Sample records for stroke volume

  1. Age accounts for racial differences in ischemic stroke volume in a population-based study.

    PubMed

    Zakaria, Tarek; Lindsell, Christopher J; Kleindorfer, Dawn; Alwell, Kathleen; Moomaw, Charles J; Woo, Daniel; Szaflarski, Jerzy P; Khoury, Jane; Miller, Rosie; Broderick, Joseph P; Kissela, Brett

    2008-01-01

    The stroke volume among black ischemic stroke patients in phase I of the population-based Greater Cincinnati/Northern Kentucky Stroke Study (GCNKSS) was smaller than reported among acute stroke studies, with a median stroke volume of 2.5 cm. However, it is not known if stroke volume was similar between black and white patients within the same study population. Phase II of the GCNKSS identified all ischemic strokes between July 1993 and June 1994. The stroke volume was estimated by study physicians using the modified ellipsoid method. Analysis of stroke volume by race, sex and age was performed for strokes with a measurable lesion of >or=0.5 cm(3). Among verified cases of ischemic stroke, 334 patients were eligible for this analysis. There were 191 whites (57%) and 143 blacks (43%). The mean age was 69.4 years. The median stroke volume for all patients was 8.8 cm(3) (range 0.5-540), with a mean of 36.4 cm(3). Stroke volume was not different between men and women, and it tended to increase with age. Although stroke volume was significantly higher among whites, age was a confounding factor. Subsequent analysis of stroke volume stratified by age showed no difference between blacks and whites in any age group. Our data show that most ischemic stroke lesions, regardless of the race, are of small size, and this may be an important reason for the low percentage of strokes treated currently with tissue-type plasminogen activator. The association of age with stroke volume requires further study. Copyright 2008 S. Karger AG, Basel.

  2. Clinically significant change in stroke volume in pulmonary hypertension.

    PubMed

    van Wolferen, Serge A; van de Veerdonk, Marielle C; Mauritz, Gert-Jan; Jacobs, Wouter; Marcus, J Tim; Marques, Koen M J; Bronzwaer, Jean G F; Heymans, Martijn W; Boonstra, Anco; Postmus, Pieter E; Westerhof, Nico; Vonk Noordegraaf, Anton

    2011-05-01

    Stroke volume is probably the best hemodynamic parameter because it reflects therapeutic changes and contains prognostic information in pulmonary hypertension (PH). Stroke volume directly reflects right ventricular function in response to its load, without the correction of compensatory increased heart rate as is the case for cardiac output. For this reason, stroke volume, which can be measured noninvasively, is an important hemodynamic parameter to monitor during treatment. However, the extent of change in stroke volume that constitutes a clinically significant change is unknown. The aim of this study was to determine the minimal important difference (MID) in stroke volume in PH. One hundred eleven patients were evaluated at baseline and after 1 year of follow-up with a 6-min walk test (6MWT) and cardiac MRI. Using the anchor-based method with 6MWT as the anchor, and the distribution-based method, the MID of stroke volume change could be determined. After 1 year of treatment, there was, on average, a significant increase in stroke volume and 6MWT. The change in stroke volume was related to the change in 6MWT. Using the anchor-based method, an MID of 10 mL in stroke volume was calculated. The distribution-based method resulted in an MID of 8 to 12 mL. Both methods showed that a 10-mL change in stroke volume during follow-up should be considered as clinically relevant. This value can be used to interpret changes in stroke volume during clinical follow-up in PH.

  3. Does Stroke Volume Increase During an Incremental Exercise? A Systematic Review

    PubMed Central

    Vieira, Stella S.; Lemes, Brunno; de T. C. de Carvalho, Paulo; N. de Lima, Rafael; S. Bocalini, Danilo; A. S. Junior, José; Arsa, Gisela; A. Casarin, Cezar; L. Andrade, Erinaldo; J. Serra, Andrey

    2016-01-01

    Introduction: Cardiac output increases during incremental-load exercise to meet metabolic skeletal muscle demand. This response requires a fast adjustment in heart rate and stroke volume. The heart rate is well known to increase linearly with exercise load; however, data for stroke volume during incremental-load exercise are unclear. Our objectives were to (a) review studies that have investigated stroke volume on incremental load exercise and (b) summarize the findings for stroke volume, primarily at maximal-exercise load. Methods: A comprehensive review of the Cochrane Library’s, Embase, Medline, SportDiscus, PubMed, and Web of Sci-ence databases was carried out for the years 1985 to the present. The search was performed between February and June 2014 to find studies evaluating changes in stroke volume during incremental-load exercise. Controlled and uncontrolled trials were evaluated for a quality score. Results: The stroke volume data in maximal-exercise load are inconsistent. There is evidence to hypothesis that stroke volume increases during maximal-exercise load, but other lines of evidence indicate that stroke volume reaches a plateau under these circumstances, or even decreases. Conclusion: The stroke volume are unclear, include contradictory evidence. Additional studies with standardized reporting for subjects (e.g., age, gender, physical fitness, and body position), exercise test protocols, and left ventricular function are required to clarify the characteristics of stroke volume during incremental maximal-exercise load. PMID:27347221

  4. Greater Cincinnati/Northern Kentucky Stroke Study: volume of first-ever ischemic stroke among blacks in a population-based study.

    PubMed

    Kissela, B; Broderick, J; Woo, D; Kothari, R; Miller, R; Khoury, J; Brott, T; Pancioli, A; Jauch, E; Gebel, J; Shukla, R; Alwell, K; Tomsick, T

    2001-06-01

    The volume of ischemic stroke on CT scans has been studied in a standardized fashion in acute stroke therapy trials with median volumes between 10.5 to 55 cm(3). The volume of first-ever ischemic stroke in the population is not known. The first phase of the population-based Greater Cincinnati/Northern Kentucky Stroke Study identified all ischemic strokes occurring in blacks in the greater Cincinnati region between January and June of 1993. The patients in this phase of the study who had a first-ever ischemic clinical stroke were identified, and the volume of ischemic stroke was measured. There were 257 verified clinical cases of ischemic stroke, of which 181 had a first-ever ischemic infarct. Imaging was available for 150 of these patients, and 79 had an infarct on the CT or MRI study that was definitely or possibly related to the clinical symptoms. For these patients, volumetric measurements were performed by means of the modified ellipsoid method. The median volume of first-ever ischemic stroke for the 79 patients was 2.5 cm(3) (interquartile range, 0.5 to 8.8 cm(3)). There was a significant relation between location of lesion and infarct size (P<0.001) and between volume and mechanism of stroke (P=0.001). The volume of first-ever ischemic stroke among blacks in our population-based study is smaller than has been previously reported in acute stroke therapy trials. The large proportion of small, mild strokes in blacks may be an important reason for the low percentage of patients who meet the inclusion criteria for tissue plasminogen activator. Further study is necessary to see if these results are generalizable to a multiracial population.

  5. Structural MRI markers of brain aging early after ischemic stroke.

    PubMed

    Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy

    2017-07-11

    To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  6. Early Change in Stroke Size Performs Best in Predicting Response to Therapy.

    PubMed

    Simpkins, Alexis Nétis; Dias, Christian; Norato, Gina; Kim, Eunhee; Leigh, Richard

    2017-01-01

    Reliable imaging biomarkers of response to therapy in acute stroke are needed. The final infarct volume and percent of early reperfusion have been used for this purpose. Early fluctuation in stroke size is a recognized phenomenon, but its utility as a biomarker for response to therapy has not been established. This study examined the clinical relevance of early change in stroke volume and compared it with the final infarct volume and percent of early reperfusion in identifying early neurologic improvement (ENI). Acute stroke patients, enrolled between 2013 and 2014 with serial magnetic resonance imaging (MRI) scans (pretreatment baseline, 2 h post, and 24 h post), who received thrombolysis were included in the analysis. Early change in stroke volume, infarct volume at 24 h on diffusion, and percent of early reperfusion were calculated from the baseline and 2 h MRI scans were compared. ENI was defined as ≥4 point decrease in National Institutes of Health Stroke Scales within 24 h. Logistic regression models and receiver operator characteristics analysis were used to compare the efficacy of 3 imaging biomarkers. Serial MRIs of 58 acute stroke patients were analyzed. Early change in stroke volume was significantly associated with ENI by logistic regression analysis (OR 0.93, p = 0.048) and remained significant after controlling for stroke size and severity (OR 0.90, p = 0.032). Thus, for every 1 mL increase in stroke volume, there was a 10% decrease in the odds of ENI, while for every 1 mL decrease in stroke volume, there was a 10% increase in the odds of ENI. Neither infarct volume at 24 h nor percent of early reperfusion were significantly associated with ENI by logistic regression. Receiver-operator characteristic analysis identified early change in stroke volume as the only biomarker of the 3 that performed significantly different than chance (p = 0.03). Early fluctuations in stroke size may represent a more reliable biomarker for response to therapy than the more traditional measures of final infarct volume and percent of early reperfusion. © 2017 S. Karger AG, Basel.

  7. Ischemic Volume and Neurological Deficit: Correlation of Computed Tomography Perfusion with the National Institutes of Health Stroke Scale Score in Acute Ischemic Stroke.

    PubMed

    Furlanis, Giovanni; Ajčević, Miloš; Stragapede, Lara; Lugnan, Carlo; Ridolfi, Mariana; Caruso, Paola; Naccarato, Marcello; Ukmar, Maja; Manganotti, Paolo

    2018-04-30

    The National Institutes of Health Stroke Scale (NIHSS) is the most adopted stroke patients' evaluation tool in emergency settings to assess the severity of stroke and to determine the patients' eligibility for specific treatments. Computed tomography perfusion (CTP) is crucial to identify salvageable tissue that can benefit from the reperfusion treatment. The aim of this study is to identify the relation between the NIHSS scores and the hypoperfused volumes evaluated by CTP in patients with hyperacute ischemic stroke. This retrospective study was conducted on 105 patients with ischemic stroke who underwent NIHSS assessment and CTP in the hyperacute phase. Hypoperfused volume was evaluated by CTP maps processed with semi-automatic algorithm. An analysis was conducted to determine the degree of correlation between the NIHSS scores and the ischemic lesion volumes and to investigate the relation between the anterior and the posterior circulation strokes, as well as between the right and the left hemispheric strokes. A significant correlation was found between ischemic volume and NIHSS score at baseline (r = .82; P < .0001) in the entire cohort. A high NIHSS-volume correlation was identified in the anterior circulation stroke (r = .76; P < .0001); whereas, it was nonsignificant in the posterior circulation stroke. NIHSS score and volume correlated for the left and the right hemispheric strokes (r = .83 and .81; P < .0001), showing a slightly higher slope in the left. This study showed a strong correlation between the baseline NIHSS score and the ischemic volume estimated by CTP. We confirmed that NIHSS is a reliable predictor of perfusion deficits in acute ischemic stroke. CTP allows fast imaging assessment in the hyperacute phase. The results highlight the importance of these diagnostic tools in the assessment of stroke severity and in acute decision-making. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  8. Instantaneous stroke volume by PDE during and after constant LBNP (-50 torr)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Six male subjects were exposed to -50 torr lower body negative pressure (LBNP) for 10 min while stroke volume was recorded beat by beat at regular intervals before, during and after release of LBNP. Stroke volume was calculated from the systolic velocity integral in the ascending aorta by pulsed Doppler echocardiography (PDE) and the cross sectional area of the vessel by M mode echocardiography. Changes in leg volume were recorded continuously and blood pressure was taken every minute. Stroke volume dropped by 51% of the control in the first 33 sec of LBNP and continued to decline slowly to -62% toward the end. Heart rate increased by 15% in the first 10 sec and was 22% above control at the end of exposure. The resulting cardiac output closely followed the course of stroke volume (-47% at 33 sec, -53% at 8 min) showing that the modest increase in heart rate did little to offset the drop in stroke volume. Leg volume increased markedly within the first 10 sec with a more gradual rise reaching +3.5% at the end. Upon sudden release of LBNP, leg volume dropped significantly during the first 3 sec simultaneously with an increase in stroke volume followed by a substantial decline in heart rate below the baseline.

  9. Ipsilateral hippocampal atrophy is associated with long-term memory dysfunction after ischemic stroke in young adults.

    PubMed

    Schaapsmeerders, Pauline; van Uden, Inge W M; Tuladhar, Anil M; Maaijwee, Noortje A M; van Dijk, Ewoud J; Rutten-Jacobs, Loes C A; Arntz, Renate M; Schoonderwaldt, Hennie C; Dorresteijn, Lucille D A; de Leeuw, Frank-Erik; Kessels, Roy P C

    2015-07-01

    Memory impairment after stroke in young adults is poorly understood. In elderly stroke survivors memory impairments and the concomitant loss of hippocampal volume are usually explained by coexisting neurodegenerative disease (e.g., amyloid pathology) in interaction with stroke. However, neurodegenerative disease, such as amyloid pathology, is generally absent at young age. Accumulating evidence suggests that infarction itself may cause secondary neurodegeneration in remote areas. Therefore, we investigated the relation between long-term memory performance and hippocampal volume in young patients with first-ever ischemic stroke. We studied all consecutive first-ever ischemic stroke patients, aged 18-50 years, admitted to our academic hospital center between 1980 and 2010. Episodic memory of 173 patients was assessed using the Rey Auditory Verbal Learning Test and the Rey Complex Figure and compared with 87 stroke-free controls. Hippocampal volume was determined using FSL-FIRST, with manual correction. On average 10 years after stroke, patients had smaller ipsilateral hippocampal volumes compared with controls after left-hemispheric stroke (5.4%) and right-hemispheric stroke (7.7%), with most apparent memory dysfunctioning after left-hemispheric stroke. A larger hemispheric stroke was associated with a smaller ipsilateral hippocampal volume (b=-0.003, P<0.0001). Longer follow-up duration was associated with smaller ipsilateral hippocampal volume after left-hemispheric stroke (b=-0.028 ml, P=0.002) and right-hemispheric stroke (b=-0.015 ml, P=0.03). Our results suggest that infarction is associated with remote injury to the hippocampus, which may lower or expedite the threshold for cognitive impairment or even dementia later in life. © 2015 Wiley Periodicals, Inc.

  10. Case volumes of intra-arterial and intravenous treatment of ischemic stroke in the USA.

    PubMed

    Hirsch, J A; Yoo, A J; Nogueira, R G; Verduzco, L A; Schwamm, L H; Pryor, J C; Rabinov, J D; González, R G

    2009-07-01

    Ischemic stroke is a major cause of disability and death in the USA. Intravenous tissue plasminogen activator (t-PA) remains underutilized. With the development of newer intra-arterial reperfusion therapies, there is increased opportunity to address the more devastating large-vessel occlusions. We seek to identify the numbers of patients with stroke treated with intravenous and intra-arterial therapies, as well as to estimate the potential number of intra-arterial cases in the foreseeable future. We performed a literature search to determine case volumes of intravenous t-PA use. We extrapolated the current case volume of intra-arterial stroke therapies from the numbers of cases in which the Merci retrieval device was used. In order to estimate the potential numbers of intra-arterial stroke cases, we characterized the percentage of patients with stroke who received intra-arterial therapy at two leading stroke centers. We applied these percentages to the numbers of patients with stroke seen at the top 100, 200 and 500 stroke centers by volume. The rate of intravenous t-PA use is 2.4-3.6%, resulting in 15 000-22 000 cases/year in the USA. The estimated case volume of intra-arterial therapies is 3500-7200 in 2006. Based on data from St. Luke's Brain and Stroke Institute and Massachusetts General Hospital, approximately 5-20% of patients with ischemic stroke can be treated with intra-arterial therapies. Extrapolating this to the top 500 stroke centers by volume, the potential number of intra-arterial cases in the USA is 10 400-41 500/year. Based on the current numbers of intra-arterial cases, our theoretical model identifies a potential for significant growth of this stroke therapy.

  11. Stroke volume variation as a guide for fluid resuscitation in patients undergoing large-volume liposuction.

    PubMed

    Jain, Anil Kumar; Khan, Asma M

    2012-09-01

    : The potential for fluid overload in large-volume liposuction is a source of serious concern. Fluid management in these patients is controversial and governed by various formulas that have been advanced by many authors. Basically, it is the ratio of what goes into the patient and what comes out. Central venous pressure has been used to monitor fluid therapy. Dynamic parameters, such as stroke volume and pulse pressure variation, are better predictors of volume responsiveness and are superior to static indicators, such as central venous pressure and pulmonary capillary wedge pressure. Stroke volume variation was used in this study to guide fluid resuscitation and compared with one guided by an intraoperative fluid ratio of 1.2 (i.e., Rohrich formula). : Stroke volume variation was used as a guide for intraoperative fluid administration in 15 patients subjected to large-volume liposuction. In another 15 patients, fluid resuscitation was guided by an intraoperative fluid ratio of 1.2. The amounts of intravenous fluid administered in the groups were compared. : The mean amount of fluid infused was 561 ± 181 ml in the stroke volume variation group and 2383 ± 1208 ml in the intraoperative fluid ratio group. The intraoperative fluid ratio when calculated for the stroke volume variation group was 0.936 ± 0.084. All patients maintained hemodynamic parameters (heart rate and systolic, diastolic, and mean blood pressure). Renal and metabolic indices remained within normal limits. : Stroke volume variation-guided fluid application could result in an appropriate amount of intravenous fluid use in patients undergoing large-volume liposuction. : Therapeutic, II.

  12. Physiological Effects of Training.

    DTIC Science & Technology

    1985-06-25

    applies only to short-term programs, the resting heart rate is norrally reduced as a result of aerobic training in all age groups. I0 Studies with ...in order to maintain cardiao output in conjunction with a decreased heart rate, stroke volume has to Increase. Stroke volume increases in the...volume is partially due too increased end diastolic volume. Thus, the pumping ability of the heart , I.e. increased stroke volume, is improved with

  13. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    PubMed

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  14. Dodecafluoropentane Emulsion Decreases Infarct Volume in a Rabbit Ischemic Stroke Model

    PubMed Central

    Culp, William C.; Woods, Sean D.; Skinner, Robert D.; Brown, Aliza T.; Lowery, John D.; Johnson, Jennifer L. H.; Unger, Evan C.; Hennings, Leah J.; Borrelli, Michael J.; Roberson, Paula K.

    2011-01-01

    Purpose To assess the efficacy of dodecafluoropentane emulsion (DDFPe), a nano droplet emulsion with significant oxygen transport potential, in decreasing infarct volume using an insoluble emboli rabbit stroke model. Methods New Zealand White rabbits (n=64; 5.1±0.50 kg) received angiography and embolic spheres in the internal carotid artery occluding branches. Rabbits were randomly assigned to groups in 4-hour and 7-hour studies. Four-hour groups included: control (n=7, embolized without treatment) or DDFPe treatment 30-min before stroke (n=7), or at stroke onset (n=8), 30-min after stroke (n=5), 1-hour after stroke (n=7), 2-hours after stroke (n=5), or 3-hours after stroke (n=6). Seven-hour groups included control (n=6), DDFPe at 1-hour after stroke (n=8), and DDFPe at 6-hours after stroke (n=5). DDFPe dose was 2% w/v (weight/volume) intravenous injection, 0.6 mL/kg, and repeated every 90 minutes as time allowed. Following euthanasia infarct volume was determined using vital stains on brain sections. Results At 4-hours, median percent infarct volume decreased for all DDFPe treatment times (pre-treatment=0.30%, p=0.004; onset=0.20%, p=0.004; 30-min=0.35%, p=0.009, 1-hour=0.30%, p=0.01, 2-hours=0.40%, p=0.009, 3-hours=0.25%, p=0.003) compared with controls (3.20%). At 7-hours, median percent infarct volume decreased with treatment at 1-hour (0.25%, p=0.007) but not for 6-hours (1.4%, p=0.49) compared with controls (2.2%). Conclusions Intravenous DDFPe in an animal model decreases infarct volumes and protects brain tissue from ischemia justifying further investigation. PMID:22079515

  15. Nonlinear lymphangion pressure-volume relationship minimizes edema

    PubMed Central

    Venugopal, Arun M.; Stewart, Randolph H.; Laine, Glen A.

    2010-01-01

    Lymphangions, the segments of lymphatic vessel between two valves, contract cyclically and actively pump, analogous to cardiac ventricles. Besides having a discernable systole and diastole, lymphangions have a relatively linear end-systolic pressure-volume relationship (with slope Emax) and a nonlinear end-diastolic pressure-volume relationship (with slope Emin). To counter increased microvascular filtration (causing increased lymphatic inlet pressure), lymphangions must respond to modest increases in transmural pressure by increasing pumping. To counter venous hypertension (causing increased lymphatic inlet and outlet pressures), lymphangions must respond to potentially large increases in transmural pressure by maintaining lymph flow. We therefore hypothesized that the nonlinear lymphangion pressure-volume relationship allows transition from a transmural pressure-dependent stroke volume to a transmural pressure-independent stroke volume as transmural pressure increases. To test this hypothesis, we applied a mathematical model based on the time-varying elastance concept typically applied to ventricles (the ratio of pressure to volume cycles periodically from a minimum, Emin, to a maximum, Emax). This model predicted that lymphangions increase stroke volume and stroke work with transmural pressure if Emin < Emax at low transmural pressures, but maintain stroke volume and stroke work if Emin= Emax at higher transmural pressures. Furthermore, at higher transmural pressures, stroke work is evenly distributed among a chain of lymphangions. Model predictions were tested by comparison to previously reported data. Model predictions were consistent with reported lymphangion properties and pressure-flow relationships of entire lymphatic systems. The nonlinear lymphangion pressure-volume relationship therefore minimizes edema resulting from both increased microvascular filtration and venous hypertension. PMID:20601461

  16. Are You Bleeding? Validation of a Machine-learning Algorithm for Determination of Blood Volume Status: Application to Remote Triage

    DTIC Science & Technology

    2014-01-09

    workloads were determined by matching heart rate responses from each LBNP level. Heart rate and stroke volume (SV) were measured via Finom- eter. ECG, heat...learning algorithm for the assessment of central blood volume via pulse pressure [a noninvasive surrogate of stroke volume (SV)]. These data...30 130 125 120 115 110 105 100 Actual - Finometer Predicted - Algorithm Fig. 3. Comparison of average stroke volume (SV) derived from the

  17. Left ventricular function during lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Ahmad, M.; Blomqvist, C. G.; Mullins, C. B.; Willerson, J. T.

    1977-01-01

    The response of the human left ventricle to lower body negative pressure (LBNP) and the relation between left ventricular function and hemodynamic response were investigated. Ventricular function curves relating stroke volume to end-diastolic volume were obtained in 12 normal men. Volume data were derived from echocardiographic measurements of left ventricular end-systolic and end-diastolic diameters at rest and during lower body negative pressure (LBNP) at minus 40 mm Hg. End-diastolic volume decreased by 19% and stroke volume by 22%. There were no significant changes in heart rate, arterial blood pressure, or end-systolic volume. Thus, moderate levels of LBNP significantly reduce preload and stroke volume without affecting contractile state. The absence of significant changes in heart rate and arterial blood pressure in the presence of a significant reduction in stroke volume is consistent with an increase in systemic peripheral resistance mediated by low-pressure baroreceptors.

  18. Dehydration, hemodynamics and fluid volume optimization after induction of general anesthesia.

    PubMed

    Li, Yuhong; He, Rui; Ying, Xiaojiang; Hahn, Robert G

    2014-01-01

    Fluid volume optimization guided by stroke volume measurements reduces complications of colorectal and high-risk surgeries. We studied whether dehydration or a strong hemodynamic response to general anesthesia increases the probability of fluid responsiveness before surgery begins. Cardiac output, stroke volume, central venous pressure and arterial pressures were measured in 111 patients before general anesthesia (baseline), after induction and stepwise after three bolus infusions of 3 ml/kg of 6% hydroxyethyl starch 130/0.4 (n=86) or Ringer's lactate (n=25). A subgroup of 30 patients who received starch were preloaded with 500 ml of Ringer's lactate. Blood volume changes were estimated from the hemoglobin concentration and dehydration was estimated from evidence of renal water conservation in urine samples. Induction of anesthesia decreased the stroke volume to 62% of baseline (mean); administration of fluids restored this value to 84% (starch) and 68% (Ringer's). The optimized stroke volume index was clustered around 35-40 ml/m2/beat. Additional fluid boluses increased the stroke volume by ≥10% (a sign of fluid responsiveness) in patients with dehydration, as suggested by a low cardiac index and central venous pressure at baseline and by high urinary osmolality, creatinine concentration and specific gravity. Preloading and the hemodynamic response to induction did not correlate with fluid responsiveness. The blood volume expanded 2.3 (starch) and 1.8 (Ringer's) times over the infused volume. Fluid volume optimization did not induce a hyperkinetic state but ameliorated the decrease in stroke volume caused by anesthesia. Dehydration, but not the hemodynamic response to the induction, was correlated with fluid responsiveness.

  19. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke

    PubMed Central

    Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Jiang, Xiong; Harris-Love, Michelle L.; Zeng, Jinsheng

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor’s lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion–symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter volumes in these clusters related to verbal working memory capacity, but not other cognitive functions. Further, grey matter volumes in these areas were greater in stroke survivors than healthy control subjects. To confirm this result, 10 chronic left hemisphere stroke survivors with no history of aphasia were identified. Grey matter volumes in right temporoparietal clusters were greater in stroke survivors with aphasia compared to those without history of aphasia. These findings suggest that the grey matter structure of right hemisphere posterior dorsal stream language homologues independently contributes to language production abilities in chronic left hemisphere stroke, and that these areas may undergo hypertrophy after a stroke causing aphasia. PMID:26521078

  20. The real estate factor: quantifying the impact of infarct location on stroke severity.

    PubMed

    Menezes, Nina M; Ay, Hakan; Wang Zhu, Ming; Lopez, Chloe J; Singhal, Aneesh B; Karonen, Jari O; Aronen, Hannu J; Liu, Yawu; Nuutinen, Juho; Koroshetz, Walter J; Sorensen, A Gregory

    2007-01-01

    The severity of the neurological deficit after ischemic stroke is moderately correlated with infarct volume. In the current study, we sought to quantify the impact of location on neurological deficit severity and to delineate this impact from that of volume. We developed atlases consisting of location-weighted values indicating the relative importance in terms of neurological deficit severity for every voxel of the brain. These atlases were applied to 80 first-ever ischemic stroke patients to produce estimates of clinical deficit severity. Each patient had an MRI and National Institutes of Health Stroke Scale (NIHSS) examination just before or soon after hospital discharge. The correlation between the location-based deficit predictions and measured neurological deficit (NIHSS) scores were compared with the correlation obtained using volume alone to predict the neurological deficit. Volume-based estimates of neurological deficit severity were only moderately correlated with measured NIHSS scores (r=0.62). The combination of volume and location resulted in a significantly better correlation with clinical deficit severity (r=0.79, P=0.032). The atlas methodology is a feasible way of integrating infarct size and location to predict stroke severity. It can estimate stroke severity better than volume alone.

  1. Hippocampal volume and memory performance in children with perinatal stroke.

    PubMed

    Gold, Jeffrey J; Trauner, Doris A

    2014-01-01

    Pediatric neurologists and neonatologists often are asked to predict cognitive outcome after perinatal brain injury (including likely memory and learning outcomes). However, relatively few data exist on how accurate predictions can be made. Furthermore, although the consequences of brain injury on hippocampal volume and memory performance have been studied extensively in adults, little work has been done in children. We measured the volume of the hippocampus in 27 children with perinatal stroke and 19 controls, and measured their performance on standardized verbal and non-verbal memory tests. We discovered the following: (1) As a group, children with perinatal stroke had smaller left and right hippocampi compared with control children. (2) Individually, children with perinatal stroke demonstrated 1 of 3 findings: no hippocampal loss, unilateral hippocampal loss, or bilateral hippocampal volume loss compared with control children. (3) Hippocampal volume inversely correlated with memory test performance in the perinatal stroke group, with smaller left and right hippocampal volumes related to poorer verbal and non-verbal memory test performance, respectively. (4) Seizures played a significant role in determining memory deficit and extent of hippocampal volume reduction in patients with perinatal stroke. These findings support the view that, in the developing brain, the left and right hippocampi preferentially support verbal and nonverbal memory respectively, a consistent finding in the adult literature but a subject of debate in the pediatric literature. This is the first work to report that children with focal brain injury incurred from perinatal stroke have volume reduction in the hippocampus and impairments in certain aspects of declarative memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Significant Association of Annual Hospital Volume With the Risk of Inhospital Stroke or Death Following Carotid Endarterectomy but Likely Not After Carotid Stenting: Secondary Data Analysis of the Statutory German Carotid Quality Assurance Database.

    PubMed

    Kuehnl, Andreas; Tsantilas, Pavlos; Knappich, Christoph; Schmid, Sofie; König, Thomas; Breitkreuz, Thorben; Zimmermann, Alexander; Mansmann, Ulrich; Eckstein, Hans-Henning

    2016-11-01

    Associations between hospital volume and the risk of stroke or death following carotid endarterectomy (CEA) and carotid artery stenting (CAS) on a national level in Germany were analyzed. Secondary data analysis using microdata from the nationwide statutory German quality assurance database on all surgical or endovascular carotid interventions on the extracranial carotid artery between 2009 and 2014. Hospitals were categorized into empirically determined quintiles according to the annual case volume. The resulting volume thresholds were 10, 25, 46, and 79 for CEA and 2, 6, 12, and 26 for CAS procedures. The primary outcome was any stroke or death before hospital discharge. For risk-adjusted analyses, a multilevel regression model was applied. The analysis included 161 448 CEA and 17 575 CAS procedures. In CEA patients, the crude risk of stroke or death decreased monotonically from 4.2% (95% confidence interval, 3.6%-4.9%) in low-volume hospitals (first quintile 1-10 CEA per year) to 2.1% (2.0%-2.2%) in hospitals providing ≥80 CEA per year (fifth quintile; P<0.001 for trend). The overall risk of any stroke or death in CAS patients was 3.7% (3.5%-4.0%), but no trend on annual volume was seen (P=0.304). Risk-adjusted analyses confirmed a significant inverse relationship between hospital volume (categorized or continuous) and the risk of stroke or death after CEA but not CAS procedures. An inverse volume-outcome relationship in CEA-treated patients was demonstrated. No significant association between hospital volume and the risk of stroke or death was found for CAS. © 2016 American Heart Association, Inc.

  3. Beat by beat stroke volume assessment by PDE in upright and supine exercise

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A 3.0 MHz pulse Doppler echocardiograph was used to estimate instantaneous stroke volume and cardiac output in 8 men during steady state supine and upright exercise at 300 kpm/min which were compared with other studies utilizing invasive procedures. The mean transients in heart rate and stroke volume and cardiac output for the first 20 sec of exercise in each posture were then determined. Centerline blood velocities were obtained in the ascending aorta with the transducer positioned manually in the suprasternal notch. Mean supine values for stroke volume and cardiac output at rest and exercise were 111 (6.4) and 112 ml (9.7 L/min), respectively, for supine. The corresponding results for upright were 76 (5.6) and 92 ml (8.4 L/min). These values compare favorably with prior studies. The transient response of cardiac output following the onset of upright was about twice as fast as in S because of the rapid and almost immediate upsurge in stroke volume. In supine, only heart rate served to augment cardiac output as stroke volume initially fell. The faster initial aortic flow in upright must represent the rapid mobilization of pooled venous blood from the leg veins which more than accounts for the additional volume (184 ml) of blood passing through the aorta during upright compared with supine in the first 20 sec.

  4. Quantification of gastric emptying and duodenogastric reflux stroke volumes using three-dimensional guided digital color Doppler imaging.

    PubMed

    Hausken, T; Li, X N; Goldman, B; Leotta, D; Ødegaard, S; Martin, R W

    2001-07-01

    To develop a non-invasive method for evaluating gastric emptying and duodenogastric reflux stroke volumes using three-dimensional (3D) guided digital color Doppler imaging. The technique involved color Doppler digital images of transpyloric flow in which the 3D position and orientation of the images were known by using a magnetic location system. In vitro, the system was found to slightly underestimate the reference flow (by average 8.8%). In vivo (five volunteers), stroke volume of gastric emptying episodes lasted on average only 0.69 s with a volume on average of 4.3 ml (range 1.1-7.4 ml), and duodenogastric reflux episodes on average 1.4 s with a volume of 8.3 ml (range 1.3-14.1 ml). With the appropriate instrument settings, orientation determined color Doppler can be used for stroke volume quantification of gastric emptying and duodenogastric reflux episodes.

  5. Impact of Infarct Size on Blood Pressure in Young Patients with Acute Stroke.

    PubMed

    Bonardo, Pablo; Pantiú, Fátima; Ferraro, Martín; Chertcoff, Anibal; Bandeo, Lucrecia; Cejas, Luciana León; Pacha, Sol; Roca, Claudia Uribe; Rugilo, Carlos; Pardal, Manuel Maria Fernández; Reisin, Ricardo

    2018-06-01

    Hypertension can be found in up to 80% of patients with acute stroke. Many factors have been related to this phenomenon such as age, history of hypertension, and stroke severity. The aim of our study was to determine the relationship between infarct volume and blood pressure, at admission, in young patients with acute ischemic stroke. Patients younger than 55 years old admitted within 24 hours of ischemic stroke were included. Socio-demographic variables, systolic blood pressure, diastolic blood pressure, and infarct volume at admission were assessed. Statistical analysis: mean and SEM for quantitative variables, percentages for qualitative, and Spearman correlations ( p value < 0.05 was considered statistically significant). Twenty-two patients (12 men), mean age: 44.64 ± 1.62 years. The most frequent vascular risk factors were: hypertension, smoking, and overweight (40.9%). Mean systolic and diastolic blood pressure on admission were: 143.27 ± 6.57 mmHg and 85.14 ± 3.62 mmHg, respectively. Infarct volume: 11.55 ± 4.74 ml. Spearman correlations: systolic blood pressure and infarct volume: p = 0.15 r : -0.317; diastolic blood pressure and infarct volume: p = 0.738 r: -0.76. In our series of young patients with acute ischemic stroke, large infarct volume was not associated with high blood pressure at admission.

  6. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.

    PubMed

    Xing, Shihui; Lacey, Elizabeth H; Skipper-Kallal, Laura M; Jiang, Xiong; Harris-Love, Michelle L; Zeng, Jinsheng; Turkeltaub, Peter E

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter volumes in these clusters related to verbal working memory capacity, but not other cognitive functions. Further, grey matter volumes in these areas were greater in stroke survivors than healthy control subjects. To confirm this result, 10 chronic left hemisphere stroke survivors with no history of aphasia were identified. Grey matter volumes in right temporoparietal clusters were greater in stroke survivors with aphasia compared to those without history of aphasia. These findings suggest that the grey matter structure of right hemisphere posterior dorsal stream language homologues independently contributes to language production abilities in chronic left hemisphere stroke, and that these areas may undergo hypertrophy after a stroke causing aphasia. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Association between the volume of inpatient rehabilitation therapy and the risk of all-cause and cardiovascular mortality in patients with ischemic stroke.

    PubMed

    Hu, Gwo-Chi; Hsu, Chia-Yu; Yu, Hui-Kung; Chen, Jiann-Perng; Chang, Yu-Ju; Chien, Kuo-Liong

    2014-02-01

    To investigate the relationship between the volume of inpatient rehabilitation therapy and mortality among patients with acute ischemic stroke, as well as to assess whether the association varies with respect to stroke severity. A retrospective study with a cohort of consecutive patients who had acute ischemic stroke between January 1, 2008, and June 30, 2009. Referral medical center. Adults with acute ischemic stroke (N=1277) who were admitted to a tertiary hospital. Not applicable. Stroke-related mortality. During the median follow-up period of 12.3 months (ranging from January 1, 2008, to December 31, 2009), 163 deaths occurred. Greater volume of rehabilitation therapy was associated with a reduced risk of all-cause and cardiovascular mortality (P for trend <.001 for both). Compared with the first tertile, the third tertile of rehabilitation volume was associated with a 55% lower risk of all-cause mortality (hazard ratio [HR]=.45; 95% confidence interval [CI], .30-.65) and a 50% lower risk of cardiovascular mortality (HR=.50; 95% CI, .31-.82). The association did not vary with respect to stroke severity (P for interaction = .45 and .73 for all-cause and cardiovascular mortality, respectively). The volume of inpatient rehabilitation therapy and mortality were significantly inversely related in the patients with ischemic stroke. Thus, further programs aimed at promoting greater use of rehabilitation services are warranted. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Blockade of hyperpolarization-activated channels modifies the effect of beta-adrenoceptor stimulation.

    PubMed

    Zefirov, T L; Ziyatdinova, N I; Gainullin, A A; Zefirov, A L

    2002-05-01

    Experiments on rats showed that blockade of hyperpolarization-activated currents moderates tachycardia induced by beta-adrenoceptor agonist isoproterenol and potentiates the increase in stroke volume produced by this agonist. Electrical stimulation of the vagus nerve against the background of isoproterenol treatment augmented bradycardia and increased stroke volume. Blockade of hyperpolarization-activated currents followed by application of isoproterenol moderated vagus-induced bradycardia and had no effect on the dynamics of stroke volume.

  9. Low rates of complications for carotid artery stenting are associated with a high clinician volume of carotid artery stenting and aortic endografting but not with a high volume of percutaneous coronary interventions.

    PubMed

    Modrall, J Gregory; Chung, Jayer; Kirkwood, Melissa L; Baig, M Shadman; Tsai, Shirling X; Timaran, Carlos H; Valentine, R James; Rosero, Eric B

    2014-07-01

    Prior studies have demonstrated improved clinical outcomes for surgeons with a high-volume experience with certain open vascular operations. A high-volume experience with carotid artery stenting (CAS) improves clinical outcomes. Moreover, it is not known whether experience with other endovascular procedures, including percutaneous coronary interventions (PCIs), is an adequate substitute for experience with CAS. The goal of this study was to quantify the effect of increasing clinician volume of CAS, endovascular aneurysm repair (EVAR), and thoracic endovascular aortic aneurysm repair (TEVAR), and PCI on the outcomes for CAS. The Nationwide Inpatient Sample was analyzed to identify patients undergoing CAS for the years 2005 to 2009. Clinicians were stratified into tertiles of low-volume, medium-volume, and high-volume groups by annual volume of CAS, EVAR/TEVAR, and PCI. Multiple logistic regression analyses were used to examine the relationship between clinician volume and a composite outcome of the in-hospital stroke and death rate after CAS. Between 2005 and 2009, 56,374 elective CAS procedures were performed nationwide, with a crude in-hospital stroke and death rate of 3.22%. A median of nine CAS procedures (interquartile range, 3-20) were performed annually per clinician. As expected, stroke and death rates for CAS decreased with increasing volume of CAS performed by a clinician (low-volume vs medium-volume vs high-volume: 4.43% vs 2.89% vs 2.27%; P = .0001). Similar patterns were noted between clinicians' volume of EVAR/TEVAR (low-volume vs medium-volume vs high-volume: 4.58% vs 3.18% vs 2.16%; P = .0023). In contrast, increasing PCI volume was not associated with decreased stroke and death rates after CAS (low-volume vs medium-volume vs high-volume: 2.99% vs 3.18% vs 3.55%; P = .35). After adjusting for patient and hospital characteristics, clinician volume of CAS (odds ratio [OR], 0.84; 95% confidence interval [CI], 0.74-0.94; P = .003) and EVAR/TEVAR (OR, 0.85; 95% CI, 0.75-0.97; P = .020) remained significant predictors of stroke and death after CAS, whereas increasing clinician volume of PCI was associated with significantly increasing likelihood of stroke or death after CAS (OR, 1.025; 95% CI, 1.004-1.047; P = .019). The stroke and death rate for CAS to treat carotid stenosis is inversely affected by the number of CAS and EVAR/TEVAR procedures performed by a clinician. In contrast, a high-volume experience with PCI is not associated with improved outcomes after CAS. Copyright © 2014 Society for Vascular Surgery. All rights reserved.

  10. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients.

    PubMed

    Soares, Bruno P; Tong, Elizabeth; Hom, Jason; Cheng, Su-Chun; Bredno, Joerg; Boussel, Loic; Smith, Wade S; Wintermark, Max

    2010-01-01

    The purpose of this study was to compare recanalization and reperfusion in terms of their predictive value for imaging outcomes (follow-up infarct volume, infarct growth, salvaged penumbra) and clinical outcome in acute ischemic stroke patients. Twenty-two patients admitted within 6 hours of stroke onset were retrospectively included in this study. These patients underwent a first stroke CT protocol including CT-angiography (CTA) and perfusion-CT (PCT) on admission, and similar imaging after treatment, typically around 24 hours, to assess recanalization and reperfusion. Recanalization was assessed by comparing arterial patency on admission and posttreatment CTAs; reperfusion, by comparing the volumes of CBV, CBF, and MTT abnormality on admission and posttreatment PCTs. Collateral flow was graded on the admission CTA. Follow-up infarct volume was measured on the discharge noncontrast CT. The groups of patients with reperfusion, no reperfusion, recanalization, and no recanalization were compared in terms of imaging and clinical outcomes. Reperfusion (using an MTT reperfusion index >75%) was a more accurate predictor of follow-up infarct volume than recanalization. Collateral flow and recanalization were not accurate predictors of follow-up infarct volume. An interaction term was found between reperfusion and the volume of the admission penumbra >50 mL. Our study provides evidence that reperfusion is a more accurate predictor of follow-up infarct volume in acute ischemic stroke patients than recanalization. We recommend an MTT reperfusion index >75% to assess therapy efficacy in future acute ischemic stroke trials that use perfusion-CT.

  11. Quantitation of aortic and mitral regurgitation in the pediatric population: evaluation by radionuclide angiocardiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, R.A.; Treves, S.; Freed, M.

    The ability to quantitate aortic (AR) or mitral regurgitation (MR), or both, by radionuclide angiocardiography was evaluated in children and young adults at rest and during isometric exercise. Regurgitation was estimated by determining the ratio of left ventricular stroke volume to right ventricular stroke volume obtained during equilibrium ventriculography. The radionuclide measurement was compared with results of cineangiography, with good correlation between both studies in 47 of 48 patients. Radionuclide stroke volume ratio was used to classify severity: the group with equivocal regurgitation differed from the group with mild regurgitation (p less than 0.02); patients with mild regurgitation differed frommore » those with moderate regurgitation (p less than 0.001); and those with moderate regurgitation differed from those with severe regurgitation (p less than 0.01). The stroke volume ratio was responsive to isometric exercise, remaining constant or increasing in 16 of 18 patients. After surgery to correct regurgitation, the stroke volume ratio significantly decreased from preoperative measurements in all 7 patients evaluated. Results from the present study demonstrate that a stroke volume ratio greater than 2.0 is compatible with moderately severe regurgitation and that a ratio greater than 3.0 suggests the presence of severe regurgitation. Thus, radionuclide angiocardiography should be useful for noninvasive quantitation of AR or MR, or both, helping define the course of young patients with left-side valvular regurgitation.« less

  12. Evaluation of the pulse-contour method of determining stroke volume in man.

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.; Branzi, A.; Sanders, W.; Brown, B. W.; Harrison, D. C.

    1972-01-01

    The pulse-contour method for determining stroke volume has been employed as a continuous rapid method of monitoring the cardiovascular status of patients. Twenty-one patients with ischemic heart disease and 21 patients with mitral valve disease were subjected to a variety of hemodynamic interventions. The pulse-contour estimations, using three different formulas derived by Warner, Kouchoukos, and Herd, were compared with indicator-dilution outputs. A comparison of the results of the two methods for determining stroke volume yielded correlation coefficients ranging from 0.59 to 0.84. The better performing Warner formula yielded a coefficient of variation of about 20%. The type of hemodynamic interventions employed did not significantly affect the results using the pulse-contour method. Although the correlation of the pulse-contour and indicator-dilution stroke volumes is high, the coefficient of variation is such that small changes in stroke volume cannot be accurately assessed by the pulse-contour method. However, the simplicity and rapidity of this method compared to determination of cardiac output by Fick or indicator-dilution methods makes it a potentially useful adjunct for monitoring critically ill patients.

  13. Did we misunderstand how to calculate total stroke work in mitral regurgitation by echocardiography?

    PubMed

    Shingu, Yasushige; Matsui, Yoshiro

    2012-01-01

    Total stroke work (TSW) is used for the estimation of cardiac efficiency in mitral regurgitation (MR). We should be cautious about the interpretation of this parameter, especially when it is assessed by non-invasive methods such as echocardiography. For the calculation of regurgitant stroke work, regurgitant volume is usually multiplied by left atrial (LA) pressure. However, by considering the left ventricular (LV) pressure-volume loop, it would be more appropriate to multiply regurgitant volume and the LV pressure, not the atrial one. We might underestimate TSW when we use LA pressure for the estimation of regurgitant stroke work.

  14. Characterization of fluid physics effects on cardiovascular response to microgravity (G-572)

    NASA Technical Reports Server (NTRS)

    Pantalos, George M.; Bennett, Thomas E.; Sharp, M. Keith; Woodruff, Stewart; Oleary, Sean; Gillars, Kevin; Lemon, Mark; Sojka, Jan

    1995-01-01

    The investigation of cardiovascular adaptation to space flight has seen substantial advancement in the last several years. In-flight echocardiographic measurements of astronaut cardiac function on the Space Shuttle have documented an initial increase, followed by a progressive reduction in both left ventricular volume index and stroke volume with a compensatory increase in heart rate to maintain cardiac output. To date, the reduced cardiac size and stroke volume have been presumed to be the consequence of the reduction in circulating fluid volume within a few days after orbital insertion. However, no specific mechanism for the reduced stroke volume has been identified. The following investigation proposes the use of a hydraulic model of the cardiovascular system to examine the possibility that the observed reduction in stroke volume may, in part, be related to fluid physics effects on heart function. The automated model is being prepared to fly as a Get Away Special (GAS) payload within the next year.

  15. Association of MTHFR C677T Genotype With Ischemic Stroke Is Confined to Cerebral Small Vessel Disease Subtype

    PubMed Central

    Traylor, Matthew; Adib-Samii, Poneh; Thijs, Vincent; Sudlow, Cathie; Rothwell, Peter M.; Boncoraglio, Giorgio; Dichgans, Martin; Meschia, James; Maguire, Jane; Levi, Christopher; Rost, Natalia S.; Rosand, Jonathan; Hassan, Ahamad; Bevan, Steve; Markus, Hugh S.

    2016-01-01

    Background and Purpose— Elevated plasma homocysteine levels are associated with stroke. However, this might be a reflection of bias or confounding because trials have failed to demonstrate an effect from homocysteine lowering in stroke patients, although a possible benefit has been suggested in lacunar stroke. Genetic studies could potentially overcome these issues because genetic variants are inherited randomly and are fixed at conception. Therefore, we tested the homocysteine levels–associated genetic variant MTHFR C677T for association with magnetic resonance imaging–confirmed lacunar stroke and compared this with associations with large artery and cardioembolic stroke subtypes. Methods— We included 1359 magnetic resonance imaging–confirmed lacunar stroke cases, 1824 large artery stroke cases, 1970 cardioembolic stroke cases, and 14 448 controls, all of European ancestry. Furthermore, we studied 3670 ischemic stroke patients in whom white matter hyperintensities volume was measured. We tested MTHFR C677T for association with stroke subtypes and white matter hyperintensities volume. Because of the established association of homocysteine with hypertension, we additionally stratified for hypertension status. Results— MTHFR C677T was associated with lacunar stroke (P=0.0003) and white matter hyperintensity volume (P=0.04), but not with the other stroke subtypes. Stratifying the lacunar stroke cases for hypertension status confirmed this association in hypertensive individuals (P=0.0002), but not in normotensive individuals (P=0.30). Conclusions— MTHFR C677T was associated with magnetic resonance imaging–confirmed lacunar stroke, but not large artery or cardioembolic stroke. The association may act through increased susceptibility to, or interaction with, high blood pressure. This heterogeneity of association might explain the lack of effect of lowering homocysteine in secondary prevention trials which included all strokes. PMID:26839351

  16. Clinical Correlates of Infarct Shape and Volume in Lacunar Strokes The SPS3 Trial

    PubMed Central

    Asdaghi, Negar; Pearce, Leasly A.; Nakajima, Makoto; Field, Thalia S; Bazan, Carlos; Cermeno, Franco; McClure, Leslie A.; Anderson, David C.; Hart, Robert G.; Benavente, Oscar R.

    2014-01-01

    Background and Purpose Infarct size and location are thought to correlate with different mechanisms of lacunar infarcts. We examined the relationship between the size and shape of lacunar infarcts and vascular risk factors and outcomes. Methods We studied 1679 participants in the Secondary Prevention of Small Subcortical Stroke trial with a lacunar infarct visualized on DWI. Infarct volume was measured planimetrically, and shape was classified based on visual analysis after 3D reconstruction of axial MRI slices. Results Infarct shape was ovoid/spheroid in 63%, slab 12%, stick 7%, and multi- component 17%. Median infarct volume was smallest in ovoid/spheroid relative to other shapes: 0.46, 0.65, 0.54, and 0.90 ml respectively, p< 0.001. Distributions of vascular risk factors were similar across the four groups except that patients in the ovoid/spheroid and stick groups were more often diabetic and those with multi-component had significantly higher blood pressure at study entry. Intracranial stenosis did not differ among groups (p=0.2). Infarct volume was not associated with vascular risk factors. Increased volume was associated with worse functional status at baseline and 3 months. Overall, 162 recurrent strokes occurred over an average of 3.4 years of follow-up with no difference in recurrent ischemic stroke rate by shape or volume. Conclusion In patients with recent lacunar stroke, vascular risk factor profile was similar amongst the different infarct shapes and sizes. Infarct size correlated with worse short- term functional outcome. Neither shape nor volume was predictive of stroke recurrence. PMID:25190442

  17. Volume of Plasma Expansion and Functional Outcomes in Stroke.

    PubMed

    Miller, Joseph B; Lewandowski, Christopher; Wira, Charles R; Taylor, Andrew; Burmeister, Charlotte; Welch, Robert

    2017-04-01

    Plasma expansion in acute ischemic stroke has potential to improve cerebral perfusion, but the long-term effects on functional outcome are mixed in prior trials. The goal of this study was to evaluate how the magnitude of plasma expansion affects neurological recovery in acute stroke. This was a secondary analysis of data from the Albumin in Acute Stroke Part 2 trial investigating the relationship between the magnitude of overall intravenous volume infusion (crystalloid and colloid) to clinical outcome. The data were inclusive of 841 patients with a mean age of 64 years and a median National Institutes of Health Stroke Scale (NIHSS) of 11. In a multivariable-adjusted logistic regression model, this analysis tested the volume of plasma expansion over the first 48 h of hospitalization as a predictor of favorable outcome, defined as either a modified Rankin Scale score of 0 or 1 or a NIHSS score of 0 or 1 at 90 days. This model included all study patients, irrespective of albumin or isotonic saline treatment. Patients that received higher volumes of plasma expansion more frequently had large vessel ischemic stroke and higher NIHSS scores. The multivariable-adjusted model revealed that there was decreased odds of a favorable outcome for every 250 ml additional volume plasma expansion over the first 48 h (OR 0.91, 95 % CI, 0.88-0.94). The present study demonstrates an association between greater volume of plasma expansion and worse neurological recovery.

  18. Anesthesia in a Combat Environment

    DTIC Science & Technology

    1981-09-25

    infusion in those patients where disruption of iliac vei~ns or inferior vena cava is a possibility (pelvic, abdominal, or chest trauima), A cathetor...minimal or no decrease in cardiac output, stroke volume, left -ventricular work, stroke work, and mean arterial pressure (5). Halothane, fluroxene, and...healthy young male volunteers to preserve cardiac output unchanged, decrease stroke volume, arterial pressure, peripheral resistance, 02 and left

  19. Effect of public awareness campaigns on calls to ambulance across Australia.

    PubMed

    Bray, Janet E; Straney, Lahn; Barger, Bill; Finn, Judith

    2015-05-01

    The National Stroke Foundation of Australia has run 12 public awareness campaigns since 2004. Campaign exposure and funding has varied annually and regionally during this time. The aim of this study was to measure the effect of campaigns on calls to ambulance for stroke across Australia in exposed regions (paid or pro bono advertising). All ambulance services in Australia provided monthly ambulance dispatch data between January 2003 and June 2014. We performed multivariable regression to measure the effect of campaign exposure on the volume of stroke-related emergency calls, after controlling for confounders. The final model indicated that 11 of the 12 National Stroke Foundation campaigns were associated with increases in the volume of stroke-related calls (varying between 1% and 9.9%) in regions with exposure to advertising. This increase lasted ≈3 months, with an additional 10.2% relative increase in the volume of the calls in regions with paid advertising. We found no significant additional effect of the campaigns on stroke calls where ambulance services are publicly funded. The National Stroke Foundation stroke awareness campaigns are associated with increases to calls to ambulance for stroke in regions receiving advertising and promotion. Research is now required to examine whether this increased use in ambulance is for appropriate emergencies. © 2015 American Heart Association, Inc.

  20. Left ventricular pressure and volume data acquisition and analysis using LabVIEW.

    PubMed

    Cassidy, S C; Teitel, D F

    1997-03-01

    To automate analysis of left ventricular pressure-volume data, we used LabVIEW to create applications that digitize and display data recorded from conductance and manometric catheters. Applications separate data into cardiac cycles, calculate parallel conductance, and calculate indices of left ventricular function, including end-systolic elastance, preload-recruitable stroke work, stroke volume, ejection fraction, stroke work, maximum and minimum derivative of ventricular pressure, heart rate, indices of relaxation, peak filling rate, and ventricular chamber stiffness. Pressure-volume loops can be graphically displayed. These analyses are exported to a text-file. These applications have simplified and automated the process of evaluating ventricular function.

  1. Racial and socioeconomic disparities in access to mechanical revascularization procedures for acute ischemic stroke.

    PubMed

    Attenello, Frank J; Adamczyk, Peter; Wen, Ge; He, Shuhan; Zhang, Katie; Russin, Jonathan J; Sanossian, Nerses; Amar, Arun P; Mack, William J

    2014-02-01

    Mechanical revascularization procedures performed for treatment of acute ischemic stroke have increased in recent years. Data suggest association between operative volume and mortality rates. Understanding procedural allocation and patient access patterns is critical. Few studies have examined these demographics. Data were collected from the 2008 Nationwide Inpatient Sample database. Patients hospitalized with ischemic stroke and the subset of individuals who underwent mechanical thrombectomy were characterized by race, payer source, population density, and median wealth of the patient's zip code. Demographic data among patients undergoing mechanical thrombectomy procedures were examined. Stroke admission demographics were analyzed according to thrombectomy volume at admitting centers and patient demographics assessed according to the thrombectomy volume at treating centers. Significant allocation differences with respect to frequency of mechanical thrombectomy procedures among stroke patients existed according to race, expected payer, population density, and wealth of the patient's zip code (P < .0001). White, Hispanic, and Asian/Pacific Islander patients received endovascular treatment at higher rates than black and Native American patients. Compared with the white stroke patients, black (P < .001), Hispanic (P < .001), Asian/Pacific Islander (P < .001), and Native American stroke patients (P < .001) all demonstrated decreased frequency of admission to hospitals performing mechanical thrombectomy procedures at high volumes. Among treated patients, blacks (P = .0876), Hispanics (P = .0335), and Asian/Pacific Islanders (P < .001) demonstrated decreased frequency in mechanical thrombectomy procedures performed at high-volume centers when compared with whites. While present, socioeconomic disparities were not as consistent or pronounced as racial differences. We demonstrate variances in endovascular acute stroke treatment allocation according to racial and socioeconomic factors in 2008. Efforts should be made to monitor and address potential disparities in treatment utilization. Published by Elsevier Inc.

  2. Association between arterial calcifications and nonlacunar and lacunar ischemic strokes.

    PubMed

    van Dijk, Anouk C; Fonville, Susanne; Zadi, Taihra; van Hattem, Antonius M G; Saiedie, Ghesrouw; Koudstaal, Peter J; van der Lugt, Aad

    2014-03-01

    Nonlacunar cerebral infarcts are presumed to be caused by thromboembolism from the heart or extracranial arteries, whereas lacunar infarcts are thought to be caused by small vessel disease. We investigated to what extent arterial calcifications differ between nonlacunar and lacunar ischemic strokes. We studied 820 consecutive patients with transient ischemic attack or ischemic stroke in the anterior circulation who underwent multidetector computed tomography angiography and had no rare cause of stroke. The presence of likely cardioembolic pathogenesis was determined according to the Trial of Org 10172 in Acute Stroke Treatment criteria. The remaining 708 patients were categorized as nonlacunar or lacunar strokes, either transient ischemic attacks or strokes, based on clinical symptoms corrected by brain imaging results. We measured volume of calcifications in the aortic arch, symptomatic extracranial and intracranial carotid artery using multidetector computed tomography angiography. The difference in calcifications between nonlacunar and lacunar strokes was assessed with a multivariable logistic regression analysis. We adjusted for degree of symptomatic carotid artery stenosis and cardiovascular risk factors. We found an independent association between volume of aortic arch calcifications and nonlacunar ischemic strokes (adjusted odds ratio [95% confidence interval], 1.11 [1.02-1.21]). No independent associations between extracranial and intracranial carotid artery calcifications and nonlacunar strokes were present. The only difference we found between nonlacunar and lacunar strokes was a higher calcification volume in the aortic arch in nonlacunar strokes. Our findings only partially confirm the notion of distinct etiologies and suggest that the potential role of other plaque components, plaque morphology, and aortic arch calcifications in ischemic stroke subtypes awaits further evaluation.

  3. Post-stroke dementia: the contribution of thalamus and basal ganglia changes.

    PubMed

    Lopes, Marcos Antonio; Firbank, Michael J; Widdrington, Michelle; Blamire, Andrew M; Kalaria, Raj N; O'Brien, John T

    2012-04-01

    The neurobiological basis of increased risk of dementia in stroke patients is unclear, though there are several related pathological changes, including white matter hyperintensities (WMH), and medial temporal atrophy. Subcortical gray matter structures have also been implicated in dementia resulting from vascular pathology, particularly vascular dementia. This study aimed to investigate the contribution of changes in subcortical gray matter structures to post-stroke dementia (PSD). T1- and T2-weighted images and T2-weighted fluid-attenuated inversion recovery (FLAIR) images were obtained on a 3-Tesla magnetic resonance (MR) system, in four groups aged over 75 years: post-stroke with dementia (PSD; 8), post-stroke no dementia (PSnoD; 33), Alzheimer's disease (AD; 26) and controls (30). Automated software was used to measure the volume of thalamus, putamen, caudate nucleus, and hippocampus as well as total WMH volume. The number of subcortical lacunes was also counted. The number of caudate lacunes was higher in the PSnoD group, compared with AD (p = 0.029) and controls (p = 0.019). The putamen volume was smaller in the stroke and AD groups, when compared with controls. In the whole stroke group, putamen lacunes were correlated with impairment in memory (Rey test; ρ = -0.365; p = 0.031), while WMH and hippocampal volume both correlated with global dysfunction. Our findings implicate a variety of neurobiological substrates of dementia, such as small vessel disease and Alzheimer pathology, which develop after stroke in an old older population, with a contribution from subcortical brain structures.

  4. A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke

    PubMed Central

    Promjunyakul, Nutta-on; Schmit, Brian D.; Schindler-Ivens, Sheila M.

    2015-01-01

    The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann’s area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of –0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum – but not cortex – was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities. PMID:26089789

  5. Echocardiography underestimates stroke volume and aortic valve area: implications for patients with small-area low-gradient aortic stenosis.

    PubMed

    Chin, Calvin W L; Khaw, Hwan J; Luo, Elton; Tan, Shuwei; White, Audrey C; Newby, David E; Dweck, Marc R

    2014-09-01

    Discordance between small aortic valve area (AVA; < 1.0 cm(2)) and low mean pressure gradient (MPG; < 40 mm Hg) affects a third of patients with moderate or severe aortic stenosis (AS). We hypothesized that this is largely due to inaccurate echocardiographic measurements of the left ventricular outflow tract area (LVOTarea) and stroke volume alongside inconsistencies in recommended thresholds. One hundred thirty-three patients with mild to severe AS and 33 control individuals underwent comprehensive echocardiography and cardiovascular magnetic resonance imaging (MRI). Stroke volume and LVOTarea were calculated using echocardiography and MRI, and the effects on AVA estimation were assessed. The relationship between AVA and MPG measurements was then modelled with nonlinear regression and consistent thresholds for these parameters calculated. Finally the effect of these modified AVA measurements and novel thresholds on the number of patients with small-area low-gradient AS was investigated. Compared with MRI, echocardiography underestimated LVOTarea (n = 40; -0.7 cm(2); 95% confidence interval [CI], -2.6 to 1.3), stroke volumes (-6.5 mL/m(2); 95% CI, -28.9 to 16.0) and consequently, AVA (-0.23 cm(2); 95% CI, -1.01 to 0.59). Moreover, an AVA of 1.0 cm(2) corresponded to MPG of 24 mm Hg based on echocardiographic measurements and 37 mm Hg after correction with MRI-derived stroke volumes. Based on conventional measures, 56 patients had discordant small-area low-gradient AS. Using MRI-derived stroke volumes and the revised thresholds, a 48% reduction in discordance was observed (n = 29). Echocardiography underestimated LVOTarea, stroke volume, and therefore AVA, compared with MRI. The thresholds based on current guidelines were also inconsistent. In combination, these factors explain > 40% of patients with discordant small-area low-gradient AS. Copyright © 2014 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  6. Motion-aware stroke volume quantification in 4D PC-MRI data of the human aorta.

    PubMed

    Köhler, Benjamin; Preim, Uta; Grothoff, Matthias; Gutberlet, Matthias; Fischbach, Katharina; Preim, Bernhard

    2016-02-01

    4D PC-MRI enables the noninvasive measurement of time-resolved, three-dimensional blood flow data that allow quantification of the hemodynamics. Stroke volumes are essential to assess the cardiac function and evolution of different cardiovascular diseases. The calculation depends on the wall position and vessel orientation, which both change during the cardiac cycle due to the heart muscle contraction and the pumped blood. However, current systems for the quantitative 4D PC-MRI data analysis neglect the dynamic character and instead employ a static 3D vessel approximation. We quantify differences between stroke volumes in the aorta obtained with and without consideration of its dynamics. We describe a method that uses the approximating 3D segmentation to automatically initialize segmentation algorithms that require regions inside and outside the vessel for each temporal position. This enables the use of graph cuts to obtain 4D segmentations, extract vessel surfaces including centerlines for each temporal position and derive motion information. The stroke volume quantification is compared using measuring planes in static (3D) vessels, planes with fixed angulation inside dynamic vessels (this corresponds to the common 2D PC-MRI) and moving planes inside dynamic vessels. Seven datasets with different pathologies such as aneurysms and coarctations were evaluated in close collaboration with radiologists. Compared to the experts' manual stroke volume estimations, motion-aware quantification performs, on average, 1.57% better than calculations without motion consideration. The mean difference between stroke volumes obtained with the different methods is 7.82%. Automatically obtained 4D segmentations overlap by 85.75% with manually generated ones. Incorporating motion information in the stroke volume quantification yields slight but not statistically significant improvements. The presented method is feasible for the clinical routine, since computation times are low and essential parts run fully automatically. The 4D segmentations can be used for other algorithms as well. The simultaneous visualization and quantification may support the understanding and interpretation of cardiac blood flow.

  7. Evaluation of a new 3-dimensional color Doppler flow method to quantify flow across the mitral valve and in the left ventricular outflow tract: an in vitro study.

    PubMed

    Kimura, Sumito; Streiff, Cole; Zhu, Meihua; Shimada, Eriko; Datta, Saurabh; Ashraf, Muhammad; Sahn, David J

    2014-02-01

    The aim of this study was to assess the accuracy, feasibility, and reproducibility of determining stroke volume from a novel 3-dimensional (3D) color Doppler flow quantification method for mitral valve (MV) inflow and left ventricular outflow tract (LVOT) outflow at different stroke volumes when compared with the actual flow rate in a pumped porcine cardiac model. Thirteen freshly harvested pig hearts were studied in a water tank. We inserted a latex balloon into each left ventricle from the MV annulus to the LVOT, which were passively pumped at different stroke volumes (30-80 mL) using a calibrated piston pump at increments of 10 mL. Four-dimensional flow volumes were obtained without electrocardiographic gating. The digital imaging data were analyzed offline using prototype software. Two hemispheric flow-sampling planes for color Doppler velocity measurements were placed at the MV annulus and LVOT. The software computed the flow volumes at the MV annulus and LVOT within the user-defined volume and cardiac cycle. This novel 3D Doppler flow quantification method detected incremental increases in MV inflow and LVOT outflow in close agreement with pumped stroke volumes (MV inflow, r = 0.96; LVOT outflow, r = 0.96; P < .01). Bland-Altman analysis demonstrated overestimation of both (MV inflow, 5.42 mL; LVOT outflow, 4.46 mL) with 95% of points within 95% limits of agreement. Interobserver variability values showed good agreement for all stroke volumes at both the MV annulus and LVOT. This study has shown that the 3D color Doppler flow quantification method we used is able to compute stroke volumes accurately at the MV annulus and LVOT in the same cardiac cycle without electrocardiographic gating. This method may be valuable for assessment of cardiac output in clinical studies.

  8. Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume

    PubMed Central

    Perrichon, Prescilla; Grosell, Martin; Burggren, Warren W.

    2017-01-01

    Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the “standard” prolate spheroid model as well as a cylinder and cone tip + cylinder model) applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30–50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function—especially if stroke volume is the focus of the study—should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output. PMID:28725199

  9. Stroke Location Is an Independent Predictor of Cognitive Outcome.

    PubMed

    Munsch, Fanny; Sagnier, Sharmila; Asselineau, Julien; Bigourdan, Antoine; Guttmann, Charles R; Debruxelles, Sabrina; Poli, Mathilde; Renou, Pauline; Perez, Paul; Dousset, Vincent; Sibon, Igor; Tourdias, Thomas

    2016-01-01

    On top of functional outcome, accurate prediction of cognitive outcome for stroke patients is an unmet need with major implications for clinical management. We investigated whether stroke location may contribute independent prognostic value to multifactorial predictive models of functional and cognitive outcomes. Four hundred twenty-eight consecutive patients with ischemic stroke were prospectively assessed with magnetic resonance imaging at 24 to 72 hours and at 3 months for functional outcome using the modified Rankin Scale and cognitive outcome using the Montreal Cognitive Assessment (MoCA). Statistical maps of functional and cognitive eloquent regions were derived from the first 215 patients (development sample) using voxel-based lesion-symptom mapping. We used multivariate logistic regression models to study the influence of stroke location (number of eloquent voxels from voxel-based lesion-symptom mapping maps), age, initial National Institutes of Health Stroke Scale and stroke volume on modified Rankin Scale and MoCA. The second part of our cohort was used as an independent replication sample. In univariate analyses, stroke location, age, initial National Institutes of Health Stroke Scale, and stroke volume were all predictive of poor modified Rankin Scale and MoCA. In multivariable analyses, stroke location remained the strongest independent predictor of MoCA and significantly improved the prediction compared with using only age, initial National Institutes of Health Stroke Scale, and stroke volume (area under the curve increased from 0.697-0.771; difference=0.073; 95% confidence interval, 0.008-0.155). In contrast, stroke location did not persist as independent predictor of modified Rankin Scale that was mainly driven by initial National Institutes of Health Stroke Scale (area under the curve going from 0.840 to 0.835). Similar results were obtained in the replication sample. Stroke location is an independent predictor of cognitive outcome (MoCA) at 3 months post stroke. © 2015 American Heart Association, Inc.

  10. Optimizing image registration and infarct definition in stroke research.

    PubMed

    Harston, George W J; Minks, David; Sheerin, Fintan; Payne, Stephen J; Chappell, Michael; Jezzard, Peter; Jenkinson, Mark; Kennedy, James

    2017-03-01

    Accurate representation of final infarct volume is essential for assessing the efficacy of stroke interventions in imaging-based studies. This study defines the impact of image registration methods used at different timepoints following stroke, and the implications for infarct definition in stroke research. Patients presenting with acute ischemic stroke were imaged serially using magnetic resonance imaging. Infarct volume was defined manually using four metrics: 24-h b1000 imaging; 1-week and 1-month T2-weighted FLAIR; and automatically using predefined thresholds of ADC at 24 h. Infarct overlap statistics and volumes were compared across timepoints following both rigid body and nonlinear image registration to the presenting MRI. The effect of nonlinear registration on a hypothetical trial sample size was calculated. Thirty-seven patients were included. Nonlinear registration improved infarct overlap statistics and consistency of total infarct volumes across timepoints, and reduced infarct volumes by 4.0 mL (13.1%) and 7.1 mL (18.2%) at 24 h and 1 week, respectively, compared to rigid body registration. Infarct volume at 24 h, defined using a predetermined ADC threshold, was less sensitive to infarction than b1000 imaging. 1-week T2-weighted FLAIR imaging was the most accurate representation of final infarct volume. Nonlinear registration reduced hypothetical trial sample size, independent of infarct volume, by an average of 13%. Nonlinear image registration may offer the opportunity of improving the accuracy of infarct definition in serial imaging studies compared to rigid body registration, helping to overcome the challenges of anatomical distortions at subacute timepoints, and reducing sample size for imaging-based clinical trials.

  11. Regional Availability of Mechanical Embolectomy for Acute Ischemic Stroke in California, 2009 to 2010

    PubMed Central

    Choi, Jay Chol; Hsia, Renee Y.

    2015-01-01

    Background and Purpose— We sought to assess the geographic proximity of patients with stroke in California to centers that performed specific threshold volumes of mechanical embolectomy procedures each year. Methods— We identified all patients who were hospitalized for acute ischemic stroke at all nonfederal acute care hospitals in California from 2009 to 2010, and all hospitals that performed any mechanical embolectomy procedures by case volume during the same period, using nonpublic data from the Office of Statewide Health Planning and Development. We computed geographic service areas around each hospital on the basis of prespecified ground transport distance thresholds. We then calculated the proportion of hospitalized patients with stroke who lived within service areas for centers that performed a low volume and high volume of mechanical embolectomy procedures each year. Results— During the 2-year study period, 15% (53/360) of hospitals performed at least 1 mechanical embolectomy for acute stroke, but only 19% (10/53) performed >10 cases per year. Most hospitalized patients with stroke (94%) lived within a 2-hour transport time (65 miles) to a hospital that performed ≥1 procedure during the 2-year period. Approximately 93% of the patients with stroke who received mechanical embolectomy lived within 20 miles from an embolectomy-capable hospital compared with 7% of those who lived >20 miles. Conclusions— In California, most patients with stroke lived within reasonable ground transport distances from centers that performed ≥1 mechanical embolectomy in a 2-year period. The probability of receiving mechanical embolectomy for acute ischemic stroke was associated with living in close geographic proximity to these hospitals. PMID:25657180

  12. ERic Acute StrokE Recanalization: A study using predictive analytics to assess a new device for mechanical thrombectomy.

    PubMed

    Siemonsen, Susanne; Forkert, Nils D; Bernhardt, Martina; Thomalla, Götz; Bendszus, Martin; Fiehler, Jens

    2017-08-01

    Aim and hypothesis Using a new study design, we investigate whether next-generation mechanical thrombectomy devices improve clinical outcomes in ischemic stroke patients. We hypothesize that this new methodology is superior to intravenous tissue plasminogen activator therapy alone. Methods and design ERic Acute StrokE Recanalization is an investigator-initiated prospective single-arm, multicenter, controlled, open label study to compare the safety and effectiveness of a new recanalization device and distal access catheter in acute ischemic stroke patients with symptoms attributable to acute ischemic stroke and vessel occlusion of the internal cerebral artery or middle cerebral artery. Study outcome The primary effectiveness endpoint is the volume of saved tissue. Volume of saved tissue is defined as difference of the actual infarct volume and the brain volume that is predicted to develop infarction by using an optimized high-level machine learning model that is trained on data from a historical cohort treated with IV tissue plasminogen activator. Sample size estimates Based on own preliminary data, 45 patients fulfilling all inclusion criteria need to complete the study to show an efficacy >38% with a power of 80% and a one-sided alpha error risk of 0.05 (based on a one sample t-test). Discussion ERic Acute StrokE Recanalization is the first prospective study in interventional stroke therapy to use predictive analytics as primary and secondary endpoint. Such trial design cannot replace randomized controlled trials with clinical endpoints. However, ERic Acute StrokE Recanalization could serve as an exemplary trial design for evaluating nonpivotal neurovascular interventions.

  13. On the elimination of pulse wave velocity in stroke volume determination from the ultralow-frequency displacement ballistocardiogram.

    DOT National Transportation Integrated Search

    1964-03-01

    A hydrodynamic model of the systemic circulatory system was mounted on an ultralow-frequency ballistocardiograph (ULF-BCG). The relationship between stroke volume and ballistocardiographic amplitude was investigated for different pulse wave velocitie...

  14. Worse stroke outcome in atrial fibrillation is explained by more severe hypoperfusion, infarct growth, and hemorrhagic transformation.

    PubMed

    Tu, Hans T H; Campbell, Bruce C V; Christensen, Soren; Desmond, Patricia M; De Silva, Deidre A; Parsons, Mark W; Churilov, Leonid; Lansberg, Maarten G; Mlynash, Michael; Olivot, Jean-Marc; Straka, Matus; Bammer, Roland; Albers, Gregory W; Donnan, Geoffrey A; Davis, Stephen M

    2015-06-01

    Atrial fibrillation is associated with greater baseline neurological impairment and worse outcomes following ischemic stroke. Previous studies suggest that greater volumes of more severe baseline hypoperfusion in patients with history of atrial fibrillation may explain this association. We further investigated this association by comparing patients with and without atrial fibrillation on initial examination following stroke using pooled multimodal magnetic resonance imaging and clinical data from the Echoplanar Imaging Thrombolytic Evaluation Trial and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution studies. Echoplanar Imaging Thrombolytic Evaluation Trial was a trial of 101 ischemic stroke patients randomized to intravenous tissue plasminogen activator or placebo, and Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution was a prospective cohort of 74 ischemic stroke patients treated with intravenous tissue plasminogen activator at three to six hours following symptom onset. Patients underwent multimodal magnetic resonance imaging before treatment, at three to five days and three-months after stroke in Echoplanar Imaging Thrombolytic Evaluation Trial; before treatment, three to six hours after treatment and one-month after stroke in Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution. Patients were assessed with the National Institutes of Health Stroke Scale and the modified Rankin scale before treatment and at three-months after stroke. Patients were categorized into definite atrial fibrillation (present on initial examination), probable atrial fibrillation (history but no atrial fibrillation on initial examination), and no atrial fibrillation. Perfusion data were reprocessed with automated magnetic resonance imaging analysis software (RAPID, Stanford University, Stanford, CA, USA). Hypoperfusion volumes were defined using time to maximum delays in two-second increments from >4 to >8 s. Hemorrhagic transformation was classified according to the European Cooperative Acute Stroke Studies criteria. Of the 175 patients, 28 had definite atrial fibrillation, 30 probable atrial fibrillation, 111 no atrial fibrillation, and six were excluded due to insufficient imaging data. At baseline, patients with definite atrial fibrillation had more severe hypoperfusion (median time to maximum >8 s, volume 48 vs. 29 ml, P = 0.02) compared with patients with no atrial fibrillation. At outcome, patients with definite atrial fibrillation had greater infarct growth (median volume 47 vs. 8 ml, P = 0.001), larger infarcts (median volume 75 vs. 23 ml, P = 0.001), more frequent parenchymal hematoma grade hemorrhagic transformation (30% vs. 10%, P = 0.03), worse functional outcomes (median modified Rankin scale score 4 vs. 3, P = 0.03), and higher mortality (36% vs. 16%, P = 0·.3) compared with patients with no atrial fibrillation. Definite atrial fibrillation was independently associated with increased parenchymal hematoma (odds ratio = 6.05, 95% confidence interval 1.60-22.83) but not poor functional outcome (modified Rankin scale 3-6, odds ratio = 0.99, 95% confidence interval 0.35-2.80) or mortality (odds ratio = 2.54, 95% confidence interval 0.86-7.49) three-months following stroke, after adjusting for other baseline imbalances. Atrial fibrillation is associated with greater volumes of more severe baseline hypoperfusion, leading to higher infarct growth, more frequent severe hemorrhagic transformation and worse stroke outcomes. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.

  15. Infarct Volume Prediction by Early Magnetic Resonance Imaging in a Murine Stroke Model Depends on Ischemia Duration and Time of Imaging.

    PubMed

    Leithner, Christoph; Füchtemeier, Martina; Jorks, Devi; Mueller, Susanne; Dirnagl, Ulrich; Royl, Georg

    2015-11-01

    Despite standardization of experimental stroke models, final infarct sizes after middle cerebral artery occlusion (MCAO) vary considerably. This introduces uncertainties in the evaluation of drug effects on stroke. Magnetic resonance imaging may detect variability of surgically induced ischemia before treatment and thus improve treatment effect evaluation. MCAO of 45 and 90 minutes induced brain infarcts in 83 mice. During, and 3 and 6 hours after MCAO, we performed multiparametric magnetic resonance imaging. We evaluated time courses of cerebral blood flow, apparent diffusion coefficient (ADC), T1, T2, accuracy of infarct prediction strategies, and impact on statistical evaluation of experimental stroke studies. ADC decreased during MCAO but recovered completely on reperfusion after 45 and partially after 90-minute MCAO, followed by a secondary decline. ADC lesion volumes during MCAO or at 6 hours after MCAO largely determined final infarct volumes for 90 but not for 45 minutes MCAO. The majority of chance findings of final infarct volume differences in random group allocations of animals were associated with significant differences in early ADC lesion volumes for 90, but not for 45-minute MCAO. The prediction accuracy of early magnetic resonance imaging for infarct volumes depends on timing of magnetic resonance imaging and MCAO duration. Variability of the posterior communicating artery in C57Bl6 mice contributes to differences in prediction accuracy between short and long MCAO. Early ADC imaging may be used to reduce errors in the interpretation of post MCAO treatment effects on stroke volumes. © 2015 American Heart Association, Inc.

  16. Biochemical and inflammatory biomarkers in ischemic stroke: translational study between humans and two experimental rat models

    PubMed Central

    2014-01-01

    Background our objective was to examine the plasma levels of three biological markers involved in cerebral ischemia (IL-6, glutamate and TNF-alpha) in stroke patients and compare them with two different rat models of focal ischemia (embolic stroke model- ES and permanent middle cerebral artery occlusion ligation model-pMCAO) to evaluate which model is most similar to humans. Secondary objectives: 1) to analyze the relationship of these biological markers with the severity, volume and outcome of the brain infarction in humans and the two stroke models; and 2) to study whether the three biomarkers are also increased in response to damage in organs other than the central nervous system, both in humans and in rats. Methods Multi-center, prospective, case-control study including acute stroke patients (n = 58) and controls (n = 19) with acute non-neurological diseases Main variables: plasma biomarker levels on admission and at 72 h; stroke severity (NIHSS scale) and clinical severity (APACHE II scale); stroke volume; functional status at 3 months (modified Rankin Scale [mRS] and Barthel index [BI]). Experimental groups: ES (n = 10), pMCAO (n = 6) and controls (tissue stress by leg compression) (n = 6). Main variables: plasma biomarker levels at 3 and 72 h; volume of ischemic lesion (H&E) and cell death (TUNEL). Results in stroke patients, IL-6 correlated significantly with clinical severity (APACHE II scale), stroke severity (NIHSS scale), infarct volume (cm3) and clinical outcome (mRS) (r = 0.326, 0.497, 0.290 and 0.444 respectively; P < 0.05). Glutamate correlated with stroke severity, but not with outcome, and TNF-alpha levels with infarct volume. In animals, The ES model showed larger infarct volumes (median 58.6% vs. 29%, P < 0.001) and higher inflammatory biomarkers levels than pMCAO, except for serum glutamate levels which were higher in pMCAO. The ES showed correlations between the biomarkers and cell death (r = 0.928 for IL-6; P < 0.001; r = 0.765 for TNF-alpha, P < 0.1; r = 0.783 for Glutamate, P < 0.1) and infarct volume (r = 0.943 for IL-6, P < 0.0001) more similar to humans than pMCAO. IL-6, glutamate and TNF-α levels were not higher in cerebral ischemia than in controls. Conclusions Both models, ES and pMCAO, show differences that should be considered when conducting translational studies. IL-6, Glutamate and TNF-α are not specific for cerebral ischemia either in humans or in rats. PMID:25086655

  17. Design of a specialized computer for on-line monitoring of cardiac stroke volume

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Gebben, V. D.

    1972-01-01

    The design of a specialized analog computer for on-line determination of cardiac stroke volume by means of a modified version of the pressure pulse contour method is presented. The design consists of an analog circuit for computation and a timing circuit for detecting necessary events on the pressure waveform. Readouts of arterial pressures, systolic duration, heart rate, percent change in stroke volume, and percent change in cardiac output are provided for monitoring cardiac patients. Laboratory results showed that computational accuracy was within 3 percent, while animal experiments verified the operational capability of the computer. Patient safety considerations are also discussed.

  18. A new electric method for non-invasive continuous monitoring of stroke volume and ventricular volume-time curves

    PubMed Central

    2012-01-01

    Background In this paper a new non-invasive, operator-free, continuous ventricular stroke volume monitoring device (Hemodynamic Cardiac Profiler, HCP) is presented, that measures the average stroke volume (SV) for each period of 20 seconds, as well as ventricular volume-time curves for each cardiac cycle, using a new electric method (Ventricular Field Recognition) with six independent electrode pairs distributed over the frontal thoracic skin. In contrast to existing non-invasive electric methods, our method does not use the algorithms of impedance or bioreactance cardiography. Instead, our method is based on specific 2D spatial patterns on the thoracic skin, representing the distribution, over the thorax, of changes in the applied current field caused by cardiac volume changes during the cardiac cycle. Since total heart volume variation during the cardiac cycle is a poor indicator for ventricular stroke volume, our HCP separates atrial filling effects from ventricular filling effects, and retrieves the volume changes of only the ventricles. Methods ex-vivo experiments on a post-mortem human heart have been performed to measure the effects of increasing the blood volume inside the ventricles in isolation, leaving the atrial volume invariant (which can not be done in-vivo). These effects have been measured as a specific 2D pattern of voltage changes on the thoracic skin. Furthermore, a working prototype of the HCP has been developed that uses these ex-vivo results in an algorithm to decompose voltage changes, that were measured in-vivo by the HCP on the thoracic skin of a human volunteer, into an atrial component and a ventricular component, in almost real-time (with a delay of maximally 39 seconds). The HCP prototype has been tested in-vivo on 7 human volunteers, using G-suit inflation and deflation to provoke stroke volume changes, and LVot Doppler as a reference technique. Results The ex-vivo measurements showed that ventricular filling caused a pattern over the thorax quite distinct from that of atrial filling. The in-vivo tests of the HCP with LVot Doppler resulted in a Pearson’s correlation of R = 0.892, and Bland-Altman plotting of SV yielded a mean bias of -1.6 ml and 2SD =14.8 ml. Conclusions The results indicate that the HCP was able to track the changes in ventricular stroke volume reliably. Furthermore, the HCP produced ventricular volume-time curves that were consistent with the literature, and may be a diagnostic tool as well. PMID:22900831

  19. Stroke from systemic vascular disorders in Saudi children. The devastating role of hypernatremic dehydration.

    PubMed

    Salih, Mustafa A; Zahraa, Jihad N; Al-Jarallah, Ahmed A; Alorainy, Ibrahim A; Hassan, Hamdy H

    2006-03-01

    Systemic vascular disorders, leading to childhood stroke, include volume depletion or systemic hypotension and hypernatremic dehydration. We describe 3 cases of stroke following systemic vascular disorders. These were diagnosed during a prospective and retrospective study on childhood stroke, which included 104 patients. Post-gastroenteritis hypernatremic dehydration is an important, potentially preventable, cause of stroke in Saudi children.

  20. Instantaneous stroke volume in man during lower body negative pressure /LBNP/

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Richards, K. L.; Greene, E. R.; Eldridge, M. W.; Hoekenga, D. E.; Venters, M. D.; Luft, U. C.

    1982-01-01

    Results of an examination of the instantaneous time course of the stroke volume (SV) and cardiac output (Q) in response to the onset and release of -50 torr lower body negative pressure (LBNP) are reported. Six male subjects were sealed into a LBNP box up to the iliac crest while being monitored by echocardiograph for centerlamina blood velocity, fluid displacement, stroke volume, heart rate, and leg volume. Particular use was made of pulsed ultrasonic Doppler velocity meters for measuring the blood velocities and flow dynamics. Measurements were made of the subjects continuously beginning from 20 sec prior to and one min after LBNP onset and release. A linear fall in the SV was observed with LBNP at 49% of the baseline value after 33 sec. A 62% drop, the lowest, was detected after 8 min of LBNP. The leg volume was inversely related to Q for the duration of the experiment.

  1. Three Variations in Rabbit Angiographic Stroke Models

    PubMed Central

    Culp, William C.; Woods, Sean D.; Brown, Aliza T.; Lowery, John D.; Hennings, Leah J.; Skinner, Robert D.; Borrelli, Michael J.; Roberson, Paula K.

    2012-01-01

    Purpose To develop angiographic models of embolic stroke in the rabbit using pre-formed clot or microspheres to model clinical situations ranging from transient ischemic events to severe ischemic stroke. Materials and Methods New Zealand White rabbits (N=151) received angiographic access to the internal carotid artery (ICA) from a femoral approach. Variations of emboli type and quantity of emboli were tested by injection into the ICA. These included fresh clots (1.0-mm length, 3–6 h), larger aged clots (4.0-mm length, 3 days), and 2 or 3 insoluble microspheres (700–900 μm). Neurological assessment scores (NAS) were based on motor, sensory, balance, and reflex measures. Rabbits were euthanized at 4, 7, or 24 hours after embolization, and infarct volume was measured as a percent of total brain volume using 2,3,5-triphenyltetrazolium chloride (TTC). Results Infarct volume percent at 24 hours after stroke was lower for rabbits embolized with fresh clot (0.45% ± 0.14%), compared with aged clot (3.52% ± 1.31%) and insoluble microspheres (3.39% ± 1.04%). Overall NAS (including posterior vessel occlusions) were positively correlated to infarct volume percent measurements in the fresh clot (r=0.50), aged clot (r=0.65) and microsphere (r=0.62) models (p<0.001). Conclusion The three basic angiographic stroke models may be similar to human transient ischemic attacks (TIA) (fresh clot), major strokes that can be thrombolysed (aged clot), or major strokes with insoluble emboli such as atheromata (microspheres). Model selection can be tailored to specific research needs. PMID:23142182

  2. Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System

    DTIC Science & Technology

    2016-08-01

    Having 1.5-inch stroke low-volume actuators, retracted t t Approved for public release; distribution is unlimited. 3 multiple impacts from...rebound period at 1000 fps. Fig. 5 New upgraded 3-inch pneumatic cylinders 3.0-inch stroke high-volume actuators Retracted Position Extended

  3. High-volume plasma exchange in a patient with acute liver failure due to non-exertional heat stroke in a sauna.

    PubMed

    Chen, Kuan-Jung; Chen, Tso-Hsiao; Sue, Yuh-Mou; Chen, Tzay-Jinn; Cheng, Chung-Yi

    2014-10-01

    Heat stroke is a life-threatening condition characterized by an increased core body temperature (over 40°C) and a systemic inflammatory response, which may lead to a syndrome of multiple organ dysfunction. Heat stroke may be due to either strenuous exercise or non-exercise-induced exposure to a high environmental temperature. Current management of heat stroke is mostly supportive, with an emphasis on cooling the core body temperature and preventing the development of multiple organ dysfunction. Prognosis of heat stroke depends on the severity of organ involvement. Here, we report a rare case of non-exercise-induced heat stroke in a 73-year-old male patient who was suffering from acute liver failure after prolonged exposure in a hot sauna room. We successfully managed this patient by administering high-volume plasma exchange, and the patient recovered completely after treatment. © 2014 Wiley Periodicals, Inc.

  4. Time and diffusion lesion size in major anterior circulation ischemic strokes.

    PubMed

    Hakimelahi, Reza; Vachha, Behroze A; Copen, William A; Papini, Giacomo D E; He, Julian; Higazi, Mahmoud M; Lev, Michael H; Schaefer, Pamela W; Yoo, Albert J; Schwamm, Lee H; González, R Gilberto

    2014-10-01

    Major anterior circulation ischemic strokes caused by occlusion of the distal internal carotid artery or proximal middle cerebral artery or both account for about one third of ischemic strokes with mostly poor outcomes. These strokes are treatable by intravenous tissue-type plasminogen activator and endovascular methods. However, dynamics of infarct growth in these strokes are poorly documented. The purpose was to help understand infarct growth dynamics by measuring acute infarct size with diffusion-weighted imaging (DWI) at known times after stroke onset in patients with documented internal carotid artery/middle cerebral artery occlusions. Retrospectively, we included 47 consecutive patients with documented internal carotid artery/middle cerebral artery occlusions who underwent DWI within 30 hours of stroke onset. Prospectively, 139 patients were identified using the same inclusion criteria. DWI lesion volumes were measured and correlated to time since stroke onset. Perfusion data were reviewed in those who underwent perfusion imaging. Acute infarct volumes ranged from 0.41 to 318.3 mL. Infarct size and time did not correlate (R2=0.001). The majority of patients had DWI lesions that were <25% the territory at risk (<70 mL) whether they were imaged <8 or >8 hours after stroke onset. DWI lesions corresponded to areas of greatly reduced perfusion. Poor correlation between infarct volume and time after stroke onset suggests that there are factors more powerful than time in determining infarct size within the first 30 hours. The observations suggest that highly variable cerebral perfusion via the collateral circulation may primarily determine infarct growth dynamics. If verified, clinical implications include the possibility of treating many patients outside traditional time windows. © 2014 American Heart Association, Inc.

  5. Serum S100B is a useful surrogate marker for long-term outcomes in photochemically-induced thrombotic stroke rat models.

    PubMed

    Tanaka, Yu; Koizumi, Chie; Marumo, Toshiyuki; Omura, Tomohiro; Yoshida, Shigeru

    2007-08-02

    In recent years, serum S100B has been used as a secondary endpoint in some clinical trials, in which serum S100B has successfully indicated the benefits or harm done by the tested agents. Compared to clinical stroke studies, few experimental stroke studies report using serum S100B as a surrogate marker for estimating the long-term effects of neuroprotectants. This study sought to observe serum S100B kinetics in PIT stroke models and to clarify the association between serum S100B and both final infarct volumes and long-term neurological outcomes. Furthermore, to demonstrate that early elevations in serum S100B reflect successful neuroprotective treatment, a pharmacological study was performed with a non-competitive NMDA glutamate receptor antagonist, MK-801. Serum S100B levels were significantly elevated after PIT stroke, reaching peak values 48 h after the onset and declining thereafter. Single measurements of serum S100B as early as 48 h after PIT stroke correlated significantly with final infarct volumes and long-term neurological outcomes. Elevated serum S100B was significantly attenuated by MK-801, correlating significantly with long-term beneficial effects of MK-801 on infarct volumes and neurological outcomes. Our results showed that single measurements of serum S100B 48 h after PIT stroke would serve as an early and simple surrogate marker for long-term evaluation of histological and neurological outcomes in PIT stroke rat models.

  6. Relative cerebral blood volume as a marker of durable tissue-at-risk viability in hyperacute ischemic stroke.

    PubMed

    Cortijo, Elisa; Calleja, Ana Isabel; García-Bermejo, Pablo; Mulero, Patricia; Pérez-Fernández, Santiago; Reyes, Javier; Muñoz, Ma Fe; Martínez-Galdámez, Mario; Arenillas, Juan Francisco

    2014-01-01

    Selection of best responders to reperfusion therapies could be aided by predicting the duration of tissue-at-risk viability, which may be dependant on collateral circulation status. We aimed to identify the best predictor of good collateral circulation among perfusion computed tomography (PCT) parameters in middle cerebral artery (MCA) ischemic stroke and to analyze how early MCA response to intravenous thrombolysis and PCT-derived markers of good collaterals interact to determine stroke outcome. We prospectively studied patients with acute MCA ischemic stroke treated with intravenous thrombolysis who underwent PCT before treatment showing a target mismatch profile. Collateral status was assessed using a PCT source image-based score. PCT maps were quantitatively analyzed. Cerebral blood volume (CBV), cerebral blood flow, and Tmax were calculated within the hypoperfused volume and in the equivalent region of unaffected hemisphere. Occluded MCAs were monitored by transcranial Duplex to assess early recanalization. Main outcome variables were brain hypodensity volume and modified Rankin scale score at day 90. One hundred patients with MCA ischemic stroke imaged by PCT received intravenous thrombolysis, and 68 met all inclusion criteria. A relative CBV (rCBV) >0.93 emerged as the only predictor of good collaterals (odds ratio, 12.6; 95% confidence interval, 2.9-55.9; P=0.001). Early MCA recanalization was associated with better long-term outcome and lower infarct volume in patients with rCBV<0.93, but not in patients with high rCBV. None of the patients with rCBV<0.93 achieved good outcome in absence of early recanalization. High rCBV was the strongest marker of good collaterals and may characterize durable tissue-at-risk viability in hyperacute MCA ischemic stroke.

