoxystrobin (AZ; Ki = 297.6 nM) and shows excellent in vivo fungicidal activity against downy mildew and powdery mildew disease. The excellent correlation between experimental and calculated binding free-energy shifts together with further crystallographic analysis confirmed the prediction accuracy of CSO method. To the best of our knowledge, CSO is a new computational approach to substitution-scanning mutagenesis of ligand and could be used as a general strategy of H2L optimisation in drug and agrochemical design.

  2. Single and Combined Effects of Pesticide Seed Dressings and Herbicides on Earthworms, Soil Microorganisms, and Litter Decomposition.

    PubMed

    Van Hoesel, Willem; Tiefenbacher, Alexandra; König, Nina; Dorn, Verena M; Hagenguth, Julia F; Prah, Urša; Widhalm, Theresia; Wiklicky, Viktoria; Koller, Robert; Bonkowski, Michael; Lagerlöf, Jan; Ratzenböck, Andreas; Zaller, Johann G

    2017-01-01

    Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides, aiming to protect seeds from pests and diseases, is widely used in conventional agriculture. During the growing season, those crop fields often receive additional broadband herbicide applications. However, despite this broad utilization, very little is known on potential side effects or interactions between these different pesticide classes on soil organisms. In a greenhouse pot experiment, we studied single and interactive effects of seed dressing of winter wheat ( Triticum aestivum L. var. Capo ) with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and an additional one-time application of a glyphosate-based herbicide on the activity of earthworms, soil microorganisms, litter decomposition, and crop growth. To further address food-web interactions, earthworms were introduced to half of the experimental units as an additional experimental factor. Seed dressings significantly reduced the surface activity of earthworms with no difference whether insecticides or fungicides were used. Moreover, seed dressing effects on earthworm activity were intensified by herbicides (significant herbicide × seed dressing interaction). Neither seed dressings nor herbicide application affected litter decomposition, soil basal respiration, microbial biomass, or specific respiration. Seed dressing did also not affect wheat growth. We conclude that interactive effects on soil biota and processes of different pesticide classes should receive more attention in ecotoxicological research.

  3. Pathogenesis-related protein expression in the apoplast of wheat leaves protected against leaf rust following application of plant extracts.

    PubMed

    Naz, Rabia; Bano, Asghari; Wilson, Neil L; Guest, David; Roberts, Thomas H

    2014-09-01

    Leaf rust (Puccinia triticina) is a major disease of wheat. We tested aqueous leaf extracts of Jacaranda mimosifolia (Bignoniaceae), Thevetia peruviana (Apocynaceae), and Calotropis procera (Apocynaceae) for their ability to protect wheat from leaf rust. Extracts from all three species inhibited P. triticina urediniospore germination in vitro. Plants sprayed with extracts before inoculation developed significantly lower levels of disease incidence (number of plants infected) than unsprayed, inoculated controls. Sprays combining 0.6% leaf extracts and 2 mM salicylic acid with the fungicide Amistar Xtra at 0.05% (azoxystrobin at 10 μg/liter + cyproconazole at 4 μg/liter) reduced disease incidence significantly more effectively than sprays of fungicide at 0.1% alone. Extracts of J. mimosifolia were most active, either alone (1.2%) or in lower doses (0.6%) in combination with 0.05% Amistar Xtra. Leaf extracts combined with fungicide strongly stimulated defense-related gene expression and the subsequent accumulation of pathogenesis-related (PR) proteins in the apoplast of inoculated wheat leaves. The level of protection afforded was significantly correlated with the ability of extracts to increase PR protein expression. We conclude that pretreatment of wheat leaves with spray formulations containing previously untested plant leaf extracts enhances protection against leaf rust provided by fungicide sprays, offering an alternative disease management strategy.

  4. Fitness, Competitive Ability, and Mutation Stability of Isolates of Colletotrichum acutatum from Strawberry Resistant to QoI Fungicides.

    PubMed

    Forcelini, Bruna B; Rebello, Carolina S; Wang, Nan-Yi; Peres, Natalia A

    2018-04-01

    Quinone-outside inhibitor (QoI) fungicides are used to manage anthracnose of strawberry, caused by Colletotrichum acutatum. However, selection for resistance to QoI fungicides was first reported in 2013 in Florida and, subsequently, in strawberry nurseries and production areas across the United States and Canada. C. acutatum resistance to QoIs is associated with the G143A point mutation in the cytochrome b gene. This mutation is known to be associated with field resistance even at high rates of QoI. In this study, we investigated the relative fitness and competitive ability of QoI-resistant and -sensitive C. acutatum isolates. A fitness comparison did not indicate any difference between resistant and sensitive isolates in aggressiveness, spore production, and mycelial growth at different temperatures. Additionally, in the absence of selection pressure, resistant and sensitive isolates were equally competitive. Cultivation of QoI-resistant and QoI-sensitive isolates for four culture cycles in vitro in the absence of azoxystrobin showed that QoI resistance was stable. The observed lack of fitness penalties and stability of the G143A mutation in QoI-resistant C. acutatum populations suggest that the interruption and further reintroduction of QoI fungicides might not be an option for strawberry nurseries and fruit production areas. Further investigation of alternative chemical and nonchemical C. acutatum control practices, in addition to the integration of multisite fungicides, is needed to reduce the occurrence and distribution of QoI-resistant populations in strawberry fields.

  5. The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community.

    PubMed

    Marinozzi, Maria; Coppola, Laura; Monaci, Elga; Karpouzas, Dimitrios G; Papadopoulou, Evangelia; Menkissoglu-Spiroudi, Urania; Vischetti, Costantino

    2013-04-01

    Biopurification systems (BPS) have been introduced to minimise the risk for point source contamination of natural water resources by pesticides. Their depuration efficiency relies mostly on the high biodegradation of their packing substrate (biomixture). Despite that, little is known regarding the interactions between biomixture microflora and pesticides, especially fungicides which are expected to have a higher impact on the microbial community. This study reports the dissipation of the fungicides azoxystrobin (AZX), fludioxonil (FL) and penconazole (PC), commonly used in vineyards, in a biomixture composed of pruning residues and straw used in vineyard BPS. The impact of fungicides on the microbial community was also studied via microbial biomass carbon, basal respiration and phospholipid fatty acid analysis. AZX dissipated faster (t1/2 = 30.1 days) than PC (t1/2 = 99.0 days) and FL (t1/2 = 115.5 days). Fungicides differently affected the microbial community. PC showed the highest adverse effect on both the size and the activity of the biomixture microflora. A significant change in the structure of the microbial community was noted for PC and FL, and it was attributed to a rapid inhibition of the fungal fraction while bacteria showed a delayed response which was attributed to indirect effects by the late proliferation of fungi. All effects observed were transitory and a full recovery of microbial indices was observed 60 days post-application. Overall, no clear link between pesticide persistence and microbial responses was observed stressing the complex nature of interactions between pesticides in microflora in BPS.

  6. Occurrence of fungicides and other pesticides in surface water, groundwater, and sediment from three targeted-use areas in the United States, 2009

    USGS Publications Warehouse

    Orlando, James L.; Smalling, Kelly L.; Reilly, Timothy J.; Boehlke, Adam; Meyer, Michael T.; Kuivila, Kathryn

    2013-01-01

    Surface-water, groundwater, and suspended- and bedsediment samples were collected in three targeted-use areas in the United States where potatoes were grown during 2009 and analyzed for an extensive suite of fungicides and other pesticides by gas chromatograph/mass spectrometry and liquid chromatography with tandem mass spectrometry. Fungicides were detected in all environmental matrices sampled during the study. The most frequently detected fungicides were azoxystrobin, boscalid, chlorothalonil, and pyraclostrobin. Other pesticides that were detected frequently included amino phosphonic acid (AMPA), atrazine, metolaclor, and the organochlorine insecticide p,p’-DDT and its degradates p,p’-DDD and p,p’-DDE. A greater number of pesticides were detected in surface water relative to the other environmental matrices sampled, and at least one pesticide was detected in 62 of the 63 surfacewater samples. The greatest numbers of pesticides and the maximum observed concentrations for most pesticides were measured in surface-water samples from Idaho. In eight surface- water samples (six from Idaho and two from Wisconsin), concentrations of bifenthrin, metolachlor, or malathion exceeded U.S. Environmental Protection Agency freshwater aquatic-life benchmarks for chronic toxicity to invertebrates. Thirteen pesticides, including seven fungicides, were detected in groundwater samples. Shallow groundwater samples collected beneath recently harvested potato fields contained more pesticides and had higher concentrations of pesticides than samples collected from other groundwater sources sampled during the study. Generally, pesticide concentrations were lower in groundwater samples than in surfacewater or sediment samples, with the exception of the fungicide boscalid, which was found to have its highest concentration in a shallow groundwater sample collected in Wisconsin. Thirteen pesticides, including four fungicides, were detected in suspended-sediment samples. The most frequently detected compounds were the fungicides boscalid, pyraclostrobin, and zoxamide, and the degradates p,p’-DDD and p,p’-DDE. Twenty pesticides, including six fungicides, were detected in bed-sediment samples. The most frequently detected compounds were pyraclostrobin, p,p’-DDT, p,p’-DDD, and p,p’-DDE.

  7. Degradation of Kresoxim-Methyl in Water: Impact of Varying pH, Temperature, Light and Atmospheric CO2 Level.

    PubMed

    Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho

    2016-01-01

    In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in water. Results revealed that kresoxim-methyl readily form acid metabolite. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. In water, influence of various abiotic factors like pH, temperature, light and atmospheric carbon dioxide level on dissipation of kresoxim-methyl was studied. The half life value for kresoxim-methyl and total residue varied from 1 to 26.1 and 6.1 to 94.0 days under different conditions. Statistical analysis revealed the significant effect of abiotic factors on the dissipation of kresoxim-methyl from water.

  8. Effect of anilinopyrimidine resistance on aflatoxin production and fitness parameters in Aspergillus parasiticus Speare.

    PubMed

    Markoglou, Anastasios N; Doukas, Eleftherios G; Malandrakis, Anastasios A

    2011-03-30

    Mutants of Aspergillus parasiticus resistant to the anilinopyrimidine fungicides were isolated at a high mutation frequency after UV-mutagenesis and selection on media containing cyprodinil. In vitro fungitoxicity tests resulted in the identification of two predominant resistant phenotypes that were highly (R(1)-phenotype) and moderately (R(2)-phenotype) resistant to the anilinopyrimidines cyprodinil, pyrimethanil and mepanipyrim. Cross-resistance studies with fungicides from other chemical groups showed that the highly resistance mutation(s) did not affect the sensitivity of R(1)-mutant strains to fungicides affecting other cellular pathways. Contrary to that, a reduction in the sensitivity to the triazoles epoxiconazole and flusilazole, the benzimidazole carbendazim, the phenylpyrrole fludioxonil, the dicarboximide iprodione and to the strobilurin-type fungicide pyraclostrobin was observed in R(2)-mutant strains. Study of fitness parameters of anilinopyrimidine-resistant strains of both phenotypic classes showed that all R(1) mutant strains had mycelial growth rate, sporulation and conidial germination similar to or even higher than the wild-type parent strain, while these fitness parameters were negatively affected in R(2) mutant strains. Analysis of the aflatoxin production showed that most R(1) mutant strains produced aflatoxins at concentrations markedly higher than the wild-type parent strain. A considerable reduction in the aflatoxin production was observed on cultured medium and on wheat grains by all R(2) mutant strains, indicating a possible correlation between fitness penalties and aflatoxigenic ability of A. parasiticus. The potential risk of increased aflatoxin contamination of agricultural products and their byproducts by the appearance and predominance of highly aflatoxigenic mutant strains of A. parasiticus resistant to the anilinopyrimidines is discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Pollen viability, physiology, and production of maize plants exposed to pyraclostrobin+epoxiconazole.

    PubMed

    Junqueira, Verônica Barbosa; Costa, Alan Carlos; Boff, Tatiana; Müller, Caroline; Mendonça, Maria Andréia Corrêa; Batista, Priscila Ferreira

    2017-04-01

    The use of fungicides in maize has been more frequent due to an increase in the incidence of diseases and also the possible physiological benefits that some of these products may cause. However, some of these products (e.g., strobilurins and triazoles) may interfere with physiological processes and the formation of reproductive organs. Therefore, the effect of these products on plants at different developmental stages needs to be better understood to reduce losses and maximize production. The effect of the fungicide pyraclostrobin+epoxiconazole (P+E) was evaluated at different growth stages in meiosis, pollen grain viability and germination, physiology, and production of maize plants in the absence of disease. An experiment was carried out with the hybrid DKB390 PROII and the application of pyraclostrobin+epoxiconazole at the recommended dose and an untreated control at 3 different timings (S1 - V10; S2 - V14; S3 - R1) with 5 replications. Gas exchange, chlorophyll fluorescence, pollen viability and germination, as well as the hundred-grain weight were evaluated. Anthers were collected from plants of S1 for cytogenetic analysis. The fungicide pyraclostrobin+epoxiconazole reduced the viability of pollen grains (1.4%), but this was not enough to reduce production. Moreover, no differences were observed in any of the other parameters analyzed, suggesting that P+E at the recommended dose and the tested stages does not cause toxic effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin.

    PubMed

    Rodrigues, Elsa T; Pardal, Miguel Â; Laizé, Vincent; Cancela, M Leonor; Oliveira, Paulo J; Serafim, Teresa L

    2015-11-01

    The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC50) better matches the in vivo short-term Sparus aurata median lethal concentration (LC50). IC50s and LC50 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC50,96h/IC50,48h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC50,96h/IC50,72h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology.

    PubMed

    Yang, Miyi; Wu, Xiaoling; Jia, Yuhan; Xi, Xuefei; Yang, Xiaoling; Lu, Runhua; Zhang, Sanbing; Gao, Haixiang; Zhou, Wenfeng

    2016-02-04

    In this work, a novel effervescence-assisted microextraction technique was proposed for the detection of four fungicides. This method combines ionic liquid-based dispersive liquid-liquid microextraction with the magnetic retrieval of the extractant. A magnetic effervescent tablet composed of Fe3O4 magnetic nanoparticles, sodium carbonate, sodium dihydrogen phosphate and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonimide) was used for extractant dispersion and retrieval. The main factors affecting the extraction efficiency were screened by a Plackett-Burman design and optimized by a central composite design. Under the optimum conditions, good linearity was obtained for all analytes in pure water model and real water samples. Just for the pure water, the recoveries were between 84.6% and 112.8%, the limits of detection were between 0.02 and 0.10 μg L(-1) and the intra-day precision and inter-day precision both are lower than 4.9%. This optimized method was successfully applied in the analysis of four fungicides (azoxystrobin, triazolone, cyprodinil, trifloxystrobin) in environmental water samples and the recoveries ranged between 70.7% and 105%. The procedure promising to be a time-saving, environmentally friendly, and efficient field sampling technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Interactive effects of an insecticide and a fungicide on different organism groups and ecosystem functioning in a stream detrital food web.

    PubMed

    Dawoud, Mohab; Bundschuh, Mirco; Goedkoop, Willem; McKie, Brendan G

    2017-05-01

    Freshwater ecosystems are often affected by cocktails of multiple pesticides targeting different organism groups. Prediction and evaluation of the ecosystem-level effects of these mixtures is complicated by the potential not only for interactions among the pesticides themselves, but also for the pesticides to alter biotic interactions across trophic levels. In a stream microcosm experiment, we investigated the effects of two pesticides targeting two organism groups (the insecticide lindane and fungicide azoxystrobin) on the functioning of a model stream detrital food web consisting of a detritivore (Ispoda: Asellus aquaticus) and microbes (an assemblage of fungal hyphomycetes) consuming leaf litter. We assessed how these pesticides interacted with the presence and absence of the detritivore to affect three indicators of ecosystem functioning - leaf decomposition, fungal biomass, fungal sporulation - as well as detritivore mortality. Leaf decomposition rates were more strongly impacted by the fungicide than the insecticide, reflecting especially negative effects on leaf processing by detritivores. This result most like reflects reduced fungal biomass and increased detritivore mortality under the fungicide treatment. Fungal sporulation was elevated by exposure to both the insecticide and fungicide, possibly representing a stress-induced increase in investment in propagule dispersal. Stressor interactions were apparent in the impacts of the combined pesticide treatment on fungal sporulation and detritivore mortality, which were reduced and elevated relative to the single stressor treatments, respectively. These results demonstrate the potential of trophic and multiple stressor interactions to modulate the ecosystem-level impacts of chemicals, highlighting important challenges in predicting, understanding and evaluating the impacts of multiple chemical stressors on more complex food webs in situ. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum

    PubMed Central

    2010-01-01

    Background Fusarium head blight is a very important disease of small grain cereals with F. graminearum as one of the most important causal agents. It not only causes reduction in yield and quality but from a human and animal healthcare point of view, it produces mycotoxins such as deoxynivalenol (DON) which can accumulate to toxic levels. Little is known about external triggers influencing DON production. Results In the present work, a combined in vivo/in vitro approach was used to test the effect of sub lethal fungicide treatments on DON production. Using a dilution series of prothioconazole, azoxystrobin and prothioconazole + fluoxastrobin, we demonstrated that sub lethal doses of prothioconazole coincide with an increase in DON production 48 h after fungicide treatment. In an artificial infection trial using wheat plants, the in vitro results of increased DON levels upon sub lethal prothioconazole application were confirmed illustrating the significance of these results from a practical point of view. In addition, further in vitro experiments revealed a timely hyperinduction of H2O2 production as fast as 4 h after amending cultures with prothioconazole. When applying H2O2 directly to germinating conidia, a similar induction of DON-production by F. graminearum was observed. The effect of sub lethal prothioconazole concentrations on DON production completely disappeared when applying catalase together with the fungicide. Conclusions These cumulative results suggest that H2O2 induced by sub lethal doses of the triazole fungicide prothioconazole acts as a trigger of DON biosynthesis. In a broader framework, this work clearly shows that DON production by the plant pathogen F. graminearum is the result of the interaction of fungal genomics and external environmental triggers. PMID:20398299

  14. Dissolved pesticides, dissolved organic carbon, and water-quality characteristics in selected Idaho streams, April--December 2010

    USGS Publications Warehouse

    Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.

    2012-01-01

    Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.

  15. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples.

    PubMed

    Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang

    2015-02-13

    A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Antibiotics in the chemical communication of fungi.

    PubMed

    Kettering, Melanie; Sterner, Olov; Anke, Timm

    2004-01-01

    In dual cultures Oudemansiella mucida and Xerula melanotricha (basidiomycetes) react to the presence of living Penicillium notatum or P. turbatum with an increased production of strobilurin A (1) or X (2). P. notatum in turn reacts to the two basidiomycetes or their antibiotic strobilurin A alone with the production of N-(2-hydroxypropanoyl)-2-aminobenzoic acid amide (3) or chrysogine (4). P. melinii and P. urticae overgrow O. mucida due to complete resistance to strobilurin A. P. brevicompactum, P. citrinum, P. janczewskii and the other Penicillium strains are all sensitive but apparently do not induce O. mucida to produce the amounts of strobilurin A needed to inhibit their growth.

  17. Effects of Insecticides and Fungicides Commonly Used in Tomato Production on Phytoseiulus persimilis (Acari: Phtyoseiidae).

    PubMed

    Ditillo, J L; Kennedy, G G; Walgenbach, J F

    2016-12-01

    The twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is an important pest of tomatoes in North Carolina. Resident populations of the predatory mite Phytoseiulus persimilis have recently been detected on field-grown tomatoes in central North Carolina, and potentially can be a useful biological control agent against T. urticae Laboratory bioassays were used to assess lethal and reproductive effects of 10 insecticides and five fungicides commonly used in commercial tomato production (chlorantraniliprole, spinetoram, permethrin, imidacloprid, dimethoate, dinotefuran, thiamethoxam, bifenthrin, fenpropathrin, lambda-cyhalothrin, azoxystrobin, chlorothalonil, boscalid, cyazofamid, and mancozeb) on P. persimilis adult females and eggs. Insecticides were tested using concentrations equivalent to 1×, 0.5×, and 0.1× of the recommended field rates. Fungicides were tested at the 1× rate only. Dimethoate strongly impacted P. persimilis with high adult mortality, reduced fecundity, and reduced hatch of eggs laid by treated adults, particularly at high concentrations. The pyrethroids lambda-cyhalothrin, bifenthrin, and fenpropathrin were associated with repellency and reproductive effects at high concentrations. Bifenthrin additionally caused increased mortality at high concentrations. Chlorantraniliprole, dinotefuran, and permethrin did not significantly affect mortality or reproduction. Imidacloprid significantly reduced fecundity and egg viability, but was not lethal to adult P. persimilis Thiamethoxam negatively impacted fecundity at the 1× rate. There were no negative effects associated with fungicide exposure with the exception of mancozeb, which impacted fecundity. Field trials were conducted to explore the in vivo impacts of screened insecticides on P. persimilis populations in the field. Field trials supported the incompatibility of dimethoate with P. persimilis populations. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Acute toxicity and associated mechanisms of four strobilurins in algae.

    PubMed

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-06-01

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Input dynamics of pesticide transformation products into surface water

    NASA Astrophysics Data System (ADS)

    Kern, Susanne; Singer, Heinz; Hollender, Juliane; Schwarzenbach, René P.; Fenner, Kathrin

    2010-05-01

    Some pesticide transformation products have been observed to occur in higher concentrations and more frequently than the parent active pesticide in surface water and groundwater. These products are often more mobile and sometimes more stable than the parent pesticide. If they also represent the major product into which the parent substance is transformed, these transformation products may dominate observed pesticide occurrences in surface water and groundwater. Their potential contribution to the overall risk to the aquatic environment caused by the use of the parent pesticide should therefore not be neglected in chemical risk and water quality assessments. The same is true for transformation products of other compound classes that might reach the soil environment, such as veterinary pharmaceuticals. However, the fate and input pathways of transformation products of soil-applied chemicals into surface water are not yet well understood, which largely prevents their appropriate inclusion into chemical risk and water quality assessments. Here, we studied whether prioritization methods based on available environmental fate data from pesticide registration dossiers in combination with basic fate models could help identify transformation products which can be found in relevant concentrations in surface and groundwater and which should therefore be included into monitoring programs. A three-box steady state model containing air, soil, and surface water compartments was used to predict relative inputs of pesticide transformation products into surface waters based on their physico-chemical and environmental fate properties. The model predictions were compared to monitoring data from a small Swiss river located in an intensely agricultural catchment (90 km2) which was flow-proportionally sampled from May to October 2008 and screened for 74 pesticides as well as 50 corresponding transformation products. Sampling mainly occurred during high discharge, but additional samples during baseflow conditions were also taken. The analytical measurements included solid phase extraction, liquid chromatography and high resolution mass spectrometry (SPE-LC-HR-MS/MS). Quantification was achieved using reference standards and internal standards. Besides the well-known transformation products of triazine and chloroacetanilide herbicides, transformation products of other compound classes such as azoxystrobin acid (from azoxystrobin, strobilurin fungicide), chloridazon-desphenyl and chloridazon-methyl-desphenyl (from chloridazon, pyridazinone herbicide), and metamitron-desamino (from metamitron, triazinone herbicide) were analyzed in surface water. For a selection of widely used pesticides in the catchment, modelled ratios of transformation product versus parent pesticide concentrations were compared to the measured concentration ratios in the river for the application period and for two 2-month periods following application. Concentration ratios agreed within a factor of 10 for all pairs of parent pesticides and transformation products, and for all seasons, with a single exception. The ratio of chloridazon-desphenyl to chloridazon was under-predicted by a factor of approximately 20. The data revealed that chloridazon-desphenyl was also found in elevated concentrations in all baseflow samples, indicating its presence in the groundwater component of the catchment. The same was true for other transformation products (e.g., metamitron-desamino, chloridazon-methly-desphenyl, metolachlor-ESA), but to a lesser degree. Based on baseflow separation of the hydrograph, the concentration ratio estimation model was supplemented with an additional baseflow component. The concentrations in the baseflow component were estimated with a simple leaching relationship that was compared against measured baseflow concentrations and groundwater findings in Switzerland. The final model yielded good agreement for all compounds and is therefore deemed suitable for prioritization of transformation products with a relevant exposure potential. It also clearly indicated the contribution of groundwater to the overall occurrence of pesticides and their transformation products in Swiss surface waters.

  20. Liquid chromatography-tandem mass spectrometry method for simultaneous quantification of azoxystrobin and its metabolites, azoxystrobin free acid and 2-hydroxybenzonitrile, in greenhouse-grown lettuce.

    PubMed

    Gautam, Maheswor; Fomsgaard, Inge S

    2017-12-01

    Lettuce is an important part of the diet in Europe. The permitted levels of pesticides in lettuce are strictly regulated and there is growing urge among food safety authorities to analyse pesticide metabolites as well. Azoxystrobin is one of pesticides that is frequently detected in lettuce. Although there are several analytical methods for the determination of azoxystrobin in lettuce, a sensitive method for the determination of its metabolites in lettuce is lacking. This study aimed at developing an extraction and LC-MS/MS method for the simultaneous determination of azoxystrobin, and its metabolites azoxystrobin free acid and 2-hydroxybenzonitrile in lettuce. Accelerated solvent extraction, QuEChERS extraction, and shaking extraction were compared using various solvents. The final method consisted of shaking freeze-dried sample in 0.1% formic acid in 80% aqueous acetonitrile. The selected method was validated by spiking each analyte at 125 ng/g and 500 ng/g. The method resulted in acceptable recovery for 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin, with a RSD of <10%. The matrix-matched calibration curve for each analyte was linear over the range of quantification, with a correlation coefficient ≥0.98. The method was sensitive for the determination of 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin, with limits of quantification of 0.36, 0.48, and 0.68 ng/g dry weight, respectively. The method was successfully applied to quantify 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin in greenhouse-grown lettuce.

  1. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    PubMed Central

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  2. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment

    PubMed Central

    Filippou, Panagiota; Antoniou, Chrystalla; Obata, Toshihiro; Van Der Kelen, Katrien; Harokopos, Vaggelis; Kanetis, Loukas; Aidinis, Vassilis; Van Breusegem, Frank; Fernie, Alisdair R; Fotopoulos, Vasileios

    2016-01-01

    Biotic and abiotic stresses, such as fungal infection and drought, cause major yield losses in modern agriculture. Kresoxim-methyl (KM) belongs to the strobilurins, one of the most important classes of agricultural fungicides displaying a direct effect on several plant physiological and developmental processes. However, the impact of KM treatment on salt and drought stress tolerance is unknown. In this study we demonstrate that KM pre-treatment of Medicago truncatula plants results in increased protection to drought and salt stress. Foliar application with KM prior to stress imposition resulted in improvement of physiological parameters compared with stressed-only plants. This protective effect was further supported by increased proline biosynthesis, modified reactive oxygen and nitrogen species signalling, and attenuation of cellular damage. In addition, comprehensive transcriptome analysis identified a number of transcripts that are differentially accumulating in drought- and salinity-stressed plants (646 and 57, respectively) after KM pre-treatment compared with stressed plants with no KM pre-treatment. Metabolomic analysis suggests that the priming role of KM in drought- and to a lesser extent in salinity-stressed plants can be attributed to the regulation of key metabolites (including sugars and amino acids) resulting in protection against abiotic stress factors. Overall, the present study highlights the potential use of this commonly used fungicide as a priming agent against key abiotic stress conditions. PMID:26712823

  3. Agricultural pesticides and veterinary substances in Uruguayan beeswax.

    PubMed

    Harriet, Jorge; Campá, Juan Pablo; Grajales, Mauricio; Lhéritier, Christophe; Gómez Pajuelo, Antonio; Mendoza-Spina, Yamandú; Carrasco-Letelier, Leonidas

    2017-06-01

    Over the last decade, Uruguay has expanded and intensified its rainfed crop production. This process has affected beekeeping in several ways: for example, by reducing the space available. This has increased the density of apiaries, the risk of varroosis and acaricide use. Additionally, the dominance of no-tillage crops has increased the frequencies of application and of loads of pesticides in regions where such crops share the land with beekeeping and honey production. Therefore, the exposure of bees to xenobiotics (agricultural pesticides and veterinary products) has increased in line with pollution of hives and their products. To document pollution from hive exposure to pesticides, we surveyed the presence of 30 xenobiotics normally used in Uruguay, in recycled beeswax (RB) and in honey cappings (HC) from the main Uruguayan beekeeping regions. There was contamination of all the analyzed samples (RB and HC) with the herbicide atrazine at a range of 1-2 ng g -1 . At least three or four additional xenobiotics were detected: insecticides (chlorpyrifos-ethyl and thiacloprid); fungicides (azoxystrobin and tebuconazole); and veterinary products (coumaphos, ethion, and tau-fluvalinate). The frequency of detection of chlorpyrifos-ethyl and coumaphos in RB samples was higher than in those of HC. Moreover, the concentrations of azoxystrobin, coumaphos, and tebuconazole in RB samples were higher than in HC samples. Therefore, we suggest the use of HC to produce recycled printed beeswax films for use in hives to minimize pollution transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Metabolism of 14C-azoxystrobin in water at different pH.

    PubMed

    Singh, Neera; Singh, Shashi B; Mukerjee, Irani; Gupta, Suman; Gajbhiye, Vijay T; Sharma, Praveen K; Goel, Mayurika; Dureja, Prem

    2010-02-01

    Metabolism of (14)C-azoxystrobin was studied in water at pH 4, 7 and 9. The study suggested that volatilization losses of azoxystrobin were very low (3%) during 130 days of incubation. Only 2.5-4.2% of azoxystrobin was mineralised to CO(2) and pH of water did not have much effect on rate of mineralisation. The dissipation of azoxystrobin in water of all the three pHs followed first order kinetic with half-life values ranging from 143 to 158 d; degradation was the fastest at pH 9. Azoxystrobin acid, a major metabolite, was detected 4-7 day onwards and its concentration increased up to 130 days. The formation of azoxystrobin acid was more and faster under alkaline (pH 9) condition than neutral (pH 7) or acidic (pH 4) conditions.

  5. Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings

    USGS Publications Warehouse

    Smalling, Kelly; Hladik, Michelle; Sanders, Corey; Kuivila, Kathryn

    2018-01-01

    Seed coatings are a treatment used on a variety of crops to improve production and offer protection against pests and fungal outbreaks. The leaching of the active ingredients associated with the seed coatings and the sorption to soil was evaluated under laboratory conditions using commercially available corn and soybean seeds to study the fate and transport of these pesticides under controlled conditions. The active ingredients (AI) included one neonicotinoid insecticide (thiamethoxam) and five fungicides (azoxystrobin, fludioxonil, metalaxyl, sedaxane thiabendazole). An aqueous leaching experiment was conducted with treated corn and soybean seeds. Leaching potential was a function of solubility and seed type. The leaching of fludioxonil, was dependent on seed type with a shorter time to equilibrium on the corn compared to the soybean seeds. Sorption experiments with the treated seeds and a solution of the AIs were conducted using three different soil types. Sorption behavior was a function of soil organic matter as well as seed type. For most AIs, a negative relationship was observed between the aqueous concentration and the log Koc. Sorption to all soils tested was limited for the hydrophilic pesticides thiamethoxam and metalaxyl. However, partitioning for the more hydrophobic fungicides was dependent on both seed type and soil properties. The mobility of fludioxonil in the sorption experiment varied by seed type indicating that the adjuvants associated with the seed coating could potentially play a role in the environmental fate of fludioxonil. This is the first study to assess, under laboratory conditions, the fate of pesticides associated with seed coatings using commercially available treated seeds. This information can be used to understand how alterations in agricultural practices (e.g., increasing use of seed treatments) can impact the exposure (concentration and duration) and potential effects of these chemicals to aquatic and terrestrial organisms.

  6. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments

    NASA Astrophysics Data System (ADS)

    Pedersen, Matthew; Wegner, Casey; Phansak, Piyaporn; Sarath, Gautam; Gaussoin, Roch; Schlegel, Vicki

    2017-02-01

    Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able to modify other mitochondrial constituents. Fourier transform mid-infrared spectroscopy (FT-mIR) offers a high sample throughput method to comparatively and qualitatively evaluate the effects of exogenously added compounds on mitochondrial components. Therefore the objective of this study was to determine the ability of FT-mIR to detect effects mitochondrial fractions isolated from wheat (Triticum aestivum L.) seedlings in response to several agrochemical treatments, with an emphasis on fungicides. The accessed need was to develop FT-mIR analytical and statistical routines as an effective approach to differentiate spectra obtained from chemically-treated or untreated mitochondria. An NADH-dependent oxygen uptake approach was initially used as a comparative method to determine whether the fungicides (azoxystrobin, boscalid, cyazofamid, fluazinam, isopyrazam, and pyraclostrobin) and the plant growth regulator, (trinexapac-ethyl) reduced respiration inhibition on isolated mitochondria. Pyraclostrobin was the most effective inhibitor, whereas amisulbrom did not impact oxygen uptake. However, hierarchical clustering of FT-mIR spectra of isolated mitochondria treated with these different compounds separated into clades consistent with each of their expected mode of action. Analysis of the FT-mIR amide protein region indicated that amisulbrom and pyraclostrobin interacted with the isolated wheat mitochondria. Both chemicals were statistically different from the control signifying that respiration was indeed influenced by these treatments. Moreover, the entire FT-mIR region showed differences in various biological bands thereby providing additional information on mitochondria responses to agrochemicals, if so warranted.

  7. Occurrence of pesticides in groundwater and sediments and mineralogy of sediments and grain coatings underlying the Rutgers Agricultural Research and Extension Center, Upper Deerfield, New Jersey, 2007

    USGS Publications Warehouse

    Reilly, Timothy J.; Smalling, Kelly L.; Meyer, Michael T.; Sandstrom, Mark W.; Hladik, Michelle; Boehlke, Adam R.; Fishman, Neil S.; Battaglin, William A.; Kuivila, Kathryn

    2014-01-01

    Water and sediment samples were collected from June through October 2007 from seven plots at the Rutgers Agricultural Research and Extension Center in Upper Deerfield, New Jersey, and analyzed for a suite of pesticides (including fungicides) and other physical and chemical parameters (including sediment mineralogy) by the U.S. Geological Survey. Plots were selected for inclusion in this study on the basis of the crops grown and the pesticides used. Forty-one pesticides were detected in 14 water samples; these include 5 fungicides, 13 herbicides, 1 insecticide, and 22 pesticide degradates. The following pesticides and pesticide degradates were detected in 50 percent or more of the groundwater samples: 1-amide-4-hydroxy-chorothalonil, alachlor sulfonic acid, metolachlor oxanilic acid, metolachlor sulfonic acid, metalaxyl, and simazine. Dissolved-pesticide concentrations ranged from below their instrumental limit of detection to 36 micrograms per liter (for metolachlor sulfonic acid, a degradate of the herbicide metolachlor). The total number of pesticides found in groundwater samples ranged from 0 to 29. Fourteen pesticides were detected in sediment samples from continuous cores collected within each of the seven sampled plots; these include 4 fungicides, 2 herbicides, and 7 pesticide degradates. Pesticide concentrations in sediment samples ranged from below their instrumental limit of detection to 34.2 nanograms per gram (for azoxystrobin). The total number of pesticides found in sediment samples ranged from 0 to 8. Quantitative whole-rock and grain-coating mineralogy of sediment samples were determined by x-ray diffraction. Whole-rock analysis indicated that sediments were predominantly composed of quartz. The materials coating the quartz grains were removed to allow quantification of the trace mineral phases present.

  8. Agrochemicals against malaria, sleeping sickness, leishmaniasis and Chagas disease.

    PubMed

    Witschel, Matthias; Rottmann, Matthias; Kaiser, Marcel; Brun, Reto

    2012-01-01

    In tropical regions, protozoan parasites can cause severe diseases with malaria, leishmaniasis, sleeping sickness, and Chagas disease standing in the forefront. Many of the drugs currently being used to treat these diseases have been developed more than 50 years ago and can cause severe adverse effects. Above all, resistance to existing drugs is widespread and has become a serious problem threatening the success of control measures. In order to identify new antiprotozoal agents, more than 600 commercial agrochemicals have been tested on the pathogens causing the above mentioned diseases. For all of the pathogens, compounds were identified with similar or even higher activities than the currently used drugs in applied in vitro assays. Furthermore, in vivo activity was observed for the fungicide/oomyceticide azoxystrobin, and the insecticide hydramethylnon in the Plasmodium berghei mouse model, and for the oomyceticide zoxamide in the Trypanosoma brucei rhodesiense STIB900 mouse model, respectively.

  9. Agrochemicals against Malaria, Sleeping Sickness, Leishmaniasis and Chagas Disease

    PubMed Central

    Witschel, Matthias; Rottmann, Matthias; Kaiser, Marcel; Brun, Reto

    2012-01-01

    In tropical regions, protozoan parasites can cause severe diseases with malaria, leishmaniasis, sleeping sickness, and Chagas disease standing in the forefront. Many of the drugs currently being used to treat these diseases have been developed more than 50 years ago and can cause severe adverse effects. Above all, resistance to existing drugs is widespread and has become a serious problem threatening the success of control measures. In order to identify new antiprotozoal agents, more than 600 commercial agrochemicals have been tested on the pathogens causing the above mentioned diseases. For all of the pathogens, compounds were identified with similar or even higher activities than the currently used drugs in applied in vitro assays. Furthermore, in vivo activity was observed for the fungicide/oomyceticide azoxystrobin, and the insecticide hydramethylnon in the Plasmodium berghei mouse model, and for the oomyceticide zoxamide in the Trypanosoma brucei rhodesiense STIB900 mouse model, respectively. PMID:23145187

  10. Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio).

    PubMed

    Cao, Fangjie; Wu, Peizhuo; Huang, Lan; Li, Hui; Qian, Le; Pang, Sen; Qiu, Lihong

    2018-05-01

    Previous study indicated that azoxystrobin had high acute toxicity to zebrafish, and larval zebrafish were more sensitive to azoxystrobin than adult zebrafish. The objective of the present study was to investigate short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish. After zebrafish embryos and adults were exposed to 0.01, 0.05 and 0.20 mg/L azoxystrobin (equal to 25, 124 and 496 nM azoxystrobin, respectively) for 8 days, the lethal effect, physiological responses, liver histology, mitochondrial ultrastructure, and expression alteration of genes related to mitochondrial respiration, oxidative stress, cell apoptosis and innate immune response were determined. The results showed that there was no significant effect on larval and adult zebrafish after exposure to 0.01 mg/L azoxystrobin. However, increased ROS, MDA concentration and il1b in larval zebrafish, as well as increased il1b, il8 and cxcl-c1c in adult zebrafish were induced after exposure to 0.05 mg/L azoxystrobin. Reduced mitochondrial complex III activity and ATP concentration, increased SOD activity, ROS and MDA concentration, decreased cytb, as well as increased sod1, sod2, cat, il1b, il8 and cxcl-c1c were observed both in larval and adult zebrafish after exposure to 0.20 mg/L azoxystrobin; meanwhile, increased p53, bax, apaf1 and casp9, alteration of liver histology and mitochondrial ultrastructure in larval zebrafish, and alteration of mitochondrial ultrastructure in adult zebrafish were also induced. The results demonstrated that azoxytrobin induced short-term developmental effects on larval zebrafish and adult zebrafish, including mitochondrial dysfunction, oxidative stress, cell apoptosis and innate immune response. Statistical analysis indicated that azoxystrobin induced more negative effects on larval zebrafish, which might be the reason for the differences of developmental toxicity between larval and adult zebrafish caused by azoxystrobin. These results provided a new insight into potential mechanisms of azoxystrobin in larval zebrafish and adult zebrafish. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Determination and validation of an aquatic Maximum Acceptable Concentration-Environmental Quality Standard (MAC-EQS) value for the agricultural fungicide azoxystrobin.

    PubMed

    Rodrigues, Elsa Teresa; Pardal, Miguel Ângelo; Gante, Cristiano; Loureiro, João; Lopes, Isabel

    2017-02-01

    The main goal of the present study was to determine and validate an aquatic Maximum Acceptable Concentration-Environmental Quality Standard (MAC-EQS) value for the agricultural fungicide azoxystrobin (AZX). Assessment factors were applied to short-term toxicity data using the lowest EC 50 and after the Species Sensitivity Distribution (SSD) method. Both ways of EQS generation were applied to a freshwater toxicity dataset for AZX based on available data, and to marine toxicity datasets for AZX and Ortiva ® (a commercial formulation of AZX) obtained by the present study. A high interspecific variability in AZX sensitivity was observed in all datasets, being the copepoda Eudiaptomus graciloides (LC 50,48h  = 38 μg L -1 ) and the gastropod Gibbula umbilicalis (LC 50,96h  = 13 μg L -1 ) the most sensitive freshwater and marine species, respectively. MAC-EQS values derived using the lowest EC 50 (≤0.38 μg L -1 ) were more protective than those derived using the SSD method (≤3.2 μg L -1 ). After comparing the MAC-EQS values estimated in the present study to the smallest AA-EQS available, which protect against the occurrence of prolonged exposure of AZX, the MAC-EQS values derived using the lowest EC 50 were considered overprotective and a MAC-EQS of 1.8 μg L -1 was validated and recommended for AZX for the water column. This value was derived from marine toxicity data, which highlights the importance of testing marine organisms. Moreover, Ortiva affects the most sensitive marine species to a greater extent than AZX, and marine species are more sensitive than freshwater species to AZX. A risk characterization ratio higher than one allowed to conclude that AZX might pose a high risk to the aquatic environment. Also, in a wider conclusion, before new pesticides are approved, we suggest to improve the Tier 1 prospective Ecological Risk Assessment by increasing the number of short-term data, and apply the SSD approach, in order to ensure the safety of aquatic organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ionic liquid-based ultrasound-assisted emulsification microextraction coupled with high performance liquid chromatography for the determination of four fungicides in environmental water samples.

    PubMed

    Liang, Pei; Wang, Fang; Wan, Qin

    2013-02-15

    A highly efficient and environmentally friendly sample preparation method termed ionic liquid-based ultrasound-assisted emulsification microextraction (IL-USAEME) combined with high performance liquid chromatography has been developed for the determination of four fungicides (azoxystrobin, diethofencarb, pyrimethanil and kresoxim-methyl) in water samples. In this novel approach, ionic liquid (IL) was used as extraction solvent in place of the organic solvent used in conventional USAEME assay, and there is no need for using organic dispersive solvent which is typically required in the common dispersive liquid-liquid microextraction method. Various parameters that affect the extraction efficiency, such as the kind and volume of IL, ultrasound emulsification time, extraction temperature and salt addition were investigated and optimized. Under the optimum extraction condition, the linearities of calibration curves were in the range from 3 to 5000 ng mL(-1) for target analytes with the correlation coefficient higher than 0.9992. The enrichment factors and the limits of detection were in the range of 88-137 and 0.73-2.2 ng mL(-1), depending on the analytes. The environmental water samples were successfully analyzed using the proposed method, and the relative recoveries at fortified levels of 50 and 100 ng mL(-1) were in the range of 83.9%-116.2%. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin.

    PubMed

    Han, Yingnan; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Zhang, Shumin

    2014-09-01

    Azoxystrobin has been widely used in recent years. The present study investigated the oxidative stress and DNA damage effects of azoxystrobin on earthworms (Eisenia fetida). Earthworms were exposed to different azoxystrobin concentrations in an artificial soil (0, 0.1, 1, and 10mg/kg) and sampled on days 7, 14, 21, and 28. Superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), glutathione-S-transferase (GST), reactive oxygen species (ROS), and malondialdehyde (MDA) content were measured by an ultraviolet spectrophotometer to determine the antioxidant responses and lipid peroxidation. Single cell gel electrophoresis (SCGE) was used to detect DNA damage in the coelomocytes. Compared with these in the controls, earthworms exposed to azoxystrobin had excess ROS accumulation and greater SOD, POD, and GST activity while the opposite trend occurred for CAT activity. MDA content increased after 14-day exposure, and DNA damage was enhanced with an increase in the concentration of azoxystrobin. In conclusion, azoxystrobin caused oxidative stress leading to lipid peroxidation and DNA damage in earthworms. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Dissipation and residue of azoxystrobin in banana under field condition.

