Sample records for strong anticancer activity

  1. Metal Occupancy of Zinc Finger Motifs as Determinants for Zn2+-Mediated Chemosensitization of Prostate Cancer Cells

    DTIC Science & Technology

    2013-12-01

    leukemia (AML) and glioblastoma ( GBM ). Our laboratory is interested in the potential of F10 for improved treatment of prostate cancer based upon...displays strong anti-cancer activity and minimal systemic toxicity in pre-clinical models of AML and GBM and that in previous studies demonstrated...of the low toxicity and strong anti-cancer activity of F10 in animal models of AML and GBM this combination is likely to be effective and well

  2. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells.

    PubMed

    Pi, Jiang; Jin, Hua; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Yang, Peihui; Cai, Jiye; Chen, Zheng W

    2017-05-01

    As the active anticancer component of Rabdosia Rubescens, oridonin has been proved to show strong anticancer activity in cancer cells, which is also found to be closely related to its specific inhibition effects on the EGFR tyrosine kinase activity. In this study, atomic force microscopy based single molecule force spectroscopy (AFM-SMFS) was used for real-time and in-situ detection of EGF-EGFR interactions in living esophageal cancer KYSE-150 cells to evaluate the anticancer activity of oridonin for the first time. Oridonin was found to induce apoptosis and also reduce EGFR expression in KYSE-150 cells. AFM-SMFS results demonstrated that oridonin could inhibit the binding between EGF and EGFR in KYSE-150 cells by decreasing the unbinding force and binding probability for EGF-EGFR complexes, which was further proved to be closely associated with the intracellular ROS level. More precise mechanism studies based on AFM-SMFS demonstrated that oridonin treatment could decrease the energy barrier width, increase the dissociation off rate constant and decrease the activation energy of EGF-EGFR complexes in ROS dependent way, suggesting oridonin as a strong anticancer agent targeting EGF-EGFR interactions in cancer cells through ROS dependent mechanism. Our results not only suggested oridonin as a strong anticancer agent targeting EGF-EGFR interactions in ROS dependent mechanism, but also highlighted AFM-SMFS as a powerful technique for pharmacodynamic studies by detecting ligand-receptor interactions, which was also expected to be developed into a promising tool for the screening and mechanism studies of drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hydroquinone Exhibits In Vitro and In Vivo Anti-Cancer Activity in Cancer Cells and Mice.

    PubMed

    Byeon, Se Eun; Yi, Young-Su; Lee, Jongsung; Yang, Woo Seok; Kim, Ji Hye; Kim, Jooyoung; Hong, Suntaek; Kim, Jong-Hoon; Cho, Jae Youl

    2018-03-19

    Hydroquinone (HQ, 1,4-benzenediol) is a hydroxylated benzene metabolite with various biological activities, including anti-oxidative, neuroprotective, immunomodulatory, and anti-inflammatory functions. However, the anti-cancer activity of HQ is not well understood. In this study, the in vitro and in vivo anti-cancer activity of HQ was investigated in various cancer cells and tumor-bearing mouse models. HQ significantly induced the death of A431, SYF, B16F10, and MDA-MB-231 cells and also showed a synergistic effect on A431 cell death with other anti-cancer agents, such as adenosine-2',3'-dialdehyde and buthionine sulfoximine. In addition, HQ suppressed angiogenesis in fertilized chicken embryos. Moreover, HQ prevented lung metastasis of melanoma cells in mice in a dose-dependent manner without toxicity and adverse effects. HQ (10 mg/kg) also suppressed the generation of colon and reduced the thickness of colon tissues in azoxymethane/dextran sodium sulfate-injected mice. This study strongly suggests that HQ possesses in vitro and in vivo anti-cancer activity and provides evidence that HQ could be developed as an effective and safe anti-cancer drug.

  4. Tocopherols in cancer: an update

    PubMed Central

    Gupta, Soumyasri Das; Suh, Nanjoo

    2016-01-01

    Tocopherols exist in four forms designated as α, β, δ and γ. Due to their strong antioxidant properties, tocopherols have been suggested to reduce the risk of cancer. Cancer prevention studies with tocopherols have mostly utilized α-tocopherol. Large scale clinical trials with α-tocopherol provided inconsistent results regarding the cancer preventive activities of tocopherols. This review summarizes our current understanding of the anti-cancer activities of different forms of tocopherols based on follow up of the clinical trials, recent epidemiological evidences and experimental studies using in vitro and in vivo models. The experimental data provide strong evidence in support of the anti-cancer activities of δ-tocopherol,γ-tocopherol and the natural tocopherol mixture rich in γ-tocopherol, γ-TmT, over α-tocopherol. Such outcomes emphasize the need for detailed investigation into the cancer preventive activities of different forms of tocopherols to provide a strong rationale for intervention studies in the future. PMID:26751721

  5. Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities.

    PubMed

    Wang, Changhao; Carter-Cooper, Brandon; Du, Yixuan; Zhou, Jie; Saeed, Musabbir A; Liu, Jinbing; Guo, Min; Roembke, Benjamin; Mikek, Clinton; Lewis, Edwin A; Lapidus, Rena G; Sintim, Herman O

    2016-08-08

    G-quadruplex ligands have been touted as potential anticancer agents, however, none of the reported G-quadruplex-interactive small molecules have gone past phase II clinical trials. Recently it was revealed that diminazene (berenil, DMZ) actually binds to G-quadruplexes 1000 times better than DNA duplexes, with dissociation constants approaching 1 nM. DMZ however does not have strong anticancer activities. In this paper, using a panel of biophysical tools, including NMR, FRET melting assay and FRET competition assay, we discovered that monoamidine analogues of DMZ bearing alkyne substitutes selectively bind to G-quadruplexes. The lead DMZ analogues were shown to be able to target c-MYC G-quadruplex both in vitro and in vivo. Alkyne DMZ analogues display respectable anticancer activities (single digit micromolar GI50) against ovarian (OVCAR-3), prostate (PC-3) and triple negative breast (MDA-MB-231) cancer cell lines and represent interesting new leads to develop anticancer agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Anticancer Properties of Capsaicin Against Human Cancer.

    PubMed

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents.

    PubMed

    Qin, Hua-Li; Leng, Jing; Youssif, Bahaa G M; Amjad, Muhammad Wahab; Raja, Maria Abdul Ghafoor; Hussain, Muhammad Ajaz; Hussain, Zahid; Kazmi, Syeda Naveed; Bukhari, Syed Nasir Abbas

    2017-09-01

    The incidence of cancer can be decreased by chemoprevention using either natural or synthetic agents. Apart from synthetic compounds, numerous natural products have exhibited promising potential to inhibit carcinogenesis in vivo. In this study, α, β-unsaturated carbonyl-based anticancer compounds were used as starting materials to synthesize new oxime analogs. The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship. The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines. The mechanistic effects of compounds on EGFR-TK kinases and tubulin polymerization and BRAF V 600E were investigated. In addition, the efficacy of compounds in reversing the efflux-mediated resistance developed by cancer cells was also studied. The compounds 5a and 6a displayed potent activity on various targets such as BRAF V 600E and EGFR-TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents. © 2017 John Wiley & Sons A/S.

  8. Investigation of chemical reactivity of 2-alkoxy-1,4-naphthoquinones and their anticancer activity.

    PubMed

    Manickam, Manoj; Boggu, Pulla Reddy; Cho, Jungsuk; Nam, Yeo Jin; Lee, Seung Jin; Jung, Sang-Hun

    2018-06-15

    To establish the structure-activity relationship of 5-hydroxy-1,4-naphthoquinones toward anticancer activity, a series of its derivatives were prepared and tested for the activity (IC 50 in µM) against three cell lines; colo205 (colon adenocarcinoma), T47D (breast ductal carcinoma) and K562 (chronic myelogenous leukemia). Among them 2 (IC 50 : 2.3; 2.0; 1.4 µM), 6 (IC 50 : 1.9; 2.2; 1.3 µM), 9 (IC 50 : 0.7; 1.7; 0.9 µM) and 10 (IC 50 :1.7; 1.0; 1.2 µM) showed moderate to excellent activity. Our perception toward the DNA substitution of alkoxy groups at the C2 position of these naphthoquinones for the anticancer activity led us to investigate their reactivity of substitution toward dimethylamine as a nucleophile. The ease of the substitution of alkoxy groups at the C2 position with dimethylamine is strongly accelerated by hydroxyl group at C5 position and is well correlated with the found anticancer activity results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Tocopherols in cancer: An update.

    PubMed

    Das Gupta, Soumyasri; Suh, Nanjoo

    2016-06-01

    Tocopherols exist in four forms designated as α, β, δ, and γ. Due to their strong antioxidant properties, tocopherols have been suggested to reduce the risk of cancer. Cancer prevention studies with tocopherols have mostly utilized α-tocopherol. Large-scale clinical trials with α-tocopherol provided inconsistent results regarding the cancer-preventive activities of tocopherols. This review summarizes our current understanding of the anticancer activities of different forms of tocopherols based on follow-up of the clinical trials, recent epidemiological evidences, and experimental studies using in vitro and in vivo models. The experimental data provide strong evidence in support of the anticancer activities of δ-tocopherol, γ-tocopherol, and the natural tocopherol mixture rich in γ-tocopherol, γ-TmT, over α-tocopherol. Such outcomes emphasize the need for detailed investigation into the cancer-preventive activities of different forms of tocopherols to provide a strong rationale for intervention studies in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Anticancer activity of metal complexes: involvement of redox processes.

    PubMed

    Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra

    2011-08-15

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.

  11. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  12. A monofunctional platinum(II)-based anticancer agent from a salicylanilide derivative: Synthesis, antiproliferative activity, and transcription inhibition.

    PubMed

    Wang, Beilei; Wang, Zhigang; Ai, Fujin; Tang, Wai Kin; Zhu, Guangyu

    2015-01-01

    Cationic monofunctional platinum(II)-based anticancer agents with a general formula of cis-[Pt(NH3)2(N-donor)Cl](+) have recently drawn significant attention due to their unique mode of action, distinctive anticancer spectrum, and promising antitumor activity both in vitro and in vivo. Understanding the mechanism of action of novel monofunctional platinum compounds through rational drug design will aid in the further development of active agents. In this study, we synthesized and evaluated a monofunctional platinum-based anticancer agent SA-Pt containing a bulky salicylanilide moiety. The antiproliferative activity of SA-Pt was close to that of cisplatin. Mechanism studies revealed that SA-Pt entered HeLa cells more efficiently than cisplatin, blocked the cell cycle at the S-phase, and induced apoptosis. The compound bound to DNA as effectively as cisplatin, but did not block RNA polymerase II-mediated transcription as strongly as cisplatin, indicating that once the compound formed Pt-DNA lesions, the salicylanilide group was more easily recognized and removed. This study not only enriches the family of monofunctional platinum-based anticancer agents but also guides the design of more potent monofunctional platinum complexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.

    PubMed

    Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi

    2018-01-01

    The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Characterization, catalyzed water oxidation and anticancer activities of a NIR BODIPY-Mn polymer

    NASA Astrophysics Data System (ADS)

    Lan, Ya-Quan; Xiao, Ke-Jing; Wu, Yun-Jie; Chen, Qiu-Yun

    2017-04-01

    To obtain near-IR absorbing biomaterials as fluorescence cellular imaging and anticancer agents for hypoxic cancer cell, a nano NIR fluorescence Mn(III/IV) polymer (PMnD) was spectroscopically characterized. The PMnD shows strong emission at 661 nm when excited with 643 nm. Furthermore, PMnD can catalyze water oxidation to generate dioxygen when irradiated by red LED light (10 W). In particular, the PMnD can enter into HepG-2 cells and mitochondria. Both anticancer activity and the inhibition of the expression of HIF-1α for PMnD were concentration dependent. Our results demonstrate that PMnD can be developed as mitochondria targeted imaging agents and new inhibitors for HIF-1 in hypoxic cancer cells.

  15. Lappaol F, a novel anticancer agent isolated from plant arctium Lappa L.

    PubMed

    Sun, Qing; Liu, Kanglun; Shen, Xiaoling; Jin, Weixin; Jiang, Lingyan; Sheikh, M Saeed; Hu, Yingjie; Huang, Ying

    2014-01-01

    In an effort to search for new cancer-fighting therapeutics, we identified a novel anticancer constituent, Lappaol F, from plant Arctium Lappa L. Lappaol F suppressed cancer cell growth in a time- and dose-dependent manner in human cancer cell lines of various tissue types. We found that Lappaol F induced G(1) and G(2) cell-cycle arrest, which was associated with strong induction of p21 and p27 and reduction of cyclin B1 and cyclin-dependent kinase 1 (CDK1). Depletion of p21 via genetic knockout or short hairpin RNA (shRNA) approaches significantly abrogated Lappaol F-mediated G(2) arrest and CDK1 and cyclin B1 suppression. These results suggest that p21 seems to play a crucial role in Lappaol F-mediated regulation of CDK1 and cyclin B1 and G(2) arrest. Lappaol F-mediated p21 induction was found to occur at the mRNA level and involved p21 promoter activation. Lappaol F was also found to induce cell death in several cancer cell lines and to activate caspases. In contrast with its strong growth inhibitory effects on tumor cells, Lappaol F had minimal cytotoxic effects on nontumorigenic epithelial cells tested. Importantly, our data also demonstrate that Lappaol F exhibited strong growth inhibition of xenograft tumors in nude mice. Lappaol F was well tolerated in treated animals without significant toxicity. Taken together, our results, for the first time, demonstrate that Lappaol F exhibits antitumor activity in vitro and in vivo and has strong potential to be developed as an anticancer therapeutic.

  16. Potential role of tocotrienols in the treatment and prevention of breast cancer.

    PubMed

    Sylvester, Paul W; Akl, Mohamed R; Malaviya, Abhita; Parajuli, Parash; Ananthula, Suryatheja; Tiwari, Roshan V; Ayoub, Nehad M

    2014-01-01

    Vitamin E is a generic term that refers to a family of compounds that is further divided into two subgroups called tocopherols and tocotrienols. Although all natural forms of vitamin E display potent antioxidant activity, tocotrienols are significantly more potent than tocopherols in inhibiting tumor cell growth and viability, and anticancer activity of tocotrienols is mediated independently of their antioxidant activity. In addition, the anticancer effects of tocotrienols are observed using treatment doses that have little or no effect on normal cell function or viability. This review will summarize experimental studies that have identified the intracellular mechanism mediating the anticancer effects of tocotrienols. Evidence is also provided showing that combined treatment of tocotrienol with other cancer chemotherapies can result in a synergistic inhibition in cancer cell growth and viability. Taken together, these findings strongly indicate that tocotrienols may provide significant health benefits in the prevention and/or treatment of cancer when used either alone as monotherapy or in combination with other anticancer agents. © 2013 International Union of Biochemistry and Molecular Biology.