  7. Effect of prolonged space flight on cardiac function and dimensions

    NASA Technical Reports Server (NTRS)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  8. The Influence of Acute Hyperglycemia in an Animal Model of Lacunar Stroke That Is Induced by Artificial Particle Embolization

    PubMed Central

    Tsai, Ming-Jun; Lin, Ming-Wei; Huang, Yaw-Bin; Kuo, Yu-Min; Tsai, Yi-Hung

    2016-01-01

    Animal and clinical studies have revealed that hyperglycemia during ischemic stroke increases the stroke's severity and the infarct size in clinical and animal studies. However, no conclusive evidence demonstrates that acute hyperglycemia worsens post-stroke outcomes and increases infarct size in lacunar stroke. In this study, we developed a rat model of lacunar stroke that was induced via the injection of artificial embolic particles during full consciousness. We then used this model to compare the acute influence of hyperglycemia in lacunar stroke and diffuse infarction, by evaluating neurologic behavior and the rate, size, and location of the infarction. The time course of the neurologic deficits was clearly recorded from immediately after induction to 24 h post-stroke in both types of stroke. We found that acute hyperglycemia aggravated the neurologic deficit in diffuse infarction at 24 h after stroke, and also aggravated the cerebral infarct. Furthermore, the infarct volumes of the basal ganglion, thalamus, hippocampus, and cerebellum but not the cortex were positively correlated with serum glucose levels. In contrast, acute hyperglycemia reduced the infarct volume and neurologic symptoms in lacunar stroke within 4 min after stroke induction, and this effect persisted for up to 24 h post-stroke. In conclusion, acute hyperglycemia aggravated the neurologic outcomes in diffuse infarction, although it significantly reduced the size of the cerebral infarct and improved the neurologic deficits in lacunar stroke. PMID:27226775

  9. MRI Features in a Canine Model of Ischemic Stroke: Correlation between Lesion Volume and Neurobehavioral Status during the Subacute Stage

    PubMed Central

    Kang, Byeong-Teck; Jang, Dong-Pyo; Gu, Su-Hyun; Lee, Jong-Hwan; Jung, Dong-In; Lim, Chae-Young; Kim, Ha-Jung; Kim, Young-Bo; Kim, Hyung-Joong; Woo, Eung-Je; Cho, Zang-Hee; Park, Hee-Myung

    2009-01-01

    The purpose of this study was to evaluate the diagnostic value of magnetic resonance imaging (MRI) and assess the correlation between the volume of the ischemic lesion and neurobehavioral status during the subacute stage of ischemic stroke. Ischemic stroke was induced in 6 healthy laboratory beagles through permanent occlusion of the middle cerebral artery (MCAO). T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging, diffusion-weighted imaging (DWI), measurement of the apparent diffusion coefficient (ADC) ratio, and neurobehavioral evaluation were performed 3 times serially by using a 1.5-T MR system: before and 3 and 10 d after MCAO. Ischemic lesions demonstrated T2 hyperintensity, FLAIR hyperintensity, and DWI hyperintensity. The ADC ratio was decreased initially but then was increased at 10 d after MCAO. Ischemic lesion volumes on T2-weighted and FLAIR imaging were not significantly different from those on DWI. The lesion volume and neurobehavioral score showed strong correlation. Our results suggest that conventional MRI may be a reliable diagnostic tool during the subacute stage of canine ischemic stroke. PMID:19887030

  10. Exercise science: research to sustain and enhance performance

    NASA Astrophysics Data System (ADS)

    Wingo, Jonathan E.

    2013-05-01

    Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.

  11. 17q25 Locus Is Associated With White Matter Hyperintensity Volume in Ischemic Stroke, But Not With Lacunar Stroke Status

    PubMed Central

    Adib-Samii, Poneh; Rost, Natalia; Traylor, Matthew; Devan, William; Biffi, Alessandro; Lanfranconi, Silvia; Fitzpatrick, Kaitlin; Bevan, Steve; Kanakis, Allison; Valant, Valerie; Gschwendtner, Andreas; Malik, Rainer; Richie, Alexa; Gamble, Dale; Segal, Helen; Parati, Eugenio A.; Ciusani, Emilio; Holliday, Elizabeth G.; Maguire, Jane; Wardlaw, Joanna; Worrall, Bradford; Bis, Joshua; Wiggins, Kerri L.; Longstreth, Will; Kittner, Steve J.; Cheng, Yu-Ching; Mosley, Thomas; Falcone, Guido J.; Furie, Karen L.; Leiva-Salinas, Carlos; Lau, Benison C.; Khan, Muhammed Saleem; Sharma, Pankaj; Fornage, Myriam; Mitchell, Braxton D.; Psaty, Bruce M.; Sudlow, Cathie; Levi, Christopher; Boncoraglio, Giorgio B.; Rothwell, Peter M.; Meschia, James; Dichgans, Martin; Rosand, Jonathan; Markus, Hugh S.

    2013-01-01

    Background and Purpose Recently, a novel locus at 17q25 was associated with white matter hyperintensities (WMH) on MRI in stroke-free individuals. We aimed to replicate the association with WMH volume (WMHV) in patients with ischemic stroke. If the association acts by promoting a small vessel arteriopathy, it might be expected to also associate with lacunar stroke. Methods We quantified WMH on MRI in the stroke-free hemisphere of 2588 ischemic stroke cases. Association between WMHV and 6 single-nucleotide polymorphisms at chromosome 17q25 was assessed by linear regression. These single-nucleotide polymorphisms were also investigated for association with lacunar stroke in 1854 cases and 51 939 stroke-free controls from METASTROKE. Meta-analyses with previous reports and a genetic risk score approach were applied to identify other novel WMHV risk variants and uncover shared genetic contributions to WMHV in community participants without stroke and ischemic stroke. Results Single-nucleotide polymorphisms at 17q25 were associated with WMHV in ischemic stroke, the most significant being rs9894383 (P=0.0006). In contrast, there was no association between any single-nucleotide polymorphism and lacunar stroke. A genetic risk score analysis revealed further genetic components to WMHV shared between community participants without stroke and ischemic stroke. Conclusions This study provides support for an association between the 17q25 locus and WMH. In contrast, it is not associated with lacunar stroke, suggesting that the association does not act by promoting small-vessel arteriopathy or the same arteriopathy responsible for lacunar infarction. PMID:23674528

  12. 40 CFR 90.104 - Compliance with emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...

  13. 40 CFR 90.104 - Compliance with emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...

  14. 40 CFR 90.104 - Compliance with emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...

  15. 40 CFR 90.104 - Compliance with emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...

  16. 40 CFR 90.104 - Compliance with emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...

  17. Acute Ischemic Stroke Infarct Topology: Association with Lesion Volume and Severity of Symptoms at Admission and Discharge.

    PubMed

    Payabvash, S; Taleb, S; Benson, J C; McKinney, A M

    2017-01-01

    Acute stroke presentation and outcome depend on both ischemic infarct volume and location. We aimed to determine the association between acute ischemic infarct topology and lesion volume and stroke severity at presentation and discharge. Patients with acute ischemic stroke who underwent MR imaging within 24 hours of symptom onset or last seen well were included. Infarcts were segmented and coregistered on the Montreal Neurological Institute-152 brain map. Voxel-based analyses were performed to determine the distribution of infarct lesions associated with larger volumes, higher NIHSS scores at admission and discharge, and greater NIHSS/volume ratios. A total of 238 patients were included. Ischemic infarcts involving the bilateral lentiform nuclei, insular ribbons, middle corona radiata, and right precentral gyrus were associated with larger infarct volumes (average, 76.7 ± 125.6 mL versus 16.4 ± 24.0 mL, P < .001) and higher admission NIHSS scores. Meanwhile, brain stem and thalami infarctions were associated with higher admission NIHSS/volume ratios. The discharge NIHSS scores were available in 218 patients, in whom voxel-based analysis demonstrated that ischemic infarcts of the bilateral posterior insular ribbons, middle corona radiata, and right precentral gyrus were associated with more severe symptoms at discharge, whereas ischemic lesions of the brain stem, bilateral thalami, and, to a lesser extent, the middle corona radiata were associated with higher ratios of discharge NIHSS score/infarct volume. Acute ischemic infarcts of the insulae, lentiform nuclei, and middle corona radiata tend to have larger volumes, more severe presentations, and worse outcomes, whereas brain stem and thalamic infarcts have greater symptom severity relative to smaller lesion volumes. © 2017 by American Journal of Neuroradiology.

  18. Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius.

    PubMed

    Enok, Sanne; Leite, Gabriella S P C; Leite, Cléo A C; Gesser, Hans; Hedrick, Michael S; Wang, Tobias

    2016-10-01

    To accommodate the pronounced metabolic response to digestion, pythons increase heart rate and elevate stroke volume, where the latter has been ascribed to a massive and fast cardiac hypertrophy. However, numerous recent studies show that heart mass rarely increases, even upon ingestion of large meals, and we therefore explored the possibility that a rise in mean circulatory filling pressure (MCFP) serves to elevate venous pressure and cardiac filling during digestion. To this end, we measured blood flows and pressures in anaesthetized Python regius The anaesthetized snakes exhibited the archetypal tachycardia as well as a rise in both venous pressure and MCFP that fully account for the approximate doubling of stroke volume. There was no rise in blood volume and the elevated MCFP must therefore stem from increased vascular tone, possibly by means of increased sympathetic tone on the veins. Furthermore, although both venous pressure and MCFP increased during volume loading, there was no evidence that postprandial hearts were endowed with an additional capacity to elevate stroke volume. In vitro measurements of force development of paced ventricular strips also failed to reveal signs of increased contractility, but the postprandial hearts had higher activities of cytochrome oxidase and pyruvate kinase, which probably serves to sustain the rise in cardiac work during digestion. © 2016. Published by The Company of Biologists Ltd.

  19. Risk adjustment for case mix and the effect of surgeon volume on morbidity.

    PubMed

    Maas, Matthew B; Jaff, Michael R; Rordorf, Guy A

    2013-06-01

    Retrospective studies of large administrative databases have shown higher mortality for procedures performed by low-volume surgeons, but the adequacy of risk adjustment in those studies is in doubt. To determine whether the relationship between surgeon volume and outcomes is an artifact of case mix using a prospective sample of carotid endarterectomy cases. Observational cohort study from January 1, 2008, through December 31, 2010, with preoperative, immediate postoperative, and 30-day postoperative assessments acquired by independent monitors. Urban, tertiary academic medical center. All 841 patients who underwent carotid endarterectomy performed by a vascular surgeon or cerebrovascular neurosurgeon at the institution. Carotid endarterectomy without another concurrent surgery. Stroke, death, and other surgical complications occurring within 30 days of surgery along with other case data. A low-volume surgeon performed 40 or fewer cases per year. Variables used in a comparison administrative database study, as well as variables identified by our univariate analysis, were used for adjusted analyses to assess for an association between low-volume surgeons and the rate of stroke and death as well as other complications. RESULTS The rate of stroke and death was 6.9% for low-volume surgeons and 2.0% for high-volume surgeons (P = .001). Complications were similarly higher (13.4% vs 7.2%, P = .008). Low-volume surgeons performed more nonelective cases. Low-volume surgeons were significantly associated with stroke and death in the unadjusted analysis as well as after adjustment with variables used in the administrative database study (odds ratio, 3.61; 95% CI, 1.70-7.67, and odds ratio, 3.68; 95% CI, 1.72-7.89, respectively). However, adjusting for the significant disparity of American Society of Anesthesiologists Physical Status classification in case mix eliminated the effect of surgeon volume on the rate of stroke and death (odds ratio, 1.65; 95% CI, 0.59-4.64) and other complications. Variables selected for risk adjustment in studies using administrative databases appear to be inadequate to control for case mix bias between low-volume and high-volume surgeons. Risk adjustment should empirically analyze for case mix imbalances between surgeons to identify meaningful risk modifiers in clinical practice such as the American Society of Anesthesiologists Physical Status classification. A true relationship between surgeon volume and outcomes remains uncertain, and caution is advised in developing policies based on these findings.

  20. Objectively assessed physical activity and associated factors of sedentary behavior among survivors of stroke living in Cape Town, South Africa.

    PubMed

    Joseph, Conran; Conradsson, David; Hagströmer, Maria; Lawal, Isa; Rhoda, Anthea

    2017-06-18

    To investigate objectively measured physical activity in stroke survivors living in low-income areas of Cape Town, South Africa, specifically to: (a) describe the volume of daily physical activity and time spent in different intensity levels and (b) investigate the association of factors covering the International Classification of Functioning, Disability and Health with sedentary behavior. A cross-sectional design was used, where forty-five ambulatory community-dwelling stroke survivors participated. Volume and intensity of physical activity were assessed with accelerometers for three to five consecutive days. Personal and environmental factors, along with body function and activity, were captured. Multiple linear regression was used to investigate factors associated with the percentage of days spent sedentary. The median number of steps per day was 2393, and of the average 703 minutes of wear time, 80% were spent in sedentary, 15% in light, and 5% in moderate-to-vigorous intensity physical activity. Age, stroke severity, and failing to receive outpatient rehabilitation were independently associated with sedentary, which, taken together, explained 52% of the variance. Low volumes of physical activity and high amount of sedentary time emphasize the need to develop strategies that will increase physical activity. Providing outpatient rehabilitation in a systematic manner post-stroke is a potential target of health care programs in order to reduce sedentary behavior. Implications for rehabilitation Objectively measured physical activity among community-dwelling survivors of stroke in Cape Town, South Africa was low in volume, and the majority did not meet the recommendations of 150 minutes of at least moderate intensity physical activity. The majority of stroke survivors in South Africa spent most of their time sedentary, which could further increase the risk of cardiovascular impairments. Outpatient rehabilitation should be provided to all patients after stroke since it appears to reduce sedentary time.

  1. Methylene Blue Ameliorates Ischemia/Reperfusion-Induced Cerebral Edema: An MRI and Transmission Electron Microscope Study.

    PubMed

    Fang, Qing; Yan, Xu; Li, Shaowu; Sun, Yilin; Xu, Lixin; Shi, Zhongfang; Wu, Min; Lu, Yi; Dong, Liping; Liu, Ran; Yuan, Fang; Yang, Shao-Hua

    2016-01-01

    The neuroprotective effect of methylene blue (MB) has been identified against various brain disorders, including ischemic stroke. In the present study, we evaluated the effects of MB on postischemic brain edema using magnetic resonance imaging (MRI) and transmission electron microscopy (TEM). Adult male rats were subjected to transient focal cerebral ischemia induced by 1 h middle cerebral artery occlusion (MCAO), followed by reperfusion. MB was infused intravenously immediately after reperfusion (3 mg/kg) and again at 3 h post-occlusion (1.5 mg/kg). Normal saline was administered as vehicle control. Sequential MRIs, including apparent diffusion coefficient (ADC) and T2-weighted imaging (T2WI), were obtained at 0.5, 2.5, and 48 h after the onset of stroke. Separated groups of animals were sacrificed at 2.5 and 48 h after stroke for ultrastructural analysis by TEM. In addition, final lesion volumes were analyzed by triphenyltetrazolium chloride (TTC) staining at 48 h after stroke. Ischemic stroke induced ADC lesion volume at 0.5 h during MCAOs that were temporally recovered at 1.5 h after reperfusion. No significant difference in ADC-defined lesion was observed between vehicle and MB treatment groups. At 48 h after stroke, MB significantly reduced ADC lesion and T2WI lesion volume and attenuated cerebral swelling. Consistently, MB treatment significantly decreased TTC-defined lesion volume at 48 h after stroke. TEM revealed remarkable swollen astrocytes, astrocytic perivascular end-feet, and concurrent shrunken neurons in the penumbra at 2.5 and 48 h after MCAO. MB treatment attenuated astrocyte swelling, the perivascular astrocytic foot process, and endothelium and also alleviated neuron degeneration. This study demonstrated that MB could decrease postischemic brain edema and provided additional evidence that future clinical investigation of MB for the treatment of ischemic stroke is warrented.

  2. Sex-dependent effects of G protein-coupled estrogen receptor activity on outcome after ischemic stroke.

    PubMed

    Broughton, Brad R S; Brait, Vanessa H; Kim, Hyun Ah; Lee, Seyoung; Chu, Hannah X; Gardiner-Mann, Chantelle V; Guida, Elizabeth; Evans, Megan A; Miller, Alyson A; Arumugam, Thiruma V; Drummond, Grant R; Sobey, Christopher G

    2014-03-01

    Experimental studies indicate that estrogen typically, but not universally, has a neuroprotective effect in stroke. Ischemic stroke increases membrane-bound G protein-coupled estrogen receptor (GPER) distribution and expression in the brain of male but not female mice. We hypothesized that GPER activation may have a greater neuroprotective effect in males than in females after stroke. Vehicle (dimethyl sulfoxide), a GPER agonist (G-1, 30 μg/kg), or a GPER antagonist (G-15, 300 μg/kg) were administered alone or in combination to young or aged male mice, or young intact or ovariectomized female mice, 1 hour before or 3 hours after cerebral ischemia-reperfusion. Some mice were treated with a combination of G-1 and the pan-caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh), 1 hour before stroke. We evaluated functional and histological end points of stroke outcome up to 72 hours after ischemia-reperfusion. In addition, apoptosis was examined using cleaved caspase-3 immunohistochemistry. Surprisingly, G-1 worsened functional outcomes and increased infarct volume in males poststroke, in association with an increased expression of cleaved caspase-3 in peri-infarct neurons. These effects were blocked by G-15 or Q-VD-OPh. Conversely, G-15 improved functional outcomes and reduced infarct volume after stroke in males, whether given before or after stroke. In contrast to findings in males, G-1 reduced neurological deficit, apoptosis, and infarct volume in ovariectomized females, but had no significant effect in intact females. Future therapies for acute stroke could exploit the modulation of GPER activity in a sex-specific manner.

  3. Atrophy of Swallowing Muscles Is Associated With Severity of Dysphagia and Age in Patients With Acute Stroke.

    PubMed

    Sporns, Peter B; Muhle, Paul; Hanning, Uta; Suntrup-Krueger, Sonja; Schwindt, Wolfram; Eversmann, Julian; Warnecke, Tobias; Wirth, Rainer; Zimmer, Sebastian; Dziewas, Rainer

    2017-07-01

    Sarcopenia has been identified as an independent risk factor for dysphagia. Dysphagia is one of the most important and prognostically relevant complications of acute stroke. The role of muscle atrophy as a contributing factor for the occurrence of poststroke dysphagia is yet unclear. To assess whether there is a correlation between age and muscle volume and whether muscle volume is related to dysphagia in acute stroke patients. This retrospective, single-center study included 73 patients with acute ischemic or hemorrhagic stroke who underwent computed tomography angiography on admission and an objective dysphagia assessment by Fiberoptic Endoscopic Evaluation of Swallowing within 72 hours from admission. With the help of semiautomated muscle segmentation and 3-dimensional reconstruction volumetry of the digastric, temporal, and geniohyoid muscles was performed. For further analysis, participants were first divided into 4 groups according to their age (<61 years, n = 12; 61-75 years, n = 16; 76-85 years, n = 28; ≥86 years, n = 17), secondly into 3 different groups according to their dysphagia severity using the Fiberoptic Endoscopic Dysphagia Severity Scale (FEDSS) (FEDSS 1 and 2, n = 25; FEDSS 3 and 4, n = 32; FEDSS 5 and 6, n = 16). Correlation of muscle volumes with age and dysphagia severity. Muscle volumes of single muscles (except for geniohyoid and the right digastric muscles) as well as the sum muscle volume were significantly and inversely related to dysphagia severity. We found a significant decline of muscle volume with advancing age for most muscle groups and, in particular, for the total muscle volume. Apart from features being determined by the acute stroke itself (eg, site and size of stroke), also premorbid conditions, in particular age-related muscle atrophy, have an impact on the complex pathophysiology of swallowing disorders poststroke. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  4. Acute effects of volume-oriented incentive spirometry on chest wall volumes in patients after a stroke.

    PubMed

    Lima, Illia Ndf; Fregonezi, Guilherme Af; Melo, Rodrigo; Cabral, Elis Ea; Aliverti, Andrea; Campos, Tânia F; Ferreira, Gardênia Mh

    2014-07-01

    The aim of the present study was to assess how volume-oriented incentive spirometry applied to patients after a stroke modifies the total and compartmental chest wall volume variations, including both the right and left hemithoraces, compared with controls. Twenty poststroke patients and 20 age-matched healthy subjects were studied by optoelectronic plethysmography during spontaneous quiet breathing (QB), during incentive spirometry, and during the recovery period after incentive spirometry. Incentive spirometry was associated with an increased chest wall volume measured at the pulmonary rib cage, abdominal rib cage and abdominal compartment (P = .001) and under 3 conditions (P < .001). Compared with healthy control subjects, the tidal volume (VT) of the subjects with stroke was 24.7, 18.0, and 14.7% lower during QB, incentive spirometry, and postincentive spirometry, respectively. Under all 3 conditions, the contribution of the abdominal compartment to VT was greater in the stroke subjects (54.1, 43.2, and 48.9%) than in the control subjects (43.7, 40.8, and 46.1%, P = .039). In the vast majority of subjects (13/20 and 18/20 during QB and incentive spirometry, respectively), abdominal expansion precedes rib cage expansion during inspiration. Greater asymmetry between the right and left hemithoracic expansions occurred in stroke subjects compared with control subjects, but it decreased during QB (62.5%, P = .002), during incentive spirometry (19.7%), and postincentive spirometry (67.6%, P = .14). Incentive spirometry promotes increased expansion in all compartments of the chest wall and reduces asymmetric expansion between the right and left parts of the pulmonary rib cage; therefore, it should be considered as a tool for rehabilitation. Copyright © 2014 by Daedalus Enterprises.

  5. Beyond Volume: Hospital-Based Healthcare Technology for Better Outcomes in Cerebrovascular Surgical Patients Diagnosed With Ischemic Stroke: A Population-Based Nationwide Cohort Study From 2002 to 2013.

    PubMed

    Kim, Jae-Hyun; Park, Eun-Cheol; Lee, Sang Gyu; Lee, Tae-Hyun; Jang, Sung-In

    2016-03-01

    We examined whether the level of hospital-based healthcare technology was related to the 30-day postoperative mortality rates, after adjusting for hospital volume, of ischemic stroke patients who underwent a cerebrovascular surgical procedure. Using the National Health Insurance Service-Cohort Sample Database, we reviewed records from 2002 to 2013 for data on patients with ischemic stroke who underwent cerebrovascular surgical procedures. Statistical analysis was performed using Cox proportional hazard models to test our hypothesis. A total of 798 subjects were included in our study. After adjusting for hospital volume of cerebrovascular surgical procedures as well as all for other potential confounders, the hazard ratio (HR) of 30-day mortality in low healthcare technology hospitals as compared to high healthcare technology hospitals was 2.583 (P < 0.001). We also found that, although the HR of 30-day mortality in low healthcare technology hospitals with high volume as compared to high healthcare technology hospitals with high volume was the highest (10.014, P < 0.0001), cerebrovascular surgical procedure patients treated in low healthcare technology hospitals had the highest 30-day mortality rate, irrespective of hospital volume. Although results of our study provide scientific evidence for a hospital volume/30-day mortality rate relationship in ischemic stroke patients who underwent cerebrovascular surgical procedures, our results also suggest that the level of hospital-based healthcare technology is associated with mortality rates independent of hospital volume. Given these results, further research into what components of hospital-based healthcare technology significantly impact mortality is warranted.

  6. An analysis of Methylenetetrahydrofolate reductase and Glutathione S-transferase omega-1 genes as modifiers of the cerebral response to ischemia

    PubMed Central

    Peddareddygari, Leema Reddy; Dutra, Ana Virginia; Levenstien, Mark A; Sen, Souvik; Grewal, Raji P

    2009-01-01

    Background Cerebral ischemia involves a series of reactions which ultimately influence the final volume of a brain infarction. We hypothesize that polymorphisms in genes encoding proteins involved in these reactions could act as modifiers of the cerebral response to ischemia and impact the resultant stroke volume. The final volume of a cerebral infarct is important as it correlates with the morbidity and mortality associated with non-lacunar ischemic strokes. Methods The proteins encoded by the methylenetetrahydrofolate reductase (MTHFR) and glutathione S-transferase omega-1 (GSTO-1) genes are, through oxidative mechanisms, key participants in the cerebral response to ischemia. On the basis of these biological activities, they were selected as candidate genes for further investigation. We analyzed the C677T polymorphism in the MTHFR gene and the C419A polymorphism in the GSTO-1 gene in 128 patients with non-lacunar ischemic strokes. Results We found no significant association of either the MTHFR (p = 0.72) or GSTO-1 (p = 0.58) polymorphisms with cerebral infarct volume. Conclusion Our study shows no major gene effect of either the MTHFR or GSTO-1 genes as a modifier of ischemic stroke volume. However, given the relatively small sample size, a minor gene effect is not excluded by this investigation. PMID:19624857

  7. Postthrombolysis hemorrhage risk is affected by stroke assessment bias between hemispheres

    PubMed Central

    Singer, O.C.; Gotzler, B.; Vatankhah, B.; Boy, S.; Fiehler, J.; Lansberg, M.G.; Albers, G.W.; Kastrup, A.; Rovira, A.; Gass, A.; Rosso, C.; Derex, L.; Kim, J.S.; Heuschmann, P.

    2011-01-01

    Objective: Stroke symptoms in right hemispheric stroke tend to be underestimated in clinical assessment scales, resulting in greater infarct volumes in right as compared to left hemispheric strokes despite similar clinical stroke severity. We hypothesized that patients with right hemispheric nonlacunar stroke are at higher risk for secondary intracerebral hemorrhage after thrombolysis despite similar stroke severity. Methods: We analyzed data of 2 stroke cohorts with CT-based and MRI-based imaging before thrombolysis. Initial stroke severity was measured with the NIH Stroke Scale (NIHSS). Lacunar strokes were excluded through either the presence of cortical symptoms (CT cohort) or restriction to patients with prestroke diffusion-weighted imaging (DWI) lesion size >3.75 mL (MRI cohort). Probabilities of having a parenchymal hematoma were determined using multivariate logistic regression. Results: A total of 392 patients in the CT cohort and 400 patients in the MRI cohort were evaluated. Although NIHSS scores were similar in strokes of both hemispheres (median NIHSS: CT: 15 vs 13, MRI: 14 vs 16), the frequencies of parenchymal hematoma were higher in right hemispheric compared to left hemispheric strokes (CT: 12.4% vs 5.7%, MRI: 10.4% vs 6.8%). After adjustment for potential confounders (but not pretreatment lesion volume), the probability of parenchymal hematoma was higher in right hemispheric nonlacunar strokes (CT: odds ratio [OR] 2.3; 95% confidence interval [CI] 1.08–4.89; p = 0.032) and showed a borderline significant effect in the MRI cohort (OR 2.1; 95% CI 0.98–4.49; p = 0.057). Adjustment for pretreatment DWI lesion size eliminated hemispheric differences in hemorrhage risk. Conclusions: Higher hemorrhage rates in right hemispheric nonlacunar strokes despite similar stroke severity may be caused by clinical underestimation of the proportion of tissue at bleeding risk. PMID:21248275

  8. Adaptive engine injection for emissions reduction

    DOEpatents

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  9. Changes in cardiac output and tibial artery flow during and after progressive LBNP

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A 3.0 MHz Pulsed Doppler velocity meter (PD) was used to determine blood velocities in the ascending aorta from the suprasternal notch before, during and after progressive 5 min stages of lower body negative pressure (LBNP) in 7 subjects. Changes in stroke volume were calculated from the systolic velocity integrals. A unique 20 MHz PD was used to estimate bloodflow in the posterior tibial artery. With -20 torr mean stroke volume fell 11% and then continued to decline by 48% before LBNP was terminated. Mean tibial flow fell progressively with LBNP stress, due to an increase in reverse flow component and a reduction in peak forward flow and diameter. Stroke volume increased and heart rate fell dramatically during the first 15 sec of recovery. The LBNP was terminated early in 2 subjects because of vasovagal symptons (V). During V the stroke volume rose 86% which more than compensated for the drop in heart rate. This implies that V is accompanied by a paradoxical increase in venous return and that the reduction in HR is the primary cardiovascular event. During the first 15 sec of recovery these 2 subjects had a distinctive marked rise to heart rate reminiscent of the Bainbridge reflex.

  10. Alteration of mean platelet volume in the pathogenesis of acute ischemic stroke: cause or consequence?

    PubMed

    Ayas, Zeynep Özözen; Can, Ufuk

    2018-01-30

    Platelets have a crucial role on vascular disease which are involved in pathogenesis of ischemic stroke. Platelet size is measured as mean platelet volume (MPV) and is a marker of platelet activity. Platelets contain more dense granules as the size increases and produce more serotonin and tromboglobulin (b-TG) than small platelets. In this study, the alteration of MPV values were investigated in patients with acute stroke, who had MPV values before stroke, during acute ischemic stroke and 7 days after the stroke. The relationship between this alteration and risk factors, etiology and localization of ischemic stroke were also investigated. Sixty-seven patients with clinically and radiologically established diagnoses of ischemic stroke were enrolled into the study and stroke etiology was classified by modified Trial of Org 10 172 in Acute Stroke Treatment (TOAST) classification and, modified Bamford classification was used for localization and stroke risk factors were also evaluated. The platelet counts and MPV values from patient files in patients who had values before stroke (at examination for another diseases), within 24 hours of symptom onset and after 7 further days were analysed. MPV values increased after stroke (10.59±2.26) compared with acute stroke values (9.84±1.64) and the values before stroke (9.59±1.72) (p<0.0001); this alteration of MPV values occured 7 days after stroke (p<0.016). There was a positive correlation between age and MPV values during acute stroke (r=0.270; p<0.05). Patients with atrial fibrillation had higher alteration in the time of MPV compared with patients without atrial fibrillation (p>0.006). We assessed for gender, men (n=38) had a higher alteration in the time of MPV compared with women (n=29) (p=0.013). Although there was no alteration of platelet counts, MPV values were increased 7 days after stroke in patients with acute ischemic stroke.

  11. Reduced left ventricular filling following blood volume extraction does not result in compensatory augmentation of cardiac mechanics.

    PubMed

    Lord, Rachel; MacLeod, David; George, Keith; Oxborough, David; Shave, Rob; Stembridge, Mike

    2018-04-01

    What is the central question of this study? A reduction in left ventricular (LV) filling, and concomitant increase in heart rate, augments LV mechanics to maintain stroke volume (SV); however, the impact of reduced LV filling in isolation on SV and LV mechanics is currently unknown. What is the main finding and its importance? An isolated decrease in LV filling did not provoke a compensatory increase in mechanics to maintain SV; in contrast, LV mechanics and SV were reduced. These data indicate that when LV filling is reduced without changes in heart rate, LV mechanics do not compensate to maintain SV. An acute non-invasive reduction in preload has been shown to augment cardiac mechanics to maintain stroke volume and cardiac output. Such interventions induce concomitant changes in heart rate, whereas blood volume extraction reduces preload without changes in heart rate. Therefore, the purpose of this study was to determine whether a preload reduction in isolation resulted in augmented stroke volume achieved via enhanced cardiac mechanics. Nine healthy volunteers (four female, age 29 ± 11 years) underwent echocardiography for the assessment of left ventricular (LV) volumes and mechanics in a supine position at baseline and end extraction after the controlled removal of 25% of total blood volume (1062 ± 342 ml). Arterial blood pressure was monitored continuously by a pressure transducer attached to an indwelling radial artery catheter. Heart rate and total peripheral resistance were unchanged from baseline to end extraction, but systolic blood pressure was reduced (from 148 to 127 mmHg). From baseline to end extraction there were significant reductions in left ventricular end-diastolic volume (from 89 to 71 ml) and stroke volume (from 56 to 37 ml); however, there was no change in LV twist, basal or apical rotation. In contrast, LV longitudinal strain (from -20 to -17%) and basal circumferential strain (from -22 to -19%) were significantly reduced from baseline to end extraction. In conclusion, a reduction in preload during blood volume extraction does not result in compensatory changes in stroke volume or cardiac mechanics. Our data suggest that LV strain is dependent on LV filling and consequent geometry, whereas LV twist could be mediated by heart rate. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  12. Pulse oximeter plethysmographic waveform changes in awake, spontaneously breathing, hypovolemic volunteers.

    PubMed

    McGrath, Susan P; Ryan, Kathy L; Wendelken, Suzanne M; Rickards, Caroline A; Convertino, Victor A

    2011-02-01

    The primary objective of this study was to determine whether alterations in the pulse oximeter waveform characteristics would track progressive reductions in central blood volume. We also assessed whether changes in the pulse oximeter waveform provide an indication of blood loss in the hemorrhaging patient before changes in standard vital signs. Pulse oximeter data from finger, forehead, and ear pulse oximeter sensors were collected from 18 healthy subjects undergoing progressive reduction in central blood volume induced by lower body negative pressure (LBNP). Stroke volume measurements were simultaneously recorded using impedance cardiography. The study was conducted in a research laboratory setting where no interventions were performed. Pulse amplitude, width, and area under the curve (AUC) features were calculated from each pulse wave recording. Amalgamated correlation coefficients were calculated to determine the relationship between the changes in pulse oximeter waveform features and changes in stroke volume with LBNP. For pulse oximeter sensors on the ear and forehead, reductions in pulse amplitude, width, and area were strongly correlated with progressive reductions in stroke volume during LBNP (R(2) ≥ 0.59 for all features). Changes in pulse oximeter waveform features were observed before profound decreases in arterial blood pressure. The best correlations between pulse features and stroke volume were obtained from the forehead sensor area (R(2) = 0.97). Pulse oximeter waveform features returned to baseline levels when central blood volume was restored. These results support the use of pulse oximeter waveform analysis as a potential diagnostic tool to detect clinically significant hypovolemia before the onset of cardiovascular decompensation in spontaneously breathing patients.

  13. Whole-brain perfusion CT using a toggling table technique to predict final infarct volume in acute ischemic stroke.

    PubMed

    Schrader, I; Wilk, D; Jansen, O; Riedel, C

    2013-09-01

    To evaluate how accurately final infarct volume in acute ischemic stroke can be predicted with perfusion CT (PCT) using a 64-MDCT unit and the toggling table technique. Retrospective analysis of 89 patients with acute ischemic stroke who underwent CCT, CT angiography (CTA) and PCT using the "toggling table" technique within the first three hours after symptom onset. In patients with successful thrombolytic therapy (n = 48) and in those without effective thrombolytic therapy (n = 41), the infarct volume and the volume of the penumbra on PCT were compared to the infarct size on follow-up images (CT or MRI) performed within 8 days. The feasibility of complete infarct volume prediction by 8 cm cranio-caudal coverage was evaluated. The correlation between the volume of hypoperfusion on PCT defined by cerebral blood volume reduction and final infarct volume was strongest in patients with successful thrombolytic therapy with underestimation of the definite infarct volume by 8.5 ml on average. The CBV map had the greatest prognostic value. In patients without successful thrombolytic therapy, the final infarct volume was overestimated by 12.1 ml compared to the MTT map on PCT. All infarcts were detected completely. There were no false-positive or false-negative results. Using PCT and the "toggling table" technique in acute stroke patients is helpful for the rapid and accurate quantification of the minimal final infarct and is therefore a prognostic parameter which has to be evaluated in further studies to assess its impact on therapeutic decision. ▶ Using PCT and the “toggling table technique” allows accurate quantification of the infarct core and penumbra. ▶ It is possible to record dynamic perfusion parameters quickly and easily of almost the entire supratentorial brain volume on a 64-slice MDCT unit. ▶ The technique allows identification of those patients who could profit from thrombolytic therapy outside the established time intervals. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Fluid responsiveness predicted by transcutaneous partial pressure of oxygen in patients with circulatory failure: a prospective study.

    PubMed

    Xu, Jingyuan; Peng, Xiao; Pan, Chun; Cai, Shixia; Zhang, Xiwen; Xue, Ming; Yang, Yi; Qiu, Haibo

    2017-12-01

    Significant effort has been devoted to defining parameters for predicting fluid responsiveness. Our goal was to study the feasibility of predicting fluid responsiveness by transcutaneous partial pressure of oxygen (PtcO 2 ) in the critically ill patients. This was a single-center prospective study conducted in the intensive care unit of a tertiary care teaching hospital. Shock patients who presented with at least one clinical sign of inadequate tissue perfusion, defined as systolic blood pressure <90 mmHg or a decrease >40 mmHg in previously hypertensive patients or the need for vasopressive drugs; urine output <0.5 ml/kg/h for 2 h; tachycardia; lactate >4 mmol/l, for less than 24 h in the absence of a contraindication for fluids were eligible to participate in the study. PtcO 2 was continuously recorded before and during a passive leg raising (PLR) test, and then before and after a 250 ml rapid saline infusion in 10 min. Fluid responsiveness is defined as a change in the stroke volume ≥10% after 250 ml of volume infusion. Thirty-four patients were included, and 14 responded to volume expansion. In the responders, the mean arterial pressure, central venous pressure, cardiac output, stroke volume and PtcO 2 increased significantly, while the heart rate decreased significantly by both PLR and volume expansion. Changes in the stroke volume induced either by PLR or volume expansion were significantly greater in responders than in non-responders. The correlation between the changes in PtcO 2 and stroke volume induced by volume expansion was significant. Volume expansion induced an increase in the PtcO 2 of 14% and PLR induced an increase in PtcO 2 of 13% predicted fluid responsiveness. This study suggested the changes in PtcO 2 induced by volume expansion and a PLR test predicted fluid responsiveness in critically ill patients. Trial registration NCT02083757.

  15. Prediction of infarction volume and infarction growth rate in acute ischemic stroke.

    PubMed

    Kamran, Saadat; Akhtar, Naveed; Alboudi, Ayman; Kamran, Kainat; Ahmad, Arsalan; Inshasi, Jihad; Salam, Abdul; Shuaib, Ashfaq; Qidwai, Uvais

    2017-08-08

    The prediction of infarction volume after stroke onset depends on the shape of the growth dynamics of the infarction. To understand growth patterns that predict lesion volume changes, we studied currently available models described in literature and compared the models with Adaptive Neuro-Fuzzy Inference System [ANFIS], a method previously unused in the prediction of infarction growth and infarction volume (IV). We included 67 patients with malignant middle cerebral artery [MMCA] stroke who underwent decompressive hemicraniectomy. All patients had at least three cranial CT scans prior to the surgery. The rate of growth and volume of infarction measured on the third CT was predicted with ANFIS without statistically significant difference compared to the ground truth [P = 0.489]. This was not possible with linear, logarithmic or exponential methods. ANFIS was able to predict infarction volume [IV3] over a wide range of volume [163.7-600 cm 3 ] and time [22-110 hours]. The cross correlation [CRR] indicated similarity between the ANFIS-predicted IV3 and original data of 82% for ANFIS, followed by logarithmic 70%, exponential 63% and linear 48% respectively. Our study shows that ANFIS is superior to previously defined methods in the prediction of infarction growth rate (IGR) with reasonable accuracy, over wide time and volume range.

  16. A modified Glenn shunt reduces right ventricular stroke work during left ventricular assist device therapy.

    PubMed

    Schiller, Petter; Vikholm, Per; Hellgren, Laila

    2016-03-01

    Right ventricular (RV) failure is a major cause of morbidity and mortality after left ventricular assist device (LVAD) placement and remains hard to predict. We hypothesized that partial surgical exclusion of the RV with a modified Glenn shunt during LVAD treatment would reduce RV stroke work. An LVAD was implanted in eight pigs and a modified Glenn shunt was constructed. A conductance pressure-volume catheter was placed in the right ventricle through the apex. Haemodynamic data and pressure-volume loops were obtained at the following time periods: (i) baseline, (ii) open shunt, (iii) LVAD with closed shunt and (iii) LVAD and open shunt. During LVAD therapy, the right atrial (RA) pressure increased from 9 mmHg (9-9) to 15 mmHg (12-15), P = 0.01. RV stroke volume increased from 30 ml (29-40) to 51 ml (42-53), P < 0.01. Also, RV stroke work increased to 708 mmHg ml (654-1193) from 535 mmHg ml (424-717), P = 0.04, compared with baseline. During LVAD therapy in combination with a Glenn shunt, the RA pressure decreased from 15 mmHg (12-15) to 10 mmHg (7-11) when compared with LVAD therapy only, P = 0.01. A decrease in RV stroke work from 708 mmHg ml (654-1193) to 465 mmHg ml (366-711), P = 0.04, was seen when the LVAD was combined with a shunt, not significantly different from the baseline value (535 mmHg ml). The developed pressure in the right ventricle decreased from 29 mmHg (26-32) to 21 mmHg (20-24), P < 0.01. The pressure-volume loops of the RV show a significant reduction of RV stroke work during the use of the shunt with LVAD treatment. A modified Glenn shunt reduced RV volumes, RV stroke work and RA pressure during LVAD therapy in an experimental model of heart failure in pigs. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Outcome After Reperfusion Therapies in Patients With Large Baseline Diffusion-Weighted Imaging Stroke Lesions: A THRACE Trial (Mechanical Thrombectomy After Intravenous Alteplase Versus Alteplase Alone After Stroke) Subgroup Analysis.

    PubMed

    Gautheron, Vincent; Xie, Yu; Tisserand, Marie; Raoult, Hélène; Soize, Sébastien; Naggara, Olivier; Bourcier, Romain; Richard, Sébastien; Guillemin, Francis; Bracard, Serge; Oppenheim, Catherine

    2018-03-01

    Stroke patients with large diffusion-weighted imaging (DWI) volumes are often excluded from reperfusion because of reckoned futility. In those with DWI volume >70 mL, included in the THRACE trial (Mechanical Thrombectomy After Intravenous Alteplase Versus Alteplase Alone After Stroke), we report the associations between baseline parameters and outcome. We examined 304 patients with anterior circulation stroke and pretreatment magnetic resonance imaging. Variables were extracted from the THRACE database, and DWI volumes were measured semiautomatically. Among 53 patients with DWI volume >70 mL, 12 had favorable outcome (modified Rankin Scale score, ≤2) at 3 months; they had less coronary disease (0/12 versus 12/38; P =0.046) and less history of smoking (1/10 versus 12/31; P =0.013) than patients with modified Rankin Scale score >2. None of the 8 patients >75 years of age reached modified Rankin Scale score ≤2. Favorable outcome occurred in 12 of 37 M1-occluded patients but in 0 of 16 internal carotid-T/L-occluded patients ( P =0.010). Favorable outcome was more frequent (6/13) when DWI lesion was limited to the superficial middle cerebral artery territory than when it extended to the deep middle cerebral artery territory (6/40; P =0.050). Stroke patients with DWI lesion >70 mL may benefit from reperfusion therapy, especially those with isolated M1 occlusion or ischemia restricted to the superficial middle cerebral artery territory. The benefit of treatment seems questionable for patients with carotid occlusion or lesion extending to the deep middle cerebral artery territory. © 2018 American Heart Association, Inc.

  18. Cardiorespiratory fitness, cognition and brain structure after TIA or minor ischemic stroke.

    PubMed

    Boss, H Myrthe; Van Schaik, Sander M; Witkamp, Theo D; Geerlings, Mirjam I; Weinstein, Henry C; Van den Berg-Vos, Renske M

    2017-10-01

    Background It is not known whether cardiorespiratory fitness is associated with better cognitive performance and brain structure in patients with a TIA or minor ischemic stroke. Aims To examine the association between cardiorespiratory fitness, cognition and brain structure in patients with a TIA and minor stroke. Methods The study population consisted of patients with a TIA or minor stroke with a baseline measurement of the peak oxygen consumption, a MRI scan of brain and neuropsychological assessment. Composite z-scores were calculated for the cognitive domains attention, memory and executive functioning. White matter hyperintensities, microbleeds and lacunes were rated visually. The mean apparent diffusion coefficient was measured in regions of interest in frontal and occipital white matter and in the centrum semiovale as a marker of white matter structure. Normalized brain volumes were estimated by use of Statistical Parametric Mapping. Results In 84 included patients, linear regression analysis adjusted for age, sex and education showed that a higher peak oxygen consumption was associated with higher cognitive z-scores, a larger grey matter volume (B = 0.15 (95% CI 0.05; 0.26)) and a lower mean apparent diffusion coefficient (B = -.004 (95% CI -.007; -.001)). We found no association between the peak oxygen consumption and severe white matter hyperintensities, microbleeds, lacunes and total brain volume. Conclusions These data suggest that cardiorespiratory fitness is associated with better cognitive performance, greater grey matter volume and greater integrity of the white matter in patients with a TIA or minor ischemic stroke. Further prospective trials are necessary to define the effect of cardiorespiratory fitness on cognition and brain structure in patients with TIA or minor stroke.

  19. Delayed treatment with ADAMTS13 ameliorates cerebral ischemic injury without hemorrhagic complication.

    PubMed

    Nakano, Takafumi; Irie, Keiichi; Hayakawa, Kazuhide; Sano, Kazunori; Nakamura, Yoshihiko; Tanaka, Masayoshi; Yamashita, Yuta; Satho, Tomomitsu; Fujioka, Masayuki; Muroi, Carl; Matsuo, Koichi; Ishikura, Hiroyasu; Futagami, Kojiro; Mishima, Kenichi

    2015-10-22

    Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke. However, delayed tPA treatment increases the risk of cerebral hemorrhage and can result in exacerbation of nerve injury. ADAMTS13, a von Willebrand factor (VWF) cleaving protease, has a protective effect against ischemic brain injury and may reduce bleeding risk by cleaving VWF. We examined whether ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA in mice subjected to middle cerebral artery occlusion (MCAO). ADAMTS13 (0.1mg/kg) or tPA (10mg/kg) was administered i.v., immediately after reperfusion of after 2-h or 4-h MCAO for comparison of the therapeutic time windows in ischemic stroke. Infarct volume, hemorrhagic volume, plasma high-mobility group box1 (HMGB1) levels and cerebral blood flow were measured 24h after MCAO. Both ADAMTS13 and tPA improved the infarct volume without hemorrhagic complications in 2-h MCAO mice. On the other hand, ADAMTS13 reduced the infarct volume and plasma HMGB1 levels, and improved cerebral blood flow without hemorrhagic complications in 4-h MCAO mice, but tPA was not effective and these animals showed massive intracerebral hemorrhage. These results indicated that ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA, and ADAMTS13 may be useful as a new therapeutic agent for ischemic stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The relationship between atrial electromechanical delay and left atrial mechanical function in stroke patients

    PubMed Central

    Akıl, Mehmet Ata; Akıl, Eşref; Bilik, Mehmet Zihni; Oylumlu, Mustafa; Acet, Halit; Yıldız, Abdülkadir; Akyüz, Abdurrahman; Ertaş, Faruk; Toprak, Nizamettin

    2015-01-01

    Objective: The aim of this study was to evaluate the relationship between atrial electromechanical delay (EMD) measured with tissue Doppler imaging (TDI) and left atrial (LA) mechanical functions in patients with ischemic stroke and compare them with healthy controls. Methods: Thirty patients with ischemic stroke were enrolled into this cross-sectional, observational study. The control group consisted of 35 age- and gender-matched apparently healthy individuals patients. Acute cerebral infarcts of probable embolic origin were diagnosed via imaging and were confirmed by a neurologist. Echocardiographically, time intervals from the beginning of P wave to beginning of A wave from the lateral and septal mitral and right ventricular tricuspid annuli in TDI were recorded. The differences between these intervals gave the mechanical delays (inter- and intra-atrial). Left atrial (LA) volumes were measured using the biplane area-length method, and LA mechanical function parameters were calculated. Statistical analysis was performed using student’s t-test, chi-squared test, and Pearson’s test. Results: The laboratory and clinical characteristics were similar in the two groups. Increased left atrial EMD (21.36±10.38 ms versus 11.74±6.06 ms, p<0.001), right atrial EMD (13.66±8.62 ms versus 9.66±6.81 ms, p=0.040), and interatrial EMD (35.03±9.95 ms versus 21.40±8.47 ms, p<0.001) were observed in stroke patients as compared to controls. Active LA emptying volume and fraction and passive LA emptying volumes and fraction were similar between controls and stroke patients. Total LA emptying volumes were significantly increased in stroke patients as compared to healthy controls (33.19±11.99 mL/m2 versus 27.48±7.08 mL/m2, p=0.021). Conclusion: According to the results of our study, interatrial electromechanical delay may be a new predictor for ischemic stroke. PMID:25537998

  1. Risk of hemorrhage in ischemic stroke and its relationship with cerebral microbleeds.

    PubMed

    Ozbek, Damla; Ozturk Tan, Ozlem; Ekinci, Gazanfer; Midi, Ipek

    2018-05-01

    Stroke is an important public health problem in most countries. Therefore, the treatment of stroke and its complications is important. Intracerebral hemorrhage is one of the complications of ischemic stroke. This study aimed to investigate the risk of hemorrhage in patients with acute ischemic stroke and prospectively study its relationship with cerebral microbleeds (MBs) using susceptibility-weighted imaging (SWI) that is a magnetic resonance imaging (MRI) sequence. Patients with acute ischemic stroke were included. Those who underwent treatment with tissue plasminogen activator were excluded. The patients were analyzed according to their risk factors for stroke and their relationship with intracerebral hemorrhage. A total of 148 patients were included. Of these, 41 (28%) had hemorrhages in the ischemic area. The mean waist circumferences, left atrium diameter, and heart rate in these patients were higher than those in patients without hemorrhage. MBs were detected in 66 patients (44.6%) using SWI, and there was no significant relationship with the presence of hemorrhage. Intracerebral hemorrhages were significantly associated with the volume and localization of infarcts. Intracerebral hemorrhage in patients with acute ischemic stroke within the first 7 days after stroke onset was related to their waist circumference as well as the volume and localization of the infarct. However, there was no relationship found between the risk of hemorrhage and MBs using SWI. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Continuous Rapid Quantification of Stroke Volume Using Magnetohydrodynamic Voltages in 3T Magnetic Resonance Imaging.

    PubMed

    Gregory, T Stan; Oshinski, John; Schmidt, Ehud J; Kwong, Raymond Y; Stevenson, William G; Ho Tse, Zion Tsz

    2015-12-01

    To develop a technique to noninvasively estimate stroke volume in real time during magnetic resonance imaging (MRI)-guided procedures, based on induced magnetohydrodynamic voltages (VMHD) that occur in ECG recordings during MRI exams, leaving the MRI scanner free to perform other imaging tasks. Because of the relationship between blood flow (BF) and VMHD, we hypothesized that a method to obtain stroke volume could be derived from extracted VMHD vectors in the vectorcardiogram (VCG) frame of reference (VMHDVCG). To estimate a subject-specific BF-VMHD model, VMHDVCG was acquired during a 20-s breath-hold and calibrated versus aortic BF measured using phase-contrast magnetic resonance in 10 subjects (n=10) and 1 subject diagnosed with premature ventricular contractions. Beat-to-beat validation of VMHDVCG-derived BF was performed using real-time phase-contrast imaging in 7 healthy subjects (n=7) during 15-minute cardiac exercise stress tests and 30 minutes after stress relaxation in 3T MRIs. Subject-specific equations were derived to correlate VMHDVCG with BF at rest and validated using real-time phase-contrast. An average error of 7.22% and 3.69% in stroke volume estimation, respectively, was found during peak stress and after complete relaxation. Measured beat-to-beat BF time history derived from real-time phase-contrast and VMHD was highly correlated using a Spearman rank correlation coefficient during stress tests (0.89) and after stress relaxation (0.86). Accurate beat-to-beat stroke volume and BF were estimated using VMHDVCG extracted from intra-MRI 12-lead ECGs, providing a means to enhance patient monitoring during MR imaging and MR-guided interventions. © 2015 American Heart Association, Inc.

  3. Mechanisms of decreased left ventricular preload during continuous positive pressure ventilation in ARDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhainaut, J.F.; Devaux, J.Y.; Monsallier, J.F.

    1986-07-01

    Continuous positive pressure ventilation is associated with a reduction in left ventricular preload and cardiac output, but the mechanisms responsible are controversial. The decrease in left ventricular preload may result exclusively from a decreased systemic venous return due to increased pleural pressure, or from an additional effect such as decreased left ventricular compliance. To determine the mechanisms responsible, we studied the changes in cardiac output induced by continuous positive pressure ventilation in eight patients with the adult respiratory distress syndrome. We measured cardiac output by thermodilution, and biventricular ejection fraction by equilibrium gated blood pool scintigraphy. Biventricular end-diastolic volumes weremore » then calculated by dividing stroke volume by ejection fraction. As positive end-expiratory pressure increased from 0 to 20 cm H/sub 2/O, stroke volume and biventricular end-diastolic volumes fell about 25 percent, and biventricular ejection fraction remained unchanged. At 20 cm H/sub 2/O positive end-expiratory pressure, volume expansion for normalizing cardiac output restored biventricular end-diastolic volumes without markedly changing biventricular end-diastolic transmural pressures. The primary cause of the reduction in left ventricular preload with continuous positive pressure ventilation appears to be a fall in venous return and hence in right ventricular stroke volume, without evidence of change in left ventricular diastolic compliance.« less

  4. Preclinical drug evaluation for combination therapy in acute stroke using systematic review, meta-analysis, and subsequent experimental testing

    PubMed Central

    O'Collins, Victoria E; Macleod, Malcolm R; Cox, Susan F; Van Raay, Leena; Aleksoska, Elena; Donnan, Geoffrey A; Howells, David W

    2011-01-01

    There is some evidence that in animal models of acute ischaemic stroke, combinations of neuroprotective agents might be more efficacious than the same agents administered alone. Hence, we developed pragmatic, empirical criteria based on therapeutic target, cost, availability, efficacy, administration, and safety to select drugs for testing in combination in animal models of acute stroke. Magnesium sulphate, melatonin, and minocycline were chosen from a library of neuroprotective agents, and were tested in a more ‘realistic' model favoured by the STAIR (Stroke Therapy Academic Industry Roundtable). Outcome was assessed with infarct volume, neurologic score, and two newly developed scales measuring general health and physiologic homeostasis. Owing to the failure to achieve neuroprotection in aged, hypertensive animals with drug delivery at 3 hours, the bar was lowered in successive experiments to determine whether neuroprotection could be achieved under conditions more conducive to recovery. Testing in younger animals showed more favourable homeostasis and general health scores than did testing in older animals, but infarct volume and neurologic scores did not differ with age, and treatment efficacy was again not shown. Testing with shorter occlusions resulted in smaller infarct volumes; nevertheless, treatment efficacy was still not observed. It was concluded that this combination, in these stroke models, was not effective. PMID:20978519

  5. A CAD System for Hemorrhagic Stroke.

    PubMed

    Nowinski, Wieslaw L; Qian, Guoyu; Hanley, Daniel F

    2014-09-01

    Computer-aided detection/diagnosis (CAD) is a key component of routine clinical practice, increasingly used for detection, interpretation, quantification and decision support. Despite a critical need, there is no clinically accepted CAD system for stroke yet. Here we introduce a CAD system for hemorrhagic stroke. This CAD system segments, quantifies, and displays hematoma in 2D/3D, and supports evacuation of hemorrhage by thrombolytic treatment monitoring progression and quantifying clot removal. It supports seven-step workflow: select patient, add a new study, process patient's scans, show segmentation results, plot hematoma volumes, show 3D synchronized time series hematomas, and generate report. The system architecture contains four components: library, tools, application with user interface, and hematoma segmentation algorithm. The tools include a contour editor, 3D surface modeler, 3D volume measure, histogramming, hematoma volume plot, and 3D synchronized time-series hematoma display. The CAD system has been designed and implemented in C++. It has also been employed in the CLEAR and MISTIE phase-III, multicenter clinical trials. This stroke CAD system is potentially useful in research and clinical applications, particularly for clinical trials.

  6. Stroke Lesions in a Large Upper Limb Rehabilitation Trial Cohort Rarely Match Lesions in Common Preclinical Models

    PubMed Central

    Edwardson, Matthew A.; Wang, Ximing; Liu, Brent; Ding, Li; Lane, Christianne J.; Park, Caron; Nelsen, Monica A.; Jones, Theresa A; Wolf, Steven L; Winstein, Carolee J; Dromerick, Alexander W.

    2017-01-01

    Background Stroke patients with mild-moderate upper extremity (UE) motor impairments and minimal sensory and cognitive deficits provide a useful model to study recovery and improve rehabilitation. Laboratory-based investigators use lesioning techniques for similar goals. Objective Determine whether stroke lesions in an UE rehabilitation trial cohort match lesions from the preclinical stroke recovery models used to drive translational research. Methods Clinical neuroimages from 297 participants enrolled in the Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) study were reviewed. Images were characterized based on lesion type (ischemic or hemorrhagic), volume, vascular territory, depth (cortical gray matter, cortical white matter, subcortical), old strokes, and leukoaraiosis. Lesions were compared with those of preclinical stroke models commonly used to study upper limb recovery. Results Among the ischemic stroke participants, median infarct volume was 1.8 mL, with most lesions confined to subcortical structures (61%) including the anterior choroidal artery territory (30%) and the pons (23%). Of ICARE participants, <1 % had lesions resembling proximal MCA or surface vessel occlusion models. Preclinical models of subcortical white matter injury best resembled the ICARE population (33%). Intracranial hemorrhage participants had small (median 12.5 mL) lesions that best matched the capsular hematoma preclinical model. Conclusions ICARE subjects are not representative of all stroke patients, but they represent a clinically and scientifically important subgroup. Compared to lesions in general stroke populations and widely-studied animal models of recovery, ICARE participants had smaller, more subcortically-based strokes. Improved preclinical-clinical translational efforts may require better alignment of lesions between preclinical and human stroke recovery models. PMID:28337932

  7. NEUROIMAGING CHARACTERISTICS AND POST-STROKE FATIGUE WITHIN THE FIRST 6 MONTHS AFTER ISCHEMIC STROKES.

    PubMed

    Delva, M; Delva, I

    2017-10-01

    Aim - identify neuroimaging characteristics associated with different post-stroke fatigue (PSF) domains within first 6 months after ischemic strokes. There were enrolled in the study 107 patients with acute ischemic strokes. General PSF and certain PSF domains (global, physical, mental, motivational, activity-related) were measured by multidimensional fatigue inventory-20 (MFI-20) scale at hospital stay, in 1, 3 and 6 months after stroke occurrence. Brain MRI studies included cerebral infarct localization, planimetric measurements of infarct volumes, measurement of brain atrophy indexes (bifrontal, bicaudate, cortical atrophy indexes, width of third ventricle) and evaluation of leukoaraiosis severity, according to Fazekas scale. In univariate logistic regression analysis infarcts volumes as well as brain atrophy indexes were not significantly associated with risk of any PSF domain at any time points within first 6 months after ischemic strokes. On the other hand, it had been found reliable associations between subcortical infarcts and increased risk of PSF domains which are related just to physical activity (physical PSF, activity-related PSF) in 1 month after stroke onset and later, as well as reliable associations between infratentorial infarcts and risk of global PSF domain in 3 months after stroke and later. Moreover, it have been revealed significant direct associations between severity of white matter lesions and risk of mental PSF in 3 months after stroke onset and later. Subcortical infarcts may be risk factors for development of physical PSF domain, infratentorial infarcts - risk factors for development of global PSF domain, leukoaraiosis extension - risk factor for development of mental PSF domain but not early than 1 month after stroke occurrence.

  8. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    PubMed Central

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-01-01

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344

  9. Grounding and lightning protection. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, M.D.

    1987-12-31

    Grounding systems protect personnel and equipment by isolating faulted systems and dissipating transient currents. Lightning protection systems minimize the possible consequences of a direct strike by lightning. This volume focuses on design requirements of the grounding system and on present-day concepts used in the design of lightning protection systems. Various types of grounding designs are presented, and their advantages and disadvantages discussed. Safety, of course, is the primary concern of any grounding system. Methods are shown for grounding the non-current-carrying parts of electrical equipment to reduce shock hazards to personnel. Lightning protection systems are installed on tall structures (such asmore » chimneys and cooling towers) to minimize the possibility of structural damage caused by direct lightning strokes. These strokes may carry currents of 200,000 A or more. The volume examines the formation and characteristics of lightning strokes and the way stroke characteristics influence the design of lightning protection systems. Because a large portion of the grounding system is buried in soil or concrete, it is not readily accessible for inspection or repair after its installation. The volume details the careful selection and sizing of materials needed to ensure a long, maintenance-free life for the system. Industry standards and procedures for testing the adequacy of the grounding system are also discussed.« less

  10. Relationship between pineal cyst size and aqueductal CSF flow measured by phase contrast MRI.

    PubMed

    Bezuidenhout, Abraham F; Kasper, Ekkehard M; Baledent, Olivier; Rojas, Rafael; Bhadelia, Rafeeque A

    2018-02-23

    Most patients with pineal cysts referred for neurosurgical consultation have no specific symptoms or objective findings except for pineal cyst size to help in management decisions. Our purpose was to assess the relationship between pineal cyst size and aqueductal CSF flow using PC-MRI. Eleven adult patients with pineal cysts (> 1-cm in size) referred for neurosurgical consultations were included. Cyst volume was calculated using 3D T1 images. PC-MRI in axial plane with velocity encoding of 5 cm/sec was used to quantitatively assess CSF flow through the cerebral aqueduct to determine the aqueductal stroke volume, which was then correlated to cyst size using Pearson's correlation. Pineal cysts were grouped by size into small (6/11) and large (5/11) using the median value to compare aqueductal stroke volume using Mann-Whitney test. Patients were 39 ± 13 years (mean ± SD) of age, and 10/11 (91%) were female. There was significant negative correlation between cyst volume and aqueductal stroke volume (r=0.74; p=0.009). Volume of small cysts (4954±2157 mm3) was significantly different compared to large cysts (13752±3738 mm3; p= 0.008). The aqueductal stroke volume of patients harboring large cysts 33±8 μL/cardiac cycle was significantly lower than that of patients with small cysts 96±29 μL/cardiac cycle (p=0.008). Aqueductal CSF flow appears to decrease with increasing pineal cyst size. Our preliminary results provide first evidence that even in the absence of objective neurological findings or hydrocephalus; larger pineal cysts already display decreased CSF flow through the cerebral aqueduct.

  11. Biplane roentgen videometric system for dynamic, 60/sec, studies of the shape and size of circulatory structures, particularly the left ventricle.

    NASA Technical Reports Server (NTRS)

    Ritman, E. L.; Sturm, R. E.; Wood, E. H.

    1973-01-01

    An operator interactive video system for the measurement of roentgen angiographically outlined structures is described. Left ventricular volume and three-dimensional shapes are calculated from up to 200 pairs of diameters measured from ventriculograms at the rate of 60 pairs of biplane images per second. The accuracy and reproducibility of volumes calculated by the system were established by analysis of roentgenograms of inanimate objects of known volume and by comparison of left ventricular stroke volumes calculated by the system with the stroke volumes calculated by an indicator-dilution technique and an aortic root electromagnetic flowmeter. Computer-generated display of the large amounts of data obtained by the videometry system is described.

  12. Body temperature and response to thrombolytic therapy in acute ischaemic stroke.

    PubMed

    Millán, M; Grau, L; Castellanos, M; Rodríguez-Yáñez, M; Arenillas, J F; Nombela, F; Pérez de la Ossa, N; López-Manzanares, L; Serena, J; Castillo, J; Dávalos, A

    2008-12-01

    To determine the relationship between body temperature (BT), arterial recanalization, functional outcome, and hemorrhagic transformation (HT) of cerebral infarction in patients treated with i.v. tissue plasminogen activator (tPA). We studied 254 patients treated with tPA within 3 h from stroke onset. National Institute of Health Stroke Scale score, BT, and transcranial Doppler ultrasound (n = 99) on admission and at 24 h were recorded. Hypodensity volume and HT were evaluated on CT at 24-36 h. Poor outcome (Rankin Scale > 2) was evaluated at 3 months. Arterial recanalization at 24 h was found in 70.7% of patients, HT in 24.8% (symptomatic in 4.7%) and poor outcome in 44.1%. Baseline BT was not associated with greater stroke severity at admission or at 24 h, HT or poor outcome. However, BT at 24 h correlated to stroke severity (P < 0.001) and hypodensity volume (P < 0.001) at 24 h, and was higher in patients who did not recanalize (P = 0.001), had symptomatic HT (P = 0.063) and poor outcome (P < 0.001). The adjusted odds ratio of poor outcome for patients with BT at 24 h > or = 37 degrees C was 2.56 (1.19-5.50, P = 0.016). Body temperature > or =37 degrees C at 24 h, but not at baseline, is associated with a lack of recanalization, greater hypodensity volume and worse outcome in stroke patients treated with tPA.

  13. Short-duration hypothermia after ischemic stroke prevents delayed intracranial pressure rise.

    PubMed

    Murtha, L A; McLeod, D D; McCann, S K; Pepperall, D; Chung, S; Levi, C R; Calford, M B; Spratt, N J

    2014-07-01

    Intracranial pressure elevation, peaking three to seven post-stroke is well recognized following large strokes. Data following small-moderate stroke are limited. Therapeutic hypothermia improves outcome after cardiac arrest, is strongly neuroprotective in experimental stroke, and is under clinical trial in stroke. Hypothermia lowers elevated intracranial pressure; however, rebound intracranial pressure elevation and neurological deterioration may occur during rewarming. (1) Intracranial pressure increases 24 h after moderate and small strokes. (2) Short-duration hypothermia-rewarming, instituted before intracranial pressure elevation, prevents this 24 h intracranial pressure elevation. Long-Evans rats with two hour middle cerebral artery occlusion or outbred Wistar rats with three hour middle cerebral artery occlusion had intracranial pressure measured at baseline and 24 h. Wistars were randomized to 2·5 h hypothermia (32·5°C) or normothermia, commencing 1 h after stroke. In Long-Evans rats (n = 5), intracranial pressure increased from 10·9 ± 4·6 mmHg at baseline to 32·4 ± 11·4 mmHg at 24 h, infarct volume was 84·3 ± 15·9 mm(3) . In normothermic Wistars (n = 10), intracranial pressure increased from 6·7 ± 2·3 mmHg to 31·6 ± 9·3 mmHg, infarct volume was 31·3 ± 18·4 mm(3) . In hypothermia-treated Wistars (n = 10), 24 h intracranial pressure did not increase (7·0 ± 2·8 mmHg, P < 0·001 vs. normothermia), and infarct volume was smaller (15·4 ± 11·8 mm(3) , P < 0·05). We saw major intracranial pressure elevation 24 h after stroke in two rat strains, even after small strokes. Short-duration hypothermia prevented the intracranial pressure rise, an effect sustained for at least 18 h after rewarming. The findings have potentially important implications for design of future clinical trials. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.

  14. The human cardiovascular system in the absence of gravity

    NASA Technical Reports Server (NTRS)

    Bungo, M. W.; Charles, J. B.

    1985-01-01

    The data collected from a Space Shuttle crew to investigate cardiovascular changes due to microgravity are presented. The experimental procedures which involved preflight, immediate postflight, and one week following postflight echocardiograms of 13 individuals are described. The immediate postflight results reveal a 20 percent decrease in stroke volume, a 16 percent decrease in left ventricular diastolic volume index (LVDVI), no change in systolic volume, blood pressure, or cardiac index, and a 24 percent increase in heart rate. One week later a 17 percent stroke volume increase, a 29 percent increase in cardiac index, and normal blood pressure, and LVDVI were observed. It is concluded that upon reexposure to gravity a readaptation process for the cardiovascular system occurs.

  15. Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis.

    PubMed

    Rink, Cameron; Christoforidis, Greg; Khanna, Savita; Peterson, Laura; Patel, Yojan; Khanna, Suchin; Abduljalil, Amir; Irfanoglu, Okan; Machiraju, Raghu; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke.

  16. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke

    PubMed Central

    Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina

    2013-01-01

    Clinical stroke induces inflammatory processes leading to cerebral injury. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and increased numbers of activated T-cells, monocytes and microglial cells in the brain, thus implicating a regulatory role of B-cell subpopulations in limiting CNS damage from stroke. The aim of this study was to determine whether the IL-10-producing regulatory B-cell subset can limit CNS inflammation and reduce infarct volume following ischemic stroke in B-cell deficient (µMT−/−) mice. Five million IL-10-producing B-cells were obtained from IL-10-GFP reporter mice and transferred i.v. to µMT−/− mice. After 24 h following this transfer, recipients were subjected to 60 min of middle cerebral artery occlusion (MCAO) followed by 48 hours of reperfusion. Compared to vehicle-treated controls, the IL-10+ B-cell-replenished µMT−/− mice had reduced infarct volume and fewer infiltrating activated T-cells and monocytes in the affected brain hemisphere. These effects in CNS were accompanied by significant increases in regulatory T-cells and expression of the co-inhibitory receptor, PD-1, with a significant reduction in the proinflammatory milieu in the periphery. These novel observations provide the first proof of both immunoregulatory and protective functions of IL-10-secreting B-cells in MCAO that potentially could impart significant benefit for stroke patients in the clinic. PMID:23640015

  17. Arterial Pulse Pressure and Its Association With Reduced Stroke Volume During Progressive Central Hypovolemia

    DTIC Science & Technology

    2006-09-01

    NM, Joyner MJ. Influence of increased central venous pressure on baroreflex control of sympathetic activity in humans. Am J Physiol Heart Circ Physiol...Arterial Pulse Pressure and Its Association With Reduced Stroke Volume During Progressive Central Hypovolemia Victor A. Convertino, PhD, William H...reduction of SV and change in MSNA during graded central hypovolemia in humans. Methods: After a 12-minute baseline data collection period, 13 men were

  18. Rationale and design of the EPISTEME trial: efficacy of post-stroke intensive rosuvastatin treatment for aortogenic embolic stroke.

    PubMed

    Ueno, Yuji; Yamashiro, Kazuo; Tanaka, Yasutaka; Watanabe, Masao; Shimada, Yoshiaki; Kuroki, Takuma; Miyamoto, Nobukazu; Daimon, Masao; Tanaka, Ryota; Miyauchi, Katsumi; Daida, Hiroyuki; Hattori, Nobutaka; Urabe, Takao

    2014-02-01

    Large atheromatous aortic plaques (AAPs) are associated with stroke recurrence. Rosuvastatin is a potent lipid-lowering agent and suppresses carotid and coronary artery atherosclerosis. It is unclear whether rosuvastatin has anti-atherogenic effects against AAPs in stroke patients. We designed a clinical trial in stroke patients to analyze changes in AAPs after rosuvastatin treatment using repeated transesophageal echocardiography (TEE). This trial is a prospective randomized open label study. Inclusion criteria were patients were ischemic stroke with hypercholesterolemia and AAPs ≥ 4 mm in thickness. The patients are randomly assigned to either a group treated with 5 mg/day rosuvastatin or a control group. Primary endpoint is the changes in volume and composition of AAPs after 6 months using transesophageal echocardiography (TEE). Biochemical findings are analyzed. By using repeated TEE and binary image analysis, we will be able to compare the dynamic changes in plaque composition of AAPs before and after therapy in the two groups. The EPISTEME trial will provide information on the changes in plaque volume and composition achieved by improvement of lipid profiles with rosuvastatin therapy in stroke patients with aortic atherosclerosis. The results of the study may provide evidence for a therapeutic strategy for aortogenic brain embolism. This study is registered with UMIN-CTR (UMIN000010548).

  19. Distal hyperintense vessels alleviate insula infarction in proximal middle cerebral artery occlusion.

    PubMed

    Song, Jiacheng; Ma, Zhanlong; Meng, Huan; Yu, Jing; Li, Yan; Hong, Xunning; Shi, Haibin

    2016-11-01

    Insula involvement in acute cerebral ischemia more likely causes penumbral loss and poor clinical outcome than infarct-sparing insula. Our objective was to prove the hypothesis that abundant collateral circulation represented by distal hyperintense vessels (HV) on MRI alleviates insula infarction and facilitates prognosis. One hundred and fourteen stroke cases with M1 totally occlusion on MR angiography were documented consecutively from 2012 to 2014. The degree of HV was graded as absent, subtle or prominent. Clinical data were recorded retrospectively by reviewing the medical records. The infarct volume on diffusion-weighted image, along with National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS), was used to evaluate the clinical severity and prognosis. The degree of HV was more abundant in insula-uninvolved stroke compared with stroke involving insula infarction (p = 0.026). Insula-involved stroke patients were older (p = 0.039) with a higher percentage of atrial fibrillation history (p = 0.042). Univariate analysis revealed that insula infarction, age, infarct volume and NIHSS predicted unfavorable prognosis of stroke, whereas HV had a favorable effect. The protective effect of HV was confirmed by multivariate analysis. HV is a protective barrier between insula infarction and severity of clinical symptoms among stroke patients.

  20. Computed Tomography Perfusion Improves Diagnostic Accuracy in Acute Posterior Circulation Stroke.

    PubMed

    Sporns, Peter; Schmidt, Rene; Minnerup, Jens; Dziewas, Rainer; Kemmling, André; Dittrich, Ralf; Zoubi, Tarek; Heermann, Philipp; Cnyrim, Christian; Schwindt, Wolfram; Heindel, Walter; Niederstadt, Thomas; Hanning, Uta

    2016-01-01

    Computed tomography perfusion (CTP) has a high diagnostic value in the detection of acute ischemic stroke in the anterior circulation. However, the diagnostic value in suspected posterior circulation (PC) stroke is uncertain, and whole brain volume perfusion is not yet in widespread use. We therefore studied the additional value of whole brain volume perfusion to non-contrast CT (NCCT) and CT angiography source images (CTA-SI) for infarct detection in patients with suspected acute ischemic PC stroke. This is a retrospective review of patients with suspected stroke in the PC in a database of our stroke center (n = 3,011) who underwent NCCT, CTA and CTP within 9 h after stroke onset and CT or MRI on follow-up. Images were evaluated for signs and pc-ASPECTS locations of ischemia. Three imaging models - A (NCCT), B (NCCT + CTA-SI) and C (NCCT + CTA-SI + CTP) - were compared with regard to the misclassification rate relative to gold standard (infarction in follow-up imaging) using the McNemar's test. Of 3,011 stroke patients, 267 patients had a suspected stroke in the PC and 188 patients (70.4%) evidenced a PC infarct on follow-up imaging. The sensitivity of Model C (76.6%) was higher compared with that of Model A (21.3%) and Model B (43.6%). CTP detected significantly more ischemic lesions, especially in the cerebellum, posterior cerebral artery territory and thalami. Our findings in a large cohort of consecutive patients show that CTP detects significantly more ischemic strokes in the PC than CTA and NCCT alone. © 2016 S. Karger AG, Basel.

  1. Periodic Limb Movements and White Matter Hyperintensities in First-Ever Minor Stroke or High-Risk Transient Ischemic Attack.

    PubMed

    Boulos, Mark I; Murray, Brian J; Muir, Ryan T; Gao, Fuqiang; Szilagyi, Gregory M; Huroy, Menal; Kiss, Alexander; Walters, Arthur S; Black, Sandra E; Lim, Andrew S; Swartz, Richard H

    2017-03-01

    Emerging evidence suggests that periodic limb movements (PLMs) may contribute to the development of cerebrovascular disease. White matter hyperintensities (WMHs), a widely accepted biomarker for cerebral small vessel disease, are associated with incident stroke and death. We evaluated the association between increased PLM indices and WMH burden in patients presenting with stroke or transient ischemic attack (TIA), while controlling for vascular risk factors and stroke severity. Thirty patients presenting within 2 weeks of a first-ever minor stroke or high-risk TIA were prospectively recruited. PLM severity was measured with polysomnography. WMH burden was quantified using the Age Related White Matter Changes (ARWMC) scale based on neuroimaging. Partial Spearman's rank-order correlations and multiple linear regression models tested the association between WMH burden and PLM severity. Greater WMH burden was correlated with elevated PLM index and stroke volume. Partial Spearman's rank-order correlations demonstrated that the relationship between WMH burden and PLM index persisted despite controlling for vascular risk factors. Multivariate linear regression models revealed that PLM index was a significant predictor of an elevated ARWMC score while controlling for age, stroke volume, stroke severity, hypertension, and apnea-hypopnea index. The quantity of PLMs was associated with WMH burden in patients with first-ever minor stroke or TIA. PLMs may be a risk factor for or marker of WMH burden, even after considering vascular risk factors and stroke severity. These results invite further investigation of PLMs as a potentially useful target to reduce WMH and stroke burden. © Sleep Research Society (SRS) 2016. All rights reserved. For permissions, please email: journals.permissions@oup.com

  2. Nox2 Knockout Delays Infarct Progression and Increases Vascular Recovery through Angiogenesis in Mice following Ischaemic Stroke with Reperfusion

    PubMed Central

    McCann, Sarah K.; Dusting, Gregory J.; Roulston, Carli L.

    2014-01-01

    Evidence suggests the NADPH oxidases contribute to ischaemic stroke injury and Nox2 is the most widely studied subtype in the context of stroke. There is still conjecture however regarding the benefits of inhibiting Nox2 to improve stroke outcome. The current study aimed to examine the temporal effects of genetic Nox2 deletion on neuronal loss after ischaemic stroke using knockout (KO) mice with 6, 24 and 72 hour recovery. Transient cerebral ischaemia was induced via intraluminal filament occlusion and resulted in reduced infarct volumes in Nox2 KO mice at 24 h post-stroke compared to wild-type controls. No protection was evident at either 6 h or 72 h post-stroke, with both genotypes exhibiting similar volumes of damage. Reactive oxygen species were detected using dihydroethidium and were co-localised with neurons and microglia in both genotypes using immunofluorescent double-labelling. The effect of Nox2 deletion on vascular damage and recovery was also examined 24 h and 72 h post-stroke using an antibody against laminin. Blood vessel density was decreased in the ischaemic core of both genotypes 24 h post-stroke and returned to pre-stroke levels only in Nox2 KO mice by 72 h. Overall, these results are the first to show that genetic Nox2 deletion merely delays the progression of neuronal loss after stroke but does not prevent it. Additionally, we show for the first time that Nox2 deletion increases re-vascularisation of the damaged brain by 72 h, which may be important in promoting endogenous brain repair mechanisms that rely on re-vascularisation. PMID:25375101

  3. Ventilatory Patterning in a Mouse Model of Stroke

    PubMed Central

    Koo, Brian B; Strohl, Kingman P; Gillombardo, Carl B; Jacono, Frank J

    2010-01-01

    Cheyne-Stokes respiration (CSR) is a breathing pattern characterized by waxing and waning of breath volume and frequency, and is often recognized following stroke, when causal pathways are often obscure. We used an animal model to address the hypothesis that cerebral infarction is a mechanism for producing breathing instability. Fourteen male A/J mice underwent either stroke (n=7) or sham (n=7) procedure. Ventilation was measured using whole body plethysmography. Respiratory rate (RR), tidal volume (VT) and minute ventilation (Ve) mean values and coefficient of variation were computed for ventilation and oscillatory behavior. In addition, the ventilatory data were computationally fit to models to quantify autocorrelation, mutual information, sample entropy and a nonlinear complexity index. At the same time post procedure, stroke when compared to sham animal breathing consisted of a lower RR and autocorrelation, higher coefficient of variation for VT and higher coefficient of variation for Ve. Mutual information and the nonlinear complexity index were higher in breathing following stroke which also demonstrated a waxing/waning pattern. The absence of stroke in the sham animals was verified anatomically. We conclude that ventilatory pattern following cerebral infarction demonstrated increased variability with increased nonlinear patterning and a waxing/waning pattern, consistent with CSR. PMID:20472101

  4. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study.

    PubMed

    Zhang, Jian; Chen, Chao Qin; Lei, Xiu Zhen; Feng, Zhi Ying; Zhu, Sheng Mei

    2013-07-01

    This pilot study was designed to utilize stroke volume variation and cardiac index to ensure fluid optimization during one-lung ventilation in patients undergoing thoracoscopic lobectomies. Eighty patients undergoing thoracoscopic lobectomy were randomized into either a goal-directed therapy group or a control group. In the goal-directed therapy group, the stroke volume variation was controlled at 10%±1%, and the cardiac index was controlled at a minimum of 2.5 L.min-1.m-2. In the control group, the MAP was maintained at between 65 mm Hg and 90 mm Hg, heart rate was maintained at between 60 BPM and 100 BPM, and urinary output was greater than 0.5 mL/kg-1/h-1. The hemodynamic variables, arterial blood gas analyses, total administered fluid volume and side effects were recorded. The PaO2/FiO2-ratio before the end of one-lung ventilation in the goal-directed therapy group was significantly higher than that of the control group, but there were no differences between the goal-directed therapy group and the control group for the PaO2/FiO2-ratio or other arterial blood gas analysis indices prior to anesthesia. The extubation time was significantly earlier in the goal-directed therapy group, but there was no difference in the length of hospital stay. Patients in the control group had greater urine volumes, and they were given greater colloid and overall fluid volumes. Nausea and vomiting were significantly reduced in the goal-directed therapy group. The results of this study demonstrated that an optimization protocol, based on stroke volume variation and cardiac index obtained with a FloTrac/Vigileo device, increased the PaO2/FiO2-ratio and reduced the overall fluid volume, intubation time and postoperative complications (nausea and vomiting) in thoracic surgery patients requiring one-lung ventilation.

  5. Characterization of fluid physics effects on cardiovascular response to microgravity (G-572)

    NASA Technical Reports Server (NTRS)

    Pantalos, George M.; Sharp, M. Keith; Woodruff, Stewart J.; Lorange, Richard D.; Bennett, Thomas E.; Sojka, Jan J.; Lemon, Mark W.

    1993-01-01

    The recognition and understanding of cardiovascular adaptation to spaceflight has experienced substantial advancement in the last several years. In-flight echocardiographic measurements of astronaut cardiac function on the Space Shuttle have documented a 15 percent reduction in both left ventricular volume index and stroke volume with a compensatory increase in heart rate to maintain cardiac output. To date, the reduced cardiac size and stroke volume have been presumed to be the consequence of the reduction in circulating fluid volume following diuresis and other physiological processes to reduce blood volume within a few days after orbital insertion. However, no specific mechanism for the reduced stroke volume has been elucidated. The following investigation proposes the use of a hydraulic model of the cardiovascular system to examine the possibility that the observed reduction in stroke volume may, in part, be related to fluid physics effects on heart function. The automated model is being prepared to fly as a GAS payload. The experimental apparatus consists of a pneumatically actuated, elliptical artificial ventricle connected to a closed-loop, hydraulic circuit with compliance and resistance elements to create physiologic pressure and flow conditions. The ventricle is instrumented with high-fidelity, acceleration-insensitive, catheter-tip pressure transducers (Millar Instruments) in the apex and base to determine the instantaneous ventricular pressures and (delta)P(sub LV) across the left ventricle (LVP(sub apex)-LVP(sub base). The ventricle is also instrumented with a flow probe and pressure transducers immediately upstream of the inflow valve and downstream of the outflow valve. The experiment will be microprocessor controlled with analog signals stored on the FM data tape recorder. By varying the circulating fluid volume, ventricular function can be determined for varying preload pressures with fixed afterload pressure. Pilot experiments on board the NASA KC-135 aircraft have demonstrated proof-of-concept and provided early support for the proposed hypothesis. A review of the pilot experiments and developmental progress on the GAS version of this experiment will be presented.

  6. Structural Integrity of Normal Appearing White Matter and Sex-Specific Outcomes After Acute Ischemic Stroke.

    PubMed

    Etherton, Mark R; Wu, Ona; Cougo, Pedro; Giese, Anne-Katrin; Cloonan, Lisa; Fitzpatrick, Kaitlin M; Kanakis, Allison S; Boulouis, Gregoire; Karadeli, Hasan H; Lauer, Arne; Rosand, Jonathan; Furie, Karen L; Rost, Natalia S

    2017-12-01

    Women have worse poststroke outcomes than men. We evaluated sex-specific clinical and neuroimaging characteristics of white matter in association with functional recovery after acute ischemic stroke. We performed a retrospective analysis of acute ischemic stroke patients with admission brain MRI and 3- to 6-month modified Rankin Scale score. White matter hyperintensity and acute infarct volume were quantified on fluid-attenuated inversion recovery and diffusion tensor imaging MRI, respectively. Diffusivity anisotropy metrics were calculated in normal appearing white matter contralateral to the acute ischemia. Among 319 patients with acute ischemic stroke, women were older (68.0 versus 62.7 years; P =0.004), had increased incidence of atrial fibrillation (21.4% versus 12.2%; P =0.04), and lower rate of tobacco use (21.1% versus 35.9%; P =0.03). There was no sex-specific difference in white matter hyperintensity volume, acute infarct volume, National Institutes of Health Stroke Scale, prestroke modified Rankin Scale score, or normal appearing white matter diffusivity anisotropy metrics. However, women were less likely to have an excellent outcome (modified Rankin Scale score <2: 49.6% versus 67.0%; P =0.005). In logistic regression analysis, female sex and the interaction of sex with fractional anisotropy, radial diffusivity, and axial diffusivity were independent predictors of functional outcome. Female sex is associated with decreased likelihood of excellent outcome after acute ischemic stroke. The correlation between markers of white matter integrity and functional outcomes in women, but not men, suggests a potential sex-specific mechanism. © 2017 American Heart Association, Inc.

  7. A practical assessment of magnetic resonance diffusion-perfusion mismatch in acute stroke: observer variation and outcome.

    PubMed

    Kane, I; Hand, P J; Rivers, C; Armitage, P; Bastin, M E; Lindley, R; Dennis, M; Wardlaw, J M

    2009-11-01

    MR diffusion/perfusion mismatch may help identify patients for acute stroke treatment, but mixed results from clinical trials suggest that further evaluation of the mismatch concept is required. To work effectively, mismatch should predict prognosis on arrival at hospital. We assessed mismatch duration and associations with functional outcome in acute stroke. We recruited consecutive patients with acute stroke, recorded baseline clinical variables, performed MR diffusion and perfusion imaging and assessed 3-month functional outcome. We assessed practicalities, agreement between mismatch on mean transit time (MTT) or cerebral blood flow (CBF) maps, visually and with lesion volume, and the relationship of each to functional outcome. Of 82 patients starting imaging, 14 (17%) failed perfusion imaging. Overall, 42% had mismatch (56% at <6 h; 41% at 12-24 h; 23% at 24-48 h). Agreement for mismatch by visual versus volume assessment was fair using MTT (kappa 0.59, 95% CI 0.34-0.84) but poor using CBF (kappa 0.24, 95% CI 0.01-0.48). Mismatch by either definition was not associated with functional outcome, even when the analysis was restricted to just those with mismatch. Visual estimation is a reasonable proxy for mismatch volume on MTT but not CBF. Perfusion is more difficult for acute stroke patients than diffusion imaging. Mismatch is present in many patients beyond 12 h after stroke. Mismatch alone does not distinguish patients with good and poor prognosis; both can do well or poorly. Other factors, e.g. reperfusion, may influence outcome more strongly, even in patients without mismatch.

  8. Value of Quantitative Collateral Scoring on CT Angiography in Patients with Acute Ischemic Stroke.

    PubMed

    Boers, A M M; Sales Barros, R; Jansen, I G H; Berkhemer, O A; Beenen, L F M; Menon, B K; Dippel, D W J; van der Lugt, A; van Zwam, W H; Roos, Y B W E M; van Oostenbrugge, R J; Slump, C H; Majoie, C B L M; Marquering, H A

    2018-06-01

    Many studies have emphasized the relevance of collateral flow in patients presenting with acute ischemic stroke. Our aim was to evaluate the relationship of the quantitative collateral score on baseline CTA with the outcome of patients with acute ischemic stroke and test whether the timing of the CTA acquisition influences this relationship. From the Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the Netherlands (MR CLEAN) data base, all baseline thin-slice CTA images of patients with acute ischemic stroke with intracranial large-vessel occlusion were retrospectively collected. The quantitative collateral score was calculated as the ratio of the vascular appearance of both hemispheres and was compared with the visual collateral score. Primary outcomes were 90-day mRS score and follow-up infarct volume. The relation with outcome and the association with treatment effect were estimated. The influence of the CTA acquisition phase on the relation of collateral scores with outcome was determined. A total of 442 patients were included. The quantitative collateral score strongly correlated with the visual collateral score (ρ = 0.75) and was an independent predictor of mRS (adjusted odds ratio = 0.81; 95% CI, .77-.86) and follow-up infarct volume (exponent β = 0.88; P < .001) per 10% increase. The quantitative collateral score showed areas under the curve of 0.71 and 0.69 for predicting functional independence (mRS 0-2) and follow-up infarct volume of >90 mL, respectively. We found significant interaction of the quantitative collateral score with the endovascular therapy effect in unadjusted analysis on the full ordinal mRS scale ( P = .048) and on functional independence ( P = .049). Modification of the quantitative collateral score by acquisition phase on outcome was significant (mRS: P = .004; follow-up infarct volume: P < .001) in adjusted analysis. Automated quantitative collateral scoring in patients with acute ischemic stroke is a reliable and user-independent measure of the collateral capacity on baseline CTA and has the potential to augment the triage of patients with acute stroke for endovascular therapy. © 2018 by American Journal of Neuroradiology.

  9. Mediterranean diet score and left ventricular structure and function: the Multi-Ethnic Study of Atherosclerosis12

    PubMed Central

    Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A

    2016-01-01

    Background: Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. Objective: We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. Design: We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45–84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). Results: The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. Conclusions: A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less–Mediterranean-like dietary patterns. This trial was registered at clinicaltrials.gov as NCT00005487. PMID:27488238

  10. Mediterranean diet score and left ventricular structure and function: the Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Levitan, Emily B; Ahmed, Ali; Arnett, Donna K; Polak, Joseph F; Hundley, W Gregory; Bluemke, David A; Heckbert, Susan R; Jacobs, David R; Nettleton, Jennifer A

    2016-09-01

    Data are limited on the relation between dietary patterns and left ventricular (LV) structure and function. We examined cross-sectional associations of a diet-score assessment of a Mediterranean dietary pattern with LV mass, volume, mass-to-volume ratio, stroke volume, and ejection fraction. We measured LV variables with the use of cardiac MRI in 4497 participants in the Multi-Ethnic Study of Atherosclerosis study who were aged 45-84 y and without clinical cardiovascular disease. We calculated a Mediterranean diet score from intakes of fruit, vegetables, nuts, legumes, whole grains, fish, red meat, the monounsaturated fat:saturated fat ratio, and alcohol that were self-reported with the use of a food-frequency questionnaire. We used linear regression with adjustment for body size, physical activity, and cardiovascular disease risk factors to model associations and assess the shape of these associations (linear or quadratic). The Mediterranean diet score had a slight U-shaped association with LV mass (adjusted means: 146, 145, 146, and 147 g across quartiles of diet score, respectively; P-quadratic trend = 0.04). The score was linearly associated with LV volume, stroke volume, and ejection fraction: for each +1-U difference in score, LV volume was 0.4 mL higher (95% CI: 0.0, 0.8 mL higher), the stroke volume was 0.5 mL higher (95% CI: 0.2, 0.8 mL higher), and the ejection fraction was 0.2 percentage points higher (95% CI: 0.1, 0.3 percentage points higher). The score was not associated with the mass-to-volume ratio. A higher Mediterranean diet score is cross-sectionally associated with a higher LV mass, which is balanced by a higher LV volume as well as a higher ejection fraction and stroke volume. Participants in this healthy, multiethnic sample whose dietary patterns most closely conformed to a Mediterranean-type pattern had a modestly better LV structure and function than did participants with less-Mediterranean-like dietary patterns. This trial was registered at clinicaltrials.gov as NCT00005487. © 2016 American Society for Nutrition.

  11. White Matter Hyperintensity Volume and Outcome of Mechanical Thrombectomy With Stentriever in Acute Ischemic Stroke.

    PubMed

    Atchaneeyasakul, Kunakorn; Leslie-Mazwi, Thabele; Donahue, Kathleen; Giese, Anne-Katrin; Rost, Natalia S

    2017-10-01

    Finding of white matter hyperintensity (WMH) has been associated with an increased risk of parenchymal hematoma and poor clinical outcomes after mechanical thrombectomy using old-generation endovascular devices. Currently, no data exist with regard to the risk of mechanical thrombectomy using stentriever devices in patients with significant WMH. We hypothesized that WMH volume will not affect the hemorrhagic and clinical outcome in patients with acute ischemic stroke undergoing thrombectomy using new-generation devices. A retrospective cohort of consecutive acute ischemic stroke patients >18-year-old receiving mechanical thrombectomy with stentriever devices at a single academic center was examined. WMH volume was assessed by a semiautomated volumetric analysis on T2 fluid attenuated inversion recovery-magnetic resonance imaging. Outcomes included the rate of any intracerebral hemorrhage, 90-day modified Rankin Score (mRS), the rate of good outcome (discharge mRS ≤2), and the rate of successful reperfusion (thrombolysis in cerebral ischemia score 2b or 3). Between June 2012 and December 2015, 56 patients with acute ischemic stroke met the study criteria. Median WMH volume was 6.76 cm 3 (4.84-16.09 cm 3 ). Increasing WMH volume did not significantly affect the odds of good outcome (odds ratio [OR], 0.811; 95% confidence interval [CI], 0.456-1.442), intracerebral hemorrhage (OR, 1.055; 95% CI, 0.595-1.871), parenchymal hematoma (OR, 0.353; 95% CI, 0.061-2.057), successful recanalization (OR, 1.295; 95% CI, 0.704-2.383), or death (OR, 1.583; 95% CI, 0.84-2.98). Mechanical thrombectomy using stentrievers seems to be safe in selected patients with acute ischemic stroke with large vessel occlusion, nonwithstanding the severity of WMH burden in this population. Larger prospective studies are warranted to validate these findings. © 2017 American Heart Association, Inc.