    PubMed

    Wang, Siwei; Sun, Haibin; Liu, Yanping

    2013-09-01

    A method was developed for determining azoxystrobin in banana and cultivation soil using gas chromatography. The dissipation and residue of azoxystrobin in banana fields at GAP conditions were investigated. The average recoveries ranged from 80.3 to 96.0 % with relative standard deviations of 2.9 to 7.2 % at three different spiking levels for each matrix. The results indicated that the half-life of azoxystrobin in bananas and soil ranged from 7.5 to 13.5 days in Guangdong and from 8.7 to 12.7 days in Fujian. The dissipation rates of azoxystrobin in banana and soil were almost the same. Terminal residues in banana and banana flesh (0.01 mg/kg) were all below the maximum residue limit (2 mg/kg by Codex Alimentarius Commission and China). The results demonstrated that the safety of using azoxystrobin at the recommended agriculture dosage to protect bananas from diseases.

  15. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance.

    PubMed

    Rupp, Sabrina; Plesken, Cecilia; Rumsey, Sibylle; Dowling, Madeline; Schnabel, Guido; Weber, Roland W S; Hahn, Matthias

    2017-05-01

    Botrytis cinerea causes pre- and postharvest decay of many fruit and vegetable crops. A survey of German strawberry fields revealed Botrytis strains that differed from B. cinerea in diagnostic PCR markers and growth appearance. Phylogenetic analyses showed that these strains belong to an undescribed species in Botrytis clade 2, named Botrytis fragariae sp. nov. Isolates of B fragariae were detected in strawberry fields throughout Germany, sometimes at frequencies similar to those of B. cinerea , and in the southeastern United States. B fragariae was isolated from overwintering strawberry tissue but not from freshly infected fruit. B fragariae invaded strawberry tissues with an efficiency similar to or lower than that of B. cinerea but showed poor colonization of inoculated nonhost plant tissues. These data and the exclusive occurrence of this fungus on strawberry plants indicate that B fragariae is host specific and has a tissue preference different from that of B. cinerea Various fungicide resistance patterns were observed in B fragariae populations. Many B fragariae strains showed resistance to one or several chemical classes of fungicides and an efflux-based multidrug resistance (MDR1) phenotype previously described in B. cinerea Resistance-related mutations in B fragariae were identical or similar to those of B. cinerea for carbendazim (E198A mutation in tubA ), azoxystrobin (G143A in cytB ), iprodione (G367A+V368F in bos1 ), and MDR1 (gain-of-function mutations in the transcription factor mrr1 gene and overexpression of the drug efflux transporter gene atrB ). The widespread occurrence of B fragariae indicates that this species is adapted to fungicide-treated strawberry fields and may be of local importance as a gray mold pathogen alongside B. cinerea IMPORTANCE Gray mold is the most important fruit rot on strawberries worldwide and requires fungicide treatments for control. For a long time, it was believed to be caused only by Botrytis cinerea , a ubiquitous pathogen with a broad host range that quickly develops fungicide resistance. We report the discovery and description of a new species, named Botrytis fragariae , that is widely distributed in commercial strawberry fields in Germany and the southeastern United States. It was observed on overwintering tissue but not on freshly infected fruit and seems host specific on the basis of its occurrence and artificial infection tests. B fragariae has also developed resistance to several fungicides that is caused by mutations similar to those known in B. cinerea , including an efflux-based multidrug resistance. Our data indicate that B fragariae could be of practical importance as a strawberry pathogen in some regions where its abundance is similar to that of B. cinerea . Copyright © 2017 American Society for Microbiology.

  16. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance

    PubMed Central

    Rupp, Sabrina; Plesken, Cecilia; Rumsey, Sibylle; Dowling, Madeline; Schnabel, Guido; Weber, Roland W. S.

    2017-01-01

    ABSTRACT Botrytis cinerea causes pre- and postharvest decay of many fruit and vegetable crops. A survey of German strawberry fields revealed Botrytis strains that differed from B. cinerea in diagnostic PCR markers and growth appearance. Phylogenetic analyses showed that these strains belong to an undescribed species in Botrytis clade 2, named Botrytis fragariae sp. nov. Isolates of B. fragariae were detected in strawberry fields throughout Germany, sometimes at frequencies similar to those of B. cinerea, and in the southeastern United States. B. fragariae was isolated from overwintering strawberry tissue but not from freshly infected fruit. B. fragariae invaded strawberry tissues with an efficiency similar to or lower than that of B. cinerea but showed poor colonization of inoculated nonhost plant tissues. These data and the exclusive occurrence of this fungus on strawberry plants indicate that B. fragariae is host specific and has a tissue preference different from that of B. cinerea. Various fungicide resistance patterns were observed in B. fragariae populations. Many B. fragariae strains showed resistance to one or several chemical classes of fungicides and an efflux-based multidrug resistance (MDR1) phenotype previously described in B. cinerea. Resistance-related mutations in B. fragariae were identical or similar to those of B. cinerea for carbendazim (E198A mutation in tubA), azoxystrobin (G143A in cytB), iprodione (G367A+V368F in bos1), and MDR1 (gain-of-function mutations in the transcription factor mrr1 gene and overexpression of the drug efflux transporter gene atrB). The widespread occurrence of B. fragariae indicates that this species is adapted to fungicide-treated strawberry fields and may be of local importance as a gray mold pathogen alongside B. cinerea. IMPORTANCE Gray mold is the most important fruit rot on strawberries worldwide and requires fungicide treatments for control. For a long time, it was believed to be caused only by Botrytis cinerea, a ubiquitous pathogen with a broad host range that quickly develops fungicide resistance. We report the discovery and description of a new species, named Botrytis fragariae, that is widely distributed in commercial strawberry fields in Germany and the southeastern United States. It was observed on overwintering tissue but not on freshly infected fruit and seems host specific on the basis of its occurrence and artificial infection tests. B. fragariae has also developed resistance to several fungicides that is caused by mutations similar to those known in B. cinerea, including an efflux-based multidrug resistance. Our data indicate that B. fragariae could be of practical importance as a strawberry pathogen in some regions where its abundance is similar to that of B. cinerea. PMID:28235878

  17. [Determination of azoxystrobin in tea by HPLC].

    PubMed

    Chonan, T

    2001-08-01

    A determination method has been developed for azoxystrobin in tea by HPLC. Azoxystrobin was extracted from a sample with acetone, and the extract was passed through an alumina column to remove tannin. The eluate was concentrated to ca. 25 mL and passed through a Sep-Pak Vac tC18 to remove pigments. The eluate was cleaned-up by using liquid-liquid partition, and Florisil and silica-gel columns. The HPLC analysis for azoxystrobin was carried out on a C18 column with acetonitrile-water (9:11) as the mobile phase, with ultraviolet detection at 260 nm. The recovery of azoxystrobin fortified at the level of 0.4 microgram/g was 90.2% and the limit of determination was 0.2 microgram/g.

  18. Maize root culture as a model system for studying azoxystrobin biotransformation in plants.

    PubMed

    Gautam, Maheswor; Elhiti, Mohamed; Fomsgaard, Inge S

    2018-03-01

    Hairy roots induced by Agrobacterium rhizogenes are well established models to study the metabolism of xenobiotics in plants for phytoremediation purposes. However, the model requires special skills and resources for growing and is a time-consuming process. The roots induction process alters the genetic construct of a plant and is known to express genes that are normally absent from the non-transgenic plants. In this study, we propose and establish a non-transgenic maize root model to study xenobiotic metabolism in plants for phytoremediation purpose using azoxystrobin as a xenobiotic compound. Maize roots were grown aseptically in Murashige and Skoog medium for two weeks and were incubated in 100 μM azoxystrobin solution. Azoxystrobin was taken up by the roots to the highest concentration within 15 min of treatment and its phase I metabolites were also detected at the same time. Conjugated metabolites of azoxystrobin were detected and their identities were confirmed by enzymatic and mass spectrometric methods. Further, azoxystrobin metabolites identified in maize root culture were compared against azoxystrobin metabolites in azoxystrobin sprayed lettuce grown in green house. A very close similarity between metabolites identified in maize root culture and lettuce plant was obtained. The results from this study establish that non-transgenic maize roots can be used for xenobiotic metabolism studies instead of genetically transformed hairy roots due to the ease of growing and handling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biological response of zebrafish after short-term exposure to azoxystrobin.

    PubMed

    Jiang, Jinhua; Shi, Yan; Yu, Ruixian; Chen, Liping; Zhao, Xueping

    2018-07-01

    Azoxystrobin (AZ) is a broad-spectrum systemic fungicide that widely used in the world. The present study investigated the toxicity effects on zebrafish after short-term exposure of AZ. Results demonstrated that the larval stage was most susceptible to AZ in the multiple life stages of zebrafish, with 96 h-LC 50 value of 0.777 mg/L. Zebrafish larvae were exposed to different AZ concentrations (0, 0.1, 1, 10, 100 μg/L) and examined on 24, 48 and 72 h. It was found that AZ induced ROS accumulation, increased GST, GPX and POD activity and the transcriptions of antioxidant and stress response related genes, while the opposite trend occurred for SOD and CAT activity in 24-h or 48-h exposure period. The increased E 2 and VTG levels in zebrafish larvae, and altered transcription levels of regulatory and steroidogenic genes in the hypothalamus-pituitary-gonad (HPG) axis indicated the endocrine disruption capacity of AZ. The transcripts of mdm2, p53, ogg1, bcl2, bbc3, cas8 and cas9 involved in cell apoptosis, and the mRNA levels of cytokines and chemokines such as cxcl-c1c, ccl, il-1β, il-8, ifn, and tnfα were in accordance with the trends of the examined genes involved in oxidative stress and endocrine system. The results suggested that short-term exposure to AZ might impose ecotoxicological effects on zebrafish larvae, and the information presented here also provide molecular strategies and increase mechanistic understanding of AZ-induced toxic response, and help elucidate the environmental risks of AZ. Copyright © 2018. Published by Elsevier Ltd.

  20. Residues of azoxystrobin, fenhexamid and pyrimethanil in strawberry following field treatments and the effect of domestic washing.

    PubMed

    Angioni, A; Schirra, M; Garau, V L; Melis, M; Tuberoso, C I G; Cabras, P

    2004-11-01

    Residues of the pesticides azoxystrobin, fenhexamid and pyrimethanil were determined in strawberry after field treatment. The effect of 'home' washing with tap water and a commercially available vegetable detergent on residue levels was also studied. After treatment, azoxystrobin and pyrimethanil residues on strawberry were on average 0.55 and 2.98 mg kg(-1), respectively, values below the maximum residue level (MRL) fixed by the European Union (2.0 and 5 mg kg(-1), respectively), while fenhexamid residues were on average 2.99 mg kg(-1), which is very close to the MRL of 3.0 mg kg(-1), but some samples were over the MRL. Thereafter, all residues declined, with a half-life of about 8 days (azoxystrobin and fenhexamid) and 4.8 days (pyrimethanil). Washing the fruit with tap water reduced the residues of azoxystrobin and fenhexamid but did not affect pyrimethanil residues. Finally, when fruits were washed with a commercial detergent, greater amounts were removed (about 45% of azoxystrobin and pyrimethanil and 60% of fenhexamid).

  1. Persistence of azoxystrobin in/on grapes and soil in different grapes growing areas of India.

    PubMed

    Gajbhiye, Vijay Tularam; Gupta, Suman; Mukherjee, Irani; Singh, Shashi Bala; Singh, Neera; Dureja, Prem; Kumar, Yogesh

    2011-01-01

    Persistence of azoxystrobin was studied in/on grapes when applied @ 150 g ai ha⁻¹ (recommended dose) and 300 g ai ha⁻¹ (double the recommended dose) in three grapes growing states of India, namely Karnataka, Maharashtra and Tamil Nadu, in the year 2006-2007. A total of five sprays were given at an interval of about 15 days. Grapes and soil samples were collected after 5th spray, extracted and analysed by gas chromatography using electron capture detector. Half life of azoxystrobin on grapes varied from 5.4 to 11.2 days. Residues of azoxystrobin were much below the prescribed MRL (0.5 mg kg⁻¹) after 21 days. The dissipation of azoxystrobin in soil followed first order rate kinetics with an average half life of 8.1 days at the recommended dose of application.

  2. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  3. Occurrence and distribution study of residues from pesticides applied under controlled conditions in the field during rice processing.

    PubMed

    Pareja, Lucía; Colazzo, Marcos; Pérez-Parada, Andrés; Besil, Natalia; Heinzen, Horacio; Böcking, Bernardo; Cesio, Verónica; Fernández-Alba, Amadeo R

    2012-05-09

    The results of an experiment to study the occurrence and distribution of pesticide residues during rice cropping and processing are reported. Four herbicides, nine fungicides, and two insecticides (azoxystrobin, byspiribac-sodium, carbendazim, clomazone, difenoconazole, epoxiconazole, isoprothiolane, kresoxim-methyl, propanil, quinclorac, tebuconazole, thiamethoxam, tricyclazole, trifloxystrobin, λ-cyhalotrin) were applied to an isolated rice-crop plot under controlled conditions, during the 2009-2010 cropping season in Uruguay. Paddy rice was harvested and industrially processed to brown rice, white rice, and rice bran, which were analyzed for pesticide residues using the original QuEChERS methodology and its citrate variation by LC-MS/MS and GC-MS. The distribution of pesticide residues was uneven among the different matrices. Ten different pesticide residues were found in paddy rice, seven in brown rice, and eight in rice bran. The highest concentrations were detected in paddy rice. These results provide information regarding the fate of pesticides in the rice food chain and its safety for consumers.

  4. Persistence of Azoxystrobin in/on Grapes and Soil in Different Grapes Growing Areas of India

    PubMed Central

    Gajbhiye, Vijay Tularam; Gupta, Suman; Mukherjee, Irani; Singh, Shashi Bala; Singh, Neera; Kumar, Yogesh

    2010-01-01

    Persistence of azoxystrobin was studied in/on grapes when applied @ 150 g ai ha−1 (recommended dose) and 300 g ai ha−1 (double the recommended dose) in three grapes growing states of India, namely Karnataka, Maharashtra and Tamil Nadu, in the year 2006–2007. A total of five sprays were given at an interval of about 15 days. Grapes and soil samples were collected after 5th spray, extracted and analysed by gas chromatography using electron capture detector. Half life of azoxystrobin on grapes varied from 5.4 to 11.2 days. Residues of azoxystrobin were much below the prescribed MRL (0.5 mg kg−1) after 21 days. The dissipation of azoxystrobin in soil followed first order rate kinetics with an average half life of 8.1 days at the recommended dose of application. PMID:21153804

  5. Effect of household and commercial processing on acetamiprid, azoxystrobin and methidathion residues during crude rapeseed oil production.

    PubMed

    Jiang, Yaping; Shibamoto, Takayuki; Li, Yanjie; Pan, Canping

    2013-01-01

    Rape crops with residues of acetamiprid, azoxystrobin and methidathion incurred from field trials were used to evaluate the effect of household and commercial crude rapeseed oil processing on the transfer of pesticide residues. The pesticides were applied at exaggerated dosage to quantify residue levels in processed samples. The processing procedure was conducted as closely as possible to the actual conditions in practice. The conditioning step removed at least 30% of pesticides, while azoxystrobin and methidathion were concentrated by at least 15% at the single pressing step. The residue level of methidathion was concentrated with a processing factor (PF) of 1.07, while azoxystrobin and acetamiprid decreased with PFs of 0.67 and 0.04, respectively, after all processing procedures. The overall magnitudes of acetamiprid, azoxystrobin and methidathion in rapeseed oil and meal were all decreased after processing compared with the magnitude of those in raw rapeseed.

  6. Pesticide Chemical Research in Toxicology: Lessons from Nature.

    PubMed

    Casida, John E; Durkin, Kathleen A

    2017-01-17

    Pesticide researchers are students of nature, and each new compound and mechanism turns a page in the ever-expanding encyclopedia of life. Pesticides are both probes to learn about life processes and tools for pest management to facilitate food production and enhance health. In contrast to some household and industrial chemicals, pesticides are assumed to be hazardous to health and the environment until proven otherwise. About a thousand current pesticides working by more than 100 different mechanisms have helped understand many processes and coupled events. Pesticide chemical research is a major source of toxicology information on new natural products, novel targets or modes of action, resistance mechanisms, xenobiotic metabolism, selective toxicity, safety evaluations, and recommendations for safe and effective pest management. Target binding site models help define the effect of substituent changes and predict modifications for enhanced potency and safety and circumvention of resistance. The contribution of pesticide chemical research in toxicology is illustrated here with two each of the newer or most important insecticides, herbicides, and fungicides. The insecticides are imidacloprid and chlorantraniliprole acting on the nicotinic acetylcholine receptor and the ryanodine receptor Ca 2+ channel, respectively. The herbicides are glyphosate that inhibits aromatic amino acid biosynthesis and mesotrione that prevents plastoquinone and carotenoid formation. The fungicides are azoxystrobin inhibiting the Q o site of the cytochrome bc 1 complex and prothioconazole inhibiting the 14α-demethylase in ergosterol biosynthesis. The two target sites involved for each type of pesticide account for 27-40% of worldwide sales for all insecticides, herbicides, and fungicides. In each case, selection for resistance involving a single amino acid change in the binding site or detoxifying enzyme circumvents the pesticide chemists's structure optimization and guarantees survival of the pest and a continuing job for the design chemist. These lessons from nature are a continuing part of pest management and maintaining human and environmental health.

  7. Reproductive toxicity of azoxystrobin to adult zebrafish (Danio rerio).

    PubMed

    Cao, Fangjie; Zhu, Lizhen; Li, Hui; Yu, Song; Wang, Chengju; Qiu, Lihong

    2016-12-01

    In the past few decades, extensive application of azoxystrobin has led to great concern regarding its adverse effects on aquatic organisms. The objective of the present study was to evaluate the reproductive toxicity of azoxystrobin to zebrafish. After adult zebrafish of both sexes were exposed to 2, 20 and 200 μg/L azoxystrobin for 21 days, egg production, the fertilization rate, the gonadosomatic index (GSI) and hepatosomatic index (HSI), 17β-estradiol (E2), testosterone (T) and vitellogenin (Vtg) concentrations, and histological alterations in the gonads and livers were measured. Meanwhile, expression alterations of genes encoding gonadotropins and gonadotropin receptors (fshb, lhb, fshr and lhr), steroid hormone receptors (era, er2b and ar), steroidogenic enzymes (cyp11a, cyp11b, cyp17, cyp19a, cyp19b, hsd3b and hsd17b) in the hypothalamic-pituitary-gonad (HPG) axis and vitellogenin (vtg1 and vtg2) in the livers were also investigated. The results showed that reduced egg production and fertilization rates were observed at 200 μg/L azoxystrobin. In female zebrafish, reduced E2 and Vtg concentrations, decreased GSI, increased T concentrations, and histological alterations in the ovaries and livers were observed at 200 μg/L azoxystrobin, along with significant down-regulation of lhb, cyp19b, lhr, cyp19a, vtg1 and vtg2, and up-regulation of cyp17, hsd3b and hsd17b. In male zebrafish, increased E2 and Vtg concentrations, reduced T concentration and GSI, and histological alterations in the testes and livers were observed after exposure to 20 and 200 μg/L azoxystrobin, along with significant up-regulations of cyp19b, cyp11a, cyp17, cyp19a, hsd3b and hsd17b, vtg1 and vtg2. Moreover, cyp11a, hsd3b, cyp19a, vtg1 and vtg2 in male zebrafish were significantly up-regulated after treatment with 2 μg/L azoxystrobin. The results of the present study indicate that azoxystrobin led to reproductive toxicity in zebrafish and male zebrafish were more sensitive to azoxystrobin than female zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Transfer of difenoconazole and azoxystrobin residues from chrysanthemum flower tea to its infusion.

    PubMed

    Xue, Jiaying; Li, Huichen; Liu, Fengmao; Xue, Jian; Chen, Xiaochu; Zhan, Jing

    2014-04-01

    Investigations of the transfer of pesticide residues from tea to its infusion can be important in the assessment of the possible health benefits of tea consumption. In this work the transfer of difenoconazole and azoxystrobin residues from chrysanthemum tea to its infusion was investigated at different water temperatures, infusion intervals and times. The transfer percentages were in the range of 18.7-51.6% for difenoconazole and of 38.1-71.2% for azoxystrobin, and increased considerably with longer infusion intervals. The results indicated that azoxystrobin with a lower octanol-water partition coefficient of 2.5, showed a higher transfer than that of difenoconazole with a relatively high octanol-water partition coefficient of 4.4. Water temperature had no significant effect on the transfer of the two residues, and no obvious loss of difenoconazole and azoxystrobin occurred during the infusion process. The concentrations in the infusions decreased gradually from 0.67 to 0.30 μg kg(-1) for difenoconazole and from 2.3 to 0.46 μg kg(-1) for azoxystrobin after five infusions. To assess the potential health risk, the values of estimate expose risk were calculated to be 0.016 for difenoconazole and 0.0022 for azoxystrobin, meaning the daily residue intake of the two analytes from chrysanthemum tea was safe. This research may help assure food safety and identify the potential exposure risks from pesticides in chrysanthemum that may be health concerns.

  9. Selection and expression of recombinant single domain antibodies from a hyper-immunized library against the hapten azoxystrobin.

    PubMed

    Makvandi-Nejad, Shokouh; Fjällman, Ted; Arbabi-Ghahroudi, Mehdi; MacKenzie, C Roger; Hall, J Christopher

    2011-10-28

    Three V(H)Hs against the model hapten, azoxystrobin (MW 403), were isolated from a hyper-immunized phage-displayed V(H)H library. This library was constructed by isolating the V(H)H-coding genes from the lymphocytes collected from a Llama glama that was immunized with azoxystrobin conjugated to bovine serum albumin (BSA). Six rounds of panning were performed against azoxystrobin conjugated to either ovalbumin (OVA) or rabbit serum albumin (RSA) to enrich clones containing V(H)Hs specific to the hapten. After screening 95 clones, three V(H)Hs (A27, A72, and A85) with different amino acid sequences were identified, expressed in soluble format in Escherichia coli HB2151, and purified using nickel-immobilized metal affinity chromatography. Competitive inhibition enzyme-linked immunosorbent assay (CI-ELISA) showed that A27 and A85 were specific to azoxystrobin while A72 was not. The IC(50) values of A27 and A85 V(H)Hs were 7.2 and 2.0μM, respectively. To our knowledge A85 is one of the highest affinity V(H)Hs that has yet been isolated against a hydrophobic hapten such as azoxystrobin. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Persistence in and Release of 2,4-D and Azoxystrobin from Turfgrass Clippings.

    PubMed

    Jeffries, Matthew D; Yelverton, Fred H; Ahmed, Khalied A; Gannon, Travis W

    2016-11-01

    Research has shown that pesticide residue in clippings from previously treated turfgrass may become bioavailable as grass decomposes, adversely affecting off-target organisms. We conducted a field study to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) and azoxystrobin (methyl(E)-2-{2[6-(2-cyanophenoxy)pyrmidin-4-yloxy]phenyl}-3-methoxyacrylate) residues in turfgrass clippings collected from hybrid bermudagrass [ (L.) Pers. × Burtt-Davy], tall fescue [ (Schreb.) S.J. Darbyshire], and zoysiagrass ( Steud.). A subsequent greenhouse experiment was conducted to measure pesticide release from clippings into water. 2,4-D (1.6 kg a.i. ha) and azoxystrobin (0.6 kg a.i. ha) were applied to field plots at 32, 16, 8, 4, 2, 1, or 0 d before collection of the clippings. Clippings were collected from each experimental unit to quantify pesticide release from clippings into water. Both 2,4-D and azoxystrobin were detected when turfgrass was treated over the 32-d experimental period, suggesting that clipping management should be implemented for an extended period of time after application. Pesticide residue was detected in all water samples collected, confirming 2,4-D and azoxystrobin release from turfgrass clippings; however, pesticide release varied between compounds. Two days after clippings were incorporated in water, 39 and 10% of 2,4-D and azoxystrobin were released from clippings, respectively. Our research supports the currently recommended practice of returning clippings to the turfgrass stand when mowing because removal of 2,4-D and azoxystrobin in clippings may reduce pest control and cause adverse off-target impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Pre-harvest nitrogen and azoxystrobin application enhances raw product quality and post-harvest shelf-life of baby spinach (Spinacia oleracea L.).

    PubMed

    Conversa, Giulia; Bonasia, Anna; Lazzizera, Corrado; Elia, Antonio

    2014-12-01

    Baby spinach was cultivated under spring or winter conditions to investigate the effect of azoxystrobin and, only in the winter cycle, of nitrogen fertilisation (0, 80 and 120 kg ha(-1) of N) on yield and product morphological traits at harvest and on the physical, visual, bio-physiological, nutritional and anti-nutritional characteristics change during cold storage. The yield was 37% higher in spring than in the overwinter cycle. Spring grown plant had leaves of lighter colour, lower in dry matter content, higher in ascorbic acid, nitrate, and total phenol content. They had higher weight loss during storage than the winter product. Fresh weight was favoured by azoxystrobin only in the non-fertilised plants. During storage azoxystrobin reduced leaf dehydration, contrasted weight loss and the increase in phenols in leaves from fertilised plants. N supply positively affected yield, and greenness of raw and stored leaves. N fertilisation lowered weight loss due to respiration and showed a protective effect on membrane integrity during storage. Azoxystrobin proved effective in reducing nitrate leaf content. Azoxystrobin, especially in fertilised crop, is useful in improving the physiological quality, the safety, and the nutritional quality of baby spinach. A rate of 80 kg ha(-1) can be suggested as optimum N fertilisation. © 2014 Society of Chemical Industry.

  12. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties.

    PubMed

    Bending, Gary D; Lincoln, Suzanne D; Edmondson, Rodney N

    2006-01-01

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160 x 60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated.

  13. Assessment of the dermal exposure to azoxystrobin among women tending cucumbers in selected Polish greenhouses after restricted entry intervals expired--the role of the protective gloves.

    PubMed

    Jurewicz, Joanna; Hanke, Wojciech; Sobala, Wojciech; Ligocka, Danuta

    2009-01-01

    The purpose of our study was to determine the level of skin contamination by azoxystrobin in a group of women tending cucumbers in a vegetable-growing greenhouse after restricted entry intervals expired. Exposure samples were assessed on two days during the spring: first entry on the day after spraying of azoxystrobin and second entry six days later. Dermal exposure was measured by using patches on the outside of clothing and sampling gloves underneath regular working gloves. Pesticide deposited on clothing patches and gloves as a substitute for skin deposition was determined by liquid chromatography and mass spectrometry (LC-MS/MS). The study has shown that workers in a Polish greenhouse are exposed to pesticides at re-entry into the greenhouse after pesticides were sprayed several days earlier. Azoxystrobin has been detected on hands, shoulders and chest. Higher levels of azoxystrobin were found on the cotton gloves of women tending the vegetables than on the patches. The levels decreased (by about 60%) on the patches and increased (by about 250%) on the cotton gloves between the two days of measurement. Women working in a vegetable-growing greenhouse and not directly engaged in the process of spraying experience a measurable dermal exposure to azoxystrobin. The protective gloves constitute a source of secondary exposure rather than protecting employees' hands from contact with the pesticide. More efficient personal protective gloves for proper protection of women working in vegetable greenhouses are needed.

  14. Changing Use and Occurrence of Pesticides in Surface Waters of California's Rice-Growing Region

    NASA Astrophysics Data System (ADS)

    Orlando, J. L.; Hladik, M.; Smalling, K. L.; Kuivila, K.

    2011-12-01

    Pesticide use in rice agriculture in California has changed significantly over the past two decades. California is the second largest producer of rice in the United States and rice is a pesticide intensive crop with over 1.7 million kg of pesticide active ingredients applied in 2009. Prior to 1999, the herbicides molinate and thiobencarb were the most heavily used pesticides. Molinate was phased out in 2009, replaced primarily by propanil, the use of which exceeded 860,000 kg in that year. Over the same time period, use of thiobencarb has been in decline while applications of newer herbicides like clomazone have increased. The use of insecticides on rice has fallen by an order of magnitude over the last 20 years and now fluctuates around 4,500 kg per year. Another major change has been a steady increase in use of the fungicide azoxystrobin. Pesticides are applied either directly to the soil prior to planting and flooding of the fields, or a few weeks after flooding. Fields treated with thiobencarb or propanil are subject to holding times of 30 or 7 days, respectively, to allow for degradation prior to release of treated water to the environment. When rice-field water is released, it flows into local drains and creeks, and ultimately into Sacramento/San Joaquin Delta, a critical habitat for many threatened native species. A study was conducted in 2010 to measure the occurrence of rice pesticides Northern California, and to document how changes in rice pesticide application patterns over the last decade have influenced pesticide concentrations in the environment. Three sites in agriculturally dominated watersheds where rice is the major crop were sampled weekly from the time of initial rice-field flooding (mid-May) through mid-August. Filtered water samples were analyzed for 92 pesticides and pesticide degradates by gas chromatography/mass spectrometry. Azoxystrobin and 3,4-DCA (the major breakdown product of propanil) were detected in every sample, and at concentrations up to 136 and 128 μg/L, respectively. Clomazone and thiobencarb were detected in greater than 93% of water samples, with maximum concentrations of 19.4, and 12.4 μg/L. Propanil was present in 60% of samples and at a maximum concentration of 6.5 μg/L. The U.S. Environmental Protection Agency (EPA) has established chronic invertebrate toxicity benchmarks for concentrations of azoxystrobin, clomazone, and thiobencarb in water of 44, 2,200, and 1.0 μg/L, respectively. Concentrations of azoxystrobin and thiobencarb exceeded these benchmarks in one and three samples, respectively. The chronic fish toxicity benchmark of 9.1μg/L for propanil was not exceeded in any samples. Although the propanil degradate 3,4-DCA does not have established aquatic life benchmarks, EPA noted that it may be 11 and 7 times more toxic than the parent compound to freshwater invertebrates on an acute and chronic basis, respectively (2009 memo on Risks of Propanil Use to Federally Threatened California Red-legged Frog). This study illustrates the importance of understanding changing pesticide use and the resulting changes in pesticide concentrations in the environment.

  15. Tebuconazole and Azoxystrobin Residue Behaviors and Distribution in Field and Cooked Peanut.

    PubMed

    Hou, Fan; Teng, Peipei; Liu, Fengmao; Wang, Wenzhuo

    2017-06-07

    Residue behaviors of tebuconazole and azoxystrobin in field condition and the variation of their residue levels during the boiling process were evaluated. The terminal residues of peanut kernels were determined by using a modified QuEChERS method (quick, easy, cheap, effective, rugged, and safe) by means of the optimization of the novel purification procedure with multiwalled carbon nanotubes (MWCNTs) and Fe 3 O 4 -magnetic nanoparticle (Fe 3 O 4 -MNP) in the presence of an external magnetic field, and the terminal residues were all at trace level at harvest time. The residues in shells were detected as well to investigate the distribution in peanuts. Tebuconazole and azoxystrobin residue levels varied before/after boiling in kernels and shells to different degrees due to various factors, such as the modes of action and physicochemical properties of pesticides. The residues have been transferred from peanut into the infusion during boiling with the higher percentage of azoxystrobin as its lower logK ow . The processing factors (PFs) for tebuconazole and azoxystrobin after processing were <1, indicating that home cooking in this study could reduce the residue levels in peanut. Risk assessment showed there was no health risk for consumers.

  16. Direct and Indirect Effects of Pesticides on the Insidious Flower Bug (Hemiptera: Anthocoridae) Under Laboratory Conditions.

    PubMed

    Herrick, Nathan J; Cloyd, Raymond A

    2017-06-01

    Greenhouse producers are interested in integrating natural enemies along with pesticides to suppress western flower thrips, Frankliniella occidentalis (Pergande), populations. The insidious flower bug, Orius insidiosus (Say), is a commercially available natural enemy of western flower thrips. We conducted a series of laboratory experiments to determine the direct and indirect effects of 28 pesticides (insecticides, miticides, and fungicides), 4 pesticide mixtures, and 4 surfactants (36 total treatments plus a water control) on the adult O. insidiosus survival and predation on western flower thrips adults under laboratory conditions. The number of live and dead O. insidiosus adults was recorded after 24, 48, 72, and 96 h. The results of the study indicate that the fungicides (aluminum tris, azoxystrobin, fenhexamid, and kresoxim-methyl), insect growth regulators (azadirachtin, buprofezin, kinoprene, and pyriproxyfen), botanicals (Capsicum oleoresin extract, garlic oil, soybean oil; and rosemary, rosemary oil, peppermint oil, and cottonseed oil), and entomopathogenic fungi (Beauveria bassiana and Metarhizium anisopliae) were minimally directly harmful to adult O. insidiosus, with 80% to 100% adult survival. However, abamectin, spinosad, pyridalyl, chlorfenapyr, tau-fluvalinate, imidacloprid, dinotefuran, acetamiprid, and thiamethoxam directly affected O. insidiosus survival after 96 h (0-60% adult survival). The pesticide mixtures of abamectin + spinosad and chlorfenapyr + dinotefuran reduced adult survival (20% and 0%, respectively, after 48 h). Furthermore, the surfactants were not directly harmful to O. insidiosus adults. All western flower thrips adults were killed by the surviving adult O. insidiosus after 48 h, indicating no indirect effects of the pesticides on predation. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. [Determination of azoxystrobin residues in fruits and vegetables by gas chromatography/mass spectrometry with solid-phase extraction].

    PubMed

    Bo, Haibo

    2007-11-01

    A method was developed for the determination of azoxystrobin residues in fruits and vegetables by gas chromatography/mass spectrometry (GC/MS). Azoxystrobin residues were extracted with ethyl acetate-cyclohexane (1 : 1, v/v) by ultrasonication and then they were cleaned up on a silica solid-phase extraction (SPE) column to obtain an extract suitable for analysis by GC/MS in the selective ion monitoring (SIM) mode (the selected ion: m/z 344, 372, 388 and 403). The calibration curves were linear between area and concentration of azoxystrobin from 0.01 to 1.0 mg/kg with the correlation coefficient greater than 0.99. The average recoveries from spiked fruit and vegetable matrixes at three concentrations of 0.01, 0.1, 1.0 mg/kg ranged from 85.2% to 98.2% with relative standard deviation less than 21.5%. The limit of detection was 0.01 mg/kg and the limit of quantity was 0.05 mg/kg in fruit and vegetable matrixes, respectively.

  18. Toxicity of metalaxyl, azoxystrobin, dimethomorph, cymoxanil, zoxamide and mancozeb to Phytophthora infestans isolates from Serbia.

    PubMed

    Rekanović, Emil; Potočnik, Ivana; Milijašević-Marčić, Svetlana; Stepanović, Miloš; Todorović, Biljana; Mihajlović, Milica

    2012-01-01

    A study of the in vitro sensitivity of 12 isolates of Phytophthora infestans to metalaxyl, azoxystrobin, dimethomorph, cymoxanil, zoxamide and mancozeb, was conducted. The isolates derived from infected potato leaves collected at eight different localities in Serbia during 2005-2007. The widest range of EC(50) values for mycelial growth of the isolates was recorded for metalaxyl. They varied from 0.3 to 3.9 μg mL(-1) and were higher than those expected in a susceptible population of P. infestans. The EC(50) values of the isolates were 0.16-0.30 μg mL(-1) for dimethomorph, 0.27-0.57 μg mL(-1) for cymoxanil, 0.0026-0.0049 μg mL(-1) for zoxamide and 2.9-5.0 μg mL(-1) for mancozeb. The results indicated that according to effective concentration (EC(50)) the 12 isolates of P. infestans were sensitive to azoxystrobin (0.019-0.074 μg mL(-1)), and intermediate resistant to metalaxyl, dimethomorph and cymoxanil. According to resistance factor, all P. infestans isolates were sensitive to dimethomorph, cymoxanil, mancozeb and zoxamide, 58.3% of isolates were sensitive to azoxystrobin and 50% to metalaxyl. Gout's scale indicated that 41.7% isolates were moderately sensitive to azoxystrobin and 50% to metalaxyl.

  19. Antimicrobial Activity and Chemical Composition of Three Essential Oils Extracted from Mediterranean Aromatic Plants.

    PubMed

    Elshafie, Hazem S; Sakr, Shimaa; Mang, Stefania M; Belviso, Sandra; De Feo, Vincenzo; Camele, Ippolito

    2016-11-01

    There is a growing interest in essential oils (EOs) as possible alternatives for traditional chemical pesticides. This study was carried out to characterize the chemical composition of the three EOs extracted from Verbena officinalis, Majorana hortensis, and Salvia officinalis using gas chromatography (GC) and GC-mass spectrometry (GC-MS) and to evaluate in vitro their efficacy against some phyto or human pathogens. The antifungal activity was investigated against Colletotrichum acutatum and Botrytis cinerea in comparison with Azoxystrobin as a large spectrum fungicide. Antibacterial activity was evaluated against Bacillus megaterium, Bacillus mojavensis, and Clavibacter michiganensis (G+ve) and Escherichia coli, Xanthomonas campestris, Pseudomonas savastanoi, and P. syringae pv. phaseolicola (G-ve) compared to a synthetic antibiotic tetracycline. Minimum inhibitory concentration was evaluated against the above tested fungi using 96-well microplate method. Results showed that the chemical structure of the three studied EOs was mainly composed of monoterpene compounds and all oils belong to the chemotype carvacrol/thymol. Results of GC analysis identified 64 compounds, which were identified based on their mass to charge ratio. Furthermore, the different concentrations of studied EOs inhibited the growth of tested microorganism in a dose-dependent manner.

  20. The protection of parsley seedlings (Petroselinum sativum Hoffm. ssp. microcarpum) against damping-off.

    PubMed

    Nawrocki, J

    2006-01-01

    The experiment was carried out in the years 2003 and 2004 on parsley cultivar: 'Berlinska', 'Cukrowa', 'Vistula' and 'Kinga'. Mycological analysis of parsley seeds showed, that the most common inhabitans were fungi from genus Alternaria (mainly A. alternata and A. radicina) and Fusarium, especially F. avenaceum and F. oxysporum. The two-year study on the effectiveness of 5 substances--biopreparate Biochikol 020 PC (polymer of chitosol) and Biosept 33 SL (extract of grape-fruit); and fungicides: Amistar 250 SC (BAS azoxystrobin), Dithane M-45 80WP (mancozeb) and Zaprawa Funaben T (carbendazim+thiram) used against parsley damping-off was conducted in glasshouse and field conditions. Seeds of parsley were treated one of tested substances before sowing. The results of glasshouse experiments showed, that the best efficacy exibited Amistar and Zaprawa Funaben T for seedlings cultivar 'Berlińska' and 'Cukrowa' and Biochikol for 'Kinga'. During field experiments Zaprawa Funaben T showed the best efficacy for seedlings 'Berlińska' and 'Vistula'. Preparate Amistar was the best seed dressing for parsley cultivar 'Cukrowa' and 'Kinga'. During glasshouse experiments in control the highest number of decaying seedlings had cultivar 'Berlinska', in field experiments 'Kinga'.

  1. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris.

    PubMed

    Shen, Yu-Feng; Liu, Lei; Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Wang, Gao-Xue

    2014-05-01

    This study investigated the effects of trifloxystrobin that one strobilurin used widely in the world as an effective fungicidal agent to control Asian soybean rust on aquatic unicellular algae Chlorella vulgaris. We determined the potential toxic effect of trifloxystrobin on C. vulgaris, and found median inhibition concentration (IC(50)) value 255.58 (95% confidence interval, 207.81-330.29)μgL(-1). In addition, the algal cells were obviously depressed or shrunk at different concentrations by electron microscopy. In the study, a real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL, and one energy gene, ATPs. The results showed that trifloxystrobin reduced the transcript abundances of the three genes and enhanced expression of ATPs after 48 and 96 h. The lowest abundances of psaB, psbC and rbcL transcripts in response to trifloxystrobin exposure were 58%, 79% and 60% of those of the control, respectively. For the potential toxic influences, trifloxystrobin could decrease the soluble protein and total antioxidant contents (T-AOC), and increase superoxide dismutase (SOD) and peroxidase (POD) activity with a gradual concentration-response relationship. Overall, the present study demonstrated that trifloxystrobin could affect the activities of antioxidant enzymes, disrupts photosynthesis in C. vulgaris, and damage cellular structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Determination of azoxystrobin residues in grapes, musts and wines with a multicommuted flow-through optosensor implemented with photochemically induced fluorescence.

    PubMed

    Flores, Javier López; Díaz, Antonio Molina; Fernández de Córdova, María L

    2007-02-28

    In this paper, the conversion of azoxystrobin in a strongly fluorescent degradation product by UV irradiation with quantitative purposes and its fluorimetric determination are reported for the first time. A multicommuted flow injection-solid phase spectroscopy (FI-SPS) system combined with photochemically-induced fluorescence (PIF) is developed for the determination of azoxystrobin in grapes, must and wine. Grape samples were homogenized and extracted with methanol and further cleaned-up by solid-phase extraction on C(18) silica gel. Wine samples were solid-phase extracted on C(18) sorbent using dichloromethane as eluent. Recoveries of azoxystrobin from spiked grapes (0.5-2.0 mg Kg(-1)), must (0.5-2.0 microg mL(-1)) and wine (0.5-2.0 microg mL(-1)) were 84.0-87.6%, 95.5-105.9% and 88.5-111.2%, respectively. The quantification limit for grapes was 0.021 mg Kg(-1), being within European Union regulations, and 18 microg L(-1) and 8 microg L(-1) for must and wine, respectively.

  3. Agricultural Chemical Concentrations and Loads in Rivers Draining the Central Valley, California, to the San Francisco Bay-Delta Estuary: Before and During an Extended Drought

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2016-12-01

    Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to toxicity to zooplankton, non-vascular plants, or fish at these two locations where most of the fresh water inputs to this estuary occurs.

  4. Survival and growth of foodborne pathogens in pesticide solutions routinely used in leafy green vegetables and tomato production.

    PubMed

    Dobhal, Shefali; Zhang, Guodong; Royer, Tom; Damicone, John; Ma, Li Maria

    2014-11-01

    The consumption of fresh produce has increased tremendously in the past few years as have outbreaks of foodborne illnesses associated with these commodities. Pesticides routinely used in crop production could influence the outcomes of foodborne pathogen contamination of fresh produce. Experiments were performed to determine the effects of pesticides on the survival and growth characteristics of Escherichia coli O157:H7 and Salmonella spp. Eight commercial fungicides and insecticides commonly used for disease and insect pest control on leafy green vegetables and tomatoes were evaluated. Among the pesticides tested, copper hydroxide, acetamiprid, cypermethrin and permethrin were found to be significantly (P < 0.05) inhibitory to pathogens while no effect was observed for chlorothalonil, flonicamid and methoxyfenozide. At the highest concentration tested (2.66%), azoxystrobin had a significant (P < 0.05) stimulatory effect on the growth of E. coli O157:H7 after 24 h incubation. The results indicated that some pesticides can stimulate the growth of human pathogens if contaminated water is used in their preparation, whereas others were likely to inhibit or reduce pathogen populations. This information is helpful in mitigating the risk of microbial contamination in fresh produce, which is critical to public health and safety. © 2014 Society of Chemical Industry.

  5. Effect of processing on the disappearance of pesticide residues in fresh-cut lettuce: Bioavailability and dietary risk.