  17. Synthesis and Anticancer Mechanism Investigation of Dual Hsp27 and Tubulin Inhibitors

    PubMed Central

    Zhong, Bo; Chennamaneni, Snigdha; Lama, Rati; Yi, Xin; Geldenhuys, Werner J.; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2013-01-01

    Heat shock protein 27 (Hsp27) is a chaperone protein, and its expression is increased in response to various stress stimuli including anticancer chemotherapy, which allows the cells to survive and causes drug resistance. We previously identified lead compounds that bound to Hsp27 and tubulin via proteomic approaches. Systematic ligand based optimization in the current study significantly increased the cell growth inhibition and apoptosis inducing activities of the compounds. Compared to the lead compounds, one of the new derivatives exhibited much better potency to inhibit tubulin polymerization but a decreased activity to inhibit Hsp27 chaperone function, suggesting that the structural modification dissected the dual targeting effects of the compound. The most potent compounds 20 and 22 exhibited strong cell proliferation inhibitory activities at subnanomolar concentration against 60 human cancer cell lines conducted by Developmental Therapeutic Program at the National Cancer Institute and represented promising candidates for anticancer drug development. PMID:23767669

  18. Aronia melanocarpa juice induces a redox-sensitive p73-related caspase 3-dependent apoptosis in human leukemia cells.

    PubMed

    Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B

    2012-01-01

    Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G(2)/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells.

  19. Differential Effects of Tautomycetin and Its Derivatives on Protein Phosphatase Inhibition, Immunosuppressive Function and Antitumor Activity

    PubMed Central

    Niu, Mingshan; Sun, Yan; Liu, Bo

    2012-01-01

    In the present work, we studied the structure-activity relationship (SAR) of tautomycetin (TMC) and its derivatives. Further, we demonstrated the correlation between the immunosuppressive fuction, anticancer activity and protein phosphatase type 1 (PP1) inhibition of TMC and its derivatives. We have prepared some TMC derivatives via combinatorial biosynthesis, isolation from fermentation broth or chemical degradation of TMC. We found that the immunosuppressive activity was correlated with anticancer activity for TMC and its analog compounds, indicating that TMC may home at the same targets for its immunosuppressive and anticancer activities. Interestingly, TMC-F1, TMC-D1 and TMC-D2 all retained significant, albeit reduced PP1 inhibitory activity compared to TMC. However, only TMC-D2 showed immunosuppressive and anticancer activities in studies carried out in cell lines. Moreover, TMC-Chain did not show any significant inhibitory activity towards PP1 but showed strong growth inhibitory effect. This observation implicates that the maleic anhydride moiety of TMC is critical for its phosphatase inhibitory activity whereas the C1-C18 moiety of TMC is essential for the inhibition of tumor cell proliferation. Furthermore, we measured in vivo phosphatase activities of PP1 in MCF-7 cell extracts treated with TMC and its related compounds, and the results indicate that the cytotoxicity of TMC doesn't correlate with its in vivo PP1 inhibition activity. Taken together, our study suggests that the immunosuppressive and anticancer activities of TMC are not due to the inhibition of PP1. Our results provide a novel insight for the elucidation of the underlying molecular mechanisms of TMC's important biological functions. PMID:22563261

  20. Synthesis and biological evaluation of 3-substituted-4-(4-methylthio phenyl)-1H-pyrrole derivatives as potential anticancer agents.

    PubMed

    Lan, Lan; Qin, Weixi; Zhan, Xiaoping; Liu, Zenglu; Mao, Zhenmin

    2014-01-01

    A novel series of 3-substituted-4-(4-methylthio phenyl)-1H-pyrrole derivatives were synthesized via Van Leusen pyrrole synthesis. The in vitro anticancer activity against a panel of 16 cancer cell lines and 2 normal cell lines was investigated by MTT assay. It was found that some of the pyrrole compounds showed similar antiproliferative activity against cancer cells compared with Paclitaxel, but little impact on normal cell lines, which indicated that the novel pyrrole derivatives could be used as potential anticancer candidates for possessing both selectivity and good therapeutic efficacy. Structure-activity relationship analysis found that 3-phenylacetyl-4- (4-methylthio phenyl)-1H-pyrrole derivatives displayed the most strong anticancer activity, among which [4-(4-methylthio phenyl)-1H-pyrrol- 3-yl] (4-methoxy phenyl) methanone (3j) was employed to investigate the effect of these pyrrole analogues on cell cycle by propidium iodide (PI) staining on cell flow cytometry. Cell necrotic effect of 10.0 µM 3j against MGC80-3 cells were also observed under fluorescence microscope and transmission electron microscope by ultrathin sections observation.

  1. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.

    PubMed

    Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G

    2000-04-01

    An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.

  2. Ultrasound-Assisted Extraction, Antioxidant and Anticancer Activities of the Polysaccharides from Rhynchosia minima Root.

    PubMed

    Jia, Xuejing; Zhang, Chao; Hu, Jie; He, Muxue; Bao, Jiaolin; Wang, Kai; Li, Peng; Chen, Meiwan; Wan, Jianbo; Su, Huanxing; Zhang, Qingwen; He, Chengwei

    2015-11-23

    Box-Behnken design (BBD), one of the most common response surface methodology (RSM) methods, was used to optimize the experimental conditions for ultrasound-assisted extraction of polysaccharides from Rhynchosia minima root (PRM). The antioxidant abilities and anticancer activity of purified polysaccharide fractions were also measured. The results showed that optimal extraction parameters were as follows: ultrasound exposure time, 21 min; ratio of water to material, 46 mL/g; ultrasound extraction temperature, 63 °C. Under these conditions, the maximum yield of PRM was 16.95%±0.07%. Furthermore, the main monosaccharides of purified fractions were Ara and Gal. PRM3 and PRM5 exhibited remarkable DPPH radical scavenging activities and reducing power in vitro. PRM3 showed strong inhibitory activities on the growth of MCF-7 cells in vitro. The above results indicate that polysaccharides from R. minima root have the potential to be developed as natural antioxidants and anticancer ingredients for the food and pharmaceutical industries.

  3. Inhibitory Activity of Iron Chelators ATA and DFO on MCF-7 Breast Cancer Cells and Phosphatases PTP1B and SHP2.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska-Ponikowska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2017-09-01

    Rapidly-dividing cancer cells have higher requirement for iron compared to non-transformed cells, making iron chelating a potential anticancer strategy. In the present study we compared the anticancer activity of uncommon iron chelator aurintricarboxylic acid (ATA) with the known deferoxamine (DFO). We investigated the impact of ATA and DFO on the viability and proliferation of MCF-7 cancer cells. Moreover we performed enzymatic activity assays and computational analysis of the ATA and DFO effects on pro-oncogenic phosphatases PTP1B and SHP2. ATA and DFO decrease the viability and proliferation of breast cancer cells, but only ATA considerably reduces the activity of PTP1B and SHP2 phosphatases. Our studies indicated that ATA strongly inactivates and binds in the PTP1B and SHP2 active site, interacting with arginine residue essential for enzyme activity. We confirmed that iron chelating can be considered as a potential strategy for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles.

    PubMed

    Patil, Maheshkumar Prakash; Kim, Gun-Do

    2017-01-01

    This review covers general information about the eco-friendly process for the synthesis of silver nanoparticles (AgNP) and gold nanoparticles (AuNP) and focuses on mechanism of the antibacterial activity of AgNPs and the anticancer activity of AuNPs. Biomolecules in the plant extract are involved in reduction of metal ions to nanoparticle in a one-step and eco-friendly synthesis process. Natural plant extracts contain wide range of metabolites including carbohydrates, alkaloids, terpenoids, phenolic compounds, and enzymes. A variety of plant species and plant parts have been successfully extracted and utilized for AgNP and AuNP syntheses. Green-synthesized nanoparticles eliminate the need for a stabilizing and capping agent and show shape and size-dependent biological activities. Here, we describe some of the plant extracts involved in nanoparticle synthesis, characterization methods, and biological applications. Nanoparticles are important in the field of pharmaceuticals for their strong antibacterial and anticancer activity. Considering the importance and uniqueness of this concept, the synthesis, characterization, and application of AgNPs and AuNPs are discussed in this review.

  5. Separation, characterization and anticancer activities of a sulfated polysaccharide from Undaria pinnatifida.

    PubMed

    Han, Yun; Wu, Jun; Liu, Tingting; Hu, Youdong; Zheng, Qiusheng; Wang, Binsheng; Lin, Haiyan; Li, Xia

    2016-02-01

    The purpose of this paper was to investigate separation, characterization and anticancer activities of a sulfated polysaccharide (SPUP) from Undaria pinnatifida. Firstly, polysaccharide from U. pinnatifida was separated by DEAE-52 cellulose and Sephacryl S-400 column chromatography. As results, SPUP was obtained with the yield of 19.42%. Then, SPUP was characterized using chemical analysis, gas chromatography, size-exclusion HPLC chromatography, UV-vis spectra and FT-IR spectrum. The content of total sugar, uronic acid, protein and sulfate radical were 80.48%, 3.21%, 7.12% and 29.14%, respectively. SPUP was a heteropolysaccharide composed of fucose, glucose and galactose in a molar percentage of 27.15:19.34:53.51 with molecular weight of 97.9 kDa. Finally, the strongly against breast cancer activity of SPUP was confirmed by DMBA-induced breast cancer rats model. AS results, SPUP can significantly restrain breast abnormal enlargement, prolong tumor latency and reduced tumor incidence. Immunomodulatory activity and regulating abnormal sex hormones level might contribute to its anticancer activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Isolation, structure elucidation and anticancer activity from Brevibacillus brevis EGS 9 that combats Multi Drug Resistant actinobacteria.

    PubMed

    Arumugam, T; Senthil Kumar, P; Hemavathy, R V; Swetha, V; Karishma Sri, R

    2018-02-01

    Actinobacteria is the most widely distributed organism in the mangrove environment and produce a large amount of secondary metabolites. A new environmental actinobacterial stain exhibited strong antimicrobial activity against vancomycin and methicillin resistant actinobacteria. The active producer strain was found to be as Brevibacillus brevis EGS9, which was confirmed by its morphological, biochemical characteristics and 16S rRNA gene sequencing. It was deposited in NCBI GeneBank database and received with an accession number of KX388147. Brevibacillus brevis EGS9 was cultivated by submerged fermentation to produce antimicrobial compounds. The anti-proliferative agent was extracted from Brevibacillus brevis EGS9 with ethyl acetate. The bioactive metabolites of mangrove actinobacteria was identified by Liquid chromatography with mass spectrometry analysis. The result of the present investigation revealed that actinobacteria isolated from mangroves are potent source of anticancer activity. The strain of Brevibacillus brevis EGS9 exhibited a potential in vitro anticancer activity. The present research concluded that the actinobacteria isolated from mangrove soil sediment are valuable in discovery of novel species. Copyright © 2017. Published by Elsevier Ltd.

  7. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  8. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis

    PubMed Central

    Shi, Shaoqing; Wang, Qiong; Xu, Jennings; Jang, Jun-Ho; Padilla, Mabel T.; Nyunoya, Toru; Xing, Chengguo; Zhang, Lin; Lin, Yong

    2015-01-01

    Drug resistance is a major hurdle in anticancer chemotherapy. Combined therapy using drugs with distinct mechanisms of function may increase anticancer efficacy. We have recently identified the novel chalcone derivative, chalcone-24 (Chal-24), as a potential therapeutic that kills cancer cells through activation of an autophagy-mediated necroptosis pathway. In this report, we investigated if Chal-24 can be combined with the frontline genotoxic anticancer drug, cisplatin for cancer therapy. The combination of Chal-24 and cisplatin synergistically induced apoptotic cytotoxicity in lung cancer cell lines, which was dependent on Chal-24-induced autophagy. While cisplatin slightly potentiated the JNK/Bcl2/Beclin1 pathway for autophagy activation, its combination with Chal-24 strongly triggered proteasomal degradation of the cellular inhibitor of apoptosis proteins (c-IAPs) and formation of the Ripoptosome complex that contains RIP1, FADD and caspase 8. Furthermore, the cisplatin and Chal-24 combination induced dramatic degradation of cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein large (cFLIPL) which suppresses Ripoptosome-mediated apoptosis activation. These results establish a novel mechanism for potentiation of anticancer activity with the combination of Chal-24 and cisplatin: to enhance apoptosis signaling through Ripoptosome formation and to release the apoptosis brake through c-FLIPL degradation. Altogether, our work suggests that the combination of Chal-24 and cisplatin could be employed to improve chemotherapy efficacy. PMID:25682199

  9. Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent.

    PubMed

    Gartner, Michael; Müller, Thomas; Simon, Jan C; Giannis, Athanassios; Sleeman, Jonathan P

    2005-01-01

    Hyperforin, a natural product of St. John's wort (Hypericum perforatum L.), has a number of pharmacological activities, including antidepressive and antibacterial properties. Furthermore, hyperforin has pronounced antitumor properties against different tumor cell lines, both in vitro and in vivo. Despite being a promising novel anticancer agent, the poor solubility and stability of hyperforin in aqueous solution limits its potential clinical application. In this study, we present the synthesis of hyperforin derivatives with improved pharmacological activity. The synthesized compounds were tested for their solubility and stability properties. They were also investigated for their antitumor properties, both in vitro and in vivo. One of these hyperforin derivatives, Aristoforin, is more soluble in aqueous solution than hyperforin and is additionally highly stable. Importantly, it retains the antitumor properties of the parental compound without inducing toxicity in experimental animals. These data strongly suggest that Aristoforin has potential as an anticancer drug.