  12. Contraction of Blood Clots Is Impaired in Acute Ischemic Stroke.

    PubMed

    Tutwiler, Valerie; Peshkova, Alina D; Andrianova, Izabella A; Khasanova, Dina R; Weisel, John W; Litvinov, Rustem I

    2017-02-01

    Obstructive thrombi or thrombotic emboli are the pathogenic basis of ischemic stroke. In vitro blood clots and in vivo thrombi can undergo platelet-driven contraction (retraction), resulting in volume shrinkage. Clot contraction can potentially reduce vessel occlusion and improve blood flow past emboli or thrombi. The aim of this work was to examine a potential pathogenic role of clot contraction in ischemic stroke. We used a novel automated method that enabled us to quantify time of initiation and extent and rate of clot contraction in vitro. The main finding is that clot contraction from the blood of stroke patients was reduced compared with healthy subjects. Reduced clot contraction correlated with a lower platelet count and their dysfunction, higher levels of fibrinogen and hematocrit, leukocytosis, and other changes in blood composition that may affect platelet function and properties of blood clots. Platelets from stroke patents were spontaneously activated and displayed reduced responsiveness to additional stimulation. Clinical correlations with respect to severity and stroke pathogenesis suggest that the impaired clot contraction has the potential to be a pathogenic factor in ischemic stroke. The changeable ability of clots and thrombi to shrink in volume may be a novel unappreciated mechanism that aggravates or alleviates the course and outcomes of ischemic stroke. The clinical importance of clot or thrombus transformations in vivo and the diagnostic and prognostic value of this blood test for clot contraction need further exploration. © 2016 American Heart Association, Inc.

  13. Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis

    PubMed Central

    Rink, Cameron; Christoforidis, Greg; Khanna, Savita; Peterson, Laura; Patel, Yojan; Khanna, Suchin; Abduljalil, Amir; Irfanoglu, Okan; Machiraju, Raghu; Bergdall, Valerie K; Sen, Chandan K

    2011-01-01

    Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke. PMID:21673716

  14. Contraction of Blood Clots is Impaired in Acute Ischemic Stroke

    PubMed Central

    Tutwiler, Valerie; Peshkova, Alina D.; Andrianova, Izabella A.; Khasanova, Dina R.; Weisel, John W.; Litvinov, Rustem I.

    2016-01-01

    Objective Obstructive thrombi or thrombotic emboli are the pathogenic basis of ischemic stroke. In vitro blood clots and in vivo thrombi can undergo platelet-driven contraction (retraction), resulting in volume shrinkage. Clot contraction can potentially reduce vessel occlusion and improve blood flow past emboli or thrombi. The aim of this work was to examine a potential pathogenic role of clot contraction in ischemic stroke. Approach and Results We employed a novel automated method that enabled us to quantify time of initiation, extent and rate of clot contraction in vitro. The main finding is clot contraction from the blood of stroke patients was reduced compared to healthy subjects. Reduced clot contraction correlated with a lower platelet count and their dysfunction, higher levels of fibrinogen and hematocrit, leukocytosis and other changes in blood composition that may affect platelet function and properties of blood clots. Platelets from stroke patents were spontaneously activated and displayed reduced responsiveness to additional stimulation. Clinical correlations with respect to severity and stroke etiology suggest that the impaired clot contraction has the potential to be a pathogenic factor in ischemic stroke. Conclusions The changeable ability of clots and thrombi to shrink in volume may be a novel unappreciated mechanism that aggravates or alleviates the course and outcomes of ischemic stroke. The clinical importance of clot or thrombus transformations in vivo and the diagnostic and prognostic value of this blood test for clot contraction needs further exploration. PMID:27908894

  15. Impaired renal function is associated with brain atrophy and poststroke cognitive decline.

    PubMed

    Auriel, Eitan; Kliper, Efrat; Shenhar-Tsarfaty, Shani; Molad, Jeremy; Berliner, Shlomo; Shapira, Itzhak; Ben-Bashat, Dafna; Shopin, Ludmila; Tene, Oren; Rosenberg, Gary A; Bornstein, Natan M; Ben Assayag, Einor

    2016-05-24

    To evaluate the interrelationship among impaired renal function, brain pathology on imaging, and cognitive decline in a longitudinal poststroke cohort. The Tel Aviv Brain Acute Stroke Cohort study is a prospective cohort of mild-moderate ischemic stroke/TIA survivors without dementia who underwent a 3T MRI and were cognitively assessed at admission and for 24 months following stroke. Renal function was evaluated at admission by creatinine clearance (CCl) estimation. The volumes of ischemic lesions and preexisting white matter hyperintensities (WMH), brain atrophy, and microstructural changes of the normal-appearing white matter tissue were measured using previously validated methods. Baseline data were available for 431 participants. Participants with a CCl <60 mL/min at baseline performed significantly worse in all cognitive tests over time (p = 0.001) than those with a CCl ≥60 mL/min and had larger WMH volume and cortical atrophy and smaller hippocampal volume (all p < 0.001). After 2 years, 15.5% of the participants were diagnosed with cognitive impairment. Multiple logistic regression analysis, controlling for traditional risk factors, suggested CCl <60 mL/min at baseline as a significant predictor for the development of cognitive impairment 2 years after the index stroke (odds ratio 2.01 [95% confidence interval 1.03-3.92], p = 0.041). Impaired renal function is associated with increased WMH volume and cortical atrophy, known biomarkers of the aging brain, and is a predictor for cognitive decline 2 years after stroke/TIA. Decreased renal function may be associated with cerebral small vessel disease underlying poststroke cognitive decline, suggesting a new target for early intervention. © 2016 American Academy of Neurology.

  16. High-dose estrogen treatment at reperfusion reduces lesion volume and accelerates recovery of sensorimotor function after experimental ischemic stroke.

    PubMed

    Carpenter, Randall S; Iwuchukwu, Ifeanyi; Hinkson, Cyrus L; Reitz, Sydney; Lee, Wonhee; Kukino, Ayaka; Zhang, An; Pike, Martin M; Ardelt, Agnieszka A

    2016-05-15

    Estrogens have previously been shown to protect the brain against acute ischemic insults, by potentially augmenting cerebrovascular function after ischemic stroke. The current study hypothesized that treatment with sustained release of high-dose 17β-estradiol (E2) at the time of reperfusion from middle cerebral artery occlusion (MCAO) in rats would attenuate reperfusion injury, augment post-stroke angiogenesis and cerebral blood flow, and attenuate lesion volume. Female Wistar rats underwent ovariectomy, followed two weeks later by transient, two-hour right MCAO (tMCAO) and treatment with E2 (n=13) or placebo (P; n=12) pellets starting at reperfusion. E2 treatment resulted in significantly smaller total lesion volume, smaller lesions within striatal and cortical brain regions, and less atrophy of the ipsilateral hemisphere after six weeks of recovery. E2-treated animals exhibited accelerated recovery of contralateral forelimb sensorimotor function in the cylinder test. Magnetic resonance imaging (MRI) showed that E2 treatment reduced the formation of lesion cysts, decreased lesion volume, and increased lesional cerebral blood flow (CBF). K(trans), a measure of vascular permeability, was increased in the lesions. This finding, which represents lesion neovascularization, was not altered by E2 treatment. Ischemic stroke-related angiogenesis and vessel formation was confirmed with immunolabeling of brain tissue and was not altered with E2 treatment. In summary, E2 treatment administered immediately following reperfusion significantly reduced lesion size, cyst formation, and brain atrophy while improving lesional CBF and accelerating recovery of functional deficits in a rat model of ischemic stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Volume estimation of brain abnormalities in MRI data

    NASA Astrophysics Data System (ADS)

    Suprijadi, Pratama, S. H.; Haryanto, F.

    2014-02-01

    The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.

  18. Effects of Simulated Pathophysiology on the Performance of a Decision Support Medical Monitoring System for Early Detection of Hemodynamic Decompensation in Humans

    DTIC Science & Technology

    2015-10-01

    Arterial oxygen saturation was monitored 130 using a finger pulse oximeter and end-tidal CO2 (ETCO2) was collected from a nasal cannula 131 (Cardiocap/5...Johnson et al, J Appl Physiol 2014 PMID 24876357. 5 Keywords Trauma, coagulation, central venous pressure, stroke volume, pulse pressure...Johnson BD, Curry TB, Convertino VA, & Joyner MJ. The association between pulse pressure and stroke volume during lower body negative pressure and

  19. Automation of CT-based haemorrhagic stroke assessment for improved clinical outcomes: study protocol and design

    PubMed Central

    Chinda, Betty; Medvedev, George; Siu, William; Ester, Martin; Arab, Ali; Gu, Tao; Moreno, Sylvain; D’Arcy, Ryan C N; Song, Xiaowei

    2018-01-01

    Introduction Haemorrhagic stroke is of significant healthcare concern due to its association with high mortality and lasting impact on the survivors’ quality of life. Treatment decisions and clinical outcomes depend strongly on the size, spread and location of the haematoma. Non-contrast CT (NCCT) is the primary neuroimaging modality for haematoma assessment in haemorrhagic stroke diagnosis. Current procedures do not allow convenient NCCT-based haemorrhage volume calculation in clinical settings, while research-based approaches are yet to be tested for clinical utility; there is a demonstrated need for developing effective solutions. The project under review investigates the development of an automatic NCCT-based haematoma computation tool in support of accurate quantification of haematoma volumes. Methods and analysis Several existing research methods for haematoma volume estimation are studied. Selected methods are tested using NCCT images of patients diagnosed with acute haemorrhagic stroke. For inter-rater and intrarater reliability evaluation, different raters will analyse haemorrhage volumes independently. The efficiency with respect to time of haematoma volume assessments will be examined to compare with the results from routine clinical evaluations and planimetry assessment that are known to be more accurate. The project will target the development of an enhanced solution by adapting existing methods and integrating machine learning algorithms. NCCT-based information of brain haemorrhage (eg, size, volume, location) and other relevant information (eg, age, sex, risk factor, comorbidities) will be used in relation to clinical outcomes with future project development. Validity and reliability of the solution will be examined for potential clinical utility. Ethics and dissemination The project including procedures for deidentification of NCCT data has been ethically approved. The study involves secondary use of existing data and does not require new consent of participation. The team consists of clinical neuroimaging scientists, computing scientists and clinical professionals in neurology and neuroradiology and includes patient representatives. Research outputs will be disseminated following knowledge translation plans towards improving stroke patient care. Significant findings will be published in scientific journals. Anticipated deliverables include computer solutions for improved clinical assessment of haematoma using NCCT. PMID:29674371

  20. Mechanisms of Orthostatic Tolerance Improvement Following Artificial Gravity Exposure Differ Between Men and Women

    NASA Technical Reports Server (NTRS)

    Evans, J. M.; Stenger, M. B.; Ferguson, C. R.; Ribiero, L. C.; Zhang, Q.; Moore, F. B.; Serrador, J.; Smith, J. D.; Knapp, C. F.

    2014-01-01

    We recently determined that a short exposure to artificial gravity (AG) improved the orthostatic tolerance limit (OTL) of cardiovascularly deconditioned subjects. We now seek to determine the mechanisms of that improvement in these hypovolemic men and women. Methods. We determined the orthostatic tolerance limit (OTL) of 9 men and 8 women following a 90 min exposure to AG compared to 90 min of head down bed rest (HDBR). In both cases (21 days apart), subjects were made hypovolemic (low salt diet plus 20 mg intravenous furosemide). Orthostatic tolerance was determined from a combination of head up tilt and increasing lower body negative pressure until presyncope. Mean values and correlations with OTL were determined for heart rate, blood pressure, stroke volume, cardiac output and peripheral resistance (Finometer), cerebral artery blood velocity (DWL), partial pressure of carbon dioxide (Novametrics) and body segmental impedance (UFI THRIM) were measured during supine baseline, during OTL to presyncope and during supine recovery Results. Orthostatic tolerance of these hypovolemic subjects was significantly greater on the day of AG exposure than on the HDBR day. Regression of OTL on these variables identified significant relationships on the HDBR day that were not evident on the AG day: resting TPR correlated positively while resting cerebral flow correlated negatively with OTL. On both days, women's resting stroke volume correlated positively with orthostatic tolerance. Higher group mean values of stroke volume and cerebral artery flow and lower values of blood pressure, peripheral vascular and cerebrovascular resistance both at control and during OTL testing were observed on the AG day. Even though regression of OTL on resting stroke volume was significant only in women, presyncopal stroke volume reached the same level on each day of study for both men and women while the OTL test lasted 30% longer in men and 22% longer in women. Cerebral artery flow appeared to follow stroke volume and absolute values of cerebral flow did not correlate with the development of presyncope. Women responded to AG exposure with elevated cerebral flow at resting control and throughout the OTL test, implying a loss of autoregulation in deconditioned (hypovolemic) women following AG exposure. Conclusions. Before countermeasures to space flight cardiovascular deconditioning are established, gender differences in cardiovascular responses to orthostatic stress, in general, and to orthostatic stress following exposure to artificial gravity, in particular, need to be determined. Since, in both men and women, a single, acute bout of AG exposure improved orthostatic tolerance, the feasibility of short exposures to AG during longer spaceflights or prior to entry into a gravity (Earth or Mars) environment, should be explored. Given the known beneficial effects of AG on other organ systems, the present study indicates that the positive effects of AG on cardiac stroke volume make AG a likely candidate for maintaining cardiovascular conditioning.

  1. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial.

    PubMed Central

    Sinclair, S.; James, S.; Singer, M.

    1997-01-01

    OBJECTIVES: To assess whether intraoperative intravascular volume optimisation improves outcome and shortens hospital stay after repair of proximal femoral fracture. DESIGN: Prospective, randomised controlled trial comparing conventional intraoperative fluid management with repeated colloid fluid challenges monitored by oesophageal Doppler ultrasonography to maintain maximal stroke volume throughout the operative period. SETTING: Teaching hospital, London. SUBJECTS: 40 patients undergoing repair of proximal femoral fracture under general anaesthesia. INTERVENTIONS: Patients were randomly assigned to receive either conventional intraoperative fluid management (control patients) or additional repeated colloid fluid challenges with oesophageal Doppler ultrasonography used to maintain maximal stroke volume throughout the operative period (protocol patients). MAIN OUTCOME MEASURES: Time declared medically fit for hospital discharge, duration of hospital stay (in acute bed; in acute plus long stay bed), mortality, perioperative haemodynamic changes. RESULTS: Intraoperative intravascular fluid loading produced significantly greater changes in stroke volume (median 15 ml (95% confidence interval 10 to 21 ml)) and cardiac output (1.2 l/min (0.1 to 2.3 l/min)) than in the conventionally managed group (-5 ml (-10 to 1 ml) and -0.4 l/min (-1.0 to 0.2 l/min)) (P < 0.001 and P < 0.05, respectively). One protocol patient and two control patients died in hospital. In the survivors, postoperative recovery was significantly faster in the protocol patients, with shorter times to being declared medically fit for discharge (median 10 (9 to 15) days v 15 (11 to 40) days, P < 0.05) and a 39% reduction in hospital stay (12 (8 to 13) days v 20 (10 to 61) days, P < 0.05). CONCLUSIONS: Proximal femoral fracture repair constitutes surgery in a high risk population. Intraoperative intravascular volume loading to optimal stroke volume resulted in a more rapid postoperative recovery and a significantly reduced hospital stay. PMID:9361539

  2. Limited reliability of computed tomographic perfusion acute infarct volume measurements compared with diffusion-weighted imaging in anterior circulation stroke.

    PubMed

    Schaefer, Pamela W; Souza, Leticia; Kamalian, Shervin; Hirsch, Joshua A; Yoo, Albert J; Kamalian, Shahmir; Gonzalez, R Gilberto; Lev, Michael H

    2015-02-01

    Diffusion-weighted imaging (DWI) can reliably identify critically ischemic tissue shortly after stroke onset. We tested whether thresholded computed tomographic cerebral blood flow (CT-CBF) and CT-cerebral blood volume (CT-CBV) maps are sufficiently accurate to substitute for DWI for estimating the critically ischemic tissue volume. Ischemic volumes of 55 patients with acute anterior circulation stroke were assessed on DWI by visual segmentation and on CT-CBF and CT-CBV with segmentation using 15% and 30% thresholds, respectively. The contrast:noise ratios of ischemic regions on the DWI and CT perfusion (CTP) images were measured. Correlation and Bland-Altman analyses were used to assess the reliability of CTP. Mean contrast:noise ratios for DWI, CT-CBF, and CT-CBV were 4.3, 0.9, and 0.4, respectively. CTP and DWI lesion volumes were highly correlated (R(2)=0.87 for CT-CBF; R(2)=0.83 for CT-CBV; P<0.001). Bland-Altman analyses revealed little systemic bias (-2.6 mL) but high measurement variability (95% confidence interval, ±56.7 mL) between mean CT-CBF and DWI lesion volumes, and systemic bias (-26 mL) and high measurement variability (95% confidence interval, ±64.0 mL) between mean CT-CBV and DWI lesion volumes. A simulated treatment study demonstrated that using CTP-CBF instead of DWI for detecting a statistically significant effect would require at least twice as many patients. The poor contrast:noise ratios of CT-CBV and CT-CBF compared with those of DWI result in large measurement error, making it problematic to substitute CTP for DWI in selecting individual acute stroke patients for treatment. CTP could be used for treatment studies of patient groups, but the number of patients needed to identify a significant effect is much higher than the number needed if DWI is used. © 2014 American Heart Association, Inc.

  3. Modeling of Cardiovascular Response to Weightlessness

    NASA Technical Reports Server (NTRS)

    Sharp, M. Keith

    1999-01-01

    It was the hypothesis of this Project that the Simple lack of hydrostatic pressure in microgravity generates several purely physical reactions that underlie and may explain, in part, the cardiovascular response to weightlessness. For instance, hydrostatic pressure within the ventricles of the heart may improve cardiac performance by promoting expansion of ventricular volume during diastole. The lack of hydrostatic pressure in microgravity might, therefore, reduce diastolic filling and cardiac performance. The change in transmural pressure is possible due to the difference in hydrostatic pressure gradients between the blood inside the ventricle and the lung tissue surrounding the ventricle due to their different densities. On the other hand, hydrostatic pressure within the vasculature may reduce cardiac inlet pressures because of the typical location of the heart above the hydrostatic indifference level (the level at which pressure remains constant throughout changes in gravity). Additional physical responses of the body to changing gravitational conditions may influence cardiovascular performance. For instance, fluid shifts from the lower body to the thorax in microgravity may serve to increase central venous pressure (CVP) and boost cardiac output (CO). The concurrent release of gravitational force on the rib cage may tend to increase chest girth and decrease pedcardial pressure, augmenting ventricular filling. The lack of gravity on pulmonary tissue may allow an upward shifting of lung mass, causing a further decrease in pericardial pressure and increased CO. Additional effects include diuresis early in the flight, interstitial fluid shifts, gradual spinal extension and movement of abdominal mass, and redistribution of circulatory impedance because of venous distention in the upper body and the collapse of veins in the lower body. In this project, the cardiovascular responses to changes in intraventricular hydrostatic pressure, in intravascular hydrostatic pressure and, to a limited extent, in extravascular and pedcardial hydrostatic pressure were investigated. A complete hydraulic model of the cardiovascular system was built and flown aboard the NASA KC-135 and a computer model was developed and tested in simulated microgravity. Results obtained with these models have confirmed that a simple lack of hydrostatic pressure within an artificial ventricle causes a decrease in stroke volume. When combined with the acute increase in ventricular pressure associated with the elimination of hydrostatic pressure within the vasculature and the resultant cephalad fluid shift with the models in the upright position, however, stroke volume increased in the models. Imposition of a decreased pedcardial pressure in the computer model and in a simplified hydraulic model increased stroke volume. Physiologic regional fluid shifting was also demonstrated by the models. The unifying parameter characterizing of cardiac response was diastolic ventricular transmural pressure (DVDELTAP) The elimination of intraventricular hydrostatic pressure in O-G decreased DVDELTAP stroke volume, while the elimination of intravascular hydrostatic pressure increased DVDELTAP and stroke volume in the upright posture, but reduced DVDELTAP and stroke volume in the launch posture. The release of gravity on the chest wall and its associated influence on intrathoracic pressure, simulated by a drop in extraventricular pressure4, increased DVDELTAP ans stroke volume.

  4. Effects of ezetimibe and anticoagulant combined therapy on progressing stroke: a randomized, placebo-controlled study.

    PubMed

    Yang, Lan; Zhao, Pingping; Zhao, Jing; Wang, Juan; Shi, Lei; Wang, Xiaopeng

    2016-12-01

    Despite the high prevalence of progressing stroke in patients with acute stroke, preventative treatments are still the unmet needs for those patients. The aim of this study was to evaluate, prospectively, the efficacy and safety of ezetimibe in the prevention of acute progressing stroke and thereby the improvement of patient outcome. A total of 423 patients (267 men and 156 women with a mean age of 65.2 years) were randomly assigned to receive ezetimibe (10 mg daily oral administration, n = 209) or placebo (n = 214) for 14 consecutive days. Analytical procedures performed at baseline (i.e., day 1) and 14 days after the treatments were completed. These included a real-time three-dimensional ultrasound (RT-3DU) examination for carotid plaque volume, clinical laboratory analyses of serum levels of IL-6 and MMP-9, as well as lipid parameters and liver dysfunction marker ALT and TBIL. Ezetimibe significantly reduced the average NIHSS score after 14 days of treatment and attenuated the stroke progression rate, which was associated with reduction in carotid plaque volume and attenuation of serum levels of IL-6, MMP-9, and LDL, without inducing liver dysfunction. Ezetimibe treatment may be a beneficial and effective strategy for preventing progressing stroke.

  5. Computational Quantification of the Cardiac Energy Consumption during Intra-Aortic Balloon Pumping Using a Cardiac Electromechanics Model

    PubMed Central

    Lim, Ki Moo; Lee, Jeong Sang; Gyeong, Min-Soo; Choi, Jae-Sung; Choi, Seong Wook

    2013-01-01

    To quantify the reduction in workload during intra-aortic balloon pump (IABP) therapy, indirect parameters are used, such as the mean arterial pressure during diastole, product of heart rate and peak systolic pressure, and pressure-volume area. Therefore, we investigated the cardiac energy consumption during IABP therapy using a cardiac electromechanics model. We incorporated an IABP function into a previously developed electromechanical model of the ventricle with a lumped model of the circulatory system and investigated the cardiac energy consumption at different IABP inflation volumes. When the IABP was used at inflation level 5, the cardiac output and stroke volume increased 11%, the ejection fraction increased 21%, the stroke work decreased 1%, the mean arterial pressure increased 10%, and the ATP consumption decreased 12%. These results show that although the ATP consumption is decreased significantly, stroke work is decreased only slightly, which indicates that the IABP helps the failed ventricle to pump blood efficiently. PMID:23341718

  6. Computational quantification of the cardiac energy consumption during intra-aortic balloon pumping using a cardiac electromechanics model.

    PubMed

    Lim, Ki Moo; Lee, Jeong Sang; Gyeong, Min-Soo; Choi, Jae-Sung; Choi, Seong Wook; Shim, Eun Bo

    2013-01-01

    To quantify the reduction in workload during intra-aortic balloon pump (IABP) therapy, indirect parameters are used, such as the mean arterial pressure during diastole, product of heart rate and peak systolic pressure, and pressure-volume area. Therefore, we investigated the cardiac energy consumption during IABP therapy using a cardiac electromechanics model. We incorporated an IABP function into a previously developed electromechanical model of the ventricle with a lumped model of the circulatory system and investigated the cardiac energy consumption at different IABP inflation volumes. When the IABP was used at inflation level 5, the cardiac output and stroke volume increased 11%, the ejection fraction increased 21%, the stroke work decreased 1%, the mean arterial pressure increased 10%, and the ATP consumption decreased 12%. These results show that although the ATP consumption is decreased significantly, stroke work is decreased only slightly, which indicates that the IABP helps the failed ventricle to pump blood efficiently.

  7. Cardiorespiratory responses to orthostasis and the effects of propranolol

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.

    1975-01-01

    Cardiac output and gas exchange were determined serially using the single-breath method of Kim et al. before, during, and after orthostasis on six subjects after beta-adrenergic blockage and in duplicate controls. In the latter, heart rate increased and pulse pressure dropped immediately on tilting to 60 deg and remained stable while cardiac output and stroke volume declined gradually over 21 min upright. On propranolol, heart rate was 10 bpm lower supine and 20 bpm less at 60 deg but cardiac output was only slightly lower before and following tilt-up. However, after 15 min upright, stroke volume and cardiac output recovered on propranolol exceeding the controls after 21 min without change in heart rate. Returning to supine, heart rate dropped in all tests with a transitory increase in stroke volume, cardiac output and arteriovenous O2 difference. At the same time, apparent O2 uptake increased temporarily, reflecting the return of pooled venous blood to the lungs. Orthostatic tolerance did not appear to be affected by beta-adrenergic blockade.

  8. A reliability assessment of constrained spherical deconvolution-based diffusion-weighted magnetic resonance imaging in individuals with chronic stroke.

    PubMed

    Snow, Nicholas J; Peters, Sue; Borich, Michael R; Shirzad, Navid; Auriat, Angela M; Hayward, Kathryn S; Boyd, Lara A

    2016-01-15

    Diffusion-weighted magnetic resonance imaging (DW-MRI) is commonly used to assess white matter properties after stroke. Novel work is utilizing constrained spherical deconvolution (CSD) to estimate complex intra-voxel fiber architecture unaccounted for with tensor-based fiber tractography. However, the reliability of CSD-based tractography has not been established in people with chronic stroke. Establishing the reliability of CSD-based DW-MRI in chronic stroke. High-resolution DW-MRI was performed in ten adults with chronic stroke during two separate sessions. Deterministic region of interest-based fiber tractography using CSD was performed by two raters. Mean fractional anisotropy (FA), apparent diffusion coefficient (ADC), tract number, and tract volume were extracted from reconstructed fiber pathways in the corticospinal tract (CST) and superior longitudinal fasciculus (SLF). Callosal fiber pathways connecting the primary motor cortices were also evaluated. Inter-rater and test-retest reliability were determined by intra-class correlation coefficients (ICCs). ICCs revealed excellent reliability for FA and ADC in ipsilesional (0.86-1.00; p<0.05) and contralesional hemispheres (0.94-1.00; p<0.0001), for CST and SLF fibers; and excellent reliability for all metrics in callosal fibers (0.85-1.00; p<0.05). ICC ranged from poor to excellent for tract number and tract volume in ipsilesional (-0.11 to 0.92; p≤0.57) and contralesional hemispheres (-0.27 to 0.93; p≤0.64), for CST and SLF fibers. Like other select DW-MRI approaches, CSD-based tractography is a reliable approach to evaluate FA and ADC in major white matter pathways, in chronic stroke. Future work should address the reproducibility and utility of CSD-based metrics of tract number and tract volume. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Depletion of CD11c+ Cells Does Not Influence Outcomes in Mice Subjected to Transient Middle Cerebral Artery Occlusion.

    PubMed

    Kraft, Peter; Scholtyschik, Karolina; Schuhmann, Michael K; Kleinschnitz, Christoph

    2017-01-01

    While it has been shown that different T-cell subsets have a detrimental role in the acute phase of ischemic stroke, data on the impact of dendritic cells (DC) are missing. Classic DC can be characterized by the cluster of differentiation (CD)11c surface antigen. In this study, we depleted CD11c+ cells by using a CD11c-diphtheria toxin (DTX) receptor mouse strain that allows selective depletion of CD11c+ cells by DTX injection. For stroke induction, we used the model of transient middle cerebral artery occlusion (tMCAO) and analyzed stroke volume and functional outcome on days 1 and 3 as well as expression of prototypical pro- and anti-inflammatory cytokines on day 1 after tMCAO. Three different protocols for CD11c+ cell depletion, tMCAO duration, and readout time point were applied. Injection of DTX (5 or 100 ng/g) reliably depleted CD11c+ cells without influencing the fractions of other immune cell subsets. CD11c+ cell depletion had no impact on stroke volume, but mice with a longer DTX pretreatment performed worse than those with vehicle treatment. CD11c+ cell depletion led to a decrease in cortical interleukin (IL)-1β and IL-6 messenger ribonucleic acid levels. We show, for the first time, that CD11c+ cell depletion does not influence stroke volume in a mouse model of focal cerebral ischemia. Nevertheless, given the unspecificity of the CD11c surface antigen for DC, mouse models that allow a more selective depletion of DC are needed to investigate the role of DC in stroke pathophysiology. © 2017 S. Karger AG, Basel.

  10. Stroke onset time estimation from multispectral quantitative magnetic resonance imaging in a rat model of focal permanent cerebral ischemia.

    PubMed

    McGarry, Bryony L; Rogers, Harriet J; Knight, Michael J; Jokivarsi, Kimmo T; Sierra, Alejandra; Gröhn, Olli Hj; Kauppinen, Risto A

    2016-08-01

    Quantitative T2 relaxation magnetic resonance imaging allows estimation of stroke onset time. We aimed to examine the accuracy of quantitative T1 and quantitative T2 relaxation times alone and in combination to provide estimates of stroke onset time in a rat model of permanent focal cerebral ischemia and map the spatial distribution of elevated quantitative T1 and quantitative T2 to assess tissue status. Permanent middle cerebral artery occlusion was induced in Wistar rats. Animals were scanned at 9.4T for quantitative T1, quantitative T2, and Trace of Diffusion Tensor (Dav) up to 4 h post-middle cerebral artery occlusion. Time courses of differentials of quantitative T1 and quantitative T2 in ischemic and non-ischemic contralateral brain tissue (ΔT1, ΔT2) and volumes of tissue with elevated T1 and T2 relaxation times (f1, f2) were determined. TTC staining was used to highlight permanent ischemic damage. ΔT1, ΔT2, f1, f2, and the volume of tissue with both elevated quantitative T1 and quantitative T2 (V(Overlap)) increased with time post-middle cerebral artery occlusion allowing stroke onset time to be estimated. V(Overlap) provided the most accurate estimate with an uncertainty of ±25 min. At all times-points regions with elevated relaxation times were smaller than areas with Dav defined ischemia. Stroke onset time can be determined by quantitative T1 and quantitative T2 relaxation times and tissue volumes. Combining quantitative T1 and quantitative T2 provides the most accurate estimate and potentially identifies irreversibly damaged brain tissue. © 2016 World Stroke Organization.

  11. ANTONIA perfusion and stroke. A software tool for the multi-purpose analysis of MR perfusion-weighted datasets and quantitative ischemic stroke assessment.

    PubMed

    Forkert, N D; Cheng, B; Kemmling, A; Thomalla, G; Fiehler, J

    2014-01-01

    The objective of this work is to present the software tool ANTONIA, which has been developed to facilitate a quantitative analysis of perfusion-weighted MRI (PWI) datasets in general as well as the subsequent multi-parametric analysis of additional datasets for the specific purpose of acute ischemic stroke patient dataset evaluation. Three different methods for the analysis of DSC or DCE PWI datasets are currently implemented in ANTONIA, which can be case-specifically selected based on the study protocol. These methods comprise a curve fitting method as well as a deconvolution-based and deconvolution-free method integrating a previously defined arterial input function. The perfusion analysis is extended for the purpose of acute ischemic stroke analysis by additional methods that enable an automatic atlas-based selection of the arterial input function, an analysis of the perfusion-diffusion and DWI-FLAIR mismatch as well as segmentation-based volumetric analyses. For reliability evaluation, the described software tool was used by two observers for quantitative analysis of 15 datasets from acute ischemic stroke patients to extract the acute lesion core volume, FLAIR ratio, perfusion-diffusion mismatch volume with manually as well as automatically selected arterial input functions, and follow-up lesion volume. The results of this evaluation revealed that the described software tool leads to highly reproducible results for all parameters if the automatic arterial input function selection method is used. Due to the broad selection of processing methods that are available in the software tool, ANTONIA is especially helpful to support image-based perfusion and acute ischemic stroke research projects.

  12. Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice.

    PubMed

    Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee

    2017-12-30

    In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.

  13. Reported Prestroke Physical Activity Is Associated with Vascular Endothelial Growth Factor Expression and Good Outcomes after Stroke.

    PubMed

    López-Cancio, Elena; Ricciardi, Ana Clara; Sobrino, Tomás; Cortés, Jordi; de la Ossa, Natalia Pérez; Millán, Mónica; Hernández-Pérez, María; Gomis, Meritxell; Dorado, Laura; Muñoz-Narbona, Lucía; Campos, Francisco; Arenillas, Juan F; Dávalos, Antoni

    2017-02-01

    Physical activity (PhA) prior to stroke has been associated with good outcomes after the ischemic insult, but there is scarce data on the involved molecular mechanisms. We studied consecutive acute ischemic stroke patients admitted to a single tertiary stroke center. Prestroke PhA was evaluated with the International Physical Activity Questionnaire (metabolic equivalent of minutes/week). We studied several circulating angiogenic and neurogenic factors at different time points: vascular endothelial growth factor (VEGF), granulocyte colony-stimulating factor (G-CSF), and brain-derived neurotrophic factor (BDNF) at admission, day 7, and at 3 months. We considered good functional outcome at 3 months (modified Rankin scale  ≤ 2) as primary end point, and final infarct volume as secondary outcome. We studied 83 patients with at least 2 time point serum determinations (mean age 69.6 years, median National Institutes of Health Stroke Scale 17 at admission). Patients more physically active before stroke had a significantly higher increment of serum VEGF on the seventh day when compared to less active patients. This increment was an independent predictor of good functional outcome at 3 months and was associated with smaller infarct volume in multivariate analyses adjusted for relevant covariates. We did not find independent associations of G-CSF or BDNF levels neither with level of prestroke PhA nor with stroke outcomes. Although there are probably more molecular mechanisms by which PhA exerts its beneficial effects in stroke outcomes, our observation regarding the potential role of VEGF is plausible and in line with previous experimental studies. Further research in this field is needed. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. Respiratory muscles stretching acutely increases expansion in hemiparetic chest wall.

    PubMed

    Rattes, Catarina; Campos, Shirley Lima; Morais, Caio; Gonçalves, Thiago; Sayão, Larissa Bouwman; Galindo-Filho, Valdecir Castor; Parreira, Verônica; Aliverti, Andrea; Dornelas de Andrade, Armèle

    2018-08-01

    Individuals post-stroke may present restrictive ventilatory pattern generated from changes in the functionality of respiratory system due to muscle spasticity and contractures. Objective was to assess the acute effects after respiratory muscle stretching on the ventilatory pattern and volume distribution of the chest wall in stroke subjects. Ten volunteers with right hemiparesis after stroke and a mean age of 60 ± 5.7 years were randomised into the following interventions: respiratory muscle stretching and at rest (control). The ventilatory pattern and chest wall volume distribution were evaluated through optoelectronic plethysmography before and immediately after each intervention. Respiratory muscle stretching promoted a significant acute increase of 120 mL in tidal volume, with an increase in minute ventilation, mean inspiratory flow and mean expiratory flow compared with the control group. Pulmonary ribcage increased 50 mL after stretching, with 30 mL of contribution to the right pulmonary rib cage (hemiparetic side) in comparison to the control group. Respiratory muscle stretching in patients with right hemiparesis post-stroke demonstrated that acute effects improve the expansion of the respiratory system during tidal breathing. NCT02416349 (URL: https://clinicaltrials.gov/ct2/show/ NCT02416349). Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output.

    PubMed

    Smerup, Morten; Damkjær, Mads; Brøndum, Emil; Baandrup, Ulrik T; Kristiansen, Steen Buus; Nygaard, Hans; Funder, Jonas; Aalkjær, Christian; Sauer, Cathrine; Buchanan, Rasmus; Bertelsen, Mads Frost; Østergaard, Kristine; Grøndahl, Carsten; Candy, Geoffrey; Hasenkam, J Michael; Secher, Niels H; Bie, Peter; Wang, Tobias

    2016-02-01

    Giraffes--the tallest extant animals on Earth--are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. Arterial pressure may exceed 300 mmHg and has historically been attributed to an exceptionally large heart. Recently, this has been refuted by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It thus remains unexplained how the normal-sized giraffe heart generates such massive arterial pressures. We hypothesized that giraffe hearts have a small intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic pressures to calculate left ventricular wall stress. Cardiac output was also determined by inert gas rebreathing to provide an additional and independent estimate of stroke volume. Echocardiography and inert gas-rebreathing yielded similar cardiac outputs of 16.1±2.5 and 16.4±1.4 l min(-1), respectively. End-diastolic and end-systolic volumes were 521±61 ml and 228±42 ml, respectively, yielding an ejection fraction of 56±4% and a stroke volume of 0.59 ml kg(-1). Left ventricular circumferential wall stress was 7.83±1.76 kPa. We conclude that, relative to body mass, a small left ventricular cavity and a low stroke volume characterizes the giraffe heart. The adaptations result in typical mammalian left ventricular wall tensions, but produce a lowered cardiac output. © 2016. Published by The Company of Biologists Ltd.

  16. Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats.

    PubMed

    Zepeda, Rodrigo; Contreras, Valentina; Pissani, Claudia; Stack, Katherine; Vargas, Macarena; Owen, Gareth I; Lazo, Oscar M; Bronfman, Francisca C

    2016-08-01

    Neuromodulators, such as antidepressants, may contribute to neuroprotection by modulating growth factor expression to exert anti-inflammatory effects and to support neuronal plasticity after stroke. Our objective was to study whether early treatment with venlafaxine, a serotonin-norepinephrine reuptake inhibitor, modulates growth factor expression and positively contributes to reducing the volume of infarcted brain tissue resulting in increased functional recovery. We studied the expression of BDNF, FGF2 and TGF-β1 by examining their mRNA and protein levels and cellular distribution using quantitative confocal microscopy at 5 days after venlafaxine treatment in control and infarcted brains. Venlafaxine treatment did not change the expression of these growth factors in sham rats. In infarcted rats, BDNF mRNA and protein levels were reduced, while the mRNA and protein levels of FGF2 and TGF-β1 were increased. Venlafaxine treatment potentiated all of the changes that were induced by cortical stroke alone. In particular, increased levels of FGF2 and TGF-β1 were observed in astrocytes at 5 days after stroke induction, and these increases were correlated with decreased astrogliosis (measured by GFAP) and increased synaptophysin immunostaining at twenty-one days after stroke in venlafaxine-treated rats. Finally, we show that venlafaxine reduced infarct volume after stroke resulting in increased functional recovery, which was measured using ladder rung motor tests, at 21 days after stroke. Our results indicate that the early oral administration of venlafaxine positively contributes to neuroprotection during the acute and late events that follow stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Usefulness of the volume-viscosity swallow test for screening dysphagia in subacute stroke patients in rehabilitation income.

    PubMed

    Guillén-Solà, Anna; Marco, Ester; Martínez-Orfila, Joan; Donaire Mejías, M Fernanda; Depolo Passalacqua, Marina; Duarte, Esther; Escalada, Ferran

    2013-01-01

    Swallowing disorders affect up to 35-85% of patients with stroke. Dysphagia complications can lead to malnutrition, dehydration, bronchoaspirative pneumonia and death, and have impact on health care costs. To evaluate the clinical screening capacity of the Volume Viscosity Swallow Test (V-VST) for oropharyngeal dysphagia and aspiration in a homogeneous stroke patient sample. Cohort study of 52 stroke patients in a subacute phase. Piecemeal deglutition and oropharyngeal residue were considered signs of impaired efficacy and cough, fall in oxygen saturation and voice changes, signs of impaired safety. Sensitivity, specificity, positive and negative predictive values, accuracy and likelihood ratios were calculated for V-VST results and compared with those of videofluoroscopy (VFS), the gold standard for studies on swallowing disorders. The V-VST is a highly sensitive and specific test to detect aspiration with sensitivity of 88.2% and specificity of 71.4%; negative predictive value was 92.6%; accuracy index was 0.74. Sensitivity and specificity for penetration were 34.3% and 70.6%, respectively; accuracy was 32%. The V-VST is low in cost, easy to use and very sensitive, meeting the requirements of oropharyngeal dysphagia and aspiration screening test in subacute stroke patients.

  18. Left atrial function to identify patients with atrial fibrillation at high risk of stroke: new insights from a large registry.

    PubMed

    Leung, Melissa; van Rosendael, Philippe J; Abou, Rachid; Ajmone Marsan, Nina; Leung, Dominic Y; Delgado, Victoria; Bax, Jeroen J

    2018-04-21

    Atrial fibrillation (AF) is an independent risk factor for ischaemic stroke. The CHA2DS2-VASc is the most widely used risk stratification model; however, echocardiographic refinement may be useful, particularly in low risk AF patients. The present study examined the association between advanced echocardiographic parameters and ischaemic stroke, independent of CHA2DS2-VASc score. One thousand, three hundred and sixty-one patients (mean age 65±12 years, 74% males) with first diagnosis of AF and baseline transthoracic echocardiogram were followed by chart review for the occurrence of stroke over a mean of 7.9 years. Left atrial (LA) volumes, LA reservoir strain, P-wave to A' duration on tissue Doppler imaging (PA-TDI, reflecting total atrial conduction time), and left ventricular (LV) global longitudinal strain (GLS) were evaluated in patients with and without stroke. The independent association of these echocardiographic parameters with the occurrence of ischaemic stroke was evaluated with Cox proportional hazard models. One-hundred patients (7%) developed an ischaemic stroke, representing an annualized stroke rate of 0.9%. The incident stroke rate in the year following the first diagnosis of AF was 2.6% in the entire population and higher than the remainder of the follow-up period. Left atrial reservoir (14.5% vs. 18.9%, P = 0.005) and conduit strains were reduced (10.5% vs. 13.5%, P = 0.013), and PA-TDI lengthened (166 ms vs. 141 ms, P < 0.001) in the stroke compared with non-stroke group, despite similar LV dimensions, LV ejection fraction, GLS, and LA volumes. Left atrial reservoir strain and PA-TDI were independently associated with risk of stroke in a model including CHA2DS2-VASc score, age, and anticoagulant use. The assessment of LA reservoir strain and PA-TDI on echocardiography after initial CHA2DS2-VASc scoring provides additional risk stratification for stroke and may be useful to guide decisions regarding anticoagulation for patients upon first diagnosis of AF.

  19. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    PubMed

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Current and future bioanalytical approaches for stroke assessment.

    PubMed

    Pullagurla, Swathi R; Baird, Alison E; Adamski, Mateusz G; Soper, Steven A

    2015-01-01

    Efforts are underway to develop novel platforms for stroke diagnosis to meet the criteria for effective treatment within the narrow time window mandated by the FDA-approved therapeutic (<3 h). Blood-based biomarkers could be used for rapid stroke diagnosis and coupled with new analytical tools, could serve as an attractive platform for managing stroke-related diseases. In this review, we will discuss the physiological processes associated with stroke and current diagnostic tools as well as their associated shortcomings. We will then review information on blood-based biomarkers and various detection technologies. In particular, point of care testing that permits small blood volumes required for the analysis and rapid turn-around time measurements of multiple markers will be presented.

  1. Stenting for symptomatic intracranial vertebrobasilar artery stenosis: 30-day results in a high-volume stroke center.

    PubMed

    Liu, Lian; Zhao, Xiaojing; Mo, Dapeng; Ma, Ning; Gao, Feng; Miao, Zhongrong

    2016-04-01

    Symptomatic intracranial vertebrobasilar artery stenosis (IVBS) carries a high annual risk of recurrent stroke. Endovascular therapy was a promising technique but recent trials suggest it may carry a risk of periprocedual complications especially in inexperienced hands. This prospective study was to evaluate the safety of endovascular therapy for severe symptomatic IVBS in a high volume stroke centre. Patients with symptomatic IVBS caused by 70-99% stenosis despite medical treatment of at least one antiplatelet agent and statin were enrolled. The patients were treated either with balloon-mounted stent or balloon pre-dilation plus self-expanding stent as determined by the operators following a guideline. The primary outcome was 30-day stroke, transient ischemic attack (TIA) and death after stenting. The secondary outcome was successful stent deployment. The baseline characteristics and outcomes of patients with basilar artery (BA) lesions and patients with vertebral artery V4 segment lesions (BA group vs V4 group) were compared. And the outcome of different Mori type lesions was also compared. From September 2013 to September 2014, 105 patients with stroke or TIA due to intracranial IVBS were screened and 97 patients were treated by stenting, including 52 patients with BA stenosis and 45 patients with V4 stenosis. The rate of 30-day stroke, TIA and death was 7.1%. All the three strokes happened in the BA group and were perforator strokes. The successful stent deployment rate was 100%. General anesthesia was more preferred in the BA group than in the V4 groups (96.2% vs 75.6%, p=0.005). The Apollo stent was used more for Mori A lesions (30.5% vs 7.9%, p=0.011) and had lower degree of residual stenosis (8.6% vs 12.6%, p=0.014) than Wingspan stent. Mori C lesions were more likely to have higher degree of residual stenosis than Mori A lesion (15.3% vs 7.4%, p=0.005). The short-term safety of endovascular stenting for patients with severe symptomatic IVBS in a high volume stroke centre was acceptable. Mori A lesions may have lower residual stenosis rate than the Mori C type lesions. Copyright © 2016. Published by Elsevier B.V.

  2. [Anesthetic Management Using Transesophageal Echocardiography and EV1000 in a Patient with Ebstein's Anomary Undergoing Scoliosis Surgery].

    PubMed

    Tanimura, Kazuki; Miura, Yukiko; Ishii, Hisanari

    2016-02-01

    An 18-year-old female patinet with Ebstein anomaly underwent surgical repair of scoliosis under total intravenous anesthesia. In addtition to normal monitors, we used transesophageal echocardiography (TEE) and EV1000 (Edwards Lifesciences, Irvine, USA), which show stroke volume variation and stroke volume index simultaneously in a rectangular coordinates. TEE detected reversal of intracardiac shunt which caused SpO2 decrease during fixing screws at thoracic vertebrae, then manual ventilation with oxygen unproved SpO2. Because of a high venous pressure due to Ebstein anomaly, surgical bleeding seemed to be larger than usual. By using EV1000, volume status and cardiac contractility were estimated and adequate volume loading and inoptrope injection were performed to stabilize circulatory condition. The operation was completed without any cardiac and respiratory complications.

  3. Differential Associations of Socioeconomic Status With Global Brain Volumes and White Matter Lesions in African American and White Adults: the HANDLS SCAN Study.

    PubMed

    Waldstein, Shari R; Dore, Gregory A; Davatzikos, Christos; Katzel, Leslie I; Gullapalli, Rao; Seliger, Stephen L; Kouo, Theresa; Rosenberger, William F; Erus, Guray; Evans, Michele K; Zonderman, Alan B

    2017-04-01

    The aim of the study was to examine interactive relations of race and socioeconomic status (SES) to magnetic resonance imaging (MRI)-assessed global brain outcomes with previously demonstrated prognostic significance for stroke, dementia, and mortality. Participants were 147 African Americans (AAs) and whites (ages 33-71 years; 43% AA; 56% female; 26% below poverty) in the Healthy Aging in Neighborhoods of Diversity across the Life Span SCAN substudy. Cranial MRI was conducted using a 3.0 T unit. White matter (WM) lesion volumes and total brain, gray matter, and WM volumes were computed. An SES composite was derived from education and poverty status. Significant interactions of race and SES were observed for WM lesion volume (b = 1.38; η = 0.036; p = .028), total brain (b = 86.72; η = 0.042; p < .001), gray matter (b = 40.16; η = 0.032; p = .003), and WM (b = 46.56; η = 0.050; p < .001). AA participants with low SES exhibited significantly greater WM lesion volumes than white participants with low SES. White participants with higher SES had greater brain volumes than all other groups (albeit within normal range). Low SES was associated with greater WM pathology-a marker for increased stroke risk-in AAs. Higher SES was associated with greater total brain volume-a putative global indicator of brain health and predictor of mortality-in whites. Findings may reflect environmental and interpersonal stressors encountered by AAs and those of lower SES and could relate to disproportionate rates of stroke, dementia, and mortality.

  4. Predicting stroke outcome using DCE-CT measured blood velocity

    NASA Astrophysics Data System (ADS)

    Oosterbroek, Jaap; Bennink, Edwin; Dankbaar, Jan Willem; Horsch, Alexander D.; Viergever, Max A.; Velthuis, Birgitta K.; de Jong, Hugo W. A. M.

    2015-03-01

    CT plays an important role in the diagnosis of acute stroke patients. Dynamic contrast enhanced CT (DCE-CT) can estimate local tissue perfusion and extent of ischemia. However, hemodynamic information of the large intracranial vessels may also be obtained from DCE-CT data and may contain valuable diagnostic information. We describe a novel method to estimate intravascular blood velocity (IBV) in large cerebral vessels using DCE-CT data, which may be useful to help predict stroke outcome. DCE-CT scans from 34 patients with isolated M1 occlusions were included from a large prospective multi-center cohort study of patients with acute ischemic stroke. Gaussians fitted to the intravascular data yielded the time-to-peak (TTP) and cerebral-blood-volume (CBV). IBV was computed by taking the inverse of the TTP gradient magnitude. Voxels with a CBV of at least 10% of the CBV found in the arterial input function were considered part of a vessel. Mid-sagittal planes were drawn manually and averages of the IBV over all vessel-voxels (arterial and venous) were computed for each hemisphere. Mean-hemisphere IBV differences, mean-hemisphere TTP differences, and hemisphere vessel volume differences were used to differentiate between patients with good and bad outcome (modified Rankin Scale score <3 versus ≥3 at 90 days) using ROC analysis. AUCs from the ROC for IBV, TTP, and vessel volume were 0.80, 0.67 and 0.62 respectively. In conclusion, IBV was found to be a better predictor of patient outcome than the parameters used to compute it and may be a promising new parameter for stroke outcome prediction.

  5. Inhibition of transient receptor potential vanilloid-1 confers neuroprotection, reduces tumor necrosis factor-alpha, and increases IL-10 in a rat stroke model.

    PubMed

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad R; Shariati, Mehdi; Rahmani, Mohammad R; Allahtavakoli, Mohammad

    2017-08-01

    Stroke is a major cause of mortality and long-term disability in adults. Transient receptor potential vanilloid-1 (TRPV1) plays a crucial role in neuroinflammation. In this study, the effects of TRPV1 agonist (capsaicin) and antagonist (AMG9810) on cerebral ischemia were investigated. Forty male Wistar rats were assigned to the following experimental groups: sham, vehicle) ischemic), AMG9810 (selective TRPV1 antagonist, 0.5 mg/kg; 3 h after stroke), and capsaicin (1 mg/kg; 3 h after stroke). Stroke was induced by permanent middle cerebral artery occlusion and neurological deficits were evaluated 1, 3, and 7 days after stroke. Then, infarct volume, brain edema, body temperature, mRNA expression of TRPV1, and serum concentrations of tumor necrosis factor-alpha (TNF-α) and IL-10 were measured. Compared to the vehicle group, AMG9810 significantly decreased the infarct volume (P < 0.01). Latency for the removal of sticky labels from the forepaw and the hanging time were significantly decreased and increased, respectively, following administration of AMG9810 (P < 0.01 and P < 0.001 vs. vehicle) 3 and 7 days after stroke. Compared to the sham group, the mRNA expression of TRPV1 was significantly increased in vehicle group (P < 0.01). Administration of AMG9810 significantly increased the anti-inflammatory cytokine IL-10 and decreased the inflammatory cytokine TNF-α (P < 0.05). Moreover, our results indicate that AMG9810 might a promising candidate for the hypothermic treatment of stroke. The findings also suggest a key role for AMG9810 in reducing inflammation after stroke and imply that TRPV1 could be a potential target for the treatment of ischemic stroke. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  6. Progesterone in experimental permanent stroke: a dose-response and therapeutic time-window study

    PubMed Central

    Wali, Bushra; Ishrat, Tauheed; Won, Soonmi; Stein, Donald G.

    2014-01-01

    Currently, the only approved treatment for ischaemic stroke is tissue plasminogen activator, a clot-buster. This treatment can have dangerous consequences if not given within the first 4 h after stroke. Our group and others have shown progesterone to be beneficial in preclinical studies of stroke, but a progesterone dose-response and time-window study is lacking. We tested male Sprague-Dawley rats (12 months old) with permanent middle cerebral artery occlusion or sham operations on multiple measures of sensory, motor and cognitive performance. For the dose-response study, animals received intraperitoneal injections of progesterone (8, 16 or 32 mg/kg) at 1 h post-occlusion, and subcutaneous injections at 6 h and then once every 24 h for 7 days. For the time-window study, the optimal dose of progesterone was given starting at 3, 6 or 24 h post-stroke. Behavioural recovery was evaluated at repeated intervals. Rats were killed at 22 days post-stroke and brains extracted for evaluation of infarct volume. Both 8 and 16 mg/kg doses of progesterone produced attenuation of infarct volume compared with the placebo, and improved functional outcomes up to 3 weeks after stroke on locomotor activity, grip strength, sensory neglect, gait impairment, motor coordination and spatial navigation tests. In the time-window study, the progesterone group exhibited substantial neuroprotection as late as 6 h after stroke onset. Compared with placebo, progesterone showed a significant reduction in infarct size with 3- and 6-h delays. Moderate doses (8 and 16 mg/kg) of progesterone reduced infarct size and improved functional deficits in our clinically relevant model of stroke. The 8 mg/kg dose was optimal in improving motor, sensory and memory function, and this effect was observed over a large therapeutic time window. Progesterone shows promise as a potential therapeutic agent and should be examined for safety and efficacy in a clinical trial for ischaemic stroke. PMID:24374329

  7. Automation of CT-based haemorrhagic stroke assessment for improved clinical outcomes: study protocol and design.

    PubMed

    Chinda, Betty; Medvedev, George; Siu, William; Ester, Martin; Arab, Ali; Gu, Tao; Moreno, Sylvain; D'Arcy, Ryan C N; Song, Xiaowei

    2018-04-19

    Haemorrhagic stroke is of significant healthcare concern due to its association with high mortality and lasting impact on the survivors' quality of life. Treatment decisions and clinical outcomes depend strongly on the size, spread and location of the haematoma. Non-contrast CT (NCCT) is the primary neuroimaging modality for haematoma assessment in haemorrhagic stroke diagnosis. Current procedures do not allow convenient NCCT-based haemorrhage volume calculation in clinical settings, while research-based approaches are yet to be tested for clinical utility; there is a demonstrated need for developing effective solutions. The project under review investigates the development of an automatic NCCT-based haematoma computation tool in support of accurate quantification of haematoma volumes. Several existing research methods for haematoma volume estimation are studied. Selected methods are tested using NCCT images of patients diagnosed with acute haemorrhagic stroke. For inter-rater and intrarater reliability evaluation, different raters will analyse haemorrhage volumes independently. The efficiency with respect to time of haematoma volume assessments will be examined to compare with the results from routine clinical evaluations and planimetry assessment that are known to be more accurate. The project will target the development of an enhanced solution by adapting existing methods and integrating machine learning algorithms. NCCT-based information of brain haemorrhage (eg, size, volume, location) and other relevant information (eg, age, sex, risk factor, comorbidities) will be used in relation to clinical outcomes with future project development. Validity and reliability of the solution will be examined for potential clinical utility. The project including procedures for deidentification of NCCT data has been ethically approved. The study involves secondary use of existing data and does not require new consent of participation. The team consists of clinical neuroimaging scientists, computing scientists and clinical professionals in neurology and neuroradiology and includes patient representatives. Research outputs will be disseminated following knowledge translation plans towards improving stroke patient care. Significant findings will be published in scientific journals. Anticipated deliverables include computer solutions for improved clinical assessment of haematoma using NCCT. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Research to improve the accuracy of determining the stroke volume of an artificial ventricle using the wavelet transform

    NASA Astrophysics Data System (ADS)

    Grad, Leszek; Murawski, Krzysztof; Sulej, Wojciech

    2017-08-01

    In the article we presented results obtained during research, which are the continuation of work on the use of artificial neural networks to determine the relationship between the view of the membrane and the stroke volume of the blood chamber of the mechanical prosthetic heart. The purpose of the research was to increase the accuracy of determining the blood chamber volume. Therefore, the study was focused on the technique of the features that the image extraction gives. During research we used the wavelet transform. The achieved results were compared to the results obtained by other previous methods. Tests were conducted on the same mechanical prosthetic heart model used in previous experiments.

  9. Vitamin D Deficiency Exacerbates Experimental Stroke Injury and Dysregulates Ischemia-Induced Inflammation in Adult Rats

    PubMed Central

    Balden, Robyn; Selvamani, Amutha

    2012-01-01

    Vitamin D deficiency (VDD) is widespread and considered a risk factor for cardiovascular disease and stroke. Low vitamin D levels are predictive for stroke and more fatal strokes in humans, whereas vitamin D supplements are associated with decreased risk of all-cause mortality. Because VDD occurs with other comorbid conditions that are also independent risk factors for stroke, this study examined the specific effect of VDD on stroke severity in rats. Adult female rats were fed control or VDD diet for 8 wk and were subject to middle cerebral artery occlusion thereafter. The VDD diet reduced circulating vitamin D levels to one fifth (22%) of that observed in rats fed control chow. Cortical and striatal infarct volumes in animals fed VDD diet were significantly larger, and sensorimotor behavioral testing indicated that VDD animals had more severe poststroke behavioral impairment than controls. VDD animals were also found to have significantly lower levels of the neuroprotective hormone IGF-I in plasma and the ischemic hemisphere. Cytokine analysis indicated that VDD significantly reduced IL-1α, IL-1β, IL-2, IL-4, IFN-γ, and IL-10 expression in ischemic brain tissue. However, ischemia-induced IL-6 up-regulation was significantly higher in VDD animals. In a separate experiment, the therapeutic potential of acute vitamin D treatments was evaluated, where animals received vitamin D injections 4 h after stroke and every 24 h thereafter. Acute vitamin D treatment did not improve infarct volume or behavioral performance. Our data indicate that VDD exacerbates stroke severity, involving both a dysregulation of the inflammatory response as well as suppression of known neuroprotectants such as IGF-I. PMID:22408173

  10. Platelet morphology, soluble P selectin and platelet P-selectin in acute ischaemic stroke. The West Birmingham Stroke Project.

    PubMed

    Nadar, Sunil K; Lip, Gregory Y H; Blann, Andrew D

    2004-12-01

    The pathophysiology of ischaemic stroke involves the platelet. In this study, we hypothesised that abnormalities in platelet morphology, as well as soluble (sPsel) and total platelet P-selectin (pPsel) levels would be present in patients presenting with an acute ischaemic stroke, and that these changes would improve at > or = 3 months' follow-up. We studied 59 hypertensive patients (34 male; mean age 68 +/- 12 years) who presented with an acute ischaemic stroke (ictus < 24 hours), and compared them with 2 groups: (i) age-, sex- and ethnic- origin matched normotensive healthy controls; and (ii) uncomplicated 'high risk' hypertensive patients as 'risk factor control' subjects. Platelet morphology (volume and mass) was quantified, and sPsel (plasma marker of platelet activation) was measured (ELISA) in citrated plasma. The mass of P-selectin in each platelet (pPsel) was determined by lysing a fixed number of platelets and then determining the levels of P-selectin in the lysate. Results show that patients who presented with a stroke had significantly higher levels of sPsel and pPsel (both p < 0.001), compared to the normal controls and the hypertensive patients. Patients with an acute stroke had lower mean platelet mass (MPM) and mean platelet volume (MPV) as compared to the uncomplicated hypertensive patients, who had significantly higher mean MPM and MPV values, as compared to normal controls. On follow-up, the levels of both sPsel (p = 0.011), pPsel (< 0.001) and MPV (p = 0.03) were significantly lower. Mean MPM levels remained unchanged. We conclude that patients presenting with an acute ischaemic stroke have activated platelets, as evident by the increased levels of soluble and platelet P-selectin. Further study of platelet activation and the role of P-selectin is warranted.

  11. Status and Future Perspectives of Utilizing Big Data in Neurosurgical and Stroke Research

    PubMed Central

    NISHIMURA, Ataru; NISHIMURA, Kunihiro; KADA, Akiko; IIHARA, Koji

    2016-01-01

    The management, analysis, and integration of Big Data have received increasing attention in healthcare research as well as in medical bioinformatics. The J-ASPECT study is the first nationwide survey in Japan on the real-world setting of stroke care using data obtained from the diagnosis procedure combination-based payment system. The J-ASPECT study demonstrated a significant association between comprehensive stroke care (CSC) capacity and the hospital volume of stroke interventions in Japan; further, it showed that CSC capabilities were associated with reduced in-hospital mortality rates. Our study aims to create new evidence and insight from ‘real world’ neurosurgical practice and stroke care in Japan using Big Data. The final aim of this study is to develop effective methods to bridge the evidence-practice gap in acute stroke healthcare. In this study, the authors describe the status and future perspectives of the development of a new method of stroke registry as a powerful tool for acute stroke care research. PMID:27680330

  12. Middle cerebral artery occlusion in Macaca fascicularis: acute and chronic stroke evolution.

    PubMed

    D'Arceuil, Helen E; Duggan, Michael; He, Julian; Pryor, Johnny; de Crespigny, Alex

    2006-04-01

    An intravascular stroke model designed for magnetic resonance imaging was developed in Macaca fascicularis (M. fascicularis) to characterize serial stroke lesion evolution. This model produces a range of stroke lesion sizes which closely mimics human stroke evolution. This paper describes the care of animals undergoing this stroke procedure, the range of outcomes we experienced and the cause of mortality in this model. Anesthesia was induced with atropine and ketamine and maintained with isoflurane or propofol. Non-invasive blood pressure, oxygen saturation, heart rate, respiration rate, temperature and end tidal CO2 were monitored continuously. The stroke was created by occluding a distal branch of the middle cerebral artery. During catheter placement animals were heparinized and vasospasm was minimized using verapamil. Anesthetic induction and maintenance were smooth. Animals with small strokes showed very rapid recovery, were able to ambulate and self-feed within 2 hours of recovery. Animals with strokes of >or=4% of the hemispheric volume required lengthy observation during recovery and parenteral nutrition. Large strokes resulted in significant brain edema, herniation and brainstem compression. Intracerebral hemorrhage and or subarachnoid hemorrhage coupled with a stroke of any size was acutely fatal. In the absence of an effective acute stroke therapy, the spectrum of outcomes seen in our primate model is very similar to that observed in human stroke patients.

  13. Society of Vascular and Interventional Neurology (SVIN) Stroke Interventional Laboratory Consensus (SILC) Criteria: A 7M Management Approach to Developing a Stroke Interventional Laboratory in the Era of Stroke Thrombectomy for Large Vessel Occlusions

    PubMed Central

    Shams, Tanzila; Zaidat, Osama; Yavagal, Dileep; Xavier, Andrew; Jovin, Tudor; Janardhan, Vallabh

    2016-01-01

    Brain attack care is rapidly evolving with cutting-edge stroke interventions similar to the growth of heart attack care with cardiac interventions in the last two decades. As the field of stroke intervention is growing exponentially globally, there is clearly an unmet need to standardize stroke interventional laboratories for safe, effective, and timely stroke care. Towards this goal, the Society of Vascular and Interventional Neurology (SVIN) Writing Committee has developed the Stroke Interventional Laboratory Consensus (SILC) criteria using a 7M management approach for the development and standardization of each stroke interventional laboratory within stroke centers. The SILC criteria include: (1) manpower: personnel including roles of medical and administrative directors, attending physicians, fellows, physician extenders, and all the key stakeholders in the stroke chain of survival; (2) machines: resources needed in terms of physical facilities, and angiography equipment; (3) materials: medical device inventory, medications, and angiography supplies; (4) methods: standardized protocols for stroke workflow optimization; (5) metrics (volume): existing credentialing criteria for facilities and stroke interventionalists; (6) metrics (quality): benchmarks for quality assurance; (7) metrics (safety): radiation and procedural safety practices. PMID:27610118

  14. Prevalence of Imaging Biomarkers to Guide the Planning of Acute Stroke Reperfusion Trials.

    PubMed

    Jiang, Bin; Ball, Robyn L; Michel, Patrik; Jovin, Tudor; Desai, Manisha; Eskandari, Ashraf; Naqvi, Zack; Wintermark, Max

    2017-06-01

    Imaging biomarkers are increasingly used as selection criteria for stroke clinical trials. The goal of our study was to determine the prevalence of commonly studied imaging biomarkers in different time windows after acute ischemic stroke onset to better facilitate the design of stroke clinical trials using such biomarkers for patient selection. This retrospective study included 612 patients admitted with a clinical suspicion of acute ischemic stroke with symptom onset no more than 24 hours before completing baseline imaging. Patients with subacute/chronic/remote infarcts and hemorrhage were excluded from this study. Imaging biomarkers were extracted from baseline imaging, which included a noncontrast head computed tomography (CT), perfusion CT, and CT angiography. The prevalence of dichotomized versions of each of the imaging biomarkers in several time windows (time since symptom onset) was assessed and statistically modeled to assess time dependence (not lack thereof). We created tables showing the prevalence of the imaging biomarkers pertaining to the core, the penumbra and the arterial occlusion for different time windows. All continuous imaging features vary over time. The dichotomized imaging features that vary significantly over time include: noncontrast head computed tomography Alberta Stroke Program Early CT (ASPECT) score and dense artery sign, perfusion CT infarct volume, and CT angiography collateral score and visible clot. The dichotomized imaging features that did not vary significantly over time include the thresholded perfusion CT penumbra volumes. As part of the feasibility analysis in stroke clinical trials, this analysis and the resulting tables can help investigators determine sample size and the number needed to screen. © 2017 American Heart Association, Inc.

  15. Imaging cerebral haemorrhage with magnetic induction tomography: numerical modelling.

    PubMed

    Zolgharni, M; Ledger, P D; Armitage, D W; Holder, D S; Griffiths, H

    2009-06-01

    Magnetic induction tomography (MIT) is a new electromagnetic imaging modality which has the potential to image changes in the electrical conductivity of the brain due to different pathologies. In this study the feasibility of detecting haemorrhagic cerebral stroke with a 16-channel MIT system operating at 10 MHz was investigated. The finite-element method combined with a realistic, multi-layer, head model comprising 12 different tissues, was used for the simulations in the commercial FE package, Comsol Multiphysics. The eddy-current problem was solved and the MIT signals computed for strokes of different volumes occurring at different locations in the brain. The results revealed that a large, peripheral stroke (volume 49 cm(3)) produced phase changes that would be detectable with our currently achievable instrumentation phase noise level (17 m degrees ) in 70 (27%) of the 256 exciter/sensor channel combinations. However, reconstructed images showed that a lower noise level than this, of 1 m degrees , was necessary to obtain good visualization of the strokes. The simulated MIT measurements were compared with those from an independent transmission-line-matrix model in order to give confidence in the results.

  16. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  17. Cardiovascular dynamics during the initial period of head-down tilt

    NASA Technical Reports Server (NTRS)

    Tomaselli, Clare Marie; Kenney, Richard A.; Frey, Mary Anne Bassett; Hoffler, G. Wyckliffe

    1987-01-01

    The cardiovascular response to 1 h of 60-deg head-down tilt was studied in 12 male subjects, ages 30-39 years, to simulate the early effects of weightlessness. Fluid shifts, hemodynamic variables, and indices of myocardial contractility were evaluated by utilizing electrocardiography, systolic time intervals, impedance cardiography, sphygmomanometry, and measurement of calf circumference. Most cardiovascular variables remained stable throughout the initial 30 min of the protocol, even though translocation of fluid from the legs to the thorax commenced immediately with the onset of head-down tilt. In contrast, minutes 30-60 were characterized by reduced stroke volume, cardiac output, mean stroke ejection rate, and Heather index concomitant with an elevation in mean arterial pressure. Intrathoracic fluid volume continued to increase, while leg volume continued to decrease. This latter physiological response suggests intrathoracic sequestration of fluid volume; blood was apparently redistributed to the pulmonary circulation rather than being retained in the great veins.

  18. Unclear-onset intracerebral hemorrhage: Clinical characteristics, hematoma features, and outcomes.

    PubMed

    Inoue, Yasuteru; Miyashita, Fumio; Koga, Masatoshi; Minematsu, Kazuo; Toyoda, Kazunori

    2017-12-01

    Background and purpose Although unclear-onset ischemic stroke, including wake-up ischemic stroke, is drawing attention as a potential target for reperfusion therapy, acute unclear-onset intracerebral hemorrhage has been understudied. Clinical characteristics, hematoma features, and outcomes of patients who developed intracerebral hemorrhage during sleep or those with intracerebral hemorrhage who were unconscious when witnessed were determined. Methods Consecutive intracerebral hemorrhage patients admitted within 24 hours after onset or last-known normal time were classified into clear-onset intracerebral hemorrhage and unclear-onset intracerebral hemorrhage groups. Outcomes included initial hematoma volume, initial National Institutes of Health Stroke Scale score, hematoma growth on 24-hour follow-up computed tomography, and vital and functional prognoses at 30 days. Results Of 377 studied patients (122 women, 69 ± 11 years old), 147 (39.0%) had unclear-onset intracerebral hemorrhage. Patients with unclear-onset intracerebral hemorrhage had larger hematoma volumes (p = 0.044) and higher National Institutes of Health Stroke Scale scores (p < 0.001) than those with clear-onset intracerebral hemorrhage after multivariable adjustment for risk factors and comorbidities. Hematoma growth was similarly common between the two groups (p = 0.176). There were fewer patients with modified Rankin Scale (mRS) scores of 0-2 (p = 0.033) and more patients with mRS scores of 5-6 (p = 0.009) and with fatal outcomes (p = 0.049) in unclear-onset intracerebral hemorrhage group compared with clear-onset intracerebral hemorrhage as crude values, but not after adjustment. Conclusions Patients with unclear-onset intracerebral hemorrhage presented with larger hematomas and higher National Institutes of Health Stroke Scale scores at emergent visits than those with clear-onset intracerebral hemorrhage, independent of underlying characteristics. Unclear-onset intracerebral hemorrhage patients showed poorer 30-day vital and functional outcomes than clear-onset intracerebral hemorrhage patients; these differences seem to be mainly due to initial hematoma volumes and National Institutes of Health Stroke Scale scores.

  19. Metabolic Syndrome Predicts Refractoriness to Intravenous Thrombolysis in Acute Ischemic Stroke.

    PubMed

    Dorado, Laura; Arenillas, Juan F; López-Cancio, Elena; Hernández-Pérez, María; Pérez de la Ossa, Natalia; Gomis, Meritxell; Millán, Mònica; Granada, María Luisa; Galán, Amparo; Palomeras, Ernest; Dávalos, Antoni

    2015-11-01

    Metabolic syndrome (MetS) has been associated with higher resistance to clot lysis at 24 hours after tissue plasminogen activator (tPA) administration in patients with acute ischemic stroke. We aimed to test this hypothesis at earlier time points, when neurointerventional rescue procedures may still be indicated to achieve arterial recanalization. This is a prospective and observational study in consecutive stroke patients with MCA occlusion treated with IV tPA. MetS was diagnosed following the unified criteria of the last Joint Interim Statement 2009 participating several major organizations. The primary outcome variable was resistance to thrombolysis, defined as the absence of complete middle cerebral artery recanalization 2 hours after tPA bolus assessed by transcranial color-coded duplex or when rescue mechanical thrombectomy after IV tPA was required. Secondary outcome variables were dramatic neurological improvement (decrease in ≥10 points, or a National Institutes of Health Stroke Scale [NIHSS] score of 0-1 at 24 hours), symptomatic intracerebral hemorrhage following European-Australasian Acute Stroke Study II criteria, infarct volume at 24 hours (calculated by using the formula for irregular volumes, ABC/2), and good outcome (modified Rankin Scale score < 3) at 3 months. A total of 234 patients (median baseline NIHSS score 16 [10-20]) were included and 146 (62.4%) fulfilled MetS criteria. After multivariate analysis, MetS emerged as an independent predictor of resistance to thrombolysis (odds ratio = 2.2 [1.3-4.2], P = .01) and absence of dramatic neurological improvement (odds ratio = .5 [.28-.97], P = .04). In addition, MetS conferred poorer functional outcome, higher symptomatic intracerebral hemorrhage rate, and increased infarct volume, although these associations disappeared after adjustment for covariates. MetS predicts patients with middle cerebral artery occlusion refractory to early clot dissolution after IV tPA. This finding may help in acute clinical decision-making. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations With Subclinical Vascular Brain Injury and Incident Stroke.

    PubMed

    Andersson, Charlotte; Preis, Sarah R; Beiser, Alexa; DeCarli, Charles; Wollert, Kai C; Wang, Thomas J; Januzzi, James L; Vasan, Ramachandran S; Seshadri, Sudha

    2015-09-01

    Growth differentiation factor-15 (GDF-15) and soluble (s)ST2 are markers of cardiac and vascular stress. We investigated the associations between circulating concentrations of these biomarkers and incident stroke and subclinical vascular brain injury in a sample from the Framingham Offspring cohort. We followed 3374 stroke- and dementia-free individuals (mean age, 59.0±9.7 years; 53% women) attending the Framingham Offspring sixth examination cycle 11.8±3.0 years for incident stroke. A subsample of 2463 individuals underwent brain magnetic resonance imaging and neuropsychological testing ≈4.0±1.7 years after the sixth examination. After adjustment for traditional cardiovascular risk factors, B-type natriuretic peptide, high-sensitivity C-reactive protein, and urine albumin levels, higher stress biomarker levels were associated cross-sectionally with lower brain volumes (β coefficients for intracranial volume comparing fourth [Q4] versus first biomarker [Q1] quartiles: -0.71% for GDF-15; P=0.002 and 0.47% for sST2; P=0.02) and worse performance on the visual reproduction test (β coefficients for Q4 versus Q1: -0.62 for GDF-15; P=0.009 and -0.40 for sST2; P=0.04). Higher GDF-15 concentrations were also associated with greater log-transformed white-matter hyperintensity volumes (β for Q4 versus Q1=0.19; P=0.01). Prospectively, a total of 203 (6%) individuals developed incident stroke/transient ischemic attack during follow-up. After multivariable adjustment, sST2 remained significantly associated with stroke/transient ischemic attack, hazard ratio for Q4 versus Q1 of 1.76, 95% confidence interval of 1.06 to 2.92, and P=0.03. Circulating GDF-15 and sST2 are associated with subclinical brain injury and cognitive impairment. Higher sST2 concentrations are also associated with incident stroke, suggesting potential links between cardiac stress biomarkers and brain injury. © 2015 American Heart Association, Inc.

  1. The Additional Contribution of White Matter Hyperintensity Location to Post-stroke Cognitive Impairment: Insights From a Multiple-Lesion Symptom Mapping Study.

    PubMed

    Zhao, Lei; Wong, Adrian; Luo, Yishan; Liu, Wenyan; Chu, Winnie W C; Abrigo, Jill M; Lee, Ryan K L; Mok, Vincent; Shi, Lin

    2018-01-01

    White matter hyperintensities (WMH) are common in acute ischemic stroke patients. Although WMH volume has been reported to influence post-stroke cognition, it is still not clear whether WMH location, independent of acute ischemic lesion (AIL) volume and location, contributes to cognitive impairment after stroke. Here, we proposed a multiple-lesion symptom mapping model that considers both the presence of WMH and AIL to measure the additional contribution of WMH locations to post-stroke cognitive impairment. Seventy-six first-ever stroke patients with AILs in the left hemisphere were examined by Montreal Cognitive Assessment (MoCA) at baseline and 1 year after stroke. The association between the location of AIL and WMH and global cognition was investigated by a multiple-lesion symptom mapping (MLSM) model based on support vector regression (SVR). To explore the relative merits of MLSM over the existing lesion-symptom mapping approaches with only AIL considered (mass-univariate VLSM and SVR-LSM), we measured the contribution of the significant AIL and/or WMH clusters from these models to post-stroke cognitive impairment. In addition, we compared the significant WMH locations identified by the optimal SVR-MLSM model for cognitive impairment at baseline and 1 year post stroke. The identified strategic locations of WMH significantly contributed to the prediction of MoCA at baseline (short-term) and 1 year (long-term) after stroke independent of the strategic locations of AIL. The significant clusters of WMH for short-term and long-term post-stroke cognitive impairment were mainly in the corpus callosum, corona radiata, and posterior thalamic radiation. We noted that in some regions, the AIL clusters that were significant for short-term outcome were no longer significant for long-term outcome, and interestingly more WMH clusters in these regions became significant for long-term outcome compared to short-term outcome. This indicated that there are some regions where local WMH burden has larger impact than AIL burden on the long-term post-stroke cognitive impairment. In consequence, SVR-MLSM was effective in identifying the WMH locations that have additional impact on post-stroke cognition on top of AIL locations. Such a method can also be applied to other lesion-behavior studies where multiple types of lesions may have potential contributions to a specific behavior.

  2. The assessment of circulating volume using inferior vena cava collapse index and carotid Doppler velocity time integral in healthy volunteers: a pilot study.

    PubMed

    Peachey, Tom; Tang, Andrew; Baker, Elinor C; Pott, Jason; Freund, Yonathan; Harris, Tim

    2016-09-02

    Assessment of circulating volume and the requirement for fluid replacement are fundamental to resuscitation but remain largely empirical. Passive leg raise (PLR) may determine fluid responders while avoiding potential fluid overload. We hypothesised that inferior vena cava collapse index (IVCCI) and carotid artery blood flow would change predictably in response to PLR, potentially providing a non-invasive tool to assess circulating volume and identifying fluid responsive patients. We conducted a prospective proof of concept pilot study on fasted healthy volunteers. One operator measured IVC diameter during quiet respiration and sniff, and carotid artery flow. Stroke volume (SV) was also measured using suprasternal Doppler. Our primary endpoint was change in IVCCI after PLR. We also studied changes in IVCCI after "sniff", and correlation between carotid artery flow and SV. Passive leg raise was associated with significant reduction in the mean inferior vena cava collapsibility index from 0.24 to 0.17 (p < 0.01). Mean stroke volume increased from 56.0 to 69.2 mL (p < 0.01). There was no significant change in common carotid artery blood flow. Changes in physiology consequent upon passive leg raise normalised rapidly. Passive leg raise is associated with a decrease of IVCCI and increase in stroke volume. However, the wide range of values observed suggests that factors other than circulating volume predominate in determining the proportion of collapse with respiration. In contrast to other studies, we did not find that carotid blood flow increased with passive leg raise. Rapid normalisation of post-PLR physiology may account for this.

  3. Voxelwise distribution of acute ischemic stroke lesions in patients with newly diagnosed atrial fibrillation: Trigger of arrhythmia or only target of embolism?

    PubMed Central

    Johnson, Timothy D.; Dittgen, Felix; Nichols, Thomas E.; Malzahn, Uwe; Veltkamp, Roland

    2017-01-01

    Objective Atrial fibrillation (AF) is frequently detected after ischemic stroke for the first time, and brain regions involved in autonomic control have been suspected to trigger AF. We examined whether specific brain regions are associated with newly detected AF after ischemic stroke. Methods Patients with acute cerebral infarctions on diffusion-weighted magnetic resonance imaging were included in this lesion mapping study. Lesions were mapped and modeled voxelwise using Bayesian Spatial Generalised Linear Mixed Modeling to determine differences in infarct locations between stroke patients with new AF, without AF and with AF already known before the stroke. Results 582 patients were included (median age 68 years; 63.2% male). AF was present in 109/582 patients [(18.7%); new AF: 39/109 (35.8%), known AF: 70/109 (64.2%)]. AF patients had larger infarct volumes than patients without AF (mean: 29.7 ± 45.8 ml vs. 15.2 ± 35.1 ml; p<0.001). Lesions in AF patients accumulated in the right central middle cerebral artery territory. Increasing stroke size predicted progressive cortical but not pontine and thalamic involvement. Patients with new AF had more frequently lesions in the right insula compared to patients without AF when stroke size was not accounted for, but no specific brain region was more frequently involved after adjustment for infarct volume. Controlled for stroke size, left parietal involvement was less likely for patients with new AF than for those without AF or with known AF. Conclusions In the search for brain areas potentially triggering cardiac arrhythmias infarct size should be accounted for. After controlling for infarct size, there is currently no evidence that ischemic stroke lesions of specific brain areas are associated with new AF compared to patients without AF. This challenges the neurogenic hypothesis of AF according to which a relevant proportion of new AF is triggered by ischemic brain lesions of particular locations. PMID:28542605

  4. Discrete event simulation of patient admissions to a neurovascular unit.

    PubMed

    Hahn-Goldberg, S; Chow, E; Appel, E; Ko, F T F; Tan, P; Gavin, M B; Ng, T; Abrams, H B; Casaubon, L K; Carter, M W

    2014-01-01

    Evidence exists that clinical outcomes improve for stroke patients admitted to specialized Stroke Units. The Toronto Western Hospital created a Neurovascular Unit (NVU) using beds from general internal medicine, Neurology and Neurosurgery to care for patients with stroke and acute neurovascular conditions. Using patient-level data for NVU-eligible patients, a discrete event simulation was created to study changes in patient flow and length of stay pre- and post-NVU implementation. Varying patient volumes and resources were tested to determine the ideal number of beds under various conditions. In the first year of operation, the NVU admitted 507 patients, over 66% of NVU-eligible patient volumes. With the introduction of the NVU, length of stay decreased by around 8%. Scenario testing showed that the current level of 20 beds is sufficient for accommodating the current demand and would continue to be sufficient with an increase in demand of up to 20%.

  5. Mean platelet volume, an indicator of platelet reactivity, is increased in patients with patent foramen ovale.

    PubMed

    Varol, Ercan; Uysal, Bayram A; Ersoy, Ibrahim; Ozaydin, Mehmet; Erdogan, Dogan; Dogan, Abdullah

    2013-09-01

    Numerous studies have shown an association between patent foramen ovale (PFO) and cryptogenic stroke suggesting that paradoxical emboli may be an important cause of stroke. In addition, some authors have proposed that platelet activation is present in PFO patients and this might be the cause of the stroke. The aim of this study was to assess the mean platelet volume (MPV), an indicator of platelet activation and/or reactivity in patients with PFO. The study group consisted of 77 patients with PFO. An age, sex, BMI-matched control group was composed of 43 healthy volunteers. We measured serum MPV values in patients and controls. MPV was significantly higher among PFO patients when compared with control group (9.0±0.8 vs. 8.3±0.9 fl, respectively; P<0.001). We have shown that MPV was significantly elevated in patients with PFO compared with controls.

  6. Apparatus for the conversion of power strokes of a random sequence and of random lengths of strokes into potential energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkuch, E.

    1984-01-17

    The apparatus comprises at least one positive displacement pump, which is driven by the sea waves. The quantity of delivery of this pump is adjustable in accordance with the lengths of strokes made by the ocean waves. This is made possible in that the positive displacement pump comprises pistons having different volume displacements. The height of the incoming waves is measured by a membrane box connected to a transducer which generates signals such that only that piston of the plurality of pistons is made to operate, which has by design a volume displacement which gives the optimal recovery of themore » energy of the ocean waves. The or these pistons pump a working fluid into a storage vessel, which allows the generation of peak load as well as base load electrical energy.« less

  7. Quantitative Rapid Assessment of Leukoaraiosis in CT : Comparison to Gold Standard MRI.

    PubMed

    Hanning, Uta; Sporns, Peter Bernhard; Schmidt, Rene; Niederstadt, Thomas; Minnerup, Jens; Bier, Georg; Knecht, Stefan; Kemmling, André

    2017-10-20

    The severity of white matter lesions (WML) is a risk factor of hemorrhage and predictor of clinical outcome after ischemic stroke; however, in contrast to magnetic resonance imaging (MRI) reliable quantification for this surrogate marker is limited for computed tomography (CT), the leading stroke imaging technique. We aimed to present and evaluate a CT-based automated rater-independent method for quantification of microangiopathic white matter changes. Patients with suspected minor stroke (National Institutes of Health Stroke scale, NIHSS < 4) were screened for the analysis of non-contrast computerized tomography (NCCT) at admission and compared to follow-up MRI. The MRI-based WML volume and visual Fazekas scores were assessed as the gold standard reference. We employed a recently published probabilistic brain segmentation algorithm for CT images to determine the tissue-specific density of WM space. All voxel-wise densities were quantified in WM space and weighted according to partial probabilistic WM content. The resulting mean weighted density of WM space in NCCT, the surrogate of WML, was correlated with reference to MRI-based WML parameters. The process of CT-based tissue-specific segmentation was reliable in 79 cases with varying severity of microangiopathy. Voxel-wise weighted density within WM spaces showed a noticeable correlation (r = -0.65) with MRI-based WML volume. Particularly in patients with moderate or severe lesion load according to the visual Fazekas score the algorithm provided reliable prediction of MRI-based WML volume. Automated observer-independent quantification of voxel-wise WM density in CT significantly correlates with microangiopathic WM disease in gold standard MRI. This rapid surrogate of white matter lesion load in CT may support objective WML assessment and therapeutic decision-making during acute stroke triage.

  8. Impact of Leukoaraiosis Burden on Hemispheric Lateralization of the National Institutes of Health Stroke Scale Deficit in Acute Ischemic Stroke.

    PubMed

    Helenius, Johanna; Goddeau, Richard P; Moonis, Majaz; Henninger, Nils

    2016-01-01

    The National Institutes of Health Stroke Scale (NIHSS) awards higher deficit scores for infarcts in the dominant hemisphere when compared with otherwise similar infarcts in the nondominant hemisphere. This has been shown to adversely affect stroke recognition, therapeutic decisions, and outcome. However, factors modifying the association between infarct side and deficit severity are incompletely understood. Thus, we sought to determine whether age and age-related leukoaraiosis alter the relation between NIHSS deficit score and the side and volume of infarction. We studied 238 patients with supratentorial, nonlacunar ischemic infarcts prospectively included in our stroke registry between January 2013 and January 2014. NIHSS deficit severity was assessed at the time of presentation. Infarct volumes were assessed by manual planimetry on diffusion-weighted imaging. Leukoaraiosis burden was graded on fluid-attenuated inversion recovery images according to the Fazekas scale and dichotomized to none-to-mild (0-2) versus severe (3-6). Multivariable linear regression with backward elimination was used to identify independent predictors of the admission NIHSS. Left-hemispheric infarction (P<0.001), severe leukoaraiosis (P=0.001), their interaction term (P=0.005), infarct volume (P<0.001), and sex (P=0.013) were independently associated with the NIHSS deficit. Analysis of the individual NIHSS components showed that severe leukoaraiosis was associated with an increase of the lateralizing components of the NIHSS in patients with right-hemispheric infarction (P<0.05). Severe leukoaraiosis substantially attenuates the classic hemispheric lateralization of the NIHSS deficit by relating to greater NIHSS scores of components that are typically assigned to left hemisphere function. © 2015 American Heart Association, Inc.

  9. Hemorrhagic transformation in patients with acute ischaemic stroke and an indication for anticoagulation.

    PubMed

    Marsh, E B; Llinas, R H; Hillis, A E; Gottesman, R F

    2013-06-01

    Intracerebral hemorrhage (ICH) can occur in patients following acute ischaemic stroke in the form of hemorrhagic transformation, and results in significant long-term morbidity and mortality. Anticoagulation theoretically increases risk. We evaluated stroke patients with an indication for anticoagulation to determine the factors associated with hemorrhagic transformation. Three-hundred and forty-five patients with ICD-9 codes indicating: (i) acute ischaemic stroke; and (ii) an indication for anticoagulation were screened. One-hundred and twenty-three met inclusion criteria. Data were collected retrospectively. Neuroimaging was reviewed for infarct volume and evidence of ICH. Hemorrhages were classified as: hemorrhagic conversion (petechiae) versus intracerebral hematoma (a space occupying lesion); symptomatic versus asymptomatic. Using multivariable logistic regression, we determined the hypothesized factors associated with intracerebral bleeding. Age [odds ratio (OR) = 1.50 per 10-year increment, 95% confidence interval (CI) 1.07-2.08], infarct volume (OR = 1.10 per 10 ccs, 95% CI 1.06-1.18) and worsening category of renal impairment by estimated glomerular filtration rate (eGFR; OR = 1.95, 95% CI 1.04-3.66) were predictors of hemorrhagic transformation. Ninety- nine out of 123 patients were anticoagulated. Hemorrhage rates of patients on and off anticoagulation did not differ (25.3% vs. 20.8%; P = 0.79); however, all intracerebral hematomas (n = 7) and symptomatic bleeds (n = 8) occurred in the anticoagulated group. The risk of hemorrhagic transformation in patients with acute ischaemic stroke and an indication for anticoagulation is multifactorial, and most closely associated with an individual's age, infarct volume and eGFR. © 2013 The Author(s) European Journal of Neurology © 2013 EFNS.

  10. Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice

    PubMed Central

    Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina

    2014-01-01

    Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and CNS damage after middle cerebral artery occlusion (MCAO) that could be prevented by transfer of IL-10+ B-cells. The purpose of this study was to determine if the beneficial immunoregulatory effects on MCAO of the IL-10+ B-cell subpopulation also extends to B-cell-sufficient mice that would better represent stroke subjects. CNS inflammation and infarct volumes were evaluated in male C57BL/6J (WT) mice that received either RPMI or IL-10+ B-cells and underwent 60 min of middle cerebral artery occlusion (MCAO) followed by 96 hours of reperfusion. Transfer of IL-10+ B-cells markedly reduced infarct volume in WT recipient mice when given 24 hours prior to or 4 hours after MCAO. B-cell protected MCAO mice had increased regulatory subpopulations in the periphery, reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres of the IL-10+ B-cell-treated group. Moreover, transfer of IL-10+ B-cells 24 hours before MCAO led to a significant preservation of regulatory immune subsets in the IL-10+ B-cell protected group presumably indicating their role in immunomodulatory mechanisms, post-stroke. Our studies are the first to demonstrate a major immunoregulatory role for IL-10+ regulatory B-cells in preventing and treating MCAO in WT mice and also implicating their potential role in attenuating complications due to post-stroke immunosuppression. PMID:24374817

  11. Recombinant Tissue Plasminogen Activator Induces Neurological Side Effects Independent on Thrombolysis in Mechanical Animal Models of Focal Cerebral Infarction: A Systematic Review and Meta-Analysis.

    PubMed

    Dong, Mei-Xue; Hu, Qing-Chuan; Shen, Peng; Pan, Jun-Xi; Wei, You-Dong; Liu, Yi-Yun; Ren, Yi-Fei; Liang, Zi-Hong; Wang, Hai-Yang; Zhao, Li-Bo; Xie, Peng

    2016-01-01

    Recombinant tissue plasminogen activator (rtPA) is the only effective drug approved by US FDA to treat ischemic stroke, and it contains pleiotropic effects besides thrombolysis. We performed a meta-analysis to clarify effect of tissue plasminogen activator (tPA) on cerebral infarction besides its thrombolysis property in mechanical animal stroke. Relevant studies were identified by two reviewers after searching online databases, including Pubmed, Embase, and ScienceDirect, from 1979 to 2016. We identified 6, 65, 17, 12, 16, 12 and 13 comparisons reporting effect of endogenous tPA on infarction volume and effects of rtPA on infarction volume, blood-brain barrier, brain edema, intracerebral hemorrhage, neurological function and mortality rate in all 47 included studies. Standardized mean differences for continuous measures and risk ratio for dichotomous measures were calculated to assess the effects of endogenous tPA and rtPA on cerebral infarction in animals. The quality of included studies was assessed using the Stroke Therapy Academic Industry Roundtable score. Subgroup analysis, meta-regression and sensitivity analysis were performed to explore sources of heterogeneity. Funnel plot, Trim and Fill method and Egger's test were obtained to detect publication bias. We found that both endogenous tPA and rtPA had not enlarged infarction volume, or deteriorated neurological function. However, rtPA would disrupt blood-brain barrier, aggravate brain edema, induce intracerebral hemorrhage and increase mortality rate. This meta-analysis reveals rtPA can lead to neurological side effects besides thrombolysis in mechanical animal stroke, which may account for clinical exacerbation for stroke patients that do not achieve vascular recanalization with rtPA.

  12. Recombinant Tissue Plasminogen Activator Induces Neurological Side Effects Independent on Thrombolysis in Mechanical Animal Models of Focal Cerebral Infarction: A Systematic Review and Meta-Analysis

    PubMed Central

    Wei, You-Dong; Liu, Yi-Yun; Ren, Yi-Fei; Liang, Zi-Hong; Wang, Hai-Yang; Zhao, Li-Bo; Xie, Peng

    2016-01-01

    Background and Purpose Recombinant tissue plasminogen activator (rtPA) is the only effective drug approved by US FDA to treat ischemic stroke, and it contains pleiotropic effects besides thrombolysis. We performed a meta-analysis to clarify effect of tissue plasminogen activator (tPA) on cerebral infarction besides its thrombolysis property in mechanical animal stroke. Methods Relevant studies were identified by two reviewers after searching online databases, including Pubmed, Embase, and ScienceDirect, from 1979 to 2016. We identified 6, 65, 17, 12, 16, 12 and 13 comparisons reporting effect of endogenous tPA on infarction volume and effects of rtPA on infarction volume, blood-brain barrier, brain edema, intracerebral hemorrhage, neurological function and mortality rate in all 47 included studies. Standardized mean differences for continuous measures and risk ratio for dichotomous measures were calculated to assess the effects of endogenous tPA and rtPA on cerebral infarction in animals. The quality of included studies was assessed using the Stroke Therapy Academic Industry Roundtable score. Subgroup analysis, meta-regression and sensitivity analysis were performed to explore sources of heterogeneity. Funnel plot, Trim and Fill method and Egger’s test were obtained to detect publication bias. Results We found that both endogenous tPA and rtPA had not enlarged infarction volume, or deteriorated neurological function. However, rtPA would disrupt blood-brain barrier, aggravate brain edema, induce intracerebral hemorrhage and increase mortality rate. Conclusions This meta-analysis reveals rtPA can lead to neurological side effects besides thrombolysis in mechanical animal stroke, which may account for clinical exacerbation for stroke patients that do not achieve vascular recanalization with rtPA. PMID:27387385

  13. Comparison of cardiovascular function during the early hours of bed rest and space flight

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Charles, J. B.