    PubMed

    Camara, Miguel A; Barba, Alberto; Cermeño, Sandra; Martinez, Gracia; Oliva, Jose

    2017-12-02

    The aim of this research is to establish the processing factors of six pesticides durong the preparation of fresh-cut lettuce and to assess the risk of ingestion of pesticide residues associated with the consumption of the same. A field study was carried out on the dissipation of three insecticides (imidacloprid, tebufenozide, cypermethrin) and three fungicides (metalaxyl, tebuconazole, azoxystrobin) during treatment conditions simulating those used for commercial fresh-cut lettuce. A simultaneous residue analysis method is validated using QuEChERS extraction with acetonitrile and CG-MS and LC-MS/MS analysis. The residues detected after field application never exceed the established Maximum Residue Limits. The processing factors were generally less than 1 (between 0.34 for tebufenozide and 0.53 for imidacloprid), indicating that the process, as a whole, considerably reduces residue levels in processed lettuce compared to fresh lettuce. It is confirmed that cutting, followed by washing and drying, considerably reduces the residues. A matrix effect in the dialyzation of the pesticides is observed and the in vitro study of bioavailability establishes a low percentage of stomach absorption capacity (<15%). The EDI/ADI ratios found in all cases were well below their ADI values, and the dietary exposure assessed (EDI) in fresh-cut lettuce showed no concerns for consumer health.

  6. Pesticide residues in grapes, wine, and their processing products.

    PubMed

    Cabras, P; Angioni, A

    2000-04-01

    In this review the results obtained in the 1990s from research on the behavior of pesticide residues on grapes, from treatment to harvest, and their fate in drying, wine-making, and alcoholic beverage processing are reported. The fungicide residues on grapes (cyproconazole, hexaconazole, kresoxim-methyl, myclobutanil, penconazole, tetraconazole, and triadimenol), the application rates of which were of a few tens of grams per hectare, were very low after treatment and were not detectable at harvest. Pyrimethanil residues were constant up to harvest, whereas fluazinam, cyprodinil, mepanipyrim, azoxystrobin, and fludioxonil showed different disappearance rates (t(1/2) = 4.3, 12, 12.8, 15.2, and 24 days, respectively). The decay rate of the organophosphorus insecticides was very fast with t(1/2) ranging between 0.97 and 3.84 days. The drying process determined a fruit concentration of 4 times. Despite this, the residue levels of benalaxyl, phosalone, metalaxyl, and procymidone on sun-dried grapes equalled those on the fresh grape, whereas they were higher for iprodione (1.6 times) and lower for vinclozolin and dimethoate (one-third and one-fifth, respectively). In the oven-drying process, benalaxyl, metalaxyl, and vinclozolin showed the same residue value in the fresh and dried fruit, whereas iprodione and procymidone resides were lower in raisins than in the fresh fruit. The wine-making process begins with the pressing of grapes. From this moment onward, because the pesticide on the grape surface comes into contact with the must, it is in a biphasic system, made up of a liquid phase (the must) and a solid phase (cake and lees), and will be apportioned between the two phases. The new fungicides have shown no effect on alcoholic or malolactic fermentation. In some cases the presence of pesticides has also stimulated the yeasts, especially Kloeckera apiculata, to produce more alcohol. After fermentation, pesticide residues in wine were always smaller than those on the grapes and in the must, except for those pesticides that did not have a preferential partition between liquid and solid phase (azoxystrobin, dimethoate, and pyrimethanil) and were present in wine at the same concentration as on the grapes. In some cases (mepanipyrim, fluazinam, and chlorpyrifos) no detectable residues were found in the wines at the end of fermentation. From a comparison of residues in wine obtained by vinification with and without skins, it can be seen that their values were generally not different. Among the clarifying substances commonly used in wine (bentonite, charcoal, gelatin, polyvinylpolypyrrolidone, potassium caseinate, and colloidal silicon dioxide), charcoal allowed the complete elimination of most pesticides, especially at low levels, whereas the other clarifying substances were ineffective. Wine and its byproducts (cake and lees) are used in the industry to produce alcohol and alcoholic beverages. Fenthion, quinalphos, and vinclozolin pass into the distillate from the lees only if present at very high concentrations, but with a very low transfer percantage (2, 1, and 0.1%, respectively). No residue passed from the cake into the distillate, whereas fenthion and vinclozolin pass from the wine, but only at low transfer percentages (13 and 5%, respectively).

  7. Validation of quantitative method for azoxystrobin residues in green beans and peas.

    PubMed

    Abdelraheem, Ehab M H; Hassan, Sayed M; Arief, Mohamed M H; Mohammad, Somaia G

    2015-09-01

    This study presents a method validation for extraction and quantitative analysis of azoxystrobin residues in green beans and peas using HPLC-UV and the results confirmed by GC-MS. The employed method involved initial extraction with acetonitrile after the addition of salts (magnesium sulfate and sodium chloride), followed by a cleanup step by activated neutral carbon. Validation parameters; linearity, matrix effect, LOQ, specificity, trueness and repeatability precision were attained. The spiking levels for the trueness and the precision experiments were (0.1, 0.5, 3 mg/kg). For HPLC-UV analysis, mean recoveries ranged between 83.69% to 91.58% and 81.99% to 107.85% for green beans and peas, respectively. For GC-MS analysis, mean recoveries ranged from 76.29% to 94.56% and 80.77% to 100.91% for green beans and peas, respectively. According to these results, the method has been proven to be efficient for extraction and determination of azoxystrobin residues in green beans and peas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Reconstructing the Qo Site of Plasmodium falciparum bc 1 Complex in the Yeast Enzyme

    PubMed Central

    Vallières, Cindy; Fisher, Nicholas; Meunier, Brigitte

    2013-01-01

    The bc 1 complex of the mitochondrial respiratory chain is essential for Plasmodium falciparum proliferation, the causative agent of human malaria. Therefore, this enzyme is an attractive target for antimalarials. However, biochemical investigations of the parasite enzyme needed for the study of new drugs are challenging. In order to facilitate the study of new compounds targeting the enzyme, we are modifying the inhibitor binding sites of the yeast Saccharomyces cerevisiae to generate a complex that mimics the P. falciparum enzyme. In this study we focused on its Qo pocket, the site of atovaquone binding which is a leading antimalarial drug used in treatment and causal prophylaxis. We constructed and studied a series of mutants with modified Qo sites where yeast residues have been replaced by P. falciparum equivalents, or, for comparison, by human equivalents. Mitochondria were prepared from the yeast Plasmodium-like and human-like Qo mutants. We measured the bc 1 complex sensitivity to atovaquone, azoxystrobin, a Qo site targeting fungicide active against P. falciparum and RCQ06, a quinolone-derivative inhibitor of P. falciparum bc 1 complex.The data obtained highlighted variations in the Qo site that could explain the differences in inhibitor sensitivity between yeast, plasmodial and human enzymes. We showed that the yeast Plasmodium-like Qo mutants could be useful and easy-to-use tools for the study of that class of antimalarials. PMID:23951230

  9. An In Vitro Attempt for Controlling Severe Phytopathogens and Human Pathogens Using Essential Oils from Mediterranean Plants of Genus Schinus.

    PubMed

    Elshafie, Hazem Salaheldin; Ghanney, Nadia; Mang, Stefania Mirela; Ferchichi, Ali; Camele, Ippolito

    2016-03-01

    Growing concerns about food safety and environmental protection enhanced the need for new and safe plant disease control strategies. The chemical composition of the three essential oils (EOs) extracted from leaves and fruits of Schinus terebinthifolius and leaves of Schinus molle, growing in Tunisia, was studied by GC and GC-MS. In all, 12 compounds were identified. The oils were mainly composed of terpene compounds. α-Pinene, α-phellandrene, and D-limonene were the major constituents. The aim of the current study was to evaluate the in vitro antimicrobial effectiveness of three EOs derived from plants of genus Schinus and extracted from leaves and fruits of S. terebinthifolius and leaves of S. molle. Both antifungal and antibacterial activities of the EOs were examined. The antifungal activity of the studied EOs was investigated against Colletotrichum acutatum and Botrytis cinerea in comparison with the systemic fungicide azoxystrobin used at 0.8 μL mL(-1). The antibacterial activity was evaluated against three strains of Gram-positive (G+ve) bacteria (Bacillus megaterium, Bacillus mojavensis and Clavibacter michiganensis) and four strains of Gram-negative (G-ve) bacteria (Escherichia coli, Xanthomonas campestris, Pseudomonas savastanoi, and Pseudomonas syringae pv. phaseolicola) compared with the synthetic antibiotic tetracycline at a concentration of 1600 μg mL(-1). The minimum inhibitory concentration of the studied EOs has been evaluated against the above microorganisms using the 96-well microplate method. Tested microorganisms exhibited different levels of sensitivity to each tested EO. All investigated EOs reduced the fungal mycelial growth when used at low concentrations from 250 to 1000 ppm and from 2000 to 8000 ppm against C. acutatum and B. cinerea, respectively. Higher concentrations of the same EOs exhibited a fungicidal effect against both mitosporic fungi. The EO extracted from leaves of S. terebinthifolius significantly inhibited the growth of tested bacterial strains. Nevertheless, E. coli showed a weak resistance toward the same EO and a high resistance toward the other two tested EOs. Finally, P. savastanoi and P. syringae pv. phaseolicola showed a high resistance toward all tested EOs.

  10. Enhancement of commercial antifungal agents by kojic acid

    USDA-ARS?s Scientific Manuscript database

    Kojic acid (KA), a natural by-product of fungal fermentation, is a commonly used food and cosmetic additive. We show that KA increases activity of amphotericin B and strobilurin, medical and agricultural antifungal agents, respectively, possibly targeting the fungal antioxidative system. KA shows pr...

  11. Deposition and residues of azoxystrobin and imidacloprid on greenhouse lettuce with implications for human consumption.

    PubMed

    Itoiz, Eva Sevigné; Fantke, Peter; Juraske, Ronnie; Kounina, Anna; Vallejo, Assumpció Antón

    2012-11-01

    Lettuce greenhouse experiments were carried out from March to June 2011 in order to analyze how pesticides behave from the time of application until their intake via human consumption taking into account the primary distribution of pesticides, field dissipation, and post-harvest processing. In addition, experimental conditions were used to evaluate a new dynamic plant uptake model comparing its results with the experimentally derived residues. One application of imidacloprid and two of azoxystrobin were conducted. For evaluating primary pesticide distribution, two approaches based on leaf area index and vegetation cover were used and results were compared with those obtained from a tracer test. High influence of lettuce density, growth stage and type of sprayer was observed in primary distribution showing that low densities or early growth stages implied high losses of pesticides on soil. Washed and unwashed samples of lettuce were taken and analyzed from application to harvest to evaluate removal of pesticides by food processing. Results show that residues found on the Spanish preharvest interval days were in all cases below officially set maximum residue limits, although it was observed that time between application and harvest is as important for residues as application amounts. An overall reduction of 40-60% of pesticides residues was obtained from washing lettuce. Experimentally derived residues were compared with modeled residues and deviate from 1.2 to 1.4 for imidacloprid and azoxystrobin, respectively, presenting good model predictions. Resulting human intake fractions range from 0.045 kg(intake) kg(applied)(-1) for imidacloprid to 0.14 kg(intake) kg(applied)(-1) for azoxystrobin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Use of farming and agro-industrial wastes as versatile barriers in reducing pesticide leaching through soil columns.

    PubMed

    Fenoll, J; Ruiz, E; Flores, P; Vela, N; Hellín, P; Navarro, S

    2011-03-15

    Increased interest has been recently focused on assessing the influence of the addition of organic wastes related to movement of pesticides in soils of low organic matter (OM) content. This study reports the effect of two different amendments, animal manure (composted sheep manure) and agro-industrial waste (spent coffee grounds) on the mobility of 10 pesticides commonly used for pepper protection on a clay-loam soil (OM = 0.22%). The tested compounds were azoxystrobin, cyprodinil, fludioxonil, hexaconazole, kresoxim-methyl, pyrimethanil, tebuconazole, and triadimenol (fungicides), pirimicarb (insecticide), and propyzamide (herbicide). Breakthrough curves were obtained from disturbed soil columns. Cumulative curves obtained from unamended soil show a leaching of all pesticides although in different proportions (12-65% of the total mass of compound applied), showing triadimenol and pirimicarb the higher leachability. Significant correlation (r = 0.93, p<0.01) was found between the observed and bibliographical values of GUS index. The addition of the amendments used drastically reduced the movement of the studied pesticides. Only two pesticides were found in leachates from amended soils, pyrimethanil (<1%) for both, and pirimicarb (44%) in the soil amended with spent coffee grounds. A decrease in pesticide leaching was observed with the increase in dissolved organic matter (DOM) of leachates. The results obtained point to the interest in the use of organic wastes in reducing the pollution of groundwater by pesticide drainage. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia.

    PubMed

    Hernández, F; Portolés, T; Ibáñez, M; Bustos-López, M C; Díaz, R; Botero-Coy, A M; Fuentes, C L; Peñuela, G

    2012-11-15

    The irrigate district of Usosaldaña, an important agricultural area in Colombia mainly devoted to rice crop production, is subjected to an intensive use of pesticides. Monitoring these compounds is necessary to know the impact of phytosanitary products in the different environmental compartments. In this work, surface water and soil samples from different sites of this area have been analyzed by applying an analytical methodology for large screening based on the use of time-of-flight mass spectrometry (TOF MS) hyphenated to liquid chromatography (LC) and gas chromatography (GC). Several pesticides were detected and unequivocally identified, such as the herbicides atrazine, diuron or clomazone. Some of their main metabolites and/or transformation products (TPs) like deethylatrazine (DEA), deisopropylatrazine (DIA) and 3,4-dichloroaniline were also identified in the samples. Among fungicides, carbendazim, azoxystrobin, propiconazole and epoxiconazole were the most frequently detected. Insecticides such as thiacloprid, or p,p'-DDT metabolites (p,p'-DDD and p,p'-DDE) were also found. Thanks to the accurate-mass full-spectrum acquisition in TOF MS it was feasible to widen the number of compounds to be investigated to other families of contaminants. This allowed the detection of emerging contaminants, such as the antioxidant 3,5-di-tertbutyl-4-hydroxy-toluene (BHT), its metabolite 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO), or the solar filter benzophenone, among others. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Occurrence of pesticide residues in fruiting vegetables from production farms in south-eastern region of Poland

    PubMed

    Słowik-Borowiec, Magdalena; Szpyrka, Ewa; Rupar, Julian; Podbielska, Magdalena; Matyaszek, Aneta

    Considering the fact that pesticides are commonly used in agriculture, continuous monitoring of these substances in food products is of great significance. Residues of these substances can be present in crops after harvest. The aim of this study was to evaluate presence of pesticide residues in fruiting vegetables from production farms in south-eastern region of Poland in 2012–2015. 138 samples were tested using accredited test methods. The monitoring programme covered determination of 242 pesticides. The tests covered tomato, cucumber and pepper crops. The test results were interpreted in accordance with criteria included in the European Commission recommendations published in the document SANCO/12571/2013 (now superseded by Document SANTE 2015), as well as on a basis of the maximum residue levels in force in the EU Member States. Pesticide residues were found in 47 samples, representing 34% of all tested samples. 17 active substances were found, belonging to fungicides and insecticides. Azoxystrobin (38%), boscalid (28%) and chlorothalonil (21%) were most commonly found in fruiting vegetables testing samples. Non-compliances related to use of plant protection product not authorized for protection of a given crop were observed in 6% of analysed samples. However, pesticide residues of fruiting vegetables in quantities that exceed the maximum residue levels (NDP, ang. MRLs), as well as substances which use for plant protection is forbidden were no found. Crops monitoring is used to determine to what extent such products are contaminated with pesticide residues, and ensures protection of customer health.

  15. Dynamic residual pattern of azoxystrobin in Swiss chard with contribution to safety evaluation.

    PubMed

    Farha, Waziha; Abd El-Aty, A M; Rahman, Md Musfiqur; Kabir, Md Humayun; Chung, Hyung Suk; Lee, Han Sol; Jeon, Jong-Sup; Wang, Jing; Chang, Byung-Joon; Shin, Ho-Chul; Shim, Jae-Han

    2018-02-01

    This study aimed at quantifying the residual amount of azoxystrobin in Swiss chard samples grown under greenhouse conditions at two different locations (Gwangju and Naju, Republic of Korea). Samples were extracted with acetonitrile, separated by salting out, and subjected to purification by using solid-phase extraction. The analyte was identified using liquid chromatography-ultraviolet detection. The linearity of the calibration range was excellent with coefficient of determination 1.00. Recovery at three different spiking levels (0.1, 0.5, and 4 mg/kg) ranged between 82.89 and 109.46% with relative standard deviation <3. The limit of quantification, 0.01 mg/kg, was considerably much lower than the maximum residue limit (50 mg/kg) set by the Korean Ministry of Food and Drug Safety. The developed methodology was successfully used for field-treated leaves, which were collected randomly at 0-14 days following azoxystrobin application. The rate of disappearance in/on Swiss chard was ascribed to first-order kinetics with a half-life of 8 and 5 days, in leaves grown in Gwangju and Naju greenhouses, respectively. Risk assessments revealed that the acceptable daily intake percentage is substantially below the risk level of consumption at day 0 (in both areas), thus encouraging its safe consumption. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Mechanisms and significance of fungicide resistance†

    PubMed Central

    Deising, Holger B.; Reimann, Sven; Pascholati, Sérgio F.

    2008-01-01

    In this review article, we show that occurrence of fungicide resistance is one of the most important issues in modern agriculture. Fungicide resistance may be due to mutations of genes encoding fungicide targets (qualitative fungicide resistance) or to different mechanisms that are induced by sub-lethal fungicide stress. These mechanisms result in different and varying levels of resistance (quantitative fungicide resistance). We discuss whether or not extensive use of fungicides in agricultural environments is related to the occurrence of fungicide resistance in clinical environments. Furthermore, we provide recommendations of how development of fungicide resistant pathogen populations may be prevented or delayed. PMID:24031218

  17. Efficacy of Newer Molecules, Bioagents and Botanicals against Maydis Leaf Blight and Banded Leaf and Sheath Blight of Maize

    PubMed Central

    Malik, Vinod Kumar; Singh, Manjeet; Hooda, Karambir Singh; Yadav, Naresh Kumar; Chauhan, Prashant Kumar

    2018-01-01

    Maize (Zea mays L.; 2N=20) is major staple food crop grown worldwide adapted to several biotic and abiotic stresses. Maydis leaf blight (MLB) and banded leaf and sheath blight (BLSB) are serious foliar fungal diseases may cause up to 40% and 100% grain yield loss, respectively. The present studies were undertaken to work out the efficacy of chemicals, botanicals and bioagents for the management of MLB and BLSB under field condition for two seasons Kharif 2014 and 2015. Five molecules (propiconazole 25 EC, hexaconazole 25 EC, carbendazim 50 WP, mancozeb 75 WP and carbedazim 12 WP + mancozeb 63 WP), two bioagents i.e. Trichoderma harzianum and T. viridae and three botanicals namely azadirachtin, sarpagandha and bel pathar were tested for their efficacy against MLB. Eight newer fungicides viz., difenconazole 250 SC, hexaconazole 5 EC, carbendazim 50WP, validamycin 3 L, tebuconazole 250 EC, trifloxystrobin 50 WG + tebuconazole 50 WG, azoxystrobin 250 EC and pencycuron 250 SC were evaluated against BLSB. Analysis revealed significant effects of propiconazole at 0.1%, carbendazim 12 WP + mancozeb 63 WP at 0.125% and sarpagandha leaves at 10% against MLB pathogen, whereas validamycin at 0.1% and trifloxystrobin 25 WG + tebuconazole 50 WG at 0.05% were found effective against BLSB. The slow rate of disease control virtually by the bioagents might have not shown instant effect on plant response to the yield enhancing components. The identified sources of management can be used further in strengthening the plant protection in maize against MLB and BLSB. PMID:29628818

  18. Efficacy of Newer Molecules, Bioagents and Botanicals against Maydis Leaf Blight and Banded Leaf and Sheath Blight of Maize.

    PubMed

    Malik, Vinod Kumar; Singh, Manjeet; Hooda, Karambir Singh; Yadav, Naresh Kumar; Chauhan, Prashant Kumar

    2018-04-01

    Maize ( Zea mays L.; 2N=20) is major staple food crop grown worldwide adapted to several biotic and abiotic stresses. Maydis leaf blight (MLB) and banded leaf and sheath blight (BLSB) are serious foliar fungal diseases may cause up to 40% and 100% grain yield loss, respectively. The present studies were undertaken to work out the efficacy of chemicals, botanicals and bioagents for the management of MLB and BLSB under field condition for two seasons Kharif 2014 and 2015. Five molecules (propiconazole 25 EC, hexaconazole 25 EC, carbendazim 50 WP, mancozeb 75 WP and carbedazim 12 WP + mancozeb 63 WP), two bioagents i.e. Trichoderma harzianum and T. viridae and three botanicals namely azadirachtin, sarpagandha and bel pathar were tested for their efficacy against MLB. Eight newer fungicides viz., difenconazole 250 SC, hexaconazole 5 EC, carbendazim 50WP, validamycin 3 L, tebuconazole 250 EC, trifloxystrobin 50 WG + tebuconazole 50 WG, azoxystrobin 250 EC and pencycuron 250 SC were evaluated against BLSB. Analysis revealed significant effects of propiconazole at 0.1%, carbendazim 12 WP + mancozeb 63 WP at 0.125% and sarpagandha leaves at 10% against MLB pathogen, whereas validamycin at 0.1% and trifloxystrobin 25 WG + tebuconazole 50 WG at 0.05% were found effective against BLSB. The slow rate of disease control virtually by the bioagents might have not shown instant effect on plant response to the yield enhancing components. The identified sources of management can be used further in strengthening the plant protection in maize against MLB and BLSB.

  19. Mycotoxin and fungicide residues in wheat grains from fungicide-treated plants measured by a validated LC-MS method.

    PubMed

    da Luz, Suzane Rickes; Pazdiora, Paulo Cesar; Dallagnol, Leandro José; Dors, Giniani Carla; Chaves, Fábio Clasen

    2017-04-01

    Wheat (Triticum aestivum) is an annual crop, cultivated in the winter and spring and susceptible to several pathogens, especially fungi, which are managed with fungicides. It is also one of the most consumed cereals, and can be contaminated by mycotoxins and fungicides. The objective of this study was to validate an analytical method by LC-MS for simultaneous determination of mycotoxins and fungicide residues in wheat grains susceptible to fusarium head blight treated with fungicides, and to evaluate the relationship between fungicide application and mycotoxin production. All parameters of the validated analytical method were within AOAC and ANVISA limits. Deoxynivalenol was the prevalent mycotoxin in wheat grain and epoxiconazole was the fungicide residue found in the highest concentration. All fungicidal treatments induced an increase in AFB2 production when compared to the control (without application). AFB1 and deoxynivalenol, on the contrary, were reduced in all fungicide treatments compared to the control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Degradation of kresoxim-methyl in soil: impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level.

    PubMed

    Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho

    2014-09-01

    In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in two different soil types of India namely Inceptisol and Ultisol. Results revealed that kresoxim-methyl readily form acid metabolite in soil. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. Among the two soil types, kresoxim-methyl and total residues dissipated at a faster rate in Inceptisol (T1/2 0.9 and 33.8d) than in Ultisol (T1/2 1.5 and 43.6d). Faster dissipation of kresoxim-methyl and total residues was observed in submerged soil conditions (T1/2 0.5 and 5.2d) followed by field capacity (T1/2 0.9 and 33.8d) and air dry (T1/2 2.3 and 51.0d) conditions. Residues also dissipated faster in 5% sludge amended soil (T1/2 0.7 and 21.1d) and on Xenon-light exposure (T1/2 0.5 and 8.0d). Total residues of kresoxim-methyl dissipated at a faster rate under elevated CO2 condition (∼550μLL(-)(1)) than ambient condition (∼385μLL(-)(1)). The study suggests that kresoxim-methyl alone has low persistence in soil. Because of the slow dissipation of acid metabolite, the total residues (kresoxim-methyl+acid metabolite) persist for a longer period in soil. Statistical analysis using SAS 9.3 software and Duncan's Multiple Range Test (DMRT) revealed the significant effect of moisture regime, organic matter, microbial population, soil type, light exposure and atmospheric CO2 level on the dissipation of kresoxim-methyl from soil (at 95% confidence level p<0.0001). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum.

    PubMed

    Jogaiah, Sudisha; Shetty, Hunthrike Shekar; Ito, Shin-Ichi; Tran, Lam-Son Phan

    2016-08-01

    Pearl millet (Pennisetum glaucum) stands sixth among the most important cereal crops grown in the semi-arid and arid regions of the world. The downy mildew disease caused by Sclerospora graminicola, an oomycete pathogen, has been recognized as a major biotic constraint in pearl millet production. On the other hand, basidiomycetes are known to produce a large number of antimicrobial metabolites, providing a good source of anti-oomycete agrochemicals. Here, we report the discovery and efficacy of a compound, named G_app7, purified from Ganoderma applanatum on inhibition of growth and development of S. graminicola, as well as the effects of seed treatment with G_app7 on protection of pearl millet from downy mildew. G_app7 consistently demonstrated remarkable effects against S. graminicola by recording significant inhibition of sporangium formation (41.4%), zoospore release (77.5%) and zoospore motility (91%). Analyses of G_app7 compound using two-dimensional nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry revealed its close resemblance to metominostrobin, a derivative of strobilurin group of fungicides. Furthermore, the G_app7 was shown to stably maintain the inhibitory effects at different temperatures between 25 and 80 °C. In addition, the anti-oomycete activity of G_app7 was fairly stable for a period of at least 12 months at 4 °C and was only completely lost after being autoclaved. Seed treatment with G_app7 resulted in a significant increase in disease protection (63%) under greenhouse conditions compared with water control. The identification and isolation of this novel and functional anti-oomycete compound from G. applanatum provide a considerable agrochemical importance for plant protection against downy mildew in an environmentally safe and economical manner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. 77 FR 41284 - Azoxystrobin; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ..., ornamentals, flower gardens, vegetables, fruit and nut trees, berries and vines) and recreational (golf... Asparagus 0.04 Atemoya 2.0 Avocado 2.0 Banana * Barley, bran 6.0 Barley, forage 25 Barley, grain 3.0 Barley...

  3. The influence of chemical protection on the content of heavy metals in wheat (Triticum aestivum L.) growing on the soil enriched with granular sludge.

    PubMed

    Wołejko, E; Łozowicka, B; Kaczyński, P; Konecki, R; Grobela, M

    2017-08-01

    The presence of heavy metals in Triticum aestivum L. growing on the soil enriched with granular sludge after chemical protection was observed. The five variants of treatments using herbicide (Chwastox Turbo 340SL) and four fungicides (Topsin M 500SC, Amistar 250SC, Artea 330EC, and Falcon 460EC) were performed. On control and experimental plots, the concentration of Ni, Pb, Cr, and Cu in wheat leaves were in the range 0.32-0.99, 0.92-1.57, 0.89-6.31, and 7.08-12.59 mg/kg and in grains 0.03 to 0.11, 0.14-0.25, 0.11-0.76, and 1.06-1.46 mg/kg, respectively. The concentration of Pb in grain protected by MCPA and 2,4-D with thiophanate-methyl and azoxystrobin was higher than the maximum levels of 0.20 mg/kg D.M. The bioconcentration factor (BCF) differed and depended on chemical protection. The highest value of BCF was achieved for Cd. The statistical analysis showed a significant correlation between concentration of metals and quality parameters of wheat. One observed significant negative correlations between Ni/Zeleny sedimentation value (r = -0.51) and between Pb/starch content (r = -0.57). Positive correlations were observed between Cd/yield, the number of grains/ergosterol concentration (respectively, r = 0.41, r = 0.55, r = 0.56), and Zn/thousand grain weight (r = 0.50) at a p ≤ 0.05.

  4. Exposure of native bees foraging in an agricultural landscape to current-use pesticides.

    PubMed

    Hladik, Michelle L; Vandever, Mark; Smalling, Kelly L

    2016-01-15

    The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado in both grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >2% of the samples included: insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), imidacloprid (13%), fipronil desulfinyl (7%; degradate); fungicides azoxystrobin (17%), pyraclostrobin (11%), fluxapyroxad (9%), and propiconazole (9%); herbicides atrazine (19%) and metolachlor (9%). Concentrations ranged from 1 to 310 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m radius influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in an agricultural landscape are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators. Published by Elsevier B.V.

  5. Exposure of native bees foraging in an agricultural landscape to current-use pesticides

    USGS Publications Warehouse

    Hladik, Michelle; Vandever, Mark W.; Smalling, Kelly L.

    2016-01-01

    The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado from two land cover types: grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >10% of the samples included the insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), and imidacloprid (13%), the fungicides azoxystrobin (17%), and pyraclostrobin (11%), and the herbicide atrazine (19%). Concentrations ranged from 1.1 to 312 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m buffer influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in both grasslands and wheat fields are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators.

  6. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food.

    PubMed

    García-Reyes, Juan F; Jackson, Ayanna U; Molina-Díaz, Antonio; Cooks, R Graham

    2009-01-15

    Desorption electrospray ionization (DESI) is applied to the rapid, in situ, direct qualitative and quantitative (ultra)trace analysis of agrochemicals in foodstuffs. To evaluate the potential of DESI mass spectrometry (MS) in toxic residue testing in food, 16 representative multiclass agricultural chemicals (pesticides, insecticides, herbicides, and fungicides) were selected (namely, ametryn, amitraz, azoxystrobin, bitertanol, buprofezin, imazalil, imazalil metabolite, isofenphos-methyl, malathion, nitenpyram, prochloraz, spinosad, terbuthylazine, thiabendazole, and thiacloprid). The DESI-MS experiments were performed using 3 microL of solution spotted onto conventional smooth poly(tetrafluoroethylene) (PTFE) surfaces, with examination by MS and tandem mass spectrometry (MS/MS) using an ion trap mass spectrometer. Optimization of the spray solvent led to the use of acetonitrile/water (80:20) (v/v), with 1% formic acid. Most of the compounds tested showed remarkable sensitivity in the positive ion mode, approaching that attainable with conventional direct infusion electrospray mass spectrometry. To evaluate the potential of the proposed approach in real samples, different experiments were performed including the direct DESI-MS/MS analysis of fruit peels and also of fruit/vegetable extracts. The results proved that DESI allows the detection and confirmation of traces of agrochemicals in actual market-purchased samples. In addition, MS/MS confirmation of selected pesticides in spiked vegetable extracts was obtained at absolute levels as low as 1 pg for ametryn. Quantitation of imazalil residues was also undertaken using an isotopically labeled standard. The data obtained were in agreement with those from the liquid chromatography mass spectrometry (LC-MS) reference method, with relative standard deviation (RSD) values consistently below 15%. The results obtained demonstrate the sensitivity of DESI as they meet the stringent European Union pesticide regulation requirements (maximum residue levels) for a large percentage of the studied compounds.

  7. Reducing the impact of pesticides on biological control in Australian vineyards: pesticide mortality and fecundity effects on an indicator species, the predatory mite Euseius victoriensis (Acari: Phytoseiidae).

    PubMed

    Bernard, Martina B; Cole, Peter; Kobelt, Amanda; Horne, Paul A; Altmann, James; Wratten, Stephen D; Yen, Alan L

    2010-12-01

    Laboratory bioassays on detached soybean, Glycine max (L.) Merr., leaves were used to test 23 fungicides, five insecticides, two acaricides, one herbicide, and two adjuvants on a key Australian predatory mite species Euseius victoriensis (Womersley) in "worst-case scenario" direct overspray assays. Zero- to 48-h-old juveniles, their initial food, and water supply were sprayed to runoff with a Potter tower; spinosad and wettable sulfur residues also were tested. Tests were standardized to deliver a pesticide dose comparable with commercial application of highest label rates at 1,000 liter/ha. Cumulative mortality was assessed 48 h, 4 d, and 7 d after spraying. Fecundity was assessed for 7 d from start of oviposition. No significant mortality or fecundity effects were detected for the following compounds at single-use application at 1,000 liter/ha: azoxystrobin, Bacillus thuringiensis (Bt) subsp. kurstaki, captan, chlorothalonil, copper hydroxide, fenarimol, glyphosate, hexaconazole, indoxacarb, metalaxyl/copper hydroxide, myclobutanil, nonyl phenol ethylene oxide, phosphorous acid, potassium bicarbonate, pyraclostrobin, quinoxyfen, spiroxamine, synthetic latex, tebufenozide, triadimenol, and trifloxystrobin. Iprodione and penconazole had some detrimental effect on fecundity. Canola oil as acaricide (2 liter/100 liter) and wettable sulfur (200 g/100 liter) had some detrimental effect on survival and fecundity and cyprodinil/fludioxonil on survivor. The following compounds were highly toxic (high 48-h mortality): benomyl, carbendazim, emamectin benzoate, mancozeb, spinosad (direct overspray and residue), wettable sulfur (> or = 400 g/100 liter), and pyrimethanil; pyrimethanil had no significant effect on fecundity of surviving females. Indoxacarb safety to E. victoriensis contrasts with its toxicity to key parasitoids and chrysopid predators. Potential impact of findings is discussed.

  8. Empirical, Metagenomic, and Computational Techniques Illuminate the Mechanisms by which Fungicides Compromise Bee Health.

    PubMed

    Steffan, Shawn A; Dharampal, Prarthana S; Diaz-Garcia, Luis; Currie, Cameron R; Zalapa, Juan; Hittinger, Chris Todd

    2017-10-09

    Growers often use fungicide sprays during bloom to protect crops against disease, which exposes bees to fungicide residues. Although considered "bee-safe," there is mounting evidence that fungicide residues in pollen are associated with bee declines (for both honey and bumble bee species). While the mechanisms remain relatively unknown, researchers have speculated that bee-microbe symbioses are involved. Microbes play a pivotal role in the preservation and/or processing of pollen, which serves as nutrition for larval bees. By altering the microbial community, it is likely that fungicides disrupt these microbe-mediated services, and thereby compromise bee health. This manuscript describes the protocols used to investigate the indirect mechanism(s) by which fungicides may be causing colony decline. Cage experiments exposing bees to fungicide-treated flowers have already provided the first evidence that fungicides cause profound colony losses in a native bumble bee (Bombus impatiens). Using field-relevant doses of fungicides, a series of experiments have been developed to provide a finer description of microbial community dynamics of fungicide-exposed pollen. Shifts in the structural composition of fungal and bacterial assemblages within the pollen microbiome are investigated by next-generation sequencing and metagenomic analysis. Experiments developed herein have been designed to provide a mechanistic understanding of how fungicides affect the microbiome of pollen-provisions. Ultimately, these findings should shed light on the indirect pathway through which fungicides may be causing colony declines.

  9. Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia.

    PubMed

    Wightwick, Adam M; Bui, Anh Duyen; Zhang, Pei; Rose, Gavin; Allinson, Mayumi; Myers, Jackie H; Reichman, Suzanne M; Menzies, Neal W; Pettigrove, Vincent; Allinson, Graeme

    2012-04-01

    Fungicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the fate of fungicides in horticultural catchments. This study investigated the presence of 24 fungicides at 18 sites during a 5-month period within a horticultural catchment in southeastern Australia. Seventeen of the 24 fungicides were detected in the waterways, with fungicides detected in 63% of spot water samples, 44% of surface sediment samples, and 44% of the passive sampler systems deployed. One third of the water samples contained residues of two or more fungicides. Myclobutanil, trifloxystrobin, pyrimethanil, difenoconazole, and metalaxyl were the fungicides most frequently detected, being present in 16-38% of the spot water samples. Iprodione, myclobutanil, pyrimethanil, cyproconazole, trifloxystrobin, and fenarimol were found at the highest concentrations in the water samples (> 0.2 μg/l). Relatively high concentrations of myclobutanil and pyrimethanil (≥ 120 μg/kg dry weight) were detected in the sediment samples. Generally the concentrations of the fungicides detected were several orders of magnitude lower than reported ecotoxicological effect values, suggesting that concentrations of individual fungicides in the catchment were unlikely to pose an ecological risk. However, there is little information on the effects of fungicides, especially fungi and microbes, on aquatic ecosystems. There is also little known about the combined effects of simultaneous low-level exposure of multiple fungicides to aquatic organisms. Further research is required to adequately assess the risk of fungicides in aquatic environments.

  10. Nucleic adaptability of heterokaryons to fungicides in a multinucleate fungus, Sclerotinia homoeocarpa.

    PubMed

    Kessler, Dylan; Sang, Hyunkyu; Bousquet, Amanda; Hulvey, Jonathan P; Garcia, Dawlyn; Rhee, Siyeon; Hoshino, Yoichiro; Yamada, Toshihiko; Jung, Geunhwa

    2018-06-01

    Sclerotinia homoeocarpa is the causal organism of dollar spot in turfgrasses and is a multinucleate fungus with a history of resistance to multiple fungicide classes. Heterokaryosis gives rise to the coexistence of genetically distinct nuclei within a cell, which contributes to genotypic and phenotypic plasticity in multinucleate fungi. We demonstrate that field isolates, resistant to either a demethylation inhibitor or methyl benzimidazole carbamate fungicide, can form heterokaryons with resistance to each fungicide and adaptability to serial combinations of different fungicide concentrations. Field isolates and putative heterokaryons were assayed on fungicide-amended media for in vitro sensitivity. Shifts in fungicide sensitivity and microsatellite genotypes indicated that heterokaryons could adapt to changes in fungicide pressure. Presence of both nuclei in heterokaryons was confirmed by detection of a single nucleotide polymorphism in the β-tubulin gene, the presence of microsatellite alleles of both field isolates, and the live-cell imaging of two different fluorescently tagged nuclei using laser scanning confocal microscopy. Nucleic adaptability of heterokaryons to fungicides was strongly supported by the visualization of changes in fluorescently labeled nuclei to fungicide pressure. Results from this study suggest that heterokaryosis is a mechanism by which the pathogen adapts to multiple fungicide pressures in the field. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. 40 CFR 180.507 - Azoxystrobin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Tomato 0.2 Tomato, paste 0.6 Turnip, greens 25 Vegetable, foliage of legume, group 7 30.0 Vegetable... root and tuber, group 2 50.0 Vegetable, legume, edible podded, subgroup 6A, except soybean 3.0...

  12. 40 CFR 180.507 - Azoxystrobin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Tomato 0.2 Tomato, paste 0.6 Turnip, greens 25 Vegetable, foliage of legume, group 7 30.0 Vegetable... root and tuber, group 2 50.0 Vegetable, legume, edible podded, subgroup 6A, except soybean 3.0...

  13. Contribution of leaf growth on the disappearance of fungicides used on tea under south Indian agroclimatic conditions

    PubMed Central

    Karthika, Chinnachamy; Muraleedharan, Narayanan Nair

    2009-01-01

    The sprayed chemicals on tea leaves disappear over a period of time by the influence of rainfall elution, evaporation, growth dilution, and photodegradation. Influence of plant growth on the four fungicides (hexaconazole, propiconazole, tridemorph, and c) was studied to know the constructive loss of fungicides. The study shows that residues of fungicides sprayed on tea shoots got diluted by the growing process. The expansion of a leaf took 8 to 11 d and more than 50% of the fungicide residues were cleaned out during this leaf expansion period. Under south Indian agroclimatic condition, the fungicides are sprayed at an interval of 10 d, so it is safe that the tea is harvested on the 10th day of the application of fungicides. PMID:19489107

  14. Contribution of leaf growth on the disappearance of fungicides used on tea under South Indian agroclimatic conditions.

    PubMed

    Karthika, Chinnachamy; Muraleedharan, Narayanan Nair

    2009-06-01

    The sprayed chemicals on tea leaves disappear over a period of time by the influence of rainfall elution, evaporation, growth dilution, and photodegradation. Influence of plant growth on the four fungicides (hexaconazole, propiconazole, tridemorph, and c) was studied to know the constructive loss of fungicides. The study shows that residues of fungicides sprayed on tea shoots got diluted by the growing process. The expansion of a leaf took 8 to 11 d and more than 50% of the fungicide residues were cleaned out during this leaf expansion period. Under south Indian agroclimatic condition, the fungicides are sprayed at an interval of 10 d, so it is safe that the tea is harvested on the 10th day of the application of fungicides.

  15. [Effect of five fungicides on growth of Glycyrrhiza uralensis and efficiency of mycorrhizal symbiosis].

    PubMed

    Li, Peng-ying; Yang, Guang; Zhou, Xiu-teng; Zhou, Liane-yun; Shao, Ai-juan; Chen, Mei-lan

    2015-12-01

    In order to obtain the fungicides with minimal impact on efficiency of mycorrhizal symbiosis, the effect of five fungicides including polyoxins, jinggangmycins, thiophanate methylate, chlorothalonil and carbendazim on the growth of medicinal plant and efficiency of mycorrhizal symbiosis were studied. Pot cultured Glycyrrhiza uralensis was treated with different fungicides with the concentration that commonly used in the field. 60 d after treated with fungicides, infection rate, infection density, biomass indexes, photosyn- thetic index and the content of active component were measured. Experimental results showed that carbendazim had the strongest inhibition on mycorrhizal symbiosis effect. Carbendazim significantly inhibited the mycorrhizal infection rate, significantly suppressed the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. Polyoxins showed the lowest inhibiting affection. Polyoxins had no significant effect on mycorrhizal infection rate, the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. The other three fungicides also had an inhibitory effect on efficiency of mycorrhizal symbiosis, and the inhibition degrees were all between polyoxins's and carbendazim's. The author considered that fungicide's inhibition degree on mycorrhizal effect might be related with the species of fungicides, so the author suggested that the farmer should try to choose bio-fungicides like polyoxins.

  16. Fungicide residue identification and discrimination using a conducting polymer electronic-nose

    Treesearch

    Alphus D. Wilson

    2013-01-01

    The identification of fungicide residues on crop foliage is necessary to make periodic pest management decisions. The determination of fungicide residue identities currently is difficult and time consuming using conventional chemical analysis methods such as gas chromatography-mass spectroscopy. Different fungicide types produce unique electronic aroma signature...

  17. Effect of fungicides on Wyoming big sagebrush seed germination

    Treesearch

    Robert D. Cox; Lance H. Kosberg; Nancy L. Shaw; Stuart P. Hardegree

    2011-01-01

    Germination tests of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young [Asteraceae]) seeds often exhibit fungal contamination, but the use of fungicides should be avoided because fungicides may artificially inhibit germination. We tested the effect of seed-applied fungicides on germination of Wyoming big sagebrush at 2 different...

  18. Empirical, metagenomic, and computational techniques illuminate the mechanisms by which fungicides compromise bee health

    USDA-ARS?s Scientific Manuscript database

    Because disease can be devastating to crops, growers often spray fungicides as preventative measures. Unfortunately, many sprays are applied to in-bloom crops, which expose bees to fungicide residues. Generally considered “bee-safe,” fungicides are applied globally on flowering crops. However, there...

  19. 40 CFR 180.507 - Azoxystrobin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sapote, mamey 2.0 Sapote, white 2.0 Sorghum, grain, forage 25 Sorghum, grain, grain 11 Sorghum, grain... Sugarcane, cane 0.2 Sunflower subgroup 20B 0.5 Tamarind 2.0 Tomato, paste 0.6 Tomato subgroup 8-10A 0.2...

  20. 40 CFR 180.507 - Azoxystrobin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Sapote, mamey 2.0 Sapote, white 2.0 Sorghum, grain, forage 25 Sorghum, grain, grain 11 Sorghum, grain... Sugarcane, cane 0.2 Sunflower subgroup 20B 0.5 Tamarind 2.0 Tomato, paste 0.6 Tomato subgroup 8-10A 0.2...