  10. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    PubMed Central

    Dobretsov, Sergey; Tamimi, Yahya; Al-Kindi, Mohamed A.; Burney, Ikram

    2016-01-01

    Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF)-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies. PMID:27226907

  11. Dichloroacetate Prevents Cisplatin-Induced Nephrotoxicity without Compromising Cisplatin Anticancer Properties

    PubMed Central

    Galgamuwa, Ramindhu; Hardy, Kristine; Dahlstrom, Jane E.; Blackburn, Anneke C.; Wium, Elize; Rooke, Melissa; Cappello, Jean Y.; Tummala, Padmaja; Patel, Hardip R.; Chuah, Aaron; Tian, Luyang; McMorrow, Linda; Board, Philip G.

    2016-01-01

    Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin. PMID:26961349

  12. Aronia melanocarpa Juice Induces a Redox-Sensitive p73-Related Caspase 3-Dependent Apoptosis in Human Leukemia Cells

    PubMed Central

    Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B.

    2012-01-01

    Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G2/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells. PMID:22412883

  13. Antioxidant, anti-inflammatory and anticancer activities of the medicinal halophyte Reaumuria vermiculata

    PubMed Central

    Karker, Manel; Falleh, Hanen; Msaada, Kamel; Smaoui, Abderrazak; Abdelly, Chedly; Legault, Jean; Ksouri, Riadh

    2016-01-01

    Reaumuria vermiculata is a xero-halophytic specie widely distributed in the south of Tunisia. In the current study, antioxidant, anti-inflammatory and anticancer activities of Reaumuria vermiculata shoot extracts as well as its phenolic compounds were investigated in different solvent extracts (hexane, dichloromethane, methanol and water). Results showed a strong antioxidant activity, using the ORAC method and a cell based-assay, in methanol extract as well as an important phenolic composition (117.12 mg GAE/g). Hexane and dichloromethane proved an interesting anticancer activity against A-549 lung carcinoma cells, with IC50 values of 17 and 23 µg/ml, respectively. Besides, dichloromethane extract displayed the utmost anti-inflammatory activity, inhibiting NO release over 100 % at 80 µg/ml in LPS-stimulated RAW 264.7. Taken together, these finding suggest that R. vermiculata exhibited an interesting biological activities which may be related to the phenolic composition of this plant. Moreover, the identification of phenolic compounds in R. vermiculata dichloromethane extract using RP-HPLC revealed that myricetin was the major molecule. These results allow us to propose R. vermiculata as a valuable source for bioactive and natural compounds exhibiting interesting biological capacities. PMID:27298615

  14. Molecular docking and dynamic simulation studies evidenced plausible immunotherapeutic anticancer property by Withaferin A targeting indoleamine 2,3-dioxygenase.

    PubMed

    Reddy, S V G; Reddy, K Thammi; Kumari, V Valli; Basha, Syed Hussain

    2015-01-01

    Indoleamine 2,3-dioxygenase (IDO) is emerging as an important new therapeutic drug target for the treatment of cancer characterized by pathological immune suppression. IDO catalyzes the rate-limiting step of tryptophan degradation along the kynurenine pathway. Reduction in local tryptophan concentration and the production of immunomodulatory tryptophan metabolites contribute to the immunosuppressive effects of IDO. Presence of IDO on dentritic cells in tumor-draining lymph nodes leading to the activation of T cells toward forming immunosuppressive microenvironment for the survival of tumor cells has confirmed the importance of IDO as a promising novel anticancer immunotherapy drug target. On the other hand, Withaferin A (WA) - active constituent of Withania Somnifera ayurvedic herb has shown to be having a wide range of targeted anticancer properties. In the present study conducted here is an attempt to explore the potential of WA in attenuating IDO for immunotherapeutic tumor arresting activity and to elucidate the underlying mode of action in a computational approach. Our docking and molecular dynamic simulation results predict high binding affinity of the ligand to the receptor with up to -11.51 kcal/mol of energy and 3.63 nM of IC50 value. Further, de novo molecular dynamic simulations predicted stable ligand interactions with critically important residues SER167; ARG231; LYS377, and heme moiety involved in IDO's activity. Conclusively, our results strongly suggest WA as a valuable small ligand molecule with strong binding affinity toward IDO.

  15. The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: Different administration routes.

    PubMed

    Fasehee, Hamidreza; Zarrinrad, Ghazaleh; Tavangar, Seyed Mohammad; Ghaffari, Seyed Hamidollah; Faghihi, Shahab

    2016-06-01

    The strong anticancer activity of disulfiram is hindered by its rapid degradation in blood system. A novel folate-receptor-targeted poly (lactide-co-glycolide) (PLGA)-polyethylene glycol (PEG) nanoparticle (NP) is developed for encapsulation and delivery of disulfiram into breast cancer tumor using passive (EPR effect) and active (folate receptor) targeting. The anticancer activity of disulfiram and its effect on caspase-3 activity and cell cycle are studied. The administration of encapsulated PLGA NPs using intra-peritoneal, intravenous and intra-tumor routes is investigated using animal model. Disulfiram shows strong cytotoxicity against MCF7 cell line. The activity of caspase-3 inhibited with disulfiram via dose dependent manner while the drug causes cell cycle arrest in G0/G1 and S phase time-dependently. The encapsulated disulfiram shows higher activity in apoptosis induction as compared to free drug. In nontoxic dose of encapsulated disulfiram, the highest and lowest efficacy of NPs in tumor growth inhibition is observed for intravenous injection and intraperitoneal injection. It is suggested that administration of disulfiram by targeted PLGA nanoparticles using intravenous injection would present an alternative therapeutic approach for solid tumor treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Curcumin in combined cancer therapy.

    PubMed

    Troselj, Koraljka Gall; Kujundzic, Renata Novak

    2014-01-01

    The mechanisms of beneficial preventive and therapeutic effects achieved by traditional and complementary medicine are currently being deciphered in molecular medicine. Curcumin, a yellow-colored polyphenol derived from the rhizome of turmeric (Curcuma longa), influences a wide variety of cellular processes through the reshaping of many molecular targets. One of them, nuclear factor kappa B (NF-κB), represents a strong mediator of inflammation and, in a majority of systems, supports the pro-proliferative features of cancer cells. The application of various anticancer drugs, cytostatics, triggers signals which lead to an increase in cellular NF-κB activity. As a consequence, cancer cells often reshape their survival signaling pathways and, over time, become resistant to applied therapy. Curcumin was shown to be a strong inhibitor of NF-κB activity and its inhibitory effect on NF-κB related pathways often leads to cellular apoptotic response. All these facts, tested and confirmed in many different biological systems, have paved the way for research aimed to elucidate the potential beneficial effects of combining curcumin and various anti-cancer drugs in order to establish more efficient and less toxic cancer treatment modalities. This review addresses certain aspects of NF-κB-related inflammatory response, its role in carcinogenesis and therapy benefits that may be gained through silencing NF-κB by selectively combining curcumin and various anticancer drugs.

  17. Anticancer Effect of Nemopilema nomurai Jellyfish Venom on HepG2 Cells and a Tumor Xenograft Animal Model

    PubMed Central

    Bae, Seong Kyeong; Kim, Munki; Pyo, Min Jung; Kim, Minkyung; Yang, Sujeoung; Yoon, Won Duk; Han, Chang Hoon

    2017-01-01

    Various kinds of animal venoms and their components have been widely studied for potential therapeutic applications. This study evaluated whether Nemopilema nomurai jellyfish venom (NnV) has anticancer activity. NnV strongly induced cytotoxicity of HepG2 cells through apoptotic cell death, as demonstrated by alterations of chromatic morphology, activation of procaspase-3, and an increase in the Bax/Bcl-2 ratio. Furthermore, NnV inhibited the phosphorylation of PI3K, PDK1, Akt, mTOR, p70S6K, and 4EBP1, whereas it enhanced the expression of p-PTEN. Interestingly, NnV also inactivated the negative feedback loops associated with Akt activation, as demonstrated by downregulation of Akt at Ser473 and mTOR at Ser2481. The anticancer effect of NnV was significant in a HepG2 xenograft mouse model, with no obvious toxicity. HepG2 cell death by NnV was inhibited by tetracycline, metalloprotease inhibitor, suggesting that metalloprotease component in NnV is closely related to the anticancer effects. This study demonstrates, for the first time, that NnV exerts highly selective cytotoxicity in HepG2 cells via dual inhibition of the Akt and mTOR signaling pathways, but not in normal cells. PMID:28785288

  18. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams.

    PubMed

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-06-06

    In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.

  19. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams

    PubMed Central

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-01-01

    Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328

  20. Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng-Cultivating Soil Bacteria and Its Anti-Cancer Property.

    PubMed

    Cui, Chang-Hao; Kim, Da Jung; Jung, Suk-Chae; Kim, Sun-Chang; Im, Wan-Taek

    2017-05-19

    Minor ginsenosides, such as compound K, Rg₃( S ), which can be produced by deglycosylation of ginsenosides Rb₁, showed strong anti-cancer effects. However, the anticancer effects of gypenoside LXXV, which is one of the deglycosylated shapes of ginsenoside Rb₁, is still unknown due to the rarity of its content in plants. Here, we cloned and characterized a novel ginsenoside-transforming β-glucosidase (BglG167b) derived from Microbacterium sp. Gsoil 167 which can efficiently hydrolyze gypenoside XVII into gypenoside LXXV, and applied it to the production of gypenoside LXXV at the gram-scale with high specificity. In addition, the anti-cancer activity of gypenoside LXXV was investigated against three cancer cell lines (HeLa, B16, and MDA-MB231) in vitro. Gypenoside LXXV significantly reduced cell viability, displaying an enhanced anti-cancer effect compared to gypenoside XVII and Rb₁. Taken together, this enzymatic method would be useful in the preparation of gypenoside LXXV for the functional food and pharmaceutical industries.

  1. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    PubMed

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.

  2. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  3. Anti-Cancer Efficacy of Silybin Derivatives - A Structure-Activity Relationship

    PubMed Central

    Agarwal, Chapla; Wadhwa, Ritambhara; Deep, Gagan; Biedermann, David; Gažák, Radek; Křen, Vladimír; Agarwal, Rajesh

    2013-01-01

    Silybin or silibinin, a flavonolignan isolated from Milk thistle seeds, is one of the popular dietary supplements and has been extensively studied for its antioxidant, hepatoprotective and anti-cancer properties. We have envisioned that potency of silybin could be further enhanced through suitable modification/s in its chemical structure. Accordingly, here, we synthesized and characterized a series of silybin derivatives namely 2,3-dehydrosilybin (DHS), 7-O-methylsilybin (7OM), 7-O-galloylsilybin (7OG), 7,23-disulphatesilybin (DSS), 7-O-palmitoylsilybin (7OP), and 23-O-palmitoylsilybin (23OP); and compared their anti-cancer efficacy using human bladder cancer HTB9, colon cancer HCT116 and prostate carcinoma PC3 cells. In all the 3 cell lines, DHS, 7OM and 7OG demonstrated better growth inhibitory effects and compared to silybin, while other silybin derivatives showed lesser or no efficacy. Next, we prepared the optical isomers (A and B) of silybin, DHS, 7OM and 7OG, and compared their anti-cancer efficacy. Isomers of these three silybin derivatives also showed better efficacy compared with respective silybin isomers, but in each, there was no clear cut silybin A versus B isomer activity preference. Further studies in HTB cells found that DHS, 7OM and 7OG exert better apoptotic activity than silibinin. Clonogenic assays in HTB9 cells further confirmed that both the racemic mixtures as well as pure optical isomers of DHS, 7OM and 7OG were more effective than silybin. Overall, these results clearly suggest that the anti-cancer efficacy of silybin could be significantly enhanced through structural modifications, and identify strong anti-cancer efficacy of silybin derivatives, namely DHS, 7OM, and 7OG, signifying that their efficacy and toxicity should be evaluated in relevant pre-clinical cancer models in rodents. PMID:23555889

  4. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    PubMed

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  5. The water soluble peripherally tetra-substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines as new potential anticancer agents.

    PubMed

    Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu

    2016-09-28

    In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition.

  6. Anticancer activity and mediation of apoptosis in human HL-60 leukaemia cells by edible sea cucumber (Holothuria edulis) extract.

    PubMed

    Wijesinghe, W A J P; Jeon, You Jin; Ramasamy, Perumal; Wahid, Mohd Effendy A; Vairappan, Charles S

    2013-08-15

    Sea cucumbers have been a dietary delicacy and important ingredient in Asian traditional medicinal over many centuries. In this study, edible sea cucumber Holothuria edulis was evaluated for its in vitro anticancer potential. An aqueous fraction of the edible sea cucumber (ESC-AQ) has been shown to deliver a strong cytotoxic effect against the human HL-60 leukaemia cell line. An induction effect of apoptotic body formation in response to ESC-AQ treatment was confirmed in HL-60 cells stained with Hoechst 33342 and confirmed via flow cytometry analysis. The up regulation of Bax and caspase-3 protein expression was observed while the expression of Bcl-xL protein was down regulated in ESC-AQ treated HL-60 cells. Due to the profound anticancer activity, ESC-AQ appears to be an economically important biomass fraction that can be exploited in numerous industrial applications as a source of functional ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide.

    PubMed

    Schneider, Gisbert; Reker, Daniel; Chen, Tao; Hauenstein, Kurt; Schneider, Petra; Altmann, Karl-Heinz

    2016-09-26

    The cyclodepsipeptide doliculide is a marine natural product with strong actin-polymerizing and anticancer activities. Evidence for doliculide acting as a potent and subtype-selective antagonist of prostanoid E receptor 3 (EP3) is presented. Computational target prediction suggested that this membrane receptor is a likely macromolecular target and enabled immediate in vitro validation. This proof-of-concept study demonstrates the in silico deorphanization of phenotypic screening hits as a viable concept for future natural-product-inspired chemical biology and drug discovery efforts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad; Meier, Samuel; Nazarov, Alexey; Risse, Julie; Legin, Anton; Casini, Angela; Jakupec, Michael; Keppler, Bernhard; Hartinger, Christian

    2013-10-01

    The synthesis and in vitro cytotoxicity of a series of RuII(arene) complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well with cellular accumulation. The most lipophilic compound bearing a biphenyl moiety and a cyclohexylidene-protected carbohydrate is the most cytotoxic with unprecedented IC50 values for the compound class in three human cancer cell lines. This compound shows reactivity to the DNA model nucleobase 9-ethylguanine, but does not alter the secondary structure of plasmid DNA indicating that other biological targets are responsible for its cytotoxic effect.

  9. Anticancer drug-based multifunctional nanogels through self-assembly of dextran-curcumin conjugates toward cancer theranostics.