    1994-01-01

    This paper reviews the cardiovascular responses of six healthy male subjects to 6 hours in a 5 degrees head-down bed rest model of weightlessness, and compares these responses to those obtained when subjects were positioned in head-up tilts of 10 degrees, 20 degrees, and 42 degrees, simulating 1/6, 1/3, and 2/3 G, respectively. Thoracic fluid index, cardiac output, stroke volume, and peak flow were measured using impedance cardiography. Cardiac dimensions and volumes were determined from two-dimensional guided M-mode echocardiograms in the left lateral decubitus position at 0, 2, 4, and 6 hours. Cardiovascular response to a stand test were compared before and after bed rest. The impedance values were related to tilt angle for the first 2 hours of tilt; however, after 3 hours, at all four angles, values began to converge, indicating that cardiovascular homeostatic mechanisms seek a common adapted state, regardless of effective gravity level (tilt angle) up to 2/3 G. Echocardiography revealed that left ventricular end-diastolic and end-systolic volume, stroke volume, ejection fraction, heart rate, and cardiac output had returned to control values by hour 6 for all tilt angles. The lack of a significant immediate change in left ventricular end-diastolic volume, despite decrements in stroke volume (P < .05) and heart rate (not significant), indicates that multiple factors may play a role in the adaptation to simulated hypogravity. The echocardiography data indicated that no angle of tilt, whether head-down or head-up for 4 to 6 hours, mimicked exactly the changes in cardiovascular function recorded after 4 to 6 hours of space flight. Changes in left ventricular end-diastolic volume during space flight and tilt may be similar, but follow a different time course. Nevertheless, head-down tilt at 5 degrees for 6 hours mimics some (stroke volume, systolic and diastolic blood pressure, mean arterial blood pressure, and total resistance), but not all, of the changes occurring in an equivalent time of space flight. The magnitude of the change in the mean heart rate response to standing was greater after six hours of tilt at -5 degrees or 10 degrees. Thus, results from the stand test after 6 hours of bed rest at -5 degrees and 10 degrees, but not at 20 degrees or 42 degrees, are similar to those obtained after space flight.

  14. Hemodynamic Correlates of Abnormal Aortic Root Dimension in an Adult Population: The Strong Heart Study.

    PubMed

    de Simone, Giovanni; Roman, Mary J; De Marco, Marina; Bella, Jonathan N; Izzo, Raffaele; Lee, Elisa T; Devereux, Richard B

    2015-09-28

    We evaluated the relationship of aortic root dimension (ARD) with flow output and both peripheral and central blood pressure, using multivariable equations predicting ideal sex-specific ARD at a given age and body height. We measured echocardiographic diastolic ARD at the sinuses of Valsalva in 3160 adults (aged 42±16 years, 61% women) from the fourth examination of the Strong Heart Study who were free of prevalent coronary heart disease, and we compared measured data with the theoretical predicted value to calculate a z score. Central blood pressure was estimated by applanation tonometry of the radial artery in 2319 participants. ARD z scores were divided into tertiles representing small, normal, and large ARD. Participants with large ARD exhibited greater prevalence of central obesity and higher levels of inflammatory markers and lipids (0.05

  15. Frequency-dependent left ventricular performance in women and men.

    PubMed

    Wainstein, Rodrigo V; Sasson, Zion; Mak, Susanna

    2012-06-01

    We aimed to determine whether sex differences in humans extend to the dynamic response of the left ventricular (LV) chamber to changes in heart rate (HR). Several observations suggest sex influences LV structure and function in health; moreover, this physiology is also affected in a sex-specific manner by aging. Eight postmenopausal women and eight similarly aged men underwent a cardiac catheterization-based study for force-interval relationships of the LV. HR was controlled by right atrial (RA) pacing, and LV +dP/dt(max) and volume were assessed by micromanometer-tipped catheter and Doppler echocardiography, respectively. Analysis of approximated LV pressure-volume relationships was performed using a time-varying model of elastance. External stroke work was also calculated. The relationship between HR and LV +dP/dt(max) was expressed as LV +dP/dt(max) = b + mHR. The slope (m) of the relationship was steeper in women compared with men (11.8 ± 4.0 vs. 6.1 ± 4.1 mmHg·s(-1)·beats(-1)·min(-1), P = 0.01). The greater increase in contractility in women was reproducibly observed after normalizing LV +dP/dt(max) to LV end-diastolic volume (LVVed) or by measuring end-systolic elastance. LVVed and stroke volume decreased more in women. Thus, despite greater increases in contractility, HR was associated with a lesser rise in cardiac output and a steeper fall in external stroke work in women. Compared with men, women exhibit greater inotropic responses to incremental RA pacing, which occurs at the same time as a steeper decline in external stroke work. In older adults, we observed sexual dimorphism in determinants of LV mechanical performance.

  16. Moderate Recovery Unnecessary to Sustain High Stroke Volume during Interval Training. A Brief Report

    PubMed Central

    Stanley, Jamie; Buchheit, Martin

    2014-01-01

    It has been suggested that the time spent at a high stroke volume (SV) is important for improving maximal cardiac function. The aim of this study was to examine the effect of recovery intensity on cardiovascular parameters during a typical high-intensity interval training (HIIT) session in fourteen well-trained cyclists. Oxygen consumption (VO2), heart rate (HR), SV, cardiac output (Qc), and oxygenation of vastus lateralis (TSI) were measured during a HIIT (3×3-min work period, 2 min of recovery) session on two occasions. VO2, HR and Qc were largely higher during moderate-intensity (60%) compared with low-intensity (30%) (VO2, effect size; ES = +2.6; HR, ES = +2.8; Qc, ES = +2.2) and passive (HR, ES = +2.2; Qc, ES = +1.7) recovery. By contrast, there was no clear difference in SV between the three recovery conditions, with the SV during the two active recovery periods not being substantially different than during exercise (60%, ES = −0.1; 30%, ES = −0.2). To conclude, moderate-intensity recovery may not be required to maintain a high SV during HIIT. Key points Moderate-intensity recovery periods may not be necessary to maintain high stroke volume during the exercise intervals of HIIT. Stroke volume did not surpass the levels attained during the exercise intervals during the recovery periods of HIIT. The practical implication of these finding is that reducing the intensity of the recovery period during a HIIT protocol may prolong the time to exhaustion, potentially allowing completion of additional high-intensity intervals increasing the time accumulated at maximal cardiac output. PMID:24790495

  17. Dynamic Magnetic Resonance Angiography Provides Collateral Circulation and Hemodynamic Information in Acute Ischemic Stroke.

    PubMed

    Hernández-Pérez, María; Puig, Josep; Blasco, Gerard; Pérez de la Ossa, Natalia; Dorado, Laura; Dávalos, Antoni; Munuera, Josep

    2016-02-01

    Contrary to usual static vascular imaging techniques, contrast-enhanced dynamic magnetic resonance angiography (dMRA) enables dynamic study of cerebral vessels. We evaluated dMRA ability to assess arterial occlusion, cerebral hemodynamics, and collateral circulation in acute ischemic stroke. Twenty-five acute ischemic stroke patients with proximal anterior circulation occlusion underwent dMRA on a 3T scanner within 12 hours of symptoms onset. Diffusion weighted imaging, Tmax6 s lesion volumes and hypoperfusion intensity ratio as volume of Tmax>6 s/volume of Tmax>10 s were measured. Site and grade of occlusion (Thrombolysis in Myocardial Infarction criteria) were evaluated on time-of-flight MRA and dMRA. Leptomeningeal collaterality (American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology [ASITN/SIR] Scale) and asymmetries in venous clearance were assessed exclusively on dMRA. Collateral filling was dichotomized into incomplete (ASITN/SIR 0-2) or complete (ASITN/SIR 3-4). On dMRA, site of occlusion was M1 in 21 patients, tandem internal carotid artery/M1 in 2 and tandem internal carotid artery/terminal internal carotid artery in 2 patients. Three tandem occlusions were not detected on time-of-flight-MRA. All patients had Thrombolysis in Myocardial Infarction 0 to 1 on time-of-flight-MRA, but three of them had Thrombolysis in Myocardial Infarction 2 on dMRA. Complete collateral filling (n=12, 48%) was associated with smaller diffusion weighted imaging lesion volume (P=0.039), smaller hypoperfused volume (P=0.018), and lower hypoperfusion intensity ratio (P=0.006). Patients with symmetrical clearance of transverse sinuses (52%) were more likely to have complete collateral filling (P=0.015). As a fast, direct, feasible, noninvasive, and reliable method to assess site of occlusion, collateral circulation and hemodynamic alterations, dMRA provides profound insights in acute stroke. © 2015 American Heart Association, Inc.

  18. Brain Volume as an Integrated Marker for the Risk of Death in a Community-Based Sample: Age Gene/Environment Susceptibility--Reykjavik Study.

    PubMed

    Van Elderen, Saskia S G C; Zhang, Qian; Sigurdsson, Sigudur; Haight, Thaddeus J; Lopez, Oscar; Eiriksdottir, Gudny; Jonsson, Palmi; de Jong, Laura; Harris, Tamara B; Garcia, Melissa; Gudnason, Vilmundar; van Buchem, Mark A; Launer, Lenore J

    2016-01-01

    Total brain volume is an integrated measure of health and may be an independent indicator of mortality risk independent of any one clinical or subclinical disease state. We investigate the association of brain volume to total and cause-specific mortality in a large nondemented stroke-free community-based cohort. The analysis includes 3,543 men and women (born 1907-1935) participating in the Age, Gene, Environment Susceptibility-Reykjavik Study. Participants with a known brain-related high risk for mortality (cognitive impairment or stroke) were excluded from these analyses. Quantitative estimates of total brain volume, white matter, white matter lesions, total gray matter (GM; cortical GM and subcortical GM separately), and focal cerebral vascular disease were generated from brain magnetic resonance imaging. Brain atrophy was expressed as brain tissue volume divided by total intracranial volume, yielding a percentage. Mean follow-up duration was 7.2 (0-10) years, with 647 deaths. Cox regression was used to analyze the association of mortality to brain atrophy, adjusting for demographics, cardiovascular risk factors, and cerebral vascular disease. Reduced risk of mortality was significantly associated with higher total brain volume (hazard ratio, 95% confidence interval = 0.71, 0.65-0.78), white matter (0.85, 0.78-0.93), total GM (0.74, 0.68-0.81), and cortical GM (0.78, 0.70-0.87). Overall, the associations were similar for cardiovascular and noncardiovascular-related deaths. Independent of multiple risk factors and cerebral vascular damage, global brain volume predicts mortality in a large nondemented stroke-free community-dwelling older cohort. Total brain volume may be an integrated measure reflecting a range of health and with further investigation could be a useful clinical tool when assessing risk for mortality. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  19. Minimally invasive estimation of ventricular dead space volume through use of Frank-Starling curves.

    PubMed

    Davidson, Shaun; Pretty, Chris; Pironet, Antoine; Desaive, Thomas; Janssen, Nathalie; Lambermont, Bernard; Morimont, Philippe; Chase, J Geoffrey

    2017-01-01

    This paper develops a means of more easily and less invasively estimating ventricular dead space volume (Vd), an important, but difficult to measure physiological parameter. Vd represents a subject and condition dependent portion of measured ventricular volume that is not actively participating in ventricular function. It is employed in models based on the time varying elastance concept, which see widespread use in haemodynamic studies, and may have direct diagnostic use. The proposed method involves linear extrapolation of a Frank-Starling curve (stroke volume vs end-diastolic volume) and its end-systolic equivalent (stroke volume vs end-systolic volume), developed across normal clinical procedures such as recruitment manoeuvres, to their point of intersection with the y-axis (where stroke volume is 0) to determine Vd. To demonstrate the broad applicability of the method, it was validated across a cohort of six sedated and anaesthetised male Pietrain pigs, encompassing a variety of cardiac states from healthy baseline behaviour to circulatory failure due to septic shock induced by endotoxin infusion. Linear extrapolation of the curves was supported by strong linear correlation coefficients of R = 0.78 and R = 0.80 average for pre- and post- endotoxin infusion respectively, as well as good agreement between the two linearly extrapolated y-intercepts (Vd) for each subject (no more than 7.8% variation). Method validity was further supported by the physiologically reasonable Vd values produced, equivalent to 44.3-53.1% and 49.3-82.6% of baseline end-systolic volume before and after endotoxin infusion respectively. This method has the potential to allow Vd to be estimated without a particularly demanding, specialised protocol in an experimental environment. Further, due to the common use of both mechanical ventilation and recruitment manoeuvres in intensive care, this method, subject to the availability of multi-beat echocardiography, has the potential to allow for estimation of Vd in a clinical environment.

  20. Use of Noncontrast Computed Tomography and Computed Tomographic Perfusion in Predicting Intracerebral Hemorrhage After Intravenous Alteplase Therapy.

    PubMed

    Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K

    2017-06-01

    Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic stroke receiving intravenous alteplase. © 2017 American Heart Association, Inc.

  1. Bivariate Heritability of Total and Regional Brain Volumes: the Framingham Study

    PubMed Central

    DeStefano, Anita L.; Seshadri, Sudha; Beiser, Alexa; Atwood, Larry D.; Massaro, Joe M.; Au, Rhoda; Wolf, Philip A.; DeCarli, Charles

    2009-01-01

    Heritability and genetic and environmental correlations of total and regional brain volumes were estimated from a large, generally healthy, community-based sample, to determine if there are common elements to the genetic influence of brain volumes and white matter hyperintensity volume. There were 1538 Framingham Heart Study participants with brain volume measures from quantitative magnetic resonance imaging (MRI) who were free of stroke and other neurological disorders that might influence brain volumes and who were members of families with at least two Framingham Heart Study participants. Heritability was estimated using variance component methodology and adjusting for the components of the Framingham stroke risk profile. Genetic and environmental correlations between traits were obtained from bivariate analysis. Heritability estimates ranging from 0.46 to 0.60, were observed for total brain, white matter hyperintensity, hippocampal, temporal lobe, and lateral ventricular volumes. Moderate, yet significant, heritability was observed for the other measures. Bivariate analyses demonstrated that relationships between brain volume measures, except for white matter hyperintensity, reflected both moderate to strong shared genetic and shared environmental influences. This study confirms strong genetic effects on brain and white matter hyperintensity volumes. These data extend current knowledge by showing that these two different types of MRI measures do not share underlying genetic or environmental influences. PMID:19812462

  2. Lesion segmentation from multimodal MRI using random forest following ischemic stroke.

    PubMed

    Mitra, Jhimli; Bourgeat, Pierrick; Fripp, Jurgen; Ghose, Soumya; Rose, Stephen; Salvado, Olivier; Connelly, Alan; Campbell, Bruce; Palmer, Susan; Sharma, Gagan; Christensen, Soren; Carey, Leeanne

    2014-09-01

    Understanding structure-function relationships in the brain after stroke is reliant not only on the accurate anatomical delineation of the focal ischemic lesion, but also on previous infarcts, remote changes and the presence of white matter hyperintensities. The robust definition of primary stroke boundaries and secondary brain lesions will have significant impact on investigation of brain-behavior relationships and lesion volume correlations with clinical measures after stroke. Here we present an automated approach to identify chronic ischemic infarcts in addition to other white matter pathologies, that may be used to aid the development of post-stroke management strategies. Our approach uses Bayesian-Markov Random Field (MRF) classification to segment probable lesion volumes present on fluid attenuated inversion recovery (FLAIR) MRI. Thereafter, a random forest classification of the information from multimodal (T1-weighted, T2-weighted, FLAIR, and apparent diffusion coefficient (ADC)) MRI images and other context-aware features (within the probable lesion areas) was used to extract areas with high likelihood of being classified as lesions. The final segmentation of the lesion was obtained by thresholding the random forest probabilistic maps. The accuracy of the automated lesion delineation method was assessed in a total of 36 patients (24 male, 12 female, mean age: 64.57±14.23yrs) at 3months after stroke onset and compared with manually segmented lesion volumes by an expert. Accuracy assessment of the automated lesion identification method was performed using the commonly used evaluation metrics. The mean sensitivity of segmentation was measured to be 0.53±0.13 with a mean positive predictive value of 0.75±0.18. The mean lesion volume difference was observed to be 32.32%±21.643% with a high Pearson's correlation of r=0.76 (p<0.0001). The lesion overlap accuracy was measured in terms of Dice similarity coefficient with a mean of 0.60±0.12, while the contour accuracy was observed with a mean surface distance of 3.06mm±3.17mm. The results signify that our method was successful in identifying most of the lesion areas in FLAIR with a low false positive rate. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Blood Volume Response to Physical Activity and Inactivity

    DTIC Science & Technology

    2007-07-01

    feedback to promote volume excretion and maintain blood volume at its normal baseline level. Physical activity does not alter either arterial pressure or...although this is less clear. The increase in total blood volume then increases the ability to maintain a high stroke volume and a lower heart rate for...compelling evidence that reduced blood vol- ume with age may be a result of a sedentary, high caloric lifestyle rather than the aging process. There

  4. Thrombectomy in patients ineligible for iv tPA (THRILL).

    PubMed

    Bendszus, Martin; Thomalla, Götz; Knauth, Michael; Hacke, Werner; Bonekamp, Susanne; Fiehler, Jens

    2015-08-01

    A relevant proportion of patients with acute ischemic stroke are ineligible for intravenous thrombolysis with recombinant tissue plasminogen activator. Mechanical thrombectomy offers a treatment alternative for these patients; however, only few data are available on its safety and efficacy. The aim of this study was to compare safety and efficacy of stent retrievers as device class with best medical care alone in acute stroke patients with large intracranial vessel occlusion in the anterior circulation who are not eligible for intravenous thrombolysis with recombinant tissue plasminogen activator up to eight-hours of symptom onset. 'Thrombectomy in patients ineligible for iv tPA' is a prospective, open-label, blinded end-point, binational (Germany and Austria), two-arm, randomized, controlled, post-market study. Primary end-point is the modified Rankin Score shift analysis 90 days (±14) after stroke. Secondary end-points are excellent neurological outcomes (modified Rankin Score ≤ 1), good neurological outcomes (modified Rankin Score ≤ 2 or National Institutes of Health Stroke Scale improvement ≥ 10), difference between predicted infarct volume and actual core infarct volume (computed tomography or magnetic resonance imaging) at 30 (±6) h post-ictus, successful recanalization (thrombolysis in cerebral infarction score 2b or 3), functional health status 90 (±14) days after stroke (European Quality of Life-5 Dimensions) as well as common safety end-points (adverse event, serious adverse event, symptomatic intracranial haemorrhage at 30 (±6) h, death, or dependency). Whether mechanical thrombectomy in patients with acute ischemic stroke who are not eligible for intravenous thrombolysis with recombinant tissue plasminogen activator improves clinical outcomes is unclear. 'Thrombectomy in patients ineligible for iv tPA' may change clinical practice by providing evidence of an effective and safe treatment for such patients. © 2015 World Stroke Organization.

  5. Low Cerebral Blood Volume Identifies Poor Outcome in Stent Retriever Thrombectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protto, Sara, E-mail: sara.protto@pshp.fi; Pienimäki, Juha-Pekka; Seppänen, Janne

    BackgroundMechanical thrombectomy (MT) is an efficient treatment of acute stroke caused by large-vessel occlusion. We evaluated the factors predicting poor clinical outcome (3-month modified Rankin Scale, mRS >2) although MT performed with modern stent retrievers.MethodsWe prospectively collected the clinical and imaging data of 105 consecutive anterior circulation stroke patients who underwent MT after multimodal CT imaging. Patients with occlusion of the internal carotid artery and/or middle cerebral artery up to the M2 segment were included. We recorded baseline clinical, procedural and imaging variables, technical outcome, 24-h imaging outcome and the clinical outcome. Differences between the groups were studied with appropriatemore » statistical tests and binary logistic regression analysis.ResultsLow cerebral blood volume Alberta stroke program early CT score (CBV-ASPECTS) was associated with poor clinical outcome (median 7 vs. 9, p = 0.01). Lower collateral score (CS) significantly predicted poor outcome in regression modelling with CS = 0 increasing the odds of poor outcome 4.4-fold compared to CS = 3 (95% CI 1.27–15.5, p = 0.02). Lower CBV-ASPECTS significantly predicted poor clinical outcome among those with moderate or severe stroke (OR 0.82, 95% CI 0.68–1, p = 0.05) or poor collateral circulation (CS 0–1, OR 0.66, 95% CI 0.48–0.90, p = 0.009) but not among those with mild strokes or good collaterals.ConclusionsCBV-ASPECTS estimating infarct core is a significant predictor of poor clinical outcome among anterior circulation stroke patients treated with MT, especially in the setting of poor collateral circulation and/or moderate or severe stroke.« less

  6. Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: a pilot randomized controlled trial.

    PubMed

    Fernandez-Gonzalo, Rodrigo; Fernandez-Gonzalo, Sol; Turon, Marc; Prieto, Cristina; Tesch, Per A; García-Carreira, Maria del Carmen

    2016-04-06

    Resistance exercise (RE) improves neuromuscular function and physical performance after stroke. Yet, the effects of RE emphasizing eccentric (ECC; lengthening) actions on muscle hypertrophy and cognitive function in stroke patients are currently unknown. Thus, this study explored the effects of ECC-overload RE training on skeletal muscle size and function, and cognitive performance in individuals with stroke. Thirty-two individuals with chronic stroke (≥6 months post-stroke) were randomly assigned into a training group (TG; n = 16) performing ECC-overload flywheel RE of the more-affected lower limb (12 weeks, 2 times/week; 4 sets of 7 maximal closed-chain knee extensions; <2 min of contractile activity per session) or a control group (CG; n = 16), maintaining daily routines. Before and after the intervention, quadriceps femoris volume, maximal force and power for each leg were assessed, and functional and dual task performance, and cognitive functions were measured. Quadriceps femoris volume of the more-affected leg increased by 9.4 % in TG. Muscle power of the more-affected, trained (48.2 %), and the less-affected, untrained limb (28.1 %) increased after training. TG showed enhanced balance (8.9 %), gait performance (10.6 %), dual-task performance, executive functions (working memory, verbal fluency tasks), attention, and speed of information processing. CG showed no changes. ECC-overload flywheel resistance exercise comprising 4 min of contractile activity per week offers a powerful aid to regain muscle mass and function, and functional performance in individuals with stroke. While the current intervention improved cognitive functions, the cause-effect relationship, if any, with the concomitant neuromuscular adaptations remains to be explored. Clinical Trials NCT02120846.

  7. Dysphagia Management in Acute and Sub-acute Stroke

    PubMed Central

    Vose, Alicia; Nonnenmacher, Jodi; Singer, Michele L.; González-Fernández, Marlís

    2014-01-01

    Swallowing dysfunction is common after stroke. More than 50% of the 665 thousand stroke survivors will experience dysphagia acutely of which approximately 80 thousand will experience persistent dysphagia at 6 months. The physiologic impairments that result in post-stroke dysphagia are varied. This review focuses primarily on well-established dysphagia treatments in the context of the physiologic impairments they treat. Traditional dysphagia therapies including volume and texture modifications, strategies such as chin tuck, head tilt, head turn, effortful swallow, supraglottic swallow, super-supraglottic swallow, Mendelsohn maneuver and exercises such as the Shaker exercise and Masako (tongue hold) maneuver are discussed. Other more recent treatment interventions are discussed in the context of the evidence available. PMID:26484001

  8. A higher body temperature is associated with haemorrhagic transformation in patients with acute stroke untreated with recombinant tissue-type plasminogen activator (rtPA).

    PubMed

    Leira, Rogelio; Sobrino, Tomás; Blanco, Miguel; Campos, Francisco; Rodríguez-Yáñez, Manuel; Castellanos, Mar; Moldes, Octavio; Millán, Mónica; Dávalos, Antoni; Castillo, José

    2012-02-01

    Higher body temperature is a prognostic factor of poor outcome in acute stroke. Our aim was to study the relationship between body temperature, HT (haemorrhagic transformation) and biomarkers of BBB (blood-brain barrier) damage in patients with acute ischaemic stroke untreated with rtPA (recombinant tissue-type plasminogen activator). We studied 229 patients with ischaemic stroke <12 h from symptom onset. Body temperature was determined at admission and every 6 h during the first 3 days. HT was evaluated according to ECASS II (second European Co-operative Acute Stroke Study) criteria in a multimodal MRI (magnetic resonance imaging) at 72 h. We found that 55 patients (34.1%) showed HT. HT was associated with cardioembolic stroke (64.2% against 23.0%; P<0.0001), higher body temperature during the first 24 h (36.9°C compared with 36.5°C; P<0.0001), more severe stroke [NIHSS (National Institutes of Health Stroke Scale) score, 14 (9-20) against 10 (7-15); P=0.002], and greater DWI (diffusion-weighted imaging) lesion volume at admission (23.2 cc compared with 13.2 cc; P<0.0001). Plasma MMP-9 (matrix metalloproteinase 9) (187.3 ng/ml compared with 44.2 ng/ml; P<0.0001) and cFn (cellular fibronectin) levels (16.3 μg/ml compared with 7.1 μg/ml; P=0.001) were higher in patients with HT. Body temperature within the first 24 h was independently associated with HT {OR (odds ratio), 7.3 [95% CI (confidence interval), 2.4-22.6]; P<0.0001} after adjustment for cardioembolic stroke subtype, baseline NIHSS score and DWI lesion volume. This effect remained unchanged after controlling for MMP-9 and cFn. In conclusion, high body temperature within the first 24 h after ischaemic stroke is a risk factor for HT in patients untreated with rtPA. This effect is independent of some biological signatures of BBB damage.

  9. Human Rehabilitation Techniques. Disability Analyses: Motor Disabilities. Volume II, Part A.

    ERIC Educational Resources Information Center

    Sigelman, C.; And Others

    Volume II, Section A of a six-volume final report (which covers the findings of a research project on policy and technology related to rehabilitation of disabled individuals) presents a review of literature on three types of motor disabilities--stroke, spinal cord injury, and cerebral palsy. Individual chapters on each disability cover the…

  10. Burst mode pumping: A new mechanism of drinking in mosquitoes

    DOE PAGES

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick; ...

    2018-03-20

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  11. Burst mode pumping: A new mechanism of drinking in mosquitoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  12. Effects of verapamil on left ventricular systolic and diastolic function in patients with hypertrophic cardiomyopathy: pressure-volume analysis with a nonimaging scintillation probe.

    PubMed

    Bonow, R O; Ostrow, H G; Rosing, D R; Cannon, R O; Lipson, L C; Maron, B J; Kent, K M; Bacharach, S L; Green, M V

    1983-11-01

    To investigate the effects of verapamil on left ventricular systolic and diastolic function in patients with hypertrophic cardiomyopathy, we studied 14 patients at catheterization with a nonimaging scintillation probe before and after serial intravenous infusions of low-, medium-, and high-dose verapamil (total dose 0.17 to 0.72 mg/kg). Percent change in radionuclide stroke counts after verapamil correlated well with percent change in thermodilution stroke volume (r = .87), and changes in diastolic and systolic counts were used to assess relative changes in left ventricular volumes after verapamil. Verapamil produced dose-related increases in end-diastolic counts (19 +/- 9% increase; p less than .001), end-systolic counts (91 +/- 54% increase; p less than .001), and stroke counts (7 +/- 10% increase; p less than .02). This was associated with a decrease in ejection fraction (83 +/- 8% control, 73 +/- 10% verapamil; p less than .001) and, in the 10 patients with left ventricular outflow tract gradients, a reduction in gradient (62 +/- 27 mm Hg control, 32 +/- 35 mm Hg verapamil; p less than .01). The end-systolic pressure-volume relation was shifted downward and rightward in all patients, suggesting a negative inotropic effect. In 10 patients, left ventricular pressure-volume loops were constructed with simultaneous micromanometer pressure recordings and the radionuclide time-activity curve. In five patients, verapamil shifted the diastolic pressure-volume curve downward and rightward, demonstrating improved pressure-volume relations despite the negative inotropic effect, and also increased the peak rate of rapid diastolic filling. In the other five patients, the diastolic pressure-volume relation was unaltered by verapamil, and increased end-diastolic volumes occurred at higher end-diastolic pressures; in these patients, the peak rate of left ventricular diastolic filling was not changed by verapamil. The negative inotropic effects of intravenous verapamil are potentially beneficial in patients with hypertrophic cardiomyopathy by decreasing left ventricular contractile function and increasing left ventricular volume. Verapamil also enhances left ventricular diastolic filling and improves diastolic pressure-volume relations in some patients despite its negative inotropic effect.

  13. Impedance cardiography: a comparison of cardiac output vs waveform analysis for assessing left ventricular systolic dysfunction.

    PubMed

    DeMarzo, Arthur P; Kelly, Russell F; Calvin, James E

    2007-01-01

    Early detection of asymptomatic left ventricular systolic dysfunction (LVSD) is beneficial in managing heart failure. Recent studies have cast doubt on the usefulness of cardiac output as an indicator of LVSD. In impedance cardiography (ICG), the dZ/dt waveform has a systolic wave called the E wave. This study looked at measurements of the amplitude and area of the E wave compared with ICG-derived cardiac output, stroke volume, cardiac index, and stroke index as methods of assessing LVSD. ICG data were obtained from patients (n=26) admitted to a coronary care unit. Clinical LVSD severity was stratified into 4 groups (none, mild, moderate, and severe) based on echocardiography data and standard clinical assessment by a cardiologist blinded to ICG data. Statistical analysis showed that the E wave amplitude and area were better indicators of the level of LVSD than cardiac output, stroke volume, cardiac index, or stroke index. ICG waveform analysis has potential as a simple point-of-care test for detecting LVSD in asymptomatic patients at high risk for developing heart failure and for monitoring LVSD in patients being treated for heart failure.

  14. Sex differences in ischemic stroke sensitivity are influenced by gonadal hormones, not by sex chromosome complement.

    PubMed

    Manwani, Bharti; Bentivegna, Kathryn; Benashski, Sharon E; Venna, Venugopal Reddy; Xu, Yan; Arnold, Arthur P; McCullough, Louise D

    2015-02-01

    Epidemiologic studies have shown sex differences in ischemic stroke. The four core genotype (FCG) mouse model, in which the testes determining gene, Sry, has been moved from Y chromosome to an autosome, was used to dissociate the effects of sex hormones from sex chromosome in ischemic stroke outcome. Middle cerebral artery occlusion (MCAO) in gonad intact FCG mice revealed that gonadal males (XXM and XYM) had significantly higher infarct volumes as compared with gonadal females (XXF and XYF). Serum testosterone levels were equivalent in adult XXM and XYM, as was serum estrogen in XXF and XYF mice. To remove the effects of gonadal hormones, gonadectomized FCG mice were subjected to MCAO. Gonadectomy significantly increased infarct volumes in females, while no change was seen in gonadectomized males, indicating that estrogen loss increases ischemic sensitivity. Estradiol supplementation in gonadectomized FCG mice rescued this phenotype. Interestingly, FCG male mice were less sensitive to effects of hormones. This may be due to enhanced expression of the transgene Sry in brains of FCG male mice. Sex differences in ischemic stroke sensitivity appear to be shaped by organizational and activational effects of sex hormones, rather than sex chromosomal complement.

  15. Effects of heart rate on experimentally produced mitral regurgitation in dogs.

    PubMed

    Yoran, C; Yellin, E L; Hori, M; Tsujioka, K; Laniado, S; Sonnenblick, E H; Frater, R W

    1983-12-01

    The effects of increasing heart rate (HR) on the hemodynamics of acute mitral regurgitation (MR) were studied in 8 open-chest dogs. Filling volume, regurgitant volume and stroke volume were calculated from electromagnetic probe measurements of mitral and aortic flows. The left atrial-left ventricular systolic pressure gradient was measured with micromanometers. The calculated effective mitral regurgitant orifice area varied from 10 to 128 mm2, with a consequent regurgitant fraction (regurgitant volume/filling volume) of 24 to 62%. After crushing the sinus node, HR was increased stepwise from 90 to 180 beats/min by atrial pacing while maintaining aortic pressure constant. With increasing HR, filling volume, stroke volume, regurgitant volume and regurgitant time decreased; total cardiac output, forward cardiac output, regurgitant output, systolic pressure gradient, regurgitant fraction and the regurgitant orifice did not change; left ventricular end-diastolic pressure decreased; and left atrial v-wave amplitude increased. These results indicate that in acute experimental MR with a wide spectrum of incompetence, the relative distribution of forward and regurgitant flows did not change with large increases in HR. At rates greater than 150 beats/min the atrial contraction occurs early and increases the amplitude of the left atrial v wave. This may contribute to the severity of pulmonary congestion in patients with MR.

  16. Initial body temperature in ischemic stroke: nonpotentiation of tissue-type plasminogen activator benefit and inverse association with severity.

    PubMed

    Kim, Seo Hyun; Saver, Jeffrey L

    2015-01-01

    Body temperature (BT) is an important physiological factor in acute ischemic stroke. However, the relationship of initial BT to stroke severity and degree of benefit from thrombolytic therapy has been delineated incompletely. We analyzed the public data set of the 2 National Institute of Neurological Disorders and Stroke Tissue-Type Plasminogen Activator (tPA) stroke trials, comparing patients with lower (<37.0°C) and higher (≥37.0°C) presenting BT. Among 595 patients (297 placebo and 298 tPA treated) with documented initial BT, 77.1% had initial BT <37.0°C and 22.9% ≥37.0°C. Patients with higher initial BT had lower baseline stroke severity in both tPA-treated patients (the National Institute of Health Stroke Scale median, 11 versus 15; P=0.05) and placebo-treated patients (median, 13 versus 16; P<0.01). Patients with higher initial BT also had lower infarction volume on computed tomography at 3 months in both tPA-treated patients (median, 9.6 versus 16.7 cm(3); P=0.08) and placebo-treated patients (median, 13.1 versus 28.1 cm(3); P=0.02), but no clinical outcome differences. Analysis of lytic treatment effect found no heterogeneity in the degree of tPA benefit in both higher and lower BT groups (≥37.0°C: odds ratio for the modified Rankin Scale 0-1 outcome, 2.55; 95% confidence interval, 1.05-6.21 and <37.0°C: odds ratio, 2.30; 95% confidence interval, 1.38-3.84; heterogeneity P=0.83). In patients with hyperacute stroke, higher presenting temperatures are associated with less severe neurological deficits and reduced final infarct volumes. Presenting temperature does not modify the benefit of tPA on 3-month favorable outcome. © 2014 American Heart Association, Inc.

  17. Outcomes after endovascular treatment for anterior circulation stroke presenting as wake-up strokes are not different than those with witnessed onset beyond 8 hours.

    PubMed

    Aghaebrahim, Amin; Leiva-Salinas, Carlos; Jadhav, Ashutosh P; Jankowitz, Brian; Zaidi, Syed; Jumaa, Mouhammad; Urra, Xabi; Amorim, Edilberto; Zhu, Guangming; Giurgiutiu, Dan-Victor; Horev, Anat; Reddy, Vivek; Hammer, Maxim; Wechsler, Lawrence; Wintermark, Max; Jovin, Tudor

    2015-12-01

    Previous studies have suggested that patients with wake-up stroke (WUS) may have superior outcomes compared with patients with a witnessed late time of onset after revascularization. We sought to test this hypothesis in patients with anterior circulation large vessel occlusion stroke (ACLVOS) treated with endovascular therapy beyond 8 h from time last seen well (TLSW). A single center retrospective review of a prospectively acquired database of consecutive patients was performed to identify patients presenting beyond 8 h of TLSW with radiographic evidence of ACLVOS, small core, and large penumbra who subsequently underwent endovascular treatment. We identified 206 patients. Patients were divided into two groups: (1) patients with WUS (38%, n=78) and (2) patients with witnessed onset beyond 8 h (62%, n=128). The groups were similar in age, baseline National Institutes of Health Stroke Scale score, TLSW to reperfusion, baseline infarct volume, and rate of successful recanalization. Rates of good outcome (modified Rankin Scale score of 0-2 at 90 days, 43% vs. 50%, p=0.3), parenchymal hematoma (9% vs. 5.5%, p=0.3), and final infarct volume (75.2 vs. 61.4 mL, p=0.6) were comparable. Multivariate analysis identified age (OR=0.95, 95% CI 0.91 to 0.99, p<0.042), successful recanalization (OR 6.0, 95% CI 1.5 to 23.5, p=0.009), and final infarct volume (OR 0.98, 95% CI 0.97 to 0.99, p<0.001) but not mode of presentation as predictors of favorable outcomes. Rates of good outcomes, parenchymal hematoma, and final infarct volumes following endovascular treatment may not be different in patients with WUS compared with patients with witnessed onset of symptoms beyond 8 h. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Physical Activity After Stroke Is Associated With Increased Interhemispheric Connectivity of the Dorsal Attention Network.

    PubMed

    Veldsman, Michele; Churilov, Leonid; Werden, Emilio; Li, Qi; Cumming, Toby; Brodtmann, Amy

    2017-02-01

    Attention is frequently impaired after stroke, and its impairment is associated with poor quality of life. Physical activity benefits attention in healthy populations and has also been associated with recovery after brain injury. We investigated the relationship between objectively measured daily physical activity, attention network connectivity, and attention task performance after stroke. We hypothesized that increased daily physical activity would be associated with improved attention network function. Stroke patients (n = 62; mean age = 67 years, SD = 12.6 years) and healthy controls (n = 27; mean age = 68 years, SD = 6 years) underwent cognitive testing and 7 minutes of functional magnetic resonance imaging in the resting-state. Patients were tested 3 months after ischemic stroke. Physical activity was monitored with an electronic armband worn for 7 days. Dorsal and ventral attention network function was examined using seed-based connectivity analyses. Greater daily physical activity was associated with increased interhemispheric connectivity of the superior parietal lobule in the dorsal attention network (DAN; P < .05, false discovery rate corrected). This relationship was not explained by stroke lesion volume. Importantly, stronger connectivity in this region was related to faster reaction time in 3 attention tasks, as revealed by robust linear regression. The relationship remained after adjusting for age, gray matter volume, and white matter hyperintensity load. Daily physical activity was associated with increased resting interhemispheric connectivity of the DAN. Increased connectivity was associated with faster attention performance, suggesting a cognitive correlate to increased network connectivity. Attentional modulation by physical activity represents a key focus for intervention studies.

  19. Prestroke physical activity is associated with good functional outcome and arterial recanalization after stroke due to a large vessel occlusion.

    PubMed

    Ricciardi, Ana Clara; López-Cancio, Elena; Pérez de la Ossa, Natalia; Sobrino, Tomás; Hernández-Pérez, María; Gomis, Meritxell; Munuera, Josep; Muñoz, Lucía; Dorado, Laura; Millán, Mónica; Dávalos, Antonio; Arenillas, Juan F

    2014-01-01

    Although multiple studies and meta-analyses have consistently suggested that regular physical activity (PhA) is associated with a decreased stroke risk and recurrence, there is limited data on the possible preconditioning effect of prestroke PhA on stroke severity and prognosis. We aimed to study the association of prestroke PhA with different outcome variables in patients with acute ischemic stroke due to an anterior large vessel occlusion. The Prestroke Physical Activity and Functional Recovery in Patients with Ischemic Stroke and Arterial Occlusion trial is an observational and longitudinal study that included consecutive patients with acute ischemic stroke admitted to a single tertiary stroke center. Main inclusion criteria were: anterior circulation ischemic stroke within 12 h from symptom onset; presence of a confirmed anterior large vessel occlusion, and functional independence previous to stroke. Prestroke PhA was evaluated with the International Physical Activity Questionnaire and categorized into mild, moderate and high levels by means of metabolic equivalent (MET) minutes per week thresholds. The primary outcome measure was good functional outcome at 3 months (modified Rankin scale ≤2). Secondary outcomes were severity of stroke at admission, complete early recanalization, early dramatic neurological improvement and final infarct volume. During the study period, 159 patients fulfilled the above criteria. The mean age was 68 years, 62% were men and the baseline NIHSS score was 17. Patients with high levels of prestroke PhA were younger, had more frequently distal occlusions and had lower levels of blood glucose and fibrinogen at admission. After multivariate analysis, a high level of prestroke PhA was associated with a good functional outcome at 3 months. Regarding secondary outcome variables and after adjustment for relevant factors, a high level of prestroke PhA was independently associated with milder stroke severity at admission, early dramatic improvement, early arterial recanalization after intravenous thrombolysis and lower final infarct volume. The beneficial association of prestroke PhA with stroke outcomes was already present with a cutoff point of 1,000 MET min/week, a level of PhA easily achieved by walking 1 h/day during 5 days or by doing a vigorous aerobic activity 1 h/day twice a week. Prestroke PhA is independently associated with favorable stroke outcomes after a large vessel occlusion. Future research on the underlying mechanisms is needed to understand this neuroprotective effect of PhA. © 2014 S. Karger AG, Basel.

  20. Simvastatin attenuates stroke-induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice

    PubMed Central

    Jin, Rong; Zhu, Xiaolei; Liu, Lin; Nanda, Anil; Granger, D Neil; Li, Guohong

    2013-01-01

    Background and Purpose Statins are widely used in the primary and secondary prevention of ischemic stroke, but their effects on stroke-induced immunodeppression and post-stroke infections are elusive. We investigated effects of simvastatin treatment on stroke-induced splenic atrophy and lung susceptibility to bacterial infection in acute experimental stroke in mice. Methods Ischemic stroke was induced by transient occlusion of middle cerebral artery (MCAO) followed by reperfusion. In some experiments, splenectomies were performed 2 weeks prior to MCAO. Animals were randomly assigned to sham and MCAO groups treated subcutaneously with vehicle or simvastatin (20 mg/kg/day). Brain infarction, neurological function, brain interferon-γ expression, splenic atrophy and apoptosis, and lung infection were examined. Results Simvastatin reduced stroke-induced spleen atrophy and splenic apoptosis via increased mitochrondrial anti-apoptotic Bcl-2 expression and decreased pro-apoptotic Bax translocation from cytosol into mitochondria. Splenectomy reduced brain interferon-γ (3d) and infarct size (5d) after stroke and these effects were reversed by adoptive transfer of splenocytes. Simvastatin inhibited brain interferon-γ (3d) and reduced infarct volume and neurological deficits (5d) after stroke, and these protective effects were observed not only in naïve stroke mice but also in splenectomied stroke mice adoptively transferred with splenocytes. Simvastatin also decreased the stroke-associated lung susceptibility to spontaneous bacterial infection. Conclusions Results provide the first direct experimental evidence that simvastatin ameliorates stroke-induced peripheral immunodepression by attenuating spleen atrophy and lung bacterial infection. These findings contribute to a better understanding of beneficial effects of statins in the treatment of stroke. PMID:23391769

  1. Stroke Volume During Concomitant Apnea and Exercise: Influence of Gravity and Venous Return

    NASA Astrophysics Data System (ADS)

    Hoffmann, Uwe; Drager, Tobias; Steegmanns, Ansgar; Koesterer, Thomas; Linnarsson, Dag

    2008-06-01

    The responses of the cardiovascular system to intensive exercise (hiP) and combined stimuli by hiP and breath-hold (hiP-BH) for 20 s were examined during changing gravity (parabolic flight) and constant gravity (1g). The basic response to microgravity (μg) during low-intensity exercise was an increase in cardiac output (CO) and stroke volume (SV) as a result of augmented venous return. When onset of hiP was superimposed, the initial augmentation of CO and SV were increased further. In contrast, when BH was added, the increases of CO and SV were slowed. We propose that this was due to a transient increase of the pulmonary blood volume with the combination of μg and BH at large lung volume, creating a temporary imbalance between right ventricular input and left ventricular output. In addition, the BH- induced relative bradycardia may have contributed to a prolongation of the right-to- left indirect ventricular interdependence.

  2. Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Zhang, Qiming

    2004-01-01

    An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.

  3. Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse.

    PubMed

    Ye, Xinchun; Shen, Tong; Hu, Jinxia; Zhang, Liang; Zhang, Yunshan; Bao, Lei; Cui, Chengcheng; Jin, Guoliang; Zan, Kun; Zhang, Zuohui; Yang, Xinxin; Shi, Hongjuan; Zu, Jie; Yu, Ming; Song, Chengjie; Wang, Yulan; Qi, Suhua; Cui, Guiyun

    2017-06-01

    Previous research has shown that Purinergic 2X7 receptor (P2X7R) and NLRP3 inflammasome contribute to the inflammatory activation. In this study, we investigated whether P2X7R/NLRP3 pathway is involved in the caspase-3 dependent neuronal apoptosis after ischemic stroke by using a focal cortex ischemic stroke model. The expressions of P2X7R, NLRP3 inflammsome components, and cleaved caspase-3 were significantly enhanced in the ischemic brain tissue after stroke. However, the expression of cleaved caspase-3 was significantly attenuated after treatment of stroke with P2X7R antagonist (BBG) or NLRP3 inhibitor (MCC950). The treatment also significantly reduced the infarction volume, neuronal apoptosis, and neurological impairment. In addition, in vitro data also support the hypothesis that P2X7R/NLRP3 pathway plays a vital role in caspase-3 dependent neuronal apoptosis after ischemic stroke. Further investigation of effective regulation of P2X7R and NLRP3 in stroke is warranted. Copyright © 2017. Published by Elsevier Inc.

  4. Differences in swallow physiology in patients with left and right hemispheric strokes.

    PubMed

    Wilmskoetter, Janina; Martin-Harris, Bonnie; Pearson, William G; Bonilha, Leonardo; Elm, Jordan J; Horn, Janet; Bonilha, Heather S

    2018-05-11

    We sought to determine the impact of lesion lateralization and lesion volume on swallow impairment on group-level by comparing patients with left and right hemisphere strokes and on patient-level by analyzing patients individually. We performed a retrospective, observational, cross-sectional study of 46 patients with unilateral (22 left, 24 right), acute, first-ever, ischemic strokes who received a diffusion weighted MRI (DW-MRI) and modified barium swallow study (MBSS) during their acute hospital stay. We determined lesion side on the DW-MRI and measured swallow physiology using the Modified Barium Swallow Impairment Profile (MBSImP™©), Penetration-Aspiration Scale (PAS), swallow timing, distance, area, and speed measures. We performed Pearson's Chi-Square and Wilcoxon Rank-Sum tests to compare patients with left and right hemisphere strokes, and Pearson or Spearman correlation, simple logistic regression, linear, and logistic multivariable regression modeling to assess the relationship between variables. At the group-level, there were no differences in MBSImP oral swallow impairment scores between patients with left and right hemisphere stroke. In adjusted analyses, patients with right hemisphere strokes showed significantly worse MBSImP pharyngeal total scores (p = 0.02), worse MBSImP component specific scores for laryngeal vestibular closure (Bonferroni adjusted alpha p ≤ 0.0029), and worse PAS scores (p = 0.03). Patients with right hemisphere strokes showed worse timing, distance, area, and speed measures. Lesion volume was significantly associated with MBSImP pharyngeal residue (p = 0.03) and pharyngeal total scores (p = 0.04). At the patient-level, 24% of patients (4 left, 7 right) showed opposite patterns of MBSImP oral and pharyngeal swallow impairment than seen at group-level. Our study showed differences in swallow physiology between patients with right and left unilateral strokes with patients with right hemisphere strokes showing worse pharyngeal impairment. Lesion lateralization seems to be a valuable marker for the severity of swallowing impairment at the group-level but less informative at the patient-level. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Nursing care for stroke patients: A survey of current practice in 11 European countries.

    PubMed

    Tulek, Zeliha; Poulsen, Ingrid; Gillis, Katrin; Jönsson, Ann-Cathrin

    2018-02-01

    To conduct a survey of the clinical nursing practice in European countries in accordance with the European Stroke Strategies 2006 and to examine to what extent the European Stroke Strategies have been implemented in stroke care nursing in Europe. Stroke is a leading cause of death and disability globally. Optimal organisation of interdisciplinary stroke care is expected to ameliorate outcome after stroke. Consequently, universal access to stroke care based on evidence-based guidelines is a priority. This study is a descriptive cross-sectional survey. A questionnaire comprising 61 questions based on the European Stroke Strategies and scientific evidence in nursing practice was distributed to representatives of the European Association of Neuroscience Nurses, who sent the questionnaire to nurses active in stroke care. The questionnaire covered the following areas of stroke care: organisation of stroke services, management of acute stroke and prevention including basic care and nursing, and secondary prevention. Ninety-two nurses in stroke care in 11 European countries participated in the survey. Within the first 48 hr after stroke onset, 95% monitor patients regularly, 94% start mobilisation after 24 hr when patients are stable, and 89% assess patients' ability to swallow. Change of position for immobile patients is followed by 73%, and postvoid residual urine volume is measured by 85%. Some aspects needed improvement, for example, staff education (70%), education for patients/families/carers (55%) and individual care plans in secondary prevention (62%). The participating European countries comply well with the European Stroke Strategies guidelines, particularly in the acute stroke care, but not all stroke units have reached optimal development in all aspects of stroke care nursing. Our study may provide clinical administrators and nurses in stroke care with information that may contribute to improved compliance with the European Stroke Strategies and evidence-based guidelines. © 2017 John Wiley & Sons Ltd.

  6. Mitochondrial Impairment in Cerebrovascular Endothelial Cells is Involved in the Correlation between Body Temperature and Stroke Severity

    PubMed Central

    Hu, Heng; Doll, Danielle N.; Sun, Jiahong; Lewis, Sara E.; Wimsatt, Jeffrey H.; Kessler, Matthew J.; Simpkins, James W.; Ren, Xuefang

    2016-01-01

    Stroke is the second leading cause of death worldwide. The prognostic influence of body temperature on acute stroke in patients has been recently reported; however, hypothermia has confounded experimental results in animal stroke models. This work aimed to investigate how body temperature could prognose stroke severity as well as reveal a possible mitochondrial mechanism in the association of body temperature and stroke severity. Lipopolysaccharide (LPS) compromises mitochondrial oxidative phosphorylation in cerebrovascular endothelial cells (CVECs) and worsens murine experimental stroke. In this study, we report that LPS (0.1 mg/kg) exacerbates stroke infarction and neurological deficits, in the mean time LPS causes temporary hypothermia in the hyperacute stage during 6 hours post-stroke. Lower body temperature is associated with worse infarction and higher neurological deficit score in the LPS-stroke study. However, warming of the LPS-stroke mice compromises animal survival. Furthermore, a high dose of LPS (2 mg/kg) worsens neurological deficits, but causes persistent severe hypothermia that conceals the LPS exacerbation of stroke infarction. Mitochondrial respiratory chain complex I inhibitor, rotenone, replicates the data profile of the LPS-stroke study. Moreover, we have confirmed that rotenone compromises mitochondrial oxidative phosphorylation in CVECs. Lastly, the pooled data analyses of a large sample size (n=353) demonstrate that stroke mice have lower body temperature compared to sham mice within 6 hours post-surgery; the body temperature is significantly correlated with stroke outcomes; linear regression shows that lower body temperature is significantly associated with higher neurological scores and larger infarct volume. We conclude that post-stroke body temperature predicts stroke severity and mitochondrial impairment in CVECs plays a pivotal role in this hypothermic response. These novel findings suggest that body temperature is prognostic for stroke severity in experimental stroke animal models and may have translational significance for clinical stroke patients - targeting endothelial mitochondria may be a clinically useful approach for stroke therapy. PMID:26816660

  7. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity

    NASA Technical Reports Server (NTRS)

    Verbanck, S.; Larsson, H.; Linnarsson, D.; Prisk, G. K.; West, J. B.; Paiva, M.

    1997-01-01

    In microgravity (microG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to microG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls (P < 0.001). There was a concomittant reduction in stroke volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P < 0.05) late in flight. These findings suggest that, despite increased pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to microG.

  8. A numerical study on bow shocks around the lightning return stroke channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Yi, Yun

    2015-03-15

    Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of themore » curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas.« less

  9. The two-stroke poppet valve engine. Part 2: Numerical investigations of intake and exhaust flow behaviour

    NASA Astrophysics Data System (ADS)

    Kamili Zahidi, M.; Razali Hanipah, M.

    2017-10-01

    A two-stroke poppet valve engine is developed to overcome the common problems in conventional two-stroke engine designs. However, replacing piston control port with poppet valve will resulted different flow behaviour. This paper presents the model and simulation result of three-dimensional (3D) port flow investigation of a two-stroke poppet valve engine. The objective of the investigation is to conduct a numerical investigation on port flow performance of two-stroke poppet valve engine and compare the results obtained from the experimental investigation. The model is to be used for the future numerical study of the engine. The volume flow rate results have been compared with the results obtained experimentally as presented in first part of this paper. The model has shown good agreement in terms of the flow rate at initial and final valve lifts but reduced by about 50% during half-lift region.

  10. Prediction of Stroke Subtype and Recanalization Using Susceptibility Vessel Sign on Susceptibility-Weighted Magnetic Resonance Imaging.

    PubMed

    Kang, Dong-Wan; Jeong, Han-Gil; Kim, Do Yeon; Yang, Wookjin; Lee, Seung-Hoon

    2017-06-01

    The susceptibility vessel sign (SVS) is a hypointense signal visualized because of the susceptibility effect of thrombi, sensitively detected on susceptibility-weighted magnetic resonance imaging. The relationship of SVS parameters with the stroke subtype and recanalization status after endovascular treatment remains uncertain. The data from 89 patients with acute stroke caused by anterior circulation infarcts who underwent susceptibility-weighted magnetic resonance imaging before endovascular treatment were examined. Independent reviewers, blinded to the stroke subtype and recanalization status, measured the SVS diameter, length, and estimated volume. The intra- and interrater agreements of the SVS parameters were assessed. The SVS was identified in 78% of the patients. SVS was more commonly associated with cardioembolism than with noncardioembolism ( P =0.01). The SVS diameter ( P <0.01) and length ( P =0.01) were larger in the cardioembolism group. The SVS diameter was larger in the recanalization group (thrombolysis in cerebral infarction ≥2b) than in the nonrecanalization group ( P =0.04). Multivariable analysis revealed that the SVS diameter was an independent predictor of cardioembolism (adjusted odds ratio, 1.97; 95% confidence interval, 1.34-2.90; P <0.01). There was no significant association between the SVS volume and the recanalization status (adjusted odds ratio, 1.003; 95% confidence interval, 0.999-1.006; P =0.12). The optimal cutoff value of the SVS diameter for the cardioembolism was 5.5 mm (sensitivity, 45.6%; specificity, 93.8%). Increased SVS diameter on susceptibility-weighted magnetic resonance imaging may predict cardioembolism. No clear association was found between SVS volume and endovascular recanalization. © 2017 The Authors.

  11. Impaired Cerebral Autoregulation Is Associated with Brain Atrophy and Worse Functional Status in Chronic Ischemic Stroke

    PubMed Central

    Aoi, Mikio C.; Hu, Kun; Lo, Men-Tzung; Selim, Magdy; Olufsen, Mette S.; Novak, Vera

    2012-01-01

    Dynamic cerebral autoregulation (dCA) is impaired following stroke. However, the relationship between dCA, brain atrophy, and functional outcomes following stroke remains unclear. In this study, we aimed to determine whether impairment of dCA is associated with atrophy in specific regions or globally, thereby affecting daily functions in stroke patients. We performed a retrospective analysis of 33 subjects with chronic infarctions in the middle cerebral artery territory, and 109 age-matched non-stroke subjects. dCA was assessed via the phase relationship between arterial blood pressure and cerebral blood flow velocity. Brain tissue volumes were quantified from MRI. Functional status was assessed by gait speed, instrumental activities of daily living (IADL), modified Rankin Scale, and NIH Stroke Score. Compared to the non-stroke group, stroke subjects showed degraded dCA bilaterally, and showed gray matter atrophy in the frontal, parietal and temporal lobes ipsilateral to infarct. In stroke subjects, better dCA was associated with less temporal lobe gray matter atrophy on the infracted side ( = 0.029), faster gait speed ( = 0.018) and lower IADL score (0.002). Our results indicate that better dynamic cerebral perfusion regulation is associated with less atrophy and better long-term functional status in older adults with chronic ischemic infarctions. PMID:23071639

  12. Glutamate oxaloacetate transaminase enables anaplerotic refilling of TCA cycle intermediates in stroke-affected brain

    PubMed Central

    Rink, Cameron; Gnyawali, Surya; Stewart, Richard; Teplitsky, Seth; Harris, Hallie; Roy, Sashwati; Sen, Chandan K.; Khanna, Savita

    2017-01-01

    Ischemic stroke results in excessive release of glutamate, which contributes to neuronal cell death. Here, we test the hypothesis that otherwise neurotoxic glutamate can be productively metabolized by glutamate oxaloacetate transaminase (GOT) to maintain cellular energetics and protect the brain from ischemic stroke injury. The GOT-dependent metabolism of glutamate was studied in primary neural cells and in stroke-affected C57-BL6 mice using magnetic resonance spectroscopy and GC-MS. Extracellular Glu sustained cell viability under hypoglycemic conditions and increased GOT-mediated metabolism in vitro. Correction of stroke-induced hypoxia using supplemental oxygen in vivo lowered Glu levels as measured by 1H magnetic resonance spectroscopy. GOT knockdown abrogated this effect and caused ATP loss in the stroke-affected brain. GOT overexpression increased anaplerotic refilling of tricarboxylic acid cycle intermediates in mouse brain during ischemic stroke. Furthermore, GOT overexpression not only reduced ischemic stroke lesion volume but also attenuated neurodegeneration and improved poststroke sensorimotor function. Taken together, our results show that GOT enables metabolism of otherwise neurotoxic extracellular Glu through a truncated tricarboxylic acid cycle under hypoglycemic conditions.—Rink, C., Gnyawali, S., Stewart, R., Teplitsky, S., Harris, H., Roy, S., Sen, C. K., Khanna, S. Glutamate oxaloacetate transaminase enables anaplerotic refilling of TCA cycle intermediates in stroke-affected brain. PMID:28096234

  13. Drift stabilizer for reciprocating free-piston devices

    DOEpatents

    Ward, William C.; Corey, John A.; Swift, Gregory W.

    2003-05-20

    A free-piston device has a stabilized piston drift. A piston having a frequency of reciprocation over a stroke length and with first and second sides facing first and second variable volumes, respectively, for containing a working fluid defining an acoustic wavelength at the frequency of reciprocation. A bypass tube waveguide connects the first and second variable volumes at all times during reciprocation of the piston. The waveguide has a relatively low impedance for steady flow and a relatively high impedance for oscillating flow at the frequency of reciprocation of the piston, so that steady flow returns fluid leakage from about the piston between the first and second volumes while oscillating flow is not diverted through the waveguide. Thus, net leakage about the piston is returned during each stroke of the piston while oscillating leakage is not allowed and pressure buildup on either the first or second side of the piston is avoided to provide a stable piston location.

  14. Epidemiologic features, risk factors, and outcome of sepsis in stroke patients treated on a neurologic intensive care unit.

    PubMed

    Berger, Benjamin; Gumbinger, Christoph; Steiner, Thorsten; Sykora, Marek

    2014-04-01

    Because of the immune-suppressive effect of cerebral damage, stroke patients are at high risk for infections. These might result in sepsis, which is the major contributor to intensive care unit (ICU) mortality. Although there are numerous studies on infections in stroke patients, the role of sepsis as a poststroke complication is unknown. We retrospectively analyzed incidence of and risk factors for sepsis acquisition as well as outcome parameters of 238 patients with ischemic or hemorrhagic strokes consecutively admitted to the neurologic ICU in a tertiary university hospital between January 1, 2009, and December 31, 2010. Basic demographic and clinical data including microbiological parameters as well as factors describing stroke severity (eg, lesion volume and National Institute of Health stroke scale score) were recorded and included into the analysis. The diagnosis of sepsis was based on the criteria of the German Sepsis Society. We identified 30 patients (12.6%) with sepsis within the first 7 days from stroke onset. The lungs were the most frequent source of infection (93.3%), and gram-positive organisms were dominating the microbiologic spectrum (52.4%). Comorbidities (chronic obstructive pulmonary disease and immunosuppressive disorders) and Simplified Acute Physiology Score II but none of the factors describing stroke severity were independent predictors of sepsis acquisition. Sepsis was associated with a significantly worse prognosis, leading to a 2-fold increased mortality rate during in-hospital care (36.7% vs 18.8%) and after 3 months (56.5% vs 28.5%), but only in the subgroup of supratentorial hemorrhages, it was an independent predictor of in-hospital and 3-month mortality. Other factors significantly associated with death in a multivariate analysis were chronic obstructive pulmonary disease, malignancies (in-hospital mortality only), and Simplified Acute Physiology Score II (3-month mortality only) for ischemia and heart failure (in-hospital mortality only), National Institute of Health stroke scale score (in-hospital mortality only), and stroke volume for hemorrhages, respectively. Sepsis seems to be a frequent complication of stroke patients requiring neurologic ICU treatment. Predictors of sepsis acquisition in our study were comorbidities and severity of deterioration of physiological status, but not stroke severity. A better understanding of risk factors is important for prevention and early recognition, whereas knowledge of outcome may help in prognosis prediction. Further studies are needed to clarify the optimal preventive treatment for these patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1997-01-01

    Maximal oxygen uptake (VO2max) is reduced in healthy individuals confined to bed rest, suggesting it is independent of any disease state. The magnitude of reduction in VO2max is dependent on duration of bed rest and the initial level of aerobic fitness (VO2max), but it appears to be independent of age or gender. Bed rest induces an elevated maximal heart rate which, in turn, is associated with decreased cardiac vagal tone, increased sympathetic catecholamine secretion, and greater cardiac beta-receptor sensitivity. Despite the elevation in heart rate, VO2max is reduced primarily from decreased maximal stroke volume and cardiac output. An elevated ejection fraction during exercise following bed rest suggests that the lower stroke volume is not caused by ventricular dysfunction but is primarily the result of decreased venous return associated with lower circulating blood volume, reduced central venous pressure, and higher venous compliance in the lower extremities. VO2max, stroke volume, and cardiac output are further compromised by exercise in the upright posture. The contribution of hypovolemia to reduced cardiac output during exercise following bed rest is supported by the close relationship between the relative magnitude (% delta) and time course of change in blood volume and VO2max during bed rest, and also by the fact that retention of plasma volume is associated with maintenance of VO2max after bed rest. Arteriovenous oxygen difference during maximal exercise is not altered by bed rest, suggesting that peripheral mechanisms may not contribute significantly to the decreased VO2max. However reduction in baseline and maximal muscle blood flow, red blood cell volume, and capillarization in working muscles represent peripheral mechanisms that may contribute to limited oxygen delivery and, subsequently, lowered VO2max. Thus, alterations in cardiac and vascular functions induced by prolonged confinement to bed rest contribute to diminution of maximal oxygen uptake and reserve capacity to perform physical work.

  16. Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise.

    PubMed

    Stöhr, Eric J; Stembridge, Mike; Shave, Rob; Samuel, T Jake; Stone, Keeron; Esformes, Joseph I

    2017-10-01

    To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist, and untwisting rate ("LV mechanics"). LV echocardiographic images were recorded in systole and diastole before, during and immediately after (7-12 s) double-leg press exercise at two intensities (30% and 60% of maximum strength, one-repetition maximum). Speckle tracking analysis generated LV strain, twist, and untwisting rate data. Additionally, beat-by-beat blood pressure was recorded and systemic vascular resistance (SVR) and LV wall stress were calculated. Responses in both exercise trials were statistically similar (P > 0.05). During effort, stroke volume decreased, whereas SVR and LV wall stress increased (P < 0.05). Immediately after effort, stroke volume returned to baseline, whereas SVR and wall stress decreased (P < 0.05). Similarly, acute exercise was accompanied by a significant decrease in systolic parameters of LV muscle mechanics (P < 0.05). However, diastolic parameters, including LV untwisting rate, were statistically unaltered (P > 0.05). Immediately after exercise, systolic LV mechanics returned to baseline levels (P < 0.05) but LV untwisting rate increased significantly (P < 0.05). A single, acute bout of double-leg press resistance exercise transiently reduces systolic LV mechanics, but increases diastolic mechanics after exercise, suggesting that resistance exercise has a differential impact on systolic and diastolic heart muscle function. The findings may explain why acute resistance exercise has been associated with reduced stroke volume but chronic exercise training may result in increased LV volumes.

  17. Reproductive age modulates the impact of focal ischemia on the forebrain as well as the effects of estrogen treatment in female rats

    PubMed Central

    Selvamani, Amutha; Sohrabji, Farida

    2009-01-01

    While human observational studies and animal studies report a neuroprotective role for estrogen therapy in stroke, the multicenter placebo-controlled Women's Health Initiative (WHI) study concluded that hormone therapy increased the risk for stroke in postmenopausal women. The present study therefore tested the hypothesis that estrogen replacement would increase the severity of a stroke-like injury in females when this replacement occurs after a prolonged hypoestrogenic period, such as the menopause or reproductive senescence, but not when given to females that were normally cycling immediately prior to the hormone replacement. Two groups of female rats were used: multiparous females with normal but lengthened estrus cycles (mature adults), and older multiparous females currently in a persistent acyclic state (reproductive senescent). Animals were either used intact, or were bilaterally ovariectomized and immediately replaced with a 17β-estradiol pellet or control pellet. Animals were subject to a forelimb placing test (a test for sensorimotor deficit) and thereafter to middle cerebral artery occlusion (MCAo) by stereotaxic injection of the vasoconstrictive peptide endothelin-1, adjacent to the MCA. One week after stroke, behavioral tests were performed again. Cortical and striatal infarct volume, measured from brain slices, was significantly greater in intact reproductive senescent females as compared to intact mature adults. Furthermore, estrogen treatment to ovariectomized mature adult females significantly reduced the cortical infarct volume. Paradoxically, estrogen treatment to ovariectomized reproductive senescent females significantly increased cortical and striatal infarct volumes as compared to control pellet replaced senescent females. Significant post-stroke behavioral deficit was observed in all groups on the side contralateral to the lesion, while senescent females also exhibited deficits on the ipsilateral side, in the cross-midline forelimb placement test. Using an animal model that approximates the natural ovarian aging process, these findings strongly support the hypothesis that the effectiveness of estrogen therapy in protecting brain health may depend critically on the time of initiation with respect to a female's reproductive status. PMID:18829137

  18. Generative statistical modeling of left atrial appendage appearance to substantiate clinical paradigms for stroke risk stratification

    NASA Astrophysics Data System (ADS)

    Sanatkhani, Soroosh; Menon, Prahlad G.

    2018-03-01

    Left atrial appendage (LAA) is the source of 91% of the thrombi in patients with atrial arrhythmias ( 2.3 million US adults), turning this region into a potential threat for stroke. LAA geometries have been clinically categorized into four appearance groups viz. Cauliflower, Cactus, Chicken-Wing and WindSock, based on visual appearance in 3D volume visualizations of contrast-enhanced computed tomography (CT) imaging, and have further been correlated with stroke risk by considering clinical mortality statistics. However, such classification from visual appearance is limited by human subjectivity and is not sophisticated enough to address all the characteristics of the geometries. Quantification of LAA geometry metrics can reveal a more repeatable and reliable estimate on the characteristics of the LAA which correspond with stasis risk, and in-turn cardioembolic risk. We present an approach to quantify the appearance of the LAA in patients in atrial fibrillation (AF) using a weighted set of baseline eigen-modes of LAA appearance variation, as a means to objectify classification of patient-specific LAAs into the four accepted clinical appearance groups. Clinical images of 16 patients (4 per LAA appearance category) with atrial fibrillation (AF) were identified and visualized as volume images. All the volume images were rigidly reoriented in order to be spatially co-registered, normalized in terms of intensity, resampled and finally reshaped appropriately to carry out principal component analysis (PCA), in order to parametrize the LAA region's appearance based on principal components (PCs/eigen mode) of greyscale appearance, generating 16 eigen-modes of appearance variation. Our pilot studies show that the most dominant LAA appearance (i.e. reconstructable using the fewest eigen-modes) resembles the Chicken-Wing class, which is known to have the lowest stroke risk per clinical mortality statistics. Our findings indicate the possibility that LAA geometries with high risk of stroke are higher-order statistical variants of underlying lower risk shapes.

  19. Genes from a translational analysis support a multifactorial nature of white matter hyperintensities.

    PubMed

    Lopez, Lorna M; Hill, W David; Harris, Sarah E; Valdes Hernandez, Maria; Munoz Maniega, Susana; Bastin, Mark E; Bailey, Emma; Smith, Colin; McBride, Martin; McClure, John; Graham, Delyth; Dominiczak, Anna; Yang, Qiong; Fornage, Myriam; Ikram, M Arfan; Debette, Stephanie; Launer, Lenore; Bis, Joshua C; Schmidt, Reinhold; Seshadri, Sudha; Porteous, David J; Starr, John; Deary, Ian J; Wardlaw, Joanna M

    2015-02-01

    White matter hyperintensities (WMH) of presumed vascular origin increase the risk of stroke and dementia. Despite strong WMH heritability, few gene associations have been identified. Relevant experimental models may be informative. We tested the associations between genes that were differentially expressed in brains of young spontaneously hypertensive stroke-prone rats and human WMH (using volume and visual score) in 621 subjects from the Lothian Birth Cohort 1936 (LBC1936). We then attempted replication in 9361 subjects from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE). We also tested the subjects from LBC1936 for previous genome-wide WMH associations found in subjects from CHARGE. Of 126 spontaneously hypertensive stroke-prone rat genes, 10 were nominally associated with WMH volume or score in subjects from LBC1936, of which 5 (AFP, ALB, GNAI1, RBM8a, and MRPL18) were associated with both WMH volume and score (P<0.05); 2 of the 10 (XPNPEP1, P=6.7×10(-5); FARP1, P=0.024) plus another spontaneously hypertensive stroke-prone rat gene (USMG5, P=0.00014), on chromosomes 10, 13, and 10 respectively, were associated with WMH in subjects from CHARGE. Gene set enrichment showed significant associations for downregulated spontaneously hypertensive stroke-prone rat genes with WMH in humans. In subjects from LBC1936, we replicated CHARGE's genome-wide WMH associations on chromosomes 17 (TRIM65 and TRIM47) and, for the first time, 1 (PMF1). Despite not passing multiple testing thresholds individually, these genes collectively are relevant to known WMH associations, proposed WMH mechanisms, or dementia: associations with Alzheimer's disease, late-life depression, ATP production, osmotic regulation, neurodevelopmental abnormalities, and cognitive impairment. If replicated further, they suggest a multifactorial nature for WMH and argue for more consideration of vascular contributions to dementia. © 2015 The Authors.

  20. Limitations of Stroke Volume Estimation by Non-Invasive Blood Pressure Monitoring in Hypergravity

    PubMed Central

    2015-01-01

    Background Altitude and gravity changes during aeromedical evacuations induce exacerbated cardiovascular responses in unstable patients. Non-invasive cardiac output monitoring is difficult to perform in this environment with limited access to the patient. We evaluated the feasibility and accuracy of stroke volume estimation by finger photoplethysmography (SVp) in hypergravity. Methods Finger arterial blood pressure (ABP) waveforms were recorded continuously in ten healthy subjects before, during and after exposure to +Gz accelerations in a human centrifuge. The protocol consisted of a 2-min and 8-min exposure up to +4 Gz. SVp was computed from ABP using Liljestrand, systolic area, and Windkessel algorithms, and compared with reference values measured by echocardiography (SVe) before and after the centrifuge runs. Results The ABP signal could be used in 83.3% of cases. After calibration with echocardiography, SVp changes did not differ from SVe and values were linearly correlated (p<0.001). The three algorithms gave comparable SVp. Reproducibility between SVp and SVe was the best with the systolic area algorithm (limits of agreement −20.5 and +38.3 ml). Conclusions Non-invasive ABP photoplethysmographic monitoring is an interesting technique to estimate relative stroke volume changes in moderate and sustained hypergravity. This method may aid physicians for aeronautic patient monitoring. PMID:25798613

  1. Muscle powered blood pump: design and initial test results.

    PubMed

    Trumble, D R; Magovern, J A

    1999-01-01

    A pneumatic ventricular assist device (Sarns/3M) has been redesigned for low volume hydraulic actuation to accommodate muscle powered drive systems. Design modifications include adding a bellows/piston mechanism (to compress the blood sac) and a compliance chamber for volume compensation. A simple prototype device was constructed to measure the efficacy of piston pump actuation and to validate pusher plate design. Device manufacture was affected by removing the drive line housing from the pneumatic pump and replacing it with a piston/bushing mechanism. A convex piston profile was chosen to maximize ejection fraction and minimize device size. Stroke volume was found to be a linear function of piston displacement (approximately 3 ml/mm) and reached a maximum value of 45 ml. Mean compression forces of 46-56 N acting during a 12 mm stroke (2.1 L/min at 60 cycles/min) were sufficient to generate mean afterload pressures of 70-110 mm Hg in a mock circulatory loop. Peak compression forces ranged from 72 to 86 N and work input was calculated to be 552-672 mJ/stroke. These data indicate that this method for delivering muscle power to the bloodstream is both mechanically viable and compatible with the functional capacity of conditioned latissimus dorsi muscle.

  2. Contributions of MSNA and stroke volume to orthostatic intolerance following bed rest

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    We examined whether the altered orthostatic tolerance following 14 days of head-down tilt bed rest (HDBR) was related to inadequate sympathetic outflow or to excessive reductions in cardiac output during a 10- to 15-min head-up tilt (HUT) test. Heart rate, blood pressure (BP, Finapres), muscle sympathetic nerve activity (MSNA, microneurography), and stroke volume blood velocity (SVV, Doppler ultrasound) were assessed during supine 30 degrees (5 min) and 60 degrees (5-10 min) HUT positions in 15 individuals who successfully completed the pre-HDBR test without evidence of orthostatic intolerance. Subjects were classified as being orthostatically tolerant (OT, n = 9) or intolerant (OI, n = 6) following the post-HDBR test. MSNA, BP, and SVV during supine and HUT postures were not altered in the OT group. Hypotension during 60 degrees HUT in the post-bed rest test for the OI group (P < 0.05) was associated with a blunted increase in MSNA (P < 0.05). SVV was reduced following HDBR in the OI group (main effect of HDBR, P < 0.02). The data support the hypothesis that bed rest-induced orthostatic intolerance is related to an inadequate increase in sympathetic discharge that cannot compensate for a greater postural reduction in stroke volume.

  3. Pilot study of intravenous glyburide in patients with a large ischemic stroke.

    PubMed

    Sheth, Kevin N; Kimberly, W Taylor; Elm, Jordan J; Kent, Thomas A; Mandava, Pitchaiah; Yoo, Albert J; Thomalla, Götz; Campbell, Bruce; Donnan, Geoffrey A; Davis, Stephen M; Albers, Gregory W; Jacobson, Sven; Simard, J Marc; Stern, Barney J

    2014-01-01

    Preclinical and retrospective clinical data indicate that glyburide, a selective inhibitor of sulfonylurea receptor 1-transient receptor potential melastatin 4, is effective in preventing edema and improving outcome after focal ischemia. We assessed the feasibility of recruiting and treating patients with severe stroke while obtaining preliminary information on the safety and tolerability of RP-1127 (glyburide for injection). We studied 10 patients with acute ischemic stroke, with baseline diffusion-weighted imaging lesion volumes of 82 to 210 cm3, whether treated with intravenous recombinant tissue-type plasminogen activator, age 18 to 80 years, and time to RP-1127≤10 hours. Recruitment was completed within 10 months. The mean age was 50.5 years, and baseline diffusion-weighted image lesion volume was 102±23 cm3. There were no serious adverse events related to drug and no symptomatic hypoglycemia. The increase in ipsilateral hemisphere volume was 50±33 cm3. The proportion of 90-day modified Rankin Scale≤4 was 90% (40% modified Rankin Scale, ≤3). RP-1127 at a dose of 3 mg/d was well tolerated and did not require any dose reductions. A clinical trial of RP-1127 is feasible. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01268683.

  4. Progesterone treatment for experimental stroke: an individual animal meta-analysis

    PubMed Central

    Wong, Raymond; Renton, Cheryl; Gibson, Claire L; Murphy, Stephanie J; Kendall, David A; Bath, Philip M W

    2013-01-01

    Preclinical studies suggest progesterone is neuroprotective after cerebral ischemia. The gold standard for assessing intervention effects across studies within and between subgroups is to use meta-analysis based on individual animal data (IAD). Preclinical studies of progesterone in experimental stroke were identified from searches of electronic databases and reference lists. Corresponding authors of papers of interest were contacted to obtain IAD and, if unavailable, summary data were obtained from the publication. Data are given as standardized mean differences (SMDs, continuous data) or odds ratios (binary data), with 95% confidence intervals (95% CIs). In an unadjusted analysis of IAD and summary data, progesterone reduced standardized lesion volume (SMD −0.766, 95% CI −1.173 to −0.358, P<0.001). Publication bias was apparent on visual inspection of a Begg's funnel plot on lesion volume and statistically using Egger's test (P=0.001). Using individual animal data alone, progesterone was associated with an increase in death in adjusted analysis (odds ratio 2.64, 95% CI 1.17 to 5.97, P=0.020). Although progesterone significantly reduced lesion volume, it also appeared to increase the incidence of death after experimental stroke, particularly in young ovariectomized female animals. Experimental studies must report the effect of interactions on death and on modifiers, such as age and sex. PMID:23838830

  5. Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of ERK activity in ovariectomized mice.

    PubMed

    Wang, Shiquan; Wei, Haidong; Cai, Min; Lu, Yan; Hou, Wugang; Yang, Qianzi; Dong, Hailong; Xiong, Lize

    2014-01-01

    Stroke has severe consequences in postmenopausal women. As replacement therapy of estrogen have various adverse effects and the undermined outcomes. Genistein, a natural phytoestrogen, has been suggested to be a potential neuroprotective agent for such stroke patients. However, the role of genistein and its underlying mechanism in ovariectomized mice has not yet been evaluated. In the present study, ovariectomized mice were treated with genistein (10 mg/kg) or vehicle daily for two weeks before developing transient cerebral ischemia (middle cerebral artery occlusion). The neurological manifestation was evaluated, and infarct volumes were demonstrated by 2,3,5-triphenyltetrazolium chloride staining at 24 h after reperfusion. In addition, phosphorylation of extracellular signal-regulated kinase (ERK) was detected by Western blotting and immunofluorescence staining, and cellular apoptosis was evaluated in the ischemic penumbra. We found that treatment with genistein reduced infarct volumes, improved neurological outcomes and attenuated cellular apoptosis at 24 h after reperfusion. ERK1/2 showed increased phosphorylation by genistein treatment after reperfusion, and an ERK1/2 inhibitor U0126 abolished this protective effect of genistein in terms of infarct volumes, neurological scores and cellular apoptosis. Our findings indicate that treatment with genistein can reduce the severity of subsequent stroke episodes, and that this beneficial function is associated with ERK activation.

  6. Chloride channels in stroke

    PubMed Central

    Zhang, Ya-ping; Zhang, Hao; Duan, Dayue Darrel

    2013-01-01

    Vascular remodeling of cerebral arterioles, including proliferation, migration, and apoptosis of vascular smooth muscle cells (VSMCs), is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain, ie, stroke. Accumulating evidence strongly supports an important role for chloride (Cl−) channels in vascular remodeling and stroke. At least three Cl− channel genes are expressed in VSMCs: 1) the TMEM16A (or Ano1), which may encode the calcium-activated Cl− channels (CACCs); 2) the CLC-3 Cl− channel and Cl−/H+ antiporter, which is closely related to the volume-regulated Cl− channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR), which encodes the PKA- and PKC-activated Cl− channels. Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization, vasoconstriction, and inhibition of VSMC proliferation. Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species, induces proliferation and inhibits apoptosis of VSMCs. Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension. In addition, Cl− current mediated by gamma-aminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death. This review focuses on the functional roles of Cl− channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Cl− channels as new targets for the prevention and treatment of stroke. PMID:23103617

  7. Anesthesia-Induced Hypothermia Attenuates Early-Phase Blood-Brain Barrier Disruption but Not Infarct Volume following Cerebral Ischemia.

    PubMed

    Liu, Yu-Cheng; Lee, Yu-Da; Wang, Hwai-Lee; Liao, Kate Hsiurong; Chen, Kuen-Bao; Poon, Kin-Shing; Pan, Yu-Ling; Lai, Ted Weita

    2017-01-01

    Blood-brain barrier (BBB) disruption is thought to facilitate the development of cerebral infarction after a stroke. In a typical stroke model (such as the one used in this study), the early phase of BBB disruption reaches a peak 6 h post-ischemia and largely recovers after 8-24 h, whereas the late phase of BBB disruption begins 48-58 h post-ischemia. Because cerebral infarct develops within 24 h after the onset of ischemia, and several therapeutic agents have been shown to reduce the infarct volume when administered at 6 h post-ischemia, we hypothesized that attenuating BBB disruption at its peak (6 h post-ischemia) can also decrease the infarct volume measured at 24 h. We used a mouse stroke model obtained by combining 120 min of distal middle cerebral arterial occlusion (dMCAo) with ipsilateral common carotid arterial occlusion (CCAo). This model produced the most reliable BBB disruption and cerebral infarction compared to other models characterized by a shorter duration of ischemia or obtained with dMCAO or CCAo alone. The BBB permeability was measured by quantifying Evans blue dye (EBD) extravasation, as this tracer has been shown to be more sensitive for the detection of early-phase BBB disruption compared to other intravascular tracers that are more appropriate for detecting late-phase BBB disruption. We showed that a 1 h-long treatment with isoflurane-anesthesia induced marked hypothermia and attenuated the peak of BBB disruption when administered 6 h after the onset of dMCAo/CCAo-induced ischemia. We also demonstrated that the inhibitory effect of isoflurane was hypothermia-dependent because the same treatment had no effect on ischemic BBB disruption when the mouse body temperature was maintained at 37°C. Importantly, inhibiting the peak of BBB disruption by hypothermia had no effect on the volume of brain infarct 24 h post-ischemia. In conclusion, inhibiting the peak of BBB disruption is not an effective neuroprotective strategy, especially in comparison to the inhibitors of the neuronal death signaling cascade; these, in fact, can attenuate the infarct volume measured at 24 h post-ischemia when administered at 6 h in our same stroke model.

  8. Neuroprotection by post-stroke administration of an oral formulation of angiotensin-(1-7) in ischaemic stroke.

    PubMed

    Bennion, Douglas M; Jones, Chad H; Donnangelo, Lauren L; Graham, Justin T; Isenberg, Jacob D; Dang, Alex N; Rodriguez, Vermali; Sinisterra, Ruben D M; Sousa, Frederico B; Santos, Robson A S; Sumners, Colin

    2018-06-01

    What is the central question of this study? Angiotensin-(1-7) decreases cerebral infarct volume and improves neurological function when delivered centrally before and during ischaemic stroke. Here, we assessed the neuroprotective effects of angiotensin-(1-7) when delivered orally post-stroke. What is the main finding and its importance? We show that oral delivery of angiotensin-(1-7) attenuates cerebral damage induced by middle cerebral artery occlusion in rats, without affecting blood pressure or cerebral blood flow. Importantly, these treatments begin post-stroke at times coincident with the treatment window for tissue plasminogen activator, providing supporting evidence for clinical translation of this new therapeutic strategy. As a target for stroke therapies, the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas [ACE2/Ang-(1-7)/Mas] axis of the renin-angiotensin system can be activated chronically to induce neuroprotective effects, in opposition to the deleterious effects of angiotensin II via its type 1 receptor. However, more clinically relevant treatment protocols with Ang-(1-7) that involve its systemic administration beginning after the onset of ischaemia have not been tested. In this study, we tested systemic post-stroke treatments using a molecule where Ang-(1-7) is included within hydroxypropyl-β-cyclodextrin [HPβCD-Ang-(1-7)] as an orally bioavailable treatment. In three separate protocols, HPβCD-Ang-(1-7) was administered orally to Sprague-Dawley rats after induction of ischaemic stroke by endothelin-1-induced middle cerebral artery occlusion: (i) to assess its effects on cerebral damage and behavioural deficits; (ii) to determine its effects on cardiovascular parameters; and (iii) to determine whether it altered cerebral blood flow. The results indicate that post-stroke oral administration of HPβCD-Ang-(1-7) resulted in 25% reductions in cerebral infarct volumes and improvement in neurological functions (P < 0.05), without inducing any alterations in blood pressure, heart rate or cerebral blood flow. In conclusion, Ang-(1-7) treatment using an oral formulation after the onset of ischaemia induces significant neuroprotection in stroke and might represent a viable approach for taking advantage of the protective ACE2/Ang-(1-7)/Mas axis in this disease. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  9. Evolution of ischemic damage and behavioural deficit over 6 months after MCAo in the rat: Selecting the optimal outcomes and statistical power for multi-centre preclinical trials

    PubMed Central

    Churilov, Leonid; Sidon, T. Kate; Aleksoska, Elena; Cox, Susan F.; Macleod, Malcolm R.; Howells, David W.

    2017-01-01

    Key disparities between the timing and methods of assessment in animal stroke studies and clinical trial may be part of the reason for the failure to translate promising findings. This study investigates the development of ischemic damage after thread occlusion MCAo in the rat, using histological and behavioural outcomes. Using the adhesive removal test we investigate the longevity of behavioural deficit after ischemic stroke in rats, and examine the practicality of using such measures as the primary outcome for future studies. Ischemic stroke was induced in 132 Spontaneously Hypertensive Rats which were assessed for behavioural and histological deficits at 1, 3, 7, 14, 21, 28 days, 12 and 24 weeks (n>11 per timepoint). The basic behavioural score confirmed induction of stroke, with deficits specific to stroke animals. Within 7 days, these deficits resolved in 50% of animals. The adhesive removal test revealed contralateral neglect for up to 6 months following stroke. Sample size calculations to facilitate the use of this test as the primary experimental outcome resulted in cohort sizes much larger than are the norm for experimental studies. Histological damage progressed from a necrotic infarct to a hypercellular area that cleared to leave a fluid filled cavity. Whilst absolute volume of damage changed over time, when corrected for changes in hemispheric volume, an equivalent area of damage was lost at all timepoints. Using behavioural measures at chronic timepoints presents significant challenges to the basic science community in terms of the large number of animals required and the practicalities associated with this. Multicentre preclinical randomised controlled trials as advocated by the MultiPART consortium may be the only practical way to deal with this issue. PMID:28182727

  10. Vessel Wall Enhancement and Blood-Cerebrospinal Fluid Barrier Disruption After Mechanical Thrombectomy in Acute Ischemic Stroke.

    PubMed

    Renú, Arturo; Laredo, Carlos; Lopez-Rueda, Antonio; Llull, Laura; Tudela, Raúl; San-Roman, Luis; Urra, Xabier; Blasco, Jordi; Macho, Juan; Oleaga, Laura; Chamorro, Angel; Amaro, Sergio

    2017-03-01

    Less than half of acute ischemic stroke patients treated with mechanical thrombectomy obtain permanent clinical benefits. Consequently, there is an urgent need to identify mechanisms implicated in the limited efficacy of early reperfusion. We evaluated the predictors and prognostic significance of vessel wall permeability impairment and its association with blood-cerebrospinal fluid barrier (BCSFB) disruption after acute stroke treated with thrombectomy. A prospective cohort of acute stroke patients treated with stent retrievers was analyzed. Vessel wall permeability impairment was identified as gadolinium vessel wall enhancement (GVE) in a 24- to 48-hour follow-up contrast-enhanced magnetic resonance imaging, and severe BCSFB disruption was defined as subarachnoid hemorrhage or gadolinium sulcal enhancement (present across >10 slices). Infarct volume was evaluated in follow-up magnetic resonance imaging, and clinical outcome was evaluated with the modified Rankin Scale at day 90. A total of 60 patients (median National Institutes of Health Stroke Scale score, 18) were analyzed, of whom 28 (47%) received intravenous alteplase before mechanical thrombectomy. Overall, 34 (57%) patients had GVE and 27 (45%) had severe BCSFB disruption. GVE was significantly associated with alteplase use before thrombectomy and with more stent retriever passes, along with the presence of severe BCSFB disruption. GVE was associated with poor clinical outcome, and both GVE and severe BCSFB disruption were associated with increased final infarct volume. These findings may support the clinical relevance of direct vessel damage and BCSFB disruption after acute stroke and reinforce the need for further improvements in reperfusion strategies. Further validation in larger cohorts of patients is warranted. © 2017 American Heart Association, Inc.

  11. Predicting Hemorrhagic Transformation of Acute Ischemic Stroke: Prospective Validation of the HeRS Score.

    PubMed

    Marsh, Elisabeth B; Llinas, Rafael H; Schneider, Andrea L C; Hillis, Argye E; Lawrence, Erin; Dziedzic, Peter; Gottesman, Rebecca F

    2016-01-01

    Hemorrhagic transformation (HT) increases the morbidity and mortality of ischemic stroke. Anticoagulation is often indicated in patients with atrial fibrillation, low ejection fraction, or mechanical valves who are hospitalized with acute stroke, but increases the risk of HT. Risk quantification would be useful. Prior studies have investigated risk of systemic hemorrhage in anticoagulated patients, but none looked specifically at HT. In our previously published work, age, infarct volume, and estimated glomerular filtration rate (eGFR) significantly predicted HT. We created the hemorrhage risk stratification (HeRS) score based on regression coefficients in multivariable modeling and now determine its validity in a prospectively followed inpatient cohort.A total of 241 consecutive patients presenting to 2 academic stroke centers with acute ischemic stroke and an indication for anticoagulation over a 2.75-year period were included. Neuroimaging was evaluated for infarct volume and HT. Hemorrhages were classified as symptomatic versus asymptomatic, and by severity. HeRS scores were calculated for each patient and compared to actual hemorrhage status using receiver operating curve analysis.Area under the curve (AUC) comparing predicted odds of hemorrhage (HeRS score) to actual hemorrhage status was 0.701. Serum glucose (P < 0.001), white blood cell count (P < 0.001), and warfarin use prior to admission (P = 0.002) were also associated with HT in the validation cohort. With these variables, AUC improved to 0.854. Anticoagulation did not significantly increase HT; but with higher intensity anticoagulation, hemorrhages were more likely to be symptomatic and more severe.The HeRS score is a valid predictor of HT in patients with ischemic stroke and indication for anticoagulation.

  12. Effect of Sex Differences on the Association Between Stroke Risk and Left Atrial Anatomy or Mechanics in Patients With Atrial Fibrillation.

    PubMed

    Yoshida, Kuniko; Obokata, Masaru; Kurosawa, Koji; Sorimachi, Hidemi; Kurabayashi, Masahiko; Negishi, Kazuaki

    2016-10-01

    Embolic stroke in atrial fibrillation is more prevalent in women than in men, yet the basis for this difference remains unclear. This study seeks to elucidate whether there are any sex differences in the relationships between stroke risk (CHADS 2 score, CHA 2 DS 2 -VASc score without a sex category, and estimated stroke rate) and left atrial (LA) anatomy or mechanics in patients with atrial fibrillation. LA emptying fraction and global peak atrial longitudinal strain were assessed in 414 subjects with paroxysmal or persistent atrial fibrillation (156 women and 258 men). Linear regression models with an interaction term were performed to test the effect of sex difference on associations between the embolic risk and LA function or anatomy. Sensitivity analyses were performed in 228 age, heart rate, and rhythm-matched subjects (114 women and men). Women were older and had larger LA volumes and lower LA mechanics than men. Significant negative association between the CHADS 2 score and LA emptying fraction was only demonstrated in women with a significant interaction between sexes. Similar significant interactions were found in global peak atrial longitudinal strain but not in LA volume. These findings were corroborated in the comparisons against CHA 2 DS 2 -VASc score without a sex category and the estimated stroke rate. Sensitivity analyses in the matched subgroup also confirmed the robustness of these sex differences in LA emptying fraction, but less so in global peak atrial longitudinal strain. Significant sex interactions on the association between global LA function and risk stratification schemes exist, which may be a reason for the higher prevalence of embolic stroke in women. © 2016 American Heart Association, Inc.

  13. Specific needs for telestroke networks for thrombolytic therapy in Japan.

    PubMed

    Imai, Takeshi; Sakurai, Kenzo; Hagiwara, Yuta; Mizukami, Heisuke; Hasegawa, Yasuhiro

    2014-01-01

    The concept of telestroke networks has been proposed to overcome regional disparities in stroke treatment. Such networks do not yet operate in Japan. We aimed to determine the specific needs for telestroke networks and to estimate the effects on the number of thrombolytic therapies. Five of the 47 Japanese prefectures with various population densities to estimate the nationwide effect of telestroke networks were selected. The questionnaire survey was administered at hospitals in these prefectures that are authorized to admit patients with acute stroke. Low-volume hospitals that annually treated fewer than 12 patients with acute stroke had never used tissue plasminogen activator (tPA). The number of days when telestroke support might have been needed varied depending on the size of the population aged 65 years or older within a 30-minute-driving-time area of a hospital and the annual number of patients treated within 3 hours of onset. The geographic information system analysis showed that .6%-8.3% of the population lived in areas where they could not reach a hospital for acute stroke treatment within 60 minutes. If 24/7 full telestroke support was introduced to the existing hospitals, 6.8-69.3 more patients could be treated by intravenous (IV) tPA annually. These numbers exceeded the estimated annual increases of .8-13.7 more patients if a drip-and-ship telestroke network was introduced into an underserved area outside the 60-minute-driving-time area. This study uncovered that many Japanese stroke hospitals, especially low-volume facilities located in rural areas, do not perform IV tPA therapy in 24/7 fashion and telestroke support to these hospitals may be highly effective compared with the drip-and-ship network in an underserved area. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. Cough-Associated Changes in CSF Flow in Chiari I Malformation Evaluated by Real-Time MRI.