  1. Naturally occurring antifungal agents against Zygosaccharomyces bailii and their synergism.

    PubMed

    Fujita, Ken-Ichi; Kubo, Isao

    2005-06-29

    Polygodial was found to exhibit a fungicidal activity against a food spoilage yeast, Zygosaccharomyces bailii, with the minimum fungicidal concentration (MFC) of 50 microg/mL (0.17 mM). The time-kill curve study showed that polygodial was fungicidal at any growth stage. The primary action of polygodial comes from its ability to disrupt the native membrane-associated function of integral proteins as nonionic surface active agents (surfactants) followed by a decrease in plasma membrane fluidity. The fungicidal activity of polygodial was increased 128-fold in combination with a sublethal amount (equivalent of 1/2 MFC) of anethole and vice versa relative to the fungicidal activity of anethole. The fungicidal activity of sorbic acid was enhanced 512-fold in combination with 1/2 MFC of polygodial. Conversely, the fungicidal activity of polygodial was enhanced 128-fold in combination with 1/2 MFC of sorbic acid.

  2. Impact of Chemical and Biological Fungicides Applied to Grapevine on Grape Biofilm, Must, and Wine Microbial Diversity

    PubMed Central

    Escribano-Viana, Rocío; López-Alfaro, Isabel; López, Rosa; Santamaría, Pilar; Gutiérrez, Ana R.; González-Arenzana, Lucía

    2018-01-01

    This study was aimed to measure the impact of the application of a bio-fungicide against Botrytis cinerea on the microbiota involved in the alcoholic fermentation (AF) of Tempranillo Rioja wines. For this purpose, a bio-fungicide composed of the biological control bacterium Bacillus subtilis QST713 was applied to the vineyard. The microbial diversity was analyzed from grape biofilm to wine. Impact on microbial diversity was measured employing indexes assessed with the software PAST 3.10 P.D. Results were compared to non-treated samples and to samples treated with a chemical fungicide mainly composed by fenhexamid. Overall, the impact of the biological-fungicide (bio-fungicide) on the microbial diversity assessed for grape biofilm and for musts was not remarkable. Neither of the tested fungicides enhanced the growth of any species or acted against the development of any microbial groups. The bio-fungicide had no significant impact on the wine microbiota whereas the chemical fungicide caused a reduction of microbial community richness and diversity. Although environmental threats might generate a detriment of the microbial species richness, in this study the tested bio-fungicide did not modify the structure of the microbial community. Indeed, some of the Bacillus applied at the grape surface, were detected at the end of the AF showing its resilience to the harsh environment of the winemaking; in contrast, its impact on wine quality during aging is yet unknown. PMID:29467723

  3. Impact of Chemical and Biological Fungicides Applied to Grapevine on Grape Biofilm, Must, and Wine Microbial Diversity.

    PubMed

    Escribano-Viana, Rocío; López-Alfaro, Isabel; López, Rosa; Santamaría, Pilar; Gutiérrez, Ana R; González-Arenzana, Lucía

    2018-01-01

    This study was aimed to measure the impact of the application of a bio-fungicide against Botrytis cinerea on the microbiota involved in the alcoholic fermentation (AF) of Tempranillo Rioja wines. For this purpose, a bio-fungicide composed of the biological control bacterium Bacillus subtilis QST713 was applied to the vineyard. The microbial diversity was analyzed from grape biofilm to wine. Impact on microbial diversity was measured employing indexes assessed with the software PAST 3.10 P.D. Results were compared to non-treated samples and to samples treated with a chemical fungicide mainly composed by fenhexamid. Overall, the impact of the biological-fungicide (bio-fungicide) on the microbial diversity assessed for grape biofilm and for musts was not remarkable. Neither of the tested fungicides enhanced the growth of any species or acted against the development of any microbial groups. The bio-fungicide had no significant impact on the wine microbiota whereas the chemical fungicide caused a reduction of microbial community richness and diversity. Although environmental threats might generate a detriment of the microbial species richness, in this study the tested bio-fungicide did not modify the structure of the microbial community. Indeed, some of the Bacillus applied at the grape surface, were detected at the end of the AF showing its resilience to the harsh environment of the winemaking; in contrast, its impact on wine quality during aging is yet unknown.

  4. Assessment of spent mushroom substrate as sorbent of fungicides: influence of sorbent and sorbate properties.

    PubMed

    Marín-Benito, Jesús M; Rodríguez-Cruz, M Sonia; Andrades, M Soledad; Sánchez-Martín, María J

    2012-01-01

    The capacity of spent mushroom substrate (SMS) as a sorbent of fungicides was evaluated for its possible use in regulating pesticide mobility in the environment. The sorption studies involved four different SMS types in terms of nature and treatment and eight fungicides selected as representative compounds from different chemical groups. Nonlinear sorption isotherms were observed for all SMS-fungicide combinations. The highest sorption was obtained by composted SMS from Agaricus bisporus cultivation. A significant negative and positive correlation was obtained between the K(OC) sorption constants and the polarity index values of sorbents and the K(OW) of fungicides, respectively. The statistic revealed that more than 77% of the variability in the K(OW) could be explained considering these properties jointly. The other properties of both the sorbent (total carbon, dissolved organic carbon, or pH) and the sorbate (water solubility) were nonsignificant. The hysteresis values for cyprodinil (log K(OW)= 4) were for all the sorbents much higher (>3) than for other fungicides. This was consistent with the remaining sorption after desorption considered as an indicator of the sorption efficiency of SMS for fungicides. Changes in the absorption bands of fungicides sorbed by SMS observed by FTIR permitted establishing the interaction mechanism of fungicides with SMS. The findings of this work provide evidence for the potential capacity of SMS as a sorbent of fungicides and the low desorption observed especially for some fungicides, although they suggest that more stabilized or humified organic substrates should be produced to enhance their efficiency in environmental applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Effects of two commonly used fungicides on the amphipod Austrochiltonia subtenuis.

    PubMed

    Vu, Hung T; Keough, Michael J; Long, Sara M; Pettigrove, Vincent J

    2017-03-01

    Fungicides are used widely in agriculture and have been detected in adjacent rivers and wetlands. However, relatively little is known about the potential effects of fungicides on aquatic organisms. The present study investigated the effects of 2 commonly used fungicides, the boscalid fungicide Filan ® and the myclobutanil fungicide Systhane ™ 400 WP, on life history traits (survival, growth, and reproduction) and energy reserves (lipid, protein, and glycogen content) of the amphipod Austrochiltonia subtenuis under laboratory conditions, at concentrations detected in aquatic environments. Amphipods were exposed to 3 concentrations of Filan (1 μg active ingredient [a.i.]/L, 10 μg a.i./L, and 40 μg a.i./L) and Systhane (0.3 μg a.i./L, 3 μg a.i./L, and 30 μg a.i./L) over 56 d. Both fungicides had similar effects on the amphipod at the organism level. Reproduction was the most sensitive endpoint, with offspring produced in controls but none produced in any of the fungicide treatments, and total numbers of gravid females in all fungicide treatments were reduced by up to 95%. Female amphipods were more sensitive than males in terms of growth. Systhane had significant effects on survival at all concentrations, whereas significant effects of Filan on survival were observed only at 10 μg a.i./L and 40 μg a.i./L. The effects of fungicides on energy reserves of the female amphipod were different. Filan significantly reduced amphipod protein content, whereas Systhane significantly reduced the lipid content. The present study demonstrates wide-ranging effects of 2 common fungicides on an ecologically important species that has a key role in trophic transfer and nutrient recycling in aquatic environments. These results emphasize the importance of considering the long-term effects of fungicides in the risk assessment of aquatic ecosystems. Environ Toxicol Chem 2017;36:720-726. © 2016 SETAC. © 2016 SETAC.

  6. Occurrence of downy mildews on ornamental plants and their control by chemical compounds.

    PubMed

    Skrzypczak, C

    2007-01-01

    The downy mildew on Coreopsis grandiflora caused by Plasmopara halstedii was observed during summer, mainly in July and August. Symptoms of the disease were first seen on external leaves and progressively spread to inner parts of plant rosette. On Alyssum saxatile downy mildew symptoms induced by Peronospora parasitica were observed during whole vegetation period with the strongest expression in early spring and late summer. Amistar 250 SC (25% azoxystrobine), Mildex 711,9 WG (66.7% phosethyl aluminium + 4.4% fenamidone), Previcur Energy 840 SL (530 g/l propamocarb + 310 g/l phosetyl aluminium) and Tanos 50 WG (25% cymoxanil + 25% famoxate) were used for pathogens control. In the protection of Coreopsis grandiflora against P. halstedii all tested compounds, applied curatively, decreased sporulation of the pathogen. On treaded plants at least 4-time less leaves were diseased. In the control of P. parasitica on Alyssum saxatile, the smallest number of swallowed structures on leaves was noticed on plants treated with azoxystrobine at conc. 250 microg/cm3.

  7. Simultaneous Determination of Isopyrazam and Azoxystrobin in Cucumbers by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Hu, Dan; Xu, Xu; Cai, Tian; Wang, Wei-Ying; Wu, Chun-Jie; Ye, Li-Ming

    2017-12-01

    A rapid and sensitive analytical method based on high-performance liquid chromatography-tandem mass spectrometry was developed and validated for the determination of isopyrazam (IZM) and azoxystrobin (AZT) in cucumbers. A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method was used as the pretreatment procedure. The samples were extracted with acetonitrile and cleaned up with octadecylsilyl silica (C18) and graphite carbon black. The proposed method resulted in satisfactory recovery of IZM and AZT (91.48 to 114.62%), and relative standard deviations were less than 13.1% at fortification concentrations of 1, 20, and 500 μg kg -1 (n = 3). The limits of quantification for IZM and AZT were 0.498 and 0.499 μg kg -1 , respectively, which are far below the maximum residue level (0.5 mg kg -1 ) established for this type of sample. Matrix effects were also evaluated. This study established a sensitive and fast method for the detection of IZM and AZT in cucumber samples.

  8. Effect of paste processing on residue levels of imidacloprid, pyraclostrobin, azoxystrobin and fipronil in winter jujube.

    PubMed

    Peng, Wei; Zhao, Liuwei; Liu, Fengmao; Xue, Jiaying; Li, Huichen; Shi, Kaiwei

    2014-01-01

    The changes of imidacloprid, pyraclostrobin, azoxystrobin and fipronil residues were studied to investigate the carryover of pesticide residues in winter jujube during paste processing. A multi-residue analytical method for winter jujube was developed based on the QuEChERS approach. The recoveries for the pesticides were between 87.5% and 116.2%. LODs ranged from 0.002 to 0.1 mg kg(-1). The processing factor (Pf) is defined as the ratio of pesticide residue concentration in the paste to that in winter jujube. Pf was higher than 1 for the removal of extra water, and other steps were generally less than 1, indicating that the whole process resulted in lower pesticide residue levels in paste. Peeling would be the critical step for pesticide removal. Processing factors varied among different pesticides studied. The results are useful to address optimisation of the processing techniques in a manner that leads to considerable pesticide residue reduction.

  9. Effectiveness of agricultural oils alongside fungicides in the late dormant treatment for suppression of peach scab in Georgia, 2016

    USDA-ARS?s Scientific Manuscript database

    The efficacy of different fungicide applications for control of peach scab was tested on cv Flameprince. The fungicidal applications were applied with an airblast sprayer with a spray volume of 100 gal/A. Control treatment regimens included a non-treated control, a standard fungicidal spray program ...

  10. Identification of Genes Related to Fungicide Resistance in Fusarium fujikuroi

    PubMed Central

    Choi, Younghae; Jung, Boknam; Li, Taiying

    2017-01-01

    We identified two genes related to fungicide resistance in Fusarium fujikuroi through random mutagenesis. Targeted gene deletions showed that survival factor 1 deletion resulted in higher sensitivity to fungicides, while deletion of the gene encoding F-box/WD-repeat protein increased resistance, suggesting that the genes affect fungicide resistance in different ways. PMID:28781543

  11. ‘Fungicide application method’ and the interpretation of mycorrhizal fungus insect indirect effects

    NASA Astrophysics Data System (ADS)

    Laird, Robert A.; Addicott, John F.

    2008-09-01

    Mycorrhizal fungi, by altering their host plant's physiology, can have indirect effects on insect herbivores. The 'fungicide application method' is a common approach used to investigate the indirect effects of mycorrhizal fungi on insects. This approach works by using initially mycorrhizal plants, and then generating a subset of these plants that are free of mycorrhizal fungi by applying fungicide to their roots. When insect feeding-bioassays are conducted using the resulting mycorrhizal and non-mycorrhizal plants, differences in insect performance are typically attributed to differences in mycorrhizal colonization per se, rather than the application of the fungicide. Thus, the fungicide application method relies on the assumption that there is no direct toxicity of the fungicide on the focal insect species, and no indirect effects on the focal insect resulting from effects of the fungicide on the host plant or on non-target soil micro-organisms. We tested this critical assumption by feeding Zygogramma exclamationis (Chrysomelidae) larvae on non-mycorrhizal Helianthus annuus (Asteraceae) plants whose roots were treated with a solution of the fungicide benomyl or with a distilled water control. Larvae fed on benomyl-treated plants had reduced survival, lower relative growth rate, and lower food conversion efficiency, compared to larvae fed on control plants. Hence, fungicides applied to roots can affect herbivorous insect performance even in the absence of the possibility of mycorrhizal fungi-mediated effects. We recommend caution when using fungicide application and suggest that selective inoculation is a preferable method of generating mycorrhizal and non-mycorrhizal plants when studying mycorrhizal fungi-insect indirect effects.

  12. Genetic progress in oat associated with fungicide use in Rio Grande do Sul, Brazil.

    PubMed

    Follmann, D N; Cargnelutti Filho, A; Lúcio, A D; de Souza, V Q; Caraffa, M; Wartha, C A

    2016-12-19

    The State of Rio Grande do Sul (RS) is the largest producer of oat in Brazil with the aid of consolidated breeding programs, which are constantly releasing new cultivars. The main objectives of this study were to: 1) evaluate the annual genetic progress in grain yield and hectoliter weight of the oat cultivars in RS, with and without fungicide use on aerial parts of plants; and 2) evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars through network yield trials conducted with and without fungicide use on aerial plant parts. The data on grain yield and hectoliter weight were obtained from 89 competition field trials of oat cultivars carried out from 2007 to 2014 in nine municipalities of RS. Of the total 89 trials, 44 were carried out with fungicide application on aerial plant parts and 45 were carried out without fungicide application. The annual genetic progress in oat cultivars was studied using the methodology proposed by Vencovsky (1988). The annual genetic progress in oat grain yield was 1.02% with fungicide use and 4.02% without fungicide use during the eight-year study period in RS. The annual genetic progress with respect to the hectoliter weight was 0.08% for trials with fungicide use and 0.71% for trials without fungicide use. Performing network yield trials with and without fungicide use on the aerial plants parts is a feasible method to evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars.

  13. Effects of Oral Exposure to Fungicides on Honey Bee Nutrition and Virus Levels.

    PubMed

    Degrandi-Hoffman, Gloria; Chen, Yanping; Watkins Dejong, Emily; Chambers, Mona L; Hidalgo, Geoffrey

    2015-12-01

    Sublethal exposure to fungicides can affect honey bees (Apis mellifera L.) in ways that resemble malnutrition. These include reduced brood rearing, queen loss, and increased pathogen levels. We examined the effects of oral exposure to the fungicides boscalid and pyraclostrobin on factors affecting colony nutrition and immune function including pollen consumption, protein digestion, hemolymph protein titers, and changes in virus levels. Because the fungicides are respiratory inhibitors, we also measured ATP concentrations in flight muscle. The effects were evaluated in 3- and 7-d-old worker bees at high fungicide concentrations in cage studies, and at field-relevant concentrations in colony studies. Though fungicide levels differed greatly between the cage and colony studies, similar effects were observed. Hemolymph protein concentrations were comparable between bees feeding on pollen with and without added fungicides. However, in both cage and colony studies, bees consumed less pollen containing fungicides and digested less of the protein. Bees fed fungicide-treated pollen also had lower ATP concentrations and higher virus titers. The combination of effects we detected could produce symptoms that are similar to those from poor nutrition and weaken colonies making them more vulnerable to loss from additional stressors such as parasites and pathogens. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  14. Sensitivity of Phakopsora pachyrhizi (soybean rust) isolates to fungicides and the reduction of fungal sporulation based on fungicide and timing of application

    USDA-ARS?s Scientific Manuscript database

    Soybean rust is a damaging foliar fungal disease of soybean in many soybean-growing areas throughout the world. Strategies to manage soybean rust include the use of foliar fungicides. Fungicides types, the rate of product application, and the number and timing of applications are critical components...

  15. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies.

    PubMed

    Yoder, Jay A; Jajack, Andrew J; Rosselot, Andrew E; Smith, Terrance J; Yerke, Mary Clare; Sammataro, Diana

    2013-01-01

    Fermentation by fungi converts stored pollen into bee bread that is fed to honey bee larvae, Apis mellifera, so the diversity of fungi in bee bread may be related to its food value. To explore the relationship between fungicide exposure and bee bread fungi, samples of bee bread collected from bee colonies pollinating orchards from 7 locations over 2 years were analyzed for fungicide residues and fungus composition. There were detectable levels of fungicides from regions that were sprayed before bloom. An organic orchard had the highest quantity and variety of fungicides, likely due to the presence of treated orchards within bees' flight range. Aspergillus, Penicillium, Rhizopus, and Cladosporium (beneficial fungi) were the primary fungal isolates found, regardless of habitat differences. There was some variation in fungal components amongst colonies, even within the same apiary. The variable components were Absidia, Alternaria, Aureobasidium, Bipolaris, Fusarium, Geotrichum, Mucor, Nigrospora, Paecilomyces, Scopulariopsis, and Trichoderma. The number of fungal isolates was reduced as an effect of fungicide contamination. Aspergillus abundance was particularly affected by increased fungicide levels, as indicated by Simpson's diversity index. Bee bread showing fungicide contamination originated from colonies, many of which showed chalkbrood symptoms.

  16. Consequences of co-applying insecticides and fungicides for managing Thrips tabaci (Thysanoptera: Thripidae) on onion.

    PubMed

    Nault, Brian A; Hsu, Cynthia L; Hoepting, Christine A

    2013-07-01

    Insecticides and fungicides are commonly co-applied in a tank mix to protect onions from onion thrips, Thrips tabaci Lindeman, and foliar pathogens. Co-applications reduce production costs, but past research shows that an insecticide's performance can be reduced when co-applied with a fungicide. An evaluation was made of the effects of co-applying spinetoram, abamectin and spirotetramat with commonly used fungicides, with and without the addition of a penetrating surfactant, on onion thrips control in onion fields. Co-applications of insecticides with chlorothalonil fungicides reduced thrips control by 25-48% compared with control levels provided by the insecticides alone in three of five trials. Inclusion of a penetrating surfactant at recommended rates with the insecticide and chlorothalonil fungicide did not consistently overcome this problem. Co-applications of insecticides with other fungicides did not interfere with thrips control. Co-applications of pesticides targeting multiple organisms should be examined closely to ensure that control of each organism is not compromised. To manage onion thrips in onion most effectively, insecticides should be applied with a penetrating surfactant, and should be applied separately from chlorothalonil fungicides. © 2012 Society of Chemical Industry.

  17. Development of a multiplex allele-specific primer PCR assay for simultaneous detection of QoI and CAA fungicide resistance alleles in Plasmopara viticola populations.

    PubMed

    Aoki, Yoshinao; Hada, Yosuke; Suzuki, Shunji

    2013-02-01

    DNA-based diagnosis has become a common tool for the evaluation of fungicide resistance in obligate phytopathogenic fungus Plasmopara viticola. A multiplex allele-specific primer PCR assay has been developed for the rapid detection of fungicide resistance in P. viticola populations. With this assay, a glycine-to-alanine substitution at codon 143 of the P. viticola cytochrome b gene, which conferred QoI fungicide resistance, and a glycine-to-serine substitution at codon 1105 of the P. viticola cellulose synthase gene PvCesA3, which conferred CAA fungicide resistance, were detected simultaneously. It is suggested that the present assay is a reliable tool for the rapid and simultaneous detection of QoI and CAA fungicide resistance alleles in P. viticola populations. The assay required only 2 h from the sampling of symptoms to the detection of resistance alleles to both fungicides. Copyright © 2012 Society of Chemical Industry.

  18. Potential of agricultural fungicides for antifungal drug discovery.

    PubMed

    Jampilek, Josef

    2016-01-01

    While it is true that only a small fraction of fungal species are responsible for human mycoses, the increasing prevalence of fungal diseases has highlighted an urgent need to develop new antifungal drugs, especially for systemic administration. This contribution focuses on the similarities between agricultural fungicides and drugs. Inorganic, organometallic and organic compounds can be found amongst agricultural fungicides. Furthermore, fungicides are designed and developed in a similar fashion to drugs based on similar rules and guidelines, with fungicides also having to meet similar criteria of lead-likeness and/or drug-likeness. Modern approved specific-target fungicides are well-characterized entities with a proposed structure-activity relationships hypothesis and a defined mode of action. Extensive toxicological evaluation, including mammalian toxicology assays, is performed during the whole discovery and development process. Thus modern agrochemical research (design of modern agrochemicals) comes close to drug design, discovery and development. Therefore, modern specific-target fungicides represent excellent lead-like structures/models for novel drug design and development.

  19. Degradation of three fungicides following application on strawberry and a risk assessment of their toxicity under greenhouse conditions.

    PubMed

    Sun, Caixia; Cang, Tao; Wang, Zhiwei; Wang, Xinquan; Yu, Ruixian; Wang, Qiang; Zhao, Xueping

    2015-05-01

    The health risk to humans of pesticide application on minor crops, such as strawberry, requires quantification. Here, the dissipation and residual levels of three fungicides (pyraclostrobin, myclobutanil, and difenoconazole) were studied for strawberry under greenhouse conditions using high-performance liquid chromatography (HPLC)-tandem mass spectrometry after Quick, Easy, Cheap, Effective, Rugged, and Safe extraction. This method was validated using blank samples, with all mean recoveries of these three fungicides exceeding 80%. The residues of all three fungicides dissipated following first-order kinetics. The half-lives of pyraclostrobin, myclobutanil, and difenoconazole were 1.69, 3.30, and 3.65 days following one time application and 1.73, 5.78, and 6.30 days following two times applications, respectively. Fungicide residue was determined by comparing the estimated daily intake of the three fungicides against the acceptable daily intake. The results indicate that the potential health risk of the three fungicides was not significant in strawberry when following good agricultural practices (GAP) under greenhouse conditions.

  20. Occurrence of fludioxonil resistance in penicillium digitatum from citrus in California

    USDA-ARS?s Scientific Manuscript database

    Penicillium digitatum is the causal agent of green mold, the most important postharvest disease of citrus (Citrus spp.). Fludioxonil is marketed as either a solo product or in combination with azoxystrobin for control of green mold and other postharvest diseases. Baseline sensitivity to fludioxonil ...

  1. Recent Trends in Studies on Botanical Fungicides in Agriculture

    PubMed Central

    Yoon, Mi-Young; Cha, Byeongjin; Kim, Jin-Cheol

    2013-01-01

    Plants are attacked by various phytopathogenic fungi. For many years, synthetic fungicides have been used to control plant diseases. Although synthetic fungicides are highly effective, their repeated use has led to problems such as environmental pollution, development of resistance, and residual toxicity. This has prompted intensive research on the development of biopesticides, including botanical fungicides. To date, relatively few botanical fungicides have been registered and commercialized. However, many scientists have reported isolation and characterization of a variety of antifungal plant derivatives. Here, we present a survey of a wide range of reported plant-derived antifungal metabolites. PMID:25288923

  2. Role of Fungicides, Application of Nozzle Types, and the Resistance Level of Wheat Varieties in the Control of Fusarium Head Blight and Deoxynivalenol

    PubMed Central

    Mesterházy, Ákos; Tóth, Beáta; Varga, Monika; Bartók, Tibor; Szabó-Hevér, Ágnes; Farády, László; Lehoczki-Krsjak, Szabolcs

    2011-01-01

    Fungicide application is a key factor in the control of mycotoxin contamination in the harvested wheat grain. However, the practical results are often disappointing. In 2000-2004, 2006-2008 and 2007 and 2008, three experiments were made to test the efficacy of fungicide control on Fusarium Head Blight (FHB) in wheat and to find ways to improve control of the disease and toxin contamination. In a testing system we have used for 20 years, tebuconazole and tebuconazole + prothioconazole fungicides regularly reduced symptoms by about 80% with a correlating reduction in toxin contamination. Averages across the years normally show a correlation of r = 0.90 or higher. The stability differences (measured by the stability index) between the poorest and the best fungicides are about 10 or more times, differing slightly in mycotoxin accumulation, FHB index (severity) and Fusarium damaged kernels (FDK). The weak fungicides, like carbendazim, were effective only when no epidemic occurred or epidemic severity was at a very low level. Similar fungicide effects were seen on wheat cultivars which varied in FHB resistance. In this study, we found three fold differences in susceptibility to FHB between highly susceptible and moderately resistant cultivars when treated with fungicides. In the moderately resistant cultivars, about 50% of the fungicide treatments lowered the DON level below the regulatory limit. In the most susceptible cultivars, all fungicides failed to reduce mycotoxin levels low enough for grain acceptance, in spite of the fact that disease was significantly reduced. The results correlated well with the results of the large-scale field tests of fungicide application at the time of natural infection. The Turbo FloodJet nozzle reduced FHB incidence and DON contamination when compared to the TeeJet XR nozzle. Overall, the data suggest that significant decreases in FHB incidence and deoxynivalenol contamination in field situations are possible with proper fungicide applications. Additionally, small plot tests can be used to evaluate the quality of the field disease and toxin production. PMID:22174980

  3. 78 FR 24094 - Azoxystrobin; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... Classification System (NAICS) codes is not intended to be exhaustive, but rather provides a guide to help readers... response to the notice of filing. Based upon review of the data supporting the petition, EPA is... exposures for which there is reliable information.'' This includes exposure through drinking water and in...

  4. Pesticide Spill Prevention and Management

    DTIC Science & Technology

    2009-08-01

    Gentrol IGR) Strong oxidizers. Imidacloprid Oxidizing agents. Lambda-cyhalothrin Oxidizing agents, alkalis, calcium hypochlorite. Malathion... Imidacloprid Sodium salt of diphacinone Methyl Azoxystrobin Use Hard Water Detergent for: Diquat Aluminum phosphide – NOTE: See special...Hydroprene, 9.0%, emulsifiable concentrate (Gentrol IGR) Imidacloprid (Maxforce Granular Fly Bait) Imidacloprid (Maxforce Fly Spot Bait

  5. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.

    PubMed

    Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A

    2015-06-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  6. Residue behavior and dietary intake risk assessment of three fungicides in tomatoes (Lycopersicon esculentum Mill.) under greenhouse conditions.

    PubMed

    Zhu, Xiaodan; Jia, Chunhong; Duan, Lifang; Zhang, Wei; Yu, Pingzhong; He, Min; Chen, Li; Zhao, Ercheng

    2016-11-01

    The residue behavior and dietary intake risk of three fungicides (pyrimethanil, iprodione, kresoxim-methyl) in tomatoes (Lycopersicon esculentum Mill.) grown in greenhouse were investigated. A simple, rapid analytical method for the quantification of fungicide residues in tomatoes was developed using gas chromatography coupled with mass spectrum detection (GC-MSD). The fortified recoveries were ranged from 87% to 103% with relative standard deviations (RSDs) varied from 4.7% to 12.1%. The results indicated that the dissipation rate of the studied fungicides in tomatoes followed first order kinetics with half lives in the range of 8.6-11.5 days. The final residues of all the fungicides in tomatoes were varied from 0.241 to 0.944 mg/kg. The results of dietary intake assessment indicated that the dietary intake of the three fungicides from tomatoes consumption for Chinese consumers were acceptable. This study would provide more understanding of residue behavior and dietary intake risk by these fungicides used under greenhouse conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Evaluation of the users value of salts against apple scab and powdery mildew for the integrated fruit production.

    PubMed

    Creemers, P; Van Laer, S; Van Mechelen, A; Vorstermans, B; Hauke, K

    2007-01-01

    As new fungicides are mainly unisite action fungicides, the problem of fungicide resistance development is becoming more important every year. Combining chemical fungicides, which is the best anti-resistance strategy, is not always possible or recommended in the case when the number of available chemical fungicides are limited or a reduction in fungicide use is asked for. Therefore the use of salts as an anti-resistance strategy was looked upon. The salts evaluated were K(HCO3), KH2PO3, KHPO4 and K2SiO3. When using these salts as an anti-resistance strategy the efficacy obtained when spraying the compounds alone was often to low to be used in rotation with chemical fungicides. Only with K(HCO3)2 a good efficacy can be observed in some years. The variation in efficacy with K(HCO3)2 observed is higher for powdery mildew. Chitosan was also included in the trials against powdery mildew, however chitosan had no effect on the infestation.

  8. Occurrence of emerging contaminants in agricultural soils, sewage sludge and waters in Valencia (E Spain)

    NASA Astrophysics Data System (ADS)

    Boluda, Rafael; Marimon, Lupe; Atzeni, Stefania; Mormeneo, Salvador; Iranzo, María; Zueco, Jesús; Gamón, Miguel; Sancenón, José; Romera, David; Gil, Carlos; Amparo Soriano, Maria; Granell, Clara; Roca, Núria; Bech, Jaume

    2013-04-01

    In recent years, studies into the presence and distribution of emerging contaminants (ECs), like pharmaceutical products, some pesticides and mycotoxins in the natural environment, are receiving considerable attention. Thus, the presence of these compounds in waters, soils and wastes in different locations including agricultural systems has been stressed; very few studies into this matter are available in Spain. The main source of ECs in the environment is wastewater spillage from wastewater treatment plants (WTP), where these compounds arrive from the sewer system network. The objective of this study was to determine the levels of 35 ECs constituted by nine pharmaceutical products, 23 fungicides and three mycotoxins in soils, sewages sludge and waters adjacent to WTP from an agriculture area of Valencia (E Spain) influenced by intense urban and industrial activity. Seven samples from sludge, 13 soil samples and eight samples of waters from the area of influence of WTP were collected. The ECs extraction were performed using 5 g of fresh sample and a mixture of acetonitrile with 1% formic acid and water at the 3:1 ratio by shaking for 45 min and then centrifuging at 4,000 rpm for 5 min. The extract was filtered and determination was done by HPLC system connected to a 3200-Qtrap de triple quadrupole mass spectrometer with an electrospray ion source. The results showed that soil-ECs concentrations were 10 times lower that in sewage sludge. The smaller number of detections and detected compounds should also be stressed. As in previous cases, fungicides azole (tebuconazole and tricyclazole), along with boscalid, were the most detected compounds with concentrations of between 100 and 400 µg kg-1 dw. In second place, propiconazole and azoxystrobin stood out, followed by carbendazim, dimetomorph, pyraclostrobin and propamocarb. The following drugs and mycotoxins were detected to have a higher to lower concentration (1-40 µg kg-1): telmisartan, irbesartan, venlafaxine, citalopram, azithromycin, fluoxetine and deoxinivalenol. In our case, the presence of these compounds in soils suggests substantial persistence. It is also noteworthy that this presence varied according to soil use. The results also reveal the presence of the majority of these compounds mainly in WTP sludge and, to a lesser extent, in surface waters originating from irrigation channels. This fact demonstrates that we need to verify the effectiveness of wastewater treatment to study these aspects in order to design strategies that enhance and improve their effectiveness. We would like to thank Spanish Ministry of Education and Science, Project AGL2011-29382; we also wish to thank to CINFA laboratories for their help in obtaining the standards of pharmaceuticals.

  9. Synthesis, fungicidal evaluation and 3D-QSAR studies of novel 1,3,4-thiadiazole xylofuranose derivatives

    PubMed Central

    Zong, Guanghui; Yan, Xiaojing; Bi, Jiawei; Jiang, Rui; Qin, Yinan; Yuan, Huizhu; Lu, Huizhe; Dong, Yanhong; Jin, Shuhui; Zhang, Jianjun

    2017-01-01

    1,3,4-Thiadiazole and sugar-derived molecules have proven to be promising agrochemicals with growth promoting, insecticidal and fungicidal activities. In the research field of agricultural fungicide, applying union of active group we synthesized a new set of 1,3,4-thiadiazole xylofuranose derivatives and all of the compounds were characterized by 1H NMR and HRMS. In precise toxicity measurement, some of compounds exhibited more potent fungicidal activities than the most widely used commercial fungicide Chlorothalonil, promoting further research and development. Based on our experimental data, 3D-QSAR (three-dimensional quantitative structure-activity relationship) was established and investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques, helping to better understand the structural requirements of lead compounds with high fungicidal activity and environmental compatibility. PMID:28746366

  10. Biochemical changes induced by fungicides in nitrogen fixing Nostoc sp.

    PubMed

    Deviram, G V N S; Pant, Gaurav; Prasuna, R Gyana

    2013-01-01

    The present study indicates the effect of fungicides (approved by WHO) and their behavior on nitrogen fixer of rice eco system Nostoc sp. Application of plant protecting chemicals at recommended levels braced up the growth of blue green algae thereby enhancing heterocyst formation and nitrogenase activity. Nostoc sp demoed varying degrees of sensitivity to fungicides. Biomass yield, protein, carbohydrate content reduced after 3pg/mL concentration. Heterocyst damage was observed from 4μg/mL, Proline content increased with increase in fungicide concentration, utmost yellowing of the culture started from 4μg/mL. The decreasing order of the toxicity to Nostoc sp with fungicides was Mancozeb> Ediphenphos> Carbendazim> Hexaconazole.

  11. Development of sensitive determination method for fungicides from environmental water samples with Titanate nanotube array micro-solid phase extraction prior to high performance liquid chromatography.

    PubMed

    Huang, Yunrui; Zhou, Qingxiang; Xie, Guohong

    2013-01-01

    Fungicides have been widely used throughout the world, and the resulted pollution has absorbed great attention in recent years. Present study described an effective measurement technique for fungicides including thiram, metalaxyl, diethofencarb, myclobutanil and tebuconazole in environmental water samples. A micro-solid phase extraction (μSPE) was developed utilizing ordered TiO(2) nanotube array for determination of target fungicides prior to a high performance liquid chromatography (HPLC). The experimental results indicated that TiO(2) nanotube arrays demonstrated excellent merits on the preconcentration of fungicides, and excellent linear relationship between peak area and the concentration of fungicides was obtained in the range of 0.1-50 μg L(-1). The detection limits for the targeted fungicides were in the range of 0.016-0.086 μg L(-1) (S/N=3). Four real environmental water samples were used to validate the applicability of the proposed method, and good spiked recoveries in the range of 73.9-114% were achieved. A comparison of present method with conventional solid phase extraction was made and the results exhibited that proposed method resulted in better recoveries. The results demonstrated that this μ-SPE technique was a viable alternative for the analysis of fungicides in complex samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Efficacy of Combined Formulations of Fungicides with Different Modes of Action in Controlling Botrytis Gray Mold Disease in Chickpea

    PubMed Central

    Rashid, M. H.; Hossain, M. Ashraf; Kashem, M. A.; Kumar, Shiv; Rafii, M. Y.; Latif, M. A.

    2014-01-01

    Botrytis gray mold (BGM) caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for three years (2008, 2009, and 2010). Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%)], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%), and Protaf 250EC, propiconazole (0.05%)], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%); Secure 600 WG, phenomadone + mancozeb (0.2%); and Companion, mancozeb 63% + carbendazim 12% (0.2%)]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1–9 scale) and the highest increase (38%) of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance. PMID:24723819

  13. Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christen, Verena; Crettaz, Pierre; Fent, Karl, E-mail: karl.fent@fhnw.ch

    Objective: Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. Methods: The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose–response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach.more » Results: The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC{sub 25} and EC{sub 50}. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Conclusion: Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Practice: Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Implications: Our evaluation provides an appropriate “proof of concept”, but whether it equally translates to in vivo effects should further be investigated. - Highlights: • Humans are exposed to pesticide mixtures such as pyrethroids and azole fungicides. • We assessed the antiandrogenicity of pyrethroids and azole fungizides. • Many azole fungicides showed significant antiandrogenic activity . • Many binary mixtures of antiandrogenic azole fungicides showed synergistic interactions. • Concentration addition of pesticides in mixtures should be considered.« less

  14. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants.

    PubMed

    Mohamed, Heba Ibrahim; Akladious, Samia Ageeb

    2017-10-01

    The use of fungicides for an effective control of plant diseases has become crucial in the last decades in the agriculture system. Seeds of cotton plants were treated with systemic and contact fungicides to study the efficiency of seed dressing fungicides in controlling damping off caused by Rhizoctonia solani under greenhouse conditions and its effect on plant growth and metabolism. The results showed that Mon-cut showed the highest efficiency (67.99%) while each of Tondro and Hemixet showed the lowest efficiency (31.99%) in controlling damping off. Rhizolex T, Mon-cut and Tondro fungicides caused significant decrease in plant height, dry weight of plant, phytohormones, photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids but caused significant increases in total phenols, flavonoids, antioxidant enzymes, ascorbic acid, reduced glutathione, MDA and hydrogen peroxide as compared with untreated plants. On the other hand, the other fungicides (Maxim, Hemixet and Flosan) increased all the above recorded parameters as compared with untreated plants. Our results indicated that the fungicides application could be a potential tool to increase plant growth, the antioxidative defense mechanisms and decreased infection with plant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Identification and characterization of pesticide metabolites in Brassica species by liquid chromatography travelling wave ion mobility quadrupole time-of-flight mass spectrometry (UPLC-TWIMS-QTOF-MS).

    PubMed

    Bauer, Anna; Luetjohann, Jens; Hanschen, Franziska S; Schreiner, Monika; Kuballa, Jürgen; Jantzen, Eckard; Rohn, Sascha

    2018-04-01

    A new mass spectrometric method for evaluating metabolite formation of the pesticides thiacloprid, azoxystrobin, and difenoconazole was developed for the Brassica species pak choi and broccoli. Both, distribution and transformation kinetics of the active compounds and their metabolites were analyzed by UPLC-TWIMS-QTOF-MS. Additionally, HR-MS analysis and structure elucidation tools such as diagnostic ions, isotopic matches, and collision cross sections were applied for metabolites identification. Following the application of two plant protection products (containing the above-mentioned active compounds) in a greenhouse study plant material was cryo-milled and extracted with water/methanol. The residual levels of active compounds were identified at certain timepoints during pre-harvest intervals and in the final products. Different phase I and phase II metabolites of the pesticides were identified in different plant organs such as leaves, stems, (broccoli) heads, and roots. Three individual degradation pathways and distribution profiles are suggested including eight thiacloprid, eleven azoxystrobin and three difenoconazole metabolites. Copyright © 2017. Published by Elsevier Ltd.

  16. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics.

    PubMed

    Clegg, Helen; Riding, Matthew J; Oliver, Robin; Jones, Kevin C; Semple, Kirk T

    2014-08-15

    As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of (14)C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (Frap) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F(slow)). The rapid desorption rate constant (k(fast)) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F(rap). In non-sterile soil, F(rap) was lower resulting in higher F(slow), while desorption rates remained unaffected. Organic matter (OM) reduces F(rap); but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of fungicide on Wyoming big sagebrush seed germination

    USDA-ARS?s Scientific Manuscript database

    Because fungal infection may complicate both the logistics and the interpretation of germination tests, seeds are sometimes treated with chemical fungicides. Fungicides may reduce the germination rate and/or germination percentage, and should be avoided unless fungal contamination is severe enough ...

  18. Can Epiphytes reduce disease symptoms caused by Phytophthora ramorum

    USDA-ARS?s Scientific Manuscript database

    Leaf infection of ornamental species by Phytophthora ramorum has a significant impact on the spread of this disease. Fungicides have had limited effects on controlling this disease. With increasing concerns that repeated fungicide applications will exasperate the potential for fungicide resistance...

  19. Vacuolar H(+)-Pyrophosphatase AVP1 is Involved in Amine Fungicide Tolerance in Arabidopsis thaliana and Provides Tridemorph Resistance in Yeast.

    PubMed

    Hernández, Agustín; Herrera-Palau, Rosana; Madroñal, Juan M; Albi, Tomás; López-Lluch, Guillermo; Perez-Castiñeira, José R; Navas, Plácido; Valverde, Federico; Serrano, Aurelio

    2016-01-01

    Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.

  20. Fungicide residue remediation on table grapes using ozone fumigation

    USDA-ARS?s Scientific Manuscript database

    Ozone fumigation was explored as a means for degrading contemporary organic fungicides related to table grape production. Separate fumigations were conducted in a flow-through chamber on fungicides sorbed to model abiotic glass surfaces or to table grapes. Gaseous ozone at constant ozone concentrati...

  1. 75 FR 40857 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Herbicides, Insecticides, and Fungicides, under Product Service Code (PSC) 6840, under North American... Rule for Herbicides, Insecticides, and Fungicides, under PSC 6840, under NAICS code 325320. The basis... Herbicides, Insecticides, and Fungicides, PSC 6840, under NAICS code 325320, Pesticides and Other...

  2. Degradation of conazole fungicides in water by electrochemical oxidation.

    PubMed

    Urzúa, J; González-Vargas, C; Sepúlveda, F; Ureta-Zañartu, M S; Salazar, R

    2013-11-01

    The electrochemical oxidation (EO) treatment in water of three conazole fungicides, myclobutanil, triadimefon and propiconazole, has been carried out at constant current using a BDD/SS system. First, solutions of each fungicide were electrolyzed to assess the effect of the experimental parameters such as current, pH and fungicide concentration on the decay of each compound and total organic carbon abatement. Then a careful analysis of the degradation by-products was made by high performance liquid chromatography, ion chromatography and gas chromatography coupled with mass spectrometry in order to provide a detailed discussion on the original reaction pathways. Thus, during the degradation of conazole fungicides by the electrochemical oxidation process, aromatic intermediates, aliphatic carboxylic acids and Cl(-) were detected prior to their complete mineralization to CO2 while NO3(-) anions remained in the treated solution. This is an essential preliminary step towards the applicability of the EO processes for the treatment of wastewater containing conazole fungicides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture

    PubMed Central

    Rupp, Sabrina; Weber, Roland W. S.; Rieger, Daniel; Detzel, Peter; Hahn, Matthias

    2017-01-01

    Botrytis cinerea is a major plant pathogen, causing gray mold rot in a variety of cultures. Repeated fungicide applications are common but have resulted in the development of fungal populations with resistance to one or more fungicides. In this study, we have monitored fungicide resistance frequencies and the occurrence of multiple resistance in Botrytis isolates from raspberries, strawberries, grapes, stone fruits and ornamental flowers in Germany in 2010 to 2015. High frequencies of resistance to all classes of botryticides was common in all cultures, and isolates with multiple fungicide resistance represented a major part of the populations. A monitoring in a raspberry field over six seasons revealed a continuous increase in resistance frequencies and the emergence of multiresistant Botrytis strains. In a cherry orchard and a vineyard, evidence of the immigration of multiresistant strains from the outside was obtained. Inoculation experiments with fungicide-treated leaves in the laboratory and with strawberry plants cultivated in the greenhouse or outdoors revealed a nearly complete loss of fungicide efficacy against multiresistant strains. B. cinerea field strains carrying multiple resistance mutations against all classes of site-specific fungicides were found to show similar fitness as sensitive field strains under laboratory conditions, based on their vegetative growth, reproduction, stress resistance, virulence and competitiveness in mixed infection experiments. Our data indicate an alarming increase in the occurrence of multiresistance in B. cinerea populations from different cultures, which presents a major threat to the chemical control of gray mold. PMID:28096799

  4. Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture.