    PubMed

    Nagahama, Koji; Sano, Yoshinori; Kumano, Takayuki

    2015-06-15

    Curcumin (CCM) has been received much attention in cancer theranostics because CCM exhibits both anticancer activity and strong fluorescence available for bio-imaging. However, CCM has never been utilized in clinical mainly due to its extremely low water solubility and its low cellular uptake into cancer cells. We fabricated novel CCM-based biodegradable nanoparticles through self-assembly of amphiphilic dextran-CCM conjugates. Significantly high CCM loading contents in the nanoparticles and the high water solubility were achieved. Importantly, the dextran-CCMs nanoparticles were effectively delivered into HeLa cells and exhibited strong fluorescence available for live-cell imaging, although the nanoparticles were not delivered into normal cells. Thus, the dextran-CCMs nanoparticles could be a promising for creation of novel CCM-based cancer theranostics with high efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. E-Combretastatin and E-Resveratrol Structural Modifications: Antimicrobial and Cancer Cell Growth Inhibitory Beta-E-Nitrostyrenes

    USDA-ARS?s Scientific Manuscript database

    As part of a broad-based SAR investigation of E-resveratrol (strong sirtuin activator and antineoplastic) and the anticancer vascular-targeting combretastatin-type stilbenes, a series of twenty-three beta-E-nitrostyrenes was synthesized in order to evaluate potential antineoplastic, antitubulin poly...

  11. Development and evaluation of adsorption sheet (HD safe sheet-U) using active carbon for the purpose of the preventing the contamination diffusion of urinary excreted anticancer drug.

    PubMed

    Sato, Junya; Ohkubo, Haruka; Sasaki, Yuki; Yokoi, Makoto; Hotta, Yasunori; Kudo, Kenzo

    2017-01-01

    Certain amount of anticancer drugs is excreted in the urine of patients receiving anticancer drugs, and urinary scattering including anticancer drugs at excretion has become a route of anticancer drug contamination. Therefore, we developed an active carbon sheet (HD safe sheet-U) that prevented diffusion by adsorbing anticancer drugs including that excreted in urine. The present study conducted a performance evaluation of this sheet. The adsorption performance of active carbon to anticancer drug in the urine was evaluated by determining concentration changes in the active carbon suspension (5 mg/mL) of 14 kinds of anticancer drugs (cyclophosphamide, ifosfamide, carboplatin, cisplatin, methotrexate, 5-fluorouracil, cytarabine, gemcitabine, doxorubicin, epirubicin, paclitaxel, docetaxel, etoposide, and irinotecan) diluted with artificial urine. Adhesion of the anticancer drug dropping on the sheet to a slipper sole was evaluated because urine including anticancer drugs is scattered on the floor, which can spread by adhering to shoe soles of patients and healthcare workers. The performance of the active carbon sheet was compared with two other types of medical adsorption sheets used as control sheets. Anticancer drugs diluted with artificial urine (1 mL) were dropped on the active carbon sheet and the two control sheets. The sheets were trod with slippers made by polyvinyl chloride. The adhered anticancer drug was wiped off and its quantity was determined. A remarkable decrease in anticancer drug concentrations, except for cisplatin, was detected by mixture of active carbon in the artificial urine (0-79.6%). The quantity of anticancer drug adhesion to slipper soles from the active carbon sheet was significantly lower compared with that observed for the two control sheets for eight kinds of anticancer drugs (cyclophosphamide, ifosfamide, carboplatin, methotrexate, cytarabine, gemcitabine, doxorubicin, and docetaxel). There was no adhesion in cyclophosphamide and docetaxel. Furthermore, the quantities of adhesion in cytarabine, gemcitabine, doxorubicin, paclitaxel, and irinotecan were lower than determination limit. Active carbon might be effective in adsorbing urinary anticancer drugs. The active carbon sheet adsorbed urinary excreted anticancer drugs, and use of such sheets might prevent diffusion of contamination due to urinary excreted anticancer drugs.

  12. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.

    PubMed

    Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng

    2016-08-19

    Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Anti-cancer activity of withaferin A in B-cell lymphoma

    PubMed Central

    McKenna, MK; Gachuki, BW; Alhakeem, SS; Oben, KN; Rangnekar, VM; Gupta, RC; Bondada, S

    2015-01-01

    Withaferin A (WA), a withanolide from the plant, Ashwagandha (Withania somnifera) used in Ayurvedic medicine, has been found to be valuable in the treatment of several medical ailments. WA has been found to have anticancer activity against various solid tumors, but its effects on hematological malignancies have not been studied in detail. WA strongly inhibited the survival of several human and murine B cell lymphoma cell lines. Additionally, in vivo studies with syngeneic-graft lymphoma cells suggest that WA inhibits the growth of tumor but does not affect other proliferative tissues. We demonstrate that WA inhibits the efficiency of NF-κB nuclear translocation in diffuse large B cell lymphomas and found that WA treatment resulted in a significant decrease in protein levels involved in B cell receptor signaling and cell cycle regulation. WA inhibited the activity of heat shock protein (Hsp) 90 as reflected by a sharp increase in Hsp70 expression levels. Hence, we propose that the anti-cancer effects of WA in lymphomas are likely due to its ability to inhibit Hsp90 function and subsequent reduction of critical kinases and cell cycle regulators that are clients of Hsp90. PMID:26020511

  14. Anti-cancer activity of withaferin A in B-cell lymphoma.

    PubMed

    McKenna, M K; Gachuki, B W; Alhakeem, S S; Oben, K N; Rangnekar, V M; Gupta, R C; Bondada, S

    2015-01-01

    Withaferin A (WA), a withanolide from the plant, Ashwagandha (Withania somnifera) used in Ayurvedic medicine, has been found to be valuable in the treatment of several medical ailments. WA has been found to have anticancer activity against various solid tumors, but its effects on hematological malignancies have not been studied in detail. WA strongly inhibited the survival of several human and murine B cell lymphoma cell lines. Additionally, in vivo studies with syngeneic-graft lymphoma cells suggest that WA inhibits the growth of tumor but does not affect other proliferative tissues. We demonstrate that WA inhibits the efficiency of NF-κB nuclear translocation in diffuse large B cell lymphomas and found that WA treatment resulted in a significant decrease in protein levels involved in B cell receptor signaling and cell cycle regulation. WA inhibited the activity of heat shock protein (Hsp) 90 as reflected by a sharp increase in Hsp70 expression levels. Hence, we propose that the anti-cancer effects of WA in lymphomas are likely due to its ability to inhibit Hsp90 function and subsequent reduction of critical kinases and cell cycle regulators that are clients of Hsp90.

  15. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, N.; Kumar, S.; Marlowe, T.

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less

  16. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE PAGES

    Yadav, N.; Kumar, S.; Marlowe, T.; ...

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less

  17. 4-Isopropyl-2,6-bis(1-phenylethyl)aniline 1, an Analogue of KTH-13 Isolated from Cordyceps bassiana, Inhibits the NF-κB-Mediated Inflammatory Response

    PubMed Central

    Yang, Woo Seok; Ratan, Zubair Ahmed; Kim, Gihyeon; Lee, Yunmi; Kim, Mi-Yeon; Kim, Jong-Hoon; Cho, Jae Youl

    2015-01-01

    The Cordyceps species has been a good source of compounds with anticancer and anti-inflammatory activities. Recently, we reported a novel compound (4-isopropyl-2,6-bis(1-phenylethyl)phenol, KTH-13) with anticancer activity isolated from Cordyceps bassiana and created several derivatives to increase its pharmacological activity. In this study, we tested one of the KTH-013 derivatives, 4-isopropyl-2,6-bis(1-phenylethyl)aniline 1 (KTH-13-AD1), with regard to anti-inflammatory activity under macrophage-mediated inflammatory conditions. KTH-13-AD1 clearly suppressed the production of nitric oxide (NO) and reactive oxygen species (ROS) in lipopolysaccharide (LPS) and sodium nitroprusside- (SNP-) treated macrophage-like cells (RAW264.7 cells). Similarly, this compound also reduced mRNA expression of inducible NO synthase (iNOS) and tumor necrosis factor-α (TNF-α), as analyzed by RT-PCR and real-time PCR. Interestingly, KTH-13-AD1 strongly diminished NF-κB-mediated luciferase activities and nuclear translocation of NF-κB family proteins. In accordance, KTH-13-AD1 suppressed the upstream signaling pathway of NF-κB activation, including IκBα, IKKα/β, AKT, p85/PI3K, and Src in a time- and dose-dependent manner. The autophosphorylation of Src and NF-κB observed during the overexpression of Src was also suppressed by KTH-13-AD1. These results strongly suggest that KTH-13-AD1 has strong anti-inflammatory features mediated by suppression of the Src/NF-κB regulatory loop. PMID:26819495

  18. Purification, structural characterization and anticancer activity of the novel polysaccharides from Rhynchosia minima root.

    PubMed

    Jia, Xuejing; Zhang, Chao; Qiu, Jianfeng; Wang, Lili; Bao, Jiaolin; Wang, Kai; Zhang, Yulin; Chen, Meiwan; Wan, Jianbo; Su, Huanxing; Han, Jianping; He, Chengwei

    2015-11-05

    Three novel acidic polysaccharides termed PRM1, PRM3 and PRM5 were purified from Rhynchosia minima root using DEAE-52 cellulose and sephadex G-150 column chromatography. Their structures were characterized by ultraviolet (UV) and Fourier transform infrared (FTIR) spectrometry, gel permeation chromatography (GPC), gas chromatography-mass spectrometry (GC-MS), and differential scanning colorimeter (DSC) analysis. The uronic acid contents of PRM1, PRM3 and PRM5 were 30.7%, 12.7% and 47.7%, respectively. PRM1 (143.2 kDa), PRM3 (105.3 kDa) and PRM5 (162.1 kDa) were heteropolysaccharides because they were composed of arabinose, mannose, glucose and galactose. Their enthalpy values were 201.0, 111.0 and 206.8 J/g, respectively. PRM3 and PRM1 exhibited strong in vitro anticancer activity against lung cancer A549 and liver cancer HepG2 cells in a dose-dependent manner. These findings suggested that PRM1 and PRM3 could be potentially developed as natural anticancer agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Isolation and characterization of Cepa2, a natural alliospiroside A, from shallot (Allium cepa L. Aggregatum group) with anticancer activity.

    PubMed

    Abdelrahman, Mostafa; Mahmoud, Hassan Y A H; El-Sayed, Magdi; Tanaka, Shuhei; Tran, L S

    2017-07-01

    Exploration of new and promising anticancer compounds continues to be one of the main tasks of cancer research because of the drug resistance, high cytotoxicity and limitations of tumor selectivity. Natural products represent a better choice for cancer treatment in comparison with synthetic compounds because of their pharmacokinetic properties and lower side effects. In the current study, we isolated a steroidal saponin, named Cepa2, from the dry roots of shallot (Allium cepa L. Aggregatum group), and determined its structure by using two-dimensional nuclear manganic resonance (2D NMR). The 1 H NMR and 13 C NMR data revealed that the newly isolated Cepa2 compound is identical to alliospiroside A (C 38 H 60 O 12 ) [(25S)-3β-hydroxyspirost-5-en-1β-yl-2-O-(6-deoxy-α-L-mannopyranosyl)-α-L-arabinopyranoside], whose anticancer activity remains elusive. Our in vitro examination of the cytotoxic activity of the identified Cepa2 against P3U1 myeloma cancer cell line showed its high efficiency as an anticancer with 91.13% reduction in P3U1 cell viability 12 h post-treatment. The reduction of cell viability was correlated with the increase in reactive oxygen species levels in Cepa2-treated P3U1 cells, as compared with untreated cells. Moreover, scanning electron microscope results demonstrated apoptosis of the Cepa2-treated P3U1 cells in a time course-dependent manner. The results of our study provide evidence for the anticancer properties of the natural Cepa2/alliospiroside A extracted from shallot plants, and a strong foundation for in-depth investigations to build theoretical bases for cell apoptosis and development of novel anticancer drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. In vitro α-glucosidase inhibition, antioxidant, anticancer, and antimycobacterial properties of ethyl acetate extract of Aegle tamilnadensis Abdul Kader (Rutaceae) leaf.

    PubMed

    R, Pratap Chandran; S, Nishanth Kumar; S, Manju; S, Abdul Kader; B S, Dileep Kumar

    2015-01-01

    The present study was aimed to investigate in vitro α-glucosidase inhibition, antioxidant, anticancer, and antimycobacterial activities of the ethyl acetate extract of A. tamilnadensis leaves. The extract recorded strong α-glucosidase inhibition with an IC50 value of 100 μg/ml. The antioxidant potential of the extract was evaluated by nitric oxide radical inhibition, lipid peroxidation inhibition, ferric thiocyanate, and ABTS radical scavenging assay, and the extract recorded significant antioxidant activity. The ferric thiocyanate activity of extract was superior to butylated hydroxyl anisol (BHA), the standard antioxidant agent. The anticancer activity of the extract was evaluated against (1) breast cancer cell lines (MDAM B-231), (2) cervical cancer cell lines (HeLa), and (3) lung cancer cell line (A 549) using MTT assay, and significant activity was recorded against A 549 with an IC50 value of 64 μg/ml. Further studies on the morphology, acridine orange/ethidium bromide staining, and cell cycle analysis by flow cytometry confirm the extract-induced apoptosis in A 549. This extract also recorded significant anti-tuberculosis activity against Mycobacterium smegmatis. The current study suggests that the ethyl acetate extract of A. tamilnadensis is a potential source of natural α-glucosidase inhibitor and antioxidant for protection as well as prevention of life-threatening diseases like cancer.

  1. New sulfurated derivatives of cinnamic acids and rosmaricine as inhibitors of STAT3 and NF-κB transcription factors.

    PubMed

    Gabriele, Elena; Brambilla, Dario; Ricci, Chiara; Regazzoni, Luca; Taguchi, Kyoko; Ferri, Nicola; Asai, Akira; Sparatore, Anna

    2017-12-01

    A set of new sulfurated drug hybrids, mainly derived from caffeic and ferulic acids and rosmaricine, has been synthesized and their ability to inhibit both STAT3 and NF-κB transcription factors have been evaluated. Results showed that most of the new hybrid compounds were able to strongly and selectively bind to STAT3, whereas the parent drugs were devoid of this ability at the tested concentrations. Some of them were also able to inhibit the NF-κB transcriptional activity in HCT-116 cell line and inhibited HCT-116 cell proliferation in vitro with IC 50 in micromolar range, thus suggesting a potential anticancer activity. Taken together, our study described the identification of new derivatives with dual STAT3/NF-κB inhibitory activity, which may represent hit compounds for developing multi-target anticancer agents.