    PubMed

    Bhadelia, R A; Patz, S; Heilman, C; Khatami, D; Kasper, E; Zhao, Y; Madan, N

    2016-05-01

    Invasive pressure studies have suggested that CSF flow across the foramen magnum may transiently decrease after coughing in patients with symptomatic Chiari I malformation. The purpose of this exploratory study was to demonstrate this phenomenon noninvasively by assessing CSF flow response to coughing in symptomatic patients with Chiari I malformation by using MR pencil beam imaging and to compare the response with that in healthy participants. Eight symptomatic patients with Chiari I malformation and 6 healthy participants were studied by using MR pencil beam imaging with a temporal resolution of ∼50 ms. Patients and healthy participants were scanned for 90 seconds (without cardiac gating) to continuously record cardiac cycle-related CSF flow waveforms in real-time during resting, coughing, and postcoughing periods. CSF flow waveform amplitude, CSF stroke volume, and CSF flow rate (CSF Flow Rate = CSF Stroke Volume × Heart Rate) in the resting and immediate postcoughing periods were determined and compared between patients and healthy participants. There was no significant difference in CSF flow waveform amplitude, CSF stroke volume, and the CSF flow rate between patients with Chiari I malformation and healthy participants during rest. However, immediately after coughing, a significant decrease in CSF flow waveform amplitude (P < .001), CSF stroke volume (P = .001), and CSF flow rate (P = .001) was observed in patients with Chiari I malformation but not in the healthy participants. Real-time MR imaging noninvasively showed a transient decrease in CSF flow across the foramen magnum after coughing in symptomatic patients with Chiari I malformation, a phenomenon not seen in healthy participants. Our results provide preliminary evidence that the physiology-based imaging method used here has the potential to be an objective clinical test to differentiate symptomatic from asymptomatic patients with Chiari I malformation. © 2016 by American Journal of Neuroradiology.

  15. Annual Research Progress Report. Fiscal Year 2003. Volume’s 1 and 2

    DTIC Science & Technology

    2003-01-01

    transient ischemic attack, amaurosis fugax or stroke in the cerebral distribution of the operated side, 3) the occurrence of criteria for reoperation...Functional Severity and Recovery of Motor Limbs in Acute Brain Injury KEYWORDS: Stroke /Diagnostic assessment. PRINCIPAL INVESTIGATOR: LTC...A Randomized Trial. (1/16/2001) 02-86002 655Knapik, Joseph, PhD DAC. Injury Control and Running Footwear. (3/12/2002) CHPPM 02-98001E

  16. Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

    PubMed

    Beretta, Simone; Versace, Alessandro; Carone, Davide; Riva, Matteo; Dell'Era, Valentina; Cuccione, Elisa; Cai, Ruiyao; Monza, Laura; Pirovano, Silvia; Padovano, Giada; Stiro, Fabio; Presotto, Luca; Paternò, Giovanni; Rossi, Emanuela; Giussani, Carlo; Sganzerla, Erik P; Ferrarese, Carlo

    2017-10-01

    Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm 3 absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.

  17. Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock.

    PubMed

    Kumar, Anand; Schupp, Elizabeth; Bunnell, Eugene; Ali, Amjad; Milcarek, Barry; Parrillo, Joseph E

    2008-01-01

    During septic shock, resistance to the haemodynamic effects of catecholamine vasopressors and inotropes is a well-recognised marker of mortality risk. However, the specific cardiovascular or metabolic response elements that are most closely associated with outcome have not been well defined. The objective of this study was to assess cardiovascular and metabolic responses to dobutamine as correlates of outcome in patients with severe sepsis or septic shock. A prospective, non-randomised, non-blinded interventional study of graded dobutamine challenge (0, 5, 10, and 15 mug/kg/min) in adult patients who had undergone pulmonary artery catheterisation within 48 hours of onset of severe sepsis or septic shock (8 survivors/15 non-survivors) was performed. Radionuclide cineangiography during graded infusion was used to determine biventricular ejection fractions at each increment of dobutamine. In univariate analysis, a variety of cardiovascular or haemodynamic and oxygen transport or metabolic variables (at the point of maximum cardiac index response for a given subject) were associated with survival including: increased stroke volume index (p = 0.0003); right ventricular end-diastolic volume index (p = 0.0047); left ventricular stroke work index (p = 0.0054); oxygen delivery index (p = 0.0084); cardiac index (p = 0.0093); systolic blood pressure/left ventricular end-systolic volume index ratio (p = 0.0188); left ventricular ejection fraction (p = 0.0160); venous oxygen content (p = 0.0208); mixed venous oxygen saturation (p = 0.0234); pulse pressure (p = 0.0403); decreased pulmonary artery diastolic pressure (p = 0.0133); systemic vascular resistance index (p = 0.0154); extraction ratio (p = 0.0160); and pulmonary vascular resistance index (p = 0.0390). Increases of stroke volume index of greater than or less than 8.5 mL/m2 were concordant with survival or death in 21 of 23 cases. Multivariate profile construction showed stroke volume index as the dominant discriminating variable for survival with the systolic blood pressure/left ventricular end-systolic volume index ratio alone among all other variables significantly improving the model. Survivors maintain cardiac responsiveness to catecholamine stimulation during septic shock. Survival from severe sepsis or septic shock is associated with increased cardiac performance and contractility indices during dobutamine infusion. Further studies are required to determine whether these parameters are predictive of outcome in a larger severe sepsis/septic shock population.

  18. The Therapeutic Potential of Induced Pluripotent Stem Cells After Stroke: Evidence from Rodent Models.

    PubMed

    Zents, Karlijn; Copray, Sjef

    2016-01-01

    Stroke is the second most common cause of death and the leading cause of disability in the world. About 30% of the people that are affected by stroke die within a year; 25% of the patients that survive stroke remain in need of care after a year. Therefore, stroke is a major burden for health care costs. The most common subtype is ischemic stroke. This type is characterized by a reduced and insufficient blood supply to a certain part of the brain. Despite the high prevalence of stroke, the currently used therapeutic interventions are limited. No therapies that aim to restore damaged neuronal tissue or to promote recovery are available nowadays. Transplantation of stem cell-derived cells has been investigated as a potential regenerative and protective treatment. Embryonic stem cell (ESC)-based cell therapy in rodent models of stroke has been shown to improve functional outcome. However, the clinical use of ESCs still raises ethical questions and implantation of ESC-derived cells requires continuous immunosuppression. The groundbreaking detection of induced pluripotent stem cells (iPSCs) has provided a most promising alternative. This mini-review summarizes current literature in which the potential use of iPSC-derived cells has been tested in rodent models of stroke. iPSC-based cell therapy has been demonstrated to improve motor function, decrease stroke volume, promote neurogenesis and angiogenesis and to exert immunomodulatory, anti-inflammatory effects in the brain of stroke-affected rodents.

  19. Non invasive evaluation of cardiomechanics in patients undergoing MitrClip procedure

    PubMed Central

    2013-01-01

    Background In the last recent years a new percutaneous procedure, the MitraClip, has been validated for the treatment of mitral regurgitation. MitraClip procedure is a promising alternative for patients unsuitable for surgery as it reduces the risk of death related to surgery ensuring a similar result. Few data are present in literature about the variation of hemodynamic parameters and ventricular coupling after Mitraclip implantation. Methods Hemodynamic data of 18 patients enrolled for MitraClip procedure were retrospectively reviewed and analyzed. Echocardiographic measurements were obtained the day before the procedure (T0) and 21 ± 3 days after the procedure (T1), including evaluation of Ejection Fraction, mitral valve regurgitation severity and mechanism, forward Stroke Volume, left atrial volume, estimated systolic pulmonary pressure, non invasive echocardiographic estimation of single beat ventricular elastance (Es(sb)), arterial elastance (Ea) measured as systolic pressure • 0.9/ Stroke Volume, ventricular arterial coupling (Ea/Es(sb) ratio). Data were expressed as median and interquartile range. Measures obtained before and after the procedure were compared using Wilcoxon non parametric test for paired samples. Results Mitraclip procedure was effective in reducing regurgitation. We observed an amelioration of echocardiographic parameters with a reduction of estimated systolic pulmonary pressure (45 to 37,5 p = 0,0002) and left atrial volume (110 to 93 p = 0,0001). Despite a few cases decreasing in ejection fraction (37 to 35 p = 0,035), the maintained ventricular arterial coupling after the procedure (P = 0,67) was associated with an increasing in forward stroke volume (60,3 to 78 p = 0,05). Conclusion MitraClip is effective in reducing mitral valve regurgitation and determines an amelioration of hemodynamic parameters with preservation of ventricular arterial coupling. PMID:23642140

  20. Left atrial appendage dimensions predict the risk of stroke/TIA in patients with atrial fibrillation.

    PubMed

    Beinart, Roy; Heist, E Kevin; Newell, John B; Holmvang, Godtfred; Ruskin, Jeremy N; Mansour, Moussa

    2011-01-01

    Risk of Stroke/TIA in Patients With Atrial Fibrillation. Most strokes in patients with atrial fibrillation (AF) arise from thrombus formation in left atrial appendage (LAA). Our aim was to identify LAA features associated with a higher stroke risk in patients with AF using magnetic resonance imaging and angiography (MRI/MRA). The study included 144 patients with nonvalvular AF who were not receiving warfarin and who underwent MRI/MRA prior to catheter ablation for AF. LAA volume, LAA depth, short and long axes of LAA neck, and numbers of lobes were measured. Of the 144 patients, 18 had a prior stroke or transient ischemic attack (TIA) (13 and 5, respectively). Compared with patients who had no history of stroke/TIA, these patients were older, had higher prevalence of hypertension and hyperlipidemia and had higher LAA volume (22.9 ± 9.6 cm(3) vs. 14.5 ± 7.1 cm(3) , P < 0.001). Their LAA depth (3.76 ± 0.9 cm vs. 3.21 ± 0.8 cm, P = 0.006) and the long and short axes of the LAA neck (3.12 ± 0.7 cm vs. 2.08 ± 0.7 cm, P < 0.001; 2.06 ± 0.5 cm vs. 1.37 ± 0.4 cm, P < 0.001, respectively) were larger. Using stepwise logistic regression model, the only statistically significant multivariable predictors of events were age (OR = 1.21 per year, 95% CI 1.06-1.38, P = 0.004), aspirin use (OR = 0.039, 95% CI 0.005-0.28, P = 0.001), and LAA neck dimensions (short axis × long axis) (OR = 3.59 per cm(2) , 95% CI 1.93-6.69, P < 0.001). LAA dimensions predict strokes/TIAs in patients with AF. LAA assessment by MRI/MRA can potentially be used as an adjunctive tool for risk stratification for embolic events in AF patients. © 2010 Wiley Periodicals, Inc.

  1. Variations in the intensive use of head CT for elderly patients with hemorrhagic stroke.

    PubMed

    Bekelis, Kimon; Fisher, Elliott S; Labropoulos, Nicos; Zhou, Weiping; Skinner, Jonathan

    2015-04-01

    To investigate the variability in head computed tomographic (CT) scanning in patients with hemorrhagic stroke in U.S. hospitals, its association with mortality, and the number of different physicians consulted. The study was approved by the Committee for the Protection of Human Subjects at Dartmouth College. A retrospective analysis of the Medicare fee-for-service claims data was performed for elderly patients admitted for hemorrhagic stroke in 2008-2009, with 1-year follow-up through 2010. Risk-adjusted primary outcome measures were mean number of head CT scans performed and high-intensity use of head CT (six or more head CT scans performed in the year after admission). We examined the association of high-intensity use of head CT with the number of different physicians consulted and mortality. A total of 53 272 patients (mean age, 79.6 years; 31 377 women [58.9%]) with hemorrhagic stroke were identified in the study period. The mean number of head CT scans conducted in the year after admission for stroke was 3.4; 8737 patients (16.4%) underwent six or more scans. Among the hospitals with the highest case volume (more than 50 patients with hemorrhagic stroke), risk-adjusted rates ranged from 8.0% to 48.1%. The correlation coefficient between number of physicians consulted and rates of high-intensity use of head CT was 0.522 (P < .01) for all hospitals and 0.50 (P < .01) for the highest-volume hospitals. No improvement in 1-year mortality was found for patients undergoing six or more head CT scans (odds ratio, 0.84; 95% confidence interval: 0.69, 1.02). High rates of head CT use for patients with hemorrhagic stroke are frequently observed, without an association with decreased mortality. A higher number of physicians consulted was associated with high-intensity use of head CT. © RSNA, 2014 Online supplemental material is available for this article.

  2. Lowering bronchoaspiration rate in an acute stroke unit by means of a 2 volume/3 texture dysphagia screening test with pulsioximetry.

    PubMed

    Cocho, D; Sagales, M; Cobo, M; Homs, I; Serra, J; Pou, M; Perez, G; Pujol, G; Tantinya, S; Bao, P; Aloy, A; Sabater, R; Gendre, J; Otermin, P

    During acute stroke, 30% of all patients present dysphagia and 50% of that subgroup will experience bronchoaspiration. Our aim was to compare mortality and bronchoaspiration rates associated with the water test compared to those associated with a 2 volume/3 texture test controlled with pulse oximetry (2v/3t-P test) in our stroke unit. Over a 5-year period, we performed a prospective analysis of all consecutive acute ischaemic stroke patients hospitalised in the Stroke Unit. Dysphagia was evaluated using the water test between 2008 and 2010 (group 0 or G0), and the 2v/3t-P test (group 1 or G1) between 2011 and 2012. We analysed demographic data, vascular risk factors, neurological deficit on the NIHSS, aetiological subtype according to TOAST criteria, clinical subtype according to the Oxfordshire classification, prevalence of dysphagia, percentage of patients with bronchoaspiration, and mortality. We examined 418 patients with acute stroke (G0=275, G1=143). There were significant differences between the 2 groups regarding the percentage of patients with TACI (17% in G0 vs. 29% in G1, P=.005) and median NIHSS score (4 points in G0 vs. 7 points in G1, P=.003). Since adopting the new swallowing test, we detected a non-significant increase in the percentage of dysphagia (22% in G0 vs. 25% in G1, P=.4), lower mortality (1.7% in G0 vs. 0.7% in G1, P=.3) and a significant decrease in the bronchoaspiration rate (6.2% in G0 vs. 2.1% in G1, P=.05). Compared to the water test used for dysphagia screening, the new 2v/3t-P test lowered bronchoaspiration rates in acute stroke patients. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Renal impairment in stroke patients: A comparison between the haemorrhagic and ischemic variants.

    PubMed

    Shrestha, Pratyush; Thapa, Shalima; Shrestha, Shikher; Lohani, Subash; Bk, Suresh; MacCormac, Oscar; Thapa, Lekhjung; Devkota, Upendra Prasad

    2017-01-01

    Background: Renal impairment is regularly seen in hospitalized stroke patients, affecting the outcome of patients, as well as causing difficulties in their management. A prospective cohort study was conducted to assess the trend of renal function in hospitalized ischemic and haemorrhagic stroke patients. The incidence of renal impairment in these subgroups, the contributing factors and the need for renal replacement in renal impaired patients was evaluated. Methods: Alternate day renal function testing was performed in hospitalized stroke patients. Estimated glomerular filtration rate (e-GFR) was calculated and the trend of renal function in the two stroke subgroups (haemorrhagic and ischemic) was assessed, with renal impairment defined as e-GFR < 60mL/ minute per 1.73m 2 . Results: Among 52 patients, 25 had haemorrhagic stroke (mean age 59.81 ± 14.67) and 27 had ischemic stroke (mean age 56.12 ± 13.08). The mean e-GFR (mL/minute per 1.732m 2 ) at admission in the haemorrhagic stroke subgroup was 64.79 ± 25.85 compared to 86.04 ± 26.09 in the ischemic stroke subgroup (p=0.005). Sixteen out of 25 (64%) patients in the haemorrhagic stroke subgroup and 9 out of 27 (33.3%) patients in the ischemic subgroup developed renal impairment (p=0.027). The location of the bleed (p=0.8), volume of hematoma (p=0.966) and surgical intervention (p=0.4) did not predispose the patients to renal impairment. One out of 16 patients with haemorrhagic stroke (who eventually died), and 2 out of 9 patients with ischemic stroke required renal replacement. Conclusion : Renal impairment is commonly seen in stroke patients, more so in patients who suffered haemorrhagic strokes.  The impairment, however, is transient and rarely requires renal replacement therapy.

  4. Stroke Location and Brain Function in an Embolic Rabbit Stroke Model

    PubMed Central

    Brown, Aliza T.; Skinner, Robert D.; Flores, Rene; Hennings, Leah; Borrelli, Michael J.; Lowery, John; Culp, William C.

    2010-01-01

    Purpose Current rabbit stroke models often depend on symptoms as endpoints for embolization and produce wide variation in location, size, and severity of strokes. To further refine our angiographic embolic stroke model we correlated localized infarctions to neurological deficits. Our goal is a rabbit model for long term studies of therapies after stroke. Materials and Methods New Zealand White rabbits (4–5 kg) (n=71) had selective internal carotid artery (ICA) angiography and a single clot was injected. At 24 hours neurological assessment scores (NAS) were measured on a 0=normal to 10=dead scale. Brains were removed and stained to identify stroke areas. All animals with single strokes, N=31, were analyzed by specific brain structure involvement and NAS values were correlated. Results Stroke incidence differed by location with cortex, subcortical, and basal ganglia regions highest. Distributions of middle cerebral artery (MCA) at 52% and anterior cerebral artery (ACA) at 29% were most commonly involved with largest stroke volumes in the ACA distribution. Brain stem and cerebellum strokes had disproportionately severe neurological deficits, scoring 2.25±1.0 vs. cortex (0.5±0.2), subcortical (1.3±0.4) and basal ganglia (0.5±0.3) all in the frontal or parietal regions on NAS (P≤0.02). Conclusions MCA and ACA distributions included 81% of strokes. These sites were relatively silent (potentially allowing longer term survival studies) while others in the posterior circulation produced disproportionately severe symptoms. Symptoms were not reliable indicators of stroke occurrence and other endpoints such as imaging may be required. These are important steps towards refinement of the rabbit stroke model. PMID:20417119

  5. Influence of statin therapy at time of stroke onset on functional outcome among patients with atrial fibrillation.

    PubMed

    Ko, Darae; Thigpen, Jonathan L; Otis, James A; Forster, Kristen; Henault, Lori; Quinn, Emily; Tripodis, Yorghos; Berger, Peter B; Limdi, Nita; Hylek, Elaine M

    2017-01-15

    Statin pretreatment has been associated with reduced infarct volume in nonlacunar strokes. The effect of statins on functional outcomes of strokes related to atrial fibrillation (AF) is unknown. We aimed to define the influence of prestroke statin use on functional outcome in AF. We assembled a cohort of consecutive ischemic stroke patients from 2006 to 2010. All patients underwent CT or MRI and were adjudicated by site investigators. AF was confirmed by electrocardiogram in 100% of patients. Site neurologists blinded to the study hypothesis affirmed the type of stroke and assessed the severity of disability at the time of hospital discharge. The frequency of death at 30-days was calculated. Ischemic stroke (n=1030) resulted in a severe neurological deficit or death (modified Rankin scale ≥4) at 30days in 711 patients (69%). Using multivariable logistic regression models adjusting for factors associated with statin treatment and factors associated with functional outcome, prestroke statin use was associated with a 32% reduction in frequency of severe stroke (odds ratio [OR], 0.68; 95% confidence interval [CI], 0.50-0.92; P=0.011). Other independent factors associated with severe stroke included older age, female sex, non-White race, diabetes mellitus, prior ischemic stroke, prior venous thromboembolism, and dementia. Ischemic strokes in AF are associated with high mortality and morbidity. Statin use at time of stroke onset among patients with AF was associated in this study with less severe stroke and warrant validation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Fluoxetine maintains a state of heightened responsiveness to motor training early after stroke in a mouse model

    PubMed Central

    Ng, Kwan; Gibson, Ellen M.; Hubbard, Robert; Yang, Juemin; Caffo, Brian; O’Brien, Richard; Krakauer, John W.; Zeiler, Steven R.

    2016-01-01

    Background and purpose Data from both humans and animal models suggest that most recovery from motor impairment occurs in a sensitive period that lasts only weeks after stroke and is mediated in part by an increased responsiveness to training. Here we used a mouse model of focal cortical stroke to test two hypotheses. First we investigated if responsiveness to training decreases over time after stroke. Second, we tested whether fluoxetine, which can influence synaptic plasticity and stroke recovery, can prolong the period over which large training-related gains can be elicited after stroke. Methods Mice were trained to perform a skilled prehension task to an asymptotic level of performance after which they underwent stroke induction in the caudal forelimb area (CFA). The mice were then retrained after a 1-day or 7-day delay with and without fluoxetine. Results Recovery of prehension after a CFA stroke was complete if training was initiated one day after stroke but incomplete if it was delayed by 7 days. In contrast, if fluoxetine was administered at 24 hours after stroke, then complete recovery of prehension was observed even with the 7-day training delay. Fluoxetine appeared to mediate its beneficial effect by reducing inhibitory interneuron expression in intact premotor cortex rather than through effects on infarct volume or cell death. Conclusions There is a gradient of diminishing responsiveness to motor training over the first week after stroke. Fluoxetine can overcome this gradient and maintain maximal levels of responsiveness to training even 7 days after stroke. PMID:26294676

  7. Fluoxetine Maintains a State of Heightened Responsiveness to Motor Training Early After Stroke in a Mouse Model.

    PubMed

    Ng, Kwan L; Gibson, Ellen M; Hubbard, Robert; Yang, Juemin; Caffo, Brian; O'Brien, Richard J; Krakauer, John W; Zeiler, Steven R

    2015-10-01

    Data from both humans and animal models suggest that most recovery from motor impairment after stroke occurs in a sensitive period that lasts only weeks and is mediated, in part, by an increased responsiveness to training. Here, we used a mouse model of focal cortical stroke to test 2 hypotheses. First, we investigated whether responsiveness to training decreases over time after stroke. Second, we tested whether fluoxetine, which can influence synaptic plasticity and stroke recovery, can prolong the period over which large training-related gains can be elicited after stroke. Mice were trained to perform a skilled prehension task to an asymptotic level of performance after which they underwent stroke induction in the caudal forelimb area. The mice were then retrained after a 1- or 7-day delay with and without fluoxetine. Recovery of prehension after a caudal forelimb area stroke was complete if training was initiated 1 day after stroke but incomplete if it was delayed by 7 days. In contrast, if fluoxetine was administered at 24 hours after stroke, then complete recovery of prehension was observed even with the 7-day training delay. Fluoxetine seemed to mediate its beneficial effect by reducing inhibitory interneuron expression in intact premotor cortex rather than through effects on infarct volume or cell death. There is a gradient of diminishing responsiveness to motor training over the first week after stroke. Fluoxetine can overcome this gradient and maintain maximal levels of responsiveness to training even 7 days after stroke. © 2015 American Heart Association, Inc.

  8. Alterations in left ventricular volumes induced by Valsalva manoeuvre

    NASA Technical Reports Server (NTRS)

    Brooker, J. Z.; Alderman, E. L.; Harrison, D. C.

    1974-01-01

    Five patients were studied with left ventriculography during different phases of the Valsalva manoeuvre. Small doses of contrast medium allowed adequate repetitive visualization of the left ventricle for volume calculation. During strain phase, the volume of the left ventricle decreased by nearly 50 per cent in each case, and stroke volume and cardiac output also dropped strikingly. Release of straining was attended by a sharp rebound of left ventricular volume to control levels, with a transient surge of increased cardiac output 42 per cent above that of the resting state.

  9. White Matter Injury in Ischemic Stroke

    PubMed Central

    Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong

    2017-01-01

    Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions. PMID:27090751

  10. Essential role of interleukin-6 in post-stroke angiogenesis

    PubMed Central

    Gertz, Karen; Kronenberg, Golo; Kälin, Roland E.; Baldinger, Tina; Werner, Christian; Balkaya, Mustafa; Eom, Gina D.; Hellmann-Regen, Julian; Kröber, Jan; Miller, Kelly R.; Lindauer, Ute; Laufs, Ulrich; Dirnagl, Ulrich; Heppner, Frank L.

    2012-01-01

    Ambivalent effects of interleukin-6 on the pathogenesis of ischaemic stroke have been reported. However, to date, the long-term actions of interleukin-6 after stroke have not been investigated. Here, we subjected interleukin-6 knockout (IL-6−/−) and wild-type control mice to mild brain ischaemia by 30-min filamentous middle cerebral artery occlusion/reperfusion. While ischaemic tissue damage was comparable at early time points, IL-6−/− mice showed significantly increased chronic lesion volumes as well as worse long-term functional outcome. In particular, IL-6−/− mice displayed an impaired angiogenic response to brain ischaemia with reduced numbers of newly generated endothelial cells and decreased density of perfused microvessels along with lower absolute regional cerebral blood flow and reduced vessel responsivity in ischaemic striatum at 4 weeks. Similarly, the early genomic activation of angiogenesis-related gene networks was strongly reduced and the ischaemia-induced signal transducer and activator of transcription 3 activation observed in wild-type mice was almost absent in IL-6−/− mice. In addition, systemic neoangiogenesis was impaired in IL-6−/− mice. Transplantation of interleukin-6 competent bone marrow into IL-6−/− mice (IL-6chi) did not rescue interleukin-6 messenger RNA expression or the early transcriptional activation of angiogenesis after stroke. Accordingly, chronic stroke outcome in IL-6chi mice recapitulated the major effects of interleukin-6 deficiency on post-stroke regeneration with significantly enhanced lesion volumes and reduced vessel densities. Additional in vitro experiments yielded complementary evidence, which showed that after stroke resident brain cells serve as the major source of interleukin-6 in a self-amplifying network. Treatment of primary cortical neurons, mixed glial cultures or immortalized brain endothelia with interleukin 6-induced robust interleukin-6 messenger RNA transcription in each case, whereas oxygen–glucose deprivation did not. However, oxygen–glucose deprivation of organotypic brain slices resulted in strong upregulation of interleukin-6 messenger RNA along with increased transcription of key angiogenesis-associated genes. In conclusion, interleukin-6 produced locally by resident brain cells promotes post-stroke angiogenesis and thereby affords long-term histological and functional protection. PMID:22492561

  11. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone

    PubMed Central

    Balseanu, Adrian Tudor; Buga, Ana-Maria; Catalin, Bogdan; Wagner, Daniel-Christoph; Boltze, Johannes; Zagrean, Ana-Maria; Reymann, Klaus; Schaebitz, Wolf; Popa-Wagner, Aurel

    2014-01-01

    Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilization and homing by the stem cell mobilizer granulocyte colony-stimulating factor (G-CSF). We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM-MSCs) in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 μg/kg) or in combination with a single dose (106 cells) of rat BM MSCs was administered intravenously to Sprague-Dawley rats at 6 h after transient occlusion (90 min) of the middle cerebral artery. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the “islet of regeneration.” However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time. PMID:25002846

  12. Comparison of Perfusion CT Software to Predict the Final Infarct Volume After Thrombectomy.

    PubMed

    Austein, Friederike; Riedel, Christian; Kerby, Tina; Meyne, Johannes; Binder, Andreas; Lindner, Thomas; Huhndorf, Monika; Wodarg, Fritz; Jansen, Olav

    2016-09-01

    Computed tomographic perfusion represents an interesting physiological imaging modality to select patients for reperfusion therapy in acute ischemic stroke. The purpose of our study was to determine the accuracy of different commercial perfusion CT software packages (Philips (A), Siemens (B), and RAPID (C)) to predict the final infarct volume (FIV) after mechanical thrombectomy. Single-institutional computed tomographic perfusion data from 147 mechanically recanalized acute ischemic stroke patients were postprocessed. Ischemic core and FIV were compared about thrombolysis in cerebral infarction (TICI) score and time interval to reperfusion. FIV was measured at follow-up imaging between days 1 and 8 after stroke. In 118 successfully recanalized patients (TICI 2b/3), a moderately to strongly positive correlation was observed between ischemic core and FIV. The highest accuracy and best correlation are shown in early and fully recanalized patients (Pearson r for A=0.42, B=0.64, and C=0.83; P<0.001). Bland-Altman plots and boxplots demonstrate smaller ranges in package C than in A and B. Significant differences were found between the packages about over- and underestimation of the ischemic core. Package A, compared with B and C, estimated more than twice as many patients with a malignant stroke profile (P<0.001). Package C best predicted hypoperfusion volume in nonsuccessfully recanalized patients. Our study demonstrates best accuracy and approximation between the results of a fully automated software (RAPID) and FIV, especially in early and fully recanalized patients. Furthermore, this software package overestimated the FIV to a significantly lower degree and estimated a malignant mismatch profile less often than other software. © 2016 American Heart Association, Inc.

  13. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  14. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  15. Haemodilution for acute ischaemic stroke

    PubMed Central

    Chang, Timothy S; Jensen, Matthew B

    2014-01-01

    Background Ischaemic stroke interrupts the flow of blood to part of the brain. Haemodilution is thought to improve the flow of blood to the affected areas of the brain and thus reduce infarct size. Objectives To assess the effects of haemodilution in acute ischaemic stroke. Search methods We searched the Cochrane Stroke Group Trials Register (February 2014), the Cochrane Central Register of Controlled Trials (Issue 1, 2014), MEDLINE (January 2008 to October 2013) and EMBASE (January 2008 to October 2013). We also searched trials registers, scanned reference lists and contacted authors. For the previous version of the review, the authors contacted manufacturers and investigators in the field. Selection criteria Randomised trials of haemodilution treatment in people with acute ischaemic stroke. We included only trials in which treatment was started within 72 hours of stroke onset. Data collection and analysis Two review authors assessed trial quality and one review author extracted the data. Main results We included 21 trials involving 4174 participants. Nine trials used a combination of venesection and plasma volume expander. Twelve trials used plasma volume expander alone. The plasma volume expander was plasma alone in one trial, dextran 40 in 12 trials, hydroxyethyl starch (HES) in five trials and albumin in three trials. Two trials tested haemodilution in combination with another therapy. Evaluation was blinded in 14 trials. Five trials probably included some participants with intracerebral haemorrhage. Haemodilution did not significantly reduce deaths within the first four weeks (risk ratio (RR) 1.10; 95% confidence interval (CI) 0.90 to 1.34). Similarly, haemodilution did not influence deaths within three to six months (RR 1.05; 95% CI 0.93 to 1.20), or death and dependency or institutionalisation (RR 0.96; 95% CI 0.85 to 1.07). The results were similar in confounded and unconfounded trials, and in trials of isovolaemic and hypervolaemic haemodilution. No statistically significant benefits were documented for any particular type of haemodiluting agents, but the statistical power to detect effects of HES was weak. Six trials reported venous thromboembolic events. There was a tendency towards reduction in deep venous thrombosis or pulmonary embolism or both at three to six months’ follow-up (RR 0.68; 95% CI 0.37 to 1.24). There was no statistically significant increased risk of serious cardiac events among haemodiluted participants. Authors’ conclusions The overall results of this review showed no clear evidence of benefit of haemodilution therapy for acute ischaemic stroke. These results are compatible with no persuasive beneficial evidence of haemodilution therapy for acute ischaemic stroke. This therapy has not been proven to improve survival or functional outcome. PMID:25159027

  16. Green and black tea consumption and risk of stroke: a meta-analysis.

    PubMed

    Arab, Lenore; Liu, Weiqing; Elashoff, David

    2009-05-01

    Experimental models of stroke provide consistent evidence of smaller stroke volumes in animals ingesting tea components or tea extracts. To assess whether a similar association of black or green tea consumption with reduced risk is evident in human populations, we sought to identify and summarize all human clinical and observational data on tea and stroke. We searched PubMed and Web of Science for all studies on stroke and tea consumption in humans with original data, including estimation or measurement of tea consumption and outcomes of fatal or nonfatal stroke. Data from 9 studies involving 4378 strokes among 194 965 individuals were pooled. The main outcome was the occurrence of fatal or nonfatal stroke. We tested for heterogeneity and calculated the summary effect estimate associated with consumption of >or=3 cups of tea (green or black) per day using random-effects and fixed-effects models for the homogeneous studies. Publication bias was also evaluated. Regardless of their country of origin, individuals consuming >or=3 cups of tea per day had a 21% lower risk of stroke than those consuming <1 cup per day (absolute risk reduction, 0.79; CI, 0.73 to 0.85). The proportion of heterogeneity not explained by chance alone was 23.8%. Although a randomized clinical trial would be necessary to confirm the effect, this meta-analysis suggests that daily consumption of either green or black tea equaling 3 cups per day could prevent the onset of ischemic stroke.

  17. Low Morbidity after Extracranial-Intracranial Bypass Operation. The Danish Extracranial-Intracranial Bypass Study: A Nationwide Survey.

    PubMed

    von Weitzel-Mudersbach, Paul; Andersen, Grethe; Rosenbaum, Sverre

    2018-06-07

    Patients with symptomatic atherosclerotic carotid artery occlusion (SACAO) have a high risk of a recurrent stroke. Extracranial-intracranial bypass (EC-IC bypass) has been shown not to improve outcome compared with medical treatment alone because long-term prevention of recurrent stroke in operated patients was offset by high perioperative stroke rates. We report our experience with EC-IC bypass operated at an experienced high-volume centre. We conducted a nationwide observational study of EC-IC bypass patients operated in the years 2007-2016 due to SACAO with ongoing clinical symptoms or progression on MRI and severe haemodynamic failure (SHF). Perioperative stroke and death within 30 days after the operation, ipsilateral stroke, bypass patency, transient ischaemic attack, and all-stroke events and deaths during long-term follow-up were registered prospectively. EC-IC bypass was performed in 48 patients with SHF and SACAO. The mean age was 64 (45-83) years. The mean follow-up was 3.6 years. The stroke rate after 30 days was 4.2%. No further ipsilateral strokes occurred during follow-up. Clinical symptoms arrested in all patients. Bypass patency rate was 94%. The perioperative stroke rate in EC-IC bypass operation, performed at a highly experienced centre, was low. During long-term follow-up, no ipsilateral stroke occurred. Consequently, EC-IC-bypass should still be considered for selected patients with SACAO, if operation can be carried out in experienced centres with low perioperative morbidity. © 2018 S. Karger AG, Basel.

  18. Relationship of patient volume and service concentration with outcome in geriatric rehabilitation.

    PubMed

    Holstege, Marije S; Zekveld, Ineke G; Caljouw, Monique A A; Peerenboom, Peter Bob; van Balen, Romke; Gussekloo, Jacobijn; Achterberg, Wilco P

    2013-10-01

    Although geriatric rehabilitation (GR) is beneficial for restoration of activities and participation after hospitalization of vulnerable older persons, little is known about the optimal organization of care of these postacute facilities. This study examines the relationship of patient volume and service concentration with successful GR (short length of stay and discharge home) in skilled nursing facilities (SNFs). A national multicenter retrospective cohort study. All patients indicated for GR in a Dutch SNF. Nurses filled out digital registration forms from patient records. Patients were studied in 3 predefined diagnostic groups: total joint replacement, traumatic injuries, and stroke. Facility characteristics were obtained by structured telephone interviews with facility managers. Volume was based on the number of discharges in a 3-month period and categorized in low-, medium-, and high-volume facilities. Concentration was defined at the organizational level in which the population consists of 80% or more of 1 or 2 diagnostic groups, with the prerequisite of having a minimum of 10 rehabilitation beds. From 88 facilities, 2269 GR patients (mean age 78.2 years [SD 9.7]; 68.2% female) were included. The median length of stay in the SNF was 45 days (interquartile range 23-81), 57% of the patients were discharged home, and 9.8% died during GR. Of patients with total joint replacement (n = 501), concentration was related to successful rehabilitation (odds ratio 5.7; 95% confidence interval 1.3-24.3; P = .020, adjusted for age and gender); this relationship was not found for patients with traumatic injuries or stroke. Volume showed no relation with successful rehabilitation in any of the 3 diagnostic groups. This study may indicate that concentration in an SNF, as a proxy for specialization, favors successful GR in total joint replacement. This relationship was not found for the traumatic injuries or stroke groups, or for volume. The relation on functional outcome in GR needs further investigation. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.

  19. MRI as a Translational Tool for the Study of Neonatal Stroke

    PubMed Central

    Dzietko, Mark; Wendland, Michael; Derugin, Nikita; Ferriero, Donna M.; Vexler, Zinaida S.

    2013-01-01

    More than half of neonatal stroke survivors have long-term sequelae, including seizures and neurological deficits. Although the immature brain has tremendous potential for recovery, mechanisms governing repair are essentially unexplored. We explored whether magnetic resonance imaging (MRI) early or late after transient middle cerebral arterial occlusion in 10-day-old (P10) rats can serve as an intermediate endpoint for long-term studies. Injured animals selected by diffusion-weighted MRI during middle cerebral arterial occlusion were scanned using T2-weighted MRI at P18 and P25 (injury volumes on MRI and histology were compared), or were subjected to contrast-enhanced MRI at P13 to characterize cerebral microcirculatory disturbances and blood-brain barrier leakage. Injury volume did not predict histological outcome at 2 weeks. Major reductions occurred by P18, with no further changes by P25. Cerebral perfusion was significantly reduced in the injured caudate but blood-brain barrier leakage was small. Therefore, conventional T2-weighted MRI performed during a subchronic injury phase predicts long-term histological outcome after experimental neonatal focal stroke. PMID:21670390

  20. Automated cerebral infarct volume measurement in follow-up noncontrast CT scans of patients with acute ischemic stroke.

    PubMed

    Boers, A M; Marquering, H A; Jochem, J J; Besselink, N J; Berkhemer, O A; van der Lugt, A; Beenen, L F; Majoie, C B

    2013-08-01

    Cerebral infarct volume as observed in follow-up CT is an important radiologic outcome measure of the effectiveness of treatment of patients with acute ischemic stroke. However, manual measurement of CIV is time-consuming and operator-dependent. The purpose of this study was to develop and evaluate a robust automated measurement of the CIV. The CIV in early follow-up CT images of 34 consecutive patients with acute ischemic stroke was segmented with an automated intensity-based region-growing algorithm, which includes partial volume effect correction near the skull, midline determination, and ventricle and hemorrhage exclusion. Two observers manually delineated the CIV. Interobserver variability of the manual assessments and the accuracy of the automated method were evaluated by using the Pearson correlation, Bland-Altman analysis, and Dice coefficients. The accuracy was defined as the correlation with the manual assessment as a reference standard. The Pearson correlation for the automated method compared with the reference standard was similar to the manual correlation (R = 0.98). The accuracy of the automated method was excellent with a mean difference of 0.5 mL with limits of agreement of -38.0-39.1 mL, which were more consistent than the interobserver variability of the 2 observers (-40.9-44.1 mL). However, the Dice coefficients were higher for the manual delineation. The automated method showed a strong correlation and accuracy with the manual reference measurement. This approach has the potential to become the standard in assessing the infarct volume as a secondary outcome measure for evaluating the effectiveness of treatment.

  1. Evidence for increased cardiac compliance during exposure to simulated microgravity

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Convertino, V. A.; Fanton, J. W.; Reister, C. A.; Gaffney, F. A.; Ludwig, D. A.; Krotov, V. P.; Trambovetsky, E. V.; Latham, R. D.

    1998-01-01

    We measured hemodynamic responses during 4 days of head-down tilt (HDT) and during graded lower body negative pressure (LBNP) in invasively instrumented rhesus monkeys to test the hypotheses that exposure to simulated microgravity increases cardiac compliance and that decreased stroke volume, cardiac output, and orthostatic tolerance are associated with reduced left ventricular peak dP/dt. Six monkeys underwent two 4-day (96 h) experimental conditions separated by 9 days of ambulatory activities in a crossover counterbalance design: 1) continuous exposure to 10 degrees HDT and 2) approximately 12-14 h per day of 80 degrees head-up tilt and 10-12 h supine (control condition). Each animal underwent measurements of central venous pressure (CVP), left ventricular and aortic pressures, stroke volume, esophageal pressure (EsP), plasma volume, alpha1- and beta1-adrenergic responsiveness, and tolerance to LBNP. HDT induced a hypovolemic and hypoadrenergic state with reduced LBNP tolerance compared with the control condition. Decreased LBNP tolerance with HDT was associated with reduced stroke volume, cardiac output, and peak dP/dt. Compared with the control condition, a 34% reduction in CVP (P = 0.010) and no change in left ventricular end-diastolic area during HDT was associated with increased ventricular compliance (P = 0.0053). Increased cardiac compliance could not be explained by reduced intrathoracic pressure since EsP was unaltered by HDT. Our data provide the first direct evidence that increased cardiac compliance was associated with headward fluid shifts similar to those induced by exposure to spaceflight and that reduced orthostatic tolerance was associated with lower cardiac contractility.

  2. Magnolol attenuates the inflammation and apoptosis through the activation of SIRT1 in experimental stroke rats.

    PubMed

    Kou, Dong-Quan; Jiang, Yan-Ling; Qin, Jia-Hua; Huang, Yin-Hui

    2017-08-01

    Silent information regulator 1 (SIRT1), a histone deacetylase, plays a protective role in ischemic brain injury. Previous studies have shown that magnolol has a beneficial effect on ischemic stroke; however, the role of SIRT1 in the protective effect of magnolol against cerebral ischemia has not been investigated. We used a middle cerebral artery occlusion model of stroke in rats. Before stroke induction, the rats received intraperitoneal injections of magnolol with or without the SIRT1 inhibitor, EX527. Brain water content, neurological score, and infarct volume were measured. Moreover, the levels of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured. Western blot analysis was performed to detect Ac-FOXO1, SIRT1, bax, and Bcl-2 expression. Magnolol exerted a beneficial effect on cerebral ischemia, as indicated by reduced brain edema, decreased infarct volume, and improved neurological score. Magnolol had an anti-inflammatory effect mediated by a decrease in the expression of IL-1β and TNF-α in the brain tissue. Additionally, magnolol down-regulated bax and Ac-FOXO1 expression and up-regulated Bcl-2 and SIRT1 expression. This effect of magnolol was abolished by EX527 treatment. In conclusion, our data clearly indicate that magnolol modulates brain injury caused by ischemic stroke by inhibiting inflammatory cytokines and apoptosis through SIRT1 activation. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Effects of Early Bedside Cycle Exercise on Intracranial Pressure and Systemic Hemodynamics in Critically Ill Patients in a Neurointensive Care Unit.

    PubMed

    Thelandersson, Anneli; Nellgård, Bengt; Ricksten, Sven-Erik; Cider, Åsa

    2016-12-01

    Physiotherapy is an important part of treatment after severe brain injuries and stroke, but its effect on intracranial and systemic hemodynamics is minimally investigated. Therefore, the aim of this study was to assess the effects of an early bedside cycle exercise on intracranial and systemic hemodynamics in critically ill patients when admitted to a neurointensive care unit (NICU). Twenty critically ill patients suffering from brain injuries or stroke were included in this study performed in the NICU at Sahlgrenska University Hospital. One early implemented exercise session was performed using a bedside cycle ergometer for 20 min. Intracranial and hemodynamic variables were measured two times before, three times during, and two times after the bedside cycling exercise. Analyzed variables were intracranial pressure (ICP), cerebral perfusion pressure (CPP), mean arterial blood pressure (MAP), heart rate (HR), peripheral oxygen saturation (SpO 2 ), cardiac output (CO), stroke volume (SV), and stroke volume variation (SVV). The cycling intervention was conducted within 7 ± 5 days after admission to the NICU. Cycle exercise increased MAP (p = 0.029) and SV (p = 0.003) significantly. After exercise CO, SV, MAP, and CPP decreased significantly, while no changes in HR, SVV, SpO 2 , or ICP were noted when compared to values obtained during exercise. There were no differences in data obtained before versus after exercise. Early implemented exercise with a bedside cycle ergometer, for patients with severe brain injuries or stroke when admitted to a NICU, is considered to be a clinically safe procedure.

  4. Ischemic Stroke Profile, Risk Factors, and Outcomes in India: The Indo-US Collaborative Stroke Project.

    PubMed

    Sylaja, P N; Pandian, Jeyaraj Durai; Kaul, Subhash; Srivastava, M V Padma; Khurana, Dheeraj; Schwamm, Lee H; Kesav, Praveen; Arora, Deepti; Pannu, Aman; Thankachan, Tijy K; Singhal, Aneesh B

    2018-01-01

    The Indo-US Collaborative Stroke Project was designed to characterize ischemic stroke across 5 high-volume academic tertiary hospitals in India. From January 2012 to August 2014, research coordinators and physician coinvestigators prospectively collected data on 2066 patients with ischemic stroke admitted <2 weeks after onset. Investigator training and supervision and data monitoring were conducted by the US site (Massachusetts General Hospital, Boston). The mean age was 58.3±14.7 years, 67.2% men. The median admission National Institutes of Health Stroke Scale score was 10 (interquartile range, 5-15) and 24.5% had National Institutes of Health Stroke Scale ≥16. Hypertension (60.8%), diabetes mellitus (35.7%), and tobacco use (32.2%, including bidi/smokeless tobacco) were common risk factors. Only 4% had atrial fibrillation. All patients underwent computed tomography or magnetic resonance imaging; 81% had cerebrovascular imaging. Stroke etiologic subtypes were large artery (29.9%), cardiac (24.9%), small artery (14.2%), other definite (3.4%), and undetermined (27.6%, including 6.7% with incomplete evaluation). Intravenous or intra-arterial thrombolysis was administered in 13%. In-hospital mortality was 7.9%, and 48% achieved modified Rankin Scale score 0 to 2 at 90 days. On multivariate analysis, diabetes mellitus predicted poor 3-month outcome and younger age, lower admission National Institutes of Health Stroke Scale and small-artery etiology predicted excellent 3-month outcome. These comprehensive and novel clinical imaging data will prove useful in refining stroke guidelines and advancing stroke care in India. © 2017 American Heart Association, Inc.

  5. Out-of-hospital stroke screen accuracy in a state with an emergency medical services protocol for routing patients to acute stroke centers.

    PubMed

    Asimos, Andrew W; Ward, Shana; Brice, Jane H; Rosamond, Wayne D; Goldstein, Larry B; Studnek, Jonathan

    2014-11-01

    Emergency medical services (EMS) protocols, which route patients with suspected stroke to stroke centers, rely on the use of accurate stroke screening criteria. Our goal is to conduct a statewide EMS agency evaluation of the accuracies of the Cincinnati Prehospital Stroke Scale (CPSS) and the Los Angeles Prehospital Stroke Screen (LAPSS) for identifying acute stroke patients. We conducted a retrospective study in North Carolina by linking a statewide EMS database to a hospital database, using validated deterministic matching. We compared EMS CPSS or LAPSS results (positive or negative) to the emergency department diagnosis International Classification of Diseases, Ninth Revision codes. We calculated sensitivity, specificity, and positive and negative likelihood ratios for the EMS diagnosis of stroke, using each screening tool. We included 1,217 CPSS patients and 1,225 LAPSS patients evaluated by 117 EMS agencies from 94 North Carolina counties. Most EMS agencies contributing data had high annual patient volumes and were governmental agencies with nonvolunteer, emergency medical technician-paramedic service level providers. The CPSS had a sensitivity of 80% (95% confidence interval [CI] 77% to 83%) versus 74% (95% CI 71% to 77%) for the LAPSS. Each had a specificity of 48% (CPSS 95% CI 44% to 52%; LAPSS 95% CI 43% to 53%). The CPSS and LAPSS had similar test characteristics, with each having only limited specificity. Development of stroke screening scales that optimize both sensitivity and specificity is required if these are to be used to determine transport diversion to acute stroke centers. Copyright © 2014. Published by Elsevier Inc.

  6. Cardiovascular effects of anti-G suit inflation at 1 and 2 G.

    PubMed

    Montmerle, Stéphanie; Linnarsson, Dag

    2005-06-01

    We sought to determine to which pressure a full-coverage anti-G suit needs to be inflated in order to obtain the same stroke volume during a brief exposure to twice the normal gravity (2 G) as that at 1 G without anti-G suit inflation. Nine sitting subjects were studied at normal (1 G) and during 20 s of exposure to 2 G. They wore anti-G suits, which were inflated at both G-levels to the following target pressures: 0, 70, 140 and 210 mmHg. Stroke volume was computed from cardiac output, which was measured by rebreathing. Heart rate and mean arterial pressure at heart level were recorded. Inflation to 70 mmHg compensated for the decrease in stroke volume and cardiac output caused by hypergravity. Mean arterial pressure at heart level was comparable at 1 G and at 2 G and increased gradually and similarly with inflation (P<0.001) at both gravity levels. Thus, anti-G suits act by increasing both preload and afterload but the two effects counteract each other in terms of cardiac output, so that cardiac output at 2 G is maintained at its 1 G level. This effect is reached already at 70 mmHg of inflation. Greater inflation pressure further increases mean arterial pressure at heart level and compensates for the increased difference in hydrostatic pressure between heart and head in moderate hypergravity.

  7. Stroke etiology and collaterals: atheroembolic strokes have greater collateral recruitment than cardioembolic strokes.

    PubMed

    Rebello, L C; Bouslama, M; Haussen, D C; Grossberg, J A; Dehkharghani, S; Anderson, A; Belagaje, S R; Bianchi, N A; Grigoryan, M; Frankel, M R; Nogueira, R G

    2017-06-01

    Chronic hypoperfusion from athero-stenotic lesions is thought to lead to better collateral recruitment compared to cardioembolic strokes. It was sought to compare collateral flow in stroke patients with atrial fibrillation (AF) versus stroke patients with cervical atherosclerotic steno-occlusive disease (CASOD). This was a retrospective review of a prospectively collected endovascular database. Patients with (i) anterior circulation large vessel occlusion stroke, (ii) pre-treatment computed tomography angiography (CTA) and (iii) intracranial embolism from AF or CASOD were included. CTA collateral patterns were evaluated and categorized into two groups: absent/poor collaterals (CTA collateral score 0-1) versus moderate/good collaterals (CTA collateral score 2-4). CT perfusion was also utilized for baseline core volume and evaluation of infarct growth. A total of 122 patients fitted the inclusion criteria, of whom 88 (72%) had AF and 34 (27%) CASOD. Patients with AF were older (P < 0.01) and less often males or smokers (P = 0.04 and P < 0.01 respectively). Baseline National Institutes of Health Stroke Scale and Alberta Stroke Program Early CT Score were comparable between groups. Collateral scores were lower in the AF group (P = 0.01) with patients having poor collaterals in 28% of cases versus 9% in the CASOD group (P = 0.03). Mortality rates (20% vs. 0%; P = 0.02) were higher in the AF patients whilst rates of any parenchymal hemorrhage (6% vs. 26%; P < 0.01) were higher in the CASOD group. On multivariable analysis, CASOD was an independent predictor of moderate/good collaterals (odds ratio 4.70; 95% confidence interval 1.17-18.79; P = 0.03). Atheroembolic strokes seem to be associated with better collateral flow compared to cardioembolic strokes. This may in part explain the worse outcomes of AF-related stroke. © 2017 EAN.

  8. Experimental stroke protection induced by 4-hydroxybenzyl alcohol is cancelled by bacitracin.

    PubMed

    Descamps, Elodie; Petrault-Laprais, Maud; Maurois, Pierre; Pages, Nicole; Bac, Pierre; Bordet, Régis; Vamecq, Joseph

    2009-06-01

    Induction of protein disulfide isomerase (PDI) is validated as a main mechanism by which 4-hydroxybenzyl alcohol (4-HBA), an active principle of Gastrodia elata Blume, reduces cerebral infarct volumes in a murine model of focal brain ischemia/reperfusion. In contrast to its position isomers, i.e. 3-hydroxybenzyl alcohol (3-HBA) and 2-hydroxybenzyl alcohol (2-HBA), and to aliphatic diols (1,4-butanediol and 1,5-pentanediol), 4-HBA administered intravenously at 25 mg/kg protected mice, significantly reducing total, cortical and sub-cortical infarct volumes by 42, 28 and 55%, respectively. All compounds, 4-HBA included, were devoid of antioedematous properties. Only the stroke protective 4-HBA, but neither 3-HBA nor 2-HBA, was capable of significantly inducing PDI in intact mouse brains. Stroke protection was fully prevented by bacitracin (500 mg/kg), a known inhibitor of PDI, which, without affecting basal brain PDI levels, altered the ability of 4-HBA to induce significantly PDI in intact brains. Taken as a whole, our data indicate that stroke protection induced by 4-HBA involves PDI as a key player, making this protein a valuable target to control brain injury disorders. The fact that 4-HBA, at doses up to 200mg/kg, was devoid of neurotoxicity in the rotarod test is also a decisive element to promote the neuroprotective use of this plant compound.

  9. Effects of posture on exercise performance - Measurement by systolic time intervals.

    NASA Technical Reports Server (NTRS)

    Spodick, D. H.; Quarry-Pigott, V. M.

    1973-01-01

    Because posture significantly influences cardiac performance, the effects of moderate supine and upright ergometer exercise were compared on the basis of proportional (+37%) rate increments over resting control. Supine exercise produced significant decreases in left ventricular ejection time (LVET), pre-ejection period (PEP), and isovolumic contraction time (IVCT). Ejection time index (ETI) and corrected ejection time (LVETc) did not change significantly. Upright exercise produced greater decreases in PEP and LVET, but despite the rate increase there was no change in LVET, which resulted in sharp increases in ETI and LVETc. The discordant directional effects on LVET and its rate-correcting indices between the two postures were consistent with hemodynamic studies demonstrating lack of stroke volume change during supine exercise and increased stroke volume over control during light to moderate upright exercise.

  10. Modeling Stroke in Mice: Permanent Coagulation of the Distal Middle Cerebral Artery

    PubMed Central

    Plesnila, Nikolaus; Veltkamp, Roland; Liesz, Arthur

    2014-01-01

    Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools. PMID:25145316

  11. Glyburide is associated with attenuated vasogenic edema in stroke patients.

    PubMed

    Kimberly, W Taylor; Battey, Thomas W K; Pham, Ly; Wu, Ona; Yoo, Albert J; Furie, Karen L; Singhal, Aneesh B; Elm, Jordan J; Stern, Barney J; Sheth, Kevin N

    2014-04-01

    Brain edema is a serious complication of ischemic stroke that can lead to secondary neurological deterioration and death. Glyburide is reported to prevent brain swelling in preclinical rodent models of ischemic stroke through inhibition of a non-selective channel composed of sulfonylurea receptor 1 and transient receptor potential cation channel subfamily M member 4. However, the relevance of this pathway to the development of cerebral edema in stroke patients is not known. Using a case-control design, we retrospectively assessed neuroimaging and blood markers of cytotoxic and vasogenic edema in subjects who were enrolled in the glyburide advantage in malignant edema and stroke-pilot (GAMES-Pilot) trial. We compared serial brain magnetic resonance images (MRIs) to a cohort with similar large volume infarctions. We also compared matrix metalloproteinase-9 (MMP-9) plasma level in large hemispheric stroke. We report that IV glyburide was associated with T2 fluid-attenuated inversion recovery signal intensity ratio on brain MRI, diminished the lesional water diffusivity between days 1 and 2 (pseudo-normalization), and reduced blood MMP-9 level. Several surrogate markers of vasogenic edema appear to be reduced in the setting of IV glyburide treatment in human stroke. Verification of these potential imaging and blood biomarkers is warranted in the context of a randomized, placebo-controlled trial.

  12. Association of Progression of Carotid Artery Wall Volume and Recurrent Transient Ischemic Attack or Stroke: A Magnetic Resonance Imaging Study.

    PubMed

    Lu, Mingming; Peng, Peng; Cui, Yuanyuan; Qiao, Huiyu; Li, Dongye; Cai, Jianming; Zhao, Xihai

    2018-03-01

    This study aimed to investigate the association between carotid plaque progression and subsequent recurrent events using magnetic resonance imaging. Sixty-three symptomatic patients with ipsilateral carotid atherosclerotic stenosis (30%-69% stenosis) determined by ultrasound underwent first and second carotid artery magnetic resonance imaging for carotid artery at baseline and ≥6 months after the first scan, respectively. All the patients had clinical follow-up after the second magnetic resonance scan for ≤5 years until the onset of recurrent transient ischemic attack or stroke. Presence/absence of carotid plaque compositional features, particularly intraplaque hemorrhage and fibrous cap rupture was identified. The annual progression of carotid wall volume between 2 magnetic resonance scans was measured. Univariate and multivariate Cox regression was used to calculate the hazard ratio and corresponding 95% confidence interval of carotid plaque features in discriminating recurrent events. Receiver-operating-characteristic-curve analysis was conducted to determine the area-under-the-curve of carotid plaque features in predicting recurrent events. Sixty-three patients (mean age: 66.5±10.0 years old; 54 males) were eligible for final statistics analysis. During a mean follow-up duration of 55.1±13.6 months, 14.3% of patients (n=9) experienced ipsilateral recurrent transient ischemic attack/stroke. The annual progression of carotid wall volume was significantly associated with recurrent events before (hazard ratio, 1.14 per 10 mm 3 ; 95% confidence interval, 1.02-1.27; P =0.019) and after (hazard ratio, 1.19 per 10 mm3; 95% confidence interval, 1.03-1.37; P =0.022) adjusted for confounding factors. In discriminating the recurrence of transient ischemia attack/stroke, receiver-operator curve analysis indicated that combined with annual progression of wall volume, there was a significant incremental improvement in the area-under-the-curve of intraplaque hemorrhage (area-under-the-curve: 0.69-0.81) and fibrous cap rupture (area-under-the-curve: 0.73-0.84). The annual progression of carotid wall volume is independently associated with recurrent ischemic cerebrovascular events, and this measurement has added value for intraplaque hemorrhage and fibrous cap rupture in predicting future events. © 2018 American Heart Association, Inc.

  13. Automatic classification of cardioembolic and arteriosclerotic ischemic strokes from apparent diffusion coefficient datasets using texture analysis and deep learning

    NASA Astrophysics Data System (ADS)

    Villafruela, Javier; Crites, Sebastian; Cheng, Bastian; Knaack, Christian; Thomalla, Götz; Menon, Bijoy K.; Forkert, Nils D.

    2017-03-01

    Stroke is a leading cause of death and disability in the western hemisphere. Acute ischemic strokes can be broadly classified based on the underlying cause into atherosclerotic strokes, cardioembolic strokes, small vessels disease, and stroke with other causes. The ability to determine the exact origin of an acute ischemic stroke is highly relevant for optimal treatment decision and preventing recurrent events. However, the differentiation of atherosclerotic and cardioembolic phenotypes can be especially challenging due to similar appearance and symptoms. The aim of this study was to develop and evaluate the feasibility of an image-based machine learning approach for discriminating between arteriosclerotic and cardioembolic acute ischemic strokes using 56 apparent diffusion coefficient (ADC) datasets from acute stroke patients. For this purpose, acute infarct lesions were semi-atomically segmented and 30,981 geometric and texture image features were extracted for each stroke volume. To improve the performance and accuracy, categorical Pearson's χ2 test was used to select the most informative features while removing redundant attributes. As a result, only 289 features were finally included for training of a deep multilayer feed-forward neural network without bootstrapping. The proposed method was evaluated using a leave-one-out cross validation scheme. The proposed classification method achieved an average area under receiver operator characteristic curve value of 0.93 and a classification accuracy of 94.64%. These first results suggest that the proposed image-based classification framework can support neurologists in clinical routine differentiating between atherosclerotic and cardioembolic phenotypes.

  14. A three-item scale for the early prediction of stroke recovery.

    PubMed

    Baird, A E; Dambrosia, J; Janket, S; Eichbaum, Q; Chaves, C; Silver, B; Barber, P A; Parsons, M; Darby, D; Davis, S; Caplan, L R; Edelman, R E; Warach, S

    2001-06-30

    Accurate assessment of prognosis in the first hours of stroke is desirable for best patient management. We aimed to assess whether the extent of ischaemic brain injury on magnetic reasonance diffusion-weighted imaging (MR DWI) could provide additional prognostic information to clinical factors. In a three-phase study we studied 66 patients from a North American teaching hospital who had: MR DWI within 36 h of stroke onset; the National Institutes of Health Stroke Scale (NIHSS) score measured at the time of scanning; and the Barthel Index measured no later than 3 months after stroke. We used logistic regression to derive a predictive model for good recovery. This logistic regression model was applied to an independent series of 63 patients from an Australian teaching hospital, and we then developed a three-item scale for the early prediction of stroke recovery. Combined measurements of the NIHSS score (p=0.01), time in hours from stroke onset to MR DWI (p=0.02), and the volume of ischaemic brain tissue on MR DWI (p=0.04) gave the best prediction of stroke recovery. The model was externally validated on the Australian sample with 0.77 sensitivity and 0.88 specificity. Three likelihood levels for stroke recovery-low (0-2), medium (3-4), and high (5-7)-were identified on the three-item scale. The combination of clinical and MR DWI factors provided better prediction of stroke recovery than any factor alone, shortly after admission to hospital. This information was incorporated into a three-item scale for clinical use.

  15. Cardiopulmonary Response to Exercise Testing in People with Chronic Stroke: A Retrospective Study

    PubMed Central

    Billinger, Sandra A.; Taylor, Jordan M.; Quaney, Barbara M.

    2012-01-01

    Background and Purpose. This study investigated the cardiopulmonary response and safety of exercise testing at peak effort in people during the chronic stage of stroke recovery. Methods. This retrospective study examined data from 62 individuals with chronic stroke (males: 32; mean (SD); age: (12.0) yr) participating in an exercise test. Results. Both males and females had low cardiorespiratory fitness levels. No significant differences were found between gender for peak HR (P = 0.27), or VO2 peak (P = 0.29). Males demonstrated higher values for minute ventilation, tidal volume, and respiratory exchange ratio. No major adverse events were observed in the exercise tests conducted. Discussion and Conclusion. There are differences between gender that may play a role in exercise testing performance and should be considered when developing exercise programs. The low VO2 peak of this cohort of chronic stroke survivors suggests the need for participation in exercise interventions. PMID:21961083

  16. Hospital Variation in Functional Recovery After Stroke.

    PubMed

    Bettger, Janet Prvu; Thomas, Laine; Liang, Li; Xian, Ying; Bushnell, Cheryl D; Saver, Jeffrey L; Fonarow, Gregg C; Peterson, Eric D

    2017-01-01

    Functional status is a key patient-centric outcome, but there are little data on whether functional recovery post-stroke varies among hospitals. This study examined the distribution of functional status 3 months after stroke, determined whether these outcomes vary among hospitals, and identified hospital characteristics associated with better (or worse) functional outcomes. Observational analysis of the AVAIL study (Adherence Evaluation After Ischemic Stroke-Longitudinal) included 2083 ischemic stroke patients enrolled from 82 US hospitals participating in Get With The Guidelines-Stroke and AVAIL. The primary outcome was dependence or death at 3 months (modified Rankin Scale [mRS] score of 3-6). Secondary outcomes included functional dependence (mRS score of 3-5), disabled (mRS score of 2-5), and mRS evaluated as a continuous score. By 3 months post-discharge, 36.5% of patients were functionally dependent or dead. Rates of dependence or death varied widely by discharging hospitals (range: 0%-67%). After risk adjustment, patients had lower rates of 3-month dependence or death when treated at teaching hospitals (odds ratio, 0.72; 95% confidence interval, 0.54-0.96) and certified primary stroke centers (odds ratio, 0.69; 95% confidence interval, 0.53-0.91). In contrast, a composite measure of hospital-level adherence to acute stroke care performance metrics, stroke volume, and bed size was not associated with downstream patient functional status. Findings were robust across mRS end points and sensitivity analyses. One third of acute ischemic stroke patients were functionally dependent or dead 3 months postacute stroke; functional recovery rates varied considerably among hospitals, supporting the need to better determine which care processes can maximize functional outcomes. © 2017 American Heart Association, Inc.

  17. Induction and imaging of photothrombotic stroke in conscious and freely moving rats

    NASA Astrophysics Data System (ADS)

    Lu, Hongyang; Li, Yao; Yuan, Lu; Li, Hangdao; Lu, Xiaodan; Tong, Shanbao

    2014-09-01

    In experimental stroke research, anesthesia is common and serves as a major reason for translational failure. Real-time cerebral blood flow (CBF) monitoring during stroke onset can provide important information for the prediction of brain injury; however, this is difficult to achieve in clinical practice due to various technical problems. We created a photothrombotic focal ischemic stroke model utilizing our self-developed miniature headstage in conscious and freely moving rats. In this model, a high spatiotemporal resolution imager using laser speckle contrast imaging technology was integrated to acquire real-time two-dimensional CBF information during thrombosis. The feasibility, stability, and reliability of the system were tested in terms of CBF, behavior, and T2-weighted magnetic resonance imaging (MRI) findings. After completion of occlusion, the CBF in the targeted cortex of the stroke group was reduced to 16±9% of the baseline value. The mean infarct volume measured by MRI 24 h postmodeling was 77±11 mm3 and correlated well with CBF (R2=0.74). This rodent model of focal cerebral ischemia and real-time blood flow imaging opens the possibility of performing various fundamental and translational studies on stroke without the influence of anesthetics.

  18. Identification of Isoxsuprine Hydrochloride as a Neuroprotectant in Ischemic Stroke through Cell-Based High-Throughput Screening

    PubMed Central

    Hill, Jeff W.; Thompson, Jeffrey F.; Carter, Mark B.; Edwards, Bruce S.; Sklar, Larry A.; Rosenberg, Gary A.

    2014-01-01

    Stroke is a leading cause of death and disability and treatment options are limited. A promising approach to accelerate the development of new therapeutics is the use of high-throughput screening of chemical libraries. Using a cell-based high-throughput oxygen-glucose deprivation (OGD) model, we evaluated 1,200 small molecules for repurposed application in stroke therapy. Isoxsuprine hydrochloride was identified as a potent neuroprotective compound in primary neurons exposed to OGD. Isoxsuprine, a β2-adrenergic agonist and NR2B subtype-selective N-methyl-D-aspartate (NMDA) receptor antagonist, demonstrated no loss of efficacy when administered up to an hour after reoxygenation in an in vitro stroke model. In an animal model of transient focal ischemia, isoxsuprine significantly reduced infarct volume compared to vehicle (137±18 mm3 versus 279±25 mm3, p<0.001). Isoxsuprine, a peripheral vasodilator, was FDA approved for the treatment of cerebrovascular insufficiency and peripheral vascular disease. Our demonstration of the significant and novel neuroprotective action of isoxsuprine hydrochloride in an in vivo stroke model and its history of human use suggest that isoxsuprine may be an ideal candidate for further investigation as a potential stroke therapeutic. PMID:24804769

  19. Time-Dependent Computed Tomographic Perfusion Thresholds for Patients With Acute Ischemic Stroke.

    PubMed

    d'Esterre, Christopher D; Boesen, Mari E; Ahn, Seong Hwan; Pordeli, Pooneh; Najm, Mohamed; Minhas, Priyanka; Davari, Paniz; Fainardi, Enrico; Rubiera, Marta; Khaw, Alexander V; Zini, Andrea; Frayne, Richard; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Forkert, Nils D; Goyal, Mayank; Lee, Ting Y; Menon, Bijoy K

    2015-12-01

    Among patients with acute ischemic stroke, we determine computed tomographic perfusion (CTP) thresholds associated with follow-up infarction at different stroke onset-to-CTP and CTP-to-reperfusion times. Acute ischemic stroke patients with occlusion on computed tomographic angiography were acutely imaged with CTP. Noncontrast computed tomography and magnectic resonance diffusion-weighted imaging between 24 and 48 hours were used to delineate follow-up infarction. Reperfusion was assessed on conventional angiogram or 4-hour repeat computed tomographic angiography. Tmax, cerebral blood flow, and cerebral blood volume derived from delay-insensitive CTP postprocessing were analyzed using receiver-operator characteristic curves to derive optimal thresholds for combined patient data (pooled analysis) and individual patients (patient-level analysis) based on time from stroke onset-to-CTP and CTP-to-reperfusion. One-way ANOVA and locally weighted scatterplot smoothing regression was used to test whether the derived optimal CTP thresholds were different by time. One hundred and thirty-two patients were included. Tmax thresholds of >16.2 and >15.8 s and absolute cerebral blood flow thresholds of <8.9 and <7.4 mL·min(-1)·100 g(-1) were associated with infarct if reperfused <90 min from CTP with onset <180 min. The discriminative ability of cerebral blood volume was modest. No statistically significant relationship was noted between stroke onset-to-CTP time and the optimal CTP thresholds for all parameters based on discrete or continuous time analysis (P>0.05). A statistically significant relationship existed between CTP-to-reperfusion time and the optimal thresholds for cerebral blood flow (P<0.001; r=0.59 and 0.77 for gray and white matter, respectively) and Tmax (P<0.001; r=-0.68 and -0.60 for gray and white matter, respectively) parameters. Optimal CTP thresholds associated with follow-up infarction depend on time from imaging to reperfusion. © 2015 American Heart Association, Inc.

  20. Hyperintense Vessels on T2-PROPELLER-FLAIR in Patients with Acute MCA Stroke: Prediction of Arterial Stenosis and Perfusion Abnormality.

    PubMed

    Ahn, S J; Suh, S H; Lee, K-Y; Kim, J H; Seo, K-D; Lee, S

    2015-11-01

    Fluid-attenuated inversion recovery hyperintense vessels in stroke represent leptomeningeal collateral flow. We presumed that FLAIR hyperintense vessels would be more closely associated with arterial stenosis and perfusion abnormality in ischemic stroke on T2-PROPELLER-FLAIR than on T2-FLAIR. We retrospectively reviewed 35 patients with middle cerebral territorial infarction who underwent MR imaging. FLAIR hyperintense vessel scores were graded according to the number of segments with FLAIR hyperintense vessels in the MCA ASPECTS areas. We compared the predictability of FLAIR hyperintense vessels between T2-PROPELLER-FLAIR and T2-FLAIR for large-artery stenosis. The interagreement between perfusion abnormality and FLAIR hyperintense vessels was assessed. In subgroup analysis (9 patients with MCA horizontal segment occlusion), the association of FLAIR hyperintense vessels with ischemic lesion volume and perfusion abnormality volume was evaluated. FLAIR hyperintense vessel scores were significantly higher on T2-PROPELLER-FLAIR than on T2-FLAIR (3.50 ± 2.79 versus 1.21 ± 1.47, P < .01), and the sensitivity for large-artery stenosis was significantly improved on T2-PROPELLER-FLAIR (93% versus 68%, P = .03). FLAIR hyperintense vessels on T2-PROPELLER-FLAIR were more closely associated with perfusion abnormalities than they were on T2-FLAIR (κ = 0.64 and κ = 0.27, respectively). In subgroup analysis, FLAIR hyperintense vessels were positively correlated with ischemic lesion volume on T2-FLAIR, while the mismatch of FLAIR hyperintense vessels between the 2 sequences was negatively correlated with ischemic lesion volume (P = .01). In MCA stroke, FLAIR hyperintense vessels were more prominent on T2-PROPELLER-FLAIR compared with T2-FLAIR. In addition, FLAIR hyperintense vessels on T2-PROPELLER-FLAIR have a significantly higher sensitivity for predicting large-artery stenosis than they do on T2-FLAIR. Moreover, the areas showing FLAIR hyperintense vessels on T2-PROPELLER-FLAIR were more closely associated with perfusion abnormality than those on T2-FLAIR. © 2015 by American Journal of Neuroradiology.

  1. Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

    PubMed

    McGaw, Iain J; McMahon, Brian R

    2003-01-01

    Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed acclimation to hypoxic conditions, apart from an increased heart rate, there were no other cardiovascular changes associated with the low salinity episode. The implications of these changes in cardiovascular dynamics are discussed in relation to physiological mechanisms and the ecology of decapod crustaceans, in hypoxic or low salinity environments. Copyright 2003, Wiley-Liss, Inc.

  2. Arachidonic Acid Metabolism in the Nervous System; Physiological and Pathological Significance. Annals of the New York Academy of Science. Volume 5

    DTIC Science & Technology

    1989-01-01

    CEREBRAL INJURY 351 23. YOUNG, W. 1980. H2 clearance measurement of blood flow: A review of technique andpolarographic principles. Stroke 11: 552-564.24...Gerbil Brain: Inhibition of Ischemia-Reperfusion-Induced Cerebral Injury by a Platelet-Activating Factor Antagonist (BN 52021). By THOMAS PANETTA, VICTOR L...and in the complex pathophysiology of cerebral ischemia, stroke , and brain trauma has been a subject of increasing interest. These problems are of

  3. A discussion of the several types of two-stroke-cycle engines

    NASA Technical Reports Server (NTRS)

    Venediger, Herbert J

    1935-01-01

    This report discusses different types of two-stroke engines as well as the three most important design factors: volume of scavenge and charge delivery, scavenging process (scavenging result), and result of charge. Some of the types of engines discussed include: single cylinder with crank-chamber scavenge pump and auxiliary suction piston linked to working connecting rod; and two cylinder engines with a rotary scavenge pump arrangement. Three and four cylinder engines are also discussed in various designs.

  4. Correlation of Longitudinal Gray Matter Volume Changes and Motor Recovery in Patients After Pontine Infarction.

    PubMed

    Wang, Peipei; Jia, Xiuqin; Zhang, Miao; Cao, Yanxiang; Zhao, Zhilian; Shan, Yi; Ma, Qingfeng; Qian, Tianyi; Wang, Jingjuan; Lu, Jie; Li, Kuncheng

    2018-01-01

    The mechanisms of motor functional recovery after pontine infarction (PI) remain unclear. Here, we assessed longitudinal changes in gray matter volume (GMV) and examined the relationship between GMV and clinical outcome. Fifteen patients with unilateral PI underwent magnetic resonance imaging and neurological exams five times during a period of 6 months. Another 15 healthy participants were enrolled as the normal control (NC) group and were examined with the same protocol. The MR exam included routine protocol and a 3D T1-weighted magnetization-prepared rapid acquisition gradient echo scan. Changes in GMV were assessed using voxel-based morphometry. Furthermore, the correlations between GMV changes in regions of interest and clinical scores were assessed. Compared with NCs, the decreased GMVs in the contralateral uvula of cerebellum and the ipsilateral tuber of cerebellum were detected at third month after stroke onset. At the sixth month after stroke onset, the decreased GMVs were detected in the contralateral culmen of cerebellum, putamen, as well as in the ipsilateral tuber/tonsil of cerebellum. Compared with NC, the PI group exhibited significant increases in GMV at each follow-up time point relative to stroke onset. Specifically, the significant GMV increase was found in the ipsilateral middle frontal gyrus and ventral anterior nucleus of thalamus at second week after stroke onset. At first month after stroke onset, the increased GMVs in the ipsilateral middle temporal gyrus were detected. The significant GMV increase in the ipsilateral mediodorsal thalamus was noted at third month after stroke onset. At the end of sixth month after stroke onset, the GMV increase was found in the ipsilateral mediodorsal thalamus, superior frontal gyrus, and the contralateral precuneus. Across five times during a period of 6-month, a negative correlation was observed between mean GMV in the contralateral uvula, culmen, putamen, and ipsilateral tuber/tonsil and mean Fugl-Meyer (FM) score. However, mean GMV in the ipsilateral mediodorsal thalamus was positively correlated with mean FM score. Our findings suggest that structural reorganization of the ipsilateral mediodorsal thalamus might contribute to motor functional recovery after PI.

  5. Biased visualization of hypoperfused tissue by computed tomography due to short imaging duration: improved classification by image down-sampling and vascular models.

    PubMed

    Mikkelsen, Irene Klærke; Jones, P Simon; Ribe, Lars Riisgaard; Alawneh, Josef; Puig, Josep; Bekke, Susanne Lise; Tietze, Anna; Gillard, Jonathan H; Warburton, Elisabeth A; Pedraza, Salva; Baron, Jean-Claude; Østergaard, Leif; Mouridsen, Kim

    2015-07-01

    Lesion detection in acute stroke by computed-tomography perfusion (CTP) can be affected by incomplete bolus coverage in veins and hypoperfused tissue, so-called bolus truncation (BT), and low contrast-to-noise ratio (CNR). We examined the BT-frequency and hypothesized that image down-sampling and a vascular model (VM) for perfusion calculation would improve normo- and hypoperfused tissue classification. CTP datasets from 40 acute stroke patients were retrospectively analysed for BT. In 16 patients with hypoperfused tissue but no BT, repeated 2-by-2 image down-sampling and uniform filtering was performed, comparing CNR to perfusion-MRI levels and tissue classification to that of unprocessed data. By simulating reduced scan duration, the minimum scan-duration at which estimated lesion volumes came within 10% of their true volume was compared for VM and state-of-the-art algorithms. BT in veins and hypoperfused tissue was observed in 9/40 (22.5%) and 17/40 patients (42.5%), respectively. Down-sampling to 128 × 128 resolution yielded CNR comparable to MR data and improved tissue classification (p = 0.0069). VM reduced minimum scan duration, providing reliable maps of cerebral blood flow and mean transit time: 5 s (p = 0.03) and 7 s (p < 0.0001), respectively). BT is not uncommon in stroke CTP with 40-s scan duration. Applying image down-sampling and VM improve tissue classification. • Too-short imaging duration is common in clinical acute stroke CTP imaging. • The consequence is impaired identification of hypoperfused tissue in acute stroke patients. • The vascular model is less sensitive than current algorithms to imaging duration. • Noise reduction by image down-sampling improves identification of hypoperfused tissue by CTP.

  6. Parenteral fluid regimens for improving functional outcome in people with acute stroke.

    PubMed

    Visvanathan, Akila; Dennis, Martin; Whiteley, William

    2015-09-01

    Parenteral fluids are commonly used in people with acute stroke with poor oral fluid intake. However, the balance between benefit and harm for different fluid regimens is unclear. To assess whether different parenteral fluid regimens lead to differences in death, or death or dependence, after stroke based on fluid type, fluid volume, duration of fluid administration, and mode of delivery. We searched the Cochrane Stroke Group Trials Register (May 2015), the Cochrane Central Register of Controlled Trials (CENTRAL), the Cochrane Database of Systematic Reviews (CDSR) and the Database of Abstracts of Reviews of Effects (DARE) (Cochrane Library 2015, Issue 5), MEDLINE (2008 to May 2015), EMBASE (2008 to May 2015), and CINAHL (1982 to May 2015). We also searched ongoing trials registers (May 2015) and reference lists, performed cited reference searches, and contacted authors. Randomised trials of parenteral fluid regimens in adults with ischaemic or haemorrhagic stroke within seven days of stroke onset that reported death or dependence. One review author screened titles and abstracts. We obtained the full-text articles of relevant studies, and two review authors independently selected trials for inclusion and extracted data. We used Cochrane's tool for bias assessment. We included 12 studies (2351 participants: range 27 to 841).Characteristics: The 12 included studies compared hypertonic (colloids) with isotonic fluids (crystalloids); of these, five studies (1420 participants) also compared 0.9% saline with another fluid. No data were available to make other comparisons. Delay from stroke to recruitment varied from less than 24 hours to 72 hours. Duration of fluid delivery was between two hours and 10 days.Bias assessment: Investigators and participants in eight of the 12 included studies were blind to treatment allocation, seven of the 12 included studies gave details of randomisation, and eight of the 12 included studies reported all outcomes measured. There were no relevant completed trials that addressed the effect of volume, duration, or mode of fluid delivery on death or dependence in people with stroke.The odds of death or dependence were similar in participants allocated to colloids or crystalloid fluid regimens (odds ratio (OR) 0.97, 95% confidence interval (CI) 0.79 to 1.21, five studies, I² = 58%, low-quality evidence), and between 0.9% saline or other fluid regimens (OR 1.04, 95% CI 0.82 to 1.32, three studies, I² = 71%, low-quality evidence). There was substantial heterogeneity in these estimates.The odds of death were similar between colloids and crystalloids (OR 1.02, 95% CI 0.82 to 1.27, 12 studies, I² = 24%, moderate-quality evidence), and 0.9% saline and other fluids (OR 0.87, 95% CI 0.67 to 1.12, five studies, I² = 53%, low-quality evidence). The odds of pulmonary oedema were higher in participants allocated to colloids (OR 2.34, 95% CI 1.28 to 4.29, I² = 0%). Although the studies observed a higher risk of cerebral oedema (OR 0.20, 95% CI 0.02 to 1.74) and pneumonia (OR 0.58, 95% CI 0.17 to 2.01) with crystalloids, we could not exclude clinically important benefits or harms. We found no evidence that colloids were associated with lower odds of death or dependence in the medium term after stroke compared with crystalloids, though colloids were associated with greater odds of pulmonary oedema. We found no evidence to guide the best volume, duration, or mode of parenteral fluid delivery for people with acute stroke.

  7. Intraoperative stroke volume optimization using stroke volume, arterial pressure, and heart rate: closed-loop (learning intravenous resuscitator) versus anesthesiologists.

    PubMed

    Rinehart, Joseph; Chung, Elena; Canales, Cecilia; Cannesson, Maxime

    2012-10-01

    The authors compared the performance of a group of anesthesia providers to closed-loop (Learning Intravenous Resuscitator [LIR]) management in a simulated hemorrhage scenario using cardiac output monitoring. A prospective cohort study. In silico simulation. University hospital anesthesiologists and the LIR closed-loop fluid administration system. Using a patient simulator, a 90-minute simulated hemorrhage protocol was run, which included a 1,200-mL blood loss over 30 minutes. Twenty practicing anesthesiology providers were asked to manage this scenario by providing fluids and vasopressor medication at their discretion. The simulation program was also run 20 times with the LIR closed-loop algorithm managing fluids and an additional 20 times with no intervention. Simulated patient weight, height, heart rate, mean arterial pressure, and cardiac output (CO) were similar at baseline. The mean stroke volume, the mean arterial pressure, CO, and the final CO were higher in the closed-loop group than in the practitioners group, and the coefficient of variance was lower. The closed-loop group received slightly more fluid (2.1 v 1.9 L, p < 0.05) than the anesthesiologist group. Despite the roughly similar volumes of fluid given, the closed-loop maintained more stable hemodynamics than the practitioners primarily because the fluid was given earlier in the protocol and CO optimized before the hemorrhage began, whereas practitioners tended to resuscitate well but only after significant hemodynamic change indicated the need. Overall, these data support the potential usefulness of this closed-loop algorithm in clinical settings in which dynamic predictors are not available or applicable. Published by Elsevier Inc.

  8. Cerebral Blood Volume ASPECTS Is the Best Predictor of Clinical Outcome in Acute Ischemic Stroke: A Retrospective, Combined Semi-Quantitative and Quantitative Assessment.

    PubMed

    Padroni, Marina; Bernardoni, Andrea; Tamborino, Carmine; Roversi, Gloria; Borrelli, Massimo; Saletti, Andrea; De Vito, Alessandro; Azzini, Cristiano; Borgatti, Luca; Marcello, Onofrio; d'Esterre, Christopher; Ceruti, Stefano; Casetta, Ilaria; Lee, Ting-Yim; Fainardi, Enrico

    2016-01-01

    The capability of CT perfusion (CTP) Alberta Stroke Program Early CT Score (ASPECTS) to predict outcome and identify ischemia severity in acute ischemic stroke (AIS) patients is still questioned. 62 patients with AIS were imaged within 8 hours of symptom onset by non-contrast CT, CT angiography and CTP scans at admission and 24 hours. CTP ASPECTS was calculated on the affected hemisphere using cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps by subtracting 1 point for any abnormalities visually detected or measured within multiple cortical circular regions of interest according to previously established thresholds. MTT-CBV ASPECTS was considered as CTP ASPECTS mismatch. Hemorrhagic transformation (HT), recanalization status and reperfusion grade at 24 hours, final infarct volume at 7 days and modified Rankin scale (mRS) at 3 months after onset were recorded. Semi-quantitative and quantitative CTP ASPECTS were highly correlated (p<0.00001). CBF, CBV and MTT ASPECTS were higher in patients with no HT and mRS ≤ 2 and inversely associated with final infarct volume and mRS (p values: from p<0.05 to p<0.00001). CTP ASPECTS mismatch was slightly associated with radiological and clinical outcomes (p values: from p<0.05 to p<0.02) only if evaluated quantitatively. A CBV ASPECTS of 9 was the optimal semi-quantitative value for predicting outcome. Our findings suggest that visual inspection of CTP ASPECTS recognizes infarct and ischemic absolute values. Semi-quantitative CBV ASPECTS, but not CTP ASPECTS mismatch, represents a strong prognostic indicator, implying that core extent is the main determinant of outcome, irrespective of penumbra size.

  9. Limited Ventricular Preload is the Main Reason for Reduced Stress Reserve After Atrial Baffle Repair.

    PubMed

    Eicken, Andreas; Michel, Julia; Hager, Alfred; Tanase, Daniel; Kaemmerer, Harald; Cleuziou, Julie; Hess, John; Ewert, Peter

    2017-02-01

    The atrial baffle repair (ABR) significantly improved the fate of patients with transposition of the great arteries (TGA). However, these patients show impaired exercise tolerance and some present severe decline of systemic ventricular function. Intrinsic myocardial weakness, low heart rate response to exercise and diastolic filling impairment are discussed to be causative. Forty-nine long-term survivors with TGA (median age 23.7 year) after ABR were catheterized with measured oxygen consumption in four conditions (baseline, volume, atrial pacing, dobutamine) and the results were compared to 10 normal controls. Median cardiac output was significantly lower in the ABR group (2.2 vs. 2.6 l/min/m 2 ; p = 0.015), and systemic resistance was significantly elevated (28.9 vs. 22.2 U m 2 ; p = 0.04) in comparison with normals. While stroke volume rose by 27% in the control group, it dropped by 7% in patients after ABR at atrial pacing (80/min). Stroke volume increase after dobutamine was significantly lower after ABR in comparison with normal controls (34 vs. 106%; p = 0.001). Higher NYHA class (p = 0.043), degree of tricuspid regurgitation (p = 0.009) and ventricular function (p = 0.028) were associated with lower stroke volume increase. Limited exercise capability of patients after ABR for TGA is primarily due to limited diastolic filling of the ventricles due to stiff non-compliant atrial pathways. Elevated systemic resistance may lead to severe myocardial hypertrophy with possible ischemia and contribute to the multifactorial decline of ventricular function in some patients.

  10. The function of the left anterior temporal pole: evidence from acute stroke and infarct volume

    PubMed Central

    Tsapkini, Kyrana; Frangakis, Constantine E.

    2011-01-01

    The role of the anterior temporal lobes in cognition and language has been much debated in the literature over the last few years. Most prevailing theories argue for an important role of the anterior temporal lobe as a semantic hub or a place for the representation of unique entities such as proper names of peoples and places. Lately, a few studies have investigated the role of the most anterior part of the left anterior temporal lobe, the left temporal pole in particular, and argued that the left anterior temporal pole is the area responsible for mapping meaning on to sound through evidence from tasks such as object naming. However, another recent study indicates that bilateral anterior temporal damage is required to cause a clinically significant semantic impairment. In the present study, we tested these hypotheses by evaluating patients with acute stroke before reorganization of structure–function relationships. We compared a group of 20 patients with acute stroke with anterior temporal pole damage to a group of 28 without anterior temporal pole damage matched for infarct volume. We calculated the average percent error in auditory comprehension and naming tasks as a function of infarct volume using a non-parametric regression method. We found that infarct volume was the only predictive variable in the production of semantic errors in both auditory comprehension and object naming tasks. This finding favours the hypothesis that left unilateral anterior temporal pole lesions, even acutely, are unlikely to cause significant deficits in mapping meaning to sound by themselves, although they contribute to networks underlying both naming and comprehension of objects. Therefore, the anterior temporal lobe may be a semantic hub for object meaning, but its role must be represented bilaterally and perhaps redundantly. PMID:21685458

  11. Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma Tigrinum.

    PubMed

    Simons, R S; Bennett, W O; Brainerd, E L

    2000-03-01

    The mechanics of lung ventilation in frogs and aquatic salamanders has been well characterized, whereas lung ventilation in terrestrial-phase (post-metamorphic) salamanders has received little attention. We used electromyography (EMG), X-ray videography, standard videography and buccal and body cavity pressure measurements to characterize the ventilation mechanics of adult (post-metamorphic) tiger salamanders (Ambystoma tigrinum). Three results emerged: (i) under terrestrial conditions or when floating at the surface of the water, adult A. tigrinum breathed through their nares using a two-stroke buccal pump; (ii) in addition to this narial two-stroke pump, adult tiger salamanders also gulped air in through their mouths using a modified two-stroke buccal pump when in an aquatic environment; and (iii) exhalation in adult tiger salamanders is active during aquatic gulping breaths, whereas exhalation appears to be passive during terrestrial breathing at rest. Active exhalation in aquatic breaths is indicated by an increase in body cavity pressure during exhalation and associated EMG activity in the lateral hypaxial musculature, particularly the M. transversus abdominis. In terrestrial breathing, no EMG activity in the lateral hypaxial muscles is generally present, and body cavity pressure decreases during exhalation. In aquatic breaths, tidal volume is larger than in terrestrial breaths, and breathing frequency is much lower (approximately 1 breath 10 min(-)(1 )versus 4-6 breaths min(-)(1)). The use of hypaxial muscles to power active exhalation in the aquatic environment may result from the need for more complete exhalation and larger tidal volumes when breathing infrequently. This hypothesis is supported by previous findings that terrestrial frogs ventilate their lungs with small tidal volumes and exhale passively, whereas aquatic frogs and salamanders use large tidal volumes and and exhale actively.

  12. Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria

    1997-01-01

    The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.

  13. Cerebral Blood Volume ASPECTS Is the Best Predictor of Clinical Outcome in Acute Ischemic Stroke: A Retrospective, Combined Semi-Quantitative and Quantitative Assessment

    PubMed Central

    Padroni, Marina; Bernardoni, Andrea; Tamborino, Carmine; Roversi, Gloria; Borrelli, Massimo; Saletti, Andrea; De Vito, Alessandro; Azzini, Cristiano; Borgatti, Luca; Marcello, Onofrio; d’Esterre, Christopher; Ceruti, Stefano; Casetta, Ilaria; Lee, Ting-Yim; Fainardi, Enrico

    2016-01-01

    Introduction The capability of CT perfusion (CTP) Alberta Stroke Program Early CT Score (ASPECTS) to predict outcome and identify ischemia severity in acute ischemic stroke (AIS) patients is still questioned. Methods 62 patients with AIS were imaged within 8 hours of symptom onset by non-contrast CT, CT angiography and CTP scans at admission and 24 hours. CTP ASPECTS was calculated on the affected hemisphere using cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps by subtracting 1 point for any abnormalities visually detected or measured within multiple cortical circular regions of interest according to previously established thresholds. MTT-CBV ASPECTS was considered as CTP ASPECTS mismatch. Hemorrhagic transformation (HT), recanalization status and reperfusion grade at 24 hours, final infarct volume at 7 days and modified Rankin scale (mRS) at 3 months after onset were recorded. Results Semi-quantitative and quantitative CTP ASPECTS were highly correlated (p<0.00001). CBF, CBV and MTT ASPECTS were higher in patients with no HT and mRS≤2 and inversely associated with final infarct volume and mRS (p values: from p<0.05 to p<0.00001). CTP ASPECTS mismatch was slightly associated with radiological and clinical outcomes (p values: from p<0.05 to p<0.02) only if evaluated quantitatively. A CBV ASPECTS of 9 was the optimal semi-quantitative value for predicting outcome. Conclusions Our findings suggest that visual inspection of CTP ASPECTS recognizes infarct and ischemic absolute values. Semi-quantitative CBV ASPECTS, but not CTP ASPECTS mismatch, represents a strong prognostic indicator, implying that core extent is the main determinant of outcome, irrespective of penumbra size. PMID:26824672

  14. Effects of total saponins from Trillium tschonoskii rhizome on grey and white matter injury evaluated by quantitative multiparametric MRI in a rat model of ischemic stroke.

    PubMed

    Li, Manzhong; Ouyang, Junyao; Zhang, Yi; Cheng, Brian Chi Yan; Zhan, Yu; Yang, Le; Zou, Haiyan; Zhao, Hui

    2018-04-06

    Trillium tschonoskii rhizome (TTR), a medicinal herb, has been traditionally used to treat traumatic brain injury and headache in China. Although the potential neuroprotective efficacy of TTR has gained increasing interest, the pharmacological mechanism remains unclear. Steroid saponins are the main bioactive components of the herb. To investigate the protective and repair-promoting effects of the total saponins from TTR (TSTT) on grey and white matter damages in a rat model of middle cerebral artery occlusion (MCAO) using magnetic resonance imaging (MRI) assay. Ischemic stroke was induced by MCAO. TSTT and Ginaton (positive control) were administered orally to rats 6h after stroke and daily thereafter. After 15 days of treatment, the survival rate of each group was calculated. We then conducted neurological deficit scores and beam walking test to access the neurological function after ischemic stroke. Subsequently, T2-weighted imaging (T2WI) and T2 relaxometry mapping were performed to measure infarct volume and grey and white matter integrity, respectively. Moreover, diffusion tensor imaging (DTI) was carried out to evaluate the grey and white matter microstructural damage. Additionally, arterial spin labelling (ASL) - cerebral blood flow (CBF) and magnetic resonance angiography (MRA) images provided dynamic information about vascular hemodynamic dysfunction after ischemic stroke. Finally, haematoxylin and eosin (HE) staining was carried out to evaluate the stroke-induced pathological changes in the brain. The survival rate and neurological behavioural outcomes (Bederson scores and beam walking tests) were markedly ameliorated by TSTT (65mg/kg) treatment within 15 days after ischemic stroke. Moreover, T2WI and T2 relaxometry mapping showed that TSTT (65mg/kg) significantly reduced infarct volume and attenuated grey and white matter injury, respectively, which was confirmed by histopathological evaluation of brain tissue. The results obtained from DTI showed that TSTT (65mg/kg) not only significantly alleviated axonal damage and demyelination, but also promoted axonal remodelling and re-myelination. In addition, TSTT treatment also enhanced vascular signal density and increased CBF in rats after MCAO. Our results suggested the potential protective and repair-promoting effects of TSTT on grey and white matter from damage induced by ischemia. This study provides a modern pharmacological basis for the application of TSTT in managing ischemic stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. High Risk of Seizures and Epilepsy after Decompressive Hemicraniectomy for Malignant Middle Cerebral Artery Stroke

    PubMed Central

    Brondani, Rosane; Garcia de Almeida, Andrea; Abrahim Cherubini, Pedro; Mandelli Mota, Suelen; de Alencastro, Luiz Carlos; Antunes, Apio Cláudio Martins; Bianchin Muxfeldt, Marino

    2017-01-01

    Background Decompressive hemicraniectomy (DHC) is a life-saving procedure for treatment of large malignant middle cerebral artery (MCA) strokes. Post-stroke epilepsy is an additional burden for these patients, but its incidence and the risk factors for its development have been poorly investigated. Objective To report the prevalence and risk factors for post-stroke seizures and post-stroke epilepsy after DHC for treatment of large malignant MCA strokes in a cohort of 36 patients. Methods In a retrospective cohort study of 36 patients we report the timing and incidence of post-stroke epilepsy. We analyzed if age, sex, vascular risk factors, side of ischemia, reperfusion therapy, stroke etiology, extension of stroke, hemorrhagic transformation, ECASS scores, National Institutes of Health Stroke Scale (NIHSS) scores, or modified Rankin scores were risk factors for seizure or epilepsy after DHC for treatment of large MCA strokes. Results The mean patient follow-up time was 1,086 days (SD = 1,172). Out of 36 patients, 9 (25.0%) died before being discharged. After 1 year, a total of 11 patients (30.6%) had died, but 22 (61.1%) of them had a modified Rankin score ≤4. Thirteen patients (36.1%) developed seizures within the first week after stroke. Seizures occurred in 22 (61.1%) of 36 patients (95% CI = 45.17–77.03%). Out of 34 patients who survived the acute period, 19 (55.9%) developed epilepsy after MCA infarcts and DHC (95% CI = 39.21–72.59%). In this study, no significant differences were observed between the patients who developed seizures or epilepsy and those who remained free of seizures or epilepsy regarding age, sex, side of stroke, presence of the clinical risk factors studied, hemorrhagic transformation, time of craniectomy, and Rankin score after 1 year of stroke. Conclusion The incidence of seizures and epilepsy after malignant MCA infarcts submitted to DHC might be very high. Seizure might occur precociously in patients who are not submitted to anticonvulsant prophylaxis. The large stroke volume and the large cortical ischemic area seem to be the main risk factors for seizure or epilepsy development in this subtype of stroke. PMID:28359069

  16. Impact of percutaneous mitral valvuloplasty on left ventricular function in patients with mitral stenosis assessed by 3D echocardiography.