    PubMed

    Rupp, Sabrina; Weber, Roland W S; Rieger, Daniel; Detzel, Peter; Hahn, Matthias

    2016-01-01

    Botrytis cinerea is a major plant pathogen, causing gray mold rot in a variety of cultures. Repeated fungicide applications are common but have resulted in the development of fungal populations with resistance to one or more fungicides. In this study, we have monitored fungicide resistance frequencies and the occurrence of multiple resistance in Botrytis isolates from raspberries, strawberries, grapes, stone fruits and ornamental flowers in Germany in 2010 to 2015. High frequencies of resistance to all classes of botryticides was common in all cultures, and isolates with multiple fungicide resistance represented a major part of the populations. A monitoring in a raspberry field over six seasons revealed a continuous increase in resistance frequencies and the emergence of multiresistant Botrytis strains. In a cherry orchard and a vineyard, evidence of the immigration of multiresistant strains from the outside was obtained. Inoculation experiments with fungicide-treated leaves in the laboratory and with strawberry plants cultivated in the greenhouse or outdoors revealed a nearly complete loss of fungicide efficacy against multiresistant strains. B. cinerea field strains carrying multiple resistance mutations against all classes of site-specific fungicides were found to show similar fitness as sensitive field strains under laboratory conditions, based on their vegetative growth, reproduction, stress resistance, virulence and competitiveness in mixed infection experiments. Our data indicate an alarming increase in the occurrence of multiresistance in B. cinerea populations from different cultures, which presents a major threat to the chemical control of gray mold.

  5. Effects of the azole fungicide imazalil on the fathead minnow (Pimephales promelas) steroidogenesis pathway

    EPA Science Inventory

    Azole fungicides, used for both agriculture and human therapeutic applications may disrupt endocrine function of aquatic life. Azole fungicides are designed to inhibit the fungal enzyme lanosterol 14 á-demethylase (cytochrome P450 [CYP] 51). However, they can also interact...

  6. USING CHIRALITY TO INFORM THE METABOLISM OF TRIADIMEFON TO TRIADIMENOL: A CROSS-SPECIES EXAMINATION

    EPA Science Inventory

    Triadimefon is a systemic agricultural fungicide of the conazole class whose metabolite, triadimenol, provides the majority of the actual fungicidal activity; i.e. inhibition of steroid demethylation. Triadimenol is also registered and used as a fungicide. Both chemicals are ch...

  7. TOXICITY PROFILES IN MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC TRIAZOLE CONAZOLE FUNGICIDES: PROPICONAZOLE, TRIADIMEFON, AND MYCLOBUTANIL

    EPA Science Inventory

    Conazoles comprise a class of fungicides used in agriculture and as pharmaceutical products. The fungicidal properties of conazoles are due to their inhibition of ergosterol biosynthesis. Certain conazoles are tumorigenic in rodents; both propiconazole and triadimefon are hepatot...

  8. Evaluation of fungicides for hop downy mildew, Hubbard, Oregon, 2016

    USDA-ARS?s Scientific Manuscript database

    This research was conducted to quantify the degree of control of the disease with a phosphorous acid-based fungicide, the present industry-standard for management of downy mildew on hop in the Pacific Northwestern U.S. No suppression of the disease was observed with the industry standard fungicide,...

  9. Evaluating Headline fungicide on alfalfa production and sensitivity of pathogens to pyraclostrobin

    USDA-ARS?s Scientific Manuscript database

    Headline fungicide was recently registered for management of foliar diseases on alfalfa. The effect of disease control on yield, forage quality, and potential return on investment for fungicide application was determined for field experiments conducted at five locations in 2012, three in Wisconsin a...

  10. The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees

    USDA-ARS?s Scientific Manuscript database

    Honey bees and other pollinators are exposed to fungicides that act by inhibiting mitochondrial function. Here we test whether a common fungicide (Pristine®) inhibits the function of mitochondria of honeybees, and whether consumption of ecologically-realistic concentrations can cause negative eff...

  11. Fungicide resistance profiles for 13 Botrytis cinerea isolated from strawberry in southeastern Louisiana

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Fungicidal sprays have been widely used for disease control of gray mold caused by Botrytis cinerea. In recent years strawberry growers in southeastern Louisiana reported a failure of their fungicide spray programs to control Botrytis fruit rot. Botrytis cinerea has become resistant ...

  12. Integration of Metabolomics and In vitro Metabolism Assays for Investigating the Stereoselective Transformation of Triadimefon in Rainbow Trout

    EPA Science Inventory

    Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity; i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has...

  13. 48 CFR 1552.235-73 - Access to Federal Insecticide, Fungicide, and Rodenticide Act Confidential Business Information...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Insecticide, Fungicide, and Rodenticide Act Confidential Business Information (APR 1996). 1552.235-73 Section... Insecticide, Fungicide, and Rodenticide Act Confidential Business Information (APR 1996). As prescribed in... Act Confidential Business Information (APR 1996) In order to perform duties under the contract, the...

  14. Evaluating variable rate fungicide applications for control of Sclerotinia

    USDA-ARS?s Scientific Manuscript database

    Oklahoma peanut growers continue to try to increase yields and reduce input costs. Perhaps the largest input in a peanut crop is fungicide applications. This is especially true for areas in the state that have high disease pressure from Sclerotinia. On average, a single fungicide application cost...

  15. Cercospora leaf spot: monitoring and managing fungicide resistance in populations of Cercospora beticola in Michigan

    USDA-ARS?s Scientific Manuscript database

    Cercospora leaf spot (CLS, Cercospora beticola) is the most serious foliar disease of sugarbeet in Michigan and Ontario.Management of CLS depends on timely fungicide applications, disease forecasting prediction models and the use of CLS resistant sugar beet varieties. Fungicides have a dominant role...

  16. The effect of the residues of vineyard fungicides on postharvest decay, 2011

    USDA-ARS?s Scientific Manuscript database

    The purpose for this experiment was to quantify the effect of residues of vineyard fungicides on control of postharvest decay of table grapes. Mature (22% soluble solids content), freshly harvested ‘Princess Seedless’ grape clusters were arranged on metal racks. Fungicides were applied with an air b...

  17. Evaluation of fungicides for control of Phytophthora ramorum

    Treesearch

    S. Wagner; K. Kaminski; S. Werres

    2008-01-01

    As part of the project European Phytophthora ramorum Pest Risk Analysis (RAPRA) a wide range of fungicides was tested for in vitro activity against mycelial growth and zoospore germination of P. ramorum. A preliminary set of experiments was performed to study the effect of nine common fungicides specific for

  18. Sertaconazole Nitrate Shows Fungicidal and Fungistatic Activities against Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum, Causative Agents of Tinea Pedis▿

    PubMed Central

    Carrillo-Muñoz, Alfonso J.; Tur-Tur, Cristina; Cárdenes, Delia C.; Estivill, Dolors; Giusiano, Gustavo

    2011-01-01

    The fungistatic and fungicidal activities of sertaconazole against dermatophytes were evaluated by testing 150 clinical isolates of causative agents of tinea pedis, Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum. The overall geometric means for fungistatic and fungicidal activities of sertaconazole against these isolates were 0.26 and 2.26 μg/ml, respectively, although values were higher for T. mentagrophytes than for the others. This is the first comprehensive demonstration of the fungicidal activity of sertaconazole against dermatophytes. PMID:21746955

  19. Concentration levels of new-generation fungicides in throughfall released by foliar wash-off from vineyards.

    PubMed

    Pérez-Rodríguez, P; Soto-Gómez, D; Paradelo, M; López-Periago, J E

    2017-12-01

    The presence of agricultural pesticides in the environment and their effects on ecosystems are major concerns addressed in a significant number of articles. However, limited information is available on the pesticide concentrations released from crops. This study reports losses of new-generation fungicides by foliar wash-off from vineyards and their potential impact on the concentrations of their main active substances (AS) in surface waters. Two experimental plots devoted to vineyards were treated with various combinations of commercial new-generation fungicide formulations. Then, up to sixteen throughfall collectors were installed under the canopy. Concentrations of sixteen different AS in throughfall were determined along nine rainfall episodes. Concentrations in throughfall far exceeded the maximum permissible levels for drinking water established by the European Union regulations. Dynamics of fungicide release indicated a first-flush effect in the wash-off founding the highest concentrations of AS in the first rain episodes after application of the fungicides. This article shows that foliar spray application of commercial formulations of new-generation fungicides does not prevent the release of their AS to soil or the runoff. Concentration data obtained in this research can be valuable in supporting the assessment of environmental effects of new-generation fungicides and modeling their environmental fate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere.

    PubMed

    Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.

  1. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize

    USDA-ARS?s Scientific Manuscript database

    The effects of a seed treatment on early season growth, seedling disease development, incidence Fusarium spp. infection, and photosynthetic performance of maize were evaluated at two locations in Iowa in 2007. Maize seed was either treated with Cruiser 2Extreme 250 ® (fludioxonil + azoxystrobin + me...

  2. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Hiroyuki, E-mail: kojima@iph.pref.hokkaido.jp; Muromoto, Ryuta; Takahashi, Miki

    2012-03-15

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activitymore » as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10{sup −6} M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ► Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. ► Five azole-type fungicides act as RORα/γ inverse agonists. ► These fungicides suppress the expression of IL-17 mRNA in mouse EL4 cells. ► Environmental chemicals can act as modulators of IL-17 expression via RORα/γ.« less

  3. Value of Neonicotinoid Insecticide Seed Treatments in Mid-South Corn (Zea mays) Production Systems.

    PubMed

    North, J H; Gore, J; Catchot, A L; Stewart, S D; Lorenz, G M; Musser, F R; Cook, D R; Kerns, D L; Leonard, B R; Dodds, D M

    2018-02-09

    Neonicotinoid seed treatments are one of several effective control options used in corn, Zea mays L., production in the Mid-South for early season insect pests. An analysis was performed on 91 insecticide seed treatment trials from Arkansas, Louisiana, Mississippi, and Tennessee to determine the value of neonicotinoids in corn production systems. The analysis compared neonicotinoid insecticide treated seed plus a fungicide to seed only with the same fungicide. When analyzed by state, corn yields were significantly higher when neonicotinoid seed treatments were used compared to fungicide only treated seed in Louisiana and Mississippi. Corn seed treated with neonicotinoid seed treatments yielded 111, 1,093, 416, and 140 kg/ha, higher than fungicide only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments resulted in a 700 kg/ha advantage compared to fungicide only treated corn seed. Net returns for corn treated with neonicotinoid seed treatment were $1,446/ha compared with $1,390/ha for fungicide only treated corn seed across the Mid-South. Economic returns for neonicotinoid seed treated corn were significantly greater than fungicide-only-treated corn seed in 8 out of 14 yr. When analyzed by state, economic returns for neonicotinoid seed treatments were significantly greater than fungicide-only-treated seed in Louisiana. In some areas, dependent on year, neonicotinoid seed treatments provide significant yield and economic benefits in Mid-South corn. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Development and evaluation of adverse outcome pathways predicting adverse effects of conazole fungicides on avian species

    EPA Science Inventory

    Conazoles are a class of fungicides commonly used in agriculture and as pharmaceuticals to prevent the spread of fungus through inhibition of cytochrome P450 14á-demethylase (CYP51). However these fungicides are known to act promiscuously on other cytochrome P450 enzymes (...

  5. Honey bee gut microbial communities are robust to the fungicide Pristine® consumed in pollen

    USDA-ARS?s Scientific Manuscript database

    Honeybees that consume pollen with sublethal levels of the fungicide Pristine® can have reduced pollen digestion, lower ATP synthesis and in many ways resemble malnourished bees. Reduced nutrient acquisition in bees exposed to Pristine® might be because this fungicide affects the composition of gut ...

  6. Experimental fungicidal control of blister rust on sugar pine in California

    Treesearch

    Clarence R. Quick

    1964-01-01

    Parallel series of exploratory experiments with antifungal antibiotics and conventional chemical fungicides for control of blister rust on sugar pine were started in northern California in 1959. Several fungicides, both antibiotic and conventional, appear slightly systemic, but all tested materials are more effective when sprayed directly on infected tissues....

  7. Seed Treatment with Systemic Fungicides for the Control of Fusiform Rust in Loblolly Pine

    Treesearch

    John G. Mexal; Glenn A. Snow

    1978-01-01

    A new systemic fungicide, Bayleton, may economically control fusiform rust in southern pine nurseries. Stratified seeds of loblolly pine (Pinus taeda L.) were imbibed with Bayleton and two other systemic fungicides, and the seedlings were inoculated at three stages of emergence with spores of Cronartium quercuum (Berk.) Miyabe ex...

  8. Induction of numerical chromosomal aberrations during DNA synthesis using the fungicides nimrod and rubigan-4 in root tips of Vicia faba L.

    PubMed

    Shahin, S A; el-Amoodi, K H

    1991-11-01

    The 2 fungicides nimrod and rubigan-4 were tested for genotoxicity using Vicia faba root tips as the biological test system. Treating lateral roots with different concentrations of each fungicide for different periods showed that both fungicides were able to produce numerical but not structural chromosomal aberrations. The percentage of total aberrations in root tips exposed to nimrod reached 54.39% at 250 ppm for 4 h, and 64.69% in root tips exposed to rubigan-4 at 250 ppm for 6 h. The types of numerical chromosomal aberrations produced by both fungicides included: binucleate cells, c-metaphases, sticky chromosomes, polyploid cells, and laggards. Recovery experiments for 24, 48, and 96 h showed no significant differences between the percentage of total aberrations in treated and control groups.

  9. Tolerance of triazole-based fungicides by biocontrol agents used to control Fusarium head blight in wheat in Argentina.

    PubMed

    Palazzini, J M; Torres, A M; Chulze, S N

    2018-05-01

    Fusarium head blight (FHB) caused by Fusarium graminearum species complex is a devastating disease that causes extensive yield and quality losses to wheat around the world. Fungicide application and breeding for resistance are among the most important tools to counteract FHB. Biological control is an additional tool that can be used as part of an integrated management of FHB. Bacillus velezensisRC 218, Brevibacillus sp. RC 263 and Streptomyces sp. RC 87B were selected by their potential to control FHB and deoxynivalenol production. The aim of this work was to test the tolerance of these biocontrol agents to triazole-based fungicides such as prothioconazole, tebuconazole and metconazole. Bacterial growth was evaluated in Petri dishes using the spread plating technique containing the different fungicides. Bacillus velezensisRC 218 and Streptomyces sp. RC 87B showed better tolerance to fungicides than Brevibacillus sp. RC 263. Complete growth inhibition was observed at concentrations of 20 μg ml -1 for metconazole, 40 μg ml -1 for tebuconazole and 80 μg ml -1 for prothioconazole. The results obtained indicate the possibility of using these biocontrol agents in combination with fungicides as part of an integrated management to control FHB of wheat. This study evaluates the possibility to use biocontrol agents (Bacillus velezensisRC 218, Brevibacillus sp. RC 263 and Streptomyces sp. RC 87B) in combination with triazole-based fungicides to control Fusarium head blight in wheat. The evaluation of biocontrol agents' growth under in vitro conditions was carried out in Petri dishes containing either prothioconazole, tebuconazole or metconazole. Viability studies demonstrated that B. velezensisRC 218 and Streptomyces sp. RC 87B were more tolerant to the fungicides evaluated. Results obtained reflect the possibility to use fungicides at low doses combined with biocontrol agents. © 2018 The Society for Applied Microbiology.

  10. Selective effect of myclobutanil enantiomers on fungicidal activity and fumonisin production by Fusarium verticillioides under different environmental conditions.

    PubMed

    Li, Na; Deng, Luqing; Li, Jianfang; Wang, Zhengbing; Han, Yiye; Liu, Chenglan

    2018-05-01

    Myclobutanil is a widely used triazole fungicide, comprising two enantiomers with different fungicidal activities, non-target toxicities, and environmental fates. The enantioselective effects of myclobutanil on fumonisin B (FB) production by Fusarium verticillioides, an important pathogen, have not yet been investigated. In the present study, the fungicidal activities of rac-myclobutanil and its enantiomers on F. verticillioides cultured on maize-based media were studied under different water activity and temperature conditions. The FB levels were measured to assess the enantioselective effects on FB production when F. verticillioides were cultured treated with EC 50 and EC 90 concentrations (concentrations inhibiting mycelial growth by 50.0% and 90.0%, respectively) of myclobutanil and enantiomers under different conditions. The fungicidal activities of rac-myclobutanil and its enantiomers decreased with increasing temperature and decreasing water activity. Little difference in fungicidal activity was observed between the enantiomers. FB production was significantly influenced by temperature, a w , and fungicides dose. At EC50 concentrations, rac-myclobutantil and its enantiomers were shown to enhance mycotoxin production and enantioselective effects of enantiomers on FB production were observed under certain conditions. This is the first report on the differential effects of myclobutanil enantiomers on the control of F. verticillioides growth and FB production in maize-based media under different conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effects of the fungicide imazalil on the fathead minnow (Pimephales promelas) reproductive axis a case study in 21st century toxicity testing

    EPA Science Inventory

    Since its introduction in 1983 imazalil has been used primarily as a fungicide on crops post-harvest, such as tubers and citrus fruits. Its effectiveness lies in the ability to inhibit the fungal enzyme, lanosterol 14 á-demethylase. However, like other azole fungicides, im...

  12. Comparison of the Fungicide Sensitivity of Alberta and Prince Edward Island Isolates of Fusarium graminearum Producing Either 3- or 15-acetyl Deoxynivalenol

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum Schwabe of the ‘3ADON’ chemotype is now displacing ‘15ADON’ isolates in Canada. One concern regarding this shift in chemotypes is related to potential differences in fungicide sensitivity. This could have significant implications as fungicide application is an important strate...

  13. Effectiveness of fungicides in protecting Douglas-fir shoots from infection by Phytophthora ramorum

    Treesearch

    G.A. Chastagner; E.M. Hansen; K.L. Riley; W. Sutton

    2006-01-01

    The effectiveness of 20 systemic and contact fungicides in protecting Douglas-fir seedlings from infection by Phytophthora ramorum was determined. Some systemic products were applied about a week prior to bud break, while most treatments were applied just after bud break. In addition to the fungicides, two surfactants were included in the post-bud...

  14. Effects of the fungicide imazalil on the fathead minnow (Pimephales promelas) reproductive axis a case study in 21st century toxicity testing

    EPA Science Inventory

    Since its introduction in 1983, imazalil has been used primarily as a fungicide on crops post-harvest. Its effectiveness lies in the ability to inhibit the fungal cytochrome P450 (cyp), lanosterol 14 á-demethylase. However, like other azole fungicides, imazalil can inhibit...

  15. Effects of fungicide and adjuvant sprays on nesting behavior in two managed solitary bees, Osmia lignaria and Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    The lethal and sublethal effects of two widely used fungicides and one adjuvant spreader were assessed in cage studies in California on blue orchard bees, Osmia lignaria, and in cage studies in Utah on alfalfa leafcutting bees, Megachile rotundata. The fungicides tested were Rovral® 4F (iprodione) ...

  16. Effect of fungicides and biocontrol agents on inoculum production and persistence of Phytophthora ramorum on nursery hosts

    Treesearch

    Steve Tjosvold; David Chambers; Gary Chastagner; Marianne Elliott

    2013-01-01

    Once Phytophthora ramorum is introduced into a nursery on a host, its local spread and establishment is primarily dependent on sporangia and zoospore production. Nursery operators commonly use fungicides to prevent the establishment of Phytophthora –caused diseases, although current research only supports the use of fungicides...

  17. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.

    PubMed

    Sun, Guangzheng; Yang, Qichao; Zhang, Ancheng; Guo, Jia; Liu, Xinjie; Wang, Yang; Ma, Qing

    2018-07-02

    The antifungal properties and the induction of resistance by ε-poly-l-lysine (ε-PL) and chitooligosaccharide (COS) were examined to find an alternative to synthetic fungicides currently used in the control of the devastating fungal pathogen Botrytis cinerea, the causal agent of grey mould disease of tomatoes. As presented herein, this combined treatment (200 mg/L ε-PL + 400 mg/L COS) was found to have optimal in vitro antifungal activities, achieving an inhibition rate of 90.22%. In vivo assays with these combined bio-fungicides, under greenhouse conditions using susceptible tomato plants, demonstrated good protection against severe grey mould. In field tests, the combined bio-fungicides had a control effect of up to 66.67% against tomato grey mould. To elucidate the mechanisms of the combined bio-fungicide-induced resistance in the tomato, plants were subjected to three treatments: 1) inoculation with B. cinerea after spraying with 200 mg/L ε-PL alone, 2) inoculation with the combined bio-fungicides, and 3) inoculation with 400 mg/L COS alone. Compared to the control (sterile water), increases in salicylic acid (SA) and jasmonic acid (JA) levels and increased phenylalanine ammonia lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) activities were observed. Catalase (CAT) activity and abscisic acid (ABA) and gibberellin (GA) levels decreased, particularly in the combined bio-fungicide-treated plants. Altogether, these findings reveal that the combined bio-fungicides (200 mg/L ε-PL + 400 mg/L COS) should be an excellent biocontrol agent candidate that combines direct antifungal activity against B. cinerea with plant resistance. Copyright © 2018. Published by Elsevier B.V.

  18. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    PubMed Central

    Kojima, Hiroyuki; Muromoto, Ryuta; Takahashi, Miki; Takeuchi, Shinji; Takeda, Yukimasa; Jetten, Anton M.; Matsuda, Tadashi

    2013-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10−6 M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. PMID:22289359

  19. Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides.

    PubMed

    Kondratiuk, Mykola; Blagaia, Anna; Pelo, Ihor

    2018-01-01

    Introduction: The quality of the air environment significantly affects the health of the population. Chemical plant protection products in the spring and summer time may be the main pollutants of the air environment in rural areas. Chemical plant protection products are dangerous substances of anthropogenic origin. If applying pesticides in high concentrations, the risk of poisoning by active ingredients of pesticide preparations in workers directly contacting with it increases. The aim: Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides was the aim of the work. Materials and methods: Active ingredients of the studied combined fungicides, samples of air, and swabs from workers' skin and stripes from overalls were materials of the research. Methods of full-scale in-field hygienic experiment, gas-liquid chromatography, high-performance liquid chromatography, as well as statistical and bibliographic methods were used in the research. Results and conclusions: Active ingredients of the studied combined fungicides were not detected in the working zone air and atmospheric air at the levels exceeding the limits of its detection by appropriate chromatography methods. Findings confirmed the air environment safety for agricultural workers and rural population if studied combined fungicides are applied following the hygienically approved suggested application rates and in accordance of good agricultural practice rules. However the possible complex risk for workers after certain studied fungicides application may be higher than acceptable due to the elevated values for dermal effects. The complex risk was higher than acceptable in еру case of aerial spraying of both studied fungicides, meanwhile only one combination of active ingredients revealed possible risk for workers applying fungicides by rod method of cereal spiked crops treatment.

  20. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  1. Matrix Effect Evaluation and Method Validation of Azoxystrobin and Difenoconazole Residues in Red Flesh Dragon Fruit (Hylocereus polyrhizus) Matrices Using QuEChERS Sample Preparation Methods Followed by LC-MS/MS Determination.

    PubMed

    Noegrohati, Sri; Hernadi, Elan; Asviastuti, Syanti

    2018-06-01

    Production of red flesh dragon fruit (Hylocereus polyrhizus) was hampered by Colletotrichum sp. Pre-harvest application of azoxystrobin and difenoconazole mixture is recommended, therefore, a selective and sensitive multi residues analytical method is required in monitoring and evaluating the commodity's safety. LC-MS/MS is a well-established analytical technique for qualitative and quantitative determination in complex matrices. However, this method is hurdled by co-eluted coextractives interferences. This work evaluated the pH effect of acetate buffered and citrate buffered QuEChERS sample preparation in their effectiveness of matrix effect reduction. Citrate buffered QuEChERS proved to produce clean final extract with relative matrix effect 0.4%-0.7%. Method validation of the selected sample preparation followed by LC-MS/MS for whole dragon fruit, flesh and peel matrices fortified at 0.005, 0.01, 0.1 and 1 g/g showed recoveries 75%-119%, intermediate repeatability 2%-14%. The expanded uncertainties were 7%-48%. Based on the international acceptance criteria, this method is valid.

  2. Chemical control of blister rust on sugar pine...two fungicides show promise in California tests

    Treesearch

    Clarence R. Quick

    1967-01-01

    Among several fungicides tested, Phytoactin L-340 and Dowicide 1 (o-phenylphenol) showed the most promise for systemic chemical control of blister rust on sugar pine in northern California. The trials included 22 tests on 224 sugar pines: five with Acti-dione BR (cycloheximide), one each with five common chemical fungicides,and 12 with phytoactin. Apparent...

  3. Combinations of fungicide and cultural practices influence the incidence and impact of fusiform rust in slash pine plantations

    Treesearch

    James D. Haywood; Allan E. Tiarks

    1994-01-01

    Slash pine was grown in central Louisiana under four levels of culture with or without repeated sprayings of the systematic fungicide triadimefon for protection against fusiform rust. The eight treatment combinations were: (1)no fungicide, weed control, or fertilizer; (2)weeded; (3)weeded, applied inorganic fertilizer, and bedded before planting; (4)weeded, bedded,...

  4. Off-site transport of fungicides with runoff: A comparison of flutolanil and pentachloronitrobeneze applied to creeping bentgrass managed as a golf course fairway

    USDA-ARS?s Scientific Manuscript database

    Flutolanil and pentachloronitrobenzene (PCNB) are fungicides used to control or suppress foliar and soil borne diseases in turf and ornamental crops. On golf courses, sports fields, sod farms and commercial lawns these fungicides are used as preventive treatments to combat snow mold, brown patch an...

  5. Sensitivity of Texas strains of Ceratocystis fagacearum to triazole fungicides

    Treesearch

    A. Dan Wilson; L.B. Forse

    1997-01-01

    Ten geographically diverse Texas strains of the oak wilt fungus Ceratocystis fagacearum were tested in vitro for their sensitivity to five triazole fungicides based on accumulated linear growth, linear growth rates, and dry weight accumulation in response to fungicide concentrations of 0.1 to 600 parts per billion (ppb). None of the triazoles inhibited growth at 0.1...

  6. Combination of nutrients in a mammalian cell culture medium kills cryptococci.

    PubMed

    Granger, Donald L; Call, Donna M

    2018-06-06

    We found that a large inoculum of Cryptococcus gattii cells, when plated on Dulbecco's modified eagle's medium (DMEM) incorporated into agar, died within a few hours provided that DMEM agar plates had been stored in darkness for approximately 3 days after preparation. Standard conditions were developed for quantification of killing. The medium lost its fungicidal activity when exposed to visible light of wave length ∼400 nm. The amount of energy required was estimated at 5.8 × 104 joules @ 550 nm. Liquid DMEM conditioned by incubation over DMEM agar plates stored in darkness was fungicidal. We found that fungicidal activity was heat-stable (100°C). Dialysis tubing with MWC0 < 100 Daltons retained fungicidal activity. Neutral pH was required. Strains of Cryptococcus were uniformly sensitive, but some Candida species were resistant. Components of DMEM required for killing were pyridoxal and cystine. Micromolar amounts of iron shortened the time required for DMEM agar plates to become fungicidal when stored in the dark. Organic and inorganic compounds bearing reduced sulfur atoms at millimolar concentrations inhibited fungicidal activity. Our results point to a light-sensitive antifungal compound formed by reaction of pyridoxal with cystine possibly by Schiff base formation.

  7. Effect of fungicide on Fusarium verticillioides mycelial morphology and fumonisin B₁ production.

    PubMed

    Miguel, Tatiana de Á; Bordini, Jaqueline G; Saito, Gervásio H; Andrade, Célia G T de J; Ono, Mario A; Hirooka, Elisa Y; Vizoni, Édio; Ono, Elisabete Y S

    2015-03-01

    The effect of fludioxonil + metalaxyl-M on the mycelial morphology, sporulation and fumonisin B 1 production by Fusarium verticillioides 103 F was evaluated. Scanning electron microscopy analysis showed that the fungicide caused inhibition of hyphal growth and defects on hyphae morphology such as cell wall disruption, withered hyphae, and excessive septation. In addition, extracellular material around the hyphae was rarely observed in the presence of fludioxonil + metalaxyl-M. While promoting the reduction of mycelial growth, the fungicide increased sporulation of F. verticillioides compared to the control, and the highest production occurred on the 14 (th) day in the treatments and on the 10 (th) day in the control cultures. Fumonisin B 1 production in the culture media containing the fungicide (treatment) was detected from the 7 (th) day incubation, whereas in cultures without fungicide (control) it was detected on the 10 (th) day. The highest fumonisin B 1 production occurred on the 14 (th) day, both for the control and for the treatment. Fludioxonil + metalaxyl - M can interfere in F. verticillioides mycelial morphology and sporulation and increase fumonisin B 1 levels. These data indicate the importance of understanding the effects of fungicide to minimize the occurrence of toxigenic fungi and fumonisins.

  8. Microscopy reveals disease control through novel effects on fungal development: a case study with an early-generation benzophenone fungicide.

    PubMed

    Schmitt, Mark R; Carzaniga, Raffaella; Cotter, H Van T; O'Connell, Richard; Hollomon, Derek

    2006-05-01

    The benzophenones are a new class of agricultural fungicides that demonstrate protectant, curative and eradicative/antisporulant activity against powdery mildews. The chemistry is represented in the marketplace by the fungicide metrafenone, recently introduced by BASF and discussed in the following paper. The benzophenones show no evidence of acting by previously identified biochemical mechanisms, nor do they show cross-resistance with existing fungicides. The value of microscopy in elucidating fungicide mode of action is demonstrated through identification of the effects of an early benzophenone, eBZO, on mildew development. eBZO caused profound alterations in the morphology of powdery mildews of both monocotyledons and dicotyledons, affecting multiple stages of fungal development, including spore germination, appressorial formation, penetration, surface hyphal morphology and sporogenesis. Identification of analogous effects of eBZO on sporulation in the model organism Aspergillus nidulans (Eidam) Winter provides a unique opportunity to elucidate important morphogenetic regulatory sites in the economically important obligate pathogens, the powdery mildews. Benzophenones provide a further example of the benefits of whole-organism testing in the search for novel fungicide modes of action. Copyright 2006 Society of Chemical Industry.

  9. Sensitivity of some nitrogen fixers and the target pest Fusarium oxysporum to fungicide thiram.

    PubMed

    Osman, Awad G; Sherif, Ashraf M; Elhussein, Adil A; Mohamed, Afrah T

    2012-03-01

    This study was carried out to investigate the toxic effects of the fungicide thiram (TMTD) against five nitrogen fixers and the thiram target pest Fusarium oxysporum under laboratory conditions. Nitrogen fixing bacteria Falvobacterium showed the highest values of LD(50) and proved to be the most resistant to the fungicide followed by Fusarium oxysporum, while Pseudomonas aurentiaca was the most affected microorganism. LD(50) values for these microorganisms were in 2-5 orders of magnitude lower in comparison with LD(50) value for Fusarium oxysporum. Thiram was most toxic to Pseudomonas aurentiaca followed by Azospirillum. The lowest toxicity index was recorded for Fusarium oxysporum and Flavobacterium. The slope of the curve for Azomonas, Fusarium oxysporum and Flavobacterium is more steep than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. Thiram was more selective to Pseudomonas aurentiaca followed by Azospirillum, Rhizobium meliloti and Azomonas. The lowest selectivity index of the fungicide was recorded for Falvobacterium followed by Fusarium oxysporum. The highest safety coefficient of the fungicide was assigned for Flavobacterium, while Pseudomonas aurentiaca showed the lowest value.

  10. Soil fungal effects on floral signals, rewards, and aboveground interactions in an alpine pollination web.

    PubMed

    Becklin, Katie M; Gamez, Guadalupe; Uelk, Bryan; Raguso, Robert A; Galen, Candace

    2011-08-01

    Plants interact with above- and belowground organisms; the combined effects of these interactions determine plant fitness and trait evolution. To better understand the ecological and evolutionary implications of multispecies interactions, we explored linkages between soil fungi, pollinators, and floral larcenists in Polemonium viscosum (Polemoniaceae). Using a fungicide, we experimentally reduced fungal colonization of krummholz and tundra P. viscosum in 2008-2009. We monitored floral signals and rewards, interactions with pollinators and larcenists, and seed set for fungicide-treated and control plants. Fungicide effects varied among traits, between interactions, and with environmental context. Treatment effects were negligible in 2008, but stronger in 2009, especially in the less-fertile krummholz habitat. There, fungicide increased nectar sugar content and damage by larcenist ants, but did not affect pollination. Surprisingly, fungicide also enhanced seed set, suggesting that direct resource costs of soil fungi exceed indirect benefits from reduced larceny. In the tundra, fungicide effects were negligible in both years. However, pooled across treatments, colonization by mycorrhizal fungi in 2009 correlated negatively with the intensity and diversity of floral volatile organic compounds, suggesting integrated above- and belowground signaling pathways. Fungicide effects on floral rewards in P. viscosum link soil fungi to ecological costs of pollinator attraction. Trait-specific linkages to soil fungi should decouple expression of sensitive and buffered floral phenotypes in P. viscosum. Overall, this study demonstrates how multitrophic linkages may lead to shifting selection pressures on interaction traits, restricting the evolution of specialization.

  11. Evaluating the combined efficacy of polymers with fungicides for protection of museum textiles against fungal deterioration in Egypt.

    PubMed

    Abdel-Kareem, Omar

    2010-01-01

    Fungal deterioration is one of the highest risk factors for damage of historical textile objects in Egypt. This paper represents both a study case about the fungal microflora deteriorating historical textiles in the Egyptian Museum and the Coptic museum in Cairo, and evaluation of the efficacy of several combinations of polymers with fungicides for the reinforcement of textiles and their prevention against fungal deterioration. Both cotton swab technique and biodeteriorated textile part technique were used for isolation of fungi from historical textile objects. The plate method with the manual key was used for identification of fungi. The results show that the most dominant fungi isolated from the tested textile samples belong to Alternaria, Aspergillus, Chaetomium, Penicillium and Trichoderma species. Microbiological testing was used for evaluating the usefulness of the suggested conservation materials (polymers combined with fungicides) in prevention of the fungal deterioration of ancient Egyptian textiles. Textile samples were treated with 4 selected polymers combined with two selected fungicides. Untreated and treated textile samples were deteriorated by 3 selected active fungal strains isolated from ancient Egyptian textiles. This study reports that most of the tested polymers combined with the tested fungicides prevented the fungal deterioration of textiles. Treatment of ancient textiles by suggested polymers combined with the suggested fungicides not only reinforces these textiles, but also prevents fungal deterioration and increases the durability of these textiles. The tested polymers without fungicides reduce the fungal deterioration of textiles but do not prevent it completely.

  12. Orchard factors associated with resistance and cross resistance to sterol demethylation inhibitor fungicides in populations of Venturia inaequalis from Pennsylvania.

    PubMed

    Pfeufer, Emily E; Ngugi, Henry K

    2012-03-01

    Orchard management practices, such as destroying of overwintered inoculum and limiting the number of fungicide applications, are often recommended as tactics for slowing the development of resistance to sterol demethylation-inhibitor (DMI) fungicides in populations of Venturia inaequalis. However, there is little quantitative evidence relating the use of such practices to levels of resistance in orchards. The aim of this study was to evaluate the sensitivity of V. inaequalis isolates from Pennsylvania to DMI fungicides, and to identify orchard management factors related to the incidence of resistant isolates. In total, 644 single-spore V. inaequalis cultures obtained from 20 apple orchards in 2008 or 2009 were tested for sensitivity to myclobutanil, fenbuconazole, or difenoconazole. Growers provided management history of the sampled plots. Widespread shifts toward resistance to the three fungicides were noted, with mean effective concentration for 50% inhibition (EC(50)) values of 2.136, 0.786, and 0.187 μg/ml for myclobutanil, fenbuconazole, and difenoconazole, respectively. Cross resistance to the three fungicides was documented in high correlation (Spearman's r > 0.6) between mean EC(50) values for 14 orchards. Based on a 0.5-μg/ml threshold, 66 and 26% of isolates were resistant to myclobutanil and fenbuconazole, respectively, and 22% were cross resistant to the two fungicides. A significant between-year shift toward increased resistance was noted in two of three orchards surveyed in both years. Failure to use dormant copper sprays, older trees, larger orchards, orchards with ≤10 cultivars, and application of >4 DMI sprays were positively correlated (0.0001 < P < 0.05) with the incidence of resistant isolates. Isolates from orchards with >4 DMI sprays were four times as likely to be resistant to fenbuconazole (odds ratio = 4.57; P = 0.015). Isolates from orchards without dormant copper sprays were twice as likely to be cross-shifted toward resistance to all three fungicides (odds ratio = 1.76; P = 0.048). Results identify management practices that can reduce the risk of V. inaequalis developing resistance to DMI fungicides.

  13. Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides.

    PubMed

    Rahman, Md Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G H; Sørlie, Morten; Tronsmo, Arne

    2014-01-01

    Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15-40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases.

  14. Inhibition of Fungal Plant Pathogens by Synergistic Action of Chito-Oligosaccharides and Commercially Available Fungicides

    PubMed Central

    Rahman, Md. Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G. H.; Sørlie, Morten; Tronsmo, Arne

    2014-01-01

    Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and F A (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15–40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases. PMID:24770723

  15. A turn-on supramolecular fluorescent probe for sensing benzimidazole fungicides and its application in living cell imaging

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Zhang, Jing; Sun, Tao; Wang, Cheng-Hui; Huang, Ying; Zhou, Qingdi; Wei, Gang

    2018-02-01

    A cucurbit[8]uril-based turn-on supramolecular fluorescent probe between cucurbit[8]uril (Q[8]) and pyronine Y (PyY) (designated 2PyY@Q[8]) in acidic aqueous solution showed a remarkable fluorescence 'turn-on' response to benzimidazole fungicides such as thiabendazole, fuberidazole and carbendazim. The 2PyY@Q[8] fluorescent probe can be used to detect benzimidazole fungicides with high sensitivity and selectivity with a detection limit of 10- 8 mol/L. A good linear relationship of emission intensity at 580 nm for benzimidazole fungicides at concentrations of 0.4-5.0 μmol/L was observed. The proposed sensing mechanism was investigated using 1H NMR spectroscopy combined with density functional theory calculations at the B3LYP/6-31G(d) level. The cell imaging study showed that the 2PyY@Q[8] complex could be used to image benzimidazole fungicide in prostate cancer (PC3) cells, which may help to elucidate relevant biological processes at the molecular level.

  16. Determination of Optimum Tropic Storage and Exposure Sites. Report 1: Survey of Programs in Tropic Materials Research

    DTIC Science & Technology

    1973-04-01

    of fungicidal varnish. Differences in specifications and procedures between the two countries were largely due to differences in available materials...the Japanese were aware of the problems of tropic deterioration of improperly protected materiel, neither fungicides nor radioactive materials were...used to prevent fungus growth. Emphasis was placed on moisture proofing the material rather than incorporating fungicides . The wartime state of

  17. Control of Rhizoctonia foliar blight in forest seedling nurseries: A 3-year study

    Treesearch

    Tom E. Starkey; Scott A. Enebak; Ken McQuage; Kevin Barfield

    2013-01-01

    Laboratory and field trials have shown Proline® (prothioconazole) to be efficacious against the causal agent of Rhizoctonia foliar blight on loblolly pine (Pinus taeda). A biweekly application of Proline ® at 5 fl oz/ac in nursery field tests significantly reduced Rhizoctonia foliar blight on loblolly pine when compared to applications of Abound ® azoxystrobin (24 fl...

  18. Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees

    PubMed Central

    Tomé, Hudson V. V.; Ramos, Gabryele S.; Araújo, Micaele F.; Santana, Weyder C.; Santos, Gil R.; Guedes, Raul Narciso C.; Maciel, Carlos D.; Newland, Philip L.

    2017-01-01

    Bees are key pollinators whose population numbers are declining, in part, owing to the effects of different stressors such as insecticides and fungicides. We have analysed the susceptibility of the Africanized honeybee, Apis mellifera, and the stingless bee, Partamona helleri, to commercial formulations of the insecticides deltamethrin and imidacloprid. The toxicity of fungicides based on thiophanate-methyl and chlorothalonil were investigated individually and in combination, and with the insecticides. Results showed that stingless bees were more susceptible to insecticides than honeybees. The commercial fungicides thiophanate-methyl or chlorothalonil caused low mortality, regardless of concentration; however, their combination was as toxic as imidacloprid to both species, and over 400-fold more toxic than deltamethrin for A. mellifera. There were highly synergistic effects on mortality caused by interactions in the mixture of imidacloprid and the fungicides thiophanate-methyl, chlorothalonil and the combined fungicide formulation in A. mellifera, and also to a lesser extent in P. helleri. By contrast, mixtures of the deltamethrin and the combined fungicide formulation induced high synergy in P. helleri, but had little effect on the mortality of A. mellifera. Differences in physiology and modes of action of agrochemicals are discussed as key factors underlying the differences in susceptibility to agrochemicals. PMID:28280585

  19. Effect of fungicide on Fusarium verticillioides mycelial morphology and fumonisin B 1 production

    PubMed Central

    Miguel, Tatiana de Á.; Bordini, Jaqueline G.; Saito, Gervásio H.; Andrade, Célia G.T. de J.; Ono, Mario A.; Hirooka, Elisa Y.; Vizoni, Édio; Ono, Elisabete Y.S.

    2015-01-01

    The effect of fludioxonil + metalaxyl-M on the mycelial morphology, sporulation and fumonisin B 1 production by Fusarium verticillioides 103 F was evaluated. Scanning electron microscopy analysis showed that the fungicide caused inhibition of hyphal growth and defects on hyphae morphology such as cell wall disruption, withered hyphae, and excessive septation. In addition, extracellular material around the hyphae was rarely observed in the presence of fludioxonil + metalaxyl-M. While promoting the reduction of mycelial growth, the fungicide increased sporulation of F. verticillioides compared to the control, and the highest production occurred on the 14 th day in the treatments and on the 10 th day in the control cultures. Fumonisin B 1 production in the culture media containing the fungicide (treatment) was detected from the 7 th day incubation, whereas in cultures without fungicide (control) it was detected on the 10 th day. The highest fumonisin B 1 production occurred on the 14 th day, both for the control and for the treatment. Fludioxonil + metalaxyl - M can interfere in F. verticillioides mycelial morphology and sporulation and increase fumonisin B 1 levels. These data indicate the importance of understanding the effects of fungicide to minimize the occurrence of toxigenic fungi and fumonisins. PMID:26221120

  20. Fungicides affect Japanese beetle Popillia japonica (Coleoptera: Scarabaeidae) egg hatch, larval survival and detoxification enzymes.

    PubMed

    Obear, Glen R; Adesanya, Adekunle W; Liesch, Patrick J; Williamson, R Chris; Held, David W

    2016-05-01

    Larvae of the Japanese beetle, Popillia japonica (Coleoptera: Scarabaeidae), have a patchy distribution in soils, which complicates detection and management of this insect pest. Managed turf systems are frequently under pest pressure from fungal pathogens, necessitating frequent fungicide applications. It is possible that certain turfgrass fungicides may have lethal or sublethal adverse effects on eggs and larvae of P. japonica that inhabit managed turf systems. In this study, eggs and first-, second- and third-instar larvae were treated with the fungicides chlorothalonil and propiconazole, and survival was compared with that of untreated controls as well as positive controls treated with the insecticide trichlorfon. Chlorothalonil reduced survival of first-instar larvae treated directly and hatched from treated eggs. Propiconazole delayed egg hatch, reduced the proportion of eggs that successfully hatched and reduced survival of first-instar larvae treated directly and hatched from treated eggs. Sublethal doses of the fungicides lowered the activities of certain detoxification enzymes in third-instar grubs. Fungicide applications to turfgrass that coincide with oviposition and egg hatch of white grubs may have sublethal effects. This work is applicable both to high-maintenance turfgrass such as golf courses, where applications of pesticides are more frequent, and to home lawn services, where mixtures of multiple pesticides are commonly used. © 2015 Society of Chemical Industry.

  1. Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link. isolated from stored rice.