  2. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia

    PubMed Central

    Willems, Lise; Jacque, Nathalie; Jacquel, Arnaud; Neveux, Nathalie; Trovati Maciel, Thiago; Lambert, Mireille; Schmitt, Alain; Poulain, Laury; Green, Alexa S.; Uzunov, Madalina; Kosmider, Olivier; Radford-Weiss, Isabelle; Moura, Ivan Cruz; Auberger, Patrick; Ifrah, Norbert; Bardet, Valérie; Chapuis, Nicolas; Lacombe, Catherine; Mayeux, Patrick; Tamburini, Jérôme

    2013-01-01

    Cancer cells require nutrients and energy to adapt to increased biosynthetic activity, and protein synthesis inhibition downstream of mammalian target of rapamycin complex 1 (mTORC1) has shown promise as a possible therapy for acute myeloid leukemia (AML). Glutamine contributes to leucine import into cells, which controls the amino acid/Rag/mTORC1 signaling pathway. We show in our current study that glutamine removal inhibits mTORC1 and induces apoptosis in AML cells. The knockdown of the SLC1A5 high-affinity transporter for glutamine induces apoptosis and inhibits tumor formation in a mouse AML xenotransplantation model. l-asparaginase (l-ase) is an anticancer agent also harboring glutaminase activity. We show that l-ases from both Escherichia coli and Erwinia chrysanthemi profoundly inhibit mTORC1 and protein synthesis and that this inhibition correlates with their glutaminase activity levels and produces a strong apoptotic response in primary AML cells. We further show that l-ases upregulate glutamine synthase (GS) expression in leukemic cells and that a GS knockdown enhances l-ase–induced apoptosis in some AML cells. Finally, we observe a strong autophagic process upon l-ase treatment. These results suggest that l-ase anticancer activity and glutamine uptake inhibition are promising new therapeutic strategies for AML. PMID:24014241

  3. Anti-cancer Effects of Polyphenolic Compounds in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor-resistant Non-small Cell Lung Cancer

    PubMed Central

    Jeong, Hyungmin; Phan, Ai N. H.; Choi, Jong-Whan

    2017-01-01

    Background: Polyphenolic phytochemicals are natural compounds, easily found in fruits and vegetables. Importantly, polyphenols have been intensively studied as excellent antioxidant activity which contributes to anticancer function of the natural compounds. Lung cancer has been reported to mainly account for cancer-related deaths in the world. Moreover, epidermal growth factor receptor tyrosine kinase inhibitor (TKI) resistance is one of the biggest issues in cancer treatment, especially in nonsmall cell lung cancer (NSCLC). Even though several studies both in preclinical and clinical trials have showed promising therapeutic effects of polyphenolic compounds in anticancer therapy, the function of the natural compounds in TKI-resistant (TKIR) lung cancer remains poorly studied. Objective: The aim of this study is to screen polyphenolic compounds as potential anticancer adjuvants which suppress TKIR lung cancer. Materials and Methods: Colony formation and thiazolyl blue tetrazolium blue assay were performed in the pair-matched TKI-sensitive (TKIS) versus TKIR tumor cell lines to investigate the therapeutic effect of polyphenolic compounds in TKIR NSCLC. Results: Our data show that equol, kaempferol, resveratrol, and ellagic acid exhibit strong anticancer effect in HCC827 panel. Moreover, the inhibitory effect of most of tested polyphenolic compounds was highly selective for TKIR lung cancer cell line H1993 while sparing the TKIS one H2073. Conclusion: This study provides an important screening of potential polyphenolic compounds for drug development to overcome TKI resistance in advanced lung cancer. SUMMARY The study provides an important screening of potential polyphenolic compounds for drug development to overcome tyrosine kinase inhibitor (TKI) resistance in advance lung cancerEquol, kaempferol, resveratrol, and ellagic acid show strong anticancer effect in HCC827 panel, including TKI-sensitive (TKIS) and TKI-resistant clonesThe inhibitory effect of polyphenolic compounds such as equol, kaempferol, resveratrol, ellagic acid, gallic acid, p-Coumaric, and hesperidin is highly selective for TKI-resistant lung cancer cell line H1993 while sparing the TKIS one H2073. Abbreviations used: EGFR: Epidermal growth factor receptor, EMT: Epithelial-to-mesenchymal transition, GTP: Green tea polyphenols, IGF1R: Insulin-like growth factor 1 receptor, MET: Met proto-oncogene, MTT: Thiazolyl blue tetrazolium blue, NSCLC: Non-small cell lung cancer, ROS: Reactive oxygen species, RTK: Receptor tyrosine kinase, STAT3: Signal transducer and activator of transcription 3, TKIR: TKI-resistant, TKIs: Tyrosine kinase inhibitors, TKIS: TKI-sensitive. PMID:29200719

  4. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System)

    PubMed Central

    Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan

    2014-01-01

    In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future. PMID:24505239

  5. Recent Progress of Marine Polypeptides as Anticancer Agents

    PubMed

    Zheng, Lanhong; Xua, Yixin; Lin, Xiukun; Yuan, Zhixin; Liu, Minghua; Cao, Shousong; Zhang, Fuming; Linhardt, Robert J

    2018-04-29

    Marine environment constitutes an almost infinite resource for novel anticancer drugs discovery. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer peptides in the treatment of human cancer. Marine peptides represent a new opportunity to obtain lead compounds in biomedical field, particularly for cancer therapy. Providing an insight of the recent progress of patented marine peptides and presenting information about the structures and mechanistic mode of anticancer activities of these marine peptides. We reviewed recent progress on the patented anticancer peptides from marine organisms according to their targets on different signal pathways. This work focuses on relevant recent patents (2010-2018) that entail the anticancer activity with associated mechanism and related molecular diversity of marine peptides. The related cellular signaling pathways for novel peptides that induce apoptosis and affect tubulin-microtubule equilibrium, angiogenesis and kinase activity that are related to the anticancer and related pharmacological properties are also discussed. The recent patents (2010-2018) of marine peptides with anticancer activity were reviewed, and the anticancer activity of marine peptides with associated mechanism and related molecular diversity of marine peptides were also discussed. Marine peptides possess chemical diversity and displays potent anticancer activity via targeting different signal pathways. Some of the marine peptides are promising to be developed as novel anticancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Individual differences on immunostimulatory activity of raw and black garlic extract in human primary immune cells.

    PubMed

    Purev, Uranchimeg; Chung, Mi Ja; Oh, Deog-Hwan

    2012-08-01

    The immunostimulatory activities of garlic extract using a cell line or animal models have been reported; however, no previous studies have evaluated individual differences in regards to the immunostimulatory activities. The immunostimulatory activities such as cell proliferation, tumor necrosis factor (TNF-α) and nitric oxides (NO) production of raw garlic and black garlic extracts on individual primary lymphocytes or macrophages isolated from the blood of 21 volunteers were evaluated. The antioxidant and anticancer effects of raw garlic and black garlic ethanol extract was measured to determine the optimum conditions for extraction. The 70% ethanol black garlic extracts at 70°C for 12 h (70% BGE) showed the strongest antioxidant and anticancer activities. Immunostimulatory activities of garlic extracts extracted under optimal condition on primary immune cells obtained from 21 volunteers were analyzed. Results showed that the cell proliferation, TNF-α and NO production of primary immune cells treated with 70% raw garlic extract (70% RGE) were significantly different; however, little difference was observed for the 70% BGE treatment. BGE showed stronger immunostimulatory activities than RGE. These results indicate that the immunostimulatory activities of RGE and BGE can be strongly correlated with the antioxidant and anticancer activities. Determination of immunostimulatory activities of different types of garlic using immune cells isolated from volunteers was dependent on the individual constituents due to changes in the composition of garlic during processing. Individual primary immune cells might be used as important tools to determine individual differences in all food ingredients for the development of personalized immunostimulatory active foods.

  7. Anticancer Properties of PPARα-Effects on Cellular Metabolism and Inflammation

    PubMed Central

    Grabacka, Maja; Reiss, Krzysztof

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) have lately attracted much attention as therapeutic targets. Previously, PPAR ligands were associated with the treatment of diabetes, hyperlipidemia and cardiovascular diseases, as they modulate the expression of genes regulating glucose and lipid metabolism. Recently, PPAR ligands have been also considered as potential anticancer agents, with relatively low systemic toxicity. The emerging evidence for antiproliferative, proapoptotic, antiinflammatory and potential antimetastatic properties of PPARα ligands prompted us to discuss possible roles of PPARα in tumor suppression. PPARα activation can target cancer cells energy balance by blocking fatty acid synthesis and by promoting fatty acid β-oxidation. In the state of limited nutrient availability, frequently presents in the tumor microenvironment, PPARα cooperates with AMP-dependent protein kinase in: (i) repressing oncogenic Akt activity, (ii) inhibiting cell proliferation, and (iii) forcing glycolysis-dependent cancer cells into “metabolic catastrophe.” Other potential anticancer effects of PPARα include suppression of inflammation, and upregulation of uncoupling proteins (UCPs), which attenuates mitochondrial reactive oxygen species production and cell proliferation. In conclusion, there are strong premises that the low-toxic and well-tolerated PPAR ligands should be considered as new therapeutic agents to fight disseminating cancer, which represents the major challenge for modern medicine and basic research. PMID:18509489

  8. Autophagy inhibition synergistically enhances anti-cancer efficacy of RAMBA, VN/12-1 in SKBR-3 cells and tumor xenografts

    PubMed Central

    Godbole, Abhijit M.; Purushottamachar, Puranik; Martin, Marlena S.; Daskalakis, Constantine; Njar, Vincent C. O.

    2012-01-01

    VN/12-1 is a novel retinoic acid metabolism blocking agent (RAMBA) discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of VN/12-1’s anticancer activity in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy andapoptosis in SKBR-3 cells. Further, we also examined the impact of pharmacological and genomic inhibition of autophagy on VN/12-1’s anti-cancer activity. Finally, the anti-tumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine (CHL) in an SKBR-3 mouse xenograft model. Short exposure of low dose (< 10 µM) of VN/12-1 induced endoplasmic reticulum stress (ERS), autophagy and inhibits G1-S phase transition and caused a protective response. However, higher dose of VN/12-1 initiates apoptosis in vitro. Inhibition of autophagy using either pharmacological inhibitors or RNA interference of Beclin-1 enhanced anti-cancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (p < 0.001 vs. control) and 96.2% (p < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors. PMID:22334589

  9. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    PubMed

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  10. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farooq, Muhammad U.; Novosad, Valentyn; Rozhkova, Elena A.

    Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy ofmore » the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.« less

  11. Black tea: Phytochemicals, cancer chemoprevention, and clinical studies.

    PubMed

    Singh, Brahma N; Rawat, A K S; Bhagat, R M; Singh, B R

    2017-05-03

    Tea (Camellia sinensis L.) is the most popular, flavored, functional, and therapeutic non-alcoholic drink consumed by two-thirds of the world's population. Black tea leaves are reported to contain thousands of bioactive constituents such as polyphenols, amino acids, volatile compounds, and alkaloids that exhibit a range of promising pharmacological properties. Due to strong antioxidant property, black tea inhibits the development of various cancers by regulating oxidative damage of biomolecules, endogenous antioxidants, and pathways of mutagen and transcription of antioxidant gene pool. Regular drinking of phytochemicals-rich black tea is linked to regulate several molecular targets, including COX-2, 5-LOX, AP-1, JNK, STAT, EGFR, AKT, Bcl2, NF-κB, Bcl-xL, caspases, p53, FOXO1, TNFα, PARP, and MAPK, which may be the basis of how dose of black tea prevents and cures cancer. In vitro and preclinical studies support the anti-cancer activity of black tea; however, its effect in human trails is uncertain, although more clinical experiments are needed at molecular levels to understand its anti-cancer property. This review discusses the current knowledge on phytochemistry, chemopreventive activity, and clinical applications of black tea to reveal its anti-cancer effect.

  12. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells

    DOE PAGES

    Farooq, Muhammad U.; Novosad, Valentyn; Rozhkova, Elena A.; ...

    2018-02-13

    Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy ofmore » the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.« less

  13. In vitro anticancer activity, toxicity and structure-activity relationships of phyllostictine A, a natural oxazatricycloalkenone produced by the fungus Phyllosticta cirsii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Calve, Benjamin; Lallemand, Benjamin; Perrone, Carmen

    2011-07-01

    The in vitro anticancer activity and toxicity of phyllostictine A, a novel oxazatricycloalkenone recently isolated from a plant-pathogenic fungus (Phyllosticta cirsii) was characterized in six normal and five cancer cell lines. Phyllostictine A displays in vitro growth-inhibitory activity both in normal and cancer cells without actual bioselectivity, while proliferating cells appear significantly more sensitive to phyllostictine A than non-proliferating ones. The main mechanism of action by which phyllostictine displays cytotoxic effects in cancer cells does not seem to relate to a direct activation of apoptosis. In the same manner, phyllostictine A seems not to bind or bond with DNA asmore » part of its mechanism of action. In contrast, phyllostictine A strongly reacts with GSH, which is a bionucleophile. The experimental data from the present study are in favor of a bonding process between GSH and phyllostictine A to form a complex though Michael attack at C=C bond at the acrylamide-like system. Considering the data obtained, two new hemisynthesized phyllostictine A derivatives together with three other natural phyllostictines (B, C and D) were also tested in vitro in five cancer cell lines. Compared to phyllostictine A, the two derivatives displayed a higher, phyllostictines B and D a lower, and phyllostictine C an almost equal, growth-inhibitory activity, respectively. These results led us to propose preliminary conclusions in terms of the structure-activity relationship (SAR) analyses for the anticancer activity of phyllostictine A and its related compounds, at least in vitro.« less

  14. Bioactive Secondary Metabolites from a Thai Collection of Soil and Marine-Derived Fungi of the Genera Neosartorya and Aspergillus.