    PubMed

    Esteves, William Antonio M; Lodi-Junqueira, Lucas; Soares, Juliana Rodrigues; Sant'Anna Athayde, Guilherme Rafael; Goebel, Gabriela Assunção; Carvalho, Lucas Amorim; Zeng, Xin; Hung, Judy; Tan, Timothy C; Nunes, Maria Carmo Pereira

    2017-12-01

    The status of intrinsic left ventricular (LV) contractility in patients with isolated rheumatic mitral stenosis (MS) has been debated. The acute changes in loading conditions after percutaneous mitral valvuloplasty (PMV) may affect LV performance. We aimed to examine the acute effects of PMV on LV function and identify factors associated with LV ejection fraction (LVEF) changes, and determinants of long-term events following the procedure. One hundred and forty-two patients who underwent PMV for symptomatic rheumatic MS (valve area of 0.99±0.3cm 2 ) were prospectively enrolled. LV volumes and LVEF were measured by three-dimensional (3D) echocardiography. Long-term outcome was a composite endpoint of death, mitral valve (MV) replacement, repeat PMV, new onset of atrial fibrillation, and stroke. The mean age was 42.3±12.1years, and 125 patients were women (88%). After PMV, LVEF increased significantly (51.4 vs 56.5%, p<0.001), primary due to a significant increase in LV end-diastolic volume (65.8mL vs 67.9mL, p=0.002), and resultant increase in the stroke volume (33.9mL vs 39.6mL, p<0.001). Changes in cardiac index and systolic pulmonary artery pressure were associated with LVEF changes after PMV. During a mean follow-up period of 30.8months, 28 adverse clinical events were observed. Postprocedural mitral regurgitation, MV area, and mean gradient were independent predictors of composite endpoints. In patients with rheumatic MS, PMV resulted in a significant improvement in LV end-diastolic volume, stroke volume and consequently increased in LVEF. Changes in cardiac index and systolic pulmonary artery pressure were associated with LVEF changes after PMV. The predictors of long-term adverse events following PMV were post-procedural variables, including mitral regurgitation, valve area, and mean gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determinants of the distribution and severity of hypoperfusion in patients with ischemic stroke.

    PubMed

    Bang, O Y; Saver, J L; Alger, J R; Starkman, S; Ovbiagele, B; Liebeskind, D S

    2008-11-25

    In acute cerebral ischemia, two variables characterize the extent of hypoperfusion: the volume of hypoperfused tissue and the intensity of hypoperfusion within these regions. We evaluated the determinants of the intensity of hypoperfusion within oligemic regions among patients who were eligible for recanalization therapy for acute ischemic stroke. We analyzed data, including pretreatment diffusion-weighted imaging (DWI) and perfusion-weighted imaging, on 119 patients with acute middle cerebral artery infarctions. The intensity of hypoperfusion within oligemic regions was characterized by the hypoperfusion intensity ratio (HIR), defined as the volume of tissue with severe hypoperfusion (Tmax > or = 8 seconds) divided by the volume of tissue with any hypoperfusion (Tmax > or = 2 seconds). Based on the DWI data, we divided the patients into four stroke phenotypes: large cortical, small (< 1 cm diameter) cortical, border-zone, and deep pattern. The mean (SD) volume of severe hypoperfusion was 54.6 (52.5) mL, and that of any hypoperfusion was 140.8 (81.3) mL. The HIR ranged widely, from 0.002 to 0.974, with a median of 0.35 (interquartile range 0.13-0.60). The volume of any hypoperfusion did not predict the intensity of hypoperfusion within the affected region (r = 0.10, p = 0.284). Angiographic collateral flow grade was associated with HIRs (p value for trend = 0.019) and differed among DWI lesion patterns. In multivariate analysis, diastolic pressure on admission (odds ratio 0.959, 95% CI 0.922-0.998) and DWI pattern of deep infarcts (odds ratio 18.004 compared with large cortical pattern, 95% CI 1.855-173.807) were independently associated with a low HIR. The intensity of hypoperfusion within an oligemic field is largely independent of the size of the oligemia region. Predictors of lesser intensity of hypoperfusion are lower diastolic blood pressure and presence of a deep diffusion-weighted imaging lesion pattern.

  18. A new methodological approach to assess cardiac work by pressure-volume and stress-length relations in patients with aortic valve stenosis and dilated cardiomyopathy.

    PubMed

    Alter, P; Rupp, H; Rominger, M B; Klose, K J; Maisch, B

    2008-01-01

    In experimental animals, cardiac work is derived from pressure-volume area and analyzed further using stress-length relations. Lack of methods for determining accurately myocardial mass has until now prevented the use of stress-length relations in patients. We hypothesized, therefore, that not only pressure-volume loops but also stress-length diagrams can be derived from cardiac volume and cardiac mass as assessed by cardiac magnetic resonance imaging (CMR) and invasively measured pressure. Left ventricular (LV) volume and myocardial mass were assessed in seven patients with aortic valve stenosis (AS), eight with dilated cardiomyopathy (DCM), and eight controls using electrocardiogram (ECG)-gated CMR. LV pressure was measured invasively. Pressure-volume curves were calculated based on ECG triggering. Stroke work was assessed as area within the pressure-volume loop. LV wall stress was calculated using a thick-wall sphere model. Similarly, stress-length loops were calculated to quantify stress-length-based work. Taking the LV geometry into account, the normalization with regard to ventricular circumference resulted in "myocardial work." Patients with AS (valve area 0.73+/-0.18 cm(2)) exhibited an increased LV myocardial mass when compared with controls (P<0.05). LV wall stress was increased in DCM but not in AS. Stroke work of AS was unchanged when compared with controls (0.539+/-0.272 vs 0.621+/-0.138 Nm, not significant), whereas DCM exhibited a significant depression (0.367+/-0.157 Nm, P<0.05). Myocardial work was significantly reduced in both AS and DCM when compared with controls (129.8+/-69.6, 200.6+/-80.1, 332.2+/-89.6 Nm/m(2), P<0.05), also after normalization (7.40+/-5.07, 6.27+/-3.20, 14.6+/-4.07 Nm/m(2), P<0.001). It is feasible to obtain LV pressure-volume and stress-length diagrams in patients based on the present novel methodological approach of using CMR and invasive pressure measurement. Myocardial work was reduced in patients with DCM and noteworthy also in AS, while stroke work was reduced in DCM only. Most likely, deterioration of myocardial work is crucial for the prognosis. It is suggested to include these basic physiological procedures in the clinical assessment of the pump function of the heart.

  19. Evaluation of a web based informatics system with data mining tools for predicting outcomes with quantitative imaging features in stroke rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent

    2017-03-01

    Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.

  20. An Inquiry-Based Teaching Tool for Understanding Arterial Blood Pressure Regulation and Cardiovascular Function.

    ERIC Educational Resources Information Center

    Collins, Heidi L.; Rodenbaugh, David W.; Murphy, Todd P.; Kulics, Jennifer M.; Bailey, Cynthia M.; DiCarlo, Stephen E.

    1999-01-01

    Presents a laboratory exercise designed to introduce students to the hemodynamic variables (heart rate, stroke volume, total peripheral resistance, and compliance) that alter arterial pressure. (Author/CCM)

  1. 40 CFR 86.094-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... The manufacturer shall select one emission data engine based on the highest fuel feed per stroke... service accumulation time determined by the manufacturer to result in stabilized emissions. The emission...

  2. Autonomic Cardiovascular Control and Executive Function in Chronic Hypotension.

    PubMed

    Duschek, Stefan; Hoffmann, Alexandra; Reyes Del Paso, Gustavo A; Ettinger, Ulrich

    2017-06-01

    Chronic low blood pressure (hypotension) is characterized by complaints such as fatigue, reduced drive, dizziness, and cold limbs. Additionally, deficits in attention and memory have been observed. Autonomic dysregulation is considered to be involved in the origin of this condition. The study explored autonomic cardiovascular control in the context of higher cognitive processing (executive function) in hypotension. Hemodynamic recordings were performed in 40 hypotensive and 40 normotensive participants during execution of four classical executive function tasks (number-letter task, n-back task, continuous performance test, and flanker task). Parameters of cardiac sympathetic control, i.e., stroke volume, cardiac output, pre-ejection period, total peripheral resistance, and parasympathetic control, i.e., respiratory sinus arrhythmia and baroreflex sensitivity, were obtained. The hypotensive group exhibited lower stroke volume and cardiac output, as well as higher pre-ejection period and baroreflex sensitivity during task execution. Increased error rates in hypotensive individuals were observed in the n-back and flanker tasks. In the total sample, there were positive correlations of error rates with pre-ejection period, baroreflex sensitivity and respiratory sinus arrhythmia, and negative correlations with cardiac output. Group differences in stroke volume, cardiac output, and pre-ejection period suggest diminished beta-adrenergic myocardial drive during executive function processing in hypotension, in addition to increased baroreflex function. Although further research is warranted to quantify the extent of executive function impairment in hypotension, the results from correlation analysis add evidence to the notion that higher sympathetic inotropic influences and reduced parasympathetic cardiac influences are accompanied by better cognitive performance.

  3. Cardiovascular responses to postural changes: differences with age for women and men

    NASA Technical Reports Server (NTRS)

    Frey, M. A.; Tomaselli, C. M.; Hoffler, W. G.

    1994-01-01

    The cardiovascular responses to postural change, and how they are affected by aging, are inadequately described in women. Therefore, the authors examined the influence of age and sex on the responses of blood pressure, cardiac output, heart rate, and other variables to change in posture. Measurements were made after 10 minutes each in the supine, seated, and standing positions in 22 men and 25 women who ranged in age from 21 to 59 years. Several variables differed, both by sex and by age, when subjects were supine. On rising, subjects' diastolic and mean arterial pressures, heart rate, total peripheral resistance (TPR), and thoracic impedance increased; cardiac output, stroke volume, and mean stroke ejection rate decreased; and changes in all variables, except heart rate, were greater from supine to sitting than sitting to standing. The increase in heart rate was greater in the younger subjects, and increases in TPR and thoracic impedance were greater in the older subjects. Stroke volume decreased less, and TPR and thoracic impedance increased more, in the women than in the men. The increase in TPR was particularly pronounced in the older women. These studies show that the cardiovascular responses to standing differ, in some respects, between the sexes and with age. The authors suggest that the sex differences are, in part, related to greater decrease of thoracic blood volume with standing in women than in men, and that the age differences result, in part, from decreased responsiveness of the high-pressure baroreceptor system.

  4. Hormone phase influences sympathetic responses to high levels of lower body negative pressure in young healthy women.

    PubMed

    Usselman, Charlotte W; Nielson, Chantelle A; Luchyshyn, Torri A; Gimon, Tamara I; Coverdale, Nicole S; Van Uum, Stan H M; Shoemaker, J Kevin

    2016-11-01

    We tested the hypothesis that sympathetic responses to baroreceptor unloading may be affected by circulating sex hormones. During lower body negative pressure at -30, -60, and -80 mmHg, muscle sympathetic nerve activity (MSNA), heart rate, and blood pressure were recorded in women who were taking (n = 8) or not taking (n = 9) hormonal contraceptives. All women were tested twice, once during the low-hormone phase (i.e., the early follicular phase of the menstrual cycle and the placebo phase of hormonal contraceptive use), and again during the high-hormone phase (i.e., the midluteal phase of the menstrual cycle and active phase of contraceptive use). During baroreceptor unloading, the reductions in stroke volume and resultant increases in MSNA and total peripheral resistance were greater in high-hormone than low-hormone phases in both groups. When normalized to the fall in stroke volume, increases in MSNA were no longer different between hormone phases. While stroke volume and sympathetic responses were similar between women taking and not taking hormonal contraceptives, mean arterial pressure was maintained during baroreceptor unloading in women not taking hormonal contraceptives but not in women using hormonal contraceptives. These data suggest that differences in sympathetic activation between hormone phases, as elicited by lower body negative pressure, are the result of hormonally mediated changes in the hemodynamic consequences of negative pressure, rather than centrally driven alterations to sympathetic regulation. Copyright © 2016 the American Physiological Society.

  5. Beat-by-beat analysis of cardiac output and blood pressure responses to short-term barostimulation in different body positions

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Wulf; Schütze, Harald; Stegemann, J.

    Rapid quantification of the human baro-reflex control of heart rate has been achieved on a beat-by-beat basis using a neck-chamber with quick ECG-triggered pressure changes. Referring to recent findings on heart rate and stroke volume, the present study uses this technique to compare cardiac output as well as blood pressure changes in supine and upright position to investigate feedback effects and to confirm postural reflex modifications not revealed by RR-interval changes. A suction profile starting at +40 mmHg and running 7 steps of pressure decrease down to -65 mmHg was examined in 0° and 90° tilting position while beat-by-beat recordings were done of heart rate, stroke volume (impedance-cardiography) and blood pressure (Finapres tm) (n=16). The percentual heart rate decrease failed to be significantly different between positions. A suction-induced stroke volume increase led to a cardiac output almost maintained when supine and significantly increased when upright. A decrease in all blood pressure values was found during suction, except for systolic values in upright position which increased. Conclusively, (a) it is confirmed that different inotropy accounts for the seen gravitational effect on the cardiac output not represented by heart rate; (b) identical suction levels in different positions lead to different stimuli at the carotid receptor. This interference has to be considered in microgravity studies by beat-by-beat measurement of cardiac output and blood pressure.

  6. Haemodynamic dose-response effects of intravenous nisoldipine in coronary artery disease.

    PubMed Central

    Silke, B; Frais, M A; Muller, P; Verma, S P; Reynolds, G; Taylor, S H

    1985-01-01

    The circulatory consequences of slow-calcium channel blockade with a new dihydropyridine nisoldipine were evaluated at rest and during exercise-induced angina in 16 patients with angiographically proven coronary artery disease. In 10 patients resting cardiac stroke output (thermodilution) and pulmonary artery occluded pressure were determined following four intravenous nisoldipine injections (cumulative dosage of 1, 2, 4 and 8 micrograms kg-1). The exercise effects of nisoldipine were evaluated by comparing the effects of the 8 micrograms kg-1 cumulative dosage with a control exercise period at the same workload. At rest nisoldipine reduced systemic vascular resistance and mean arterial pressure, and increased heart rate, cardiac and stroke volume indices. During 4 min supine-bicycle exercise nisoldipine reduced systemic mean arterial pressure and vascular resistance; this resulted in augmented cardiac and stroke volume indices at an unchanged pulmonary artery occluded pressure. In six additional patients rest and exercise ejection fractions were measured using a nonimaging nuclear probe. Nisoldipine (4 micrograms kg-1) resulted in a small trend to increase left ventricular rest and exercise ejection fraction. These data demonstrated improved rest and exercise cardiac performance following nisoldipine in patients with severe coronary artery disease. PMID:4091998

  7. Mesenchymal stem cells derived from peripheral blood protects against ischemia.

    PubMed

    Ukai, Ryo; Honmou, Osamu; Harada, Kuniaki; Houkin, Kiyohiro; Hamada, Hirofumi; Kocsis, Jeffery D

    2007-03-01

    Intravenous delivery of mesenchymal stem cells (MSCs) prepared from bone marrow (BMSCs) reduces infarction volume and ameliorates functional deficits in a rat cerebral ischemia model. MSC-like multipotent precursor cells (PMSCs) have also been suggested to exist in peripheral blood. To test the hypothesis that treatment with PMSCs may have a therapeutic benefit in stroke, we compared the efficacy of systemic delivery of BMSCs and PMSCs. A permanent middle cerebral artery occlusion (MCAO) in rat was induced by intraluminal vascular occlusion with a microfilament. Rat BMSCs and PMSCs were prepared in culture and intravenously injected into the rats 6 h after MCAO. Lesion size was assessed at 6 h, and 1, 3, and 7 days using MR imaging and histology. The hemodynamic change of cerebral blood perfusion on stroke was assessed the same times using perfusion-weighted image (PWI). Functional outcome was assessed using the treadmill stress test. Both BMSCs and PMSCs treated groups had reduced lesion volume, improved regional cerebral blood flow, and functional improvement compared to the control group. The therapeutic benefits of both MSC-treated groups were similar. These data suggest that PMSCs derived from peripheral blood could be an important cell source of cell therapy for stroke.

  8. Inpatient Rehabilitation Volume and Functional Outcomes in Stroke, Lower Extremity Fracture, and Lower Extremity Joint Replacement

    PubMed Central

    Graham, James E.; Deutsch, Anne; O’Connell, Ann A.; Karmarkar, Amol M.; Granger, Carl V.; Ottenbacher, Kenneth J.

    2013-01-01

    Background It is unclear if volume-outcome relationships exist in inpatient rehabilitation. Objectives Assess associations between facility volumes and two patient-centered outcomes in the three most common diagnostic groups in inpatient rehabilitation. Research Design We used hierarchical linear and generalized linear models to analyze administrative assessment data from patients receiving inpatient rehabilitation services for stroke (n=202,423), lower extremity fracture (n=132,194), or lower extremity joint replacement (n=148,068) between 2006 and 2008 in 717 rehabilitation facilities across the U.S. Facilities were assigned to quintiles based on average annual diagnosis-specific patient volumes. Measures Discharge functional status (FIM instrument) and probability of home discharge. Results Facility-level factors accounted for 6–15% of the variance in discharge FIM total scores and 3–5% of the variance in home discharge probability across the 3 diagnostic groups. We used the middle volume quintile (Q3) as the reference group for all analyses and detected small, but statistically significant (p < .01) associations with discharge functional status in all three diagnosis groups. Only the highest volume quintile (Q5) reached statistical significance, displaying higher functional status ratings than Q3 each time. The largest effect was observed in FIM total scores among fracture patients, with only a 3.6-point difference in Q5 and Q3 group means. Volume was not independently related to home discharge. Conclusions Outcome-specific volume effects ranged from small (functional status) to none (home discharge) in all three diagnostic groups. Patients with these conditions can be treated locally rather than at higher-volume regional centers. Further regionalization of inpatient rehabilitation services is not needed for these conditions. PMID:23579350

  9. Inpatient rehabilitation volume and functional outcomes in stroke, lower extremity fracture, and lower extremity joint replacement.

    PubMed

    Graham, James E; Deutsch, Anne; O'Connell, Ann A; Karmarkar, Amol M; Granger, Carl V; Ottenbacher, Kenneth J

    2013-05-01

    It is unclear if volume-outcome relationships exist in inpatient rehabilitation. Assess associations between facility volumes and 2 patient-centered outcomes in the 3 most common diagnostic groups in inpatient rehabilitation. We used hierarchical linear and generalized linear models to analyze administrative assessment data from patients receiving inpatient rehabilitation services for stroke (n=202,423), lower extremity fracture (n=132,194), or lower extremity joint replacement (n=148,068) between 2006 and 2008 in 717 rehabilitation facilities across the United States. Facilities were assigned to quintiles based on average annual diagnosis-specific patient volumes. Discharge functional status (FIM instrument) and probability of home discharge. Facility-level factors accounted for 6%-15% of the variance in discharge FIM total scores and 3%-5% of the variance in home discharge probability across the 3 diagnostic groups. We used the middle volume quintile (Q3) as the reference group for all analyses and detected small, but statistically significant (P<0.01) associations with discharge functional status in all 3 diagnosis groups. Only the highest volume quintile (Q5) reached statistical significance, displaying higher functional status ratings than Q3 each time. The largest effect was observed in FIM total scores among fracture patients, with only a 3.6-point difference in Q5 and Q3 group means. Volume was not independently related to home discharge. Outcome-specific volume effects ranged from small (functional status) to none (home discharge) in all 3 diagnostic groups. Patients with these conditions can be treated locally rather than at higher volume regional centers. Further regionalization of inpatient rehabilitation services is not needed for these conditions.

  10. Recovered vs. not-recovered from post-stroke aphasia: The contributions from the dominant and non-dominant hemispheres

    PubMed Central

    Szaflarski, Jerzy P.; Allendorfer, Jane B.; Banks, Christi; Vannest, Jennifer; Holland, Scott K.

    2013-01-01

    Purpose Several adult studies have documented the importance of the peri-stroke areas to aphasia recovery. But, studies examining the differences in patterns of cortical participation in language comprehension in patients who have (LMCA-R) or have not recovered (LMCA-NR) from left middle cerebral artery infarction have not been performed up to date. Methods In this study, we compare cortical correlates of language comprehension using fMRI and semantic decision/tone decision task in 9 LMCA-R and 18 LMCA-NR patients matched at the time of stroke for age and handedness. We examine the cortical correlates of language performance by correlating intra- and extra-scanner measures of linguistic performance with fMRI activation and stroke volumes. Results Our analyses show that LMCA-R at least 1 year after stroke show a return to typical fMRI language activation patterns and that there is a compensatory reorganization of language function in LMCA-NR patients with shifts to the right hemispheric brain regions. Further, with increasing strength of the left-hemispheric fMRI signal shift there are associated improvements in performance as tested with standardized linguistic measures. A negative correlation between the size of the stroke and performance on some of the linguistic tests is also observed. Conclusions This right-hemispheric shift as a mechanism of post-stroke recovery in adults appears to be an ineffective mode of language function recovery with increasing right-hemispheric shift associated with lower language performance. Thus, normalization of the post-stroke language activation patterns is needed for better language performance while shifts of the activation patterns to the non-dominant (right) hemisphere and/or large stroke size are associated with decreased linguistic abilities after stroke. PMID:23482065

  11. [Neuroimaging and Blood Biomarkers in Functional Prognosis after Stroke].

    PubMed

    Branco, João Paulo; Costa, Joana Santos; Sargento-Freitas, João; Oliveira, Sandra; Mendes, Bruno; Laíns, Jorge; Pinheiro, João

    2016-11-01

    Stroke remains one of the leading causes of morbidity and mortality around the world and it is associated with an important long-term functional disability. Some neuroimaging resources and certain peripheral blood or cerebrospinal fluid proteins can give important information about etiology, therapeutic approach, follow-up and functional prognosis in acute ischemic stroke patients. However, among the scientific community, there is currently more interest in the stroke vital prognosis over the functional prognosis. Predicting the functional prognosis during acute phase would allow more objective rehabilitation programs and better management of the available resources. The aim of this work is to review the potential role of acute phase neuroimaging and blood biomarkers as functional recovery predictors after ischemic stroke. Review of the literature published between 2005 and 2015, in English, using the terms "ischemic stroke", "neuroimaging" e "blood biomarkers". We included nine studies, based on abstract reading. Computerized tomography, transcranial doppler ultrasound and diffuse magnetic resonance imaging show potential predictive value, based on the blood flow study and the evaluation of stroke's volume and localization, especially when combined with the National Institutes of Health Stroke Scale. Several biomarkers have been studied as diagnostic, risk stratification and prognostic tools, namely the S100 calcium binding protein B, C-reactive protein, matrix metalloproteinases and cerebral natriuretic peptide. Although some biomarkers and neuroimaging techniques have potential predictive value, none of the studies were able to support its use, alone or in association, as a clinically useful functionality predictor model. All the evaluated markers were considered insufficient to predict functional prognosis at three months, when applied in the first hours after stroke. Additional studies are necessary to identify reliable predictive markers for functional prognosis after ischemic stroke.

  12. Enhanced Thalamic Functional Connectivity with No fMRI Responses to Affected Forelimb Stimulation in Stroke-Recovered Rats.

    PubMed

    Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R

    2016-01-01

    Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.

  13. Diffusion imaging and transcranial magnetic stimulation assessment of transcallosal pathways in chronic stroke.

    PubMed

    Mang, Cameron S; Borich, Michael R; Brodie, Sonia M; Brown, Katlyn E; Snow, Nicholas J; Wadden, Katie P; Boyd, Lara A

    2015-10-01

    To examine the relationship of transcallosal pathway microstructure and transcallosal inhibition (TCI) with motor function and impairment in chronic stroke. Diffusion-weighted magnetic resonance imaging and transcranial magnetic stimulation (TMS) data were collected from 24 participants with chronic stroke and 11 healthy older individuals. Post-stroke motor function (Wolf Motor Function Test) and level of motor impairment (Fugl-Meyer score) were evaluated. Fractional anisotropy (FA) of transcallosal tracts between prefrontal cortices and the mean amplitude decrease in muscle activity during the ipsilateral silent period evoked by TMS over the non-lesioned hemisphere (termed NL-iSPmean) were significantly associated with level of motor impairment and motor function after stroke (p<0.05). A regression model including age, post-stroke duration, lesion volume, lesioned corticospinal tract FA, transcallosal prefrontal tract FA and NL-iSPmean accounted for 84% of variance in motor impairment (p<0.01). Both transcallosal prefrontal tract FA (ΔR(2)=0.12, p=0.04) and NL-iSPmean (ΔR(2)=0.09, p=0.04) accounted for unique variance in motor impairment level. Prefrontal transcallosal tract microstructure and TCI are each uniquely associated with motor impairment in chronic stroke. Utilizing a multi-modal approach to assess transcallosal pathways may improve our capacity to identify important neural substrates of motor impairment in the chronic phase of stroke. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Early Rivaroxaban Use After Cardioembolic Stroke May Not Result in Hemorrhagic Transformation: A Prospective Magnetic Resonance Imaging Study.

    PubMed

    Gioia, Laura C; Kate, Mahesh; Sivakumar, Leka; Hussain, Dulara; Kalashyan, Hayrapet; Buck, Brian; Bussiere, Miguel; Jeerakathil, Thomas; Shuaib, Ashfaq; Emery, Derek; Butcher, Ken

    2016-07-01

    Early anticoagulation after cardioembolic stroke remains controversial because of the potential for hemorrhagic transformation (HT). We tested the safety and feasibility of initiating rivaroxaban ≤14 days after cardioembolic stroke/transient ischemic attack. A prospective, open-label study of patients with atrial fibrillation treated with rivaroxaban ≤14 days of transient ischemic attack or ischemic stroke (National Institute of Health Stroke Scale <9). All patients underwent magnetic resonance imaging <24 hours of rivaroxaban initiation and day 7. The primary end point was symptomatic HT at day 7. Sixty patients (mean±SD age 71±19 years, 82% stroke/18% transient ischemic attack) were enrolled. Median (interquartile range) time from onset to rivaroxaban was 3 (5) days. At treatment initiation, median National Institute of Health Stroke Scale was 2 (4), and median diffusion-weighted imaging volume was 7.9 (13.7) mL. At baseline, HT was present in 25 (42%) patients (hemorrhagic infarct [HI]1=19, HI2=6). On follow-up magnetic resonance imaging, no patients developed symptomatic HT. New asymptomatic HI1 developed in 3 patients, and asymptomatic progression from HI1 to HI2 occurred in 5 patients; otherwise, HT remained unchanged at day 7. These data support the safety of rivaroxaban initiation ≤14 days of mild-moderate cardioembolic stroke/transient ischemic attack. Magnetic resonance imaging evidence of petechial HT, which is common, does not appear to increase the risk of symptomatic HT. © 2016 American Heart Association, Inc.

  15. Impact of Provider Characteristics on Outcomes of Carotid Endarterectomy for Asymptomatic Carotid Stenosis in New York State.

    PubMed

    Meltzer, Andrew J; Agrusa, Christopher; Connolly, Peter H; Schneider, Darren B; Sedrakyan, Art

    2017-11-01

    The purpose of this study is to explore the impact of surgeon characteristics (including annual volume, specialty, and years in practice) on outcomes of carotid endarterectomy (CEA) for asymptomatic carotid atherosclerosis in New York State. The New York Statewide Planning and Cooperation System database was utilized to identify patients undergoing CEA from 2004 to 2011. Provider characteristics were determined by linkage to the New York Office of Professions and National Provider Identification databases. Provider-level factors were characterized by defining 5 quintiles of equal size for each factor. Hierarchical logistic regression models were created to evaluate the impact of provider characteristics on outcome. In total, 36,495 patients underwent CEA for asymptomatic disease performed by vascular (75.7%), general (16.1%), cardiac (6%), and neuro (2.1%) surgeons. Outcomes of interest included in-hospital mortality (0.26%), stroke (0.45%), and the composite end point of mortality, stroke, or cardiac complication (2.2%). Unadjusted outcomes improved with increasing surgeon annual CEA volume. Mid-career surgeons had lower mortality and stroke rates than early or late-career surgeons. Odds of mortality were increased when surgery was performed by the lowest volume providers (quintile 1; 0-11 CEA/year) (odds ratio [OR] 2.62, 95% confidence interval [CI] 1.3-5.28) or a nonspecialty trained (general) surgeon (OR 1.64, 95% 1.01-2.67). After adjustment for all patient-level factors, provider volume remained an independent predictor of outcome, with significantly increased odds of mortality for volume quintile 1 (OR 2.57, 95% CI 1.27-5.23) and quintile 2 (12-22 CEA/year) (0.30%; OR 2.07, 95% CI 1-4.27) surgeons. Adverse events after CEA for asymptomatic disease are comparatively rare. However, surgeon characteristics impact outcome, with the best results offered by high-volume, mid-career, specialty-trained surgeons. Efforts to define the optimal treatment of asymptomatic carotid atherosclerosis must account for the impact of surgeon characteristics on patient outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Left Atrial Remodeling and Atrioventricular Coupling in a Canine Model of Early Heart Failure With Preserved Ejection Fraction

    PubMed Central

    Zakeri, Rosita; Moulay, Gilles; Chai, Qiang; Ogut, Ozgur; Hussain, Saad; Takahama, Hiroyuki; Lu, Tong; Wang, Xiao-Li; Linke, Wolfgang A.; Lee, Hon-Chi; Redfield, Margaret M.

    2016-01-01

    Background Left atrial (LA) compliance and contractility influence left ventricular (LV) stroke volume. We hypothesized that diminished LA compliance and contractile function occur early during development of heart failure with preserved ejection fraction (HFpEF) and impair overall cardiac performance. Method and Results Cardiac magnetic resonance imaging, echocardiography, LV and LA pressure-volume studies, and tissue analyses were performed in a model of early HFpEF (elderly dogs, renal wrap-induced hypertension, exogenous aldosterone; n=9) and young control dogs (sham surgery; n=13). Early HFpEF was associated with LA enlargement, cardiomyocyte hypertrophy and enhanced LA contractile function (median active emptying fraction 16% [95% CI 13–24] vs 12[10–14]%, p=0.008; end-systolic pressure-volume relationship slope 2.4[1.9–3.2]mmHg/mL HFpEF vs 1.5[1.2–2.2]mmHg/mL controls, p=0.01). However, atrioventricular coupling was impaired and the curvilinear LA end-reservoir pressure-volume relationship was shifted upward/leftward in HFpEF (LA stiffness constant, βLA, 0.16[0.11–0.18]mmHg/mL vs 0.06[0.04–0.10]mmHg/mL controls, p=0.002) indicating reduced LA compliance. Impaired atrioventricular coupling and lower LA compliance correlated with lower LV stroke volume. Total fibrosis and titin isoform composition were similar between groups, however titin was hyperphosphorylated in HFpEF and correlated with βLA. LA microvascular reactivity was diminished in HFpEF versus controls. LA microvascular density tended to be lower in HFpEF and inversely correlated with βLA. Conclusions In early-stage hypertensive HFpEF, LA cardiomyocyte hypertrophy, titin hyperphosphorylation and microvascular dysfunction occur in association with increased systolic and diastolic LA chamber stiffness, impaired atrioventricular coupling and decreased LV stroke volume. These data indicate that maladaptive LA remodeling occurs early during HFpEF development, supporting a concept of global myocardial remodeling. PMID:27758811

  17. Glyburide is associated with attenuated vasogenic edema in stroke patients

    PubMed Central

    Kimberly, W. Taylor; Battey, Thomas W. K.; Pham, Ly; Wu, Ona; Yoo, Albert J.; Furie, Karen L.; Singhal, Aneesh B.; Elm, Jordan J.; Stern, Barney J.; Sheth, Kevin N.

    2016-01-01

    Background and Purpose Brain edema is a serious complication of ischemic stroke that can lead to secondary neurological deterioration and death. Glyburide is reported to prevent brain swelling in preclinical rodent models of ischemic stroke through inhibition of a non-selective channel composed of sulfonylurea receptor 1 (SUR1) and transient receptor potential cation channel subfamily M member 4 (TRPM4). However, the relevance of this pathway to the development of cerebral edema in stroke patients is not known. Methods Using a case control design, we retrospectively assessed neuroimaging and blood markers of cytotoxic and vasogenic edema in subjects who were enrolled in the Glyburide Advantage in Malignant Edema and Stroke-Pilot (GAMES-Pilot) trial. We compared serial brain magnetic resonance images (MRIs) to a cohort with similar large volume infarctions. We also compared matrix metalloproteinase-9 plasma level in large hemispheric stroke. Results We report that IV glyburide was associated with attenuated T2 fluid attenuated inversion recovery (FLAIR) signal intensity ratio on brain MRI, diminished the lesional water diffusivity between days 1 and 2 (pseudo-normalization), and reduced blood matrix metalloproteinase-9 (MMP-9) level. Conclusions Several surrogate markers of vasogenic edema appear to be reduced in the setting of IV glyburide treatment in human stroke. Verification of these potential imaging and blood biomarkers is warranted in the context of a randomized, placebo-controlled trial. PMID:24072459

  18. 40 CFR 86.094-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission data engine based on the highest fuel feed per stroke, primarily at the speed of maximum rated... the manufacturer to result in stabilized emissions. The emission performance of the emission data...

  19. 40 CFR 86.094-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission data engine based on the highest fuel feed per stroke, primarily at the speed of maximum rated... the manufacturer to result in stabilized emissions. The emission performance of the emission data...

  20. Effects of increasing left ventricular filling pressure in patients with acute myocardial infarction

    PubMed Central

    Russell, Richard O.; Rackley, Charles E.; Pombo, Jaoquin; Hunt, David; Potanin, Constantine; Dodge, Harold T.

    1970-01-01

    Left ventricular performance in 19 patients with acute myocardial infarction has been evaluated by measuring left ventricular response in terms of cardiac output, stroke volume, work, and power to progressive elevation of filling pressure accomplished by progressive expansion of blood volume with rapid infusion of low molecular weight dextran. Such infusion can elevate the cardiac output, stroke volume, work, and power and thus delineate the function of the left ventricle by Frank-Starling function curves. Left ventricular filling pressure in the range of 20-24 mm Hg was associated with the peak of the curves and when the filling pressure exceeded this range, the curves became flattened or decreased. An increase in cardiac output could be maintained for 4 or more hr. Patients with a flattened function curve had a high mortality in the ensuing 8 wk. The function curve showed improvement in myocardial function during the early convalescence. When left ventricular filling pressure is monitored directly or as pulmonary artery end-diastolic pressure, low molecular weight dextran provides a method for assessment of left ventricular function. Images PMID:5431663

  1. Relationship between systolic and diastolic function with improvements in forward stroke volume following reduction in mitral regurgitation

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2001-01-01

    Efforts to improve mitral regurgitation (MR) are often performed in conjunction with coronary revascularization. However, the independent effects of a reduced MR area (MRa) are difficult to quantify. Using a previously developed cardiovascular model, ventricular contractility (elastance 1-8 mmHg/ml) and relaxation (tau: 40-150 msec) were independently adjusted for four grades of MR orifice areas (0.0 to 0.8 cm2). Improvements in forward stroke volume (fSV) were determined for the permutations of reduced MRa. For all conditions, LV end-diastolic pressure and volumes ranged from 7.3-24.2 mmHg and 64.8-174.3 ml, respectively. Overall, fSV ranged from 36.0-89.4 (mean: 64.2 +/- 12.8) ml, improved between 6.4 and 35.3% (mean: 15.6 +/- 8.1%), and was best predicted by (r=0.97, p<0.01) %delta(fSV)[correction of fVS]=34[MRa initial] - 46[MRa final] -0.5[elastance]. Reduced MRa, independent of relaxation and minimally influence by contractility, yield improved fSVs.

  2. Noninvasive aortic bloodflow by Pulsed Doppler Echocardiography (PDE) compared to cardiac output by the direct Fick procedure

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Left ventricular stroke volume was estimated from the systolic velocity integral in the ascending aorta by pulsed Doppler Echocardiography (PDE) and the cross sectional area of the aorta estimated by M mode echocardiography on 15 patients with coronary disease undergoing right catheterization for diagnostic purposes. Cardiac output was calculated from stroke volume and heart volume using the PDE method as well as the Fick procedure for comparison. The mean value for the cardiac output via the PDE method (4.42 L/min) was only 6% lower than for the cardiac output obtained from the Fick procedure (4.69 L/min) and the correlation between the two methods was excellent (r=0.967, p less than .01). The good agreement between the two methods demonstrates that the PDE technique offers a reliable noninvasive alternative for estimating cardiac output, requiring no active cooperation by the subject. It was concluded that the Doppler method is superior to the Fick method in that it provides beat by beat information on cardiac performance.

  3. Circulatory failure during severe hyperthermia in dog.

    PubMed

    Miki, K; Morimoto, T; Nose, H; Itoh, T; Yamada, S

    1983-01-01

    The effect of acute hyperthermia on circulatory function was studied in 6 mongrel dogs. At a core temperature of about 40 degrees C, central venous pressure and stroke volume were maintained at almost normal level. Cardiac output significantly increased (26 ml/(kg . min)) while systemic vascular resistance significantly decreased (1.2 mmHg . sec/ml). In addition, significant decrease in vascular compliance by 40% was observed. When body temperature was raised further (severe hyperthermia), an abrupt fall of arterial pressure was observed at the rectal temperature of about 41-42 degrees C. Concomitant decreases in central venous pressure (3 mmHg), stroke volume (2.1 ml/beat) and cardiac output (29 ml/(kg . min)) were observed while heart rate increased (48 beats/min). These results suggest that the decrease in cardiac output during severe hyperthermia is due to the fall of central venous pressure, and the fall was attributed to the increase in unstressed vascular volume of systemic circulation due to the heat-induced cutaneous vasodilation. The observed decrease in systemic vascular compliance is considered to have a significant role in the maintenance of central venous pressure under hyperthermia.

  4. Automatic Extraction of Myocardial Mass and Volume Using Parametric Images from Dynamic Nongated PET.

    PubMed

    Harms, Hendrik Johannes; Stubkjær Hansson, Nils Henrik; Tolbod, Lars Poulsen; Kim, Won Yong; Jakobsen, Steen; Bouchelouche, Kirsten; Wiggers, Henrik; Frøkiaer, Jørgen; Sörensen, Jens

    2016-09-01

    Dynamic cardiac PET is used to quantify molecular processes in vivo. However, measurements of left ventricular (LV) mass and volume require electrocardiogram-gated PET data. The aim of this study was to explore the feasibility of measuring LV geometry using nongated dynamic cardiac PET. Thirty-five patients with aortic-valve stenosis and 10 healthy controls underwent a 27-min (11)C-acetate PET/CT scan and cardiac MRI (CMR). The controls were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were generated from nongated dynamic data. Using software-based structure recognition, the LV wall was automatically segmented from K1 images to derive functional assessments of LV mass (mLV) and wall thickness. End-systolic and end-diastolic volumes were calculated using blood pool images and applied to obtain stroke volume and LV ejection fraction (LVEF). PET measurements were compared with CMR. High, linear correlations were found for LV mass (r = 0.95), end-systolic volume (r = 0.93), and end-diastolic volume (r = 0.90), and slightly lower correlations were found for stroke volume (r = 0.74), LVEF (r = 0.81), and thickness (r = 0.78). Bland-Altman analyses showed significant differences for mLV and thickness only and an overestimation for LVEF at lower values. Intra- and interobserver correlations were greater than 0.95 for all PET measurements. PET repeatability accuracy in the controls was comparable to CMR. LV mass and volume are accurately and automatically generated from dynamic (11)C-acetate PET without electrocardiogram gating. This method can be incorporated in a standard routine without any additional workload and can, in theory, be extended to other PET tracers. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Cardiovascular simulator improvement: pressure versus volume loop assessment.

    PubMed

    Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Leme, Juliana; Legendre, Daniel; Bock, Eduardo; Lucchi, Julio Cesar

    2011-05-01

    This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Diagnosis & Treatment | Coronary Artery Disease | NIH MedlinePlus the Magazine

    MedlinePlus

    ... blockage is. Treatment Latest NIH Research Recent gene-mapping research has found the largest set of genes ... the arteries and improves blood flow to the brain, helping prevent a stroke. Fall 2010 Issue: Volume ...

  7. Electroacupuncture brain protection during ischemic stroke: A role for the parasympathetic nervous system.

    PubMed

    Chi, Laiting; Du, Kairong; Liu, Dongdong; Bo, Yulong; Li, Wenzhi

    2018-03-01

    The demand for using parasympathetic activation for stroke therapy is unmet. In the current study, we investigated whether the neuroprotection provided by electroacupuncture (EA) in an experimental stroke model was associated with activation of the parasympathetic nervous system (PNS). The results showed that parasympathetic dysfunction (PD), performed as unilateral vagotomy combined with peripheral atropine, attenuated both the functional benefits of EA and its effects in improving cerebral perfusion, reducing infarct volume, and hindering apoptosis, neuronal and peripheral inflammation, and oxidative stress. Most importantly, EA rats showed a dramatically less reduction in the mRNA level of choline acetyltransferase, five subtypes of muscarinic receptors and α7nAChR, suggesting the inhibition of the impairment of the central cholinergic system; EA also activated dorsal motor nucleus of the vagus, the largest source of parasympathetic pre-ganglionic neurons in the lower brainstem (detected by c-fos immunohistochemistry), and PD suppressed these changes. These findings indicated EA may serve as an alternative modality of PNS activation for stroke therapy.

  8. High blood glutamate oxaloacetate transaminase levels are associated with good functional outcome in acute ischemic stroke

    PubMed Central

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Castellanos, Mar; Blanco, Miguel; Rodríguez-Yáñez, Manuel; Serena, Joaquín; Leira, Rogelio; Castillo, José

    2011-01-01

    The capacity of the blood enzyme glutamate oxaloacetate transaminase (GOT) to remove glutamate from the brain by means of blood glutamate degradation has been shown in experimental models to be an efficient and novel neuroprotective tool against ischemic stroke; however, the beneficial effects of this enzyme should be tested in patients with stroke to validate these results. This study aims to investigate the association of GOT levels in blood with clinical outcome in patients with acute ischemic stroke. In two clinical independent studies, we found that patients with poor outcome show higher glutamate and lower GOT levels in blood at the time of admission. Lower GOT levels and higher glutamate levels were independently associated with poorer functional outcome at 3 months and higher infarct volume. These findings show a clear association between high blood glutamate levels and worse outcome and vice versa for GOT, presumably explained by the capacity of this enzyme to metabolize blood glutamate. PMID:21266984

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Luoyang Electronic Equipment Testing Center, Luoyang 471000; Chen, Bin, E-mail: emcchen@163.com

    The Rayleigh-Taylor (R-T) instabilities are important hydrodynamics and magnetohydrodynamics (MHD) phenomena that are found in systems in high energy density physics and normal fluids. The formation and evolution of the R-T instability at channel boundary during back-flow of the lightning return stroke are analyzed using the linear perturbation theory and normal mode analysis methods, and the linear growth rate of the R-T instability in typical condition for lightning return stroke channel is obtained. Then, the R-T instability phenomena of lightning return stroke are simulated using a two-dimensional Eulerian finite volumes resistive radiation MHD code. The numerical results show that themore » evolution characteristics of the R-T instability in the early stage of back-flow are consistent with theoretical predictions obtained by linear analysis. The simulation also yields more evolution characteristics for the R-T instability beyond the linear theory. The results of this work apply to some observed features of the return stroke channel and further advance previous theoretical and experimental work.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostroem, P.A.

    In order to evaluate the therapeutic effects of metoprolol, nifedipine, and their combination, 11 patients with secondary angina pectoris and with thallium tomographic findings indicating coronary artery disease were studied before and after these three treatment regimes in a single-blind cross-over study. The therapeutic effect was measured by standardized working test and isotope angiocardiography, which enabled evaluation of left ventricular ejection fraction, stroke volume, and phase analysis of left ventricular contraction. Treatment with metoprolol and combination therapy increased work performance. Ejection fraction did not differentiate the treatment regimes, whereas stroke volume was significantly lower at work and heart rate highermore » at rest and at work during nifedipine treatment compared to either metoprolol or combination treatment (p less than 0.05). Cardiac output was significantly reduced during nifedipine and metoprolol treatment during work (p less than 0.05). Phase improved after all therapeutic regimes, but reached significance only during the metoprolol treatment period at rest (p less than 0.05).« less

  11. Evaluation of bioimpedance for the measurement of physiologic variables as related to hemodynamic studies in space flight

    NASA Technical Reports Server (NTRS)

    Taylor, Bruce C.

    1993-01-01

    Orthostatic intolerance, following space flight, has received substantial attention because of the possibility that it compromises astronaut safety and reduces the ability of astronauts to function at peak performance levels upon return to a one-g environment. Many pre- and post-flight studies are performed to evaluate changes in hemodynamic responses to orthostatic challenges after shuttle missions. The purpose of this present project is to validate bioimpedance as a means to acquire stroke volume and other hemodynamic information in these studies. In this study, ten male and ten female subjects were subjected to simultaneous measurements of thoracic bioimpedance and Doppler ultrasonic velocimetry under supine, 10 degree head down and 30 degree head up conditions. Paired measurements were made during six periods of five seconds breath holding, over a two minute period, for each of the three positions. Stroke volume was calculated by three bioimpedance techniques and ultrasonic Doppler.

  12. Cardiovascular function in pulmonary emphysema.

    PubMed

    Visca, Dina; Aiello, Marina; Chetta, Alfredo

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) and chronic cardiovascular disease, such as coronary artery disease, congestive heart failure, and cardiac arrhythmias, have a strong influence on each other, and systemic inflammation has been considered as the main linkage between them. On the other hand, airflow limitation may markedly affect lung mechanics in terms of static and dynamic hyperinflation, especially in pulmonary emphysema, and they can in turn influence cardiac performance as well. Skeletal mass depletion, which is a common feature in COPD especially in pulmonary emphysema patients, may have also a role in cardiovascular function of these patients, irrespective of lung damage. We reviewed the emerging evidence that highlights the role of lung mechanics and muscle mass impairment on ventricular volumes, stroke volume, and stroke work at rest and on exercise in the presence of pulmonary emphysema. Patients with emphysema may differ among COPD population even in terms of cardiovascular function.

  13. Consequences of cardiovascular adaptation to spaceflight: implications for the use of pharmacological countermeasures

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    2005-01-01

    There is little evidence obtained from space flight to support the notion that occurrence of cardiac dysrhythmias, impaired cardiac and vascular function, and manifestation of asymptomatic cardiovascular disease represent serious risks during space flight. Therefore, the development of orthostatic hypotension and instability immediately after return from spaceflight probably reflect the most significant operational risks associated with the cardiovascular system of astronauts. Significant reductions in stroke volume and lower reserve for increasing peripheral vascular resistance contribute to ineffective maintenance of systemic arterial blood pressure during standing after spaceflight despite compensatory elevations in heart rate. The primary mechanism underlying reduced stroke volume appears to be a reduction in preload associated with less circulating blood volume while inadequate peripheral vasoconstriction may be caused partly by hyporeactivity of receptors that control arterial smooth muscle function. A focus for development of future countermeasures for hemodynamic responses to central hypovolemia includes the potential application of pharmacological agents that specifically target and restore blood volume (e.g., fludrocortisone, electrolyte-containing beverages) and reserve for vasoconstriction (e.g., midodrine, vasopressin). Based on systematic evaluations, acute physical exercise designed to elicit maximal effort or inspiratory resistance have shown promise as successful countermeasures that provide protection against development of orthostatic hypotension and intolerance without potential risks and side effects associated with specific pharmacological interventions.

  14. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke

    PubMed Central

    2011-01-01

    Background Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage. Methods We sequentially enrolled acute ischemic stroke patients, who admitted between April 2003 and March 2004, into the edaravone(-) group (n = 83) and, who admitted between April 2004 and March 2005, into the edaravone(+) group (n = 93). Because, edaravone has been used as the standard treatment after April 2004 in our hospital. To assess the temporal profile of the stroke lesion size, the ratio of the area [T2-weighted magnetic resonance images (T2WI)/iffusion-weighted magnetic resonance images (DWI)] were calculated. Observations on T2WI were continued beyond one year, and observational times were classified into subacute (1-2 months after the onset), early chronic (3-6 month), late chronic (7-12 months) and old (≥13 months) stages. Neurological deficits were assessed by the National Institutes of Health Stroke Scale upon admission and at discharge and by the modified Rankin Scale at 1 year following stroke onset. Results Stroke lesion size was significantly attenuated in the edaravone(+) group compared with the edaravone(-) group in the period of early and late chronic observational stages. However, this reduction in lesion size was significant within a year and only for the small-vessel occlusion stroke patients treated with edaravone. Moreover, patients with small-vessel occlusion strokes that were treated with edaravone showed significant neurological improvement during their hospital stay, although there were no significant differences in outcome one year after the stroke. Conclusion Edaravone treatment reduced the volume of the infarct and improved neurological deficits during the subacute period, especially in the small-vessel occlusion strokes. PMID:21447190

  15. Headache in acute ischaemic stroke: a lesion mapping study.

    PubMed

    Seifert, Christian L; Schönbach, Etienne M; Magon, Stefano; Gross, Elena; Zimmer, Claus; Förschler, Anette; Tölle, Thomas R; Mühlau, Mark; Sprenger, Till; Poppert, Holger

    2016-01-01

    Headache is a common symptom in acute ischaemic stroke, but the underlying mechanisms are incompletely understood. The aim of this lesion mapping study was to identify brain regions, which are related to the development of headache in acute ischaemic stroke. Patients with acute ischaemic stroke (n = 100) were assessed by brain MRI at 3 T including diffusion weighted imaging. We included 50 patients with stroke and headache as well as 50 patients with stroke but no headache symptoms. Infarcts were manually outlined and images were transformed into standard stereotaxic space using non-linear warping. Voxel-wise overlap and subtraction analyses of lesions as well as non-parametric statistics were conducted. The same analyses were carried out by flipping of left-sided lesions, so that all strokes were transformed to the same hemisphere. Between the headache group as well as the non-headache there was no difference in infarct volumes, in the distribution of affected vascular beds or in the clinical severity of strokes. The headache phenotype was tension-type like in most cases. Subtraction analysis revealed that in headache sufferers infarctions were more often distributed in two well-known areas of the central pain matrix: the insula and the somatosensory cortex. This result was confirmed in the flipped analysis and by non-parametric statistical testing (whole brain corrected P-value < 0.01). To the best of our knowledge, this is the first lesion mapping study investigating potential lesional patterns associated with headache in acute ischaemic stroke. Insular strokes turned out to be strongly associated with headache. As the insular cortex is a well-established region in pain processing, our results suggest that, at least in a subgroup of patients, acute stroke-related headache might be centrally driven. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Time to brain imaging in acute stroke is improving: secondary analysis of the INSTINCT trial.

    PubMed

    Sauser, Kori; Burke, James F; Levine, Deborah A; Scott, Phillip A; Meurer, William J

    2014-01-01

    Patients with acute ischemic stroke benefit from rapid evaluation and treatment, and timely brain imaging is a necessary component. We determined the effect of a targeted behavioral intervention on door-to-imaging time (DIT) among patients with ischemic stroke treated with tissue-type plasminogen activator. Second, we examined the variation in DIT accounted for by patient-level and hospital-level factors. The Increasing Stroke Treatment through Interventional behavioral Change Tactics (INSTINCT) trial was a cluster-randomized, controlled trial involving 24 Michigan hospitals. The intervention aimed to increase tissue-type plasminogen activator utilization. Detailed chart abstractions collected data for 557 patients with ischemic stroke. We used a series of hierarchical linear mixed-effects models to evaluate the effect of the intervention on DIT (difference-in-differences analysis) and used patient-level and hospital-level explanatory variables to decompose variation in DIT. DIT improved over time, without a difference between intervention and control hospitals (intervention: 23.7-19.3 minutes, control: 28.9-19.2 minutes; P=0.56). Adjusted DIT was faster in patients who arrived by ambulance (7.2 minutes; 95% confidence interval, 4.1-10.2), had severe strokes (1.0 minute per +5-point National Institutes of Health Stroke Scale; 95% confidence interval, 0.1-2.0), and presented in the postintervention period (4.9 minutes; 95% confidence interval, 2.3-7.4). After accounting for these factors, 13.8% of variation in DIT was attributable to hospital. Neither hospital stroke volume nor stroke center status was associated with DIT. Performance on DIT improved similarly in intervention and control hospitals, suggesting that nonintervention factors explain the improvement. Hospital-level factors explain a modest proportion of variation in DIT, but further research is needed to identify the hospital-level factors responsible.

  17. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

    PubMed

    Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas

    2011-12-01

    As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom.

    PubMed

    Montalba, Cristian; Urbina, Jesus; Sotelo, Julio; Andia, Marcelo E; Tejos, Cristian; Irarrazaval, Pablo; Hurtado, Daniel E; Valverde, Israel; Uribe, Sergio

    2018-04-01

    To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions. We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes. When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm 3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm 3 and 20 ms, respectively. Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882-1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Effects of imposed acid-base derangement on the cardiovascular effects and pharmacokinetics of bupivacaine and thiopental.

    PubMed

    Mather, Laurence E; Ladd, Leigh A; Copeland, Susan E; Chang, Dennis H-T

    2004-06-01

    By changing physicochemical properties such as effective lipophilicity, changes in blood pH could alter the distribution, elimination, and effects of weakly ionizing drugs. The authors examined the outcome of imposed acid-base derangement on cardiovascular effects and myocardial and whole body pharmacokinetics of bupivacaine, a weak base, and thiopental, a weak acid. Intravenous infusions of rac-bupivacaine HCl (37.5 mg) or rac-thiopental sodium (250 mg, subanesthetic dose) were administered over 3 min to previously instrumented conscious ewes with normal blood pH, acidemia imposed by lactic acid infusion, or alkalemia imposed by bicarbonate infusion. Hemodynamic and electrocardiographic effects were recorded; arterial and coronary sinus drug blood concentrations were analyzed by chiral high-performance liquid chromatography. Bupivacaine decreased myocardial contractility, coronary perfusion, heart rate, and cardiac output; however, cardiac output and stroke volume were not as affected by bupivacaine with acidemia. Thiopental decreased myocardial contractility and stroke volume and increased heart rate; acidemia enhanced the tachycardia and produced a greater decrease in stroke volume than with alkalemia. Taken as a whole, the cardiovascular changes were not systematically modified by acid-base derangement. Overall, the tissue distribution of bupivacaine was favored by alkalemia, but thiopental pharmacokinetics were essentially unaffected by acid-base derangement. Acid-base derangement did not influence the kinetics of either drug enantioselectively. At the doses used, the hemodynamic and electrocardiographic effects of bupivacaine and thiopental were not systematically modified by acid-base derangement, nor were there changes in regional or whole body pharmacokinetics of either drug that were clearly related to acid-base status.

  20. Evaluation of stroke volume variation obtained by arterial pulse contour analysis to predict fluid responsiveness intraoperatively.

    PubMed

    Lahner, D; Kabon, B; Marschalek, C; Chiari, A; Pestel, G; Kaider, A; Fleischmann, E; Hetz, H

    2009-09-01

    Fluid management guided by oesophageal Doppler monitor has been reported to improve perioperative outcome. Stroke volume variation (SVV) is considered a reliable clinical predictor of fluid responsiveness. Consequently, the aim of the present trial was to evaluate the accuracy of SVV determined by arterial pulse contour (APCO) analysis, using the FloTrac/Vigileo system, to predict fluid responsiveness as measured by the oesophageal Doppler. Patients undergoing major abdominal surgery received intraoperative fluid management guided by oesophageal Doppler monitoring. Fluid boluses of 250 ml each were administered in case of a decrease in corrected flow time (FTc) to <350 ms. Patients were connected to a monitoring device, obtaining SVV by APCO. Haemodynamic variables were recorded before and after fluid bolus application. Fluid responsiveness was defined as an increase in stroke volume index >10%. The ability of SVV to predict fluid responsiveness was assessed by calculation of the area under the receiver operating characteristic (ROC) curve. Twenty patients received 67 fluid boluses. Fifty-two of the 67 fluid boluses administered resulted in fluid responsiveness. SVV achieved an area under the ROC curve of 0.512 [confidence interval (CI) 0.32-0.70]. A cut-off point for fluid responsiveness was found for SVV > or =8.5% (sensitivity: 77%; specificity: 43%; positive predictive value: 84%; and negative predictive value: 33%). This prospective, interventional observer-blinded study demonstrates that SVV obtained by APCO, using the FloTrac/Vigileo system, is not a reliable predictor of fluid responsiveness in the setting of major abdominal surgery.

  1. A comparison between the pathophysiology of multiple sclerosis and normal pressure hydrocephalus: is pulse wave encephalopathy a component of MS?

    PubMed

    Bateman, Grant A; Lechner-Scott, Jeannette; Lea, Rodney A

    2016-09-22

    It has been suggested there is a chronic neurodegenerative disorder, underlying the pathophysiology of multiple sclerosis (MS), which is distinct from the more obvious immune-mediated attack on the white matter. Limited data exists indicating there is an alteration in pulse wave propagation within the craniospinal cavity in MS, similar to the findings in normal pressure hydrocephalus (NPH). It is hypothesized MS may harbor pulse wave encephalopathy. The purpose of this study is to compare blood flow and pulse wave measurements in MS patients with a cohort of NPH patients and control subjects, to test this hypothesis. Twenty patients with MS underwent magnetic resonance (MR) flow quantification techniques. Mean blood flow and stroke volume were measured in the arterial inflow and venous out flow from the sagittal (SSS) and straight sinus (ST). The arteriovenous delay (AVD) was defined. The results were compared with both age-matched controls and NPH patients. In MS there was a 35 % reduction in arteriovenous delay and a 5 % reduction in the percentage of the arterial inflow returning via the sagittal sinus compared to age matched controls. There was an alteration in pulse wave propagation, with a 26 % increase in arterial stroke volume but 30 % reduction in SSS and ST stroke volume. The AVD and blood flow changes were in the same direction to those of NPH patients. There are blood flow and pulsation propagation changes in MS patients which are similar to those of NPH patients. The findings would be consistent with an underlying pulse wave encephalopathy component in MS.

  2. Factors that Can Help Select the Timing for Decompressive Hemicraniectomy for Malignant MCA Stroke.

    PubMed

    Kamran, Saadat; Salam, Abdul; Akhtar, Naveed; Alboudi, Ayman; Kamran, Kainat; Singh, Rajvir; Amir, Numan; Inshasi, Jihad; Qidwai, Uwais; Malik, Rayaz A; Shuaib, Ashfaq

    2018-03-06

    In patients with malignant middle cerebral artery (MMCA) stroke, a vital clinically relevant question is determination of the speed with which infarction evolves to select the time for decompressive hemicraniectomy [DHC]. A retrospective, multicenter cross-sectional study of patients referred for DHC, based on the criteria of randomized controlled trials, was undertaken to identify factors for selecting the timing of DHC in MMCA stroke, stratified by time [< 48, 48-72, > 72 h]. Infarction volume and infarct growth rate [IGR] were measured on all CT scans. One hundred eighty-two patients [135 underwent DHC and 47 survived without DHC] were included in the analysis. After multivariate adjustment, factors showing the strongest independent association with DHC were patients < 55 years of age, septum pellucidum deviation, temporal lobe involvement, MCA with additional infarcts, and IGR on second CT. Of the five factors identified, different combinations of determining factors were observed in each subgroup. Both first and second IGRs were highest in the < 48, 48-< 72, and > 72 h [p < 0.001]. Patients who survived without surgery had the slowest IGRs. There was no association between time to DHC and infarct volume, although infarct volume was lower in patients who survived without DHC compared to the DHC subgroups. We identify the major risk factors associated with DHC in time-stratified subgroups of patients with MMCA. Evaluation of IGRs between the first and second scan and when possible second and third scan can help in selecting the timing of hemicraniectomy.

  3. Predicting discharge destination after stroke: A systematic review.

    PubMed

    Mees, Margot; Klein, Jelle; Yperzeele, Laetitia; Vanacker, Peter; Cras, Patrick

    2016-03-01

    Different factors have been studied and proven to significantly influence discharge destination of acute stroke patients after hospitalization. Few reviews have been published combining the results of these studies. Therefore we aim to present an overview of the studies conducted regarding these predicting factors. Through conducting a systematic review we aimed to study the different predictive factors influencing discharge destination of acute stroke patients after hospitalization. Nineteen articles were selected in accordance with the research question and inclusion criteria. The factors found were, according to their significance in the articles, subcategorized in age, gender, functional status, cognitive status, race and ethnicity, co morbidities, education, stroke characteristics, social and living situation. The main factors significantly associated with other than home discharge were functional dependence/comorbidities, neurocognitive dysfunction and previous living circumstances/marital status. A medium or large infarct is associated with institutionalization. The stroke volume is not associated with home discharge. The effect of other factors remain controversial and results differ between studies. These include: age, gender, race, affected hemisphere and availability of a caregiver not living at home. Factors such as education, hospital complications, geographic location and FIM progression during hospitalization have not been studied sufficiently. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Accelerometry: A feasible method to monitor physical activity during sub-acute rehabilitation of persons with stroke.

    PubMed

    Joseph, Conran; Strömbäck, Björn; Hagströmer, Maria; Conradsson, David

    2018-05-08

    To investigate the feasibility of using accelerometers to monitor physical activity in persons with stroke admitted to inpatient rehabilitation. Longitudinal observational study. Persons with stroke admitted to a specialized rehabilitation centre for sub-acute rehabilitation were recruited between August and December 2016. Volume and intensity of physical activity were assessed with accelerometers throughout the rehabilitation period. Indicators of feasibility included processes (recruitment, protocol adherence and participants' experiences) and scientific feasibility, which assessed the accelerometers' ability to detect change in physical activity among stroke survivors who ambulate independently and those who are dependent on a mobility device. Twenty-seven out of 31 eligible individuals took part in this study, with 23 (85%) completing it. In total, 432 days of rehabilitation were monitored and valid physical activity data were obtained for 408 days (94%). There were no indications that the measurement interfered with participants' ability to participate in rehabilitation. Despite the subjects' ambulation status, the number of steps and time spent in moderate-to-vigorous physical activity increased significantly across the first 18 days of rehabilitation, whereas sedentary time was unchanged. This study supports the feasibility of using accelerometers to capture physical activity behaviour in survivors of stroke during inpatient rehabilitation.

  5. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study.

    PubMed

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-06-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain-blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke.

  6. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study

    PubMed Central

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-01-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain–blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke. PMID:21266983

  7. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    PubMed Central

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2011-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI. PMID:21209786

  8. The application of MRI for depiction of subtle blood brain barrier disruption in stroke.

    PubMed

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2010-12-26

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI.

  9. First-ever ischemic stroke in elderly patients: predictors of functional outcome following carotid artery stenting

    PubMed Central

    Lin, Chih-Ming; Chang, Yu-Jun; Liu, Chi-Kuang; Yu, Cheng-Sheng; Lu, Henry Horng-Shing

    2016-01-01

    Age is an important risk factor for stroke, and carotid artery stenosis is the primary cause of first-ever ischemic stroke. Timely intervention with stenting procedures can effectively prevent secondary stroke; however, the impact of stenting on various periprocedural physical functionalities has never been thoroughly investigated. The primary aim of this study was to investigate whether prestenting characteristics were associated with long-term functional outcomes in patients presenting with first-ever ischemic stroke. The secondary aim was to investigate whether patient age was an important factor in outcomes following stenting, measured by the modified Rankin scale (mRS). In total, 144 consecutive patients with first-ever ischemic stroke who underwent carotid artery stenting from January 2010 to November 2014 were included. Clinical data were obtained by review of medical records. The Barthel index (BI) and mRS were used to assess disability before stenting and at 12-month follow-up. In total, 72/144 patients showed improvement (mRS[+]), 71 showed stationary and one showed deterioration in condition (mRS[−]). The prestenting parameters, ratio of cerebral blood volume (1.41 vs 1.2 for mRS[−] vs mRS[+]), BI (75 vs 85), and high-sensitivity C-reactive protein (hsCRP 5.0 vs 3.99), differed significantly between the two outcome groups (P<0.05). The internal carotid artery/common carotid artery ratio (P=0.011), BI (P=0.019), ipsilateral internal carotid artery resistance index (P=0.003), and HbA1c (P=0.039) were all factors significantly associated with patient age group. There was no significant association between age and poststenting outcome measured by mRS with 57% of patients in the ≥75 years age group showing mRS(−) and 43% showing mRS(+) (P=0.371). Our findings indicate that in our elderly patient series, carotid artery stenting may benefit a significant proportion of carotid stenotic patients regardless of age. Ratio of cerebral blood volume, BI, and admission hsCRP could serve as important predictors of mRS improvement and may facilitate differentiation of patients at baseline. PMID:27555753

  10. China Angioplasty and Stenting for Symptomatic Intracranial Severe Stenosis (CASSISS): A new, prospective, multicenter, randomized controlled trial in China

    PubMed Central

    Gao, Peng; Zhao, Zhenwei; Wang, Daming; Wu, Jian; Cai, Yiling; Li, Tianxiao; Wu, Wei; Shi, Huaizhang; He, Weiwen; Zhu, Fengshui; Ling, Feng

    2015-01-01

    Background Patients with symptomatic stenosis of intradural arteries are at high risk for subsequent stroke. Since the SAMMPRIS trial, stenting is no longer recommended as primary treatment; however, the results of this trial, its inclusion criteria and its center selection received significant criticism and did not appear to reflect our experience regarding natural history nor treatment complications rate. As intracranial atherosclerosis (ICAS) is the most common cause for stroke in Asian countries, we are hereby proposing a refined prospective, randomized, multicenter study in an Asian population with strictly defined patient and participating center inclusion criteria. Methods The China Angioplasty and Stenting for Symptomatic Intracranial Severe Stenosis (CASSISS) trial is an ongoing, government-funded, prospective, multicenter, randomized trial. It recruits patients with recent TIA or stroke caused by 70%–99% stenosis of a major intracranial artery. Patients with previous stroke related to perforator ischemia will not be included. Only high-volume centers with a proven track record will enroll patients as determined by a lead-in phase. Patients will be randomized (1:1) to best medical therapy alone or medical therapy plus stenting. Primary endpoints are any stroke or death within 30 days after enrollment or after any revascularization procedure of the qualifying lesion during follow-up, or stroke in the territory of the symptomatic intracranial artery beyond 30 days. The CASSISS trial will be conducted in eight sites in China with core imaging lab review at a North American site and aims to have a sample size of 380 participants (stenting, 190; medical therapy, 190). Recruitment is expected to be finished by December 2016. Patients will be followed for at least three years. The trial is scheduled to complete in 2019. Conclusion In the proposed trial, certain shortcomings of SAMMPRIS including patient and participating center selection will be addressed. The present manuscript outlines the rationale and design of the study. We estimate that this trial will allow for a critical reappraisal of the role of intracranial stenting for selected patients in high-volume centers. PMID:25934656

  11. Diffusion Kurtosis Imaging of Acute Infarction: Comparison with Routine Diffusion and Follow-up MR Imaging.

    PubMed

    Yin, Jianzhong; Sun, Haizhen; Wang, Zhiyun; Ni, Hongyan; Shen, Wen; Sun, Phillip Zhe

    2018-05-01

    Purpose To determine the relationship between diffusion-weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in patients with acute stroke at admission and the tissue outcome 1 month after onset of stroke. Materials and Methods Patients with stroke underwent DWI (b values = 0, 1000 sec/mm 2 along three directions) and DKI (b values = 0, 1000, 2000 sec/mm 2 along 20 directions) within 24 hours after symptom onset and 1 month after symptom onset. For large lesions (diameter ≥ 1 cm), acute lesion volumes at DWI and DKI were compared with those at follow-up T2-weighted imaging by using Spearman correlation analysis. For small lesions (diameter < 1 cm), the number of acute lesions at DWI and DKI and follow-up T2-weighted imaging was counted and compared by using the McNemar test. Results Thirty-seven patients (mean age, 58 years; range, 35-82 years) were included. There were 32 large lesions and 138 small lesions. For large lesions, the volumes of acute lesions on kurtosis maps showed no difference from those on 1-month follow-up T2-weighted images (P = .532), with a higher correlation coefficient than those on the apparent diffusion coefficient and mean diffusivity maps (R 2 = 0.730 vs 0.479 and 0.429). For small lesions, the number of acute lesions on DKI, but not on DWI, images was consistent with that on the follow-up T2-weighted images (P = .125). Conclusion DKI complements DWI for improved prediction of outcome of acute ischemic stroke. © RSNA, 2018.

  12. Clinical Predictors of Attention and Executive Functioning Outcomes in Children After Perinatal Arterial Ischemic Stroke.

    PubMed

    Bosenbark, Danielle D; Krivitzky, Lauren; Ichord, Rebecca; Vossough, Arastoo; Bhatia, Aashim; Jastrzab, Laura E; Billinghurst, Lori

    2017-04-01

    Children with perinatal arterial ischemic stroke (PAIS) are at risk for later neurocognitive and behavioral deficits, yet the clinical predictors of these outcomes are understudied. We examined the influence of clinical and infarct characteristics on attention and executive functioning in children following PAIS. Forty children born at term (≥37 weeks' gestation) with PAIS (28 with neonatal arterial ischemic stroke and 12 with presumed PAIS) underwent a comprehensive neuropsychological battery at age three to 16 years (median age 7.2 years; 58% male) to assess attention and executive functioning. Parents also completed questionnaires regarding real-world functioning. Clinical variables including perinatal stroke subtype, infarct characteristics (location, laterality, and volume), and the presence of comorbid epilepsy were ascertained from the medical record. Presumed PAIS, larger infarct volume, and comorbid epilepsy negatively influenced the performance on attention and executive functioning measures. These clinical variables were also associated with greater functional problems on parent reports, including a higher frequency of attention-deficit/hyperactivity disorder symptoms and greater difficulties in some subdomains of executive functioning. Infarct location and laterality were not associated with performance measures or parental report of functioning. Although all children with PAIS are at risk for later deficits in attention and executive functioning, those with presumed PAIS, larger infarct size, and comorbid epilepsy appear to be the most vulnerable. As they approach and reach school age, these children should undergo neuropsychological assessment to ensure timely implementation of therapeutic interventions and behavioral strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Depletion of Cultivatable Gut Microbiota by Broad-Spectrum Antibiotic Pretreatment Worsens Outcome After Murine Stroke

    PubMed Central

    Winek, Katarzyna; Engel, Odilo; Koduah, Priscilla; Heimesaat, Markus M.; Fischer, André; Bereswill, Stefan; Dames, Claudia; Kershaw, Olivia; Gruber, Achim D.; Curato, Caterina; Oyama, Naoki; Meisel, Christian; Meisel, Andreas

    2016-01-01

    Background and Purpose— Antibiotics disturbing microbiota are often used in treatment of poststroke infections. A bidirectional brain–gut microbiota axis was recently suggested as a modulator of nervous system diseases. We hypothesized that gut microbiota may be an important player in the course of stroke. Methods— We investigated the outcome of focal cerebral ischemia in C57BL/6J mice after an 8-week decontamination with quintuple broad-spectrum antibiotic cocktail. These microbiota-depleted animals were subjected to 60 minutes middle cerebral artery occlusion or sham operation. Infarct volume was measured using magnetic resonance imaging, and mice were monitored clinically throughout the whole experiment. At the end point, tissues were preserved for further analysis, comprising histology and immunologic investigations using flow cytometry. Results— We found significantly decreased survival in the middle cerebral artery occlusion microbiota-depleted mice when the antibiotic cocktail was stopped 3 days before surgery (compared with middle cerebral artery occlusion specific pathogen-free and sham-operated microbiota-depleted mice). Moreover, all microbiota-depleted animals in which antibiotic treatment was terminated developed severe acute colitis. This phenotype was rescued by continuous antibiotic treatment or colonization with specific pathogen-free microbiota before surgery. Further, infarct volumes on day one did not differ between any of the experimental groups. Conclusions— Conventional microbiota ensures intestinal protection in the mouse model of experimental stroke and prevents development of acute and severe colitis in microbiota-depleted mice not given antibiotic protection after cerebral ischemia. Our experiments raise the clinically important question as to whether microbial colonization or specific microbiota are crucial for stroke outcome. PMID:27056982

  14. Real-time imaging for cerebral ischemia in rats using the multi-wavelength handheld photoacoustic system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hang; Xu, Yu; Chan, Kim Chuan; Mehta, Kalpesh; Thakor, Nitish; Liao, Lun-De

    2017-02-01

    Stroke is the second leading cause of death worldwide. Rapid and precise diagnosis is essential to expedite clinical decision and improve functional outcomes in stroke patients; therefore, real-time imaging plays an important role to provide crucial information for post-stroke recovery analysis. In this study, based on the multi-wavelength laser and 18.5 MHz array-based ultrasound platform, a real-time handheld photoacoustic (PA) system was developed to evaluate cerebrovascular functions pre- and post-stroke in rats. Using this system, hemodynamic information such as cerebral blood volume (CBV) can be acquired for assessment. One rat stroke model (i.e., photothrombotic ischemia (PTI)) was employed for evaluating the effect of local ischemia. For achieving better intrinsic PA contrast, Vantage and COMSOL simulations were applied to optimize the light delivery (e.g., interval between two arms) from customized fiber bundle, while phantom experiment was conducted to evaluate the imaging performance of this system. Results of phantom experiment showed that hairs ( 150 μm diameter) and pencil lead (500 μm diameter) can be imaged clearly. On the other hand, results of in vivo experiments also demonstrated that stroke symptoms can be observed in PTI model poststroke. In the near future, with the help of PA specific contrast agent, the system would be able to achieve blood-brain barrier leakage imaging post-stroke. Overall, the real-time handheld PA system holds great potential in disease models involving impairments in cerebrovascular functions.

  15. Stroke Onset Time Determination Using MRI Relaxation Times without Non-Ischaemic Reference in A Rat Stroke Model

    PubMed Central

    Knight, Michael J.; McGarry, Bryony M.; Jokivarsi, Kimmo T.; Gröhn, Olli H.J.; Kauppinen, Risto A.

    2017-01-01

    Background Objective timing of stroke in emergency departments is expected to improve patient stratification. Magnetic resonance imaging (MRI) relaxations times, T2 and T1ρ, in abnormal diffusion delineated ischaemic tissue were used as proxies of stroke time in a rat model. Methods Both ‘non-ischaemic reference’-dependent and -independent estimators were generated. Apparent diffusion coefficient (ADC), T2 and T1ρ, were sequentially quantified for up to 6 hours of stroke in rats (n = 8) at 4.7T. The ischaemic lesion was identified as a contiguous collection of voxels with low ADC. T2 and T1ρ in the ischaemic lesion and in the contralateral non-ischaemic brain tissue were determined. Differences in mean MRI relaxation times between ischaemic and non-ischaemic volumes were used to create reference-dependent estimator. For the reference-independent procedure, only the parameters associated with log-logistic fits to the T2 and T1ρ distributions within the ADC-delineated lesions were used for the onset time estimation. Result The reference-independent estimators from T2 and T1ρ data provided stroke onset time with precisions of ±32 and ±27 minutes, respectively. The reference-dependent estimators yielded respective precisions of ±47 and ±54 minutes. Conclusions A ‘non-ischaemic anatomical reference’-independent estimator for stroke onset time from relaxometric MRI data is shown to yield greater timing precision than previously obtained through reference-dependent procedures. PMID:28685128

  16. High Risk of Seizures and Epilepsy after Decompressive Hemicraniectomy for Malignant Middle Cerebral Artery Stroke
.

    PubMed

    Brondani, Rosane; Garcia de Almeida, Andrea; Abrahim Cherubini, Pedro; Mandelli Mota, Suelen; de Alencastro, Luiz Carlos; Antunes, Apio Cláudio Martins; Bianchin Muxfeldt, Marino

    2017-01-01

    Decompressive hemicraniectomy (DHC) is a life-saving procedure for treatment of large malignant middle cerebral artery (MCA) strokes. Post-stroke epilepsy is an additional burden for these patients, but its incidence and the risk factors for its development have been poorly investigated. To report the prevalence and risk factors for post-stroke seizures and post-stroke epilepsy after DHC for treatment of large malignant MCA strokes in a cohort of 36 patients. In a retrospective cohort study of 36 patients we report the timing and incidence of post-stroke epilepsy. We analyzed if age, sex, vascular risk factors, side of ischemia, reperfusion therapy, stroke etiology, extension of stroke, hemorrhagic transformation, ECASS scores, National Institutes of Health Stroke Scale (NIHSS) scores, or modified Rankin scores were risk factors for seizure or epilepsy after DHC for treatment of large MCA strokes. The mean patient follow-up time was 1,086 days (SD = 1,172). Out of 36 patients, 9 (25.0%) died before being discharged. After 1 year, a total of 11 patients (30.6%) had died, but 22 (61.1%) of them had a modified Rankin score ≤4. Thirteen patients (36.1%) developed seizures within the first week after stroke. Seizures occurred in 22 (61.1%) of 36 patients (95% CI = 45.17-77.03%). Out of 34 patients who survived the acute period, 19 (55.9%) developed epilepsy after MCA infarcts and DHC (95% CI = 39.21-72.59%). In this study, no significant differences were observed between the patients who developed seizures or epilepsy and those who remained free of seizures or epilepsy regarding age, sex, side of stroke, presence of the clinical risk factors studied, hemorrhagic transformation, time of craniectomy, and Rankin score after 1 year of stroke. The incidence of seizures and epilepsy after malignant MCA infarcts submitted to DHC might be very high. Seizure might occur precociously in patients who are not submitted to anticonvulsant prophylaxis. The large stroke volume and the large cortical ischemic area seem to be the main risk factors for seizure or epilepsy development in this subtype of stroke.
. © 2017 The Author(s)
. Published by S. Karger AG, Basel.

  17. Worse Neurological State During Acute Ischemic Stroke is Associated with a Decrease in Serum Albumin Levels.

    PubMed

    Bielewicz, Joanna; Kurzepa, Jacek; Czekajska-Chehab, Elżbieta; Kamieniak, Piotr; Daniluk, Beata; Bartosik-Psujek, Halina; Rejdak, Konrad

    2016-04-01

    High serum albumin levels during ischemic stroke (IS) decrease the risk of a poor outcome. This study aimed to determine whether serum albumin levels within the first days after IS correlate with radiological and biochemical markers of brain tissue damage. Fifty-six IS patients were enrolled into the study. Neurological examinations were based on the National Institute of Health Stroke Scale. Serum albumin levels and S100BB were evaluated using commercially available ELISA kits. The albumin decrease index (ADI) was calculated as the difference between serum albumin levels measured on days 1 and 10 of IS. All parameters were estimated on the 1st, 3rd, 5th, and 10th days of IS, and the volume of ischemic focus was measured on the 10th day. Mean serum albumin levels were decreased during acute IS. There were correlations between the ADI and mean S100BB serum levels (r = 0.36, p < 0.05), the volume of ischemic focus (r = 0.39, p < 0.05), and the patients' neurological state when measured on day 10 of IS (r = 0.59, p < 0.001). A decrease in serum albumin levels during the acute phase of IS corresponds to a worse neurological state as a result of a large ischemic focus with intense catabolic processes.

  18. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway

    PubMed Central

    CHEN, BIN; TAO, JING; LIN, YUKUN; LIN, RUHUI; LIU, WEILIN; CHEN, LIDIAN

    2015-01-01

    Electro-acupuncture (EA) is a novel therapy based on combining traditional acupuncture with modern electrotherapy, and it is currently being investigated as a treatment for ischemic stroke. In the present study, we aimed to investigate the mechanisms through which EA regulates the proliferation of neural progenitor cells (NPCs) in the cortical peri-infarct area after stroke. The neuroprotective effects of EA on ischemic rats were evaluated by determining the neurological deficit scores and cerebral infarct volumes. The proliferation of the NPCs and the activation of the Wnt/β-catenin signaling pathway in the cortical peri-infarct area were examined. Our results revealed that EA significantly alleviated neurological deficits, reduced the infarct volume and enhanced NPC proliferation [nestin/glial fibrillary acidic protein (GFAP)-double positive] in the cortex of rats subjected to middle cerebral artery occlusion (MCAO). Moreover, the Wnt1 and β-catenin mRNA and protein levels were increased, while glycogen synthase kinase-3 (GSK3) transcription was suppressed by EA. These results suggest that the upregulatory effects of EA on the Wnt/β-catenin signaling pathway may promote NPC proliferation in the cortical peri-infarct area after stroke, consequently providing a therapeutic effect against cerebral ischemia. PMID:26329606

  19. Acute decrease of left ventricular mechanical dyssynchrony and improvement of contractile state and energy efficiency after left ventricular restoration.

    PubMed

    Schreuder, Jan J; Castiglioni, Alessandro; Maisano, Francesco; Steendijk, Paul; Donelli, Andrea; Baan, Jan; Alfieri, Ottavio

    2005-01-01

    Surgical left ventricular restoration by means of endoventricular patch aneurysmectomy in patients with postinfarction aneurysm should result in acute improved left ventricular performance by decreasing mechanical dyssynchrony and increasing energy efficiency. Nine patients with left ventricular postinfarction aneurysm were studied intraoperatively before and after ventricular restoration with a conductance volume catheter to analyze pressure-volume relationships, energy efficiency, and mechanical dyssynchrony. The end-systolic elastance was used as a load-independent index of contractile state. Left ventricular energy efficiency was calculated from stroke work and total pressure-volume area. Segmental volume changes perpendicular to the long axis were used to calculate mechanical dyssynchrony. Statistical analysis was performed with the paired t test and least-squares linear regression. Endoventricular patch aneurysmectomy reduced end-diastolic volume by 37% (P < .001), with unchanged stroke volume. Systolic function improved, as derived from increased +dP/dt(max), by 42% (P < .03), peak ejection rate by 28% (P < .02), and ejection fraction by 16% (P < .0002). Early diastolic function improved, as shown by reduction of -dP/dt(max) by 34% (P < .006) and shortened tau by 30% (P < .001). Left ventricular end-systolic elastance increased from 1.2 +/- 0.6 to 2.2 +/- 1 mm Hg/mL (P < .001). Left ventricular energy efficiency increased by 36% (P < .002). Left ventricular mechanical dyssynchrony decreased during systole by 33% (P < .001) and during diastole by 20% (P < .005). Left ventricular restoration induced acute improvements in contractile state, energy efficiency, and relaxation, together with a decrease in left ventricular mechanical dyssynchrony.

  20. Thermal Loss Determination for a Small Internal Combustion Engine

    DTIC Science & Technology

    2014-03-27

    calibration temperature rc Compression ratio S̄ p Mean piston speed T Temperature Vc Combustion chamber volume Vd Displacement volume Wc,i Indicated work...are typically fueled by gasoline, ignited by a spark, and operate on either a two or four-stroke cycle. Compression-ignition diesel engines as seen in...engine, the fuel is usually withheld from the cylinder until the combustion event is desired as in diesel engines. Similarly, the fuel in a gas

  1. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure.

    PubMed

    Wilker, Elissa H; Preis, Sarah R; Beiser, Alexa S; Wolf, Philip A; Au, Rhoda; Kloog, Itai; Li, Wenyuan; Schwartz, Joel; Koutrakis, Petros; DeCarli, Charles; Seshadri, Sudha; Mittleman, Murray A

    2015-05-01

    Long-term exposure to ambient air pollution is associated with cerebrovascular disease and cognitive impairment, but whether it is related to structural changes in the brain is not clear. We examined the associations between residential long-term exposure to ambient air pollution and markers of brain aging using magnetic resonance imaging. Framingham Offspring Study participants who attended the seventh examination were at least 60 years old and free of dementia and stroke were included. We evaluated associations between exposures (fine particulate matter [PM2.5] and residential proximity to major roadways) and measures of total cerebral brain volume, hippocampal volume, white matter hyperintensity volume (log-transformed and extensive white matter hyperintensity volume for age), and covert brain infarcts. Models were adjusted for age, clinical covariates, indicators of socioeconomic position, and temporal trends. A 2-μg/m(3) increase in PM2.5 was associated with -0.32% (95% confidence interval, -0.59 to -0.05) smaller total cerebral brain volume and 1.46 (95% confidence interval, 1.10 to 1.94) higher odds of covert brain infarcts. Living further away from a major roadway was associated with 0.10 (95% confidence interval, 0.01 to 0.19) greater log-transformed white matter hyperintensity volume for an interquartile range difference in distance, but no clear pattern of association was observed for extensive white matter. Exposure to elevated levels of PM2.5 was associated with smaller total cerebral brain volume, a marker of age-associated brain atrophy, and with higher odds of covert brain infarcts. These findings suggest that air pollution is associated with insidious effects on structural brain aging even in dementia- and stroke-free persons. © 2015 American Heart Association, Inc.

  2. Noninvasive Assessment of Preload Reserve Enhances Risk Stratification of Patients With Heart Failure With Reduced Ejection Fraction.

    PubMed

    Matsumoto, Kensuke; Onishi, Akira; Yamada, Hirotsugu; Kusunose, Kenya; Suto, Makiko; Hatani, Yutaka; Matsuzoe, Hiroki; Tatsumi, Kazuhiro; Tanaka, Hidekazu; Hirata, Ken-Ichi

    2018-05-01

    The leg-positive pressure maneuver can safely and noninvasively apply preload stress without increase in total body fluid volume. The purpose of this study was to determine whether preload stress could be useful for risk stratification of patients with heart failure with reduced ejection fraction. For this study, 120 consecutive patients with heart failure with reduced ejection fraction were prospectively recruited. The stroke work index was estimated as product of stroke volume index and mean blood pressure, and the E/e' ratio was calculated to estimate ventricular filling pressure. The echocardiographic parameters were obtained both at rest and during leg-positive pressure stress. During the median follow-up period of 20 months, 30 patients developed adverse cardiovascular events. During preload stress, stroke work index increased significantly (from 3280±1371 to 3857±1581 mm Hg·mL/m 2 ; P <0.001) along with minimal changes in ventricular filling pressure (E/e', from 16±10 to 17±9; P <0.05) in patients without cardiovascular events. However, patients with cardiovascular events showed impairment of Frank-Starling mechanism (stroke work index, from 2863±969 to 2903±1084 mm Hg·mL/m 2 ; P =0.70) and a serious increase in E/e' ratio (from 19±11 to 25±14; P <0.001). Both the patients without contractile reserve and those without diastolic reserve exhibited worse event-free survival than the others ( P <0.001). In a Cox proportional-hazards analysis, the changes in stroke work index (hazard ratio: 0.44 per 500 mm Hg·mL/m 2 increase; P =0.001) and in E/e' (hazard ratio: 2.58 per 5-U increase; P <0.001) were predictors of cardiovascular events. Contractile reserve and diastolic reserve during leg-positive pressure stress are important determinants of cardiovascular outcomes for patients with heart failure with reduced ejection fraction. © 2018 American Heart Association, Inc.

  3. Pharmacokinetic Study of Piracetam in Focal Cerebral Ischemic Rats.

    PubMed

    Paliwal, Pankaj; Dash, Debabrata; Krishnamurthy, Sairam

    2018-04-01

    Cerebral ischemia affects hepatic enzymes and brain permeability extensively. Piracetam was investigated up to phase III of clinical trials and there is lack of data on brain penetration in cerebral ischemic condition. Thus, knowledge of the pharmacokinetics and brain penetration of piracetam during ischemic condition would aid to improve pharmacotherapeutics in ischemic stroke. Focal cerebral ischemia was induced by middle cerebral artery occlusion for 2 h in male Wistar rats followed by reperfusion. After 24 h of middle cerebral artery occlusion or 22 h of reperfusion, piracetam was administered for pharmacokinetic, brain penetration, and pharmacological experiments. In pharmacokinetic study, blood samples were collected at different time points after 200-mg/kg (oral) and 75-mg/kg (intravenous) administration of piracetam through right external jugular vein cannulation. In brain penetration study, the cerebrospinal fluid, systemic blood, portal blood, and brain samples were collected at pre-designated time points after 200-mg/kg oral administration of piracetam. In a separate experiment, the pharmacological effect of the single oral dose of piracetam in middle cerebral artery occlusion was assessed at a dose of 200 mg/kg. All the pharmacokinetic parameters of piracetam including area under curve (AUC 0-24 ), maximum plasma concentration (C max ), time to reach the maximum plasma concentration (t max ), elimination half-life (t 1/2 ), volume of distribution (V z ), total body clearance, mean residence time, and bioavailability were found to be similar in ischemic stroke condition except for brain penetration. Piracetam exposure (AUC 0-2 ) in brain and CSF were found to be 2.4- and 3.1-fold higher, respectively, in ischemic stroke compared to control rats. Piracetam significantly reduced infarct volume by 35.77% caused by middle cerebral artery occlusion. There was no change in the pharmacokinetic parameters of piracetam in the ischemic stroke model except for brain penetration. This indicates that variables influencing brain penetration may not be limiting factors for use of piracetam in ischemic stroke.

  4. Update of the Preventive Antibiotics in Stroke Study (PASS): statistical analysis plan.

    PubMed

    Westendorp, Willeke F; Vermeij, Jan-Dirk; Dippel, Diederik W J; Dijkgraaf, Marcel G W; van der Poll, Tom; Prins, Jan M; Vermeij, Frederique H; Roos, Yvo B W E M; Brouwer, Matthijs C; Zwinderman, Aeilko H; van de Beek, Diederik; Nederkoorn, Paul J

    2014-10-01

    Infections occur in 30% of stroke patients and are associated with unfavorable outcomes. Preventive antibiotic therapy lowers the infection rate after stroke, but the effect of preventive antibiotic treatment on functional outcome in patients with stroke is unknown. The PASS is a multicenter, prospective, phase three, randomized, open-label, blinded end-point (PROBE) trial of preventive antibiotic therapy in acute stroke. Patients are randomly assigned to either ceftriaxone at a dose of 2 g, given every 24 h intravenously for 4 days, in addition to standard stroke-unit care, or standard stroke-unit care without preventive antibiotic therapy. The aim of this study is to assess whether preventive antibiotic treatment improves functional outcome at 3 months by preventing infections. This paper presents in detail the statistical analysis plan (SAP) of the Preventive Antibiotics in Stroke Study (PASS) and was submitted while the investigators were still blinded for all outcomes. The primary outcome is the score on the modified Rankin Scale (mRS), assessed by ordinal logistic regression analysis according to a proportional odds model. Secondary analysis of the primary outcome is the score on the mRS dichotomized as a favorable outcome (mRS 0 to 2) versus unfavorable outcome (mRS 3 to 6). Secondary outcome measures are death rate at discharge and 3 months, infection rate during hospital admission, length of hospital admission, volume of post-stroke care, use of antibiotics during hospital stay, quality-adjusted life years and costs. Complications of treatment, serious adverse events (SAEs) and suspected unexpected serious adverse reactions (SUSARs) are reported as safety outcomes. The data from PASS will establish whether preventive antibiotic therapy in acute stroke improves functional outcome by preventing infection and will be analyzed according to this pre-specified SAP. Current controlled trials; ISRCTN66140176. Date of registration: 6 April 2010.