    PubMed

    Paranagama, P A; Abeysekera, K H T; Abeywickrama, K; Nugaliyadde, L

    2003-01-01

    To develop a natural fungicide against aflatoxigenic fungi, to protect stored rice, using the essential oil of lemongrass. Aspergillus flavus Link. was isolated from stored rice and identified as an aflatoxigenic strain. Lemongrass oil was tested against A. flavus and the test oil was fungistatic and fungicidal against the test pathogen at 0.6 and 1.0 mg ml(-1), respectively. Aflatoxin production was completely inhibited at 0.1 mg ml(-1). The results obtained from the thin layer chromatographic bioassay and gas chromatography indicated citral a and b as the fungicidal constituents in lemongrass oil. During the fumigant toxicity assay of lemongrass oil, the sporulation and the mycelial growth of the test pathogen were inhibited at the concentrations of 2.80 and 3.46 mg ml(-1), respectively. Lemongrass oil could be used to manage aflatoxin formation and fungal growth of A. flavus in stored rice. Currently, fungicides are not used to control fungal pests or mycotoxin production on stored rice. Rice treated with the essential oil of lemongrass could be used to manage fungal pests as well as the insect pests in stored rice. The essential oil is chemically safe and acceptable to consumers, as synthetic chemical fungicides can cause adverse health effects to consumers.

  2. Involvement of Penicillium digitatum PdSUT1 in fungicide sensitivity and virulence during citrus fruit infection.

    PubMed

    Ramón-Carbonell, Marta de; Sánchez-Torres, Paloma

    2017-10-01

    A putative sucrose transporter PdSUT1 included in the same clade that Sut1p from Schizosaccharomyces pombe was identified in Penicillium digitatum, the major citrus postharvest pathogen. PdSUT1 gene was characterized using target gene disruption and gene overexpression. The ΔPdSUT1 mutants generated by gene elimination showed reduction in fungal virulence during citrus fruit infection assayed in mature fruit at 20°C. However, the overexpression mutants did not increased disease severity neither in the mutants coming from a high virulent nor from a low virulent P. digitatum progenitor strains. Moreover, fungicide sensitivity was affected in the deletant mutants but not in the overexpression transformants. The expression analysis of several genes involved in fungicide resistance showed an intensification of MFS transporters and a decrease of sterol demethylases transcriptional abundance in the ΔPdSUT1 mutants compare to the parental wild type strain. PdSUT1 appear not to be directly involved in fungicide resistance although can affect the gene expression of fungicide related genes. These results indicate that PdSUT1 contribute to P. digitatum fungal virulence and influence fungicide sensitivity through carbohydrate uptake and MFS transporters gene activation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Sensitivity of Podosphaera xanthii populations to anti-powdery-mildew fungicides in Spain.

    PubMed

    Bellón-Gómez, Davinia; Vela-Corcía, David; Pérez-García, Alejandro; Torés, Juan A

    2015-10-01

    Cucurbit powdery mildew caused by Podosphaera xanthii limits crop production in Spain, where disease control is largely dependent on fungicides. In previous studies, high levels of resistance to QoI and DMI fungicides were documented in south-central Spain. The aim of this study was to investigate the sensitivity of P. xanthii populations to other fungicides and to provide tools for improved disease management. Using a leaf-disc assay, sensitivity to thiophanate-methyl, bupirimate and quinoxyfen of 50 isolates of P. xanthii was analysed to determine discriminatory concentrations between sensitive and resistant isolates. With the exception of thiophanate-methyl, no clearly different groups of isolates could be identified, and as a result, discriminatory concentrations were established on the basis of the maximum fungicide field application rate. Subsequently, a survey of P. xanthii resistance to these fungicides was carried out by testing a collection of 237 isolates obtained during the 2002-2011 cucurbit growing seasons. This analysis revealed very high levels of resistance to thiophanate-methyl (95%). By contrast, no resistance to bupirimate and quinoxyfen was found. Results suggest that thiophanate-methyl has become completely ineffective for controlling cucurbit powdery mildew in Spain. By contrast, bupirimate and quinoxyfen remain as very effective tools for cucurbit powdery mildew management. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  4. The cellulose synthase 3 (CesA3) gene of oomycetes: structure, phylogeny and influence on sensitivity to carboxylic acid amide (CAA) fungicides.

    PubMed

    Blum, Mathias; Gamper, Hannes A; Waldner, Maya; Sierotzki, Helge; Gisi, Ulrich

    2012-04-01

    Proper disease control is very important to minimize yield losses caused by oomycetes in many crops. Today, oomycete control is partially achieved by breeding for resistance, but mainly by application of single-site mode of action fungicides including the carboxylic acid amides (CAAs). Despite having mostly specific targets, fungicidal activity can differ even in species belonging to the same phylum but the underlying mechanisms are often poorly understood. In an attempt to elucidate the phylogenetic basis and underlying molecular mechanism of sensitivity and tolerance to CAAs, the cellulose synthase 3 (CesA3) gene was isolated and characterized, encoding the target site of this fungicide class. The CesA3 gene was present in all 25 species included in this study representing the orders Albuginales, Leptomitales, Peronosporales, Pythiales, Rhipidiales and Saprolegniales, and based on phylogenetic analyses, enabled good resolution of all the different taxonomic orders. Sensitivity assays using the CAA fungicide mandipropamid (MPD) demonstrated that only species belonging to the Peronosporales were inhibited by the fungicide. Molecular data provided evidence, that the observed difference in sensitivity to CAAs between Peronosporales and CAA tolerant species is most likely caused by an inherent amino acid configuration at position 1109 in CesA3 possibly affecting fungicide binding. The present study not only succeeded in linking CAA sensitivity of various oomycetes to the inherent CesA3 target site configuration, but could also relate it to the broader phylogenetic context. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Long-term effects of fungicides on leaf-associated microorganisms and shredder populations-an artificial stream study.

    PubMed

    Zubrod, Jochen P; Englert, Dominic; Wolfram, Jakob; Rosenfeldt, Ricki R; Feckler, Alexander; Bundschuh, Rebecca; Seitz, Frank; Konschak, Marco; Baudy, Patrick; Lüderwald, Simon; Fink, Patrick; Lorke, Andreas; Schulz, Ralf; Bundschuh, Mirco

    2017-08-01

    Leaf litter is a major source of carbon and energy for stream food webs, while both leaf-decomposing microorganisms and macroinvertebrate leaf shredders can be affected by fungicides. Despite the potential for season-long fungicide exposure for these organisms, however, such chronic exposures have not yet been considered. Using an artificial stream facility, effects of a chronic (lasting up to 8 wk) exposure to a mixture of 5 fungicides (sum concentration 20 μg/L) on leaf-associated microorganisms and the key leaf shredder Gammarus fossarum were therefore assessed. While bacterial density and microorganism-mediated leaf decomposition remained unaltered, fungicide exposure reduced fungal biomass (≤71%) on leaves from day 28 onward. Gammarids responded to the combined stress from consumption of fungicide-affected leaves and waterborne exposure with a reduced abundance (≤18%), which triggered reductions in final population biomass (18%) and in the number of precopula pairs (≤22%) but could not fully explain the decreased leaf consumption (19%), lipid content (≤43%; going along with an altered composition of fatty acids), and juvenile production (35%). In contrast, fine particulate organic matter production and stream respiration were unaffected. Our results imply that long-term exposure of leaf-associated fungi and shredders toward fungicides may result in detrimental implications in stream food webs and impairments of detrital material fluxes. These findings render it important to understand decomposer communities' long-term adaptational capabilities to ensure that functional integrity is safeguarded. Environ Toxicol Chem 2017;36:2178-2189. © 2017 SETAC. © 2017 SETAC.

  6. Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin.

    PubMed

    Christen, Verena; Crettaz, Pierre; Fent, Karl

    2014-09-15

    Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose-response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach. The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC25 and EC50. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Our evaluation provides an appropriate "proof of concept", but whether it equally translates to in vivo effects should further be investigated. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plant-pathogenic fungi.

    PubMed

    Kumar Tripathy, Manas; Weeraratne, Gayani; Clark, Greg; Roux, Stanley J

    2017-09-01

    A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide-potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  8. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity.

    PubMed

    Lv, Xuan; Pan, Liumeng; Wang, Jiaying; Lu, Liping; Yan, Weilin; Zhu, Yanye; Xu, Yiwen; Guo, Ming; Zhuang, Shulin

    2017-03-01

    Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC 50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC 50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R 2 between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The influence of fungicides on the growth of Trichoderma asperellum.

    PubMed

    De Schutter, B; Aerts, R; Rombouts, L

    2002-01-01

    Numbers of strains of Trichoderma asperellum are known as biological control agents of certain root pathogens of tomato (Lycopersicon esculentum). The restricted use of fungicides is sometimes useful in combination with these biological control agents. Therefore some experiments were conducted to evaluate the growth of T. asperellum in the presence of fungicides as Previcur (active substance propamocarb) and Sumico (with the active substance carbendazim and diethofencarb). The influence of these fungicides was first examined in laboratory conditions. The fungus was brought on a potato dextrose agar where the fungicides Previcur, Sumico and carbendazim were added in a concentration of 0.1x, 1x and 10x the recommended dose. The growth of T. asperellum was totally inhibited by the three Sumico and carbendazim concentrations. T. asperellum knew a small but significant decrease of growth when the 10x dose of Previcur was added. Afterwards the influence of these fungicides on the fungus was tested in field conditions in the greenhouse. The fungus was applied to the roots of the tomato plant, which was grown on a rockwool medium. Previcur and Sumico were submitted to the plants using the normal procedure. The results of the tests showed that in field conditions there was no effect of the fungicide treatment on the presence of the fungus, although the laboratory tests showed the opposite for Sumico. To explain this contradiction two other experiments were conducted to follow the migration of the Sumico after treatment. A residue analysis showed that the highest concentration of Sumico was detected in the rockwool medium, and some residues were found in the drain water and the stems. Even with a 100x recommended dose of Sumico the fungus was still present the day after the treatment.

  10. Using Epidemiological Principles to Explain Fungicide Resistance Management Tactics: Why do Mixtures Outperform Alternations?

    PubMed

    Elderfield, James A D; Lopez-Ruiz, Francisco J; van den Bosch, Frank; Cunniffe, Nik J

    2018-07-01

    Whether fungicide resistance management is optimized by spraying chemicals with different modes of action as a mixture (i.e., simultaneously) or in alternation (i.e., sequentially) has been studied by experimenters and modelers for decades. However, results have been inconclusive. We use previously parameterized and validated mathematical models of wheat Septoria leaf blotch and grapevine powdery mildew to test which tactic provides better resistance management, using the total yield before resistance causes disease control to become economically ineffective ("lifetime yield") to measure effectiveness. We focus on tactics involving the combination of a low-risk and a high-risk fungicide, and the case in which resistance to the high-risk chemical is complete (i.e., in which there is no partial resistance). Lifetime yield is then optimized by spraying as much low-risk fungicide as is permitted, combined with slightly more high-risk fungicide than needed for acceptable initial disease control, applying these fungicides as a mixture. That mixture rather than alternation gives better performance is invariant to model parameterization and structure, as well as the pathosystem in question. However, if comparison focuses on other metrics, e.g., lifetime yield at full label dose, either mixture or alternation can be optimal. Our work shows how epidemiological principles can explain the evolution of fungicide resistance, and also highlights a theoretical framework to address the question of whether mixture or alternation provides better resistance management. It also demonstrates that precisely how spray tactics are compared must be given careful consideration. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  11. The Synergistic Effects of Almond Protection Fungicides on Honey Bee (Hymenoptera: Apidae) Forager Survival.

    PubMed

    Fisher, Adrian; Coleman, Chet; Hoffmann, Clint; Fritz, Brad; Rangel, Juliana

    2017-06-01

    The honey bee (Apis mellifera L.) contributes ∼$17 billion annually to the United States economy, primarily by pollinating major agricultural crops including almond, which is completely dependent on honey bee pollination for nut set. Almond growers face constant challenges to crop productivity owing to pests and pathogens, which are often controlled with a multitude of agrochemicals. For example, fungicides are often applied in combination with other products to control fungal pathogens during almond bloom. However, the effects of fungicides on honey bee health have been so far understudied. To assess the effects of some of the top fungicides used during the 2012 California almond bloom on honey bee forager mortality, we collected foragers from a local apiary and exposed them to fungicides (alone and in various combinations) at the label dose, or at doses ranging from 0.25 to 2 times the label dose rate. These fungicides were Iprodione 2SE Select, Pristine, and Quadris. We utilized a wind tunnel and atomizer set up with a wind speed of 2.9 m/s to simulate field-relevant exposure of honey bees to these agrochemicals during aerial application in almond fields. Groups of 40-50 foragers exposed to either untreated controls or fungicide-laden treatments were monitored daily over a 10-d period. Our results showed a significant decrease in forager survival resulting from exposure to simulated tank mixes of Iprodione 2SE Select, as well as synergistic detrimental effects of Iprodione 2SE Select in combination with Pristine and Quadris on forager survival. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics.

    PubMed

    Sevastos, A; Kalampokis, I F; Panagiotopoulou, A; Pelecanou, M; Aliferis, K A

    2018-06-01

    Fungal metabolomics is a field of high potential but yet largely unexploited. Focusing on plant-pathogenic fungi, no metabolomics studies exist on their resistance to fungicides, which represents a major issue that the agrochemical and agricultural sectors are facing. Fungal infections cause quantitative, but also qualitative yield losses, especially in the case of mycotoxin-producing species. The aim of the study was to correlate metabolic changes in Fusarium graminearum strains' metabolomes with their carbendazim-resistant level and discover corresponding metabolites-biomarkers, with primary focus on its primary metabolism. For this purpose, comparative 1 H NMR metabolomics was applied to a wild-type and four carbendazim-resistant Fusarium graminearum strains following or not exposure to the fungicide. Results showed an excellent discrimination between the strains based on their carbendazim-resistance following exposure to low concentration of the fungicide (2 mg L -1 ). Both genotype and fungicide treatments had a major impact on fungal metabolism. Among the signatory metabolites, a positive correlation was discovered between the content of F. graminearum strains in amino acids of the aromatic and pyruvate families, l-glutamate, l-proline, l-serine, pyroglutamate, and succinate and their carbendazim-resistance level. In contrary, their content in l-glutamine and l-threonine, had a negative correlation. Many of these metabolites play important roles in fungal physiology and responses to stresses. This work represents a proof-of-concept of the applicability of 1 H NMR metabolomics for high-throughput screening of fungal mutations leading to fungicide resistance, and the study of its biochemical basis, focusing on the involvement of primary metabolism. Results could be further exploited in programs of resistance monitoring, genetic engineering, and crop protection for combating fungal resistance to fungicides. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Positive effects of an oil adjuvant on efficacy, dissipation and safety of pyrimethanil and boscalid on greenhouse strawberry.

    PubMed

    Wang, Zhiwei; Wang, Xinquan; Cang, Tao; Zhao, Xueping; Wu, Shenggan; Qi, Peipei; Wang, Xiangyun; Xu, Xiahong; Wang, Qiang

    2018-05-21

    Methylated vegetable oil adjuvants can enhance initial deposition and decrease the required dosages of pesticides sprayed on plants, so an oil adjuvant mixed with fungicides were used to prevent and control gray mold in greenhouse strawberry. As the persistence and dietary exposure risks from fungicides on strawberries after using adjuvants have not been assessed, the efficacy, dissipation and safety of pyrimethanil and boscalid in the presence and absence of a methylated vegetable oil adjuvant were evaluated. To better describe the actual use of fungicides in greenhouse strawberry, twice repeated application of fungicides were conducted follower by an optimized QuEChERS pre-treatment method. When applied at 60% of their recommended dosages with the adjuvant, the efficacy of pyrimethanil and boscalid for gray mold was similar to that shown by the treatment of 100% fungicides in absence of the adjuvant based on Duncan's Multiple-Range test, and their average residues increased to 89.0% and 89.3%, respectively. The adjuvant enhanced the accumulation effect of pyrimethanil residue by 31.7% after repeated applications, and the half-lives were similar (5.2 and 4.2 d). The adjuvant had comparable accumulation effects (1.75 and 1.83) and similar half-lives (5.4 and 5.5 d) for boscalid. In absence of adjuvant, the risk quotients (RQs) of pyrimethanil (0.41 and 0.33) and boscalid (0.49 and 0.63) after twice applications at pre-harvest interval were lower than 1. Adding the methylated vegetable oil adjuvant to fungicides would result in unprolonging half-life and acceptably low dietary exposure risk on strawberries, but lower dosage of fungicides were used. Copyright © 2018. Published by Elsevier Inc.

  14. Potential of Cerbera odollam as a bio-fungicide for post-harvest pathogen Penicilium digitatum

    NASA Astrophysics Data System (ADS)

    Singh, Harbant; Yin-Chu, Sue; Al-Samarrai, Ghassan; Syarhabil, Muhammad

    2015-05-01

    Postharvest diseases due to fungal infection contribute to economic losses in agriculture industry during storage, transportation or in the market. Penicillium digitatum is one of the common pathogen responsible for the postharvest rot in fruits. This disease is currently being controlled by synthetic fungicides such as Guazatine and Imazalil. However, heavy use of fungicides has resulted in environmental pollution, such as residue in fruit that expose a significant risk to human health. Therefore, there is a strong need to develop alternatives to synthetic fungicide to raise customer confidence. In the current research, different concentrations (500 to 3000 ppm) of ethanol extract of Cerbera odollam or commonly known as Pong-pong were compared with Neem and the controls (Positive control/Guazatine; Negative control/DMSO) for the anti-fungicide activity in PDA media contained in 10 cm diameter Petri dishes, using a modification of Ruch and Worf's method. The toxicity (Lc50) of the C.odollam extract was determined by Brine-shrimp test (BST). The results of the research indicated that crude extraction from C.odollam showed the highest inhibition rate (93%) and smallest colony diameter (0.63 cm) at 3000 ppm in vitro compared with Neem (inhibition rate: 88%; colony diameter: 1.33 cm) and control (Positive control/Guazatine inhibition rate: 79%, colony diameter: 1.9 cm; Negative control/DMSO inhibition rate: 0%, colony diameter: 9.2 cm). C.odollam recorded Lc50 value of 5 µg/ml which is safe but to be used with caution (unsafe level: below 2 µg/ml). The above anti-microbial activity and toxicity value results indicate that C.odollam has a potential of being a future bio-fungicide that could be employed as an alternative to synthetic fungicide.

  15. Characterization of the inhibitory effect of voriconazole on the fungicidal activity of amphotericin B against Candida albicans in an in vitro kinetic model.

    PubMed

    Lignell, Anders; Löwdin, Elisabeth; Cars, Otto; Sjölin, Jan

    2008-07-01

    The aim of the present investigation was to study and characterize the effect of voriconazole on the fungicidal activity of amphotericin B. Four strains of Candida albicans susceptible to voriconazole were exposed to voriconazole and amphotericin B, either alone, simultaneously or sequentially in an in vitro kinetic model. Bolus doses resulting in voriconazole and amphotericin B concentrations of 0.005-5 and 2.5 mg/L, respectively, were administered. Antifungal-containing RPMI 1640 was eliminated and replaced by a fresh medium using a peristaltic pump, with a flow rate adjusted to obtain the desired half-lives. With two drugs tested, a computer-controlled dosing pump compensated for differences in the elimination rates. Using static time-kill methodology, one C. albicans strain was exposed to 5 mg/L voriconazole for varying durations followed by 2.5 mg/L amphotericin B after three repeated washes of voriconazole. Voriconazole and amphotericin B treatment alone resulted in fungistatic and fungicidal activities, respectively. Simultaneous administration of voriconazole and amphotericin B resulted in fungicidal activity, whereas only fungistatic activity was observed when repeated doses of amphotericin B were administered sequentially after voriconazole at 24-96 h. The inhibition of the fungicidal activity of amphotericin B was voriconazole dose-dependent, but seemed to be recovered once the voriconazole concentration fell below the MIC. The fungicidal activity was quickly regained after the removal of voriconazole, irrespective of the duration of voriconazole pre-exposure. Voriconazole inhibited the fungicidal effect of sequentially administered amphotericin B in a concentration- and time-dependent manner; the clinical significance of this needs further investigation.

  16. Effects of endomycorrhizal infection, artificial herbivory, and parental cross on growth of Lotus corniculatus L.

    PubMed

    Borowicz, V A; Fitter, A H

    1990-03-01

    We examined how combinations of parentage, fungicide application, and artificial herbivory influence growth and shoot phosphorus content in pre-reproductive Lotus corniculatus, using young offspring arising from three parental crosses, two of which had one parent in common. Soil with vesicular-arbuscular mycorrhizal (VAM) fungi was treated with either water or benomyl, an anti-VAM fungicide, and added to trays containing groups of four full siblings. There were two experiments; in the first no plants were clipped while in the second two of the four plants were clipped to simulate herbivory. In both experiments plants of the two related crosses accumulated more biomass and total shoot P than did plants of the third cross. Plants inoculated with watertreated soil had greater shoot mass and P concentration than did fungicide-treated replicates but the extent of increase in P concentration varied among crosses. In Experiment 2, clipping reduced root mass and resulted in higher shoot P concentration. In this experiment there was a significant interaction of fungicide application and clipping: both unclipped and clipped plants grew better in soil not treated with fungicide, but the increase in shoot mass, total mass, and total P was greater in unclipped plants. Significant interaction of fungicide treatment and clipping is most likely due to reduced availability of carbon to the roots of clipped plants, resulting in poorer symbiotic functioning.

  17. Within- and between-orchard variability in the sensitivity of Venturia inaequalis to myclobutanil, a DMI fungicide, in the UK.

    PubMed

    Gao, Liqiang; Berrie, Angela; Yang, Jiarong; Xu, Xiangming

    2009-11-01

    Myclobutanil, a demethylation inhibitor (DMI) fungicide, is an important fungicide for controlling apple scab and powdery mildew. Overuse of this fungicide has led to establishment of scab isolates with reduced sensitivity to this fungicide in several countries. Experiments were conducted to determine the sensitivity of the causal agent of apple scab, Venturia inaequalis (Cooke) Winter, to myclobutanil in the UK, in order to assess whether there is a relationship between fungal insensitivity and the number of DMI applications, and establishing whether fungal sensitivity varied greatly within an orchard. Reduced sensitivity of V. inaequalis to myclobutanil was positively related linearly to the number of DMI applications. ED(50) values ranged from 0.028 to 1.017 mg L(-1) (average = 0.292) for the baseline population, whereas isolates from two other orchards had much greater ED(50) values, ranging from 0.085 to 5.213 mg L(-1) (average = 1.852). There was significant variation in fungal sensitivity to myclobutanil among fungal isolates from different locations within a single orchard. Spatial spread of insensitive isolates of V. inaequalis to myclobutanil is likely to be limited in distance. Conidia may be an important source of primary inoculum. Myclobutanil should still be effective for most field isolates, but its use should be strategically integrated with other groups of fungicides. (c) 2009 Society of Chemical Industry.

  18. Environmental behavior of benalaxyl and furalaxyl enantiomers in agricultural soils.

    PubMed

    Qin, Fang; Gao, Yong X; Guo, Bao Y; Xu, Peng; Li, Jian Z; Wang, Hui L

    2014-01-01

    The enantioselective environmental behavior of the chiral fungicides benalaxy and furalaxyl in agricultural soils in China was studied. Although sorption onto soils was non-enantioselective, the leaching of benalaxy and furalaxyl was enantioselective in soil columns. The concentrations of the S-enantiomers of both fungicides in the leachates were higher than the R-enantiomers. This can be attributed to enantioselective degradation of the two fungicides in the soil column. Enantioselective degradation of the two fungicides was verified by soil dissipation experiments, and the R-enantiomers degraded faster than the S-enantiomers in partial soils. The half-life was 27.7-57.8 days for S-benalaxyl, 20.4-53.3 days for R-benalaxyl, 19.3-49.5 days for S-furalaxyl and 11.4-34.7 days for R-furalaxyl. The degradation process of the two fungicide enantiomers followed the first-order kinetics (R(2) > 0.96). Compared to furalaxyl, benalaxyl degraded more slowly and degradation was less enantioselective. These results are attributed to the influence of soil physicochemical properties, soil microorganisms, and environmental factors.

  19. Fungi and bacteria. [fungicide and bactericide measures for spacecraft in tropical regions

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    Spacecraft equipment is usually protected from fungi and bacteria by incorporating a fungicide-bactericide in the material, by a fungicide-bactericide spray, or by reducing the relative humidity to a degree where growth will not take place. A unique method to protect delicate, expensive bearings in equipment was to maintain a pressure (with dry air or nitrogen) slightly above the outside atmosphere (few millibars) within the working parts of the equipment, thus preventing fungi from entering equipment.

  20. 75 FR 28077 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... for Herbicides, Insecticides, and Fungicides, under Product Service Code (PSC) 6840, under North... Nonmanufacturer Rule for Herbicides, Insecticides, and Fungicides, under PSC 6840, under NAICS code 325120...

  1. Assessment of ABCG2-mediated transport of pesticides across the rabbit placenta barrier using a novel MDCKII in vitro model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halwachs, Sandra

    In humans, the ATP-binding cassette efflux transporter ABCG2 contributes to the fetoprotective barrier function of the placenta, potentially limiting the toxicity of transporter substrates to the fetus. During testing of chemicals including pesticides, developmental toxicity studies are performed in rabbit. Despite its toxicological relevance, ABCG2-mediated transport of pesticides in rabbit placenta has not been yet elucidated. We therefore generated polarized MDCK II cells expressing the ABCG2 transporter from rabbit placenta (rbABCG2) and evaluated interaction of the efflux transporter with selected insecticides, fungicides, and herbicides. The Hoechst H33342 accumulation assay indicated that 13 widely used pesticidal active substances including azoxystrobin, carbendazim,more » chlorpyrifos, chlormequat, diflufenican, dimethoate, dimethomorph, dithianon, ioxynil, methiocarb, propamocarb, rimsulfuron and toclofos-methyl may be rbABCG2 inhibitors and/or substrates. No such evidence was obtained for chlorpyrifos-methyl, epoxiconazole, glyphosate, imazalil and thiacloprid. Moreover, chlorpyrifos (CPF), dimethomorph, tolclofos-methyl and rimsulfuron showed concentration-dependent inhibition of H33342 excretion in rbABCG2-transduced MDCKII cells. To further evaluate the role of rbABCG2 in pesticide transport across the placenta barrier, we generated polarized MDCKII-rbABCG2 monolayers. Confocal microscopy confirmed correct localization of rbABCG2 protein in the apical plasma membrane. In transepithelial flux studies, we showed the time-dependent preferential basolateral to apical (B > A) directed transport of [{sup 14}C] CPF across polarized MDCKII-rbABCG2 monolayers which was significantly inhibited by the ABCG2 inhibitor fumitremorgin C (FTC). Using this novel in vitro cell culture model, we altogether showed functional secretory activity of the ABCG2 transporter from rabbit placenta and identified several pesticides like the insecticide CPF as potential rbABCG2 substrates. - Highlights: • Generation of MDCKII-rbABCG2 monolayers with epithelial barrier function • Detection of rbABCG2 in the apical plasma membrane of polarized MDCKII cells • Several pesticides interact with the ABCG2 transporter from rabbit placenta. • rbABCG2 mediates transport of the insecticide chlorpyrifos. • MDCKII-rbABCG2 cells are a suitable model to study transport in rabbit placenta.« less

  2. Import risk analysis of fruit from Spain to Italy.

    PubMed

    Pani, G; Molinu, M G; Venditti, T; Dore, A; Ladu, G; D'Hallewin, G

    2012-01-01

    The International trade has to ensure food security and preserve both human health and the diffusion of animal and plant diseases among different countries. While organic horticultural production and trade are regulated by global guidelines, no specific restrictions relay to conventional commodities and almost free import-export occurs among UE countries. Consequently, the safety characteristics of imported fresh crops have become an important issue. On the basis of these considerations, the aim of the present study is to monitor the epiphytic microflora (particularly yeasts and fungi) carried by fresh fruit, imported from Spain to Italy. Particular attention was given to pathogenic microrganisms and to natural antagonists. In addition, the resistance to a few postharvest fungicides was determined for the isolated strains and compared to the local ones. Apples, Citrus fruits, stone fruits, and persimmon fruit were sampled at arrival of the container from Spain at the wholesale market in Sassari (Italy), this to prevent fruit contamination by local strains of microrganisms. The isolation was performed by rinsing and shaking (30 min at 100 rpm) the fruit in a beaker with 500 mL of sterile water. After concentration (7.5 mL), 100 microl of the rinse water was plated on potato dextrose agar (PDA). Isolation of pure colonies was performed by multiple streaking on plates, until unicellular cultures were obtained. Fifty three microrganisms, mainly fungi and yeasts, have been isolated and assayed in vitro and in vivo. Pathogenic behavior of isolated fungi was tested on fruits artificially wounded and only 7 strains out of 18 isolates caused decay. The resistance to different concentrations of imazalil (IMZ), tiabendazolo and azoxystrobin were tested in vitro for the pathogenic isolates. All isolates were completely inhibited with 1000 ppm IMZ evidencing that no resistant strains were present on the imported fruit. Since the baseline resistance, found for all isolates, was similar to the indigenous strains, we may conclude from this risk analysis that the import of the studied fruits produced in the 4 geographical areas of Spain does not increase the local baseline resistance.

  3. Screening fungicides for use in fish culture: Evaluation of the agar plug transfer, cellophane transfer, and agar dilution methods

    USGS Publications Warehouse

    Bailey, Tom A.

    1983-01-01

    The reliability, reproducibility, and usefulness of three screening methods -- the cellophane transfer, the agar plug transfer, and the agar dilution -- to screen aquatic fungicides were evaluated. Achlya flagellata and Saprolegnia hypogyna were exposed to 1, 10, and 100 mg/L of malachite green to test each method. The cellophane transfer and agar plug transfer techniques had similar reliability and reproducibility in rating fungicidal activity, and were both superior to the agar dilution technique. The agar plug transfer and agar dilution techniques adequately projected in vivo activity of malachite green, but the cellophane transfer technique overestimated its activity. Overall, the agar plug transfer technique most accurately rated the activity of malachite green and was the easiest test to perform. It therefore appears to be the method of choice for testing aquatic fungicides.

  4. Identification of the Fungal Pathogen that Causes Strawberry Anthracnose in Bangladesh and Evaluation of In Vitro Fungicide Activity

    PubMed Central

    Akhter, Md. Shamim; Alam, Shahidul; Islam, Md. Shafiqul

    2009-01-01

    This study was conducted to identify the Colletotrichum species causing anthracnose disease of strawberry in Balgladesh and to evaluate in vitro activity of commercial fungicides it. Based on morphological and cultural characteristics, all 22 isolates were identified as Colletotrichum gloeosporioides. They developed white or glittery colonies with grey to dark grey reverse colony colors and they produced cylindrical conidia. The efficacy of five commercial fungicides, Bavistin DF, Dithane M-45, Sulcox 50 WP, Corzim 50 WP and Rovral 50 WP, were tested against the fungus. Bavistin inhibited radial growth completely and was followed in efficacy by Dithane M-45. In Bavistin DF treated media, the fungus did not produce conidia. The percent inhibition of radial growth of the fungus was increased with the increasing concentrations of fungicide. PMID:23983513

  5. Nanosulfur: A Potent Fungicide Against Food Pathogen, Aspergillus niger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Samrat Roy; Goswami, Arunava; Nair, Kishore K.

    2010-10-04

    Elemental sulfur (S{sup 0}), man's oldest eco-friendly fungicide for curing fungal infections in plants and animals, is registered in India as a non-systemic and contact fungicide. However due to its high volume requirement, Indian agrochemical industry and farmers could not effectively use this product till date. We hypothesize that intelligent nanoscience applications might increase the visibility of nanosulfur in Indian agriculture as a potent and eco-safe fungicide. Sulfur nanoparticles (NPs) were synthesized bottom-up via a liquid synthesis method with average particle size in the range of 50-80 nm and the shapes of the NPs were spherical. A comparative study ofmore » elemental and nano-sulfur produced has been tested against facultative fungal food pathogen, Aspergillus niger. Results showed that nanosulfur is more efficacious than its elemental form.« less

  6. Non-omnia moriantur-toxicity of mancozeb on dead wood microarthropod fauna.

    PubMed

    Adamski, Zbigniew; Bloszyk, Jerzy; Bruin, Jan; Ziemnicki, Kazimierz

    2007-01-01

    The effect of Dithane M-45 (dithiocarbamate fungicide; active substance: mancozeb) was studied on microarthropod fauna inhabiting dead wood. Although the exposure was almost never 100% lethal for the majority of observed taxa, almost all (Mesostigmata, Oribatida, some Uropodina, Actinedida, Collembola and Diplopoda) showed very high correlation between concentration of the fungicide and mortality (r > 0.86). Only Stigmaeidae showed low correlation (r = 0.293). For the majority of taxa LC(50 )values were close to the concentrations used during agrochemical activities in woods. Only Trachytes aegrota showed full susceptibility to the fungicide within the range of recommended field concentrations used in forestry (characterised by the low LC(95 )value). Tolerance of mesostigmatid and oribatid mites was found to differ between juveniles and adults, but not consistently. Related Uropodina species varied in susceptibility to the fungicide.

  7. Determination of triazole fungicides in environmental water samples by high performance liquid chromatography with cloud point extraction using polyethylene glycol 600 monooleate.

    PubMed

    Tang, Tao; Qian, Kun; Shi, Tianyu; Wang, Fang; Li, Jianqiang; Cao, Yongsong

    2010-11-08

    A preconcentration technique known as cloud point extraction was developed for the determination of trace levels of triazole fungicides tricyclazole, triadimefon, tebuconazole and diniconazole in environmental waters. The triazole fungicides were extracted and preconcentrated using polyethylene glycol 600 monooleate (PEG600MO) as a low toxic and environmentally benign nonionic surfactant, and determined by high performance liquid chromatography/ultraviolet detection (HPLC-UV). The extraction conditions were optimized for the four triazole fungicides as follows: 2.0 wt% PEG600MO, 2.5 wt% Na(2)SO(4), equilibration at 45°C for 10 min, and centrifugation at 2000 rpm (533 × g) for 5 min. The triazole fungicides were well separated on a reversed-phase kromasil ODS C(18) column (250 mm × 4.6 mm, 5 μm) with gradient elution at ambient temperature and detected at 225 nm. The calibration range was 0.05-20 μg L(-1) for tricyclazole and 0.5-20 μg L(-1) for the other three classes of analytes with the correlation coefficients over 0.9992. Preconcentration factors were higher than 60-fold for the four selected fungicides. The limits of detection were 6.8-34.5 ng L(-1) (S/N=3) and the recoveries were 82.0-96.0% with the relative standard deviations of 2.8-7.8%. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. In vitro antifungal efficacy of ciclopirox olamine alone and associated with zinc pyrithione compared to ketoconazole against Malassezia globosa and Malassezia restricta reference strains.

    PubMed

    Roques, Christine; Brousse, Sabine; Panizzutti, Cédric

    2006-12-01

    The aim of this study was to determine the in vitro fungicidal and growth inhibitory activity of ciclopirox olamine alone (1% and 1.5%) or in association with 1% zinc pyrithione compared to 2% ketoconazole, against Malassezia species particularly involved in the pathogenesis of seborrheic dermatitis. Experiments were performed on Malassezia globosa IP 2387.96 and M. restricta IP 2392.96 strains. Growth inhibitory activity of the active compounds in solution was evaluated by measuring minimal inhibitory concentrations using a broth micro-method and their fungicidal activity by a filtration method after contact times between solutions and yeasts ranging from 3-5 to 30 min. Concerning the determination of minimal inhibitory concentration of ciclopirox olamine/zinc pyrithione, it revealed the marked synergistic inhibitory effect of the association, leading to a higher efficacy compared to ketoconazole. As to the fungicidal activity of ciclopirox olamine, it significantly increased with the contact time. After 15-30 min of contact between 1.5% ciclopirox olamine and Malassezia strains, a 2-log reduction of Malassezia counts was observed. The 1.5% ciclopirox olamine/1% zinc pyrithione association was characterized by a steady fungicidal efficacy whereas the 2% ketoconazole solution did not express any fungicidal effect. In conclusion, this study demonstrates the in vitro inhibitory and fungicidal efficacy of the ciclopirox olamine/zinc pyrithione association against Malassezia species and underscores its potential interest in the treatment of seborrheic dermatitis.

  9. Effects of fungicides on the yeast-like symbiotes and their host, Nilaparvata lugens Stål (Hemiptera: Delphacidae).

    PubMed

    Shentu, Xu-Ping; Li, Dan-Ting; Xu, Jian-Feng; She, Liang; Yu, Xiao-Ping

    2016-03-01

    Yeast-like symbiotes (YLS) are endosymbionts that are closely related to the growth, development and reproduction of their host, the brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae). In order to understand the relationship between the population of YLS in BPH cells and the survival rate of BPH, eight different fungicides were applied to rice plants infested by BPH, and the number of YLS and mortality of BPH were determined. Three of the fungicides, 27% toyocamycin & tetramycin P & tetrin B & tetramycin A, 0.01% trichodermin, and 75% trifloxystrobin & tebuconazole WG, were found to significantly reduce the number of YLS in BPH, subsequently causing a high mortality of BPH. The three fungicides were each mixed with a commonly used insecticide-imidacloprid, and the fungicide/insecticide mixtures could cause a marked reduction in YLS number in BPH, resulting in a significantly higher mortality of BPH than did the imidacloprid alone. The mixture of 27% toyocamycin & tetramycin P & tetrin B & tetramycin A with imidacloprid showed the best inhibitory effect on BPH population. Our study demonstrated a high dependence of the BPH survival rate on the number of YLS harbored in BPH fat-body cells. It implies that using specific fungicides as an additive to imidacloprid for controlling BPH could be a novel way to enhance the efficacy of insecticide, minimizing the use of imidacloprid in paddy fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Bioremediation of fungicides by spent mushroom substrate and its associated microflora.

    PubMed

    Ahlawat, O P; Gupta, Pardeep; Kumar, Satish; Sharma, D K; Ahlawat, K

    2010-10-01

    Experiments were conducted both under in vitro and in situ conditions to determine the biodegradation potential of button mushroom spent substrate (SMS) and its dominating microbes (fungi and bacteria) for carbendazim and mancozeb, the commonly used agricultural fungicides. During 6 days of incubation at 30 ± 2°C under broth culture conditions, highest degradation of carbendazim (17.45%) was recorded with B-1 bacterial isolate, while highest degradation of mancozeb (18.05%) was recorded with Trichoderma sp. In fungicide pre-mixed sterilized SMS, highest degradation of carbendazim (100.00-66.50 μg g(-1)) was recorded with mixed inoculum of Trichoderma sp. and Aspergillus sp., whereas highest degradation of mancozeb (100.00-50.50 μg g(-1)) was with mixed inoculum of Trichoderma sp., Aspergillus sp. and B-I bacterial isolate in 15 days of incubation at 30 ± 2°C. All these microbes both individually as well as in different combinations grew well and produced extracellular lignolytic enzymes on SMS, which helped in fungicides degradation. Under in situ conditions, among three different proportions of SMS (10, 20 and 30%, w/w) mixed with fungicide pre-mixed soil (100 μg g(-1) of soil), the degradation of carbendazim was highest in 30% SMS treatment, while for mancozeb it was in 20% SMS treatment. The residue levels of both fungicides decreased to half of their initial concentration after 1 month of SMS mixing.

  11. Influence of soil pathogens on early regeneration success of tropical trees varies between forest edge and interior.

    PubMed

    Krishnadas, Meghna; Comita, Liza S

    2018-01-01

    Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.

  12. Fungicidal efficiency of electrolyzed oxidizing water on Candida albicans and its biochemical mechanism.

    PubMed

    Zeng, Xinping; Ye, Guoqing; Tang, Wenwei; Ouyang, Ting; Tian, Lin; Ni, Yaming; Li, Ping

    2011-07-01

    The fungicidal influencing factors of electrolyzed oxidizing water (EOW) on Candida albicans were investigated by suspension quantitative germicidal tests. Results showed that EOW possessed predominant fungicidal rate on C. albican, as high as consumately 100% after 0.5min duration of 65.5mg/L active available chlorine concentration (ACC). The fungicidal effect was promoted proportionally along with ACC but was inhibited by organic interferential bovine serum albumin (BSA). The fungicidal mechanism was also investigated at a biological molecular level by detecting series of biochemical indices. Fluorescent microscopy showed that almost all C. albicans cells were stained red in 1min, suggesting that cell membrane was one of EOW's action targets. Transmission electron microscopy (TEM) showed that EOW destroyed the cellular protective barriers and imposed some damage upon the nucleus area, which verified EOW's effects on microbial ultra-structures. EOW improved membrane permeabilities with the result that the leakages of cellular inclusions (K(+), proteins and DNA) and the conductivity increased rapidly. The dehydrogenase relative activities of C. albicans decreased by 44.0% after 10min, indicating that EOW also had a destructive effect on cellular dehydrogenase. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Reaction kinetics and mechanisms of organosilicon fungicide flusilazole with sulfate and hydroxyl radicals.

    PubMed

    Mercado, D Fabio; Bracco, Larisa L B; Arques, Antonio; Gonzalez, Mónica C; Caregnato, Paula

    2018-01-01

    Flusilazole is an organosilane fungicide used for treatments in agriculture and horticulture for control of diseases. The reaction kinetics and mechanism of flusilazole with sulfate and hydroxyl radicals were studied. The rate constant of the radicals with the fungicide were determined by laser flash photolysis of peroxodisulfate and hydrogen peroxide. The results were 2.0 × 10 9 s -1 M -1 for the reaction of the fungicide with HO and 4.6 × 10 8  s -1  M -1 for the same reaction with SO 4 - radicals. The absorption spectra of organic intermediates detected by laser flash photolysis of S 2 O 8 2- with flusilazole, were identified as α-aminoalkyl and siloxyl radicals and agree very well with those estimated employing the time-dependent density functional theory with explicit account for bulk solvent effects. In the continuous photolysis experiments, performed by photo-Fenton reaction of the fungicide, the main degradation products were: (bis(4-fluorophenyl)-hydroxy-methylsilane) and the non-toxic silicic acid, diethyl bis(trimethylsilyl) ester, in ten and twenty minutes of reaction, respectively. Copyright © 2017. Published by Elsevier Ltd.

  14. A long term field study of the effect of fungicides penconazole and sulfur on yeasts in the vineyard.

    PubMed

    Cordero-Bueso, Gustavo; Arroyo, Teresa; Valero, Eva

    2014-10-17

    This research deals with how two fungicide treatments against powdery mildew, penconazole as a systematic fungicide and sulfur as an inorganic broad-spectrum fungicide, affect the diversity and density of wine yeasts associated with grape berry surfaces and subsequent spontaneous fermentations. Unlike other studies in this area, this work aims to evaluate this effect on the population dynamics in the environment, the conditions of which are not reproducible in the laboratory. A long term (three year) sampling plan was thus devised. A minimum inhibitory concentration assay was also carried out in the laboratory in order to prove the influence of these antifungals on yeast populations. While both antifungal treatments (penconazole and sulfur) were similarly effective against powdery mildew, each had a very different effect on yeast populations. Penconazole showed the most negative effect on biodiversity in the vineyard and was the fungicide to which the isolated yeasts showed the greatest sensitivity. This study therefore evidences the suitability of treatment with sulfur, in both conventional and organic viticulture, to preserve the yeast population associated with grape berries, in particular the Saccharomyces cerevisiae species. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. 76 FR 27317 - Ziram, Diquat Dibromide, and Chloropicrin; Order for Amendments To Terminate Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    .... 45728-12 Ziram Granuflo Ziram Blackberries. Fungicide. 58266-2 Tri-Clor Fumigant..... Chloropicrin... using handheld fumigation devices. 70506-173 Ziram 76DF Fungicide.. Ziram Blackberries. 82542-15 Solear...