    PubMed

    Zin, War War May; Prompanya, Chadaporn; Buttachon, Suradet; Kijjoa, Anake

    2016-01-01

    Fungi are microorganisms which can produce interesting secondary metabolites with structural diversity. Although terrestrial fungi have been extensively investigated for their bioactive secondary metabolites such as antibiotics, marine-derived fungi have only recently attracted attention of Natural Products chemists. Our group has been working on the secondary metabolites produced by the cultures of the fungi of the genera Neosartorya and Aspergillus, collected from soil and marine environments from the tropical region for the purpose of finding new leads for anticancer and antibacterial drugs. This review covers only the secondary metabolites of four soil and six marine-derived species of Neosarorya as well as a new species of marine-derived Aspergillus, investigated by our group. In total, we have isolated fifty three secondary metabolites which can be categorized as polyketides (two), isocoumarins (six), terpenoids (two), meroterpenes (fourteen), alkaloids (twenty eight) and cyclic peptide (one). The anticancer and antibacterial activities of these fungal metabolites are also discussed. Among fifty three secondary metabolites isolated, only the alkaloid eurochevalierine and the cadinene sesquiterpene, isolated from the soil fungus N. pseudofisheri, showed relevant in vitro cytostatic activity against glioblastoma (U373) and non-small cell lung cancer (A549) cell lines while the meroditerpene aszonapyrone A exhibited strong antibacterial activity against multidrug-resistant Gram-positive bacteria and also strong antibiofilm activity in these isolates.

  15. [Review in the studies on tannins activity of cancer prevention and anticancer].

    PubMed

    Li, Haixia; Wang, Zhao; Liu, Yanze

    2003-06-01

    This paper reviewed the biological activities of tannins in cancer prevention and anticancer, and mainly discussed related mechanisms. The results suggest that tannins, whether total tannins or pure tannin compound, have remarkable activity in cancer prevention and anticancer. It has wealthy foreground for developing new cancer prevention agents and/or new anticancer drugs screening among tannin compounds.

  16. Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance.

    PubMed

    Hatem, Elie; El Banna, Nadine; Huang, Meng-Er

    2017-11-20

    Glutathione is the most abundant antioxidant molecule in living organisms and has multiple functions. Intracellular glutathione homeostasis, through its synthesis, consumption, and degradation, is an intricately balanced process. Glutathione levels are often high in tumor cells before treatment, and there is a strong correlation between elevated levels of intracellular glutathione/sustained glutathione-mediated redox activity and resistance to pro-oxidant anticancer therapy. Recent Advances: Ample evidence demonstrates that glutathione and glutathione-based systems are particularly relevant in cancer initiation, progression, and the development of anticancer drug resistance. This review highlights the multifaceted roles of glutathione and glutathione-based systems in carcinogenesis, anticancer drug resistance, and clinical applications. The evidence summarized here underscores the important role played by glutathione and the glutathione-based systems in carcinogenesis and anticancer drug resistance. Future studies should address mechanistic questions regarding the distinct roles of glutathione in different stages of cancer development and cancer cell death. It will be important to study how metabolic alterations in cancer cells can influence glutathione homeostasis. Sensitive approaches to monitor glutathione dynamics in subcellular compartments will be an indispensible step. Therapeutic perspectives should focus on mechanism-based rational drug combinations that are directed against multiple redox targets using effective, specific, and clinically safe inhibitors. This new strategy is expected to produce a synergistic effect, prevent drug resistance, and diminish doses of single drugs. Antioxid. Redox Signal. 27, 1217-1234.

  17. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities

    NASA Astrophysics Data System (ADS)

    Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig

    2018-03-01

    In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.

  18. Protective Effect of Morus alba Leaf Extract on N-Nitrosodiethylamine-induced Hepatocarcinogenesis in Rats.

    PubMed

    Kujawska, Małgorzata; Ewertowska, Małgorzata; Adamska, Teresa; Ignatowicz, Ewa; Flaczyk, Ewa; Przeor, Monika; Kurpik, Monika; Liebert, Jadwiga Jodynis

    The leaves of white mulberry (Morus alba L.) contain various polyphenolic compounds possessing strong antioxidant activity and anticancer potential. This study was designed to investigate the chemopreventive effect of aqueous extract of mulberry leaves against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. Wistar rats were divided into four groups: control, mulberry extract-treated, NDEA-treated, and mulberry extract plus NDEA-treated. Mulberry extract was given in the diet (1,000 mg/kg b.w./day); NDEA was given in drinking water. Mulberry extract reduced the incidence of hepatocellular carcinoma, dysplastic nodules, lipid peroxidation, protein carbonyl formation, and DNA degradation. Treatment with mulberry leaf extract along with NDEA challenge did not affect the activity of antioxidant enzymes and glutathione content. Treatment with mulberry leaf extract partially protected the livers of rats from NDEA-induced hepatocarcinogenesis and a direct antioxidant mechanism appears to contribute to its anticarcinogenic activity. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Phenethyl ester and amide of Ferulic Acids: Synthesis and bioactivity against P388 Leukemia Murine Cells

    NASA Astrophysics Data System (ADS)

    Firdaus; Soekamto, N. H.; Seniwati; Islam, M. F.; Sultan

    2018-03-01

    Bioactivity of a compound is closely related to the molecular structure of the compound concerned, its strength being the quantitative relation of the strength of the activity of the group it possesses. The combining of moieties of the active compounds will produce more active compounds. Most phenolic compounds as well as compounds containing moiety phenethyl groups have potential activity as anticancer. Combining phenolic groups and phenethyl groups in a compound will result in compounds having strong anticancer bioactivity. This study aims to combine the feruloyl and phenethyl groups to form esters and amides by synthesize of phenethyl trans-3-(4-hydroxy-3-methoxyphenyl)acrylate (5) and trans-3-(4- hydroxy-3-methoxyphenyl)-N-phenethylacrylamide (6) from ferulic acid with phenethyl alcohol and phenethylamine, and to study their bioactivity as anticancer. The synthesis of both compounds was conducted via indirect reaction, including acetylation, chlorination, esterfication/amidation, and deacetylation. Structures of products were characterized by FTIR and NMR data, and their bioactivity assay of the compounds against P388 Leukemia Murine Cells was conducted by an MTT method. Results showed that the compound 5 was obtained as a yellow gel with the IC50 of 10.79 μg/mL (36.21 μΜ), and the compound 6 was a yellowish solid with a melting point of 118-120°C and the IC50 of 29.14 μg/mL (97.79 μΜ). These compounds were more active than the analog compounds.

  20. In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione.

    PubMed

    Sufi, Shamim Akhtar; Adigopula, Lakshmi Narayana; Syed, Safiulla Basha; Mukherjee, Victor; Coumar, Mohane S; Rao, H Surya Prakash; Rajagopalan, Rukkumani

    2017-01-01

    Previously we showed that BDMC, an analogue of curcumin suppresses growth of human breast and laryngeal cancer cell line by causing apoptosis. Here, we demonstrate the enhanced anti-cancer activity of a heterocyclic ring (indole) incorporated curcumin analogue ((1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-Dione), ICA in short, in comparison to curcumin. ICA was synthesized by a one pot condensation reaction. Anti-cancer potential of ICA was assessed in three human cancer cell lines of different origin (Lung adenocarcinoma (A549), leukemia (K562) and colon cancer (SW480)) by MTT assay. Mode of cell death was determined by acridine orange-ethidium bromide (Ao-Eb) staining. Putative cellular targets of ICA were investigated by molecular docking studies. Cell cycle analysis following curcumin or ICA treatment in SW480 cell line was carried out by flow cytometry. Expression levels of Cyclin D1 and apoptotic markers, such as Caspase 3, 8 and 9 were studied by western blot analysis in SW480 cell line treated with or without ICA and curcumin. The yield of ICA synthesis was found to be 69% with a purity of 98%. ICA demonstrated promising anti-cancer activity compared to curcumin alone, as discerned by MTT assay. ICA was non-toxic to the cell line of normal origin. We further observed that ICA is ∼2 fold more potent than curcumin in inhibiting the growth of SW480 cells. Ao-Eb staining revealed that ICA could induce apoptosis in all the cell lines tested. Molecular docking studies suggest that ICA may possibly exhibit its anticancer effect by inhibiting EGFR in A549, Bcr-Abl in K562 and GSK-3β kinase in SW480 cell line. Moreover, ICA showed strong binding avidity for Bcl-2 protein in silico, which could result in induction of apoptosis. Cell cycle analysis revealed that both curcumin and ICA induced concomitant cell cycle arrest at G0/G1 and G2/M phase. Western blot shows that ICA could effectively down regulate the expression of cell cycle protein cyclin D1, while promoting the activation of Caspase 3, 8 and 9 when compared to curcumin in human colon cancer cell line SW480. The result of this study indicates that ICA could hold promise to be a potential anti-cancer agent. Since ICA has shown encouraging results in terms of its anti-cancer activity compared to curcumin, further research is necessary to fully delineate the underlying molecular mechanism of its anticancer potential. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Cyclooxgenase-2 Inhibiting Perfluoropoly (Ethylene Glycol) Ether Theranostic Nanoemulsions—In Vitro Study

    PubMed Central

    Patel, Sravan Kumar; Zhang, Yang; Pollock, John A.; Janjic, Jelena M.

    2013-01-01

    Cylcooxgenase-2 (COX-2) expressing macrophages, constituting a major portion of tumor mass, are involved in several pro-tumorigenic mechanisms. In addition, macrophages are actively recruited by the tumor and represent a viable target for anticancer therapy. COX-2 specific inhibitor, celecoxib, apart from its anticancer properties was shown to switch macrophage phenotype from tumor promoting to tumor suppressing. Celecoxib has low aqueous solubility, which may limit its tumor inhibiting effect. As opposed to oral administration, we propose that maximum anticancer effect may be achieved by nanoemulsion mediated intravenous delivery. Here we report multifunctional celecoxib nanoemulsions that can be imaged by both near-infrared fluorescence (NIRF) and 19F magnetic resonance. Celecoxib loaded nanoemulsions showed a dose dependent uptake in mouse macrophages as measured by 19F NMR and NIRF signal intensities of labeled cells. Dramatic inhibition of intracellular COX-2 enzyme was observed in activated macrophages upon nanoemulsion uptake. COX-2 enzyme inhibition was statistically equivalent between free drug and drug loaded nanoemulsion. However, nanoemulsion mediated drug delivery may be advantageous, helping to avoid systemic exposure to celecoxib and related side effects. Dual molecular imaging signatures of the presented nanoemulsions allow for future in vivo monitoring of the labeled macrophages and may help in examining the role of macrophage COX-2 inhibition in inflammation-cancer interactions. These features strongly support the future use of the presented nanoemulsions as anti-COX-2 theranostic nanomedicine with possible anticancer applications. PMID:23409048

  2. Conjugation of Benzylvanillin and Benzimidazole Structure Improves DNA Binding with Enhanced Antileukemic Properties

    PubMed Central

    Al-Mudarris, Ban A.; Chen, Shih-Hsun; Liang, Po-Huang; Osman, Hasnah; Jamal Din, Shah Kamal Khan; Abdul Majid, Amin M. S.

    2013-01-01

    Benzyl-o-vanillin and benzimidazole nucleus serve as important pharmacophore in drug discovery. The benzyl vanillin (2-(benzyloxy)-3-methoxybenzaldehyde) compound shows anti-proliferative activity in HL60 leukemia cancer cells and can effect cell cycle progression at G2/M phase. Its apoptosis activity was due to disruption of mitochondrial functioning. In this study, we have studied a series of compounds consisting of benzyl vanillin and benzimidazole structures. We hypothesize that by fusing these two structures we can produce compounds that have better anticancer activity with improved specificity particularly towards the leukemia cell line. Here we explored the anticancer activity of three compounds namely 2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2MP, N-1-(2-benzyloxy-3-methoxybenzyl)-2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2XP, and (R) and (S)-1-(2-benzyloxy-3-methoxyphenyl)-2, 2, 2-trichloroethyl benzenesulfonate, 3BS and compared their activity to 2-benzyloxy-3-methoxybenzaldehyde, (Bn1), the parent compound. 2XP and 3BS induces cell death of U937 leukemic cell line through DNA fragmentation that lead to the intrinsic caspase 9 activation. DNA binding study primarily by the equilibrium binding titration assay followed by the Viscosity study reveal the DNA binding through groove region with intrinsic binding constant 7.39 µM/bp and 6.86 µM/bp for 3BS and 2XP respectively. 2XP and 3BS showed strong DNA binding activity by the UV titration method with the computational drug modeling showed that both 2XP and 3BS failed to form any electrostatic linkages except via hydrophobic interaction through the minor groove region of the nucleic acid. The benzylvanillin alone (Bn1) has weak anticancer activity even after it was combined with the benzimidazole (2MP), but after addition of another benzylvanillin structure (2XP), stronger activity was observed. Also, the combination of benzylvanillin with benzenesulfonate (3BS) significantly improved the anticancer activity of Bn1. The present study provides a new insight of benzyl vanillin derivatives as potential anti-leukemic agent. PMID:24260527

  3. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities.

    PubMed

    Mathema, Vivek Bhakta; Koh, Young-Sang; Thakuri, Balkrishna Chand; Sillanpää, Mika

    2012-04-01

    Parthenolide, a naturally occurring sesquiterpene lactone derived from feverfew (Tanacetum parthenium), exhibits exceptional anti-cancer and anti-inflammatory properties, making it a prominent candidate for further studies and drug development. In this review, we briefly investigate molecular events and cell-specific activities of this chemical in relation to cytochrome c, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), signal transduction and activation of transcription (STAT), reactive oxygen species (ROS), TCP, HDACs, microtubules, and inflammasomes. This paper reports that parthenolide shows strong NF-κB- and STAT-inhibition-mediated transcriptional suppression of pro-apoptotic genes. This compound acts both at the transcriptional level and by direct inhibition of associated kinases (IKK-β). Similarly, this review discusses parthenolide-induced ROS-mediated apoptosis of tumor cells via the intrinsic apoptotic signaling pathway. The unique ability of this compound to not harm normal cells but at the same time induce sensitization to extrinsic as well as intrinsic apoptosis signaling in cancer cells provides an important, novel therapeutic strategy for treatment of cancer and inflammation-related disorders.