  5. Variation in Risk-Standardized Mortality of Stroke among Hospitals in Japan.

    PubMed

    Matsui, Hiroki; Fushimi, Kiyohide; Yasunaga, Hideo

    2015-01-01

    Despite recent advances in care, stroke remains a life-threatening disease. Little is known about current hospital mortality with stroke and how it varies by hospital in a national clinical setting in Japan. Using the Diagnosis Procedure Combination database (a national inpatient database in Japan), we identified patients aged ≥ 20 years who were admitted to the hospital with a primary diagnosis of stroke within 3 days of stroke onset from April 2012 to March 2013. We constructed a multivariable logistic regression model to predict in-hospital death for each patient with patient-level factors, including age, sex, type of stroke, Japan Coma Scale, and modified Rankin Scale. We defined risk-standardized mortality ratio as the ratio of the actual number of in-hospital deaths to the expected number of such deaths for each hospital. A hospital-level multivariable linear regression was modeled to analyze the association between risk-standardized mortality ratio and hospital-level factors. We performed a patient-level Cox regression analysis to examine the association of in-hospital death with both patient-level and hospital-level factors. Of 176,753 eligible patients from 894 hospitals, overall in-hospital mortality was 10.8%. The risk-standardized mortality ratio for stroke varied widely among the hospitals; the proportions of hospitals with risk-standardized mortality ratio categories of ≤ 0.50, 0.51-1.00, 1.01-1.50, 1.51-2.00, and >2.00 were 3.9%, 47.9%, 41.4%, 5.2%, and 1.5%, respectively. Academic status, presence of a stroke care unit, higher hospital volume and availability of endovascular therapy had a significantly lower risk-standardized mortality ratio; distance from the patient's residence to the hospital was not associated with the risk-standardized mortality ratio. Our results suggest that stroke-ready hospitals play an important role in improving stroke mortality in Japan.

  6. Association Between Prolonged Seizures and Malignant Middle Cerebral Artery Infarction in Children With Acute Ischemic Stroke.

    PubMed

    Andrade, Andrea; Bigi, Sandra; Laughlin, Suzanne; Parthasarathy, Sujatha; Sinclair, Adriane; Dirks, Peter; Pontigon, Ann Marie; Moharir, Mahendranath; Askalan, Rand; MacGregor, Daune; deVeber, Gabrielle

    2016-11-01

    Malignant middle cerebral artery infarct syndrome is a potentially fatal complication of stroke that is poorly understood in children. We studied the frequency, associated characteristics, and outcomes of this condition in children. Children, aged two months to 18 years with acute middle cerebral artery infarct diagnosed at our center between January 2005 and December 2012 were studied. Associations with malignant middle cerebral artery infarct syndrome were sought, including age, seizures, neurological deficit severity (Pediatric National Institute of Health Stroke Severity Score), stroke etiology, fever, blood pressure, blood glucose, infarct location, infarct volume (modified pediatric Alberta Stroke Program Early Computed Tomography Score), and arterial occlusion. Death and neurological outcomes were determined. Among 66 children with middle cerebral artery stroke, 12 (18%) developed malignant middle cerebral artery infarct syndrome, fatal in three. Prolonged seizures during the first 24 hours (odds ratio, 25.51; 95% confidence interval, 3.10 to 334.81; P = 0.005) and a higher Pediatric National Institute of Health Stroke Severity Score (odds ratio, 1.22; 95% confidence interval, 1.08 to 1.45; P = 0.006) were independently associated with malignant middle cerebral artery infarct syndrome. All children aged greater than two years with a Pediatric National Institute of Health Stroke Severity Score ≥8 and initial seizures ≥5 minutes duration developed malignant middle cerebral artery infarct syndrome (100%). Malignant middle cerebral artery infarct syndrome affects nearly one in five children with acute middle cerebral artery stroke. Children with higher Pediatric National Institute of Health Stroke Severity Scores and prolonged initial seizures are at greatly increased risk for malignant middle cerebral artery infarct syndrome. Children with middle cerebral artery infarcts warrant intensive neuroprotective management and close monitoring to enable early referral for hemicraniectomy surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Spontaneous Reperfusion after In Situ Thromboembolic Stroke in Mice

    PubMed Central

    Cho, Tae-Hee; Bolbos, Radu; Langlois, Jean-Baptiste; Hermitte, Laure; Wiart, Marlène; Berthezène, Yves; Nighoghossian, Norbert

    2012-01-01

    Injection of thrombin into the middle cerebral artery (MCA) of mice has been proposed as a new model of thromboembolic stroke. The present study used sequential multiparametric Magnetic Resonance Imaging (MRI), including Magnetic Resonance Angiography (MRA), Diffusion-Weighted Imaging (DWI) and Perfusion-Weighted Imaging (PWI), to document MCA occlusion, PWI-DWI mismatch, and lesion development. In the first experiment, complete MCA occlusion and reproducible hypoperfusion were obtained in 85% of animals during the first hour after stroke onset. In the second experiment, 80% of animals showed partial to complete reperfusion during a three-hour follow-up. Spontaneous reperfusion thus contributed to the variability in ischemic volume in this model. The study confirmed the value of the model for evaluating new thrombolytic treatments, but calls for extended MRI follow-up at the acute stage in therapeutic studies. PMID:23166825

  8. Epicardial left ventricular lead placement for cardiac resynchronization therapy: optimal pace site selection with pressure-volume loops.

    PubMed

    Dekker, A L A J; Phelps, B; Dijkman, B; van der Nagel, T; van der Veen, F H; Geskes, G G; Maessen, J G

    2004-06-01

    Patients in heart failure with left bundle branch block benefit from cardiac resynchronization therapy. Usually the left ventricular pacing lead is placed by coronary sinus catheterization; however, this procedure is not always successful, and patients may be referred for surgical epicardial lead placement. The objective of this study was to develop a method to guide epicardial lead placement in cardiac resynchronization therapy. Eleven patients in heart failure who were eligible for cardiac resynchronization therapy were referred for surgery because of failed coronary sinus left ventricular lead implantation. Minithoracotomy or thoracoscopy was performed, and a temporary epicardial electrode was used for biventricular pacing at various sites on the left ventricle. Pressure-volume loops with the conductance catheter were used to select the best site for each individual patient. Relative to the baseline situation, biventricular pacing with an optimal left ventricular lead position significantly increased stroke volume (+39%, P =.01), maximal left ventricular pressure derivative (+20%, P =.02), ejection fraction (+30%, P =.007), and stroke work (+66%, P =.006) and reduced end-systolic volume (-6%, P =.04). In contrast, biventricular pacing at a suboptimal site did not significantly change left ventricular function and even worsened it in some cases. To optimize cardiac resynchronization therapy with epicardial leads, mapping to determine the best pace site is a prerequisite. Pressure-volume loops offer real-time guidance for targeting epicardial lead placement during minimal invasive surgery.

  9. The Effects of Game-Based Breathing Exercise on Pulmonary Function in Stroke Patients: A Preliminary Study.

    PubMed

    Joo, Sunghee; Shin, Doochul; Song, Changho

    2015-06-22

    Reduction of respiratory function along with hemiparesis leads to decreased endurance, dyspnea, and increased sedentary behavior, as well as to an increased risk of stroke. The main purpose of this study was to investigate the preliminary effects of game-based breathing exercise (GBE) on pulmonary function in stroke patients. Thirty-eight in-patients with stroke (22 men, 16 women) were recruited for the study. Participants were randomly allocated into 2 groups: patients assigned to the GBE group (n=19), and the control group (n=19). The GBE group participated in a GBE program for 25 minutes a day, 3 days a week, during a 5 week period. For the same period, both groups participated in a conventional stroke rehabilitation program. Forced vital capacity (FVC), forced expiratory volume at 1 second (FEV1), FEV1/FVC, and maximum voluntary ventilation (MVV) were measured by a spirometer in pre- and post-testing. The GBE group had significantly improved FVC, FEV1, and MVV values compared with the control group (p<0.05), although there was no significant difference in FEV1/FVC value between groups. Significant short-term effects of the GBE program on pulmonary function in stroke patients were recorded in this study. These findings gave some indications that it may be feasible to include GBE in rehabilitation interventions with this population.

  10. Real-time optoacoustic monitoring of stroke

    NASA Astrophysics Data System (ADS)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  11. Proton Magnetic Resonance Spectroscopy Study on the Metabolism Changes of Cerebellum in Patients with Post-Stroke Depression.

    PubMed

    Zhang, Lei; Sui, Ru-Bo

    2017-01-01

    To study the metabolic changes of cerebellum by proton magnetic resonance Spectroscopy (1H-MRS) and discuss the relationships between the cerebellar changes and depression severity in patients with post-stroke depression. Data of demographic characteristics, individual history and life style of all subjects were collected. 40 patients with stroke and 20 controls were enrolled. All groups received T1WI, T2WI, DWI and 1H-MRS examination. The cerebral infarction volume and the distribution and severity of leukoaraiosis were evaluated. The ratios of NAA/Cr, Cho/Cr and Cho/NAA in the cerebellum were calculated. There were no statistical significant difference in the NAA/Cr, Cho/Cr and Cho/NAA ratios in bilateral cerebellum between CONT group and NORM group. The Cho/Cr and Cho/NAA ratios in the cerebellum contralateral to the stroke region were higher in PSD group than those in NORM and CONT groups, and the Cho/Cr and Cho/NAA ratios in the cerebellum ipsilateral to the stroke region were similar with those in NORM and CONT groups. However, there were no statistical significant difference in the NAA/Cr ratios in bilateral cerebellum among three groups. The result shows preliminarily that the cerebellum involves in the development of post-stroke depression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. Impaired atrioventricular transport in patients with transposition of the great arteries palliated by atrial switch and preserved systolic right ventricular function: A magnetic resonance imaging study.

    PubMed

    Ladouceur, Magalie; Kachenoura, Nadjia; Soulat, Gilles; Bollache, Emilie; Redheuil, Alban; Azizi, Michel; Delclaux, Christophe; Chatellier, Gilles; Boutouyrie, Pierre; Iserin, Laurence; Bonnet, Damien; Mousseaux, Elie

    2017-07-01

    We aimed (1) determine if systemic right ventricle filling parameters influence systemic right ventricle stroke volume in adult patients with D-transposition of the great arteries (D-TGA) palliated by atrial switch, using cardiac magnetic resonance imaging and echocardiography, and (2) to study relationship of these diastolic parameters with exercise performance and BNP, in patients with preserved systolic systemic right ventricle function. Single-center, cross-sectional, prospective study. In patients with D-TGA palliated by atrial switch, diastolic dysfunction of the systemic right ventricle may precede systolic dysfunction. Forty-five patients with D-TGA and atrial switch and 45 age and sex-matched healthy subjects underwent cardiac magnetic resonance imaging and echocardiography. Filling flow-rates measured by phase-contrast cardiac magnetic resonance imaging were analyzed using customized software to estimate diastolic parameters and compared with exercise performance. In D-TGA, early filling of systemic right ventricle was impaired with a lower peak filling rate normalized by filling volume (Ef/FV measured by cardiac magnetic resonance imaging) and a higher early filling peak velocity normalized by early peak myocardial velocity (E US /Ea measured by echocardiography) compared with controls (P ≤ .04). Stroke volume of systemic right ventricle showed a direct and significant association with pulmonary venous pathway size (respectively r = 0.50, P < .01). Systemic right atrial area and systemic right ventricle mass/volume index measured by cardiac magnetic resonance imaging, as well as Ef/FV were significantly correlated with exercise performances and BNP (P < .01). All correlations were independent of age, gender, body mass index and blood pressure. Systemic right ventricle pre-load and stroke volume depend mainly on intraatrial pathway function. Moreover, systemic right ventricle remodeling and right atrial dysfunction impair systemic right ventricle filling, leading to BNP increase and exercise limitation. Cardiac magnetic resonance imaging should assess systemic right ventricle filling abnormalities in D-TGA patients. © 2017 Wiley Periodicals, Inc.

  13. Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data.

    PubMed

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Lemarchand, Patricia; Lunde, Ketil; Tendera, Michal; Bartunek, Jozef; Marban, Eduardo; Assmus, Birgit; Henry, Timothy D; Traverse, Jay H; Moyé, Lemuel A; Sürder, Daniel; Corti, Roberto; Huikuri, Heikki; Miettinen, Johanna; Wöhrle, Jochen; Obradovic, Slobodan; Roncalli, Jérome; Malliaras, Konstantinos; Pokushalov, Evgeny; Romanov, Alexander; Kastrup, Jens; Bergmann, Martin W; Atsma, Douwe E; Diederichsen, Axel; Edes, Istvan; Benedek, Imre; Benedek, Theodora; Pejkov, Hristo; Nyolczas, Noemi; Pavo, Noemi; Bergler-Klein, Jutta; Pavo, Imre J; Sylven, Christer; Berti, Sergio; Navarese, Eliano P; Maurer, Gerald

    2015-04-10

    The meta-Analysis of Cell-based CaRdiac study is the first prospectively declared collaborative multinational database, including individual data of patients with ischemic heart disease treated with cell therapy. We analyzed the safety and efficacy of intracoronary cell therapy after acute myocardial infarction (AMI), including individual patient data from 12 randomized trials (ASTAMI, Aalst, BOOST, BONAMI, CADUCEUS, FINCELL, REGENT, REPAIR-AMI, SCAMI, SWISS-AMI, TIME, LATE-TIME; n=1252). The primary end point was freedom from combined major adverse cardiac and cerebrovascular events (including all-cause death, AMI recurrance, stroke, and target vessel revascularization). The secondary end point was freedom from hard clinical end points (death, AMI recurrence, or stroke), assessed with random-effects meta-analyses and Cox regressions for interactions. Secondary efficacy end points included changes in end-diastolic volume, end-systolic volume, and ejection fraction, analyzed with random-effects meta-analyses and ANCOVA. We reported weighted mean differences between cell therapy and control groups. No effect of cell therapy on major adverse cardiac and cerebrovascular events (14.0% versus 16.3%; hazard ratio, 0.86; 95% confidence interval, 0.63-1.18) or death (1.4% versus 2.1%) or death/AMI recurrence/stroke (2.9% versus 4.7%) was identified in comparison with controls. No changes in ejection fraction (mean difference: 0.96%; 95% confidence interval, -0.2 to 2.1), end-diastolic volume, or systolic volume were observed compared with controls. These results were not influenced by anterior AMI location, reduced baseline ejection fraction, or the use of MRI for assessing left ventricular parameters. This meta-analysis of individual patient data from randomized trials in patients with recent AMI revealed that intracoronary cell therapy provided no benefit, in terms of clinical events or changes in left ventricular function. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01098591. © 2015 American Heart Association, Inc.

  14. Pentagastrin-induced hemoconcentration in healthy volunteers and patients with panic disorder: effect of pretreatment with ethinyl estradiol.

    PubMed

    Le Melledo, Jean Michel; Perez-Parada, Jorge; Morrow, Jarret; Bellavance, Francois; Lara, Nathalie; Jahandar, Farideh; Granger, Robert; Tait, Glendon; McManus, Karen

    2011-01-01

    Panic disorder has been associated with both an increased risk of coronary events as well as an increased risk of stroke. Hemoconcentration, with both a decrease in plasma volume and an increase in plasma viscosity, is a possible contributor to the risk of acute ischemic events. Our objectives were to demonstrate the process of hemoconcentration in response to induced panic symptoms and to assess the effect of pretreatment with ethinyl estradiol on panic-induced hemoconcentration. Fifteen male patients with panic disorder and 10 male healthy volunteers were included in a double-blind cross-over placebo-controlled design consisting of two injections of pentagastrin following randomized pretreatment with placebo and ethinyl estradiol. Plasma levels of hematocrit and hemoglobin were assessed at baseline and post-injections, and used to calculate an indirect estimation of the change in plasma volume. Pentagastrin-induced panic symptoms were associated with a mean decrease in plasma volume of 4.8% in the placebo pretreatment condition. Pretreatment with ethinyl estradiol attenuated this effect. The acute hemoconcentration observed in relation to pentagastrin-induced panic symptoms may be relevant to the increased risk of stroke and acute coronary events found in patients with panic disorder.

  15. Long-Term Exposure to Ambient Air Pollution and Subclinical Cerebrovascular Disease in NOMAS (the Northern Manhattan Study).

    PubMed

    Kulick, Erin R; Wellenius, Gregory A; Kaufman, Joel D; DeRosa, Janet T; Kinney, Patrick L; Cheung, Ying Kuen; Wright, Clinton B; Sacco, Ralph L; Elkind, Mitchell S

    2017-07-01

    Long-term exposure to ambient air pollution is associated with higher risk of cardiovascular disease and stroke. We hypothesized that long-term exposure to air pollution would be associated with magnetic resonance imaging markers of subclinical cerebrovascular disease. Participants were 1075 stroke-free individuals aged ≥50 years drawn from the magnetic resonance imaging subcohort of the Northern Manhattan Study who had lived at the same residence for at least 2 years before magnetic resonance imaging. Cross-sectional associations between ambient air pollution and subclinical cerebrovascular disease were analyzed. We found an association between distance to roadway, a proxy for residential exposure to traffic pollution, and white matter hyperintensity volume; however, after adjusting for risk factors, this relationship was no longer present. All other associations between pollutant measures and white matter hyperintensity volume were null. There was no clear association between exposure to air pollutants and subclinical brain infarcts or total cerebral brain volume. We found no evidence that long-term exposure to ambient air pollution is independently associated with subclinical cerebrovascular disease in an urban population-based cohort. © 2017 American Heart Association, Inc.

  16. The Sigma-1 Receptor Antagonist, S1RA, Reduces Stroke Damage, Ameliorates Post-Stroke Neurological Deficits and Suppresses the Overexpression of MMP-9.

    PubMed

    Sánchez-Blázquez, Pilar; Pozo-Rodrigálvarez, Andrea; Merlos, Manuel; Garzón, Javier

    2018-06-01

    The glutamate N-methyl-D-aspartate receptor (NMDAR) plays an essential role in the excitotoxic neural damage that follows ischaemic stroke. Because the sigma-1 receptor (σ1R) can regulate NMDAR transmission, exogenous and putative endogenous regulators of σ1R have been investigated using animal models of ischaemic stroke. As both agonists and antagonists provide some neural protection, the selective involvement of σ1Rs in these effects has been questioned. The availability of S1RA (E-52862/MR309), a highly selective σ1R antagonist, prompted us to explore its therapeutic potential in an animal model of focal cerebral ischaemia. Mice were subjected to right middle cerebral artery occlusion (MCAO), and post-ischaemic infarct volume and neurological deficits were determined across a range of intervals after the stroke-inducing surgery. Intracerebroventricular or intravenous treatment with S1RA significantly reduced the cerebral infarct size and neurological deficits caused by permanent MCAO (pMCAO). Compared with the control/sham-operated mice, the neuroprotective effects of S1RA were observed when delivered up to 5 h prior to surgery and 3 h after ischaemic onset. Interestingly, neither mice with the genetic deletion of σ1R nor wild-type mice that were pre-treated with the σ1R agonist PRE084 showed beneficial effects after S1RA administration with regard to stroke infarction. S1RA-treated mice showed faster behavioural recovery from stroke; this finding complements the significant decreases in matrix metalloproteinase-9 (MMP-9) expression and reactive astrogliosis surrounding the infarcted cortex. Our data indicate that S1RA, via σ1R, holds promising potential for clinical application as a therapeutic agent for ischaemic stroke.

  17. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    PubMed Central

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  18. Cough reflex attenuation and swallowing dysfunction in sub-acute post-stroke patients: prevalence, risk factors, and clinical outcome.

    PubMed

    Vilardell, N; Rofes, L; Nascimento, W V; Muriana, D; Palomeras, E; Clavé, P

    2017-01-01

    Cough and swallowing impairments in post-stroke patients (PSP) have been associated with increased risk for respiratory complications. To assess the prevalence of alterations in protective cough responses in subacute PSP and its association with oropharyngeal dysphagia (OD), clinical, and neurotopographic stroke factors and clinical outcomes. Three months after stroke, the cough reflex test (CRT) was performed by nebulizing incremental citric acid concentrations (7.8-1000 mmol L -1 ) to determine the concentration that elicited two and five coughs; OD was assessed by the volume-viscosity swallow test. Clinical and neurotopographic stroke risk factors and complications (readmissions, respiratory infections, institutionalization, and mortality) were recorded from 3 to 12 months post-stroke. We included 225 PSP. Prevalence of impaired CRT was 5.8%, that of OD was 40.4% (20.4% with impaired safety of swallow), and of both impairments was, 1.8%. No specific risk factors associated with impaired CRT were found; however, hemorrhagic, wide circulation infarction (TACI), and brainstem strokes delayed the cough response. OD was associated with age, TACI and poor functional and nutritional status. Outcome of PSPs was unaffected by impaired CRT but OD and impaired safety of swallow increased institutionalization, respiratory infections, and mortality with the poorest outcome for those with both impairments. Prevalence of subacute post-stroke OD and swallow safety impairments was much higher than CRT attenuation, and risk factors strongly differed suggesting that the swallow response receives a stronger cortical control than the cough reflex. OD has a greater impact on PSP clinical outcome than impaired cough, the poorest prognosis being for patients with both airway protective dysfunctions. © 2016 John Wiley & Sons Ltd.

  19. Are we armed with the right data? Pooled individual data review of biomarkers in people with severe upper limb impairment after stroke.

    PubMed

    Hayward, Kathryn S; Schmidt, Julia; Lohse, Keith R; Peters, Sue; Bernhardt, Julie; Lannin, Natasha A; Boyd, Lara A

    2017-01-01

    To build an understanding of the neurobiology underpinning arm recovery in people with severe arm impairment due to stroke, we conducted a pooled individual data systematic review to: 1) characterize brain biomarkers; 2) determine relationship(s) between biomarkers and motor outcome; and 3) establish relationship(s) between biomarkers and motor recovery. Three electronic databases were searched up to October 2, 2015. Eligible studies included adults with severe arm impairment after stroke. Descriptive statistics were calculated to characterize brain biomarkers, and pooling of individual patient data was performed using mixed-effects linear regression to examine relationships between brain biomarkers and motor outcome and recovery. Thirty-eight articles including individual data from 372 people with severe arm impairment were analysed. The majority of individuals were in the chronic (> 6 months) phase post stroke (51%) and had a subcortical stroke (49%). The presence of a motor evoked potential (indexed by transcranial magnetic stimulation) was the only biomarker related to better motor outcome ( p  = 0.02). There was no relationship between motor outcome and stroke volume (cm 3 ), location (cortical, subcortical, mixed) or side (left vs. right), and corticospinal tract asymmetry index (extracted from diffusion weighted imaging). Only one study had longitudinal data, thus no data pooling was possible to address change over time (preventing our third objective). Based on the available evidence, motor evoked potentials at rest were the only biomarker that predicted motor outcome in individuals with severe arm impairment following stroke. Given that few biomarkers emerged, this review highlights the need to move beyond currently known biomarkers and identify new indices with sufficient variability and sensitivity to guide recovery models in individuals with severe motor impairments following stroke. CRD42015026107.

  20. Knowledge-based reconstruction for measurement of right ventricular volumes on cardiovascular magnetic resonance images in a mixed population.

    PubMed

    Pieterman, Elise D; Budde, Ricardo P J; Robbers-Visser, Daniëlle; van Domburg, Ron T; Helbing, Willem A

    2017-09-01

    Follow-up of right ventricular performance is important for patients with congenital heart disease. Cardiac magnetic resonance imaging is optimal for this purpose. However, observer-dependency of manual analysis of right ventricular volumes limit its use. Knowledge-based reconstruction is a new semiautomatic analysis tool that uses a database including knowledge of right ventricular shape in various congenital heart diseases. We evaluated whether knowledge-based reconstruction is a good alternative for conventional analysis. To assess the inter- and intra-observer variability and agreement of knowledge-based versus conventional analysis of magnetic resonance right ventricular volumes, analysis was done by two observers in a mixed group of 22 patients with congenital heart disease affecting right ventricular loading conditions (dextro-transposition of the great arteries and right ventricle to pulmonary artery conduit) and a group of 17 healthy children. We used Bland-Altman analysis and coefficient of variation. Comparison between the conventional method and the knowledge-based method showed a systematically higher volume for the latter group. We found an overestimation for end-diastolic volume (bias -40 ± 24 mL, r = .956), end-systolic volume (bias -34 ± 24 mL, r = .943), stroke volume (bias -6 ± 17 mL, r = .735) and an underestimation of ejection fraction (bias 7 ± 7%, r = .671) by knowledge-based reconstruction. The intra-observer variability of knowledge-based reconstruction varied with a coefficient of variation of 9% for end-diastolic volume and 22% for stroke volume. The same trend was noted for inter-observer variability. A systematic difference (overestimation) was noted for right ventricular size as assessed with knowledge-based reconstruction compared with conventional methods for analysis. Observer variability for the new method was comparable to what has been reported for the right ventricle in children and congenital heart disease with conventional analysis. © 2017 Wiley Periodicals, Inc.

  1. Rivaroxaban does not influence hemorrhagic transformation in a diabetes ischemic stroke and endovascular thrombectomy model.

    PubMed

    Liu, Feng-Di; Zhao, Rong; Feng, Xiao-Yan; Shi, Yan-Hui; Wu, Yi-Lan; Shen, Xiao-Lei; Li, Ge-Fei; Liu, Yi-Sheng; Zhao, Ying; He, Xin-Wei; Yin, Jia-Wen; Zhuang, Mei-Ting; Zhao, Bing-Qiao; Liu, Jian-Ren

    2018-05-09

    Managing endovascular thrombectomy (ET) in diabetic ischemic stroke (IS) with novel anticoagulants is challenging due to putative risk of intracerebral hemorrhage. The study evaluates increased hemorrhagic transformation (HT) risk in Rivaroxaban-treated diabetic rats post ET. Diabetes was induced in male Sprague-Dawley rats by intraperitoneal injection of 60 mg/kg streptozotocin. After 4-weeks, rats were pretreated orally with 30 mg/kg Rivaroxaban/saline; prothrombin time was monitored. IS and ET was induced after 1 h, by thread-induced transient middle cerebral artery occlusion (tMCAO) that mimicked mechanical ET for proximal MCA occlusion at 60 min. After 24 h reperfusion, infarct volumes, HT, blood-brain barrier (BBB) permeability, tight junction at peri-ischemic lesion and matrix metalloproteinase-9 (MMP-9) activity was measured. Diabetic rats seemed to exhibit increased infarct volume and HT at 24 h after ET than normal rats. Infarct volumes and functional outcomes did not differ between Rivaroxaban and diabetic control groups. A significant increase in HT volumes and BBB permeability under Rivaroxaban treatment was not detected. Compared to diabetic control group, neither the occludin expression was remarkably lower in the Rivaroxaban group nor the MMP-9 activity was higher. Together, Rivaroxaban does not increase HT after ET in diabetic rats with proximal MCA occlusion, since Rivaroxaban has fewer effects on post-ischemic BBB permeability.

  2. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.

    PubMed

    Manoli, Zoi; Parazzini, Marta; Ravazzani, Paolo; Samaras, Theodoros

    2017-01-01

    The lack of knowledge of the electric field distribution inside the brain of stroke patients receiving transcranial direct current stimulation (tDCS) calls for estimating it computationally. Moreover, the impact on this distribution of a novel clinical management approach which involves secondary motor areas (SMA) in stroke rehabilitation needs to be evaluated. Finally, the differences in the electric field distributions due to gender and age need to be investigated. This work presents the development of two different anatomical models (young adult female and elderly male) with an ischemic stroke region of spherical volume 10 cm 3 or 50 cm 3 , using numerical models of the Virtual Population (ViP). The stroke phase was considered as acute or chronic, resulting in different electrical properties of the area. Two different electrode montages were used - One over the lesion area and the contralateral supra-orbital region and the other over the SMA and the contralateral supra-orbital region. A quasi-electrostatic solver was used to numerically solve the Laplace equation with the finite-difference technique. Both the 99th percentile of the electric field intensity distribution ("E peak value") and the percentage of the tissue volumes with electric field intensity over 50% and 70% of the E peak value were assessed inside the target areas of the primary motor cortex (M1) and the SMA, as well as in other brain tissues (hypothalamus and cerebellum). In the acute phase of an ischemic stroke, the normalized electric field intensity distributions do not differ noticeably compared to those in the brain of a healthy person (mean square difference < 2%). The difference becomes larger (up to 4.5%) for the chronic phase of a large ischemic lesion. Moreover, the maximum values of the induced electric field in the tissues in the SMA are almost equal for both electrode montages. The peak values of the electric field distribution ("E peak values") in cerebellum and hypothalamus for both electrode montages are rather small but different from those of healthy patients. The largest difference of 21% decrease with respect to a healthy subject was noticed in the elder adult model with a large chronic lesion. The comparison of the different electrode montages shows that the use of a stimulating electrode over the affected area creates larger values of the electric field in M1, by up to 26% for a small chronic lesion in the young female model. On the contrary, the montage does not affect considerably (change less than 8%) the E peak values in the SMA. This implies that for exciting M1, the M1-Fp2 montage should be favored. The presence and the phase of an ischemic stroke lesion, as well as the configuration of electrode montages affect the distribution and the maximum value of the electric field induced in tissues. Moreover, patients whom seem to benefit most from tDCS are those in the chronic phase of an ischemic stroke, since contrasts in the tissue conductivity result in a higher electric field induced around the lesion volume, which could stimulate the remaining healthy tissue in the area. © 2016 American Association of Physicists in Medicine.

  3. The effect of respiratory exercise on trunk control, pulmonary function, and trunk muscle activity in chronic stroke patients.

    PubMed

    Lee, Dong-Kyu; Kim, Se-Hun

    2018-05-01

    [Purpose] This study aims to identify the effect of respiratory exercise on trunk control, pulmonary function, and trunk muscle activity in chronic stroke patients. [Subjects and Methods] The study included 24 chronic stroke patients who were randomly assigned, 12 each, to the experimental and control groups, and received neurodevelopmental treatment. Moreover, the experimental group underwent respiratory exercise. In each patient, the trunk control was measured using the Trunk Impairment Scale (TIS); muscle activity of the trunk, through the surface electromyogram; and pulmonary function, using the pneumatometer. [Results] The intragroup comparison showed significant differences in TIS, Forced vital capacity (FVC), Forced expiratory volume at one second (FEV1), Rectus Abdominis (RA), Internal Oblique (IO) and External Oblique (EO) in the experimental group. The intergroup comparison showed that the differences in TIS, FVC, FEV1, RA, IO and EO within the experimental group appeared significant relative to the control group. [Conclusion] Based on these results, this study proved that respiratory exercise was effective in improving trunk control, pulmonary function, and trunk muscle activity in patients with chronic stroke.

  4. Effects of inspiratory muscle training on balance ability and abdominal muscle thickness in chronic stroke patients

    PubMed Central

    Oh, Dongha; Kim, Gayeong; Lee, Wanhee; Shin, Mary Myong Sook

    2016-01-01

    [Purpose] This study evaluated the effects of inspiratory muscle training on pulmonary function, deep abdominal muscle thickness, and balance ability in stroke patients. [Subjects] Twenty-three stroke patients were randomly allocated to an experimental (n = 11) or control group (n = 12). [Methods] The experimental group received inspiratory muscle training-based abdominal muscle strengthening with conventional physical therapy; the control group received standard abdominal muscle strengthening with conventional physical therapy. Treatment was conducted 20 minutes per day, 3 times per week for 6 weeks. Pulmonary function testing was performed using an electronic spirometer. Deep abdominal muscle thickness was measured by ultrasonography. Balance was measured using the Berg balance scale. [Results] Forced vital capacity, forced expiratory volume in 1 second, deep abdominal muscle thickness, and Berg balance scale scores were significantly improved in the experimental group than in the control group. [Conclusion] Abdominal muscle strengthening accompanied by inspiratory muscle training is recommended to improve pulmonary function in stroke patients, and may also be used as a practical adjunct to conventional physical therapy. PMID:26957739

  5. Overestimation of Susceptibility Vessel Sign: A Predictive Marker of Stroke Cause.

    PubMed

    Zhang, Ruiting; Zhou, Ying; Liu, Chang; Zhang, Meixia; Yan, Shenqiang; Liebeskind, David S; Lou, Min

    2017-07-01

    The extent of blooming artifact may reflect the amount of paramagnetic material. We thus assessed the overestimation ratio of susceptibility vessel sign (SVS) on susceptibility-weighted imaging, defined as the extent of SVS width beyond the lumen and examined its value for predicting the stroke cause in acute ischemic stroke patients. We included consecutive acute ischemic stroke patients with proximal large artery occlusion who underwent both susceptibility-weighted imaging and time-of-flight magnetic resonance angiography within 8 hours poststroke onset. We calculated the length, width, and overestimation ratio of SVS on susceptibility-weighted imaging and then investigated their values for predicting the stroke cause, respectively. One-hundred eleven consecutive patients (72 female; mean age, 66.6±13.4 years) were enrolled, among whom 39 (35.1%) were diagnosed with cardiogenic embolism, 43 (38.7%) with large artery atherosclerosis, and 29 (26.1%) with undetermined cause. The presence, length, width, and overestimation ratio of SVS were all independently associated with the cause of cardiogenic embolism after adjusting for baseline National Institute of Health Stroke Scale and infarct volume. After excluded patients with undetermined cause, the sensitivity and specificity of overestimation ratio of SVS for cardiogenic embolism were 0.971 and 0.913; for the length of SVS, they were 0.629 and 0.739; for the width of SVS, they were 0.829 and 0.826, respectively. The overestimation ratio of SVS can predict cardiogenic embolism, with both high sensitivity and specificity, which can be helpful for the management of acute ischemic stroke patients in hyperacute stage. © 2017 American Heart Association, Inc.

  6. Electroacupuncture ameliorates cognitive impairment through inhibition of NF-κB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats.

    PubMed

    Feng, Xiaodong; Yang, Shanli; Liu, Jiao; Huang, Jia; Peng, Jun; Lin, Jiumao; Tao, Jing; Chen, Lidian

    2013-05-01

    Cognitive impairment is a serious mental deficit following stroke that severely affects the quality of life of stroke survivors. Nuclear factor‑κB (NF-κB)-mediated neuronal cell apoptosis is involved in the development of post-stroke cognitive impairment; therefore, it has become a promising target for the treatment of impaired cognition. Acupuncture at the Baihui (DU20) and Shenting (DU24) acupoints is commonly used in China to clinically treat post‑stroke cognitive impairment; however, the precise mechanism of its action is largely unknown. In the present study, we evaluated the therapeutic efficacy of electroacupuncture against post-stroke cognitive impairment and investigated the underlying molecular mechanisms using a rat model of focal cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture at Baihui and Shenting was identified to significantly ameliorate neurological deficits and reduce cerebral infarct volume. Additionally, electroacupuncture improved learning and memory ability in cerebral I/R injured rats, demonstrating its therapeutic efficacy against post-stroke cognitive impairment. Furthermore, electroacupuncture significantly suppressed the I/R-induced activation of NF-κB signaling in ischemic cerebral tissues. The inhibitory effect of electroacupuncture on NF-κB activation led to the inhibition of cerebral cell apoptosis. Finally, electroacupuncture markedly downregulated the expression of pro-apoptotic Bax and Fas, two critical downstream target genes of the NF-κB pathway. Collectively, our findings suggest that inhibition of NF-κB‑mediated neuronal cell apoptosis may be one mechanism via which electroacupuncture at Baihui and Shenting exerts a therapeutic effect on post-stroke cognitive impairment.

  7. Intra-Arterial Immunoselected CD34+ Stem Cells for Acute Ischemic Stroke

    PubMed Central

    Bentley, Paul; Hamady, Mohammad; Marley, Stephen; Davis, John; Shlebak, Abdul; Nicholls, Joanna; Williamson, Deborah A.; Jensen, Steen L.; Gordon, Myrtle; Habib, Nagy; Chataway, Jeremy

    2014-01-01

    Treatment with CD34+ hematopoietic stem/progenitor cells has been shown to improve functional recovery in nonhuman models of ischemic stroke via promotion of angiogenesis and neurogenesis. We aimed to determine the safety and feasibility of treatment with CD34+ cells delivered intra-arterially in patients with acute ischemic stroke. This was the first study in human subjects. We performed a prospective, nonrandomized, open-label, phase I study of autologous, immunoselected CD34+ stem/progenitor cell therapy in patients presenting within 7 days of onset with severe anterior circulation ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score ≥8). CD34+ cells were collected from the bone marrow of the subjects before being delivered by catheter angiography into the ipsilesional middle cerebral artery. Eighty-two patients with severe anterior circulation ischemic stroke were screened, of whom five proceeded to treatment. The common reasons for exclusion were age >80 years (n = 19); medical instability (n = 17), and significant carotid stenosis (n = 13). The procedure was well tolerated in all patients, and no significant treatment-related adverse effects occurred. All patients showed improvements in clinical functional scores (Modified Rankin Score and NIHSS score) and reductions in lesion volume during a 6-month follow-up period. Autologous CD34+ selected stem/progenitor cell therapy delivered intra-arterially into the infarct territory can be achieved safely in patients with acute ischemic stroke. Future studies that address eligibility criteria, dosage, delivery site, and timing and that use surrogate imaging markers of outcome are desirable before larger scale clinical trials. PMID:25107583

  8. Decreased Respiratory Muscle Function Is Associated with Impaired Trunk Balance among Chronic Stroke Patients: A Cross-sectional Study.

    PubMed

    Lee, Kyeongbong; Cho, Ji-Eun; Hwang, Dal-Yeon; Lee, WanHee

    2018-06-01

    The abdominal muscles play a role in trunk balance. Abdominal muscle thickness is asymmetrical in stroke survivors, who also have decreased respiratory muscle function. We compared the thickness of the abdominal muscles between the affected and less affected sides in stroke survivors. In addition, the relationship between respiratory muscle function and trunk balance was evaluated. Chronic stroke patients (18 men, 15 women; mean age, 58.94 ± 12.30 years; Mini-Mental Status Examination score ≥ 24) who could sit without assist were enrolled. Abdominal muscle thickness during rest and contraction was measured with ultrasonography, and the thickening ratio was calculated. Respiratory muscle function assessment included maximum respiratory pressure, peak flow, and air volume. Trunk function was evaluated using the Trunk Impairment Scale, and trunk balance was estimated based on the center of pressure velocity and path length within the limit of stability in sitting posture. Abdominal muscles were significantly thinner on the affected side, and the thickening ratio was lower in the affected side (P < 0.05). In addition, the higher thickening ratio of the affected side showed significant relationship with higher trunk function. Moreover, higher respiratory muscle function was significantly correlated with higher level of trunk function and balance in stroke patients (P < 0.05). Thus, chronic stroke survivors have decreased abdominal muscle thickness on the affected side, and respiratory muscle function has positive correlation with trunk function and balance. We propose that respiratory muscle training should be included as part of trunk balance training in chronic stroke patients.

  9. Therapeutic effects of oral dimethyl fumarate on stroke induced by middle cerebral artery occlusion: An animal experimental study.

    PubMed

    Safari, Anahid; Fazeli, Mehdi; Namavar, Mohammad Reza; Tanideh, Nader; Jafari, Peyman; Borhani-Haghighi, Afshin

    2017-01-01

    Dimethyl fumarate (DMF) has immune-modulatory and neuro-protective characteristics that can be used for treatment of acute ischemic stroke. To investigate the therapeutic effects of DMF on histological and functional recovery of rats after transient middle cerebral artery (MCA) occlusion. 22 Sprague-Dawley male rats weighing 275-300 g were randomized into three groups by block randomization. In the sham group (n = 7), the neck was opened, but neither MCA was occluded, nor any drug was administered.The control group (n = 7) was treated with vehicle (methocel) by gavage for 14 days after MCA occlusion. In the DMF-treated group (n = 8), treatment was performed with 15 mg/kg body weight dimethyl fumarate twice a day for 14 days after MCA occlusion. Transient occlusion of the right MCA was performed by intraluminal thread method in the DMF-treated and the control group. Neurological deficit score (NDS), pole test, and adhesive removal test were performed before the surgery, and on post-operative Days 0, 3, 5, 7, 10, and 14. After the final behaviour test, the animals' brains were perfused and removed. Brains were frozen and sectioned serially and coronally using a cryostat. Infract volume and brain volume were estimated by stereology. The percentage of infarct volume was significantly lower in DMF-treated animals (5.76%) than in the control group (22.39%) (P < 0.0001). Regarding behavioural tests, the DMF-treated group showed better function in NDS on Days 7 (P = 0.041) and 10 (P = 0.046), but not in pole and adhesive removal tests. There was no significant correlation between behavioural tests and histological results. Dimethyl fumarate could be beneficial as a potential neuroprotective agent in the treatment of stroke.

  10. Self-gated golden-angle spiral 4D flow MRI.

    PubMed

    Bastkowski, Rene; Weiss, Kilian; Maintz, David; Giese, Daniel

    2018-01-17

    The acquisition of 4D flow magnetic resonance imaging (MRI) in cardiovascular applications has recently made large progress toward clinical feasibility. The need for simultaneous compensation of cardiac and breathing motion still poses a challenge for widespread clinical use. Especially, breathing motion, addressed by gating approaches, can lead to unpredictable and long scan times. The current work proposes a time-efficient self-gated 4D flow sequence that exploits up to 100% of the acquired data and operates at a predictable scan time. A self-gated golden-angle spiral 4D flow sequence was implemented and tested in 10 volunteers. Data were retrospectively binned into respiratory and cardiac states and reconstructed using a conjugate-gradient sensitivity encoding reconstruction. Net flow curves, stroke volumes, and peak flow in the aorta were evaluated and compared to a conventional Cartesian 4D flow sequence. Additionally, flow quantities reconstructed from 50% to 100% of the self-gated 4D flow data were compared. Self-gating signals for respiratory and cardiac motion were extracted for all volunteers. Flow quantities were in agreement with the standard Cartesian scan. Mean differences in stroke volumes and peak flow of 7.6 ± 11.5 and 4.0 ± 79.9 mL/s were obtained, respectively. By retrospectively increasing breathing navigator efficiency while decreasing acquisition times (15:06-07:33 minutes), 50% of the acquired data were sufficient to measure stroke volumes with errors under 9.6 mL. The feasibility to acquire respiratory and cardiac self-gated 4D flow data at a predictable scan time was demonstrated. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  11. Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high-frequency interval in healthy humans.

    PubMed

    Elstad, Maja; Walløe, Lars; Holme, Nathalie L A; Maes, Elke; Thoresen, Marianne

    2015-03-01

    Arterial blood pressure variations are an independent risk factor for end organ failure. Respiratory sinus arrhythmia (RSA) is a sign of a healthy cardiovascular system. However, whether RSA counteracts arterial blood pressure variations during the respiratory cycle remains controversial. We restricted normal RSA with non-invasive intermittent positive pressure ventilation (IPPV) to test the hypothesis that RSA normally functions to stabilize mean arterial blood pressure. Ten young volunteers were investigated during metronome-paced breathing and IPPV. Heart rate (ECG), mean arterial blood pressure and left stroke volume (finger arterial pressure curve) and right stroke volume (pulsed ultrasound Doppler) were recorded, while systemic and pulmonary blood flow were calculated beat-by-beat. Respiratory variations (high-frequency power, 0.15-0.40 Hz) in cardiovascular variables were estimated by spectral analysis. Phase angles and correlation were calculated by cross-spectral analysis. The magnitude of RSA was reduced from 4.9 bpm(2) (95% CI 3.0, 6.2) during metronome breathing to 2.8 bpm(2) (95% CI 1.1, 5.0) during IPPV (p = 0.03). Variations in mean arterial blood pressure were greater (2.3 mmHg(2) (95% CI 1.4, 3.9) during IPPV than during metronome breathing (1.0 mmHg(2) [95% CI 0.7, 1.3]) (p = 0.014). Respiratory variations in right and left stroke volumes were inversely related in the respiratory cycle during both metronome breathing and IPPV. RSA magnitude is lower and mean arterial blood pressure variability is greater during IPPV than during metronome breathing. We conclude that in healthy humans, RSA stabilizes mean arterial blood pressure at respiratory frequency.

  12. Relationship between intracranial pressure and phase contrast cine MRI derived measures of intracranial pulsations in idiopathic normal pressure hydrocephalus.

    PubMed

    Jaeger, Matthias; Khoo, Angela K; Conforti, David A; Cuganesan, Ramesh

    2016-11-01

    Phase contrast cine MRI with determination of pulsatile aqueductal cerebrospinal fluid (CSF) stroke volume and flow velocity has been suggested to assess intracranial pulsations in idiopathic normal pressure hydrocephalus (iNPH). We aimed to compare this non-invasive measure of pulsations to intracranial pressure (ICP) pulse wave amplitude from continuous ICP monitoring. We hypothesised that a significant correlation between these two markers of intracranial pulsations exists. Fifteen patients with suspected iNPH had continuous computerised ICP monitoring with calculation of mean ICP pulse wave amplitude (MWA) from time-domain analysis. MRI measured CSF aqueductal stroke volume and peak flow velocity. Mean MWA was 5.4mmHg (range 2.3-12.4mmHg). Mean CSF stroke volume and peak flow velocity were 65μl (range 3-195μl) and 9.31cm/s (range 1.68-15.0cm/s), respectively. No significant correlation between the invasive and non-invasive measures of pulsations existed (Spearman r=-0.30 and r=-0.27, respectively; p>0.05). We observed marked intra-individual fluctuation of MWA during continuous ICP monitoring of an average of 6.0mmHg (range 2.8-12.2mmHg). The results suggest a complex interplay between measures of pulsations derived from snapshot MRI measurements and continuous computerised ICP measurements, as no significant relationship existed in our data. Further study is needed to better understand the temporal profile of CSF MRI flow studies, as substantial variation in MWA over the course of several hours of ICP monitoring is common, suggesting that these physiologic fluctuations might obscure MRI snapshot measures of intracranial pulsations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of 12 days exposure to simulated microgravity on central circulatory hemodynamics in the rhesus monkey

    NASA Astrophysics Data System (ADS)

    Convertino, V. A.; Koenig, S. C.; Krotov, V. P.; Fanton, J. W.; Korolkov, V. I.; Trambovetsky, E. V.; Ewert, D. L.; Truzhennikov, A.; Latham, R. D.

    Central circulatory hemodynamic responses were measured before and during the initial 9 days of a 12-day 10 ° head-down tilt (HDT) in 4 flight-sized juvenile rhesus monkeys who were surgically instrumented with a variety of intrathoracic catheters and blood flow sensors to assess the effects of simulated microgravity on central circulatory hemodynamics. Each subject underwent measurements of aortic and left ventricular pressures, and aortic flow before and during HDT as well as during a passive head-up postural test before and after HDT. Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure were measured, and dP/dt and left ventricular elastance was calculated from hemodynamic measurements. The postural test consisted of 5 min of supine baseline control followed by 5 minutes of 90 ° upright tilt (HUT). Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure showed no consistent alterations during HDT. Left ventricular elastance was reduced in all animals throughout HDT, indicating that cardiac compliance was increased. HDT did not consistently alter left ventricular +dP/dt, indicating no change in cardiac contractility. Heart rate during the post-HDT HUT postural test was elevated compared to pre-HDT while post-HDT cardiac output was decreased by 52% as a result of a 54% reduction in stroke volume throughout HUT. Results from this study using an instrumented rhesus monkey suggest that exposure to microgravity may increase ventricular compliance without alterating cardiac contractility. Our project supported the notion that an invasively-instrumented animal model should be viable for use in spaceflight cardiovascular experiments to assess potential changes in myocardial function and cardiac compliance.

  14. Effects of 12 days exposure to simulated microgravity on central circulatory hemodynamics in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Koenig, S. C.; Krotov, V. P.; Fanton, J. W.; Korolkov, V. I.; Trambovetsky, E. V.; Ewert, D. L.; Truzhennikov, A.; Latham, R. D.

    1998-01-01

    Central circulatory hemodynamic responses were measured before and during the initial 9 days of a 12-day 10 degrees head-down tilt (HDT) in 4 flight-sized juvenile rhesus monkeys who were surgically instrumented with a variety of intrathoracic catheters and blood flow sensors to assess the effects of simulated microgravity on central circulatory hemodynamics. Each subject underwent measurements of aortic and left ventricular pressures, and aortic flow before and during HDT as well as during a passive head-up postural test before and after HDT. Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure were measured, and dP/dt and left ventricular elastance was calculated from hemodynamic measurements. The postural test consisted of 5 min of supine baseline control followed by 5 minutes of 90 degrees upright tilt (HUT). Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure showed no consistent alterations during HDT. Left ventricular elastance was reduced in all animals throughout HDT, indicating that cardiac compliance was increased. HDT did not consistently alter left ventricular +dP/dt, indicating no change in cardiac contractility. Heart rate during the post-HDT HUT postural test was elevated compared to pre-HDT while post-HDT cardiac output was decreased by 52% as a result of a 54% reduction in stroke volume throughout HUT. Results from this study using an instrumented rhesus monkey suggest that exposure to microgravity may increase ventricular compliance without alternating cardiac contractility. Our project supported the notion that an invasively-instrumented animal model should be viable for use in spaceflight cardiovascular experiments to assess potential changes in myocardial function and cardiac compliance.

  15. Humidification during high-frequency oscillatory ventilation for adults: a bench study.

    PubMed

    Chikata, Yusuke; Imanaka, Hideaki; Ueta, Masahiko; Nishimura, Masaji

    2010-12-01

    High-frequency oscillatory ventilation (HFOV) has recently been applied to acute respiratory distress syndrome patients. However, the issue of humidification during HFOV has not been investigated. In a bench study, we evaluated humidification during HFOV for adults to test if adequate humidification was achieved in 2 different HFOV systems. We tested 2 brands of adult HFOV ventilators, the R100 (Metran, Japan) and the 3100B (SensorMedics, CA), under identical bias flow. A heated humidifier consisting of porous hollow fiber (Hummax II, Metran) was set for the R100, and a passover-type heated humidifier (MR850, Fisher & Paykel) was set for the 3100B, while inspiratory heating wire was applied to both systems. Each ventilator was connected to a lung model in an incubator. Absolute humidity, relative humidity and temperature at the airway opening were measured using a hygrometer under a variety of ventilatory settings: 3 stroke volumes/amplitudes, 3 frequencies, and 2 mean airway pressures. The R100 ventilator showed higher absolute humidity, higher relative humidity, and lower temperature than the 3100B. In the R100, as stroke volume and frequency increased, absolute humidity and temperature increased. In the 3100B, amplitude, frequency, and mean airway pressure minimally affected absolute humidity and temperature. Relative humidity was almost 100% in the R100, while it was 80.5±2.3% in the 3100B. Humidification during HFOV for adults was affected by stroke volume and frequency in the R100, but was not in the 3100B. Absolute humidity was above 33 mgH_2 O/L in these 2 systems under a range of settings.

  16. Relationship between plethysmographic waveform changes and hemodynamic variables in anesthetized, mechanically ventilated patients undergoing continuous cardiac output monitoring.

    PubMed

    Thiele, Robert H; Colquhoun, Douglas A; Patrie, James; Nie, Sarah H; Huffmyer, Julie L

    2011-12-01

    To assess the relation between photoplethysmographically-derived parameters and invasively-determined hemodynamic variables. After induction of anesthesia and placement of a Swan-Ganz CCOmbo catheter, a Nonin OEM III probe was placed on each patient's earlobe. Photoplethysmographic signals were recorded in conjunction with cardiac output. Photoplethysmographic metrics (amplitude of absorbance waveform, maximal slope of absorbance waveform, area under the curve, and width) were calculated offline and compared with invasively determined hemodynamic variables. Subject-specific associations between each dependent and independent variable pair were summarized on a per-subject basis by the nonparametric Spearman rank correlation coefficient. The bias-corrected accelerated bootstrap resampling procedure of Efron and Tibshirani was used to obtain a 95% confidence interval for the median subject-specific correlation coefficient, and Wilcoxon sign-rank tests were conducted to test the null hypothesis that the median of the subject-specific correlation coefficients were equal to 0. University hospital. Eighteen patients undergoing coronary artery bypass graft surgery. Placement of a Swan-Ganz CCOmbo catheter and a Nonin OEM III pulse oximetry probe. There was a positive, statistically significant correlation between stroke volume and width (median correlation coefficient, 0.29; confidence interval, 0.01-0.46; p = 0.034). The concordance between changes in stroke volume and changes in width was 53%. No other correlations achieved statistical significance. This study was unable to reproduce the results of prior studies. Only stroke volume and photoplethysmographic width were correlated in this study; however, the correlation and concordance (based on analysis of a 4-quadrant plot) were too weak to be clinically useful. Future studies in patients undergoing low-to-moderate risk surgery may result in improved correlations and clinical utility. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Utility of Left Atrial Expansion Index and Stroke Volume in Management of Chronic Systolic Heart Failure.

    PubMed

    Hsiao, Shih-Hung; Lin, Shih-Kai; Chiou, Yi-Ran; Cheng, Chin-Chang; Hwang, Hwong-Ru; Chiou, Kuan-Rau

    2018-06-01

    Titration of evidence-based medications, important for treating heart failure (HF), is often underdosed by symptom-guided treatment. The aim of this study was to investigate, using echocardiographic parameters, stroke volume and left ventricular (LV) filling pressure to guide up-titration of medications, increasing prognostic benefits. A total of 765 patients with chronic HF and severely reduced LV ejection fractions (<35%), referred from 2008 to 2016, were prospectively studied. Echocardiographic guidance was performed in 149 patients. LV filling pressure was assessed by left atrial expansion index, and stroke volume was estimated from diameter and time-velocity integral in the LV outflow tract. Up-titration of evidence-based medications and adjustment for side effects or worsening clinical conditions according to those parameters were performed. Propensity score matching was used to match pairs of patients with (n = 110) or without (n = 110) echocardiographic guidance. End points were 4-year frequencies of HF hospitalization and all-cause mortality. During a mean follow-up time of 4.1 years, rates of adverse events were 58 (52.7%) with no echocardiographic guidance and 36 (32.7%) with echocardiographic guidance (P < .0001). Echocardiography provided effective guidance to reduce prescribing frequency and dose of diuretics and to promote evidence-based medication prescription. It reduced HF rehospitalization and all-cause mortality. By multivariate analysis, prognostic improvement was associated with up-titration of medications with echocardiographic guidance. There was a statistically significant difference in long-term prognosis between propensity score-matched pairs of patients with chronic severe HF with and without echocardiographic guidance. These findings need further validation in large prospective clinical trials. Copyright © 2018 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  18. Validation of cardiac output studies from the Mostcare compared to a pulmonary artery catheter in septic patients.

    PubMed

    Gopal, S; Do, T; Pooni, J S; Martinelli, G

    2014-03-01

    The Mostcare monitor is a non-invasive cardiac output monitor. It has been well validated in cardiac surgical patients but there is limited evidence on its use in patients with severe sepsis and septic shock. The study included the first 22 consecutive patients with severe sepsis and septic shock in whom the floatation of a pulmonary artery catheter was deemed necessary to guide clinical management. Cardiac output measurements including cardiac output, cardiac index and stroke volume were simultaneously calculated and recorded from a thermodilution pulmonary artery catheter and from the Mostcare monitor respectively. The two methods of measuring cardiac output were compared by Bland-Altman statistics and linear regression analysis. A percentage error of less than 30% was defined as acceptable for this study. Bland-Altman analysis for cardiac output showed a Bias of 0.31 L.min-1, precision (=SD) of 1.97 L.min-1 and a percentage error of 62.54%. For Cardiac Index the bias was 0.21 L.min-1.m-2, precision of 1.10 L.min-1.m-2 and a percentage error of 64%. For stroke volume the bias was 5 mL, precision of 24.46 mL and percentage error of 70.21%. Linear regression produced a correlation coefficient r2 for cardiac output, cardiac index, and stroke volume, of 0.403, 0.306, and 0.3 respectively. Compared to thermodilution cardiac output, cardiac output studies obtained from the Mostcare monitor have an unacceptably high error rate. The Mostcare monitor demonstrated to be an unreliable monitoring device to measure cardiac output in patients with severe sepsis and septic shock on an intensive care unit.

  19. Association of follow-up infarct volume with functional outcome in acute ischemic stroke: a pooled analysis of seven randomized trials.

    PubMed

    Boers, Anna M M; Jansen, Ivo G H; Beenen, Ludo F M; Devlin, Thomas G; San Roman, Luis; Heo, Ji Hoe; Ribó, Marc; Brown, Scott; Almekhlafi, Mohammed A; Liebeskind, David S; Teitelbaum, Jeanne; Lingsma, Hester F; van Zwam, Wim H; Cuadras, Patricia; du Mesnil de Rochemont, Richard; Beaumont, Marine; Brown, Martin M; Yoo, Albert J; van Oostenbrugge, Robert J; Menon, Bijoy K; Donnan, Geoffrey A; Mas, Jean Louis; Roos, Yvo B W E M; Oppenheim, Catherine; van der Lugt, Aad; Dowling, Richard J; Hill, Michael D; Davalos, Antoni; Moulin, Thierry; Agrinier, Nelly; Demchuk, Andrew M; Lopes, Demetrius K; Aja Rodríguez, Lucia; Dippel, Diederik W J; Campbell, Bruce C V; Mitchell, Peter J; Al-Ajlan, Fahad S; Jovin, Tudor G; Madigan, Jeremy; Albers, Gregory W; Soize, Sebastien; Guillemin, Francis; Reddy, Vivek K; Bracard, Serge; Blasco, Jordi; Muir, Keith W; Nogueira, Raul G; White, Phil M; Goyal, Mayank; Davis, Stephen M; Marquering, Henk A; Majoie, Charles B L M

    2018-04-07

    Follow-up infarct volume (FIV) has been recommended as an early indicator of treatment efficacy in patients with acute ischemic stroke. Questions remain about the optimal imaging approach for FIV measurement. To examine the association of FIV with 90-day modified Rankin Scale (mRS) score and investigate its dependency on acquisition time and modality. Data of seven trials were pooled. FIV was assessed on follow-up (12 hours to 2 weeks) CT or MRI. Infarct location was defined as laterality and involvement of the Alberta Stroke Program Early CT Score regions. Relative quality and strength of multivariable regression models of the association between FIV and functional outcome were assessed. Dependency of imaging modality and acquisition time (≤48 hours vs >48 hours) was evaluated. Of 1665 included patients, 83% were imaged with CT. Median FIV was 41 mL (IQR 14-120). A large FIV was associated with worse functional outcome (OR=0.88(95% CI 0.87 to 0.89) per 10 mL) in adjusted analysis. A model including FIV, location, and hemorrhage type best predicted mRS score. FIV of ≥133 mL was highly specific for unfavorable outcome. FIV was equally strongly associated with mRS score for assessment on CT and MRI, even though large differences in volume were present (48 mL (IQR 15-131) vs 22 mL (IQR 8-71), respectively). Associations of both early and late FIV assessments with outcome were similar in strength (ρ=0.60(95% CI 0.56 to 0.64) and ρ=0.55(95% CI 0.50 to 0.60), respectively). In patients with an acute ischemic stroke due to a proximal intracranial occlusion of the anterior circulation, FIV is a strong independent predictor of functional outcome and can be assessed before 48 hours, oneither CT or MRI. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Type 2 Diabetes Mellitus and Impaired Renal Function Are Associated With Brain Alterations and Poststroke Cognitive Decline.

    PubMed

    Ben Assayag, Einor; Eldor, Roy; Korczyn, Amos D; Kliper, Efrat; Shenhar-Tsarfaty, Shani; Tene, Oren; Molad, Jeremy; Shapira, Itzhak; Berliner, Shlomo; Volfson, Viki; Shopin, Ludmila; Strauss, Yehuda; Hallevi, Hen; Bornstein, Natan M; Auriel, Eitan

    2017-09-01

    Type 2 diabetes mellitus (T2DM) is associated with diseases of the brain, kidney, and vasculature. However, the relationship between T2DM, chronic kidney disease, brain alterations, and cognitive function after stroke is unknown. We aimed to evaluate the inter-relationship between T2DM, impaired renal function, brain pathology on imaging, and cognitive decline in a longitudinal poststroke cohort. The TABASCO (Tel Aviv brain acute stroke cohort) is a prospective cohort of stroke/transient ischemic attack survivors. The volume and white matter integrity, ischemic lesions, and brain and hippocampal volumes were measured at baseline using 3-T MRI. Cognitive tests were performed on 507 patients, who were diagnosed as having mild cognitive impairment, dementia, or being cognitively intact after 24 months. At baseline, T2DM and impaired renal function (estimated creatinine clearance [eCCl] <60 mL/min) were associated with smaller brain and hippocampal volumes, reduced cortical thickness, and worse white matter microstructural integrity. Two years later, both T2DM and eCCl <60 mL/min were associated with poorer cognitive scores, and 19.7% of the participants developed cognitive decline (mild cognitive impairment or dementia). Multiple analysis, controlling for age, sex, education, and apolipoprotein E4, showed a significant association of both T2DM and eCCl <60 mL/min with cognitive decline. Having both conditions doubled the risk compared with patients with T2DM or eCCl <60 mL/min alone and almost quadrupled the risk compared with patients without either abnormality. T2DM and impaired renal function are independently associated with abnormal brain structure, as well as poorer performance in cognitive tests, 2 years after stroke. The presence of both conditions quadruples the risk for cognitive decline. T2DM and lower eCCl have an independent and additive effect on brain atrophy and the risk of cognitive decline. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01926691. © 2017 American Heart Association, Inc.

  1. Fast diffusion kurtosis imaging (DKI) with Inherent COrrelation-based Normalization (ICON) enhances automatic segmentation of heterogeneous diffusion MRI lesion in acute stroke.

    PubMed

    Zhou, Iris Yuwen; Guo, Yingkun; Igarashi, Takahiro; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Wen, Lingyi; Vangel, Mark; Lo, Eng H; Ji, Xunming; Sun, Phillip Zhe

    2016-12-01

    Diffusion kurtosis imaging (DKI) has been shown to augment diffusion-weighted imaging (DWI) for the definition of irreversible ischemic injury. However, the complexity of cerebral structure/composition makes the kurtosis map heterogeneous, limiting the specificity of kurtosis hyperintensity to acute ischemia. We propose an Inherent COrrelation-based Normalization (ICON) analysis to suppress the intrinsic kurtosis heterogeneity for improved characterization of heterogeneous ischemic tissue injury. Fast DKI and relaxation measurements were performed on normal (n = 10) and stroke rats following middle cerebral artery occlusion (MCAO) (n = 20). We evaluated the correlations between mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) derived from the fast DKI sequence and relaxation rates R 1 and R 2 , and found a highly significant correlation between MK and R 1 (p < 0.001). We showed that ICON analysis suppressed the intrinsic kurtosis heterogeneity in normal cerebral tissue, enabling automated tissue segmentation in an animal stroke model. We found significantly different kurtosis and diffusivity lesion volumes: 147 ± 59 and 180 ± 66 mm 3 , respectively (p = 0.003, paired t-test). The ratio of kurtosis to diffusivity lesion volume was 84% ± 19% (p < 0.001, one-sample t-test). We found that relaxation-normalized MK (RNMK), but not MD, values were significantly different between kurtosis and diffusivity lesions (p < 0.001, analysis of variance). Our study showed that fast DKI with ICON analysis provides a promising means of demarcation of heterogeneous DWI stroke lesions. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Value of Computed Tomographic Perfusion-Based Patient Selection for Intra-Arterial Acute Ischemic Stroke Treatment.

    PubMed

    Borst, Jordi; Berkhemer, Olvert A; Roos, Yvo B W E M; van Bavel, Ed; van Zwam, Wim H; van Oostenbrugge, Robert J; van Walderveen, Marianne A A; Lingsma, Hester F; van der Lugt, Aad; Dippel, Diederik W J; Yoo, Albert J; Marquering, Henk A; Majoie, Charles B L M

    2015-12-01

    The utility of computed tomographic perfusion (CTP)-based patient selection for intra-arterial treatment of acute ischemic stroke has not been proven in randomized trials and requires further study in a cohort that was not selected based on CTP. Our objective was to study the relationship between CTP-derived parameters and outcome and treatment effect in patients with acute ischemic stroke because of a proximal intracranial arterial occlusion. We included 175 patients who underwent CTP in the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in The Netherlands (MR CLEAN). Association of CTP-derived parameters (ischemic-core volume, penumbra volume, and percentage ischemic core) with outcome was estimated with multivariable ordinal logistic regression as an adjusted odds ratio for a shift in the direction of a better outcome on the modified Rankin Scale. Interaction between CTP-derived parameters and treatment effect was determined using multivariable ordinal logistic regression. Interaction with treatment effect was also tested for mismatch (core <70 mL; penumbra core >1.2; penumbra core >10 mL). The adjusted odds ratio for improved functional outcome for ischemic core, percentage ischemic core, and penumbra were 0.79 per 10 mL (95% confidence interval: 0.71-0.89; P<0.001), 0.82 per 10% (95% confidence interval: 0.66-0.90; P=0.002), and 0.97 per 10 mL (96% confidence interval: 0.92-1.01; P=0.15), respectively. No significant interaction between any of the CTP-derived parameters and treatment effect was observed. We observed no significant interaction between mismatch and treatment effect. CTP seems useful for predicting functional outcome, but cannot reliably identify patients who will not benefit from intra-arterial therapy. © 2015 American Heart Association, Inc.

  3. Genetic architecture of white matter hyperintensities differs in hypertensive and nonhypertensive ischemic stroke.

    PubMed

    Adib-Samii, Poneh; Devan, William; Traylor, Matthew; Lanfranconi, Silvia; Zhang, Cathy R; Cloonan, Lisa; Falcone, Guido J; Radmanesh, Farid; Fitzpatrick, Kaitlin; Kanakis, Allison; Rothwell, Peter M; Sudlow, Cathie; Boncoraglio, Giorgio B; Meschia, James F; Levi, Chris; Dichgans, Martin; Bevan, Steve; Rosand, Jonathan; Rost, Natalia S; Markus, Hugh S

    2015-02-01

    Epidemiological studies suggest that white matter hyperintensities (WMH) are extremely heritable, but the underlying genetic variants are largely unknown. Pathophysiological heterogeneity is known to reduce the power of genome-wide association studies (GWAS). Hypertensive and nonhypertensive individuals with WMH might have different underlying pathologies. We used GWAS data to calculate the variance in WMH volume (WMHV) explained by common single nucleotide polymorphisms (SNPs) as a measure of heritability (SNP heritability [HSNP]) and tested the hypothesis that WMH heritability differs between hypertensive and nonhypertensive individuals. WMHV was measured on MRI in the stroke-free cerebral hemisphere of 2336 ischemic stroke cases with GWAS data. After adjustment for age and intracranial volume, we determined which cardiovascular risk factors were independent predictors of WMHV. Using the genome-wide complex trait analysis tool to estimate HSNP for WMHV overall and within subgroups stratified by risk factors found to be significant in multivariate analyses. A significant proportion of the variance of WMHV was attributable to common SNPs after adjustment for significant risk factors (HSNP=0.23; P=0.0026). HSNP estimates were higher among hypertensive individuals (HSNP=0.45; P=7.99×10(-5)); this increase was greater than expected by chance (P=0.012). In contrast, estimates were lower, and nonsignificant, in nonhypertensive individuals (HSNP=0.13; P=0.13). A quarter of variance is attributable to common SNPs, but this estimate was greater in hypertensive individuals. These findings suggest that the genetic architecture of WMH in ischemic stroke differs between hypertensives and nonhypertensives. Future WMHV GWAS studies may gain power by accounting for this interaction. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wolters Kluwer.

  4. A Comparative Study Between Modified Starch and Xanthan Gum Thickeners in Post-Stroke Oropharyngeal Dysphagia.

    PubMed

    Vilardell, N; Rofes, L; Arreola, V; Speyer, R; Clavé, P

    2016-04-01

    Thickeners are used in post-stroke oropharyngeal dysphagia (OD) as a compensatory therapeutic strategy against aspirations. To compare the therapeutic effects of modified starch (MS) and xanthan gum (XG) thickeners on swallow safety and efficacy in chronic post-stroke OD patients using clinical and videofluoroscopic (VFS) assessment. Patients were studied by clinical assessment (volume-viscosity swallow test, V-VST) and VFS using 3 volumes (5, 10, 20 mL) and 3 viscosities (liquid, nectar and spoon thick), comparing MS and XG. We studied 122 patients (46MS, 76XG). (A) V-VST showed that both thickeners similarly improved safety of swallow. Prevalence of safe swallowing significantly increased with enhanced viscosity (P < 0.001 vs liquid), MS: 47.83 % at liquid, 84.93 % at nectar and 92.96 % at spoon thick; XG: 55.31 % at liquid, 77.78 % at nectar and 97.84 % at spoon thick. Patients on MS reported higher prevalence of pharyngeal residue at spoon-thick viscosities. (B) VFS: increasing bolus viscosity with either thickener increased prevalence of safe swallows (P < 0.001 vs liquid), MS: 30.25 % liquid, 61.07 % nectar and 92.64 % spoon thick; XG: 29.12 % liquid, 71.30 % nectar and 89.91 % spoon thick. Penetration-aspiration scale score was significantly reduced with increased viscosity with both thickeners. MS increased oral and pharyngeal residues at nectar and spoon-thick viscosities but XG did not. Timing of airway protection mechanisms and bolus velocity were not affected by either thickener. Increasing bolus viscosity with MS and XG thickeners strongly and similarly improved safety of swallow in chronic post-stroke OD by a compensatory mechanism; in contrast only MS thickeners increased oropharyngeal residue.

  5. Evidence That Ly6C(hi) Monocytes are Protective in Acute Ischemic Stroke by Promoting M2 Macrophage Polarization.

    PubMed

    Chu, Hannah X; Broughton, Brad R S; Kim, Hyun Ah; Lee, Seyoung; Drummond, Grant R; Sobey, Christopher G

    2015-07-01

    Ly6C(hi) monocytes are generally thought to exert a proinflammatory role in acute tissue injury, although their impact after injuries to the central nervous system is poorly defined. CC chemokine receptor 2 is expressed on Ly6C(hi) monocytes and plays an essential role in their extravasation and transmigration into the brain after cerebral ischemia. We used a selective CC chemokine receptor 2 antagonist, INCB3344, to assess the effect of Ly6C(hi) monocytes recruited into the brain early after ischemic stroke. Male C57Bl/6J mice underwent occlusion of the middle cerebral artery for 1 hour followed by 23 hours of reperfusion. Mice were administered either vehicle (dimethyl sulfoxide/carboxymethylcellulose) or INCB3344 (10, 30 or 100 mg/kg IP) 1 hour before ischemia and at 2 and 6 hours after ischemia. At 24 hours, we assessed functional outcomes, infarct volume, and quantified the immune cells in blood and brain by flow cytometry or immunofluorescence. Gene expression of selected inflammatory markers was assessed by quantitative polymerase chain reaction. Ly6C(hi) monocytes were increased 3-fold in the blood and 10-fold in the brain after stroke, and these increases were selectively prevented by INCB3344 in a dose-dependent manner. Mice treated with INCB3344 exhibited markedly worse functional outcomes and larger infarct volumes, in association with reduced M2 polarization and increased peroxynitrite production in macrophages, compared with vehicle-treated mice. Our data suggest that Ly6C(hi) monocytes exert an acute protective effect after ischemic stroke to limit brain injury and functional deficit that involves promotion of M2 macrophage polarization. © 2015 American Heart Association, Inc.

  6. Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT.

    PubMed

    Beker, Mustafa Caglar; Caglayan, Berrak; Yalcin, Esra; Caglayan, Ahmet Burak; Turkseven, Seyma; Gurel, Busra; Kelestemur, Taha; Sertel, Elif; Sahin, Zafer; Kutlu, Selim; Kilic, Ulkan; Baykal, Ahmet Tarik; Kilic, Ertugrul

    2018-03-01

    Occurrence of stroke cases displays a time-of-day variation in human. However, the mechanism linking circadian rhythm to the internal response mechanisms against pathophysiological events after ischemic stroke remained largely unknown. To this end, temporal changes in the susceptibility to ischemia/reperfusion (I/R) injury were investigated in mice in which the ischemic stroke induced at four different Zeitgeber time points with 6-h intervals (ZT0, ZT6, ZT12, and ZT18). Besides infarct volume and brain swelling, neuronal survival, apoptosis, ischemia, and circadian rhythm related proteins were examined using immunohistochemistry, Western blot, planar surface immune assay, and liquid chromatography-mass spectrometry tools. Here, we present evidence that midnight (ZT18; 24:00) I/R injury in mice resulted in significantly improved infarct volume, brain swelling, neurological deficit score, neuronal survival, and decreased apoptotic cell death compared with ischemia induced at other time points, which were associated with increased expressions of circadian proteins Bmal1, PerI, and Clock proteins and survival kinases AKT and Erk-1/2. Moreover, ribosomal protein S6, mTOR, and Bad were also significantly increased, while the levels of PRAS40, negative regulator of AKT and mTOR, and phosphorylated p53 were decreased at this time point compared to ZT0 (06:00). Furthermore, detailed proteomic analysis revealed significantly decreased CSKP, HBB-1/2, and HBA levels, while increased GNAZ, NEGR1, IMPCT, and PDE1B at midnight as compared with early morning. Our results indicate that nighttime I/R injury results in less severe neuronal damage, with increased neuronal survival, increased levels of survival kinases and circadian clock proteins, and also alters the circadian-related proteins.

  7. Temporal similarity perfusion mapping: A standardized and model-free method for detecting perfusion deficits in stroke

    PubMed Central

    Song, Sunbin; Luby, Marie; Edwardson, Matthew A.; Brown, Tyler; Shah, Shreyansh; Cox, Robert W.; Saad, Ziad S.; Reynolds, Richard C.; Glen, Daniel R.; Cohen, Leonardo G.; Latour, Lawrence L.

    2017-01-01

    Introduction Interpretation of the extent of perfusion deficits in stroke MRI is highly dependent on the method used for analyzing the perfusion-weighted signal intensity time-series after gadolinium injection. In this study, we introduce a new model-free standardized method of temporal similarity perfusion (TSP) mapping for perfusion deficit detection and test its ability and reliability in acute ischemia. Materials and methods Forty patients with an ischemic stroke or transient ischemic attack were included. Two blinded readers compared real-time generated interactive maps and automatically generated TSP maps to traditional TTP/MTT maps for presence of perfusion deficits. Lesion volumes were compared for volumetric inter-rater reliability, spatial concordance between perfusion deficits and healthy tissue and contrast-to-noise ratio (CNR). Results Perfusion deficits were correctly detected in all patients with acute ischemia. Inter-rater reliability was higher for TSP when compared to TTP/MTT maps and there was a high similarity between the lesion volumes depicted on TSP and TTP/MTT (r(18) = 0.73). The Pearson's correlation between lesions calculated on TSP and traditional maps was high (r(18) = 0.73, p<0.0003), however the effective CNR was greater for TSP compared to TTP (352.3 vs 283.5, t(19) = 2.6, p<0.03.) and MTT (228.3, t(19) = 2.8, p<0.03). Discussion TSP maps provide a reliable and robust model-free method for accurate perfusion deficit detection and improve lesion delineation compared to traditional methods. This simple method is also computationally faster and more easily automated than model-based methods. This method can potentially improve the speed and accuracy in perfusion deficit detection for acute stroke treatment and clinical trial inclusion decision-making. PMID:28973000

  8. Nicotinamide Adenine Dinucleotide (NAD+) and Nicotinamide: Sex Differences in Cerebral Ischemia

    PubMed Central

    Siegel, Chad S.; McCullough, Louise D.

    2013-01-01

    Background Previous literature suggests that cell death pathways activated after cerebral ischemia differ between the sexes. While caspase-dependent mechanisms predominate in the female brain, caspase-independent cell death induced by activation of Poly (ADP-ribose) polymerase (PARP) predominates in the male brain. PARP-1 gene deletion decreases infarction volume in the male brain, but paradoxically increases damage in PARP-1 knockout females. Purpose This study examined stroke induced changes in NAD+, a key energy molecule involved in PARP-1 activation in both sexes. Methods Mice were subjected to Middle Cerebral Artery Occlusion and NAD+ levels were assessed. Caspase-3 activity and nuclear translocation was assessed 6 hours after ischemia. In additional cohorts, Nicotinamide (500mg/kg i.p.) a precursor of NAD+ or vehicle was administered and infarction volume was measured 24 hours after ischemia. Results Males have higher baseline NAD+ levels than females. Significant stroke-induced NAD+ depletion occurred in males and ovariectomized females but not in intact females. PARP-1 deletion prevented the stroke induced loss in NAD+ in males, but worsened NAD+ loss in PARP-1 deficient females. Preventing NAD+ loss with nicotinamide reduced infarct in wild-type males and PARP-1 knockout mice of both sexes, with no effect in WT females. Caspase-3 activity was significantly increased in PARP-1 knockout females compared to males and wild-type females, this was reversed with nicotinamide. Conclusions Sex differences exist in baseline and stroke-induced NAD+ levels. Nicotinamide protected males and PARP knockout mice, but had minimal effects in the wild-type female brain. This may be secondary to differences in energy metabolism between the sexes. PMID:23403179

  9. In vivo near-infrared imaging of fibrin deposition in thromboembolic stroke in mice.

    PubMed

    Zhang, Yi; Fan, Shufeng; Yao, Yuyu; Ding, Jie; Wang, Yu; Zhao, Zhen; Liao, Lei; Li, Peicheng; Zang, Fengchao; Teng, Gao-Jun

    2012-01-01

    Thrombus and secondary thrombosis plays a key role in stroke. Recent molecular imaging provides in vivo imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa-targeted near-infrared fluorescence (NIRF) imaging. The experimental protocol was approved by our institutional animal use committee. Seventy-six C57B/6J mice were subjected to thromboembolic middle cerebral artery occlusion or sham operation. Mice were either intravenously injected with the FXIIIa-targeted probe or control probe. In vivo and ex vivo NIRF imaging were performed thereafter. Probe distribution was assessed with fluorescence microscopy by spectral imaging and quantification system. MR scans were performed to measure lesion volumes in vivo, which were correlated with histology after animal euthanasia. In vivo significant higher fluorescence intensity over the ischemia-affected hemisphere, compared to the contralateral side, was detected in mice that received FXIIIa-targeted probe, but not in the controlled mice. Significantly NIRF signals showed time-dependent processes from 8 to 96 hours after injection of FXIIIa-targeted probes. Ex vivo NIRF image showed an intense fluorescence within the ischemic territory only in mice injected with FXIIIa-targeted probe. The fluorescence microscopy demonstrated distribution of FXIIIa-targeted probe in the ischemic region and nearby micro-vessels, and FXIIIa-targeted probe signals showed good overlap with immune-fluorescent fibrin staining images. There was a significant correlation between total targeted signal from in vivo or ex vivo NIRF images and lesion volume. Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke.

  10. In Vivo Near-Infrared Imaging of Fibrin Deposition in Thromboembolic Stroke in Mice

    PubMed Central

    Zhang, Yi; Fan, Shufeng; Yao, Yuyu; Ding, Jie; Wang, Yu; Zhao, Zhen; Liao, Lei; Li, Peicheng; Zang, Fengchao; Teng, Gao-Jun

    2012-01-01

    Objectives Thrombus and secondary thrombosis plays a key role in stroke. Recent molecular imaging provides in vivo imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa–targeted near-infrared fluorescence (NIRF) imaging. Materials and Methods The experimental protocol was approved by our institutional animal use committee. Seventy-six C57B/6J mice were subjected to thromboembolic middle cerebral artery occlusion or sham operation. Mice were either intravenously injected with the FXIIIa-targeted probe or control probe. In vivo and ex vivo NIRF imaging were performed thereafter. Probe distribution was assessed with fluorescence microscopy by spectral imaging and quantification system. MR scans were performed to measure lesion volumes in vivo, which were correlated with histology after animal euthanasia. Results In vivo significant higher fluorescence intensity over the ischemia-affected hemisphere, compared to the contralateral side, was detected in mice that received FXIIIa-targeted probe, but not in the controlled mice. Significantly NIRF signals showed time-dependent processes from 8 to 96 hours after injection of FXIIIa-targeted probes. Ex vivo NIRF image showed an intense fluorescence within the ischemic territory only in mice injected with FXIIIa-targeted probe. The fluorescence microscopy demonstrated distribution of FXIIIa-targeted probe in the ischemic region and nearby micro-vessels, and FXIIIa-targeted probe signals showed good overlap with immune-fluorescent fibrin staining images. There was a significant correlation between total targeted signal from in vivo or ex vivo NIRF images and lesion volume. Conclusion Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke. PMID:22272319

  11. Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial.

    PubMed

    Deng, Huiqiong; Durfee, William K; Nuckley, David J; Rheude, Brandon S; Severson, Amy E; Skluzacek, Katie M; Spindler, Kristen K; Davey, Cynthia S; Carey, James R

    2012-02-01

    Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. This study was a pilot randomized controlled trial. Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. Participants received either computerized complex movement training (track group) or simple movement training (move group). Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. Limitations of this study were that no follow-up test was conducted and that a small sample size was used. The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke.

  12. Right ventricular longitudinal strain and right ventricular stroke work index in patients with severe heart failure: left ventricular assist device suitability for transplant candidates.

    PubMed

    Cameli, M; Bernazzali, S; Lisi, M; Tsioulpas, C; Croccia, M G; Lisi, G; Maccherini, M; Mondillo, S

    2012-09-01

    Right ventricular (RV) systolic function has a critical role in determining the clinical outcome and the success of using left ventricular assist devices in patients with refractory heart failure. RV deformation analysis by speckle tracking echocardiography (STE) has recently allowed the analysis of RV longitudinal function. Using cardiac catheterization as the reference standard, this study aimed to explore the correlation between RV longitudinal function by STE and RV stroke work index (RVSWI) among patients referred for cardiac transplantation. Right heart catheterization and transthoracic echo-Doppler were simultaneously performed in 47 patients referred for cardiac transplant assessment due to refractory heart failure (ejection fraction 25.1 ± 4.5%). Thermodilution RV stroke volume and invasive pulmonary pressures were used to obtain RVSWI. RV longitudinal strain (RVLS) by STE was assessed averaging RV free-wall segments (free-wall RVLS). We also calculated. Tricuspid S' and tricuspid annular plane systolic excursion (TAPSE). No significant correlation was observed for TAPSE on tricuspid S' with RV stroke volume (r = 0.14 and r = 0.06, respectively). A close negative correlation between free-wall RVLS and RVSWI was found (r = -0.82; P < .0001). Furthermore, free-wall RVLS showed the highest diagnostic accuracy (area under the curve of 0.90) with good sensitivity and specificity of 95% and 91%, respectively, to predict depressed RVSWI using a cutoff value less than -11.8%. Among patients referred for heart transplantation, TAPSE and tricuspid S' did not correlate with invasively obtained RVSWI. RV longitudinal deformation analysis by STE correlated with RVSWI, providing a better estimate of RV systolic performance. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    PubMed

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  14. Glibenclamide for the treatment of ischemic and hemorrhagic stroke.

    PubMed

    Caffes, Nicholas; Kurland, David B; Gerzanich, Volodymyr; Simard, J Marc

    2015-03-04

    Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS) ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insults, and in neuroinflammation after hemorrhagic injuries. Inhibiting endothelial, neuronal, astrocytic and oligodendroglial sulfonylurea receptor 1-transient receptor potential melastatin 4 (Sur1-Trpm4) channels and, in some cases, microglial KATP (Sur1-Kir6.2) channels, with glibenclamide is protective in a variety of contexts. Robust preclinical studies have shown that glibenclamide and other sulfonylurea agents reduce infarct volumes, edema and hemorrhagic conversion, and improve outcomes in rodent models of ischemic stroke. Retrospective studies suggest that diabetic patients on sulfonylurea drugs at stroke presentation fare better if they continue on drug. Additional laboratory investigations have implicated Sur1 in the pathophysiology of hemorrhagic CNS insults. In clinically relevant models of subarachnoid hemorrhage, glibenclamide reduces adverse neuroinflammatory and behavioral outcomes. Here, we provide an overview of the preclinical studies of glibenclamide therapy for CNS ischemia and hemorrhage, discuss the available data from clinical investigations, and conclude with promising preclinical results that suggest glibenclamide may be an effective therapeutic option for ischemic and hemorrhagic stroke.

  15. The dichotomy of memantine treatment for ischemic stroke: dose-dependent protective and detrimental effects

    PubMed Central

    Trotman, Melissa; Vermehren, Philipp; Gibson, Claire L; Fern, Robert

    2015-01-01

    Excitotoxicity is a major contributor to cell death during the acute phase of ischemic stroke but aggressive pharmacological targeting of excitotoxicity has failed clinically. Here we investigated whether pretreatment with low doses of memantine, within the range currently used and well tolerated for the treatment of Alzheimer's disease, produce a protective effect in stroke. A coculture preparation exposed to modeled ischemia showed cell death associated with rapid glutamate rises and cytotoxic Ca2+ influx. Cell death was significantly enhanced in the presence of high memantine concentrations. However, low memantine concentrations significantly protected neurons and glia via excitotoxic cascade interruption. Mice were systemically administered a range of memantine doses (0.02, 0.2, 2, 10, and 20 mg/kg/day) starting 24 hours before 60 minutes reversible focal cerebral ischemia and continuing for a 48-hour recovery period. Low dose (0.2 mg/kg/day) memantine treatment significantly reduced lesion volume (by 30% to 50%) and improved behavioral outcomes in stroke lesions that had been separated into either small/striatal or large/striatocortical infarcts. However, higher doses of memantine (20 mg/kg/day) significantly increased injury. These results show that clinically established low doses of memantine should be considered for patients ‘at risk' of stroke, while higher doses are contraindicated. PMID:25407270

  16. Arterial Pressure Analog.

    ERIC Educational Resources Information Center

    Heusner, A. A.; Tracy, M. L.

    1980-01-01

    Describes a simple hydraulic analog which allows students to explore some physical aspects of the cardiovascular system and provides them with a means to visualize and conceptualize these basic principles. Simulates the behavior of arterial pressure in response to changes in heart rate, stroke volume, arterial compliance, and peripheral…

  17. Evidence for the Use of Isoflurane as a Replacement for Chloral Hydrate Anesthesia in Experimental Stroke: An Ethical Issue

    PubMed Central

    Maud, Pétrault; Thavarak, Ouk; Cédrick, Lachaud; Michèle, Bastide; Vincent, Bérézowski; Olivier, Pétrault; Régis, Bordet

    2014-01-01

    Since an ethical issue has been raised regarding the use of the well-known anesthetic agent chloral hydrate, owing to its mutagenic and carcinogenic effects in animals, attention of neuroscientists has turned to finding out an alternative agent able to meet not only potency, safety, and analgesic efficacy, but also reduced neuroprotective effect for stroke research. The aim of this study was to compare the potential of chloral hydrate and isoflurane for both modulating the action of the experimental neuroprotectant MK801 and exerting analgesia. After middle cerebral artery occlusion in rats, no difference was observed in 24 h survival rate, success of ischemia, or infarct volume reduction between both anesthetics. However, isoflurane exerted a more pronounced analgesic effect than chloral hydrate as evidenced by formalin test 3 hours after anesthesia onset, thus encouraging the use of isoflurane in experimental stroke models. PMID:24719888

  18. Developments in mechanical thrombectomy devices for the treatment of acute ischemic stroke.

    PubMed

    Mordasini, Pasquale; Gralla, Jan

    2016-01-01

    Several recent prospective randomized controlled trials of endovascular stroke therapy using latest generation thrombectomy devices, so called stent-retrievers, have shown significantly improved clinical outcome compared to the standard treatment with intra-venous thrombolysis using r-tPA alone. Despite some differences in inclusion criteria between these studies, all required non-invasive vessel imaging to proof occlusion of a major brain supplying vessel. Furthermore, in most studies additional imaging techniques were used to exclude patients with already established large cerebral infarction or unfavorable collateral or penumbral status. Patients with small infarct volume, severe neurological deficits and in whom thrombectomy can be initiated within the first 6 hours after symptom onset seem to benefit the most. Therefore, mechanical thrombectomy using stent-retrievers in addition to intra-venous thrombolysis is recommended for the treatment of acute ischemic stroke with proven major vessel occlusion in the anterior circulation.

  19. Valve assembly for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeman, R.J.; Shea, S.F.

    1989-09-05

    This patent describes an improvement in a valve assembly for an internal combustion engine of the type including a valve having a valve stem, a valve guideway for mounting this valve for reciprocal strokes between opened and seated position, and spring means for biasing the valve into the seated position. The improvement comprising a valve spool of greater cross-sectional diameter as compared to the valve stem, and a valve spool guideway within which the valve spool is movable during the strokes of the valve, an upper surface of the valve spool and a portion of the spool guideway collectively establishingmore » a damper chamber which varies in volume during the valve strokes. a feed passage for introducing oil into the damper chamber, and a bleed passage for discharging oil from the damper chamber. The bleed passages each laterally opening into the valve spool guideway.« less

  20. Effects of intra-aortic balloon pump counterpulsation on left ventricular mechanoenergetics in a porcine model of acute ischemic heart failure.

    PubMed

    Malliaras, Konstantinos; Charitos, Efstratios; Diakos, Nikolaos; Pozios, Iraklis; Papalois, Apostolos; Terrovitis, John; Nanas, John

    2014-12-01

    We investigated the effects of intra-aortic balloon pump (IABP) counterpulsation on left ventricular (LV) contractility, relaxation, and energy consumption and probed the underlying physiologic mechanisms in 12 farm pigs, using an ischemia-reperfusion model of acute heart failure. During both ischemia and reperfusion, IABP support unloaded the LV, decreased LV energy consumption (pressure-volume area, stroke work), and concurrently improved LV mechanical performance (ejection fraction, stroke volume, cardiac output). During reperfusion exclusively, IABP also improved LV relaxation (tau) and contractility (Emax, PRSW). The beneficial effects of IABP support on LV relaxation and contractility correlated with IABP-induced augmentation of coronary blood flow. In conclusion, we find that during both ischemia and reperfusion, IABP support optimizes LV energetic performance (decreases energy consumption and concurrently improves mechanical performance) by LV unloading. During reperfusion exclusively, IABP support also improves LV contractility and active relaxation, possibly due to a synergistic effect of unloading and augmentation of coronary blood flow.

  1. Influence of gravity on cardiac performance.

    PubMed

    Pantalos, G M; Sharp, M K; Woodruff, S J; O'Leary, D S; Lorange, R; Everett, S D; Bennett, T E; Shurfranz, T

    1998-01-01

    Results obtained by the investigators in ground-based experiments and in two parabolic flight series of tests aboard the NASA KC-135 aircraft with a hydraulic simulator of the human systemic circulation have confirmed that a simple lack of hydrostatic pressure within an artificial ventricle causes a decrease in stroke volume of 20%-50%. A corresponding drop in stroke volume (SV) and cardiac output (CO) was observed over a range of atrial pressures (AP), representing a rightward shift of the classic CO versus AP cardiac function curve. These results are in agreement with echocardiographic experiments performed on space shuttle flights, where an average decrease in SV of 15% was measured following a three-day period of adaptation to weightlessness. The similarity of behavior of the hydraulic model to the human system suggests that the simple physical effects of the lack of hydrostatic pressure may be an important mechanism for the observed changes in cardiac performance in astronauts during the weightlessness of space flight.

  2. Proposal of a new electromechanical total artificial heart: the TAH Serpentina.

    PubMed

    Sauer, I M; Frank, J; Bücherl, E S

    1999-03-01

    A new type of energy converter for an electro-mechanical total artificial heart (TAH) based on the principle of a unidirectional moving motor is described. Named the TAH Serpentina, the concept consists of 2 major parts, a pendulum shaped movable element fixed on one side using a joint bearing and a special shaped drum cam. Pusher plates are mounted flexibly to the crossbar of the pendulum. A motor drives the special shaped drum cam linked to the pendulum through a ball bearing. The circular motion of the unidirectional moving brushless DC motor is transferred into the linear motion of the pendulum to drive the pusher plates. Using a crossbar with a variable length, the stroke of the pendulum and therefore the displaced blood volume is alterable. To achieve a variable length, an electric driven screw thread or a hydraulic system is possible. Comparable to the natural heart, cardiac output would be determined by frequency and stroke volume.

  3. Heart rate-left ventricular ejection time relations - Variations during postural change and cardiovascular challenges

    NASA Technical Reports Server (NTRS)

    Lance, V. Q.; Spodick, D. H.

    1976-01-01

    Experiments were conducted on healthy human subjects to determine HR-LVET (Heart Rate-Left Ventricular Ejection Time) regression relations in different postures, including tilt, and during isometric exercise. The subjects were tested in the resting state in supine and sitting positions, during isometric handgrip in supine and sitting positions and during 70 deg headup tilt. The recordings included a bipolar electrocardiogram and a right external carotid pulse curve. Comparison of the HR-LVET relation for the conditions under analysis revealed differences among the respective regression equations, which can be explained by the well-established differences in stroke volume and ejection rate among these states. These differences appear to account for the fact that under conditions in which stroke volume variations should be the major determinant, slopes will be similar but intercepts will vary. Since substantial differences among intercepts are observed, caution should be exercised whenever the intercept factor is used to predict LVET for HR.

  4. Neuroprotective effect of combined ultrasound and microbubbles in a rat model of middle cerebral artery infarction

    NASA Astrophysics Data System (ADS)

    Fatar, M.; Griebe, M.; Stroick, M.; Kern, R.; Hennerici, M.; Meairs, S.

    2005-03-01

    Ultrasound-mediated microbubble thrombolysis (UMT) was performed in a middle cerebral artery occlusion model in rats to evaluate possible effects upon brain infarct volume, apoptosis, IL-6 and TNF-alpha levels, and disruption of the blood-brain barrier (BBB). The results show that infarct volume was significantly reduced (p<0.04) in the microbubble + ultrasound (MB + US) group as compared to control animals. The levels of IL-6 and TNF-alpha concentrations, as markers of tissue damage, were not significantly different. In trypan blue treated animals, no additional BBB disruption was observed for the UMT group. Likewise, there was no increase in apoptotic cell death outside the infarction area in animals treated with MB + US. The results demonstrate that UMT does not have a harmful effect upon ischemic stroke in a middle cerebral artery occlusion model of the rat. The significant reduction in brain infarction following insonation with ultrasound and microbubbles suggests a novel neuroprotective effect in ischemic stroke.