  16. CHARACTERIZING THE CONFORMATIONAL AND ELECTRONIC PROPERTIES OF CONAZOLE FUNGICIDES

    EPA Science Inventory

    Conazole fungicides have important environmental and human health considerations including chemical reactivity and transformation pathways. The electronic and conformational properties of an organic molecule determines in conjunction with solvent properties, its chemical reacti...

  17. Leaching of two fungicides in spent mushroom substrate amended soil: Influence of amendment rate, fungicide ageing and flow condition.

    PubMed

    Álvarez-Martín, Alba; Sánchez-Martín, María J; Ordax, José M; Marín-Benito, Jesús M; Sonia Rodríguez-Cruz, M

    2017-04-15

    A study has been conducted on the leaching of two fungicides, tebuconazole and cymoxanil, in a soil amended with spent mushroom substrate (SMS), with an evaluation of how different factors influence this process. The objective was based on the potential use of SMS as a biosorbent for immobilizing pesticides in vulnerable soils, and the need to know how it could affect the subsequent transport of these retained compounds. Breakthrough curves (BTCs) for 14 C-fungicides, non-incubated and incubated over 30days, were obtained in columns packed with an unamended soil (S), and this soil amended with SMS at rates of 5% (S+SMS5) and 50% (S+SMS50) under saturated and saturated-unsaturated flows. The highest leaching of tebuconazole (>50% of the total 14 C added) was found in S when a saturated water flow was applied to the column, but the percentage of leached fungicide decreased when a saturated-unsaturated flow was applied in both SMS-amended soils. Also a significant decrease in leaching was observed for tebuconazole after incubation in the column, especially in S+SMS50 when both flows were applied. Furthermore, cymoxanil leaching was complete in S and S+SMS when a saturated flow was applied, and maximum peak concentrations were reached at 1pore volume (PV), although BTCs showed peaks with lower concentrations in S+SMS. The amounts of cymoxanil retained only increased in S+SMS when a saturated-unsaturated flow was applied. A more relevant effect of SMS for reducing the leaching of fungicide was observed when cymoxanil was previously incubated in the column, although mineralization was enhanced in this case. These results are of interest for extending SMS application on the control of the leaching of fungicides with different physicochemical characteristics after different ageing times in the soil and water flow conditions applied. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera)

    PubMed Central

    Johnson, Reed M.; Dahlgren, Lizette; Siegfried, Blair D.; Ellis, Marion D.

    2013-01-01

    Background Chemical analysis shows that honey bees (Apis mellifera) and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. Methodology/Principal Findings Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17) while amitraz toxicity was mostly unchanged (1 of 15). The sterol biosynthesis inhibiting (SBI) fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. Conclusions/Significance Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication appears to play an important role. Evidence of non-transivity, year-to-year variation and induction of detoxication enzymes indicates that pesticide interactions in bees may be as complex as drug interactions in mammals. PMID:23382869

  19. Distributions of Sensitivities to Three Sterol Demethylation Inhibitor Fungicides Among Populations of Uncinula necator Sensitive and Resistant to Triadimefon.

    PubMed

    Erickson, E O; Wilcox, W F

    1997-08-01

    ABSTRACT Single-conidial isolates of Uncinula necator from (i) a population representing two vineyards with no previous exposure to sterol demethylation inhibitor (DMI) fungicides ("unexposed," n = 77) and (ii) a population representing two vineyards in which powdery mildew was poorly controlled by triadimefon after prolonged DMI use ("selected," n = 82) were assayed to determine distributions of sensitivities to the DMI fungicides triadimenol (the active form of triadimefon), myclobutanil, and fenarimol. Median 50% effective dose (ED(50)) values (micrograms per milliliter) in the selected versus unexposed populations were 0.06 versus 1.9 for triadimenol, 0.03 versus 0.23 for myclobutanil, and 0.03 versus 0.07 for fenarimol, respectively. Isolates were grouped into sensitivity classes according to their ED(50) values, and those from the selected population were categorized as resistant if the frequency of their sensitivity class had increased significantly relative to levels found in the unexposed population (ED(50) values exceeding 0.56, 0.18, and 0.18 mug/ml for triadimenol, myclobutanil, and fenarimol, respectively). Of the 76 isolates defined as resistant to triadimenol, 64% were classified as cross-resistant to myclobutanil, 18% were classified as cross-resistant to fenarimol, and 17% were classified as resistant to all three fungicides; 25% of the isolates classified as resistant to myclobutanil also were classified as resistant to fenarimol. Similar cross-resistance relationships were revealed when all isolates were examined by regressing log ED(50) values for each fungicide against those for the remaining two fungicides to determine the correlation coefficients (e.g., r = 0.85 for triadimenol versus myclobutanil and 0.56 for triadimenol versus fenarimol). The restricted levels of cross-resistance indicated by these data, particularly between fenarimol and the other two fungicides, is in sharp contrast to the high levels of cross-resistance among DMIs reported for some other pathogens and has significant implications with respect to programs for managing grapevine powdery mildew and DMI resistance.

  20. In vivo mutagenicity of conazole fungicides correlates with tumorigenicity

    EPA Science Inventory

    Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. All three conazoles are generally inactive in short-term genotoxicity te...

  1. Solid-phase microextraction of benzimidazole fungicides in environmental liquid samples and HPLC-fluorescence determination.

    PubMed

    López Monzón, A; Vega Moreno, D; Torres Padrón, M E; Sosa Ferrera, Z; Santana Rodríguez, J J

    2007-03-01

    Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) with fluorescence detection was optimized for extraction and determination of four benzimidazole fungicides (benomyl, carbendazim, thiabendazole, and fuberidazole) in water. We studied extraction and desorption conditions, for example fiber type, extraction time, ionic strength, extraction temperature, and desorption time to achieve the maximum efficiency in the extraction. Results indicate that SPME using a Carboxen-polydimethylsiloxane 75 microm (CAR-PDMS) fiber is suitable for extraction of these types of compound. Final analysis of benzimidazole fungicides was performed by HPLC with fluorescence detection. Recoveries ranged from 80.6 to 119.6 with RSDs below 9% and limits of detection between 0.03 and 1.30 ng mL-1 for the different analytes. The optimized procedure was applied successfully to the determination of benzimidazole fungicides mixtures in environmental water samples (sea, sewage, and ground water).

  2. Coupling solid-phase microextraction and high-performance liquid chromatography for direct and sensitive determination of halogenated fungicides in wine.

    PubMed

    Millán, S; Sampedro, M C; Unceta, N; Goicolea, M A; Rodríguez, E; Barrio, R J

    2003-05-02

    A solid-phase microextraction (SPME) method coupled to high-performance liquid chromatography with diode array detection (HPLC-DAD) for the analysis of six organochlorine fungicides (nuarimol, triadimenol, triadimefon, folpet, vinclozolin and penconazole) in wine was developed. For this purpose, polydimethylsiloxane-divinylbenzene-coated fibers were utilized and all factors affecting throughput, precision, and accuracy of the SPME method were investigated and optimized. These factors include: matrix influence, extraction and desorption time, percentage of ethanol, pH, salt effect and desorption mode. The performed analytical procedure showed detectability ranging from 4 to 27 microg l(-1) and precision from 2.4 to 14.2% (as intra-day relative standard deviation, RSD) and 4.7-25.7% (as inter-day RSD) depending on the fungicide. The results demonstrate the suitability of the SPME-HPLC-DAD method to analyze these organochlorine fungicides in red wine.

  3. Behavior of myclobutanil, propiconazole, and nuarimol residues during lager beer brewing.

    PubMed

    Navarro, Simón; Pérez, Gabriel; Vela, Nuria; Mena, Luis; Navarro, Ginés

    2005-11-02

    Over a 4 month brewing process, the fate of three fungicides, myclobutanil, propiconazole, and nuarimol, was studied in the spent grain, brewer wort, and final beer product. Only the residual level of myclobutanil after the mashing step was higher than its maximum residue limit (MRL) on barley. A substantial fraction was removed with the spent grain in all cases (26-42%). The half-life times obtained for the fungicides during storage of the spent grains ranged from 82 to 187 days. No significant influence of the boiling stage on the decrease of the fungicide residues was demonstrated. During fermentation, the content reduction varied from 20 to 47%. After the lagering and filtration steps, no significant decrease (<10%) was observed in any of the residues. Finally, during storage of the beer (3 months), the amounts of fungicides fell by 25-50% of their respective concentrations in the finished beer.

  4. Evaluations of Insecticides and Fungicides for Reducing Attack Rates of a new invasive ambrosia beetle (Euwallacea Sp., Coleoptera: Curculionidae: Scolytinae) in Infested Landscape Trees in California.

    PubMed

    Eatough Jones, Michele; Kabashima, John; Eskalen, Akif; Dimson, Monica; Mayorquin, Joey S; Carrillo, Joseph D; Hanlon, Christopher C; Paine, Timothy D

    2017-08-01

    A recently discovered ambrosia beetle with the proposed common name of polyphagous shot hole borer (Euwallacea sp., Coleoptera: Curculionidae: Scolytinae), is reported to attack >200 host tree species in southern California, including many important native and urban landscape trees. This invasive beetle, along with its associated fungi, causes branch dieback and tree mortality in a large variety of tree species including sycamore (Platanus racemosa Nutt.). Due to the severity of the impact of this Euwallacea sp., short-term management tools must include chemical control options for the arboriculture industry and private landowners to protect trees. We examined the effectiveness of insecticides, fungicides, and insecticide-fungicide combinations for controlling continued Euwallacea sp. attacks on previously infested sycamore trees which were monitored for 6 mo after treatment. Pesticide combinations were generally more effective than single pesticide treatments. The combination of a systemic insecticide (emamectin benzoate), a contact insecticide (bifenthrin), and a fungicide (metconazole) provided some level of control when applied on moderate and heavily infested trees. The biological fungicide Bacillus subtilis provided short-term control. There was no difference in the performance of the three triazole fungicides (propiconazole, tebuconazole, and metconazole) included in this study. Although no pesticide combination provided substantial control over time, pesticide treatments may be more effective when trees are treated during early stages of attack by this ambrosia beetle. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. [Susceptibility of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) adults to fungicides used to control apple diseases].

    PubMed

    Manzon, Cristiane G; Grützmacher, Anderson D; Giolo, Fabrizio P; de Lima, Crislaine A B Lima; Nörnberg, Sandro D; Müller, Cristiane; da R Härter, Wagner

    2006-01-01

    This study evaluated the susceptibility under laboratory conditions of Trichogrammapretiosum Riley adults to fungicides recommended by the Integrated Production of Apple (IPA). The bioassays were carried out using the International Organization for Biological Control (IOBC), West Palearctic Regional Section (WPRS) standard protocols. Twelve selected fungicides were studied in the doses (g or ml active ingredient/100 L) captan 1 (0.115), captan 2 (0.120), kresoxim-methyl (0.010), sulphur 1 (AG) (0.480), sulphur 2 (0.480), folpet (0.105), mancozeb (0.160), pyraclostrobin (0.010), tebuconazole (0.010), tetraconazole (0.005), thiophanate-methyl (0.050) and triforine (0.024). Distilled water was used as the blank treatment and the insecticide triclorfon (0.150) as a positive control. The parasitoids were exposed to dry residues applied on glass plates. The reduction in the capacity of parasitism was used to measure the effect of the chemical in comparison to the blank treatment. Each treatment was replicated four times. The results allowed us to classify the fungicides tested in four categories: 1, harmless (< 30%); 2, slightly harmful (30-79%); 3, moderately harmful (80-99%); and 4, harmful (> 99%). 75% of the tested substances were classified as selective (classes 1 and 2) to the parasitoid. The fungicides captan 1, captan 2, kresoxim-methyl, folpet, pyraclostrobin, tebuconazole, thiophanate-methyl and triforine were harmless; mancozeb was slightly harmful; sulphur 1 (AG) and tetraconazole were moderately harmful and sulphur 2 was harmful. These findings should be taken into account when selecting fungicides to spray apple orchards against fungi diseases to preserve the egg parasitoid T. pretiosum.

  6. 40 CFR 180.516 - Fludioxonil; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the fungicide fludioxonil (4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) in or on... the fungicide fludioxonil (4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) in...

  7. 40 CFR 180.516 - Fludioxonil; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the fungicide fludioxonil (4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) in or on... the fungicide fludioxonil (4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) in...

  8. 40 CFR 180.516 - Fludioxonil; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the fungicide fludioxonil (4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) in or on... the fungicide fludioxonil (4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) in...

  9. REPRODUCTIVE TOXICITY OF EXPOSURE TO CONAZOLE FUNGICIDES IN THE FEMALE RAT

    EPA Science Inventory

    Conazole fungicides are used extensively in pharmaceutical and agricultural applications. Although some conazoles have been investigated extensively for toxicological effects, there is little published information on the reproductive toxicity of many of the agriculturally importa...

  10. IN VIVO MUTAGENICITY OF CONAZOLE FUNGICIDES CORRELATES WITH TUMORIGENICITY-JOURNAL

    EPA Science Inventory

    Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. All three conazoles are generally inactive in short-term genotoxicity t...

  11. TRIADIMEFON, A TRIAZOLE FUNGICIDE, INDUCES STEREOTYPED BEHAVIOR AND ALTERS MONOAMINE METABOLISM IN RATS

    EPA Science Inventory

    Triadimefon, a triazole fungicide, has been observed to increase locomotion and induce stereotyped behavior in rodents. he present experiments characterized the stereotyped behavior induced by triadimefon using a computer-supported observational method, and tested the hypothesis ...

  12. In vitro fungicide sensitivity of Rhizoctonia isolates collected from turfgrasses

    USDA-ARS?s Scientific Manuscript database

    Different Rhizoctonia species and anastomosis groups (AGs) have been reported to show variable sensitivity to various commercial fungicides. Thirty–six isolates of Rhizoctonia collected from turfgrasses were tested in vitro for sensitivity to commercial formulations of iprodione, triticonazole, and ...

  13. Effects of Conazole Fungicides on Spontaneous Activity in Neural Networks

    EPA Science Inventory

    Hexaconazole (HEX), Tetraconazole (TET), Fluconazole (FLU), and Triadimefon (TRI) are conazole fungicides, used to control powdery mildews on crops, and as veterinary and clinical treatments. TRI, a demethylation inhibitor, is neurotoxic in vivo, and previous in vitro experiments...

  14. Botrytis pseudocinerea Is a Significant Pathogen of Several Crop Plants but Susceptible to Displacement by Fungicide-Resistant B. cinerea Strains

    PubMed Central

    Plesken, Cecilia; Weber, Roland W. S.; Rupp, Sabrina; Leroch, Michaela

    2015-01-01

    Botrytis cinerea is one of the most important pathogens worldwide, causing gray mold on a large variety of crops. Botrytis pseudocinerea has been found previously to occur together with B. cinerea in low abundance in vineyards and strawberry fields. Here, we report B. pseudocinerea to be common and sometimes dominant over B. cinerea on several fruit and vegetable crops in Germany. On apples with calyx end rot and on oilseed rape, it was the major gray mold species. Abundance of B. pseudocinerea was often negatively correlated with fungicide treatments. On cultivated strawberries, it was frequently found in spring but was largely displaced by B. cinerea following fungicide applications. Whereas B. cinerea strains with multiple-fungicide resistance were common in these fields, B. pseudocinerea almost never developed resistance to any fungicide even though resistance mutations occurred at similar frequencies in both species under laboratory conditions. The absence of resistance to quinone outside inhibitors in B. pseudocinerea was correlated with an intron in cytB preventing the major G143A resistance mutation. Our work indicates that B. pseudocinerea has a wide host range similar to that of B. cinerea and that it can become an important gray mold pathogen on cultivated plants. PMID:26231644

  15. The fungicidal and phytotoxic properties of benomyl and PPM in supplemented agar media supporting transgenic arabidopsis plants for a Space Shuttle flight experiment

    NASA Technical Reports Server (NTRS)

    Paul, A. L.; Semer, C.; Kucharek, T.; Ferl, R. J.

    2001-01-01

    Fungal contamination is a significant problem in the use of sucrose-enriched agar-based media for plant culture, especially in closed habitats such as the Space Shuttle. While a variety of fungicides are commercially available, not all are equal in their effectiveness in inhibiting fungal contamination. In addition, fungicide effectiveness must be weighed against its phytotoxicity and in this case, its influence on transgene expression. In a series of experiments designed to optimize media composition for a recent shuttle mission, the fungicide benomyl and the biocide "Plant Preservative Mixture" (PPM) were evaluated for effectiveness in controlling three common fungal contaminants, as well as their impact on the growth and development of arabidopsis seedlings. Benomyl proved to be an effective inhibitor of all three contaminants in concentrations as low as 2 ppm (parts per million) within the agar medium, and no evidence of phytotoxicity was observed until concentrations exceeded 20 ppm. The biocide mix PPM was effective as a fungicide only at concentrations that had deleterious effects on arabidopsis seedlings. As a result of these findings, a concentration of 3 ppm benomyl was used in the media for experiment PGIM-01 which flew on shuttle Columbia mission STS-93 in July 1999.

  16. Non-target effects of fungicides on nectar-inhabiting fungi of almond flowers.

    PubMed

    Schaeffer, Robert N; Vannette, Rachel L; Brittain, Claire; Williams, Neal M; Fukami, Tadashi

    2017-04-01

    Nectar mediates interactions between plants and pollinators in natural and agricultural systems. Specialized microorganisms are common nectar inhabitants, and potentially important mediators of plant-pollinator interactions. However, their diversity and role in mediating pollination services in agricultural systems are poorly characterized. Moreover, agrochemicals are commonly applied to minimize crop damage, but may present ecological consequences for non-target organisms. Assessment of ecological risk has tended to focus on beneficial macroorganisms such as pollinators, with less attention paid to microorganisms. Here, using culture-independent methods, we assess the impact of two widely-used fungicides on nectar microbial community structure in the mass-flowering crop almond (Prunus dulcis). We predicted that fungicide application would reduce fungal richness and diversity, whereas competing bacterial richness would increase, benefitting from negative effects on fungi. We found that fungicides reduced fungal richness and diversity in exposed flowers, but did not significantly affect bacterial richness, diversity, or community composition. The relative abundance of Metschnikowia OTUs, nectar specialists that can impact pollination, was reduced by both fungicides. Given growing recognition of the importance of nectar microorganisms as mediators of plant-pollinator mutualisms, future research should consider the impact of management practices on plant-associated microorganisms and consequences for pollination services in agricultural landscapes. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Combination of Trichoderma harzianum endochitinase and a membrane-affecting fungicide on control of Alternaria leaf spot in transgenic broccoli plants.

    PubMed

    Mora, A; Earle, E D

    2001-04-01

    Progeny from transgenic broccoli (cv. Green Comet) expressing a Trichoderma harzianum endochitinase gene were used to assess the interaction between endochitinase and the fungicide Bayleton in the control of Alternaria brassicicola. In vitro assays have shown synergistic effects of endochitinase and fungicides on fungal pathogens. Our study examined the in planta effects of endochitinase and Bayleton, individually and in combination. Two month old transgenic and non-transgenic plants were sprayed with ED50 levels of Bayleton and/or inoculated with an A. brassicicola spore suspension. Disease levels in non-sprayed transgenic plants were not statistically different from sprayed transgenic plants nor from sprayed non-transgenic controls. Thus endochitinase-transgenic plants alone provided a significant reduction of disease severity, comparable to the protection by fungicide on non-transgenic plants. Comparison of the expected additive and observed effects revealed no synergism between endochitinase and Bayleton (at ED50 level), and usually less than an additive effect. Some transgenic lines sprayed with fungicide at doses higher than ED50 showed resistance similar to the non-sprayed transgenic lines, again suggesting no synergistic effect. Lack of synergism may be due to incomplete digestion of the cell wall by endochitinase, so that the effect of Bayleton at the cell membrane is not enhanced.

  18. POMICS: A Simulation Disease Model for Timing Fungicide Applications in Management of Powdery Mildew of Cucurbits.

    PubMed

    Sapak, Z; Salam, M U; Minchinton, E J; MacManus, G P V; Joyce, D C; Galea, V J

    2017-09-01

    A weather-based simulation model, called Powdery Mildew of Cucurbits Simulation (POMICS), was constructed to predict fungicide application scheduling to manage powdery mildew of cucurbits. The model was developed on the principle that conditions favorable for Podosphaera xanthii, a causal pathogen of this crop disease, generate a number of infection cycles in a single growing season. The model consists of two components that (i) simulate the disease progression of P. xanthii in secondary infection cycles under natural conditions and (ii) predict the disease severity with application of fungicides at any recurrent disease cycles. The underlying environmental factors associated with P. xanthii infection were quantified from laboratory and field studies, and also gathered from literature. The performance of the POMICS model when validated with two datasets of uncontrolled natural infection was good (the mean difference between simulated and observed disease severity on a scale of 0 to 5 was 0.02 and 0.05). In simulations, POMICS was able to predict high- and low-risk disease alerts. Furthermore, the predicted disease severity was responsive to the number of fungicide applications. Such responsiveness indicates that the model has the potential to be used as a tool to guide the scheduling of judicious fungicide applications.

  19. A fungicide-responsive kinase as a tool for synthetic cell fate regulation.

    PubMed

    Furukawa, Kentaro; Hohmann, Stefan

    2015-08-18

    Engineered biological systems that precisely execute defined tasks have major potential for medicine and biotechnology. For instance, gene- or cell-based therapies targeting pathogenic cells may replace time- and resource-intensive drug development. Engineering signal transduction systems is a promising, yet presently underexplored approach. Here, we exploit a fungicide-responsive heterologous histidine kinase for pathway engineering and synthetic cell fate regulation in the budding yeast Saccharomyces cerevisiae. Rewiring the osmoregulatory Hog1 MAPK signalling system generates yeast cells programmed to execute three different tasks. First, a synthetic negative feedback loop implemented by employing the fungicide-responsive kinase and a fungicide-resistant derivative reshapes the Hog1 activation profile, demonstrating how signalling dynamics can be engineered. Second, combinatorial integration of different genetic parts including the histidine kinases, a pathway activator and chemically regulated promoters enables control of yeast growth and/or gene expression in a two-input Boolean logic manner. Finally, we implemented a genetic 'suicide attack' system, in which engineered cells eliminate target cells and themselves in a specific and controllable manner. Taken together, fungicide-responsive kinases can be applied in different constellations to engineer signalling behaviour. Sensitizing engineered cells to existing chemicals may be generally useful for future medical and biotechnological applications. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. A reassessment of the risk of rust fungi developing resistance to fungicides.

    PubMed

    Oliver, Richard P

    2014-11-01

    Rust fungi are major pathogens of many annual and perennial crops. Crop protection is largely based on genetic and chemical control. Fungicide resistance is a significant issue that has affected many crop pathogens. Some pathogens have rapidly developed resistance and hence are regarded as high-risk species. Rust fungi have been classified as being low risk, in spite of sharing many relevant features with high-risk pathogens. An examination of the evidence suggests that rust fungi may be wrongly classified as low risk. Of the nine classes of fungicide to which resistance has developed, six are inactive against rusts. The three remaining classes are quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs) and succinate dehydrogenase inhibitors (SDHIs). QoIs have been protected by a recently discovered intron that renders resistant mutants unviable. Low levels of resistance have developed to DMIs, but with limited field significance. Older SDHI fungicides were inactive against rusts. Some of the SDHIs introduced since 2003 are active against rusts, so it may be that insufficient time has elapsed for resistance to develop, especially as SDHIs are generally sold in mixtures with other actives. It would therefore seem prudent to increase the level of vigilance for possible cases of resistance to established and new fungicides in rusts. © 2014 Society of Chemical Industry.

  1. Chronic toxicity of a triazole fungicide tebuconazole on the growth and metabolic activities of heterocystous, nitrogen-fixing paddy field cyanobacterium, Westiellopsis prolifica Janet.

    PubMed

    Nirmal Kumar, J I; Bora, Anubhuti; Amb, Manmeet Kaur

    2010-07-01

    This study explored the chronic and harmful effects of different doses of the triazole fungicide, tebuconazole, on the growth, and metabolic and enzymatic variations in the filamentous paddy field cyanobacterium, Westiellopsis prolifica Janet. The growth of the cyanobacterium was determined by an estimation of the change in pigment contents. Chlorophyll-a, carotenoids and accessory pigments such as phycocyanin, allophycocyanin and phycoerythrin, were shown to decline over a 16-day period by a factor of 92%, 93%, 83%, 95% and 100%, respectively, with increasing doses of the fungicide. Metabolic and enzymatic activities were also adversely affected. Over the 16 days, a gradual rise in the total phenol content was recorded when Westiellopsis prolifica Janet was treated with 60 ppm of the fungicide, despite the reduction in carbohydrates, proteins and amino acids by 96%, 92% and 90%, respectively. Moreover, the enzymes nitrate reductase (NR), glutamine synthetase (GS) and succinate dehydrogenase (SDH) also registered reductions of 93%, 90% and 98%, respectively. This study indicates that tebuconazole, although an important fungicide used extensively in rice fields, exhibits an inhibitory effect on the growth and metabolic activities of Westiellopsis prolifica Janet and hence possibly on other varieties as well.

  2. Corn silage from corn treated with foliar fungicide and performance of Holstein cows.

    PubMed

    Haerr, K J; Lopes, N M; Pereira, M N; Fellows, G M; Cardoso, F C

    2015-12-01

    Foliar fungicide application to corn plants is used in corn aimed for corn silage in the dairy industry, but questions regarding frequency of application and its effect on corn silage quality and feed conversion when fed to dairy cows remain prevalent. The objective of this study was to evaluate the effects of various foliar fungicide applications to corn on dry matter intake (DMI), milk production, and milk composition when fed to dairy cows. Sixty-four Holstein cows with parity 2.5±1.5, 653±80kg of body weight, and 161±51d in milk were blocked and randomly assigned to 1 of 4 corn silage treatments (total mixed ration with 35% of the dry matter as corn silage). Treatments were as follows: control (CON), corn silage with no applications of foliar fungicide; treatment 1 (1X), corn silage from corn that received 1 application of pyraclostrobin (PYR) foliar fungicide (Headline; BASF Corp.) at corn vegetative stage 5; treatment 2 (2X), corn silage from corn that received the same application as 1X plus another application of a mixture of PYR and metconazole (Headline AMP; BASF Corp.) at corn reproductive stage 1 ("silking"); and treatment 3 (3X), corn silage from corn that received the same applications as 2X as well as a third application of PYR and metconazole at reproductive stage 3 ("milky kernel"). Corn was harvested at about 32% dry matter and 3/4 milk line stage of kernel development and ensiled for 200d. Treatments were fed to cows for 5wk, with the last week being used for statistical inferences. Week -1 was used as a covariate in the statistical analysis. Dry matter intake tended to be lower for cows fed corn silage treated with fungicide than CON (23.8, 23.0, 19.5, and 21.3kg for CON, 1X, 2X, and 3X, respectively). A linear treatment effect for DMI was observed, with DMI decreasing as foliar fungicide applications increased. Treatments CON, 1X, 2X, and 3X did not differ for milk yield (34.5, 34.5, 34.2, and 34.4kg/d, respectively); however, a trend for increased feed conversion represented by fat-corrected milk/DMI (1.65 vs. 1.47) and energy-corrected milk/DMI (1.60 vs. 1.43) was noted for cows fed corn silage with fungicide compared with CON. In conclusion, cows receiving corn silage treated with foliar fungicide had better conversion of feed dry matter to milk than those receiving CON silage. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Timing fungicide application intervals based on airborne Erysiphe necator concentrations

    USDA-ARS?s Scientific Manuscript database

    Management of grape powdery mildew (Erysiphe necator) and other polycyclic diseases relies on numerous fungicide applications that follow a calendar or model-based application intervals, both of which assume that inoculum is always present. Quantitative molecular assays have been previously develope...

  4. RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING EXPOSURES TO TRIAZOLE FUNGICIDES USING RAT URINE

    EPA Science Inventory

    Normal Raman spectroscopy was evaluated as a metabolomic tool for assessing the impacts of exposure to environmental contaminants, using rat urine collected during the course of a toxicological study. Specifically, one of three triazole fungicides, myclobutanil, propiconazole or ...

  5. Sustainable approaches to control postharvest diseases of apples

    USDA-ARS?s Scientific Manuscript database

    Long term storage of apples faces challenges in maintaining fruit quality and reducing losses from postharvest diseases. Currently, the apple industry relies mainly on synthetic fungicides to control postharvest decays. However, the limitations to fungicides such as the development of resistance i...

  6. Pollinators and pesticides

    USDA-ARS?s Scientific Manuscript database

    As part of the Bee-Fungicide Workshop at NACREW, there will be updates on the latest evidence characterizing how fungicides may cause colony declines in native bee species. Findings will cover recent work with Bombus impatiens and Osmia lignaria. Discussions will be focusing on how the US cranberry ...

  7. RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING TOXICITIES OF TRIAZOLE FUNGICIDES

    EPA Science Inventory

    Conazole fungicides are widely used both agriculturally for the protection of crops, and pharmaceutically in the treatment of topical and systemic infections. Heavy usage has created concern over the impact these compounds may have through environmental exposure to humans and ot...

  8. RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING TOXICITIES OF CONAZOLE FUNGICIDES

    EPA Science Inventory

    Conazole fungicides are widely used both agriculturally for the protection of crops, and pharmaceutically in the treatment of topical and systemic infections. Heavy usage has created concern over the impact these compounds may have through environmental exposure to humans and ot...

  9. Nontarget effects of foliar fungicide application on the rhizosphere: diversity of nifH gene and nodulation in chickpea field

    PubMed Central

    Yang, C; Hamel, C; Vujanovic, V; Gan, Y

    2012-01-01

    Aims This study explores nontarget effects of fungicide application on field-grown chickpea. Methods and Results Molecular methods were used to test the effects of foliar application of fungicide on the diversity and distribution of nifH genes associated with two chickpea cultivars and their nodulation. Treatments were replicated four times in a split-plot design in the field, in 2008 and 2009. Chemical disease control did not change the richness of the nifH genes associated with chickpea, but selected different dominant nifH gene sequences in 2008, as revealed by correspondence analysis. Disease control strategies had no significant effect on disease severity or nifH gene distribution in 2009. Dry weather conditions rather than disease restricted plant growth that year, suggesting that reduced infection rather than the fungicide is the factor modifying the distribution of nifH gene in chickpea rhizosphere. Reduced nodule size and enhanced N2-fixation in protected plants indicate that disease control affects plant physiology, which may in turn influence rhizosphere bacteria. The genotypes of chickpea also affected the diversity of the nifH gene in the rhizosphere, illustrating the importance of plant selective effects on bacterial communities. Conclusions We conclude that the chemical disease control affects nodulation and the diversity of nifH gene in chickpea rhizosphere, by modifying host plant physiology. A direct effect of fungicide on the bacteria cannot be ruled out, however, as residual amounts of fungicide were found to accumulate in the rhizosphere soil of protected plants. Significance and Impact of the Study Systemic nontarget effect of phytoprotection on nifH gene diversity in chickpea rhizosphere is reported for the first time. This result suggests the possibility of manipulating associative biological nitrogen fixation in the field. PMID:22335393

  10. Simultaneous removal of structurally different pesticides in a biomixture: Detoxification and effect of oxytetracycline.

    PubMed

    Huete-Soto, Alejandra; Masís-Mora, Mario; Lizano-Fallas, Verónica; Chin-Pampillo, Juan Salvador; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2017-02-01

    The biopurification systems (BPS) used for the treatment of pesticide-containing wastewater must present a versatile degrading ability, in order to remove different active ingredients according to the crop protection programs. This work aimed to assay the simultaneous removal of several pesticides (combinations of herbicides/insecticides/fungicides, or insecticides/fungicides) in a biomixture used in a BPS over a period of 115 d, and in the presence of oxytetracycline (OTC), an antibiotic of agricultural use that could be present in wastewater from agricultural pesticide application practices. The biomixture was able to mostly remove the herbicides during the treatment (removal rates: atrazine ≈ linuron > ametryn), and suffered no inhibition by OTC (only slightly for ametryn). Two fungicides (carbendazim and metalaxyl) were removed, nonetheless, in the systems containing only fungicides and insecticides, a clear increase in their half-lives was obtained in the treatments containing OTC. The neonicotinoid insecticides (imidacloprid and thiamethoxam) and the triazole fungicides (tebuconazole and triadimenol) were not significantly eliminated in the biomixture. Globally, the total removal of active ingredients ranged from 40.9% to 61.2% depending on the system, following the pattern: herbicides > fungicides > insecticides. The ecotoxicological analysis of the process revealed no detoxification towards the microcrustacean Daphnia magna, but a significant decay in the phytotoxicity towards Lactuca sativa in some cases, according to seed germination tests; in this case, OTC proved to be partially responsible for the phytotoxicity. The patterns of pesticide removal and detoxification provide inputs for the improvement of BPS use and their relevance as devices for wastewater treatment according to specific pesticide application programs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Management of postharvest fruit decays by mircobial antagonists

    USDA-ARS?s Scientific Manuscript database

    Fungicide application to fruits after harvest has been increasingly problematic due to the development of pathogen resistance to many key fungicides and restrictions on their use. Public pressure for pesticide-free food resulted in the voluntary action of rejecting fruit treated with any synthetic ...

  12. Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides

    USDA-ARS?s Scientific Manuscript database

    Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, (trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults (trifluoromethyl)phenyl)-...

  13. Fungicides for organic cantaloupe production in Oklahoma: An initial assessment

    USDA-ARS?s Scientific Manuscript database

    Fungicides that are potentially useful in organic production were evaluated for foliar disease control in cantaloupe (Cucumis melo L. var. reticulates ’Israeli’) during 2009 at Lane, Oklahoma. Milstop (85% potassium bicarbonate), Neem oil, Bonide liquid copper (10% copper octanoate), Serenade (QST ...

  14. Detection of latent infections of Peronospora effusa in spinach

    USDA-ARS?s Scientific Manuscript database

    Downy mildew, caused by Peronospora effusa, is the most serious disease of spinach in central coastal California. The disease is managed in conventional production fields by a combination of host resistance and calendar-based fungicide applications, in which fungicides are applied to prevent downy ...

  15. DIFFERENTIATING TOXICITIES OF CONAZOLE FUNGICIDES THROUGH METABONOMIC ANALYSES OF MULTIPLE TISSUES

    EPA Science Inventory

    The conazole fungicides represent a large group of compounds widely used agriculturally for the protection of crop plants (Hutson 1998) and pharmaceutically in the treatment of topical and systemic infections (Sheehan 1999). In 1999, the latest period for which agricultural usage...

  16. DIFFERENTIATING TOXICITIES OF CONAZOLE FUNGICIDES THROUGH METABONOMIC ANALYSES OF MULTIPLE TISSUES

    EPA Science Inventory

    The conazole fungicides represent a large group of compounds widely used agriculturally for the protection of crop plants (Hutson 1998) and pharmaceutically in the treatment of topical and systemic infections(Sheehan 1999). In 1999, the latest period for which agricultural usage...

  17. REPRODUCTIVE EFFECTS OF EXPOSURE TO CONAZOLE FUNGICIDES IN THE MALE RAT

    EPA Science Inventory

    Conazoles are a class of fungicides used in pharmaceutical and agricultural applications. Three agricultural conazoles were selected, representing a range of reported cancer and reproductive effects, for a study exposing litters (16-20 per dose group) from gestation day 6to postn...

  18. Gene Expression Profiling in Liver and Testis of Rats to Characterize the Toxicity of Triazole Fungicides

    EPA Science Inventory

    Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected ...

  19. GENE EXPRESSION PROFILING IN LIVER AND TESTIS OF RATS TO CHARACTERIZE THE TOXICITY OF TRIAZOLE FUNGICIDES.

    EPA Science Inventory

    Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected ...

  20. EFFECTS OF CONAZOLE FUNGICIDES ON DEVELOPMENT AND PARTURITION IN THE RAT

    EPA Science Inventory

    Conazoles are fungicides used extensively in agriculture and as pharmaceuticals. As part of an effort to evaluate the changes in gene expression corresponding to reproductive toxicity, we examined the effects of three conazoles on pregnancy and neonates. Wistar Han rats were expo...

  1. Fungicidal seed coatings exert minor effects on arbuscular mycorrhizal fungi and plant nutrient content

    USDA-ARS?s Scientific Manuscript database

    Aims: Determine if contemporary, seed-applied fungicidal formulations inhibit colonization of plant roots by arbuscular mycorrhizal (AM) fungi, plant development, or plant nutrient content during early vegetative stages of several commodity crops. Methods: We evaluated seed-applied commercial fungic...

  2. Famoxadone: the discovery and optimisation of a new agricultural fungicide.

    PubMed

    Sternberg, J A; Geffken, D; Adams, J B; Pöstages, R; Sternberg, C G; Campbell, C L; Moberg, W K

    2001-02-01

    Famoxadone (3-anilino-5-methyl-5-(4-phenoxyphenyl)-1,3-oxazolidine-2,4-dione), is a new agricultural fungicide recently commercialized by DuPont under the trade name Famoxate. Famoxadone is a member of a new class of oxazolidinone fungicides that demonstrate excellent control of plant pathogens in the Ascomycete, Basidiomycete, and Oomycete classes that infect grapes, cereals, tomatoes, potatoes and other crops. DuPont's entry into the oxazolidinone area resulted from the procurement of 5-methyl-5-phenyl-3-phenylamino-2-thioxo-4-oxazolidinone (1) from Professor Detlef Geffken, then at the University of Bonn. An extensive analog program was initiated immediately after the fungicidal activity of 1 was discovered through routine greenhouse testing. The discovery program in the oxazolidinone area eventually culminated in the advancement of famoxadone to commercial development in the early 1990s. The synthesis of various oxazolidinone ring systems and the development of the structure-activity relationships that led to the discovery of famoxadone are described.

  3. Fungicides degradation in an organic biomixture: impact on microbial diversity.

    PubMed

    Coppola, Laura; Comitini, Francesca; Casucci, Cristiano; Milanovic, Vesna; Monaci, Elga; Marinozzi, Maria; Taccari, Manuela; Ciani, Maurizio; Vischetti, Costantino

    2011-12-15

    Biological systems are being developed all over EU countries to protect water-bodies from pesticide contamination at farm level. A laboratory experiment was carried out to test the efficiency of a mixture of compost and straw in bio-degrading different mixtures of fungicides usually applied in vineyards. At the same time the effects of fungicide applications on microbial community of biomixture were also evaluated. Results showed that the biomixture had a good capability of degrading pesticides. Indeed, at the end of the experiment (112 days), the concentration of most of the pesticides was close to complete degradation. Denaturing gradient gel electrophoresis (DGGE) analysis showed an evident modification of microbial diversity after the addition of fungicides. However, at the end of degradation process, no significant changes in the composition of microbial community were seen. In this specific substrate used in the biomixture, yeast flora and ascomycete filamentous fungi seemed to be involved in the degradation activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing.

    PubMed

    Bundgaard-Nielsen, K; Nielsen, P V

    1996-03-01

    Resistance of 19 mold and 6 yeast species to 15 commercial disinfectants was investigated by using a suspension method in which the fungicidal effect and germination time were determined at 20 degrees C. Disinfectants containing 0.5% dodecyldiethylentriaminacetic acid, 10 g of chloramine-T per 1, 2.0% formaldehyde, 0.1% potassium hydroxide, 3.0% hydrogen peroxide, or 0.3% peracetic acid were ineffective as fungicides. The fungicidal effect of quaternary ammonium compounds and chlorine compounds showed great variability between species and among the six isolates of Penicillium roqueforti var. roqueforti tested. The isolates of P roqueforti var. carneum, P. discolor, Aspergillus versicolor, and Eurotium repens examined were resistant to different quaternary ammonium compounds. Conidia and vegetative cells were killed by alcohols, whereas ascospores were resistant. Resistance of ascospores to 70% ethanol increased with age. Both P. roqueforti var. roqueforti and E. repens showed great variability of resistance within isolates of each species.

  5. Azomethine based nano-chemicals: Development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani.

    PubMed

    Mondal, Prithusayak; Kumar, Rajesh; Gogoi, Robin

    2017-02-01

    Fungal diseases posing a severe threat to the production of pulses, a major protein source, necessitates the need of new highly efficient antifungal agents. The present study was aimed to develop azomethine based nano-fungicides for protecting the crop from fungal pathogens and subsequent yield losses. The protocol for the formation of nano-azomethines was generated and standardized. Technically pure azomethines were transformed into their nano-forms exploiting polyethylene glycol as the surface stabilizer. Characterization was performed by optical (imaging) probe (Zetasizer) and electron probe (TEM) characterization techniques. The mean particle sizes of all nano-fungicides were below 100nm. In vitro fungicidal potential of nano-chemicals was increased by 2 times in comparison to that of conventional sized azomethines against pathogenic fungi, namely, Rhizoctonia solani, Rhizoctonia bataticola and Sclerotium rolfsii. The performance of nano-chemicals in pot experiment study was also superior to conventional ones as antifungal agent. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Application of Fungicides and Microalgal Phenolic Extracts for the Direct Control of Fumonisin Contamination in Maize.

    PubMed

    Scaglioni, Priscila Tessmer; Blandino, Massimo; Scarpino, Valentina; Giordano, Debora; Testa, Giulio; Badiale-Furlong, Eliana

    2018-05-16

    Fungicides and, for the first time, microalgal phenolic extracts (MPE) from Spirulina sp. and Nannochloropsis sp. were applied on maize culture media under field conditions to evaluate their ability to minimize Fusarium species development and fumonisin production. An in vitro assay against F. verticillioides was carried out using maize grains as the culture medium. An open-field experiment was carried out in Northwest Italy under natural infection conditions. The compared treatments were factorial combinations of two insecticide treatments (an untreated control and pyrethroid, used against European Corn Borer), four antifungal treatments (an untreated control, MPE from Spirulina sp., MPE from Nannochloropsis sp., and a synthetic fungicide), and two timings of the application of the antifungal compounds (at maize flowering and at the milk stage). The MPE compounds were capable of inhibiting fumonisin production in vitro more efficiently than tebuconazole. Insecticide application reduced the infection by Fusarium species and subsequent fumonisin contamination. However, fumonisins in maize fields were not significantly controlled by either fungicide or MPE application.

  7. Fungicides affect the production of extracellular mucilaginous material (ECMM) and the peripheral growth unit (PGU) in two wood-rotting basidiomycetes.

    PubMed

    Vesentini, Damiano; Dickinson, David J; Murphy, Richard J

    2006-10-01

    This study shows the effect of two fungicides on the production of extracellular mucilaginous material (ECMM) in two wood-rotting basidiomycetes and identifies a mechanism that might be responsible for the variation observed. Increasing concentrations of the fungicides copper sulphate (CuSO4) and cyproconazole in the growth medium increased the proportion of ECMM in the biomass of Trametes versicolor and Gloeophyllum trabeum. These fungicides also caused a reduction in the length of the peripheral growth unit (PGU) of the mycelia leading to a more highly branched morphology and a larger number of hyphal tips, the sites for active secretion of ECMM, per unit length of mycelium. It is postulated that both in T. versicolor and G. trabeum this change in growth leads to the increases observed in the proportion of ECMM in the total biomass. The implications of these results are discussed with a view to a potential protective role of ECMM against stress and toxic environments.

  8. First study of hormesis effect on mushroom cultivation.

    PubMed

    Zied, Diego Cunha; Dourado, Fernanda Aparecida; Dias, Eustáquio Souza; Pardo-Giménez, Arturo

    2017-10-05

    The use of fungicides is common in mushroom cultivation, but no study was carried out applying reduced doses of fungicides in order to increase yield, taking account the hormesis effect. The aim of this manuscript was to verify the effects of different concentrations of fungicides to stimulate the productivity of different strains of Agaricus bisporus. Two stages were developed, an in vitro study to define the best concentration to be applied in the second experiment an agronomic study, which consisted of the application of the selected fungicides, in their respective concentrations, in an experiment carried out in the mushroom chamber. Clearly, the result of the hormesis effect on mushroom cultivation can be verified. The results obtained in the 1st stage of the study (in vitro) were not always reproduced in the 2nd stage of the study (in vivo). The kresoxim methyl active ingredient may be an important chemical agent, while strain ABI 15/01 may be an extremely important biological agent to increase yield in the study of hormesis effects.