  4. Metal complexes as DNA intercalators.

    PubMed

    Liu, Hong-Ke; Sadler, Peter J

    2011-05-17

    DNA has a strong affinity for many heterocyclic aromatic dyes, such as acridine and its derivatives. Lerman in 1961 first proposed intercalation as the source of this affinity, and this mode of DNA binding has since attracted considerable research scrutiny. Organic intercalators can inhibit nucleic acid synthesis in vivo, and they are now common anticancer drugs in clinical therapy. The covalent attachment of organic intercalators to transition metal coordination complexes, yielding metallointercalators, can lead to novel DNA interactions that influence biological activity. Metal complexes with σ-bonded aromatic side arms can act as dual-function complexes: they bind to DNA both by metal coordination and through intercalation of the attached aromatic ligand. These aromatic side arms introduce new modes of DNA binding, involving mutual interactions of functional groups held in close proximity. The biological activity of both cis- and trans-diamine Pt(II) complexes is dramatically enhanced by the addition of σ-bonded intercalators. We have explored a new class of organometallic "piano-stool" Ru(II) and Os(II) arene anticancer complexes of the type [(η(6)-arene)Ru/Os(XY)Cl](+). Here XY is, for example, ethylenediamine (en), and the arene ligand can take many forms, including tetrahydroanthracene, biphenyl, or p-cymene. Arene-nucleobase stacking interactions can have a significant influence on both the kinetics and thermodynamics of DNA binding. In particular, the cytotoxic activity, conformational distortions, recognition by DNA-binding proteins, and repair mechanisms are dependent on the arene. A major difficulty in developing anticancer drugs is cross-resistance, a phenomenon whereby a cell that is resistant to one drug is also resistant to another drug in the same class. These new complexes are non-cross-resistant with cisplatin towards cancer cells: they constitute a new class of anticancer agents, with a mechanism of action that differs from the anticancer drug cisplatin and its analogs. The Ru-arene complexes with dual functions are more potent towards cancer cells than their nonintercalating analogs. In this Account, we focus on recent studies of dual-function organometallic Ru(II)- and Os(II)-arene complexes and the methods used to detect arene-DNA intercalation. We relate these interactions to the mechanism of anticancer activity and to structure-activity relationships. The interactions between these complexes and DNA show close similarities to those of covalent polycyclic aromatic carcinogens, especially to N7-alkylating intercalation compounds. However, Ru-arene complexes exhibit some new features. Classical intercalation and base extrusion next to the metallated base is observed for {(η(6)-biphenyl)Ru(ethylenediamine)}(2+) adducts of a 14-mer duplex, while penetrating arene intercalation occurs for adducts of the nonaromatic bulky intercalator {(η(6)-tetrahydroanthracene)Ru(ethylenediamine)}(2+) with a 6-mer duplex. The introduction of dual-function Ru-arene complexes introduces new mechanisms of antitumor activity, novel mechanisms for attack on DNA, and new concepts for developing structure- activity relationships. We hope this discussion will stimulate thoughtful and focused research on the design of anticancer chemotherapeutic agents using these unique approaches.

  5. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships.

    PubMed

    Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.

  6. Biological evaluation of some new N-(2,6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; El-Gaby, Mohamed S A; Safwat, Nesreen A; Elaasser, Mahmoud M; Soliman, Aiten M

    2016-11-29

    A series of novel heterocyclic thioureas 3a-u containing sulfonamide moiety have been synthesized by the condensation of isothiocyanatobenzenesulfonamide 2 with a variety of heterocyclic amines. The newly synthesized heterocyclic thioureas were investigated for their antimicrobial and anticancer activity. The in vitro antibacterial and antifungal activity were done using well diffusion method. Interestingly, compounds 3j and 3m, showed similar or better activity compared with the reference drug against the tested microorganisms. Although, 3j was less active among its analogues to inhibit the breast carcinoma cells, it exhibit strong broad spectrum antimicrobial activities. However, The results of the cytotoxic activity revealed that compound 3p was the most active against the breast carcinoma cell line (MCF-7) giving promising IC 50 value of 1.72 μg/mL, compared with reference drug (5-flourouracil) with IC 50 value of 4.8 μg/mL. The most potent compounds in cytotoxic activity 3b and 3p were further docked inside the active site of CAIX and were found to exhibit a proper binding with the active site amino acids according to their bond lengths, angles and conformational energy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Hybrid anticancer 1,2-diazine derivatives with multiple mechanism of action. Part 3.

    PubMed

    Antoci, Vasilichia; Mantu, Dorina; Cozma, Danut Gabriel; Usru, Cornelia; Mangalagiu, Ionel I

    2014-01-01

    Antitumour chemotherapy is nowadays a very active field of research, DNA targeting drugs being the most widely used group in therapy. The design, synthesis and anticancer activity of a new class of anticancer derivatives with pyrrolo-1,2-diazine and benzoquinone skeleton is presented. The synthesis is direct and efficient, involving an alkylation followed by a [3+2] dipolar cycloaddition. The penta- and tetra-cyclic pyrrolo-1,2-diazine were evaluated for their in vitro anticancer activity against an NCI 60 human tumour cell line panel. The pentacyclic-1,2-diazine exhibit a significant anticancer activity against Non-Small Cell Lung Cancer NCI-H460, Leukemia MOLT-4, Leukemia CCRF-CEM and Breast Cancer MCF7. We hypothesize that these molecules will exert their anticancer activity through multiple mechanisms of action: intercalating the DNA, inhibiting the topoisomerase enzymes and, destroying the DNA strands via electron transfer mechanism. However, the intercalation with the DNA seems to prevail in competition with the others mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Identification of Phenolic Compounds from Seed Coats of Differently Colored European Varieties of Pea (Pisum sativum L.) and Characterization of Their Antioxidant and In Vitro Anticancer Activities.

    PubMed

    Stanisavljević, Nemanja S; Ilić, Marija D; Matić, Ivana Z; Jovanović, Živko S; Čupić, Tihomir; Dabić, Dragana Č; Natić, Maja M; Tešić, Živoslav Lj

    2016-01-01

    To date little has been done on identification of major phenolic compounds responsible for anticancer and antioxidant properties of pea (Pisum sativum L.) seed coat extracts. In the present study, phenolic profile of the seed coat extracts from 10 differently colored European varieties has been determined using ultrahigh-performance liquid chromatography-linear trap quadrupole orbitrap mass spectrometer technique. Extracts of dark colored varieties with high total phenolic content (up to 46.56 mg GAE/g) exhibited strong antioxidant activities (measured by 2,2-diphenyl-1-picrylhydrazyl or DPPH assay, and ferric ion reducing and ferrous ion chelating capacity assays) which could be attributed to presence of gallic acid, epigallocatechin, naringenin, and apigenin. The aqueous extracts of dark colored varieties exert concentration-dependent cytotoxic effects on all tested malignant cell lines (human colon adenocarcinoma LS174, human breast carcinoma MDA-MB-453, human lung carcinoma A594, and myelogenous leukemia K562). Correlation analysis revealed that intensities of cytotoxic activity of the extracts strongly correlated with contents of epigallocatechin and luteolin. Cell cycle analysis on LS174 cells in the presence of caspase-3 inhibitor points out that extracts may activate other cell death modalities besides caspase-3-dependent apoptosis. The study provides evidence that seed coat extracts of dark colored pea varieties might be used as potential cancer-chemopreventive and complementary agents in cancer therapy.

  9. Synthesis and Anti-cancer Activity of 3-substituted Benzoyl-4-substituted Phenyl-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin

    2017-01-01

    Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: synthesis and in vitro biological evaluation. Part 1.

    PubMed

    Bozorov, Khurshed; Ma, Hai-Rong; Zhao, Jiang-Yu; Zhao, Hai-Qing; Chen, Hua; Bobakulov, Khayrulla; Xin, Xue-Lei; Elmuradov, Burkhon; Shakhidoyatov, Khusnutdin; Aisa, Haji A

    2014-09-12

    Series of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (DDTD) derivatives: azomethines of DDTD (2a-l) have been synthesized and screened for their anticancer, antimicrobial and anti-diabetic activities. The novel synthesized compounds were characterized by (1)H, (13)C NMR, MS and FT-IR analyses. All compounds were evaluated for their antiproliferative activity against three types of cancer cell line such as T47D and MCF-7 (human breast cancer), Hela (human cervical cancer) and Ishikawa (human endometrial cancer) lines. The results showed that most compounds exhibited significant antiproliferative activity against breast cancer cells. The majority of azomethines DDTD influenced strongly against breast cancer cells T47D and MCF-7, among them compounds 2b (2.3 μM), 2c (12.1 μM), 2e (13.2 μM), 2i (14.9 μM), 2j (16.0 μM), 2k (7.1 μM), 2l (8.6 μM) manifest potent anticancer activity against cancer cell T47D than Doxorubicin (DOX, 15.5 μM). Compound 2j has shown potent activity on all three types of cancer cells concurrently and IC50 values were considerably low in comparison with positive control DOX. In addition, all compounds were tested for antimicrobial activity against Staphylococcus aureus ATCC 6538 (Gram positive bacteria), Escherichia coli ATCC 11229 (Gram negative bacteria) and Candida albicans ATCC 10231 (Fungi) strains and 2j which contains in the ring nitrofurfural fragment, showed the highest effect on the three species of microbial pathogens simultaneously. Some compounds induced enzymatic inhibition in a concentration-dependent manner on PTP-1B inhibitor. Copyright © 2014. Published by Elsevier Masson SAS.

  11. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity

    PubMed Central

    Rayan, Anwar; Raiyn, Jamal

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab. PMID:29121120

  12. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    PubMed

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  13. Robust Structure and Reactivity of Aqueous Arsenous Acid-Platinum(II) Anticancer Complexes**

    PubMed Central

    Miodragović, Ðenana U.; Quentzel, Jeremy A.; Kurutz, Josh W.; Stern, Charlotte L.; Ahn, Richard W.; Kandela, Irawati; Mazar, Andrew; O’Halloran, Thomas V.

    2014-01-01

    The first molecular adducts of platinum and arsenic based anticancer drugs - arsenoplatins - show unanticipated structure, substitution chemistry, and cellular cytotoxicity. The PtII-AsIII bonds in these complexes are stable in aqueous solution and strongly influence the lability of the trans ligand. PMID:24038962

  14. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    PubMed

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  15. Diet Therapy for Cancer Prevention and Treatment Based on Traditional Persian Medicine.

    PubMed

    Javadi, Behjat

    2018-04-01

    Cancer is the second leading cause of death with profound socio-economic consequences worldwide. Growing evidence suggests the crucial role of diet on cancer prevention and treatment. In Traditional Persian Medicine (TPM) there is a major focus on contribution of special diet and foods to cancer management. In the present article, the cytotoxic and antitumor activities of several food items including plants and animal products recommended by TPM as anticancer agents are discussed. Strong evidence supports the anticancer effects of beetroot (Beta vulgris) and its major compound betanin, cinnamon and cinnamaldehyde, barley (H. vulgare) and its products, extra-virgin olive oil, black pepper (P. nigrum) and its piperine, grapes (V. vinifera) and its compound resveratrol, ginger and its compound 6-gingerol, whey protein, fish, and honey. However, additional pharmacological studies and clinical trials are needed to elucidate their molecular and cellular mechanisms of actions, frequency, and amount of consumption, possible adverse effects, and optimum preparation methods. Moreover, studying mechanisms of actions of the bioactive compounds present in the discussed food items can be helpful in identifying and development of new anticancer agents.

  16. Redox-Responsive Biomimetic Polymeric Micelle for Simultaneous Anticancer Drug Delivery and Aggregation-Induced Emission Active Imaging.

    PubMed

    Hu, Jun; Zhuang, Weihua; Ma, Boxuan; Su, Xin; Yu, Tao; Li, Gaocan; Hu, Yanfei; Wang, Yunbing

    2018-05-10

    Intelligent polymeric micelles have been developed as potential nanoplatforms for efficient drug delivery and diagnosis. Herein, we successfully prepared redox-sensitive polymeric micelles combined aggregation-induced emission (AIE) imaging as an outstanding anticancer drug carrier system for simultaneous chemotherapy and bioimaging. The amphiphilic copolymer TPE-SS-PLAsp- b-PMPC could self-assemble into spherical micelles, and these biomimetic micelles exhibited great biocompatibility and remarkable ability in antiprotein adsorption, showing great potential for biomedical application. Anticancer drug doxorubicin (DOX) could be encapsulated during the self-assembly process, and these drug-loaded micelles showed intelligent drug release and improved antitumor efficacy due to the quick disassembly in response to high levels of glutathione (GSH) in the environment. Moreover, the intracellular DOX release could be traced through the fluorescent imaging of these AIE micelles. As expected, the in vivo antitumor study exhibited that these DOX-carried micelles showed better antitumor efficacy and less adverse effects than that of free DOX. These results strongly indicated that this smart biomimetic micelle system would be a prominent candidate for chemotherapy and bioimaging.

  17. Synthesis of polymer coated Co0.5Zn0.5Fe2O4 nanoparticles and their enhanced anticancer activity against HepG2 cell line

    NASA Astrophysics Data System (ADS)

    Ali, Z.; Abbasi, R.; Khan, A. J.; Arshad, J.; Atif, M.; Ahmad, N.; Khalid, W.

    2018-05-01

    Cobalt zinc ferrite nanoparticles with stoichiometry Co0.5Zn0.5Fe2O4 (CZFN) were synthesized by sol-gel method with high colloidal stability having room temperature ferromagnetism. For biological applications, CZFN were transferred to aqueous phase by polymer coating with amphiphilic polymer, whereas fluorescent dye (ATTO-590) was used as model system for anti-cancer drug loaded polymer shell. The amount of functional molecule varied up to 25% of the anhydride rings, which provides greater affinity of drug loading in polymer shell. CZFN were characterized by x-ray diffraction, Fourier transformed infrared spectroscopy, UV–vis absorption spectroscopy, gel electrophoresis and vibrating sample magnetometer. The in vitro cytotoxicity of CZFN was examined against HepG2 which revealed that CZFN (IC50:3.01 nM) strongly inhabits growth of the cells. Further the particles did not induce any significant hemolysis. Stimulatingly, this seems to be a noteworthy improvement towards the ability of surface functionalized multifunctional CZFN as carriers for drugs for anti-cancer therapy and their use as nanomedicine.

  18. Apoptosis-inducing effects and growth inhibitory of a novel chalcone, in human hepatic cancer cells and lung cancer cells.