  5. Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus.

    PubMed

    Kim, D S; Choi, J U; Huh, R; Yun, P H; Kim, D I

    1999-09-01

    This investigation was undertaken to characterize CSF flow at the level of the aqueduct of Sylvius with a phase-contrast cine MR pulse sequence in 28 healthy volunteers. Sixteen patients with obstructive hydrocephalus and 11 patients with normal pressure hydrocephalus (NPH) were investigated with the same sequence before and after CSF diversion. The peak CSF flow velocity and stroke volume in the aqueduct increased significantly in the NPH group and decreased significantly in the obstructive hydrocephalus group. After lumboperitoneal shunting in the NPH group, the retrograde flow of CSF was anterogradely converted and the peak flow velocities decreased somewhat. The clinical diagnosis of NPH was well correlated with the results of cine MRI. After endoscopic III ventriculostomy in the obstructive hydrocephalus group we noted increased CSF flow velocity with markedly increased stroke volume at the prepontine cistern. Phase-contrast cine MR is useful in evaluating CSF dynamics in patients with hyperdynamic aqueductal CSF or aqueductal obstruction.

  6. Inhibition of mitogen-activated protein kinase 1/2 in the acute phase of stroke improves long-term neurological outcome and promotes recovery processes in rats.

    PubMed

    Mostajeran, M; Edvinsson, L; Warfvinge, K; Singh, R; Ansar, S

    2017-04-01

    Extracellular signal-regulated kinase (ERK) 1/2 is activated during acute phase of stroke and contributes to stroke pathology. We have found that acute treatment with MEK1/2 inhibitors decreases infarct size and neurological deficits 2 days after experimental stroke. However, it is not known whether benefits of this inhibition persist long-term. Therefore, the aim of this study was to assess neurological function, infarct size and recovery processes 14 days after stroke in male rats to determine long-term outcome following acute treatment with the MEK1/2 inhibitor U0126. Transient middle cerebral artery occlusion was induced in male rats. U0126 or vehicle was given at 0 and 24 h of reperfusion. Neurological function was assessed by staircase, 6-point and 28-point neuroscore tests up to 14 days after induction of stroke. At day 14, infarct volumes were determined and recovery processes were evaluated by measuring protein expression of the tyrosine kinase receptor Tie-2 and nestin. Levels of p-ERK1/2 protein were determined. Acute treatment with U0126 significantly improved long-term functional recovery, reduced infarct size, and enhanced Tie-2 and nestin protein expression at 14 days post-stroke. There was no residual blockade of p-ERK1/2 at this time point. It is demonstrated that benefits of early treatment with U0126 persist beyond subacute phase of ischaemic stroke in male rats. Prevention of ERK1/2 activation in the acute phase results in improved long-term functional outcome and enhances later-stage recovery processes. These results expand our understanding of the benefits and promise of using MEK1/2 inhibitors in stroke recovery. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Lacunar Infarcts, but Not Perivascular Spaces, Are Predictors of Cognitive Decline in Cerebral Small-Vessel Disease

    PubMed Central

    Trippier, Sarah; Lawrence, Andrew J.; Lambert, Christian; Zeestraten, Eva; Williams, Owen A.; Patel, Bhavini; Morris, Robin G.; Barrick, Thomas R.; MacKinnon, Andrew D.; Markus, Hugh S.

    2018-01-01

    Background and Purpose— Cerebral small-vessel disease is a major cause of cognitive impairment. Perivascular spaces (PvS) occur in small-vessel disease, but their relationship to cognitive impairment remains uncertain. One reason may be difficulty in distinguishing between lacunes and PvS. We determined the relationship between baseline PvS score and PvS volume with change in cognition over a 5-year follow-up. We compared this to the relationship between baseline lacune count and total lacune volume with cognition. In addition, we examined change in PvS volume over time. Methods— Data from the prospective SCANS study (St Georges Cognition and Neuroimaging in Stroke) of patients with symptomatic lacunar stroke and confluent leukoaraiosis were used (n=121). Multimodal magnetic resonance imaging was performed annually for 3 years and neuropsychological testing annually for 5 years. Lacunes were manually identified and distinguished from PvS. PvS were rated using a validated visual rating scale, and PvS volumes calculated using T1-weighted images. Linear mixed-effect models were used to determine the impact of PvS and lacunes on cognition. Results— Baseline PvS scores or volumes showed no association with cognitive indices. No change was detectable in PvS volumes over the 3 years. In contrast, baseline lacunes associated with all cognitive indices and predicted cognitive decline over the 5-year follow-up. Conclusions— Although a feature of small-vessel disease, PvS are not a predictor of cognitive decline, in contrast to lacunes. This study highlights the importance of carefully differentiating between lacunes and PvS in studies investigating vascular cognitive impairment. PMID:29438074

  8. Effect of fluid loading on left ventricular volume and stroke volume variability in patients with end-stage renal disease: a pilot study

    PubMed Central

    Kanda, Hirotsugu; Hirasaki, Yuji; Iida, Takafumi; Kanao-Kanda, Megumi; Toyama, Yuki; Kunisawa, Takayuki; Iwasaki, Hiroshi

    2015-01-01

    Purpose The aim of this study was to investigate fluid loading-induced changes in left ventricular end-diastolic volume (LVEDV) and stroke volume variability (SVV) in patients with end-stage renal disease (ESRD) using real-time three-dimensional transesophageal echocardiography and the Vigileo-FloTrac system. Patients and methods After obtaining ethics committee approval and informed consent, 28 patients undergoing peripheral vascular procedures were studied. Fourteen patients with ESRD on hemodialysis (HD) were assigned to the HD group and 14 patients without ESRD were assigned to the control group. Institutional standardized general anesthesia was provided in both groups. SVV was measured using the Vigileo-FloTrac system. Simultaneously, a full-volume three-dimensional transesophageal echocardiography dataset was acquired to measure LVEDV, left ventricular end-systolic volume, and left ventricular ejection fraction. Measurements were obtained before and after loading 500 mL hydroxyethyl starch over 30 minutes in both groups. Results In the control group, intravenous colloid infusion was associated with a significant decrease in SVV (13.8%±2.6% to 6.5%±2.6%, P<0.001) and a significant increase in LVEDV (83.6±23.4 mL to 96.1±28.8 mL, P<0.001). While SVV significantly decreased after infusion in the HD group (16.2%±6.0% to 6.2%±2.8%, P<0.001), there was no significant change in LVEDV. Conclusion Our preliminary data suggest that fluid responsiveness can be assessed not by LVEDV but also by SVV due to underlying cardiovascular pathophysiology in patients with ESRD. PMID:26527879

  9. Comparison of CT perfusion summary maps to early diffusion-weighted images in suspected acute middle cerebral artery stroke.

    PubMed

    Benson, John; Payabvash, Seyedmehdi; Salazar, Pascal; Jagadeesan, Bharathi; Palmer, Christopher S; Truwit, Charles L; McKinney, Alexander M

    2015-04-01

    To assess the accuracy and reliability of one vendor's (Vital Images, Toshiba Medical, Minnetonka, MN) automated CT perfusion (CTP) summary maps in identification and volume estimation of infarcted tissue in patients with acute middle cerebral artery (MCA) distribution infarcts. From 1085 CTP examinations over 5.5 years, 43 diffusion-weighted imaging (DWI)-positive patients were included who underwent both CTP and DWI <12 h after symptom onset, with another 43 age-matched patients as controls (DWI-negative). Automated delay-corrected postprocessing software (DC-SVD) generated both infarct "core only" and "core+penumbra" CTP summary maps. Three reviewers independently tabulated Alberta Stroke Program Early CT scores (ASPECTS) of both CTP summary maps and coregistered DWI. Of 86 included patients, 36 had DWI infarct volumes ≤70 ml, 7 had volumes >70 ml, and 43 were negative; the automated CTP "core only" map correctly classified each as >70 ml or ≤70 ml, while the "core+penumbra" map misclassified 4 as >70 ml. There were strong correlations between DWI volume with both summary map-based volumes: "core only" (r=0.93), and "core+penumbra" (r=0.77) (both p<0.0001). Agreement between ASPECTS scores of infarct core on DWI with summary maps was 0.65-0.74 for "core only" map, and 0.61-0.65 for "core+penumbra" (both p<0.0001). Using DWI-based ASPECTS scores as the standard, the accuracy of the CTP-based maps were 79.1-86.0% for the "core only" map, and 83.7-88.4% for "core+penumbra." Automated CTP summary maps appear to be relatively accurate in both the detection of acute MCA distribution infarcts, and the discrimination of volumes using a 70 ml threshold. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Effects of a prostagrandin EP4-receptor agonist ONO-AE1-329 on the left ventricular pressure-volume relationship in the halothane-anesthetized dogs.

    PubMed

    Honda, Atsushi; Nakamura, Yuji; Ohara, Hiroshi; Cao, Xin; Nomura, Hiroaki; Katagi, Jun; Wada, Takeshi; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Sugiyama, Atsushi

    2016-03-15

    Cardiac effects of a prostagrandin EP4-receptor agonist ONO-AE1-329 were assessed in the halothane-anesthetized dogs under the monitoring of left ventricular pressure-volume relationship, which were compared with those of clinically recommended doses of dopamine, dobutamine and milrinone (n=4-5 for each treatment). ONO-AE1-329 was intravenously administered in doses of 0.3, 1 and 3 ng/kg/min for 10 min with a pause of 20 min. Dopamine in a dose of 3 µg/kg/min for 10 min, dobutamine in a dose of 1 µg/kg/min for 10 min and milrinone in a dose of 5 µg/kg/min for 10 min followed by 0.5 µg/kg/min for 10 min were intravenously administered. Low dose of ONO-AE1-329 increased the stroke volume. Middle dose of ONO-AE1-329 increased the cardiac output, left ventricular end-diastolic volume, ejection fraction, maximum upstroke/downstroke velocities of the left ventricular pressure and external work, but decreased the end-systolic pressure and internal work besides the change by the low dose. High dose of ONO-AE1-329 increased the heart rate and maximum elastance, but decreased the end-systolic volume besides the changes by the middle dose. Dopamine, dobutamine and milrinone exerted essentially similar cardiac effects to ONO-AE1-329, but they did not significantly change the end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, end-systolic pressure, maximum elastance, external work or internal work. Thus, EP4-receptor stimulation by ONO-AE1-329 may have potential to better promote the passive ventricular filling than the conventional cardiotonic drugs, which could become a candidate of novel therapeutic strategy for the treatment of heart failure with preserved ejection fraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience

    NASA Technical Reports Server (NTRS)

    Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.; hide

    2003-01-01

    BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS: real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.

  12. EMBOLIC MIDDLE CEREBRAL ARTERY OCCLUSION MODEL USING THROMBIN AND FIBRINOGEN COMPOSED CLOTS IN RAT

    PubMed Central

    Ren, Ming; Lin, Zi-Jing; Qian, Hai; Gourav, Choudhury Roy; liu, Ran; Liu, Hanli; Yang, Shao-Hua

    2012-01-01

    Ischemic stroke accounts for over 80% in total human stroke which mostly affect middle cerebral artery (MCA) territory. Embolic stroke models induced by injection of homologous clots into the internal carotid artery and MCA closely mimic human stroke and have been commonly used in stroke research. Studies indicate that the size and composition of clots are critical for the reproducibility of the stroke model. In the present study, we modified the homologous clots formation by addition of thrombin and fibrinogen which produced even distribution of fibrin with tight cross linkage of red blood cells. We optimized the embolic MCA occlusion model in rats using different size of the mixed clots. A precise lodgment of the clots at the MCA bifurcation and highly reproducible ischemic lesion in the MCA territory were demonstrated in the embolic MCA occlusion model induced by injection of 10 pieces of 1-mm long mixed clots made in PE-60 catheter. We further tested the effect of recombinant tissue plasminogen activator (rtPA) in this embolic MCA occlusion model. rtPA induced thrombolysis, improved neurological outcome, and significantly reduced ischemic lesion volume when administered at 1 hour after embolism as compared with control. In summary, we have established a reproducible embolic MCA occlusion model using clots made of homologous blood, thrombin and fibrinogen. The mixed clots enable precise lodgment at the MCA bifurcation which is responsive to thrombolytic therapy of rtPA. PMID:22985597

  13. Embolic middle cerebral artery occlusion model using thrombin and fibrinogen composed clots in rat.

    PubMed

    Ren, Ming; Lin, Zi-Jing; Qian, Hai; Choudhury, Gourav Roy; Liu, Ran; Liu, Hanli; Yang, Shao-Hua

    2012-11-15

    Ischemic stroke accounts for over 80% in total human stroke which mostly affect middle cerebral artery (MCA) territory. Embolic stroke models induced by injection of homologous clots into the internal carotid artery and MCA closely mimic human stroke and have been commonly used in stroke research. Studies indicate that the size and composition of clots are critical for the reproducibility of the stroke model. In the present study, we modified the homologous clots formation by addition of thrombin and fibrinogen which produced even distribution of fibrin with tight cross linkage of red blood cells. We optimized the embolic MCA occlusion model in rats using different size of the mixed clots. A precise lodgment of the clots at the MCA bifurcation and highly reproducible ischemic lesion in the MCA territory were demonstrated in the embolic MCA occlusion model induced by injection of 10 pieces of 1-mm long mixed clots made in PE-60 catheter. We further tested the effect of recombinant tissue plasminogen activator (rtPA) in this embolic MCA occlusion model. rtPA induced thrombolysis, improved neurological outcome, and significantly reduced ischemic lesion volume when administered at 1h after embolism as compared with control. In summary, we have established a reproducible embolic MCA occlusion model using clots made of homologous blood, thrombin and fibrinogen. The mixed clots enable precise lodgment at the MCA bifurcation which is responsive to thrombolytic therapy of rtPA. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Clinical usefulness of the visibility of the transcerebral veins at 3T on T2*-weighted sequence in acute stroke patients.

    PubMed

    Rosso, Charlotte; Belleville, Martin; Pires, Christine; Dormont, Didier; Crozier, Sophie; Chiras, Jacques; Samson, Yves; Bonneville, Fabrice

    2012-06-01

    The objective of this work was to investigate the clinical usefulness of the visibility of the transcerebral veins (VTV) in acute ischemic stroke patients at 3T. Sixty consecutive carotid artery territory stroke patients were included retrospectively. Two readers categorized the VTV on T2*-weighted sequence at 3T for each hemisphere, and asymmetry of this sign was assessed between each hemisphere by an asymmetry index (AI) using a three-item scale. The VTV and AI were correlated with clinical and radiological covariates. Particular interest was focused on patients for whom initial diffusion-weighted imaging alone was inconclusive. VTV were detected in the stroke hemisphere in 58.3% (n = 35) and in the contralateral side in 10% (n = 6, p<0.0001). Asymmetry of the VTV between ischemic and contralateral hemispheres was present in 53.3% (n = 32). Intracranial artery occlusion, final infarct volume and symptomatic hemorrhagic transformation were correlated with a higher AI at baseline (ρ = 0.563, ρ = 0.291, and ρ = 0.285, p<0.05, respectively). Three hyperacute stroke patients with subtle DWI high signal intensity at admission demonstrated VTV. The pathological value of the VTV seems to reside in its asymmetry between hemispheres, as it was correlated with important clinical parameters. This study also suggests that the VTV could be a supportive finding in stroke diagnosis, especially when DWI is unreliable. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Memantine attenuates cell apoptosis by suppressing the calpain-caspase-3 pathway in an experimental model of ischemic stroke.

    PubMed

    Chen, Bin; Wang, Guoxiang; Li, Weiwei; Liu, Weilin; Lin, Ruhui; Tao, Jing; Jiang, Min; Chen, Lidian; Wang, Yun

    2017-02-15

    Ischemic stroke, the second leading cause of death worldwide, leads to excessive glutamate release, over-activation of N-methyl-D-aspartate receptor (NMDAR), and massive influx of calcium (Ca 2+ ), which may activate calpain and caspase-3, resulting in cellular damage and death. Memantine is an uncompetitive NMDAR antagonist with low-affinity/fast off-rate. We investigated the potential mechanisms through which memantine protects against ischemic stroke in vitro and in vivo. Middle cerebral artery occlusion-reperfusion (MCAO) was performed to establish an experimental model of ischemic stroke. The neuroprotective effects of memantine on ischemic rats were evaluated by neurological deficit scores and infarct volumes. The activities of calpain and caspase-3, and expression levels of microtubule-associated protein-2 (MAP2) and postsynaptic density-95 (PSD95) were determined by Western blotting. Additionally, Nissl staining and immunostaining were performed to examine brain damage, cell apoptosis, and neuronal loss induced by ischemia. Our results show that memantine could significantly prevent ischemic stroke-induced neurological deficits and brain infarct, and reduce ATP depletion-induced neuronal death. Moreover, memantine markedly suppressed the activation of the calpain-caspase-3 pathway and cell apoptosis, and consequently, attenuated brain damage and neuronal loss in MCAO rats. These results provide a molecular basis for the role of memantine in reducing neuronal apoptosis and preventing neuronal damage, suggesting that memantine may be a promising therapy for stroke patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of depth and chest volume on cardiac function during breath-hold diving.

    PubMed

    Marabotti, Claudio; Scalzini, Alessandro; Cialoni, Danilo; Passera, Mirko; Ripoli, Andrea; L'Abbate, Antonio; Bedini, Remo

    2009-07-01

    Cardiac response to breath-hold diving in human beings is primarily characterized by the reduction of both heart rate and stroke volume. By underwater Doppler-echocardiography we observed a "restrictive/constrictive" left ventricular filling pattern compatible with the idea of chest squeeze and heart compression during diving. We hypothesized that underwater re-expansion of the chest would release heart constriction and normalize cardiac function. To this aim, 10 healthy male subjects (age 34.2 +/- 10.4) were evaluated by Doppler-echocardiography during breath-hold immersion at a depth of 10 m, before and after a single maximal inspiration from a SCUBA device. During the same session, all subjects were also studied at surface (full-body immersion) and at 5-m depth in order to better characterize the relationship of echo-Doppler pattern with depth. In comparison to surface immersion, 5-m deep diving was sufficient to reduce cardiac output (P = 0.042) and increase transmitral E-peak velocity (P < 0.001). These changes remained unaltered at a 10-m depth. Chest expansion at 10 m decreased left ventricular end-systolic volume (P = 0.024) and increased left ventricular stroke volume (P = 0.024). In addition, it decreased transmitral E-peak velocity (P = 0.012) and increased deceleration time of E-peak (P = 0.021). In conclusion the diving response, already evident during shallow diving (5 m) did not progress during deeper dives (10 m). The rapid improvement in systolic and diastolic function observed after lung volume expansion is congruous with the idea of a constrictive effect on the heart exerted by chest squeeze.

  17. Elementary theory of synchronous arterio-arterial blood pumps

    NASA Technical Reports Server (NTRS)

    Jones, R. T.; Petscheck, H. E.; Kantrowitz, A. R.

    1976-01-01

    In the technique of arterio-arterial pumping, a volume of fluid is withdrawn from the aorta during systole and reinjected during diastole, thereby reducing the systolic pressure of the heart and adding energy to the systemic circulation. It is found that an upper bound for the effectiveness of such devices is given by a formula that considers stroke output of the unaided heart and the increment caused by the pump with a stroke. The division of effort of the pump between the reduction of pressure and the increase of flow depends on the physiological mechanical impedance of the heart. The total effect is, however, independent of the impedance.

  18. Computational analysis of the effect of valvular regurgitation on ventricular mechanics using a 3D electromechanics model.

    PubMed

    Lim, Ki Moo; Hong, Seung-Bae; Lee, Byong Kwon; Shim, Eun Bo; Trayanova, Natalia

    2015-03-01

    Using a three-dimensional electromechanical model of the canine ventricles with dyssynchronous heart failure, we investigated the relationship between severity of valve regurgitation and ventricular mechanical responses. The results demonstrated that end-systolic tension in the septum and left ventricular free wall was significantly lower under the condition of mitral regurgitation (MR) than under aortic regurgitation (AR). Stroke work in AR was higher than that in MR. On the other hand, the difference in stroke volume between the two conditions was not significant, indicating that AR may cause worse pumping efficiency than MR in terms of consumed energy and performed work.

  19. Inhibition of miR-141-3p Ameliorates the Negative Effects of Poststroke Social Isolation in Aged Mice.

    PubMed

    Verma, Rajkumar; Ritzel, Rodney M; Harris, Nia M; Lee, Juneyoung; Kim, TaeHee; Pandi, Gopal; Vemuganti, Raghu; McCullough, Louise D

    2018-06-04

    Social isolation increases mortality and impairs recovery after stroke in clinical populations. These detrimental effects have been recapitulated in animal models, although the exact mechanism mediating these effects remains unclear. Dysregulation of microRNAs (miRNAs) occurs in both strokes as well as after social isolation, which trigger changes in many downstream genes. We hypothesized that miRNA regulation is involved in the detrimental effects of poststroke social isolation in aged animals. We pair-housed 18-month-old C57BL/6 male mice for 2 weeks before a 60-minute right middle cerebral artery occlusion or sham surgery and then randomly assigned mice to isolation or continued pair housing immediately after surgery. We euthanized mice either at 3, 7, or 15 days after surgery and isolated the perilesional frontal cortex for whole microRNAome analysis. In an additional cohort, we treated mice 1 day after stroke onset with an in vivo-ready antagomiR-141 for 3 days. Using whole microRNAome analysis of 752 miRNAs, we identified miR-141-3p as a unique miRNA that was significantly upregulated in isolated mice in a time-dependent manner up to 2 weeks after stroke. Posttreatment with an antagomiR-141-3p reduced the postisolation-induced increase in miR-141-3p to levels almost equal to those of pair-housed stroke controls. This treatment significantly reduced mortality (by 21%) and normalized infarct volume and neurological scores in poststroke-isolated mice. Quantitative PCR analysis revealed a significant upregulation of Tgfβr1 (transforming growth factor beta receptor 1, a direct target of miR-141-3p) and Igf-1 (insulin-like growth factor 1) mRNA after treatment with antagomiR. Treatment also increased the expression of other pleiotropic cytokines such as Il-6 (interleukin 6) and Tnf-α (tumor necrosis factor-α), an indirect or secondary target) in brain tissue. miR-141-3p is increased with poststroke isolation. Inhibition of miR-141-3p improved mortality, neurological deficits, and decreased infarct volumes. Importantly, these therapeutic effects occurred in aged animals, the population most at risk for stroke and poststroke isolation. © 2018 American Heart Association, Inc.

  20. On the role of vasopressin and angiotensin in the development of irreversible haemorrhagic shock

    PubMed Central

    Errington, M. L.; e Silva, M. Rocha

    1974-01-01

    1. Long-lasting haemorrhagic hypotension (4·5 hr at 35 mmHg) leading to irreversible haemorrhagic shock, has been studied in normal dogs, in dogs treated with a bradykinin potentiating nonapeptide (BPP9a), which blocks the conversion of angiotensin I to angiotensin II, and in dogs with experimental chronic diabetes insipidus (DI dogs). BPP9a was given by I.V. injection before the start of bleeding (BPP pre-treated group), 45 min after blood pressure had reached 35 mmHg (BPP early treated group) or 2 hr after blood pressure had reached 35 mmHg (BPP late-treated group). After retransfusion of blood all dogs were allowed to recover and observed for a further period of 3 days. 2. Untreated control dogs developed haemorrhagic shock with tachycardia, low cardiac output, low total peripheral conductance and low stroke volume. All died within 24 hr of retransfusion, with pathological lesions typical of irreversible haemorrhagic shock. 3. BPP pre-treated dogs developed haemorrhagic shock with bradycardia (during early shock), high cardiac output, high peripheral vascular conductance and high stroke volume when compared with the untreated controls. All pre-treated animals survived the 3 day observation period. They were then killed and on post-mortem showed no signs of irreversible haemorrhagic shock. 4. BPP early-treated animals behaved like controls before BPP, but like pre-treated animals after the drug. Only one out of eight died within the 3 day observation period. 5. BPP late-treated dogs behaved like controls before BPP. They responded to the drug with a rise in cardiac output, peripheral vascular conductance and stroke volume, and with a fall in heart rate. These responses were, however, short-lived. Four out of these eight animals died within the 3 day observation period, with lesions of irreversible haemorrhagic shock. 6. DI dogs developed haemorrhagic shock with tachycardia (like controls), but with high cardiac output and peripheral vascular conductance (like BPP pre-treated dogs). The stroke volume of DI dogs was intermediate between those of controls and pre-treated groups. All six dogs survived the 3 day observation period. 7. BPP9a had no measurable effect on the course of endotoxic shock. 8. It is suggested that the normally severe vasoconstriction of the mesenteric vascular bed, which is thought to be responsible for irreversible haemorrhagic shock, is absent or attenuated in the absence of vasopressin or angiotensin. The consequences of this on the development of irreversibility are discussed. PMID:4373570

  1. Effect of nitric oxide, perfluorocarbon, and heliox on minute volume measurement and ventilator volumes delivered.

    PubMed

    Devabhaktuni, V G; Torres, A; Wilson, S; Yeh, M P

    1999-08-01

    To determine the effect of heliox, nitric oxide (NO), and perfluorocarbon on differential pressure pneumotachometer characteristics and to determine the effect of heliox on volumes delivered by the Siemens S900C (S900C), and Servo Ventilator 300 (SV300) ventilators. Prospective, laboratory study. Pulmonary laboratory of a tertiary care, nonprofit children's hospital. SV300, S900C ventilator, differential pressure pneumotachometer. Dual pneumotachometers were connected in series to a 0.5-L calibration syringe and a 1-L anesthesia bag creating a closed system. Calibration of the pneumotachometers was done in room air at ambient temperature with 100 strokes. Accepted accuracy of measured volumes is within 0.5%. Flow-conductance curves were constructed using 100 strokes each for heliox (70:30 mixture), NO, and perfluorocarbon. Expired gases of room air and a 70:30 mixture of heliox from the above ventilators were collected into a nondiffusing gas collection bag, and the volume was measured in a chain-compensated gasometer. Ten sets of 500-mL breaths (20 breaths each set) and 100-mL breaths (40 breaths each set) were collected. The paired Student's t-test was used to detect significant differences in measured volumes, with significance defined as p < .01. Volumes measured with the pneumotachometer using 25 ppm of NO, 50 ppm of NO, and perfluorocarbon were within +0.25%, -0.7%, and +0.4%, respectively (p = .155, p = .001, p = .06). Heliox decreased the conductance of the pneumotachometer, thereby increasing the measured volume by 15% (p < .001). However, heliox did not affect its linearity. Heliox had no affect on volumes delivered by the S900C. However, the SV300 delivered 7.9% less volume of heliox at a set tidal volume of 500 mL and 10.8% less at a set tidal volume of 100 mL. A 70:30 mixture of heliox caused a significantly overestimated gas volume measured and, therefore, an underestimated gas volume delivered by SV300. NO at 25 ppm and perfluorocarbon did not interfere with the accuracy of a differential pressure pneumotachometer. However, at 50 ppm, NO caused a difference in measured gas volume that was statistically, but not clinically, significant. Application of pneumotachometers in critically ill children receiving heliox requires recalibration. Heliox did not affect volumes delivered with the S900C ventilator. Although volumes delivered with the SV300 were significantly reduced by heliox, the difference can be corrected easily by increasing minute ventilation until expired tidal volume equals desired tidal volume.

  2. Volume of Subclinical Embolic Infarct Correlates to Long-term Cognitive Changes following Carotid Revascularization

    PubMed Central

    Zhou, Wei; Baughman, Brittanie D; Soman, Salil; Wintermark, Max; Lazzeroni, Laura C.; Hitchner, Elizabeth; Bhat, Jyoti; Rosen, Allyson

    2016-01-01

    OBJECTIVE Carotid intervention is safe and effective in stroke prevention in appropriately selected patients. Despite minimal neurologic complications, procedure-related subclinical microemboli are common and their cognitive effects are largely unknown. In this prospective longitudinal study, we sought to determine long-term cognitive effects of embolic infarcts. METHODS 119 patients including 46% symptomatic patients who underwent carotid revascularization were recruited. Neuropsychological testing was administered preoperatively and at 1, 6, and 12 months postoperatively. Rey Auditory Learning Test (RAVLT) was the primary cognitive measure with parallel forms to avoid practice effort. All patients also received 3T brain MRIs with a diffusion-weighted sequence (DWI) preoperatively and within 48 hours postoperatively to identify procedure-related new embolic lesions. Each DWI lesion was manually traced and input into a neuroimaging program to define volume. Embolic infarct volumes were correlated with cognitive measures. Regression models were used to identify relationships between infarct volumes and cognitive measures. RESULTS A total 587 DWI lesions were identified on 3T MRI in 81.7% of CAS and 36.4% of CEA patients with a total volume of 29327mm3. Among them, 54 DWI lesions were found in CEA patients and 533 in the CAS patients. Four patients had transient postoperative neurologic symptoms and one had a stroke. CAS was an independent predictor of embolic infarct (OR: 6.6 [2.1–20.4], p<.01) and infarct volume (P=.004). Diabetes and contralateral carotid severe stenosis/occlusion had a trend of positive association with infarct volume, while systolic blood pressure more or equal to 140mmHg had a negative association (P=.1, .09, and .1, respectively). There was a trend of improved RAVLT scores overall following carotid revascularization. Significantly higher infarct volumes were observed among those with RAVLT decline. Within the CAS cohort, infarct volume was negatively correlated with short and long-term RAVLT changes (P<0.05). CONCLUSIONS Cognitive assessment of procedure-related subclinical microemboli is challenging. Volumes of embolic infarct correlates with long-term cognitive changes, suggesting that micro-embolization should be considered as a surrogate measure for carotid disease management. PMID:28024850

  3. Observational practice of incentive spirometry in stroke patients.

    PubMed

    Lima, Íllia N D F; Fregonezi, Guilherme A F; Florêncio, Rêncio B; Campos, Tânia F; Ferreira, Gardênia H

    Stroke may lead to several health problems, but positive effects can be promoted by learning to perform physical therapy techniques correctly. To compare two different types of observational practice (video instructions and demonstration by a physical therapist) during the use of incentive spirometry (IS). A total of 20 patients with diagnosis of stroke and 20 healthy individuals (56±9.7 years) were allocated into two groups: one with observational practice with video instructions for the use of IS and the other with observational practice with demonstration by a physical therapist. Ten attempts for the correct use of IS were carried out and the number of errors and the magnitude of response were evaluated. The statistic used to compare the results was the three-way ANOVA test. The stroke subjects showed less precision when compared to the healthy individuals (mean difference 1.80±0.38) 95%CI [1.02-2.52], p<0.0001. When the type of practice was analyzed, the stroke subjects showed more errors with the video instructions (mean difference 1.5±0.5, 95%CI [0.43-2.56] (p=0.08)) and therapist demonstration (mean difference 2.40±0.52, 95%CI [1.29-3.50] (p=0.00)) when compared to the healthy individuals. The stroke subjects had a worse performance in learning the use of volume-oriented incentive spirometry when compared to healthy individuals; however, there was no difference between the types of observational practice, suggesting that both may be used to encourage the use of learning IS in patients with stroke. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  4. Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function

    PubMed Central

    Zhang, Luduan; Butler, Andrew J.; Sun, Chang-Kai; Sahgal, Vinod; Wittenberg, George F.; Yue, Guang H.

    2008-01-01

    Little is known about the association between brain white matter (WM) structure and motor function in humans. This study investigated complexity of brain WM interior shape as determined by magnetic resonance imaging (MRI) and its relationship with upper-extremity (UE) motor function in patients post stroke. We hypothesized that (1) the WM complexity would decrease following stroke, and (2) higher WM complexity in non-affected cortical areas would be related to greater UE motor function. Thirty-eight stroke patients (16 with left-hemisphere lesions) underwent MRI anatomical brain scans. Fractal dimension (FD), a quantitative shape metric, was applied onto skeletonized brain WM images to evaluate WM internal structural complexity. Wolf Motor Function Test (WMFT) and Fugl-Meyer Motor Assessment (FM) scores were measured to assess motor function of the affected limb. The WM complexity was lower in the stroke-affected hemisphere. The FD was associated with better motor function in two subgroups: with left-subcortical lesions, FD values of the lesion-free areas of the left hemisphere were associated with better FM scores; with right-cortical lesions, FD values of lesion-free regions were robustly associated with better WMFT scores. These findings suggest that greater residual WM complexity is associated with less impaired UE motor function, which is more robust in patients with right-hemisphere lesions. No correlations were found between lesion volume and WMFT or FM scores. This study addressed WM complexity in stroke patients and its relationship with UE motor function. Measurement of brain WM reorganization may be a sensitive correlate of UE function in people recovering from stroke. PMID:18590710

  5. Blood Brain Barrier and Neuroinflammation Are Critical Targets of IGF-1-Mediated Neuroprotection in Stroke for Middle-Aged Female Rats

    PubMed Central

    Bake, Shameena; Selvamani, Amutha; Cherry, Jessica; Sohrabji, Farida

    2014-01-01

    Ischemia-induced cerebral infarction is more severe in older animals as compared to younger animals, and is associated with reduced availability of insulin-like growth factor (IGF)-1. This study determined the effect of post-stroke IGF-1 treatment, and used microRNA profiling to identify mechanisms underlying IGF-1’s neuroprotective actions. Post-stroke ICV administration of IGF-1 to middle-aged female rats reduced infarct volume by 39% when measured 24h later. MicroRNA analyses of ischemic tissue collected at the early post-stroke phase (4h) indicated that 8 out of 168 disease-related miRNA were significantly downregulated by IGF-1. KEGG pathway analysis implicated these miRNA in PI3K-Akt signaling, cell adhesion/ECM receptor pathways and T-and B-cell signaling. Specific components of these pathways were subsequently analyzed in vehicle and IGF-1 treated middle-aged females. Phospho-Akt was reduced by ischemia at 4h, but elevated by IGF-1 treatment at 24h. IGF-1 induced Akt activation was preceded by a reduction of blood brain barrier permeability at 4h post-stroke and global suppression of cytokines including IL-6, IL-10 and TNF-α. A subset of these cytokines including IL-6 was also suppressed by IGF-1 at 24h post-stroke. These data are the first to show that the temporal and mechanistic components of post-stroke IGF-1 treatment in older animals, and that cellular components of the blood brain barrier may serve as critical targets of IGF-1 in the aging brain. PMID:24618563

  6. A comparison of acute hemorrhagic stroke outcomes in 2 populations: the Crete-Boston study.

    PubMed

    Zaganas, Ioannis; Halpin, Amy P; Oleinik, Alexandra; Alegakis, Athanasios; Kotzamani, Dimitra; Zafiris, Spiros; Chlapoutaki, Chryssanthi; Tsimoulis, Dimitris; Giannakoudakis, Emmanouil; Chochlidakis, Nikolaos; Ntailiani, Aikaterini; Valatsou, Christina; Papadaki, Efrosini; Vakis, Antonios; Furie, Karen L; Greenberg, Steven M; Plaitakis, Andreas

    2011-12-01

    Although corticosteroid use in acute hemorrhagic stroke is not widely adopted, management with intravenous dexamethasone has been standard of care at the University Hospital of Heraklion, Crete with observed outcomes superior to those reported in the literature. To explore this further, we conducted a retrospective, multivariable-adjusted 2-center study. We studied 391 acute hemorrhagic stroke cases admitted to the University Hospital of Heraklion, Crete between January 1997 and July 2010 and compared them with 510 acute hemorrhagic stroke cases admitted to Massachusetts General Hospital, Boston, from January 2003 to September 2009. Of the Cretan cases, 340 received a tapering scheme of intravenous dexamethasone, starting with 16 to 32 mg/day, whereas the Boston patients were managed without steroids. The 2 cohorts had comparable demographics and stroke severity on admission, although anticoagulation was more frequent in Boston. The in-hospital mortality was significantly lower on Crete (23.8%, n=340) than in Boston (38.0%, n=510; P<0.001) as was the 30-day mortality (Crete: 25.4%, n=307; Boston: 39.4%, n=510; P<0.001). Exclusion of patients on anticoagulants showed even greater differences (30-day mortality: Crete 20.8%; n=259; Boston 37.0%; n=359; P<0.001). The improved survival on Crete was observed 3 days after initiation of intravenous dexamethasone and was pronounced for deep-seated hemorrhages. After adjusting for acute hemorrhagic stroke volume/location, Glasgow Coma Scale, hypertension, diabetes mellitus, smoking, coronary artery disease and statin, antiplatelet, and anticoagulant use, intravenous dexamethasone treatment was associated with better functional outcomes and significantly lower risk of death at 30 days (OR, 0.357; 95% CI, 0.174-0.732). This study suggests that intravenous dexamethasone improves outcome in acute hemorrhagic stroke and supports a randomized clinical trial using this approach.

  7. Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis After Ischemic Stroke in Mice

    PubMed Central

    Chen, Dongdong; Lee, Jinhwan; Gu, Xiaohuan; Wei, Ling

    2015-01-01

    Apelin is a peptide originally isolated from bovine stomach tissue extracts and identified as an endogenous ligand of the APJ receptor; recent work showed that apelin ameliorates the ischemic injury in the heart and the brain. Being an analogue to the angiotensin II receptor, the apelin/APJ signaling may mediate angiogenesis process. We explored the noninvasive intranasal brain delivery method and investigated therapeutic effects of apelin-13 in a focal ischemic stroke model of mice. Intranasal administration of apelin-13 (4 mg/kg) was given 30 min after the onset of stroke and repeated once daily. Three days after stroke, mice received apelin-13 had significantly reduced infarct volume and less neuronal death in the penumbra. Western blot analyses showed upregulated levels of apelin, apelin receptor APLNR, and Bcl-2 and decreased caspase-3 activation in the apelin-13-treated brain. The proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1β, and chemokine monocyte chemoattractant protein-1 mRNA increased in the ischemic brain, which were significantly attenuated by apelin-13. Apelin-13 remarkably reduced microglia recruitment and activation in the penumbra according to morphological features of Iba-1-positive cells 3 days after ischemia. Apelin-13 significantly increased the expression of angiogenic factor vascular endothelial growth factor and matrix metalloproteinase-9 14 days after stroke. Angiogenesis illustrated by collagen IV + /5-bromo-2′-deoxyuridin + colabeled cells was significantly increased by the apelin-13 treatment 21 days after stroke. Finally, apelin-13 promoted the local cerebral blood flow restoration and long-term functional recovery. This study demonstrates a noninvasive intranasal delivery of apelin-13 after stroke, suggesting that the reduced inflammatory activities, decreased cell death, and increased angiogenesis contribute to the therapeutic benefits of apelin-13. PMID:26391329

  8. Oxygen-Inducible Glutamate Oxaloacetate Transaminase as Protective Switch Transforming Neurotoxic Glutamate to Metabolic Fuel During Acute Ischemic Stroke

    PubMed Central

    Rink, Cameron; Gnyawali, Surya; Peterson, Laura

    2011-01-01

    Abstract This work rests on our previous report (J Cereb Blood Flow Metab 30: 1275–1287, 2010) recognizing that glutamate (Glu) oxaloacetate transaminase (GOT) is induced when brain tissue hypoxia is corrected during acute ischemic stroke (AIS). GOT can metabolize Glu into tricarboxylic acid cycle intermediates and may therefore be useful to harness excess neurotoxic extracellular Glu during AIS as a metabolic substrate. We report that in cultured neural cells challenged with hypoglycemia, extracellular Glu can support cell survival as long as there is sufficient oxygenation. This effect is abrogated by GOT knockdown. In a rodent model of AIS, supplemental oxygen (100% O2 inhaled) during ischemia significantly increased GOT expression and activity in the stroke-affected brain tissue and prevented loss of ATP. Biochemical analyses and in vivo magnetic resonance spectroscopy during stroke demonstrated that such elevated GOT decreased Glu levels at the stroke-affected site. In vivo lentiviral gene delivery of GOT minimized lesion volume, whereas GOT knockdown worsened stroke outcomes. Thus, brain tissue GOT emerges as a novel target in managing stroke outcomes. This work demonstrates that correction of hypoxia during AIS can help clear extracellular neurotoxic Glu by enabling utilization of this amino acid as a metabolic fuel to support survival of the hypoglycemic brain tissue. Strategies to mitigate extracellular Glu-mediated neurodegeneration via blocking receptor-mediated excitotoxicity have failed in clinical trials. We introduce the concept that under hypoglycemic conditions extracellular Glu can be transformed from a neurotoxin to a survival factor by GOT, provided there is sufficient oxygen to sustain cellular respiration. Antioxid. Redox Signal. 14, 1777–1785. PMID:21361730

  9. Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure. Dose-response relationships and comparison to nitroprusside.

    PubMed Central

    Jaski, B E; Fifer, M A; Wright, R F; Braunwald, E; Colucci, W S

    1985-01-01

    Milrinone is a potent positive inotropic and vascular smooth muscle-relaxing agent in vitro, and therefore, it is not known to what extent each of these actions contributes to the drug's hemodynamic effects in patients with heart failure. In 11 patients with New York Heart Association class III or IV congestive heart failure, incremental intravenous doses of milrinone were administered to determine the dose-response relationships for heart rate, systemic vascular resistance, and inotropic state, the latter measured by peak positive left ventricular derivative of pressure with respect to time (dP/dt). To clarify further the role of a positive inotropic action, the relative effects of milrinone and nitroprusside on left ventricular stroke work and dP/dt were compared in each patient at doses matched to cause equivalent reductions in mean arterial pressure or systemic vascular resistance, indices of left ventricular afterload. Milrinone caused heart rate, stroke volume, and dP/dt to increase, and systemic vascular resistance to decrease in a concentration-related manner. At the two lowest milrinone doses resulting in serum concentrations of 63 +/- 4 and 156 +/- 5 ng/ml, respectively, milrinone caused significant increases in stroke volume and dP/dt, but no changes in systemic vascular resistance or heart rate. At the maximum milrinone dose administered (mean serum concentration, 427 +/- 11 ng/ml), heart rate increased from 92 +/- 4 to 99 +/- 4 bpm (P less than 0.01), mean aortic pressure fell from 82 +/- 3 to 71 +/- 3 mmHg (P less than 0.01), right atrial pressure fell from 15 +/- 2 to 7 +/- 1 mmHg (P less than 0.005), left ventricular end-diastolic pressure fell from 26 +/- 3 to 18 +/- 3 (P less than 0.005), stroke volume index increased from 20 +/- 2 to 30 +/- 2 ml/m2 (P less than 0.005), stroke work index increased from 14 +/- 2 to 21 +/- 2 g X m/m2 (P less than 0.01), and dP/dt increased from 858 +/- 54 to 1,130 +/- 108 mmHg/s (P less than 0.005). When compared with nitroprusside for a matched reduction in mean aortic pressure or systemic vascular resistance, milrinone caused a significantly greater increase in stroke work index at the same or lower left ventricular end-diastolic pressure. Milrinone caused a concentration-related increase in dP/dt (32% increase at maximum milrinone dose), whereas nitroprusside had no effect. These data in patients with severe heart failure indicate that in addition to a vasodilating effect, milrinone exerts a concentration-related positive inotropic action that contributes significantly to the drug's overall hemodynamic effects. The positive inotropic action occurs at drug levels that do not exert significant chronotropic or vasodilator effects. Images PMID:3973022

  10. Beat-by-beat stroke volume assessment by pulsed Doppler in upright and supine exercise

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Greene, E. R.; Hoekenga, D. E.; Caprihan, A.; Luft, U. C.

    1981-01-01

    The instantaneous stroke volume (SV) and cardiac output (Q) in eight male subjects during steady-state supine (S) and upright (U) exercises at 300 kpm/min is assessed by a 3.0-MHz pulsed Doppler echocardiograph. The mean transients in heart rate (HR), SV, and Q for each posture were determined and the center-line blood velocities obtained in the ascending aorta. Results show that the mean supine values for SV and Q at rest and exercise were 111 ml and 6.4 l/min and 112 ml and 9.7 l/min, respectively. The corresponding results for U were 76 ml and 5.6 l/min and 92 ml and 8.4 l/min, respectively. The values compare favorably with previous studies utilizing invasive procedures. The transient response of Q following the onset of exercise in U was about twice as fast as in S because of the rapid and almost immediate upsurge in SV. The faster rise in aortic flow in U with exercise represented and additional volume (184 ml) of blood passing through the aorta compared with S in the first 20 exercises. It is suggested that the rapid mobilization of pooled venous blood from the leg veins during U was responsible for the increased blood flow.

  11. Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis.

    PubMed

    Zhang, Zhongheng; Lu, Baolong; Sheng, Xiaoyan; Jin, Ni

    2011-12-01

    Stroke volume variation (SVV) appears to be a good predictor of fluid responsiveness in critically ill patients. However, a wide range of its predictive values has been reported in recent years. We therefore undertook a systematic review and meta-analysis of clinical trials that investigated the diagnostic value of SVV in predicting fluid responsiveness. Clinical investigations were identified from several sources, including MEDLINE, EMBASE, WANFANG, and CENTRAL. Original articles investigating the diagnostic value of SVV in predicting fluid responsiveness were considered to be eligible. Participants included critically ill patients in the intensive care unit (ICU) or operating room (OR) who require hemodynamic monitoring. A total of 568 patients from 23 studies were included in our final analysis. Baseline SVV was correlated to fluid responsiveness with a pooled correlation coefficient of 0.718. Across all settings, we found a diagnostic odds ratio of 18.4 for SVV to predict fluid responsiveness at a sensitivity of 0.81 and specificity of 0.80. The SVV was of diagnostic value for fluid responsiveness in OR or ICU patients monitored with the PiCCO or the FloTrac/Vigileo system, and in patients ventilated with tidal volume greater than 8 ml/kg. SVV is of diagnostic value in predicting fluid responsiveness in various settings.

  12. Corticospinal tract integrity and lesion volume play different roles in chronic hemiparesis and its improvement through motor practice.

    PubMed

    Sterr, Annette; Dean, Phil J A; Szameitat, Andre J; Conforto, Adriana Bastos; Shen, Shan

    2014-05-01

    Initial evidence suggests that the integrity of the ipsilesional corticospinal tract (CST) after stroke is strongly related to motor function in the chronic state but not the treatment gain induced by motor rehabilitation. We examined the association of motor status and treatment benefit by testing patients with a wide range of severity of hemiparesis of the left and right upper extremity. Diffusion tensor imaging was performed in 22 patients beyond 12 months after onset of stroke with severe to moderate hemiparesis. Motor function was tested before and after 2 weeks of modified constraint-induced movement therapy. CST integrity, but not lesion volume, correlated with the motor ability measures of the Wolf Motor Function Test and the Motor Activity Log. No differences were found between left and right hemiparesis. Motor performance improved significantly with the treatment regime, and did so equally for patients with left and right arm paresis. However, treatment benefit was not associated with either CST integrity or lesion volume. CST integrity correlated best in this small trial with chronic long-term status but not treatment-induced improvements. The CST may play a different role in the mechanisms mediating long-term outcome compared to those underlying practice-induced gains after a chronic plateau in motor function.

  13. Variations on the Zilch Cycle

    ERIC Educational Resources Information Center

    Binder, P.-M.; Tanoue, C. K. S.

    2013-01-01

    Thermo dynamic cycles in introductory physics courses are usually made up from a small number of permutations of isothermal, adiabatic, and constant-pressure and volume quasistatic strokes, with the working fluid usually being an ideal gas. Among them we find the Carnot, Stirling, Otto, Diesel, and Joule-Brayton cycles; in more advanced courses,…

  14. Myocardial function during bradycardia events in preterm infants.

    PubMed

    de Waal, Koert; Phad, Nilkant; Collins, Nick; Boyle, Andrew

    2016-07-01

    Transient bradycardia episodes are common in preterm infants and often secondary to apnea. Decreased ventilation with resultant hypoxemia is believed to be the predominant mechanism. Sudden bradycardias without apnea are also reported, possibly due to vagal stimulation. Point of care ultrasound is used to diagnose and follow cardiovascular complications in preterm infants. Inadvertently, the operator would sometimes capture bradycardia events. This study reports on left ventricular function during such events. We retrospectively reviewed our cardiac ultrasound database for bradycardia events. Apical four or three chamber images before, during and after a bradycardia event were analysed with speckle tracking software which provides systolic and diastolic parameters of myocardial motion, deformation and volume. Over a 2year period, 15 bradycardia events were noted in 14 patients with a median gestational age of 26weeks (range 23 to 29). Heart rate decreased by an average of 43% (171/min to 98/min). Myocardial velocity and longitudinal strain rate during the atrial component of diastole were reduced during bradycardia. Longitudinal strain during systole was increased and radial deformation was unchanged. Ventricular volumes and ejection fraction did not change. Most parameters returned to baseline values after the event. Longitudinal systolic strain rate remained lower and stroke volume was 12% higher compared to baseline. Parameters of systolic contractility and stroke volume were maintained and parameters of atrial contractility were reduced during mild to moderate bradycardia in preterm infants. Bradycardia reduces total cardiac output with a compensatory increase detected following the event. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Decreased peak arteriovenous oxygen difference during treadmill exercise testing in individuals infected with the human immunodeficiency virus.

    PubMed

    Cade, W Todd; Fantry, Lori E; Nabar, Sharmila R; Keyser, Randall E

    2003-11-01

    To determine if arteriovenous oxygen difference was lower in asymptomatic individuals with human immunodeficiency virus (HIV) infection than in sedentary but otherwise healthy controls. Quasi-experimental cross-sectional. Clinical exercise laboratory. Fifteen subjects (10 men, 5 women) with HIV and 15 healthy gender- and activity level-matched controls (total N=30). Participants performed an incremental maximal exercise treadmill test to exhaustion. Electrocardiogram, metabolic, and noninvasive cardiac output measurements were evaluated at rest and throughout the tests. Data were analyzed by using analysis of covariance. Peak oxygen consumption (Vo(2)), cardiac output, stroke volume, and arteriovenous oxygen difference. The arteriovenous oxygen difference was determined indirectly using the Fick equation. Peak VO(2) was significantly lower (P<.0005) in participants with HIV (24.6+/-1.2mL.kg(-1).min(-1)) compared with controls (32.0+/-1.2mL.kg(-1).min(-1)). There were no significant intergroup differences in cardiac output or stroke volume at peak exercise. Peak arteriovenous oxygen difference was significantly lower (P<.04) in those infected with HIV (10.8+/-0.5 volume %) than in controls (12.4+/-0.5 volume %). The observed deficit in aerobic capacity in the participants with HIV appeared to be the result of a peripheral tissue oxygen extraction or utilization limitation. In addition to deconditioning, potential mechanisms for this significant attenuation may include HIV infection and inflammation, highly active antiretroviral therapy medication regimens, or a combination of these factors.

  16. Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo

    PubMed Central

    2012-01-01

    Background Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. Methods Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri’s Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. Results Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. Conclusions Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury. PMID:22901501

  17. Data availability and feasibility of various techniques to predict response to volume expansion in critically ill patients

    PubMed Central

    Lanspa, Michael J.; Briggs, Benjamin J.; Hirshberg, Eliotte L.; Pratt, Cristina M.; Grissom, Colin K.; Brown, Samuel M.

    2017-01-01

    Objective: The accuracy of various techniques to predict response to volume expansion in shock has been studied, but less well known is how feasible these techniques are in the ICU. Methods: This is a prospective observation single-center study of inpatients from a mixed profile ICU who received volume expansion. At time of volume expansion, we determined whether a particular technique to predict response was feasible, according to rules developed from available literature and nurse assessment. Results: We studied 214 volume expansions in 97 patients. The most feasible technique was central venous pressure (50%), followed by vena cava collapsibility, (47%) passive leg raise (42%), and stroke volume variation (22%). Aortic velocity variation, and pulse pressure variation, and were rarely feasible (1% each). In 37% of volume expansions, no technique that we assessed was feasible. Conclusions: Techniques to predict response to volume expansion are infeasible in many patients in shock. PMID:28971030

  18. Ventilation rates and activity levels of juvenile jumbo squid under metabolic suppression in the oxygen minimum zone.

    PubMed

    Trübenbach, Katja; Pegado, Maria R; Seibel, Brad A; Rosa, Rui

    2013-02-01

    The Humboldt (jumbo) squid, Dosidicus gigas, is a part-time resident of the permanent oxygen minimum zone (OMZ) in the Eastern Tropical Pacific and, thereby, it encounters oxygen levels below its critical oxygen partial pressure. To better understand the ventilatory mechanisms that accompany the process of metabolic suppression in these top oceanic predators, we exposed juvenile D. gigas to the oxygen levels found in the OMZ (1% O(2), 1 kPa, 10 °C) and measured metabolic rate, activity cycling patterns, swimming mode, escape jet (burst) frequency, mantle contraction frequency and strength, stroke volume and oxygen extraction efficiency. In normoxia, metabolic rate varied between 14 and 29 μmol O(2) g(-1) wet mass h(-1), depending on the level of activity. The mantle contraction frequency and strength were linearly correlated and increased significantly with activity level. Additionally, an increase in stroke volume and ventilatory volume per minute was observed, followed by a mantle hyperinflation process during high activity periods. Squid metabolic rate dropped more than 75% during exposure to hypoxia. Maximum metabolic rate was not achieved under such conditions and the metabolic scope was significantly decreased. Hypoxia changed the relationship between mantle contraction strength and frequency from linear to polynomial with increasing activity, indicating that, under hypoxic conditions, the jumbo squid primarily increases the strength of mantle contraction and does not regulate its frequency. Under hypoxia, jumbo squid also showed a larger inflation period (reduced contraction frequency) and decreased relaxed mantle diameter (shortened diffusion pathway), which optimize oxygen extraction efficiency (up to 82%/34%, without/with consideration of 60% potential skin respiration). Additionally, they breathe 'deeply', with more powerful contractions and enhanced stroke volume. This deep-breathing behavior allows them to display a stable ventilatory volume per minute, and explains the maintenance of the squid's cycling activity under such O(2) conditions. During hypoxia, the respiratory cycles were shorter in length but increased in frequency. This was accompanied by an increase in the number of escape jets during active periods and a faster switch between swimming modes. In late hypoxia (onset ~170 ± 10 min), all the ventilatory processes were significantly reduced and followed by a lethargic state, a behavior that seems closely associated with the process of metabolic suppression and enables the squid to extend its residence time in the OMZ.

  19. [Development and evaluation of individualized fluid therapy in the elderly patients with coronary heart disease undergoing gastrointestinal surgery: a randomized, controlled trial].

    PubMed

    Zheng, Hong; Guo, Hai; Ye, Jian-rong; Chen, Lin

    2012-06-01

    To develop and evaluate an individualized fluid therapy in the elderly patients with coronary heart disease undergoing gastrointestinal surgery. In this prospective study, 60 coronary heart disease patients undergoing gastrointestinal surgery were included in the First Affiliated Hospital of Xinjiang Medical University from March 2009 to March 2012. Patients were randomized into the intervention group and the control group with 30 patients in each group. Individualized fluid therapy was used during surgery and postoperative period in the ICU, which was determined based on target controlled fluid therapy according to cardiac index, stroke volume, and stroke volume variation. Traditional fluid therapy was used in the control group in the intraoperative and postoperative period. The two groups were compared in terms of postoperative hemodynamic parameters, total fluid volume, incidence of adverse cardiac events, and recovery of bowel function. Compared with the control group, mean arterial pressure was significantly increased at the commencement of the surgery. The cardiac index was significantly elevated during surgery and at the end of the surgery. Stroke volume was significantly increased after induction of anesthesia, during the surgery, and at the early stay of ICU period(all P<0.05). Serum lactic acid in the intervention group was significantly lower at the end of surgery and during ICU stay than that in the control group (all P<0.05). During surgery and 24-hour stay in ICU, the total fluid volume, crystal usage, and urine were significantly less, while colloidal fluid use was significantly more in the intervention group as compared to the control group(all P<0.05). The perioperative adverse cardiac event rate was 36.7%(11/30) in the intervention group, lower than 56.7%(17/30) in the control group, but the difference was no statistically significance(P>0.05). In the intervention group, defecation time, time to first flatus, resumption of liquid intake, length of ICU stay and hospital stay were significantly less compared with the control group(P<0.05). In the elderly patients with coronary arterial disease undergoing gastrointestinal surgery, individualized fluid therapy can effectively decrease adverse cardiac events, improve postoperative gastrointestinal function, and reduce length of hospital stay.

  20. Procedural Experience for Transcatheter Aortic Valve Replacement and Relation to Outcomes: The STS/ACC TVT Registry.

    PubMed

    Carroll, John D; Vemulapalli, Sreekanth; Dai, Dadi; Matsouaka, Roland; Blackstone, Eugene; Edwards, Fred; Masoudi, Frederick A; Mack, Michael; Peterson, Eric D; Holmes, David; Rumsfeld, John S; Tuzcu, E Murat; Grover, Frederick

    2017-07-04

    Transcatheter aortic valve replacement (TAVR) has been introduced into U.S. clinical practice with efforts to optimize outcomes and minimize the learning curve. The goal of this study was to assess the degree to which increasing experience during the introduction of this procedure, separated from other outcome determinants including patient and procedural characteristics, is associated with outcomes. The authors evaluated the association of hospital TAVR volume and patient outcomes for TAVR by using data from 42,988 commercial procedures conducted at 395 hospitals submitting to the Transcatheter Valve Therapy Registry from 2011 through 2015. Outcomes assessed included adjusted and unadjusted in-hospital major adverse events. Increasing site volume was associated with lower in-hospital risk-adjusted outcomes, including mortality (p < 0.02), vascular complications (p < 0.003), and bleeding (p < 0.001) but was not associated with stroke (p = 0.14). From the first case to the 400th case in the volume-outcome model, risk-adjusted adverse outcomes declined, including mortality (3.57% to 2.15%), bleeding (9.56% to 5.08%), vascular complications (6.11% to 4.20%), and stroke (2.03% to 1.66%). Vascular and bleeding volume-outcome associations were nonlinear with a higher risk of adverse outcomes in the first 100 cases. An association of procedure volume with risk-adjusted outcomes was also seen in the subgroup having transfemoral access. The initial adoption of TAVR into practice in the United States showed that increasing experience was associated with better outcomes. This association, whether deemed a prolonged learning curve or a manifestation of a volume-outcome relationship, suggested that concentrating experience in higher volume heart valve centers might be a means of improving outcomes. (STS/ACC Transcatheter Valve Therapy Registry [TVT Registry]; NCT01737528). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Chronic Kidney Disease Is Associated With White Matter Hyperintensity Volume

    PubMed Central

    Khatri, Minesh; Wright, Clinton B.; Nickolas, Thomas L.; Yoshita, Mitsuhiro; Paik, Myunghee C.; Kranwinkel, Grace; Sacco, Ralph L.; DeCarli, Charles

    2010-01-01

    Background and Purpose White matter hyperintensities have been associated with increased risk of stroke, cognitive decline, and dementia. Chronic kidney disease is a risk factor for vascular disease and has been associated with inflammation and endothelial dysfunction, which have been implicated in the pathogenesis of white matter hyperintensities. Few studies have explored the relationship between chronic kidney disease and white matter hyperintensities. Methods The Northern Manhattan Study is a prospective, community-based cohort of which a subset of stroke-free participants underwent MRIs. MRIs were analyzed quantitatively for white matter hyperintensities volume, which was log-transformed to yield a normal distribution (log-white matter hyperintensity volume). Kidney function was modeled using serum creatinine, the Cockcroft-Gault formula for creatinine clearance, and the Modification of Diet in Renal Disease formula for estimated glomerular filtration rate. Creatinine clearance and estimated glomerular filtration rate were trichotomized to 15 to 60 mL/min, 60 to 90 mL/min, and >90 mL/min (reference). Linear regression was used to measure the association between kidney function and log-white matter hyperintensity volume adjusting for age, gender, race–ethnicity, education, cardiac disease, diabetes, homocysteine, and hypertension. Results Baseline data were available on 615 subjects (mean age 70 years, 60% women, 18% whites, 21% blacks, 62% Hispanics). In multivariate analysis, creatinine clearance 15 to 60 mL/min was associated with increased log-white matter hyperintensity volume (β 0.322; 95% CI, 0.095 to 0.550) as was estimated glomerular filtration rate 15 to 60 mL/min (β 0.322; 95% CI, 0.080 to 0.564). Serum creatinine, per 1-mg/dL increase, was also positively associated with log-white matter hyperintensity volume (β 1.479; 95% CI, 1.067 to 2.050). Conclusions The association between moderate–severe chronic kidney disease and white matter hyperintensity volume highlights the growing importance of kidney disease as a possible determinant of cerebrovascular disease and/or as a marker of microangiopathy. PMID:17962588

  2. A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model

    PubMed Central

    Fujiwara, Norio; Som, Angel T.; Pham, Loc-Duyen D.; Lee, Brian J.; Mandeville, Emiri T.; Lo, Eng H.; Arai, Ken

    2017-01-01

    A free radical scavenger edaravone is clinically used in Japan for acute stroke, and several basic researches have carefully examined the mechanisms of edaravone's protective effects. However, its actions on pro-inflammatory responses under stroke are still understudied. In this study, we subjected adult male Sprague-Dawley rats to 90-min middle cerebral artery (MCA) occlusion followed by reperfusion. Edaravone was treated twice via tail vein; after MCA occlusion and after reperfusion. As expected, edaravone-treated group showed less infarct volume and edema formation compared with control group at 24-hour after ischemic onset. Furthermore, edaravone reduced the levels of plasma interleukin (IL)-1β and matrix metalloproteinase-9 at 3-hour after ischemic onset. Several molecules besides IL-1β and MMP-9 are involved in inflammatory responses under stroke conditions. Therefore, we also examined whether edaravone treatment could decrease a wide range of pro-inflammatory cytokines/chemokines by testing rat plasma samples with a rat cytokine array. MCAO rats showed elevations in plasma levels of CINC-1, Fractalkine, IL-1α, IL-1ra, IL-6, IL-10, IP-10, MIG, MIP-1α, and MIP-3α, and all these increases were reduced by edaravone treatment. These data suggest that free radical scavengers may reduce systemic inflammatory responses under acute stroke conditions, and therefore, oxidative stress can be still a viable target for acute stroke therapy. PMID:27589890

  3. Effects of noninvasive facial nerve stimulation in the dog middle cerebral artery occlusion model of ischemic stroke.

    PubMed

    Borsody, Mark K; Yamada, Chisa; Bielawski, Dawn; Heaton, Tamara; Castro Prado, Fernando; Garcia, Andrea; Azpiroz, Joaquín; Sacristan, Emilio

    2014-04-01

    Facial nerve stimulation has been proposed as a new treatment of ischemic stroke because autonomic components of the nerve dilate cerebral arteries and increase cerebral blood flow when activated. A noninvasive facial nerve stimulator device based on pulsed magnetic stimulation was tested in a dog middle cerebral artery occlusion model. We used an ischemic stroke dog model involving injection of autologous blood clot into the internal carotid artery that reliably embolizes to the middle cerebral artery. Thirty minutes after middle cerebral artery occlusion, the geniculate ganglion region of the facial nerve was stimulated for 5 minutes. Brain perfusion was measured using gadolinium-enhanced contrast MRI, and ATP and total phosphate levels were measured using 31P spectroscopy. Separately, a dog model of brain hemorrhage involving puncture of the intracranial internal carotid artery served as an initial examination of facial nerve stimulation safety. Facial nerve stimulation caused a significant improvement in perfusion in the hemisphere affected by ischemic stroke and a reduction in ischemic core volume in comparison to sham stimulation control. The ATP/total phosphate ratio showed a large decrease poststroke in the control group versus a normal level in the stimulation group. The same stimulation administered to dogs with brain hemorrhage did not cause hematoma enlargement. These results support the development and evaluation of a noninvasive facial nerve stimulator device as a treatment of ischemic stroke.

  4. Does participation in standardized aerobic fitness training during inpatient stroke rehabilitation promote engagement in aerobic exercise after discharge? A cohort study.

    PubMed

    Brown, Christiane; Fraser, Julia E; Inness, Elizabeth L; Wong, Jennifer S; Middleton, Laura E; Poon, Vivien; McIlroy, William E; Mansfield, Avril

    2014-01-01

    To determine whether attending an aerobic fitness program during inpatient stroke rehabilitation is associated with increased participation in physical activity after discharge. This was a prospective cohort study. Patients who received inpatient stroke rehabilitation and were discharged into the community (n = 61; mean age, 65 years) were recruited. Thirty-five participants attended a standardized aerobic fitness program during inpatient rehabilitation, whereas 26 did not. The Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) and adherence to the American College of Sports Medicine (ACSM) guidelines were assessed up to 6 months after discharge. Participants in the fitness group had PASIPD scores and adherence to ACSM guidelines similar to those of participants in the nonfitness group up to 6 months after discharge. There was no significant correlation between volume of exercise performed during the inpatient program and amount of physical activity after discharge. Participation in an inpatient fitness program did not increase participation in physical activity after discharge in individuals with stroke. A new model of care that encourages patients to pursue physical activity after discharge and reduces the potential barriers to participation should be developed.

  5. Reliability of infarct volumetry: Its relevance and the improvement by a software-assisted approach.

    PubMed

    Friedländer, Felix; Bohmann, Ferdinand; Brunkhorst, Max; Chae, Ju-Hee; Devraj, Kavi; Köhler, Yvette; Kraft, Peter; Kuhn, Hannah; Lucaciu, Alexandra; Luger, Sebastian; Pfeilschifter, Waltraud; Sadler, Rebecca; Liesz, Arthur; Scholtyschik, Karolina; Stolz, Leonie; Vutukuri, Rajkumar; Brunkhorst, Robert

    2017-08-01

    Despite the efficacy of neuroprotective approaches in animal models of stroke, their translation has so far failed from bench to bedside. One reason is presumed to be a low quality of preclinical study design, leading to bias and a low a priori power. In this study, we propose that the key read-out of experimental stroke studies, the volume of the ischemic damage as commonly measured by free-handed planimetry of TTC-stained brain sections, is subject to an unrecognized low inter-rater and test-retest reliability with strong implications for statistical power and bias. As an alternative approach, we suggest a simple, open-source, software-assisted method, taking advantage of automatic-thresholding techniques. The validity and the improvement of reliability by an automated method to tMCAO infarct volumetry are demonstrated. In addition, we show the probable consequences of increased reliability for precision, p-values, effect inflation, and power calculation, exemplified by a systematic analysis of experimental stroke studies published in the year 2015. Our study reveals an underappreciated quality problem in translational stroke research and suggests that software-assisted infarct volumetry might help to improve reproducibility and therefore the robustness of bench to bedside translation.

  6. Serum BDNF and VEGF levels are associated with Risk of Stroke and Vascular Brain Injury: Framingham Study

    PubMed Central

    Pikula, Aleksandra; Beiser, Alexa S.; Chen, Tai C.; Preis, Sarah R.; Vorgias, Demetrios; DeCarli, Charles; Au, Rhoda; Kelly-Hayes, Margaret; Kase, Carlos S.; Wolf, Philip A.; Vasan, Ramachandran S.; Seshadri, Sudha

    2013-01-01

    Background and Purpose BDNF, a major neurotrophin and VEGF, an endothelial growth factor have a documented role in neurogenesis, angiogenesis and neuronal survival. In animal experiments they impact infarct size and functional motor recovery after an ischemic brain lesion. We sought to examine the association of serum BDNF and VEGF with the risk of clinical stroke or subclinical vascular brain injury in a community-based sample. Methods In 3440 stroke/TIA-free FHS participants (mean age 65±11yrs, 56%W), we related baseline BDNF and logVEGF to risk of incident stroke/TIA. In a subsample with brain MRI and with neuropsychological (NP) tests available (N=1863 and 2104, respectively; mean age 61±9yrs, 55%W, in each) we related baseline BDNF and logVEGF to log-white matter hyperintensity volume (lWMHV) on brain MRI, and to visuospatial memory and executive function tests. Results During a median follow-up of 10 years, 193 participants experienced incident stroke/TIA. In multivariable analyses adjusted for age-, sex- and traditional stroke risk factors, lower BDNF and higher logVEGF levels were associated with an increased risk of incident stroke/TIA (HR comparing BDNF Q1 versus Q2–4:1.47, 95%CI:1.09–2.00, p=0.012; and HR/SD increase in logVEGF:1.21, 95%CI:1.04–1.40, p=0.012). Persons with higher BDNF levels had less lWMHV (β±SE=−0.05±0.02; p=0.025), and better visual memory (β±SE=0.18±0.07; p=0.005). Conclusions Lower serum BDNF and higher VEGF concentrations were associated with increased risk of incident stroke/TIA. Higher levels of BDNF were also associated with less white matter hyperintensity and better visual memory. Our findings suggest that circulating BDNF and VEGF levels modify risk of clinical and subclinical vascular brain injury. PMID:23929745

  7. Axial diffusivity changes in the motor pathway above stroke foci and functional recovery after subcortical infarction.

    PubMed

    Liu, Gang; Peng, Kangqiang; Dang, Chao; Tan, Shuangquan; Chen, Hongbing; Xie, Chuanmiao; Xing, Shihui; Zeng, Jinsheng

    2018-01-01

    Secondary degeneration of the fiber tract of the motor pathway below infarct foci and functional recovery after stroke have been well demonstrated, but the role of the fiber tract above stroke foci remains unclear. This study aimed to investigate diffusion changes in motor fibers above the lesion and identify predictors of motor improvement within 12 weeks after subcortical infarction. Diffusion tensor imaging and the Fugl-Meyer (FM) scale were conducted 1, 4, and 12 weeks (W) after a subcortical infarct. Proportional recovery model residuals were used to assign patients to proportional recovery and poor recovery groups. Region of interest analysis was used to assess diffusion changes in the motor pathway above and below a stroke lesion. Multivariable linear regression was employed to identify predictors of motor improvement within 12 weeks after stroke. Axial diffusivity (AD) in the underlying white matter of the ipsilesional primary motor area (PMA) and cerebral peduncle (CP) in both proportional and poor recovery groups was lower at W1 compared to the controls and values in the contralesional PMA and CP (all P < 0.05). Subsequently, AD in the ipsilesional CP became relatively stable, while AD in the ipsilesional PMA significantly increased from W4 to W12 after stroke (P < 0.05). In all of the patients, changes in the FM scores were greater in those with higher changes in AD of the ipsilesional PMA. Only initial impairment or lesion volume was predictive of motor improvement within 12 weeks after stroke in patients with proportional or poor recovery. Increases of AD in the motor pathway above stroke foci may be associated with motor recovery after subcortical infarction. Early measurement of diffusion metrics in the ipsilesional non-ischemic motor pathway has limited value in predicting future motor improvement patterns (proportional or poor recovery).

  8. Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke

    PubMed Central

    Kim, Eunhee; Woo, Moon-Sook; Qin, Luye; Ma, Thong; Beltran, Cesar D.; Bao, Yi; Bailey, Jason A.; Corbett, Dale; Ratan, Rajiv R.; Lahiri, Debomoy K.

    2015-01-01

    Stroke is the world's leading cause of physiological disability, but there are currently no available agents that can be delivered early after stroke to enhance recovery. Daidzein, a soy isoflavone, is a clinically approved agent that has a neuroprotective effect in vitro, and it promotes axon growth in an animal model of optic nerve crush. The current study investigates the efficacy of daidzein on neuroprotection and functional recovery in a clinically relevant mouse model of stroke recovery. In light of the fact that cholesterols are essential lipid substrates in injury-induced synaptic remodeling, we found that daidzein enhanced the cholesterol homeostasis genetic program, including Lxr and downstream transporters, Apoe, Abca1, and Abcg1 genes in vitro. Daidzein also elevated the cholesterol homeostasis genes in the poststroke brain with Apoe, the highest expressing transporter, but did not affect infarct volume or hemispheric swelling. Despite the absence of neuroprotection, daidzein improved motor/gait function in chronic stroke and elevated synaptophysin expression. However, the daidzein-enhanced functional benefits and synaptophysin expression were abolished in Apoe-knock-out mice, suggesting the importance of daidzein-induced ApoE upregulation in fostering stroke recovery. Dissociation between daidzein-induced functional benefits and the absence of neuroprotection further suggest the presence of nonoverlapping mechanisms underlying recovery processes versus acute pathology. With its known safety in humans, early and chronic use of daidzein aimed at augmenting ApoE may serve as a novel, translatable strategy to promote functional recovery in stroke patients without adverse acute effect. SIGNIFICANCE STATEMENT There have been recurring translational failures in treatment strategies for stroke. One underlying issue is the disparity in outcome analysis between animal and clinical studies. The former mainly depends on acute infarct size, whereas long-term functional recovery is an important outcome in patients. In an attempt to identify agents that promote functional recovery, we discovered that an FDA-approved soy isoflavone, daidzein, improved stroke-induced behavioral deficits via enhancing cholesterol homeostasis in chronic stroke, and this occurs without causing adverse effects in the acute phase. With its known safety in humans, the study suggests that the early and chronic use of daidzein serves as a potential strategy to promote functional recovery in stroke patients. PMID:26558782

  9. Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke.

    PubMed

    Kim, Eunhee; Woo, Moon-Sook; Qin, Luye; Ma, Thong; Beltran, Cesar D; Bao, Yi; Bailey, Jason A; Corbett, Dale; Ratan, Rajiv R; Lahiri, Debomoy K; Cho, Sunghee

    2015-11-11

    Stroke is the world's leading cause of physiological disability, but there are currently no available agents that can be delivered early after stroke to enhance recovery. Daidzein, a soy isoflavone, is a clinically approved agent that has a neuroprotective effect in vitro, and it promotes axon growth in an animal model of optic nerve crush. The current study investigates the efficacy of daidzein on neuroprotection and functional recovery in a clinically relevant mouse model of stroke recovery. In light of the fact that cholesterols are essential lipid substrates in injury-induced synaptic remodeling, we found that daidzein enhanced the cholesterol homeostasis genetic program, including Lxr and downstream transporters, Apoe, Abca1, and Abcg1 genes in vitro. Daidzein also elevated the cholesterol homeostasis genes in the poststroke brain with Apoe, the highest expressing transporter, but did not affect infarct volume or hemispheric swelling. Despite the absence of neuroprotection, daidzein improved motor/gait function in chronic stroke and elevated synaptophysin expression. However, the daidzein-enhanced functional benefits and synaptophysin expression were abolished in Apoe-knock-out mice, suggesting the importance of daidzein-induced ApoE upregulation in fostering stroke recovery. Dissociation between daidzein-induced functional benefits and the absence of neuroprotection further suggest the presence of nonoverlapping mechanisms underlying recovery processes versus acute pathology. With its known safety in humans, early and chronic use of daidzein aimed at augmenting ApoE may serve as a novel, translatable strategy to promote functional recovery in stroke patients without adverse acute effect. There have been recurring translational failures in treatment strategies for stroke. One underlying issue is the disparity in outcome analysis between animal and clinical studies. The former mainly depends on acute infarct size, whereas long-term functional recovery is an important outcome in patients. In an attempt to identify agents that promote functional recovery, we discovered that an FDA-approved soy isoflavone, daidzein, improved stroke-induced behavioral deficits via enhancing cholesterol homeostasis in chronic stroke, and this occurs without causing adverse effects in the acute phase. With its known safety in humans, the study suggests that the early and chronic use of daidzein serves as a potential strategy to promote functional recovery in stroke patients. Copyright © 2015 the authors 0270-6474/15/3515113-14$15.00/0.

  10. Rapid Automated Quantification of Cerebral Leukoaraiosis on CT Images: A Multicenter Validation Study.

    PubMed

    Chen, Liang; Carlton Jones, Anoma Lalani; Mair, Grant; Patel, Rajiv; Gontsarova, Anastasia; Ganesalingam, Jeban; Math, Nikhil; Dawson, Angela; Aweid, Basaam; Cohen, David; Mehta, Amrish; Wardlaw, Joanna; Rueckert, Daniel; Bentley, Paul

    2018-05-15

    Purpose To validate a random forest method for segmenting cerebral white matter lesions (WMLs) on computed tomographic (CT) images in a multicenter cohort of patients with acute ischemic stroke, by comparison with fluid-attenuated recovery (FLAIR) magnetic resonance (MR) images and expert consensus. Materials and Methods A retrospective sample of 1082 acute ischemic stroke cases was obtained that was composed of unselected patients who were treated with thrombolysis or who were undergoing contemporaneous MR imaging and CT, and a subset of International Stroke Thrombolysis-3 trial participants. Automated delineations of WML on images were validated relative to experts' manual tracings on CT images, and co-registered FLAIR MR imaging, and ratings were performed by using two conventional ordinal scales. Analyses included correlations between CT and MR imaging volumes, and agreements between automated and expert ratings. Results Automated WML volumes correlated strongly with expert-delineated WML volumes at MR imaging and CT (r 2 = 0.85 and 0.71 respectively; P < .001). Spatial-similarity of automated maps, relative to WML MR imaging, was not significantly different to that of expert WML tracings on CT images. Individual expert WML volumes at CT correlated well with each other (r 2 = 0.85), but varied widely (range, 91% of mean estimate; median estimate, 11 mL; range of estimated ranges, 0.2-68 mL). Agreements (κ) between automated ratings and consensus ratings were 0.60 (Wahlund system) and 0.64 (van Swieten system) compared with agreements between individual pairs of experts of 0.51 and 0.67, respectively, for the two rating systems (P < .01 for Wahlund system comparison of agreements). Accuracy was unaffected by established infarction, acute ischemic changes, or atrophy (P > .05). Automated preprocessing failure rate was 4%; rating errors occurred in a further 4%. Total automated processing time averaged 109 seconds (range, 79-140 seconds). Conclusion An automated method for quantifying CT cerebral white matter lesions achieves a similar accuracy to experts in unselected and multicenter cohorts. © RSNA, 2018 Online supplemental material is available for this article.

  11. Stroke and the Cell Therapy Saga: Towards a Safe, Swift and Efficient Utilization of cells.

    PubMed

    Kubis, Nathalie

    2017-01-01

    The first clinical trials of cell therapy in stroke were first published in the 2000s and consisted of neural stems cells transplanted via the intracerebral pathway. Since mesenchymal stem cells showed similar capacities to differentiate into neural cells and allowed autologous cell transplantation, they were then preferentially studied, including diabetes and hypertension. More recently, bone marrow derived mononuclear cells were successfully transplanted in stroke with no need of culture processing, and simple collection by density gradient centrifugation rendering them immediately ready for use. They improve post-stroke neurological deficit in rodents and clinical trials have shown the feasibility of intra-arterial or intravenous administration. The underlying mechanisms are not yet understood. We investigated the therapeutic potential of peripheral blood derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+). We showed that intravenously injected PB-MNC+ after cerebral ischemia reduced infarct volume at day 3, increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglial cell density, and upregulated TGF-β expression. At D14, microvessel density was increased and functional recovery enhanced, whereas plasma levels of BDNF were increased in treated mice. Ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation and angiogenesis, as confirmed by adhesion and Matrigel assays. PB-MNC+ transplantation in stroke is a promising approach and should be investigated for the development of rapid, non-invasive bedside cell therapy strategies in stroke.(Presented at the 1944th Meeting, July 19, 2017).

  12. Anesthetic Neuroprotection in Experimental Stroke in Rodents: A Systematic Review and Meta-analysis.

    PubMed

    Archer, David P; Walker, Andrew M; McCann, Sarah K; Moser, Joanna J; Appireddy, Ramana M

    2017-04-01

    Patients undergoing endovascular therapy for acute ischemic stroke may require general anesthesia to undergo the procedure. At present, there is little clinical evidence to guide the choice of anesthetic in this acute setting. The clinical implications of experimental studies demonstrating anesthetic neuroprotection are poorly understood. Here, the authors evaluated the impact of anesthetic treatment on neurologic outcome in experimental stroke. Controlled studies of anesthetics in stroke using the filament occlusion model were identified in electronic databases up to December 15, 2015. The primary outcome measures, infarct volume, and neurologic deficit score were used to calculate the normalized mean difference for each comparison. Meta-analysis of normalized mean difference values provided estimates of neuroprotection and contributions of predefined factors: study quality, the timing of treatment, and the duration of ischemia. In 80 retrieved publications anesthetic treatment reduced neurologic injury by 28% (95% CI, 24 to 32%; P < 0.0001). Internal validity was high: publication bias enhanced the effect size by 4% or less, effect size increased with study quality (P = 0.0004), and approximately 70% of studies were adequately powered. Apart from study quality, no predefined factor influenced neuroprotection. Neuroprotection failed in animals with comorbidities. Neuroprotection by anesthetics was associated with prosurvival mechanisms. Anesthetic neuroprotection is a robust finding in studies using the filament occlusion model of ischemic stroke and should be assumed to influence outcomes in studies using this model. Neuroprotection failed in female animals and animals with comorbidities, suggesting that the results in young male animals may not reflect human stroke.

  13. Detection of low-volume blood loss: compensatory reserve versus traditional vital signs.

    PubMed

    Stewart, Camille L; Mulligan, Jane; Grudic, Greg Z; Convertino, Victor A; Moulton, Steven L

    2014-12-01

    Humans are able to compensate for low-volume blood loss with minimal change in traditional vital signs. We hypothesized that a novel algorithm, which analyzes photoplethysmogram (PPG) wave forms to continuously estimate compensatory reserve would provide greater sensitivity and specificity to detect low-volume blood loss compared with traditional vital signs. The compensatory reserve index (CRI) is a measure of the reserve remaining to compensate for reduced central blood volume, where a CRI of 1 represents supine normovolemia and 0 represents the circulating blood volume at which hemodynamic decompensation occurs; values between 1 and 0 indicate the proportion of reserve remaining. Subjects underwent voluntary donation of 1 U (approximately 450 mL) of blood. Demographic and continuous noninvasive vital sign wave form data were collected, including PPG, heart rate, systolic blood pressure, cardiac output, and stroke volume. PPG wave forms were later processed by the algorithm to estimate CRI values. Data were collected from 244 healthy subjects (79 males and 165 females), with a mean (SD) age of 40.1 (14.2) years and mean (SD) body mass index of 25.6 (4.7). After blood donation, CRI significantly decreased in 92% (α = 0.05; 95% confidence interval [CI], 88-95%) of the subjects. With the use of a threshold decrease in CRI of 0.05 or greater for the detection of 1 U of blood loss, the receiver operating characteristic area under the curve was 0.90, with a sensitivity of 0.84 and specificity of 0.86. In comparison, systolic blood pressure (52%; 95% CI, 45-59%), heart rate (65%; 95% CI, 58-72%), cardiac output (47%; 95% CI, 40-54%), and stroke volume (74%; 95% CI, 67-80%) changed in fewer subjects, had significantly lower receiver operating characteristic area under the curve values, and significantly lower specificities for detecting the same volume of blood loss. Consistent with our hypothesis, CRI detected low-volume blood loss with significantly greater specificity than other traditional physiologic measures. These findings warrant further evaluation of the CRI algorithm in actual trauma settings. Diagnostic study, level II.

  14. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model.

    PubMed

    Notturno, Francesca; Pace, Marta; Zappasodi, Filippo; Cam, Etrugul; Bassetti, Claudio L; Uncini, Antonino

    2014-07-15

    Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15 min on and 15 min off) starting 45 min after middle cerebral artery occlusion and lasting 4 h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6 h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans. Copyright © 2014. Published by Elsevier B.V.

  15. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans.

    PubMed

    Griffis, Joseph C; Allendorfer, Jane B; Szaflarski, Jerzy P

    2016-01-15

    Manual lesion delineation by an expert is the standard for lesion identification in MRI scans, but it is time-consuming and can introduce subjective bias. Alternative methods often require multi-modal MRI data, user interaction, scans from a control population, and/or arbitrary statistical thresholding. We present an approach for automatically identifying stroke lesions in individual T1-weighted MRI scans using naïve Bayes classification. Probabilistic tissue segmentation and image algebra were used to create feature maps encoding information about missing and abnormal tissue. Leave-one-case-out training and cross-validation was used to obtain out-of-sample predictions for each of 30 cases with left hemisphere stroke lesions. Our method correctly predicted lesion locations for 30/30 un-trained cases. Post-processing with smoothing (8mm FWHM) and cluster-extent thresholding (100 voxels) was found to improve performance. Quantitative evaluations of post-processed out-of-sample predictions on 30 cases revealed high spatial overlap (mean Dice similarity coefficient=0.66) and volume agreement (mean percent volume difference=28.91; Pearson's r=0.97) with manual lesion delineations. Our automated approach agrees with manual tracing. It provides an alternative to automated methods that require multi-modal MRI data, additional control scans, or user interaction to achieve optimal performance. Our fully trained classifier has applications in neuroimaging and clinical contexts. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Arctigenin attenuates ischemic stroke via SIRT1-dependent inhibition of NLRP3 inflammasome.

    PubMed

    Zhang, Shimeng; Jiang, Liangjun; Che, Fengyuan; Lu, Yucheng; Xie, Zhongxiang; Wang, Hao

    2017-11-04

    Arctigenin (ARC), a phenylpropanoid dibenzylbutyrolactone lignan derived from Arctium lappa L, has been reported to protect against cerebral ischemia injury in rats, but the underlying mechanism is unclear. In this study, we investigated whether ARC ameliorated ischemic stroke by inhibiting NLRP3 inflammasome-derived neuroinflammation and whether SIRT1 signaling was involved in this process. ARC (20 mg/kg) or vehicle were intraperitoneally injected to Sprague-Dawley rats for 3 days before middle cerebral artery occlusion (MCAO) surgery performed. The infarct volume, neurological score, brain water content, neuroinflammation, NLRP3 inflammasome activation and SIRT1 protein expression were assessed. Furthermore, we also investigated whether ARC protected against cerebral ischemia via SIRT1-dependent inhibition of NLRP3 inflammasome by administrating EX527, a specific SIRT1 inhibitor, under oxygen-glucose deprivation (OGD) condition. We found that ARC pretreatment decreased infarct volume, neurological score and brain water content. Moreover, ARC treatment effectively inhibited cerebral ischemia induced NLRP3 inflammasome activation and IL-1β, IL-18 secretion both in vivo and in vitro. Futhermore, ARC treatment activated Silent information regulator 1 (SIRT1) singnaling in the brain. Importantly, suppress of SIRT1 reversed the inhibitory effect of ARC on NLRP3 inflammasome activation. Taken together our results demonstrated that ARC may confer protection against ischemic stroke by inhibiting NLRP3 inflammasome activation. The activation of SIRT1 signaling pathway may contribute to the neuroprotection of ARC in MCAO. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Association between left atrial phasic conduit function and early atrial fibrillation recurrence in patients undergoing electrical cardioversion.

    PubMed

    Degiovanni, Anna; Boggio, Enrico; Prenna, Eleonora; Sartori, Chiara; De Vecchi, Federica; Marino, Paolo N

    2018-04-01

    Diastolic dysfunction promotes atrial fibrillation (AF) inducing left atrial (LA) remodeling, with chamber dilation and fibrosis. Predominance of LA phasic conduit (LAC) function should reflect not only chamber alterations but also underlying left ventricular (LV) filling impairment. Thus, LAC was tested as possible predictor of early AF relapse after electrical cardioversion (EC). 96 consecutive patients, who underwent EC for persistent non-valvular AF, were prospectively enrolled. Immediately after successful EC (3 h ± 15 min), an echocardiographic apical four-chamber view was acquired with transmitral velocities, annular tissue Doppler and simultaneous LV and LA three-dimensional full-volume datasets. Then, from LA-LV volumetric curves we computed LAC as: [(LV maximum - LV minimum) - (LA maximum - LA minimum) volume], expressed as % LV stroke volume. LA pump, immediately post-EC, was assumed and verified as being negligible. Sinus rhythm persistence at 1 month was checked with ECG-Holter monitoring. At 1 month 62 patients were in sinus rhythm and 34 in AF. AF patients presented pre-EC higher E/é values (p = 0.012), no major LA volume differences (p = NS), but a stiffer LV cavity (p = 0.012) for a comparable LV capacitance (p = 0.461). Conduit contributed more (p < 0.001) to LV stroke volume in AF subpopulation. Multiple regression revealed LAC as the most significant AF predictor (p = 0.013), even after correction for biometric characteristics and pharmacotherapy (p = 0.008). Our data suggest that LAC larger contribution to LV filling soon after EC reflects LA-LV stiffening, which skews atrioventricular interaction leading to AF perpetuation and makes conduit dominance a powerful predictor of early AF recurrence.

  18. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction.

    PubMed

    Borlaug, Barry A; Melenovsky, Vojtech; Russell, Stuart D; Kessler, Kristy; Pacak, Karel; Becker, Lewis C; Kass, David A

    2006-11-14

    Nearly half of patients with heart failure have a preserved ejection fraction (HFpEF). Symptoms of exercise intolerance and dyspnea are most often attributed to diastolic dysfunction; however, impaired systolic and/or arterial vasodilator reserve under stress could also play an important role. Patients with HFpEF (n=17) and control subjects without heart failure (n=19) generally matched for age, gender, hypertension, diabetes mellitus, obesity, and the presence of left ventricular hypertrophy underwent maximal-effort upright cycle ergometry with radionuclide ventriculography to determine rest and exercise cardiovascular function. Resting cardiovascular function was similar between the 2 groups. Both had limited exercise capacity, but this was more profoundly reduced in HFpEF patients (exercise duration 180+/-71 versus 455+/-184 seconds; peak oxygen consumption 9.0+/-3.4 versus 14.4+/-3.4 mL x kg(-1) x min(-1); both P<0.001). At matched low-level workload, HFpEF subjects displayed approximately 40% less of an increase in heart rate and cardiac output and less systemic vasodilation (all P<0.05) despite a similar rise in end-diastolic volume, stroke volume, and contractility. Heart rate recovery after exercise was also significantly delayed in HFpEF patients. Exercise capacity correlated with the change in cardiac output, heart rate, and vascular resistance but not end-diastolic volume or stroke volume. Lung blood volume and plasma norepinephrine levels rose similarly with exercise in both groups. HFpEF patients have reduced chronotropic, vasodilator, and cardiac output reserve during exercise compared with matched subjects with hypertensive cardiac hypertrophy. These limitations cannot be ascribed to diastolic abnormalities per se and may provide novel therapeutic targets for interventions to improve exercise capacity in this disorder.

  19. A randomised controlled trial of fluid restriction compared to oesophageal Doppler-guided goal-directed fluid therapy in elective major colorectal surgery within an Enhanced Recovery After Surgery program.

    PubMed

    Phan, T D; D'Souza, B; Rattray, M J; Johnston, M J; Cowie, B S

    2014-11-01

    There is continued controversy regarding the benefits of goal-directed fluid therapy, with earlier studies showing marked improvement in morbidity and length-of-stay that have not been replicated more recently. The aim of this study was to compare patient outcomes in elective colorectal surgery patients having goal-directed versus restrictive fluid therapy. Inclusion criteria included suitability for an Enhanced Recovery After Surgery care pathway and patients with an American Society of Anesthesiologists Physical Status score of 1 to 3. Patients were intraoperatively randomised to either restrictive or Doppler-guided goal-directed fluid therapy. The primary outcome was length-of-stay; secondary outcomes included complication rate, change in haemodynamic variables and fluid volumes. Compared to restrictive therapy, goal-directed therapy resulted in a greater volume of intraoperative fluid, 2115 (interquartile range 1350 to 2560) ml versus 1500 (1200 to 2000) ml, P=0.008, and was associated with an increase in Doppler-derived stroke volume index from beginning to end of surgery, 43.7 (16.3) to 54.2 (21.1) ml/m(2), P <0.001, in the latter group. Length-of-stay was similar, 6.5 (5 to 9) versus 6 (4 to 9) days, P=0.421. The number of patients with any complication (minor or major) was similar; 0% (30) versus 52% (26), P=0.42, or major complications, 1 (2%) versus 4 (8%), P=0.36, respectively. The increased perioperative fluid volumes and increased stroke volumes at the end of surgery in patients receiving goal-directed therapy did not translate to a significant difference in length-of-stay and we did not observe a difference in the number of patients experiencing minor or major complications.

  20. Pulmonary function in space

    NASA Technical Reports Server (NTRS)

    West, J. B.; Elliott, A. R.; Guy, H. J.; Prisk, G. K.

    1997-01-01

    The lung is exquisitely sensitive to gravity, and so it is of interest to know how its function is altered in the weightlessness of space. Studies on National Aeronautics and Space Administration (NASA) Spacelabs during the last 4 years have provided the first comprehensive data on the extensive changes in pulmonary function that occur in sustained microgravity. Measurements of pulmonary function were made on astronauts during space shuttle flights lasting 9 and 14 days and were compared with extensive ground-based measurements before and after the flights. Compared with preflight measurements, cardiac output increased by 18% during space flight, and stroke volume increased by 46%. Paradoxically, the increase in stroke volume occurred in the face of reductions in central venous pressure and circulating blood volume. Diffusing capacity increased by 28%, and the increase in the diffusing capacity of the alveolar membrane was unexpectedly large based on findings in normal gravity. The change in the alveolar membrane may reflect the effects of uniform filling of the pulmonary capillary bed. Distributions of blood flow and ventilation throughout the lung were more uniform in space, but some unevenness remained, indicating the importance of nongravitational factors. A surprising finding was that airway closing volume was approximately the same in microgravity and in normal gravity, emphasizing the importance of mechanical properties of the airways in determining whether they close. Residual volume was unexpectedly reduced by 18% in microgravity, possibly because of uniform alveolar expansion. The findings indicate that pulmonary function is greatly altered in microgravity, but none of the changes observed so far will apparently limit long-term space flight. In addition, the data help to clarify how gravity affects pulmonary function in the normal gravity environment on Earth.

Top