  9. Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics.

    PubMed

    White, Paul M; Potter, Thomas L; Culbreath, Albert K

    2010-02-15

    Pesticides are typically applied as mixtures and or sequentially to soil and plants during crop production. A common scenario is herbicide application at planting followed by sequential fungicide applications post-emergence. Fungicides depending on their spectrum of activity may alter and impact soil microbial communities. Thus there is a potential to impact soil processes responsible for herbicide degradation. This may change herbicide efficacy and environmental fate characteristics. Our study objective was to determine the effects of 4 peanut fungicides, chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile), tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), flutriafol (alpha-(2-fluorophenyl)-alpha-(4-fluorophenyl)-1H-1,2,4-triazole-1-ethanol), and cyproconazole (alpha-(4-chlorophenyl)-alpha-(1-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol) on the dissipation kinetics of the herbicide, metolachlor (2-chloro-N-(6-ethyl-o-tolyl)-N-[(1RS)-2-methoxy-1-methylethyl]acetamide), and on the soil microbial community. This was done through laboratory incubation of field treated soil. Chlorothalonil significantly reduced metolachlor soil dissipation as compared to the non-treated control or soil treated with the other fungicides. Metolachlor DT(50) was 99 days for chlorothalonil-treated soil and 56, 45, 53, and 46 days for control, tebuconazole, flutriafol, and cyproconazole-treated soils, respectively. Significant reductions in predominant metolachlor metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOA), produced by oxidation of glutathione-metolachlor conjugates were also observed in chlorothalonil-treated soil. This suggested that the fungicide impacted soil glutathione-S-transferase (GST) activity. Fungicide DT(50) was 27-80 days but impacts on the soil microbial community as indicated by lipid biomarker analysis were minimal. Overall study results indicated that chlorothalonil has the potential to substantially increase soil persistence (2-fold) of metolachlor and alter fate and transport processes. GST mediated metabolism is common pesticide detoxification process in soil; thus there are implications for the fate of many active ingredients.

  10. Demethylase Inhibitor Fungicide Resistance in Pyrenophora teres f. sp. teres Associated with Target Site Modification and Inducible Overexpression of Cyp51

    PubMed Central

    Mair, Wesley J.; Deng, Weiwei; Mullins, Jonathan G. L.; West, Samuel; Wang, Penghao; Besharat, Naghmeh; Ellwood, Simon R.; Oliver, Richard P.; Lopez-Ruiz, Francisco J.

    2016-01-01

    Pyrenophora teres f. sp. teres is the cause of net form of net blotch (NFNB), an economically important foliar disease in barley (Hordeum vulgare). Net and spot forms of net blotch are widely controlled using site-specific systemic fungicides. Although resistance to succinate dehydrogenase inhibitors and quinone outside inhibitors has been addressed before in net blotches, mechanisms controlling demethylation inhibitor resistance have not yet been reported at the molecular level. Here we report the isolation of strains of NFNB in Australia since 2013 resistant to a range of demethylase inhibitor fungicides. Cyp51A:KO103-A1, an allele with the mutation F489L, corresponding to the archetype F495I in Aspergillus fumigatus, was only present in resistant strains and was correlated with resistance factors to various demethylase inhibitors ranging from 1.1 for epoxiconazole to 31.7 for prochloraz. Structural in silico modeling of the sensitive and resistant CYP51A proteins docked with different demethylase inhibitor fungicides showed how the interaction of F489L within the heme cavity produced a localized constriction of the region adjacent to the docking site that is predicted to result in lower binding affinities. Resistant strains also displayed enhanced induced expression of the two Cyp51A paralogs and of Cyp51B genes. While Cyp51B was found to be constitutively expressed in the absence of fungicide, Cyp51A was only detected at extremely low levels. Under fungicide induction, expression of Cyp51B, Cyp51A2, and Cyp51A1 was shown to be 1.6-, 3,- and 5.3-fold higher, respectively in the resistant isolate compared to the wild type. These increased levels of expression were not supported by changes in the promoters of any of the three genes. The implications of these findings on demethylase inhibitor activity will require current net blotch management strategies to be reconsidered in order to avoid the development of further resistance and preserve the lifespan of fungicides in use. PMID:27594852

  11. Modeling the influence of raindrop size on the wash-off losses of copper-based fungicides sprayed on potato (Solanum tuberosum L.) leaves.

    PubMed

    Pérez-Rodríguez, Paula; Paradelo, Marcos; Rodríguez-Salgado, Isabel; Fernández-Calviño, David; López-Periago, José Eugenio

    2013-01-01

    Modeling the pesticide wash-off by raindrops is important for predicting pesticide losses and the subsequent transport of pesticides to soil and in soil run-off. Three foliar-applied copper-based fungicide formulations, specifically the Bordeaux mixture (BM), copper oxychloride (CO), and a mixture of copper oxychloride and propylene glycol (CO-PG), were tested on potato (Solanum tuberosum L.) leaves using a laboratory raindrop simulator. The losses in the wash-off were quantified as both copper in-solution loss and copper as particles detached by the raindrops. The efficiency of the raindrop impact on the wash-off was modeled using a stochastic model based on the pesticide release by raindrops. In addition, the influence of the raindrop size, drop falling height, and fungicide dose was analyzed using a full factorial experimental design. The average losses per dose after 14 mm of dripped water for a crop with a leaf area index equal to 1 were 0.08 kg Cu ha(-1) (BM), 0.3 kg Cu ha(-1) (CO) and 0.47 kg Cu ha(-1) (CO-PG). The stochastic model was able to simulate the time course of the wash-off losses and to estimate the losses of both Cu in solution and as particles by the raindrop impacts. For the Cu-oxychloride fungicides, the majority of the Cu was lost as particles that detached from the potato leaves. The percentage of Cu lost increased with the decreasing raindrop size in the three fungicides for the same amount of dripped water. This result suggested that the impact energy is not a limiting factor in the particle detachment rate of high doses. The dosage of the fungicide was the most influential factor in the losses of Cu for the three formulations studied. The results allowed us to quantify the factors that should be considered when estimating the losses by the wash-off of copper-based fungicides and the inputs of copper to the soil by raindrop wash-off.

  12. Residue levels and effectiveness of pyrimethanil vs imazalil when using heated postharvest dip treatments for control of Penicillium decay on citrus fruit.

    PubMed

    D'Aquino, Salvatore; Schirra, Mario; Palma, Amedeo; Angioni, Alberto; Cabras, Paolo; Migheli, Quirico

    2006-06-28

    The influence of fungicide concentration and treatment temperature on residue levels of pyrimethanil (PYR) in comparison with the commonly used fungicide imazalil (IMZ) was investigated in orange fruits following postharvest dip treatments. The dissipation rate of PYR residues was recorded as a function of storage conditions. The fungicide efficacy against green and blue molds caused by Penicillium digitatum and Penicillium italicum, respectively, was evaluated on different citrus varieties following the fungicide application at 20 or 50 degrees C. Residue levels of PYR in Salustiana oranges were significantly correlated with the fungicide dosage, but residue concentrations were notably higher (ca. 13-19-fold) after treatment at 50 degrees C as compared to treatments at 20 degrees C. After treatment at temperatures ranging from 20 to 60 degrees C, PYR and IMZ residues in Salustiana oranges were significantly correlated with dip temperatures. Dissipation rates of PYR during storage were negligible in both Salustiana and Tarocco oranges. Results obtained on wounded, noninoculated Miho satsumas revealed that when treatments were performed at 50 degrees C, PYR or IMZ concentrations needed to achieve the complete control of decay were 8- and 16-fold less than by treatment at 20 degrees C. When fruits were inoculated with either P. digitatum or P. italicum, the application of 400 mg L(-1) PYR at 20 degrees C or 100 mg L(-1) PYR at 50 degrees C similarly reduced green and blue mold development. These results were corroborated by storage trials on Marsh grapefruits and Tarocco oranges. The lowest concentration of PYR required to achieve almost total protection of the fruit against decay accounted for 100 mg L(-1) at 50 degrees C and 400 mg L(-1) at 20 degrees C, respectively. Treatments did not affect fruit external appearance, flavor, and taste. It is concluded that postharvest PYR treatment represents an effective option to control green and blue mold in citrus fruit and that integration of fungicide applications and hot water dips may reduce the possibility of selecting fungicide-resistant populations of the pathogen, as a consequence of increased effectiveness of the treatment.

  13. Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Bremia lactucae causes the characteristic vein-delimited lesions, leaf chlorosis and necrosis and adversely affects marketability of lettuce. The disease has been managed with a combination of host resistance and fungicide applications with mixed success over the years. Fungicide applications are ro...

  14. Influence of fungicides on gas exchange of pecan foliage

    USDA-ARS?s Scientific Manuscript database

    There are several fungicide chemistries used for disease control on pecan (Carya illinoinensis), but there is little or no knowledge of subtle short- or long-term side-effects of these chemistries on host physiological processes, including photosynthesis (Pn). This study quantifies the impact of se...

  15. Defining Adverse Outcome Pathways for Effects of the Fungicide Propiconazole of Fish Reproduction

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are used to describe the linkage of chemical interactions in terms of molecular initiating events to whole organism responses suitable for risk assessment. This study was conducted to develop AOPs for the model fungicide propiconazole relative to r...

  16. Effects of oral exposure to fungicides on honey bee nutrition and immunity

    USDA-ARS?s Scientific Manuscript database

    Worker bees fed pollen containing fungicides (boscalid and pyraclostrobin) that are respiratory inhibitors had lower ATP concentrations in thoracic muscle tissue than those fed untreated pollen in both cage and colony studies. Midgut protease activity, used an indicator of consumption, was higher in...

  17. Microgravity

    NASA Image and Video Library

    1989-02-03

    (PCG) Protein Crystal Growth Isocitrate Lyase. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator for STS-26 was Charles Bugg.

  18. Microgravity

    NASA Image and Video Library

    1989-02-03

    (PCG) Protein Crystal Growth Isocitrate Lysase. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator on STS-26 was Charles Bugg.

  19. EFFECTS OF THE FUNGICIDE TRIADMEFON ON FIXED-INTERVAL PERFORMANCE: COMPARISON WITH METHYLPHENIDATE, D-AMPHETAMINE AND CHLORPROMAZINE

    EPA Science Inventory

    Triadimefon is a fungicide that has recently been shown to increase motor activity and also to increase rates of schedule-controlled responding. hese findings indicate that triadimefon resembles psychomotor stimulants. he present experiment was designed to compare triadimefon to ...

  20. Nonchemical, cultural management strategies to suppress phytophthora root rot in northern highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    Phytophthora cinnamomi causes root rot of highbush blueberry and decreases plant growth, yield, and profitability for growers. Fungicides can suppress root rot, but cannot be used in certified organic production systems and fungicide resistance may develop. Alternative, non-chemical, cultural manag...

  1. GENE EXPRESSION PROFILING IN THE LIVER OF CD-1 MICE TO CHARACTERIZE THE HEPATOTOXICITY OF TRIAZOLE FUNGICIDES.

    EPA Science Inventory

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...

  2. GENE EXPRESSION PROFILING IN THE LIVER OF CD-1 MICE TO CHARACTERIZE THE HEPATOTOXICITY OF TRIAZOLE FUNGICIDES

    EPA Science Inventory

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...

  3. Conazole Fungicides as Chiral Environmental Contaminants: Enantiomer Analysis and Enantioselectivity in Soil Slurries

    EPA Science Inventory

    Conazoles are triazole compounds, many of which are in wide use as agricultural and medicinal fungicides. Opportunities exist for them to contaminate the environment and, since they are all chiral molecules, they are apt to be degraded enantioselectively by indigenous microbes. T...

  4. USING PHARMACOKINETIC DATA TO INTERPRET METABOLOMIC CHANGES IN CD-1 MICE TREATED WITH TRIAZOLE FUNGICIDES

    EPA Science Inventory

    Triazoles are a class of fungicides widely used in both pharmaceutical and agricultural applications. These compounds elicit a variety of toxic effects including disruption of normal metabolic processes such as steroidogenesis. Metabolomics is used to measure dynamic changes in e...

  5. Fungicide sensitivity in the wild rice pathogen Bipolaris oryzae

    USDA-ARS?s Scientific Manuscript database

    In recent years the occurrence of fungal brown spot, caused by Bipolaris oryzae has increased in cultivated wild rice (Zizania palustris) paddies in spite of the use of fungicides. To implement an efficient integrated disease management system, we are exploring whether field isolates have developed ...

  6. Effects of disease control by fungicides on greenhouse gas emissions by U.K. arable crop production.

    PubMed

    Hughes, David J; West, Jonathan S; Atkins, Simon D; Gladders, Peter; Jeger, Michael J; Fitt, Bruce Dl

    2011-09-01

    The U.K. government has published plans to reduce U.K. agriculture's greenhouse gas (GHG) emissions. At the same time, the goal of global food security requires an increase in arable crop yields. Foliar disease control measures such as fungicides have an important role in meeting both objectives. It is estimated that U.K. winter barley production is associated with GHG emissions of 2770 kg CO2 eq. ha(-1) of crop and 355 kg CO2 eq. t(-1) of grain. Foliar disease control by fungicides is associated with decreases in GHG emissions of 42-60 kg CO2 eq. t(-1) in U.K. winter barley and 29-39 kg CO2 eq. t(-1) in U.K. spring barley. The sensitivity of these results to the impact of disease control on yield and to variant GHG emissions assumptions is presented. Fungicide treatment of the major U.K. arable crops is estimated to have directly decreased U.K. GHG emissions by over 1.5 Mt CO2 eq. in 2009. Crop disease control measures such as fungicide treatment reduce the GHG emissions associated with producing a tonne of grain. As national demand for food increases, greater yields as a result of disease control also decrease the need to convert land from non-arable to arable use, which further mitigates GHG emissions. Copyright © 2011 Society of Chemical Industry.

  7. Comparative study of the fungicide Benomyl toxicity on some plant growth promoting bacteria and some fungi in pure cultures.

    PubMed

    Elslahi, Randa H; Osman, Awad G; Sherif, Ashraf M; Elhussein, Adil A

    2014-03-01

    Six laboratory experiments were carried out to investigate the effect of the fungicide Benomyl on pure cultures of some plant growth promoting bacteria (PGPB) and some fungi. The highest LD50 was recorded for Bacillus circulans and proved to be the most resistant to the fungicide, followed by Azospirillum braziliense, while Penicillium sp. was the most affected microorganism. LD50 values for the affected microorganisms were in 21-240 orders of magnitude lower in comparison with the LD50 value for Azospirillum braziliense. The results indicate a strong selectivity for Benomyl against Rhizobium meliloti and Penicillium sp. when compared to other microorganisms tested. The highest safety coefficient was recorded for Bacillus circulans followed by Azospirillum braziliense, while Rhizobium meliloti, showed the lowest safety coefficient value compared to other bacteria. The lowest toxicity index was recorded for Bacillus circulans and Azospirillum braziliense. The slope of the curves for Bacillus sp. and Rhizobium meliloti was steeper than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. In conclusion, Benomyl could be applied without restriction when using inocula based on growth promoting bacteria such as symbiotic nitrogen fixers (Rhizobium meliloti), non-symbiotic nitrogen fixers (Azospirillum braziliense) or potassium solibilizers (Bacillus circulans), given that the fungicide is applied within the range of the recommended field dose.

  8. Chemical characterization of Lippia alba essential oil: an alternative to control green molds

    PubMed Central

    Glamočlija, Jasmina; Soković, Marina; Tešević, Vele; Linde, Giani Andrea; Colauto, Nelson Barros

    2011-01-01

    The essential oil of Lippia alba is reported as an antifungal against human pathogenic microorganisms but few articles report its use as an alternative to synthetic fungicides on green mould control. The objective of this study was to determine chemical characteristics of L. alba essential oil and its antifungal activity against green molds as an alternative to synthetic fungicides. Essential oil was extracted by Clevenger hydrodistillation, characterized by GC-MS analysis, and the structure of the main compounds confirmed by 1H and 13C-NMR spectroscopy. Microdilution assays evaluated the essential oil minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). Commercial fungicides Ketoconazole and Bifonazole were used as control. Essential oil yield is of 0.15% and the major components are neral (33.32%) and geranial (50.94%). The L. alba essential oil has MIC of 0.300–1.250 mg/mL and MFC of 0.600–1.250 mg/mL. Ketoconazole and Bifonazole show MIC ranging from 0.025–0.500 to 0.100–0.200 mg/mL, and MFC ranging from 0.250–0.100 to 0.200–0.250 mg/mL, respectively. L. alba essential oil is classified as citral type and the results indicate that it is a potential alternative to synthetic fungicides. PMID:24031788

  9. Synergistic interactions between a variety of insecticides and an ergosterol biosynthesis inhibitor fungicide in dietary exposures of bumble bees (Bombus terrestris L.).

    PubMed

    Raimets, Risto; Karise, Reet; Mänd, Marika; Kaart, Tanel; Ponting, Sally; Song, Jimao; Cresswell, James E

    2018-03-01

    In recent years, concern has been raised over honey bee colony losses, and also among wild bees there is evidence for extinctions and range contractions in Europe and North America. Pesticides have been proposed as a potential cause of this decline. Bees are exposed simultaneously to a variety of agrochemicals, which may cause synergistically detrimental impacts, which are incompletely understood. We investigated the toxicity of the fungicide imazalil in mixture with four common insecticides: fipronil (phenylpyrazoid), cypermethrin (pyrethroid), thiamethoxam, and imidacloprid (neonicotinoids). Ergosterol biosynthesis inhibitor (EBI) fungicides like imazalil can inhibit P450 detoxification systems in insects and therefore fungicide - insecticide co-occurrence might produce synergistic toxicity in bees. We assessed the impact of dietary fungicide - insecticide mixtures on the mortality and feeding rates of laboratory bumble bees (Bombus terrestris L.). Regarding mortality, imazalil synergised the toxicity of fipronil, cypermethrin and thiamethoxam, but not imidacloprid. We found no synergistic effects on feeding rates. Our findings suggest that P450-based detoxification processes are differentially important in mitigating the toxicity of certain insecticides, even those of the same chemical class. Our evidence that cocktail effects can arise in bumble bees should extend concern about the potential impacts of agrochemical mixtures to include wild bee species in farmland. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Multilocation field trials for risk assessment of a combination fungicide Fluopicolide + Propamocarb in tomato.

    PubMed

    Sharma, K K; Shukla, V R; Patel, A R; Vaghela, K M; Patel, H K; Shah, Paresh G; Banerjee, Hemanta; Banerjee, Tirthankar; Hudait, Ram K; Sharma, Debi; Sahoo, S K; Singh, Balwinder; Tripathy, Vandana

    2016-11-01

    Dissipation kinetics of two systemic fungicides, namely fluopicolide and propamocarb used as a combination formulation (Infinito 68.75 SC), were studied on tomato at four different locations by the All India Network Project on Pesticide Residues to recommend their pre-harvest interval (PHI) and to propose the maximum residue limits (MRL) for the two fungicides based on chronic hazard exposure assessment. The combination fungicide was sprayed thrice at the recommended dosage of 93.75 g a.i./ha fluopicolide and 937.50 g a.i./ha propamocarb as well as at double the recommended dosage of 187.50 g a.i./ha fluopicolide and 1875.0 g a.i./ha propamocarb on tomato crops and the residues were monitored periodically by GC-MS. The fungicides dissipated to below the limit of quantification (LOQ) within 10 to 15 days, with a half-life of 2-4 days for fluopicolide and 1-2 days for propamocarb. Taking into consideration the MRLs of codex and calculations made using the method of MRL fixation of the Food Safety and Standard Authority of India (FSSAI) as well as the Organization for Economic Co-operation and Development (OECD) calculator, MRL of 5 mg/kg is proposed for fluopicolide and 15 mg/kg for propamocarb, following critical exposure of the commodity considering PHI of 1 day.

  11. Site-specific management of cotton root rot using airborne and satellite imagery

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a serious cotton disease that can now be effectively controlled with Topguard Terra Fungicide. The objectives of this research were to demonstrate how site-specific fungicide application could be implemented based on historical remote sensing imagery and variable rate technology. ...

  12. Two fungicides alter reproduction of the small brown planthopper, Laodelphax striatellus by influencing gene and protein expression

    USDA-ARS?s Scientific Manuscript database

    Aside from their intended actions, fungicides can drive pest insect outbreaks and, due to virtually continuous use, evolution. Small brown planthopper (SBPH), Laodelphax striatellus, outbreaks occurred recently in many provinces in China, with devastating rice losses. Because exposure to the fungici...

  13. MEASUREMENT AND MODELING OF THE TRANSPORT OF ENDOCRINE DISRUPTING DICARBOXIMIDES AND DEGRADATION PRODUCTS FROM THE SOIL TO THE LOWER TROPOSPHERE

    EPA Science Inventory

    This research addresses the environmental fate, transport, exposure and potential risks from dicarboximides, a widely used class of agricultural fungicides. Certain dicarboximide fungicides and degradation products have been found to be anti-androgenic; i. e., exposure to these...

  14. MEASURING AND MODELING THE TRANSPORT OF ENDOCRINE DISRUPTING DICARBOXIMIDES AND DEGRADATION PRODUCTS FROM THE SOIL TO THE LOWER TROPOSPHERE

    EPA Science Inventory

    This research addresses the environmental fate, transport, exposure and potential risks from dicarboximides, a widely used class of agricultural fungicides. Certain dicarboximide fungicides and degradation products have been found to be anti-androgenic; i. e., exposure to these...

  15. Testing the efficacy of bicarbonates as fungicides against Cercospora beticola

    USDA-ARS?s Scientific Manuscript database

    Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is an economically important pathogen of sugar beets in many production areas throughout the world. The application of fungicides has been one of the most effective management tools for CLS, but their effectiveness has di...

  16. Management of bull’s eye rot using preharvest and postharvest fungicides

    USDA-ARS?s Scientific Manuscript database

    Neofabraea perennans and N. kienholzii are major causal pathogens of bull’s eye rot in apple in Eastern WA. These fungi cause significant economic loss to the Washington State apple industry and have been listed as quarantine pathogens. Previous experiments indicate that fungicide treatments contain...

  17. Analysis of the mutations inducedd by conazole fungicides in vivo

    EPA Science Inventory

    The mouse liver tumorigenic conazo1e fungicides triadimefon and propiconazo1e have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazo1e myc1obutani1 ...

  18. Use of phosphite salts in laboratory and semi-commercial tests to control citrus postharvest decay

    USDA-ARS?s Scientific Manuscript database

    Many growers of citrus fruit and other crops often apply phosphite or phosphorous acid containing products before harvest. Phosphite fungicides include calcium or potassium phosphite salts, or the phosphite-generating fungicide fosetyl-aluminium (Aliette®, Bayer CropScience). Recently, two products ...

  19. Cummulative and antagonistic effects of a mixture of the antiandrogrens vinclozolin and iprodione in the pubertal male rat:

    EPA Science Inventory

    Vinclozolin and iprodione are dicarboximide fungicides that display anti-androgenic effects in the male rat, which suggests co-exposure to these fungicides would lead to cumulative effects on androgen-sensitive endpoints. Iprodione is a steroid synthesis inhibitor, but AR antagon...

  20. METABOLOMIC EVALUATION OF RAT LIVER AND TESTIS TO CHARACTERIZE THE TOXICITY OF TRIAZOLE FUNGICIDES

    EPA Science Inventory

    The effects of two triazole fungicides, myclobutanil and triadimefon, on endogenous rat metabolite profiles in blood serum, liver, and testis was assessed using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Adult male Sprague-Dawley rats were dosed daily by gavage for...

  1. Non-Hodgkin Lymphoma risk and insecticide, fungicide and fumigant use in the Agricultural Health Study

    EPA Science Inventory

    Farming and pesticide use have previously been linked to non-Hodgkin lymphoma (NHL), chronic lymphocytic leukemia (CLL) and multiple myeloma (MM). We evaluated agricultural use of specific insecticides, fungicides, and fumigants and risk of NHL and NHL-subtypes (including CLL an...

  2. Systemic fungicidal activity of 1,4-oxathiin derivatives.

    PubMed

    Schmeling, B V; Kulka, M

    1966-04-29

    Treatment of pinto bean and barley seed with 1,4-oxathiin derivatives gave disease control by systemic fungicidal action of such pathogenic fungi as Uromyces phaseoli and Ustilago nuda. The two chemicals, D735 and F461, were highly specific and selective against the pathogens without injury of the hosts.

  3. Efficacy of Bordeaux mixture to control pecan scab in large-plot experiments

    USDA-ARS?s Scientific Manuscript database

    Venturia effusa causes scab, the most important disease on pecan in the southeastern USA. Organic fungicides have not been widely tested for efficacy against scab on susceptible cultivars. A large-plot experiment was used to test the efficacy of the traditionally-used fungicide against scab, Bordeau...

  4. Phyto-fungicides: Structure activity relationships of the thymol derivatives against Rhizoctonia solani

    USDA-ARS?s Scientific Manuscript database

    Thymol, the key component of thyme oil and its derivatives were evaluated for their structure activity relationship as fungicide against Rhizoctonia solani. Since plant based chemicals are considered as “Generally Recognized as Safe” (GRAS) chemicals, there is a great potential to use phytochemicals...

  5. Effect of Fungicide Seed Treatments on Fusarium virguliforme and Sudden Death Syndrome of Soybean

    USDA-ARS?s Scientific Manuscript database

    Sudden death syndrome (SDS) is a yield reducing disease increasing in prevalence across soybean producing states. Recent research indicates the SDS pathogen, Fusarium virguliforme, can infect as early as initial radicle emergence. This suggests fungicide seed treatments could offer some protection a...

  6. Efficacy of management tools for control of Phytophthora plurivora leaf spot of Rhododendron, 2014

    USDA-ARS?s Scientific Manuscript database

    This study was conducted as part of the IR-4 Ornamental Horticulture program to evaluate fungicides and biopesticides for management of leaf spot of Rhododendron caused by Phytophthora plurivora. The experiment was conducted by treating two-year old Rhododendron plants with fungicides on September 2...

  7. Gene and protein expression biomarkers in fungicide exposed zebrafish

    EPA Science Inventory

    In this study, the impact of prochloraz (PCZ) on reproductively mature male and female zebrafish was examined following up to 96 h continuous exposure to a flow-through system to control (water only), low (100 ug/l) and high (500 ug/l) PCZ dose. An imidazole fungicide used to rpo...

  8. Fungicide spray coverage from ground-based sprayers in mature pecan trees

    USDA-ARS?s Scientific Manuscript database

    Air-blast sprayers are widely used to control pecan scab (Fusicladium effusum) on pecan trees. Good spray coverage is critical to ensure disease control and to minimize risk of fungicide resistance. Spray coverage from an air-blast sprayer, typical of the sprayer used by commercial producers, was me...

  9. TRANSCRIPTIONAL PROFILES IN LIVER FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC TRIAZOLE CONAZOLE FUNGICIDES: PROPICONAZOLE, TRIADIMEFON, AND MYCLOBUTANIL

    EPA Science Inventory

    Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study (Allen et al. 2006) under...

  10. COMPARATIVE LIVER P450 ENZYME ACTIVITY AND HISTOPATHOLOGY IN MICE TREATED WITH THE CONAZOLE FUNGICIDES: MYCLOBUTANIL, PROPICONAZOLE AND TRIADIMETON

    EPA Science Inventory

    Conazoles used in agriculture and pharmaceutical products comprise a class of chemicals which inhibit ergosterol biosynthesis to act as fungicides. Both propiconazole and triadimefon are hepatotoxic and hepatotumorigenic in mice, while myclobutanil is not a mouse liver tumorigen....

  11. EFFECT OF CONAZOLE FUNGICIDES ON REPRODUCTIVE DEVELOPMENT IN THE FEMALE RAT

    EPA Science Inventory

    Three triazole fungicides were evaluated for effects on female rat reproductive development. Rats were exposed via feed to propiconazole (P) (100, 500, or 2500 ppm), myclobutanil (M) (100, 500, or 2000 ppm), or triadimefon (T) (100, 500, or 1800 ppm) from gestation day 6 to postn...

  12. Assessment of the Endocrine Toxicity of the Fungicide Prochloraz using the Larval Amphibian Growth and Development Assay

    EPA Science Inventory

    Prochloraz is a broad spectrum fungicide that acts by inhibiting ergosterol biosynthesis in target species. Toxicity results in non-target vertebrate species suggest this toxicant acts as an endocrine disruptor that inhibits aromatase, the enzyme responsible for the conversion of...

  13. Control of clavicipitaceous anamorphic endophytes with fungicides, aerated steam and supercritical fluid CO2-seed extraction

    Treesearch

    A. Dan Wilson; Donald G. Lester; Brian K. Luckenbill

    2008-01-01

    The effects of soil drenches with systemic fungicides on viability of clavicipitaceous anamorphic endophytes, non-choke inducing endosymbiotic fungi of the genus Neotyphodium that systemically infect grasses, were tested in endophyte-infected seedlings of Hordeum brevisubulatum subsp. violaceum, Lolium perenne...

  14. Application of Toxicogenomics to Develop a Mode of Action for a Carcinogenic Conazole Fungicide

    EPA Science Inventory

    Conazoles are a common class of fungicides used to control fungal growth in the environment and in humans. Some of these agents have adverse toxicological outcomes in mammals as carcinogens, reproductive toxins, and hepatotoxins. We coupled the results from genomic analyses with ...

  15. Evaluation of fungicides for hop downy mildew, Woodburn, Oregon, 2016

    USDA-ARS?s Scientific Manuscript database

    This research was conducted to quantify the degree of control of the disease downy mildew with a phosphorous acid-based fungicide, the present industry-standard for management of downy mildew on hop in the Pacific Northwestern U.S. No suppression of the disease was observed with the industry standa...

  16. First report of DMI insensitive Cercospora beticola on sugar beet in Ontario, Canada

    USDA-ARS?s Scientific Manuscript database

    Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is an economically important foliar disease of sugar beet in Ontario, Canada and worldwide. Fungicides are an important tool in the control of CLS. The first demethylation inhibitor (DMI) fungicide for sugar beet was regi...

  17. Understanding the molecular basis of the resistance of Phytophthora infestans to fungicides by functional genomics

    USDA-ARS?s Scientific Manuscript database

    Development of resistance to fungicides is a major concern in managing potato late blight disease caused by Phytophthora infestans. The problem is P. infestans is capable of sexual recombination contributing to increased strain variability and high adaptability that hastens the development of resis...

  18. Use of Adverse Outcome Pathways for Assessing Effects of the Fungicide Propiconazole on Fish Reproduction

    EPA Science Inventory

    Adverse outcome pathways (AOP) are used to describe the linkage of biological events from a molecular initiating point, to individual-level-endpoints relevant to risk assessment. This study was done to assess toxicity outcomes for the conazole fungicide propiconazole based on a p...

  19. Study of coatings for improved fire and decay resistance of mine timbers

    NASA Technical Reports Server (NTRS)

    Baum, B.

    1977-01-01

    The purpose of this program was to find a fire- and rot-retardant polymer/fungicide reaction product for coating mine timbers. Fire-retardant polymers were screened as films and coatings on fir wood. Curable polyimide appeared to be flame retardant and evolved a minimum of fumes when exposed to a flame. Several organic and metal, low toxicity, fungicides were reacted with the polyimide in-situ on the wood. These coated samples were screened for fungus resistance. All formulations rated well - even the polyimide film without additives was fungicidal. The fir wood control itself resisted internal damage during the ten weeks of fungus exposure. A more severe test for fungus resistance will be required.

  20. Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using Contans® and reduced fungicides application.

    PubMed

    Elsheshtawi, Mohamed; Elkhaky, Maged T; Sayed, Shaban R; Bahkali, Ali H; Mohammed, Arif A; Gambhir, Dikshit; Mansour, Aref S; Elgorban, Abdallah M

    2017-02-01

    This study was conducted to determine the compatibility of Contans® ( Coniothyrium minitans ) with fungicides against Sclerotinia sclerotiorum . Results showed that both Contans® and Topsin® significantly reduced the disease incidence caused by S. sclerotiorum by 90% and 95% survival plants, respectively when they were individually applied and compared to control. While, soil application of Contans® and Sumisclex mixture was the most effective in suppressing the white rot disease incidence that produced 100% survival plants, application of C. minitans combined with the reduced doses of fungicides would be advantageous in saving labor cost, thus increasing production efficiency of bean.

  1. Efficiency trial of 80% thiophanate-methyl and 72% streptomycin against konjac bacterial soft rot

    NASA Astrophysics Data System (ADS)

    Lin, Tianxing; Gong, Mingfu; Guan, Qinlan; Tan, Chunyan

    2018-04-01

    Amorphophallus konjac soft rot can cause severe yield losses, and the effects agent to prevent the disease had not been found currently in production. In this dissertation, inhibition on konjac soft rot bacteria of seven agricultural fungicides, as benzene ring yl ether, methyl thiophanate, streptomycin sulfate, methane frost hymexazol, bismerthiazol WP, gray mold and Dyson Mn-Zn, was determined by antagonistic petri dish method. The results indicated that: the tested fungicide s had certain inhibition on konjac soft rot bacteria, and the inhibitory effect of different fungicides was significant difference. 80% thiophanate-methyl and 72% streptomycin sulfate had a good inhibitory effect on konjac soft rot disease bacteria.

  2. Azoxystrobin, a mitochondrial complex III Qo site inhibitor, exerts beneficial metabolic effects in vivo and in vitro.

    PubMed

    Gao, An-Hui; Fu, Yan-Yun; Zhang, Kun-Zhi; Zhang, Mei; Jiang, Hao-Wen; Fan, Li-Xia; Nan, Fa-Jun; Yuan, Chong-Gang; Li, Jia; Zhou, Yu-Bo; Li, Jing-Ya

    2014-07-01

    Several anti-diabetes drugs exert beneficial effects against metabolic syndrome by inhibiting mitochondrial function. Although much progress has been made toward understanding the role of mitochondrial function inhibitors in treating metabolic diseases, the potential effects of these inhibitors on mitochondrial respiratory chain complex III remain unclear. We investigated the metabolic effects of azoxystrobin (AZOX), a Qo inhibitor of complex III, in a high-fat diet-fed mouse model with insulin resistance in order to elucidate the mechanism by which AZOX improves glucose and lipid metabolism at the metabolic cellular level. Acute administration of AZOX in mice increased the respiratory exchange ratio. Chronic treatment with AZOX reduced body weight and significantly improved glucose tolerance and insulin sensitivity in high-fat diet-fed mice. AZOX treatment resulted in decreased triacylglycerol accumulation and down-regulated the expression of genes involved in liver lipogenesis. AZOX increased glucose uptake in L6 myotubes and 3T3-L1 adipocytes and inhibited de novo lipogenesis in HepG2 cells. The findings indicate that AZOX-mediated alterations to lipid and glucose metabolism may depend on AMP-activated protein kinase (AMPK) signaling. AZOX, a Qo inhibitor of mitochondrial respiratory complex III, exerts whole-body beneficial effects on the regulation of glucose and lipid homeostasis in high-fat diet-fed mice. These findings provide evidence that a Qo inhibitor of mitochondrial respiratory complex III could represent a novel approach for the treatment of obesity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Comparison of a new air-assisted sprayer and two conventional sprayers in terms of deposition, loss to the soil and residue of azoxystrobin and tebuconazole applied to sunlit greenhouse tomato and field cucumber.

    PubMed

    Li, Yanjie; Li, Yifan; Pan, Xiang; Li, Qing X; Chen, Ronghua; Li, Xuesheng; Pan, Canping; Song, Jianli

    2018-02-01

    Plant protection products (PPPs) are applied in China and many other developing countries with knapsack sprayers at high volumes with coarse spray quality, resulting in a high percentage of pesticide losses. In this study, a new air-assisted electric knapsack sprayer and two conventional knapsack sprayers were evaluated in terms of pesticide deposition, residues and loss into the soil. Artificial targets fixed to the upper side and underside of the leaf surface in six zones (at two depths and three heights) were used to collect the deposition, which were analyzed by liquid chromatography triple-quadrupole mass spectrometry. The air-assisted electric knapsack sprayer produced more deposition and better penetrability and uniformity than the two traditional spraying methods. In particular, the air-assisted electric knapsack sprayer reduced pesticide losses to the soil by roughly 37% to 75% and deposited 1.18 and 1.24 times more pesticide than the manual air-pressure and battery-powered knapsack sprayers, respectively. The residues of azoxystrobin and tebuconazole in tomato and cucumber were below the maximum residue limits (MRLs). In general, use of the the air-assisted electric knapsack sprayer in tomato and cucumber crops could improve the effectiveness of PPPs, reduce the risk of contamination and protect food safety. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. LATE GESTATIONAL EXPOSURE TO THE FUNGICIDE PROCHLORAZ DELAYS THE ONSET OF PARTURITION AND CAUSES REPRODUCTIVE MALFORMATIONS IN MALE RAT OFFSPRING

    EPA Science Inventory

    Late gestational exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male rat offspring.
    Nigel C. Noriega, Joseph Ostby, Christy Lambright, Vickie S. Wilson, and L. Earl Gray Jr.,

    Prochloraz (PZ) is an imidazol...

  5. Effect of fungicide seed treatments on Fusarium virguliforme infection of soybean and development of sudden death syndrome

    USDA-ARS?s Scientific Manuscript database

    Sudden death syndrome (SDS), caused by Fusarium virguliforme (Fv), is a major yield-limiting disease of soybean in North America. Infection of soybean seedling roots by Fv results in severe root damage; therefore, fungicide seed treatments could potentially reduce these early-season infections and r...

  6. Using airborne imagery to monitor cotton root rot infection before and after fungicide treatment

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot is a severe soilborne disease that has affected cotton production for over a century. Recent research has shown that a commercial fungicide, flutriafol, has potential for the control of this disease. To effectively and economically control this disease, it is necessary to identify in...

  7. Comparing protection afforded by different organic alternatives to conventional fungicides for reducing scab on pecan

    USDA-ARS?s Scientific Manuscript database

    Pecan scab (Venturia effusa) is the major yield-limiting disease in the southeastern USA. Although conventional fungicides are available to manage the disease, there is no comparison of organic methods (organically produced nuts attract a higher price). In 2011, 2012, 2014, 2015 and 2016 trees of cv...

  8. Efficacy of Fungicides for Control of Rosette and Post-harvest Fruit Diseases of Blackberries

    USDA-ARS?s Scientific Manuscript database

    Rosette disease (caused by the fungus Cercosporella rubi) is often severe on erect blackberries grown in the southeastern U.S. and, if not controlled, may limit fruit production. A series of trials were conducted in south Mississippi to determine fungicide efficacy and optimum timing of applications...

  9. Determination of fungicide resistance in Botrytis cinerea from strawberry in the Central Coast Region of California

    USDA-ARS?s Scientific Manuscript database

    A study was conducted in 2013 to investigate the occurrence of fungicide resistance in Botrytis cinerea populations in California’s northern strawberry growing region; specifically in Watsonville and Salinas. In mid-May, 59 samples consisting of a single diseased fruit or plant part with gray mold s...

  10. Control of live oak decline in Texas with Lignasan and Arbotech

    Treesearch

    R. Lewis

    1978-01-01

    Two systemic fungicides, Arbotect 20-S (2-(4-thiazolyl) benzimidazole) and Lignasan (methyl-2-benzimidazole carbamate phosphate), were tested as possible controls for live oak decline in Texas. Both fungicides killed Ceratocystis fagacearum in vitro at 1 μg/ml. Live oaks with incipient and advanced wilt were pressure injected with the...

  11. IN VITRO METABOLISM OF THE CHIRAL TRIAZOLE FUNGICIDE BROMUCONAZOLE 47 USING SUBSTRATE DEPLETION AND PRODUCT FORMATION KINETICS IN RAT HEPATIC MICROSOMES

    EPA Science Inventory

    Kinetic analysis of xenobiotic metabolism using in vitro hepatic microsomes are needed for predictive in vivo physiological modeling. Recently, much emphasis has been placed on the adverse effects of triazole fungicides in mammalian steroid metabolism. In vitro metabolism of the ...

  12. Microgravity

    NASA Image and Video Library

    1998-09-01

    The comparison of protein crystal, Isocitrate Lyase earth-grown (left) and space-grown (right). This is a target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast; it regulates the flow of metabolic intermediates required for cell growth. Principal Investigator is Larry DeLucas.

  13. Interaction of basal foliage removal and late season fungicide applications in management of Hop powdery mildew

    USDA-ARS?s Scientific Manuscript database

    Experiments were conducted over three years to evaluate whether fungicide applications could be ceased after the most susceptible stages of cone development (late July) without unduly affecting crop yield and quality when disease pressure was moderated with varying levels of basal foliage removal. I...

  14. Effects of a Short-term Exposure to the Fungicide Prochloraz on Endocrine Function and Gene Expression in Female Fathead Minnows (Pimephales promelas)

    EPA Science Inventory

    Prochloraz is a fungicide known to cause endocrine disruption through effects on the hypothalamic-pituitary-gonadal (HPG) axis. To determine the short-term impacts of prochloraz on gene expression and steroid production, adult female fathead minnows (Pimephales promelas) were exp...

  15. Identification of Coordinately Regulated Functional Modules in Thyroid Tissues from Rats Exposed to a Tumorigenic and a Non-Tumorigenic Conazole Fungicide Using Oncomine®

    EPA Science Inventory

    Conazoles are triazole- or imidazole-containing fungicides used in agriculture and medicine. Using transcriptomic analysis of rat thyroid tissues exposed to either tumorigenic or non-tumorigenic structurally related conazoles, we identified new findings on thyroid gene expressio...

  16. TRANSCRIPTIONAL RESPONSES IN THYROID TISSUES FROM RATS TREATED WITH A TUMORIGENIC AND A NON-TUMORIGENIC TRIAZOLE CONAZOLE FUNGICIDE

    EPA Science Inventory

    What is the study?
    Conazoles are triazole- or imidazole-containing fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay. The goal of this study was to identify pathways and network...

  17. Evaluating fungicide sensitivity of regional Blumeria graminis f.sp. tritici populations in the United States

    USDA-ARS?s Scientific Manuscript database

    Blumeria graminis f.sp. tritici (Bgt), cause of wheat powdery mildew, has a high likelihood of developing fungicide resistance because of the large quantity of spores produced along with the mixed mode of reproduction. Additionally, once reduced sensitivity appears in a population it can influence n...

  18. Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab

    USDA-ARS?s Scientific Manuscript database

    Pecan scab (caused by Fusicladium effusum) is the major disease that limits the productivity and quality of pecan in the southeastern US. Alternatives to conventional fungicides are desirable and should be biorational, of low environmental risk with a reduced risk for fungicide resistance developing...

  19. Characterization and Potential Environmental Implications of Select Cu-Based Fungicides and Bactericides Employed in U.S. Markets

    EPA Science Inventory

    This exploratory study aimed to examine the extent and mineral speciation of nanosized Cu in two fungicide products (A and B) available in the U.S. markets. Electron microcopy results demonstrated the presence of spherical and polydisperse <100 nm Cu particles in product B. Oth...

  20. Site-specific management of cotton root rot using historical remote sensing imagery

    USDA-ARS?s Scientific Manuscript database

    Cotton root rot can now be effectively controlled with Topguard Terra Fungicide, but site-specific application of the fungicide can greatly reduce treatment cost as only portions of the field are infested with the disease. The overall goal of this three-year project was to demonstrate how to use his...

Top