    PubMed

    Dong, Naiwei; Liu, Xin; Zhao, Tong; Wang, Lei; Li, Huimin; Zhang, Shuqian; Li, Xia; Bai, Xue; Zhang, Yong; Yang, Baofeng

    2018-05-29

    Apoptosis is an important biological phenomenon, which affects many diseases, such as cancer and Alzheimer's disease. In the present study, we observed that chalcone 9X, an aromatic ketone, induced apoptosis of human hepatic and lung cancer cells and inhibited cancer cell migration and invasion. This compound strongly suppressed the growth of tumor in a mouse model of xenograft tumors. The anticancer activity of chalcone 9X was equivalent to 5-fluorouracil (5-FU) as a positive control agent, whereas the toxic effect of chalcone 9X in non-cancer cells was weaker than 5-FU. Molecular docking results showed that chalcone 9X could act on the active sites of pro-apoptotic proteins capspases-3 and -8 to induce apoptotic death of cancer cells. Our findings suggest that chalcone 9X might be considered a candidate compound of novel anticancer drug in the future. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. The Biological Activities of Oleocanthal from a Molecular Perspective.

    PubMed

    Pang, Kok-Lun; Chin, Kok-Yong

    2018-05-06

    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.

  20. The Biological Activities of Oleocanthal from a Molecular Perspective

    PubMed Central

    Pang, Kok-Lun; Chin, Kok-Yong

    2018-01-01

    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies. PMID:29734791

  1. Recent Progress on C-4-Modified Podophyllotoxin Analogs as Potent Antitumor Agents

    PubMed Central

    Liu, Ying-Qian; Tian, Jing; Qian, Keduo; Zhao, Xiao-Bo; Morris-Natschke, Susan L.; Yang, Liu; Nan, Xiang; Tian, Xuan; Lee, Kuo-Hsiung

    2015-01-01

    Podophyllotoxin (PPT), as well as its congeners and derivatives, exhibits pronounced biological activities, especially antineoplastic effects. Its strong inhibitory effect on tumor cell growth led to the development of three of the most highly prescribed anticancer drugs in the world, etoposide, teniposide, and the water-soluble prodrug etoposide phosphate. Their clinical success as well as intriguing mechanism of action stimulated great interest in further modification of PPT for better antitumor activity. The C-4 position has been a major target for structural derivatization aimed at either producing more potent compounds or overcoming drug resistance. Accordingly, numerous PPT derivatives have been prepared via hemisynthesis and important structure–activity relationship (SAR) correlations have been identified. Several resulting compounds, including GL-331, TOP-53, and NK611, reached clinical trials. Some excellent reviews on the distribution, sources, applications, synthesis, and SAR of PPT have been published. This review focuses on a second generation of new etoposide-related drugs and provides detailed coverage of the current status and recent development of C-4-modified PPT analogs as anticancer clinical trial candidates. PMID:24827545

  2. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    NASA Astrophysics Data System (ADS)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  3. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-05

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  4. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869

  5. N-Heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold with anticancer and anti-infective dual action.

    PubMed

    Zablotskaya, Alla; Segal, Izolda; Geronikaki, Athina; Shestakova, Irina; Nikolajeva, Vizma; Makarenkova, Galina

    2017-06-01

    Pharmacological effects of biologically active "small molecules" can be improved by their targeted modification, which affects drug delivery and interaction with tumor cells and microorganisms. We aimed to evaluate anticancer and antimicrobial activity of lipid-like choline derivatives modified via simultaneous introduction of tetrahydro(iso)quinoline based pharmacophore system at nitrogen atom and long chain alkyl substituent at oxygen atom. Target compounds were synthesized under phase-transfer catalysis conditions followed by quaternization, and evaluated for cytotoxicity and NO-generation ability on HT-1080 and MG-22A tumor cell lines and NIH 3T3 normal mouse fibroblasts, and screened for antimicrobial activity against gram-positive (Staphylococcus aureus and Bacillus cereus) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis) and fungi (Candida albicans and Aspergillus niger). Inhibitory action of active compounds towards E. coli DNA gyrase was investigated. Target compounds exhibit high selective cytotoxicity (LC 50 <1μg/mL) and NO-induction ability, and reveal strong antimicrobial activity with MIC and MBC/MFC values of 0.5-32μg/mL, predominantly vs. gram-positive bacteria and fungi. Tested substances displayed inhibitory effect towards E. coli DNA gyrase, though less than ciprofloxacin. Tetrahydroisoquinoline derivatives and compounds possessing substituents with chain length of 10 and 11 carbon atoms have highest indices of activities. Lipid-like N-heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold, possessing very high cytotoxicity with attendant strong antimicrobial activity are the leads for developing effective dual action therapeutics. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    PubMed Central

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  7. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark.

    PubMed

    Eo, Hyun Ji; Park, Jae Ho; Park, Gwang Hun; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2014-06-25

    Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity.

  8. Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents

    PubMed Central

    Tanpure, Rajendra P.; George, Clinton S.; Strecker, Tracy E.; Devkota, Laxman; Tidmore, Justin K.; Lin, Chen-Ming; Herdman, Christine A.; MacDonough, Matthew T.; Sriram, Madhavi; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.

    2014-01-01

    Diversely functionalized, fused aryl-alkyl ring systems hold a prominent position as well-established molecular frameworks for a variety of anti-cancer agents. The benzosuberene (6,7 fused, also referred to as dihydro-5H-benzo[7]annulene and benzocycloheptene) ring system has emerged as a valuable molecular core component for the development of inhibitors of tubulin assembly, which function as antiproliferative anti-cancer agents and, in certain cases, as vascular disrupting agents (VDAs). Both a phenolic-based analogue (known as KGP18, compound 39) and its corresponding amine-based congener (referred to as KGP156, compound 45), which demonstrate strong inhibition of tubulin assembly (low micromolar range) and potent cytotoxicity (picomolar range for KGP18 and nanomolar range for KGP156) are noteworthy examples of such benzosuberene-based compounds. In order to extend the structure-activity relationship (SAR) knowledge base related to benzosuberene anti-cancer agents, a series of eleven analogues (including KGP18) were prepared in which the methoxylation pattern on the pendant aryl ring as well as functional group incorporation on the fused aryl ring were varied. The synthetic approach to these compounds featured a sequential Wittig olefination, reduction, Eaton's reagent-mediated cyclization strategy to achieve the core benzosuberone intermediate, and represented a higher-yielding synthesis of KGP18 (which we prepared previously through a ring-expansion strategy). Incorporation of a fluorine or chlorine atom at the 1-position of the fused aryl ring or replacement of one of the methoxy groups with hydrogen (on the pendant aryl ring of KGP18) led to benzosuberene analogues that were both strongly inhibitory against tubulin assembly (IC50 approximately 1.0 M) and strongly cytotoxic against selected human cancer cell lines (for example, GI50 = 5.47 nM against NCI-H460 cells with fluorobenzosuberene analogue 37). A water-soluble phosphate prodrug salt of KGP18 (referred to as KGP265, compound 44) and a water-soluble serinamide salt (compound 48) of KGP156 were also synthesized and evaluated in this study. PMID:24183586

  9. Improved anticancer and antiparasitic activity of new lawsone Mannich bases.

    PubMed

    Mahal, Katharina; Ahmad, Aamir; Schmitt, Florian; Lockhauserbäumer, Julia; Starz, Kathrin; Pradhan, Rohan; Padhye, Subhash; Sarkar, Fazlul H; Koko, Waleed S; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard

    2017-01-27

    Substituted lawsone Mannich bases 2a-e, 3a-e and 4a-e were prepared and tested for their biological activities. The new fatty alkyl substituted compounds 2a-c exhibited strong and selective growth inhibitory activities in the low one-digit micromolar and sub-micromolar range against a panel of human cancer cell lines associated with ROS formation. In addition, compounds 2a-c revealed sub-micromolar anti-trypanosomal activities against parasitic Trypanosoma brucei brucei cells via deformation of the microtubule cytoskeleton. The N-hexadecyl compound 2c was also highly active against locally isolated Entamoeba histolytica parasite samples exceeding the activity of metronidazole. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO I-dependent cancer cells.

    PubMed

    Shimada, Nami; Takasawa, Ryoko; Tanuma, Sei-Ichi

    2018-01-15

    Many cancer cells undergo metabolic reprogramming known as the Warburg effect, which is characterized by a greater dependence on glycolysis for ATP generation, even under normoxic conditions. Glyoxalase I (GLO I) is a rate-limiting enzyme involved in the detoxification of cytotoxic methylglyoxal formed in glycolysis and which is known to be highly expressed in many cancer cells. Thus, specific inhibitors of GLO I are expected to be effective anticancer drugs. We previously discovered a novel GLO I inhibitor named TLSC702. Although the strong inhibitory activity of TLSC702 was observed in the in vitro enzyme assay, higher concentrations were required to induce apoptosis at the cellular level. One of the proposed reasons for this difference is that cancer cells alter the energy metabolism leading them to become more dependent on mitochondrial respiration than glycolysis (Metabolic shift) to avoid apoptosis induction. Thus, we assumed that combination of TLSC702 with shikonin-a specific inhibitor of pyruvate kinase M2 (PKM2) that acts as a driver of TCA cycle by supplying pyruvate and which is known to be specifically expressed in cancer cells-would have anticancer effects. We herein show the anticancer effects of combination treatment with TLSC702 and shikonin, and a possible anticancer mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Anticancer Efficacy of Apo2L/TRAIL Is Retained in the Presence of High and Biologically Active Concentrations of Osteoprotegerin In Vivo

    PubMed Central

    Zinonos, Irene; Labrinidis, Agatha; Lee, Michelle; Liapis, Vasilios; Hay, Shelley; Ponomarev, Vladimir; Diamond, Peter; Findlay, David M; Zannettino, Andrew CW; Evdokiou, Andreas

    2017-01-01

    Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that binds to the ligand for receptor activator of nuclear factor κB (RANKL) and inhibits bone resorption. OPG can also bind and inhibit the activity of the TNF-related apoptosis-inducing ligand (Apo2L/TRAIL), raising the possibility that the anticancer efficacy of soluble Apo2L/TRAIL may be abrogated in the bone microenvironment where OPG expression is high. In this study we used a murine model of breast cancer growth in bone to evaluate the efficacy of recombinant soluble Apo2L/TRAIL against intratibial tumors that were engineered to overexpress native full-length human OPG. In vitro, OPG-overexpressing breast cancer cells were protected from Apo2L/TRAIL-induced apoptosis, an effect that was reversed with the addition of soluble RANKL or neutralizing antibodies to OPG. In vivo, mice injected intratibially with cells containing the empty vector developed large osteolytic lesions. In contrast, OPG overexpression preserved the integrity of bone and prevented breast cancer–induced bone destruction. This effect was due primarily to the complete absence of osteoclasts in the tibias of mice inoculated with OPG-transfected cells, confirming the biologic activity of the transfected OPG in vivo. Despite the secretion of supraphysiologic levels of OPG, treatment with Apo2L/TRAIL resulted in strong growth inhibition of both empty vector and OPG-overexpressing intratibial tumors. While Apo2L/TRAIL-induced apoptosis may be abrogated in vitro by OPG overexpression, the in vivo anticancer efficacy of recombinant soluble Apo2L/TRAIL is retained in the bone microenvironment even in the presence of biologically active OPG at supraphysiologic concentrations. PMID:20818644

  12. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  13. Synthesis, antitubercular and anticancer activities of substituted furyl-quinazolin-3(4H)-ones.

    PubMed

    Raghavendra, Nulgulmnalli M; Thampi, Parameshwaran; Gurubasavarajaswamy, Purvarga M; Sriram, Dharmarajan

    2007-12-01

    Some novel substituted-3-{[(1E)-(substituted-2-furyl)-methylene]amino}quinazolin-4(3H)-one (5, 6, 7) a-f were synthesized by a multi-step process. These synthesized compounds are characterized by various spectroscopic techniques and evaluated for their antitubercular and anticancer activities. Biological activity indicated that some of the title compounds are potent antitubercular and anticancer agents.

  14. Marine Microalgae with Anti-Cancer Properties.

    PubMed

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  15. Structures of Phytosterols and Triterpenoids with Potential Anti-Cancer Activity in Bran of Black Non-Glutinous Rice

    PubMed Central

    Suttiarporn, Panawan; Chumpolsri, Watcharapong; Mahatheeranont, Sugunya; Luangkamin, Suwaporn; Teepsawang, Somsuda; Leardkamolkarn, Vijittra

    2015-01-01

    Structures of some bioactive phytochemicals in bran extract of the black rice cv. Riceberry that had demonstrated anti-cancer activity in leukemic cell line were investigated. After saponification with potassium hydroxide, separation of the unsaponified fraction by reversed-phase high performance liquid chromatography (HPLC) resulted in four sub-fractions that had a certain degree of anti-proliferation against a mouse leukemic cell line (WEHI-3 cell), this being IC50 at 24 h ranging between 2.80–467.11 μg/mL. Further purification of the bioactive substances contained in these four sub-fractions was performed by normal-phase HPLC. Structural characterization by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) resulted in, overall, the structures of seven phytosterols and four triterpenoids. Four phytosterols, 24-methylene-ergosta-5-en-3β-ol, 24-methylene-ergosta-7-en-3β-ol, fucosterol, and gramisterol, along with three triterpenoids, cycloeucalenol, lupenone, and lupeol, were found in the two sub-fractions that showed strong anti-leukemic cell proliferation (IC50 = 2.80 and 32.89 μg/mL). The other sterols and triterpenoids were campesterol, stigmasterol, β-sitosterol and 24-methylenecycloartanol. Together with the data from in vitro biological analysis, we suggest that gramisterol is a significant anti-cancer lead compound in Riceberry bran extract. PMID:25756784

  16. Yessotoxin, a Marine Toxin, Exhibits Anti-Allergic and Anti-Tumoural Activities Inhibiting Melanoma Tumour Growth in a Preclinical Model

    PubMed Central

    Tobío, Araceli; Alfonso, Amparo; Madera-Salcedo, Iris; Botana, Luis M.

    2016-01-01

    Yessotoxins (YTXs) are a group of marine toxins produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. They may have medical interest due to their potential role as anti-allergic but also anti-cancer compounds. However, their biological activities remain poorly characterized. Here, we show that the small molecular compound YTX causes a slight but significant reduction of the ability of mast cells to degranulate. Strikingly, further examination revealed that YTX had a marked and selective cytotoxicity for the RBL-2H3 mast cell line inducing apoptosis, while primary bone marrow derived mast cells were highly resistant. In addition, YTX exhibited strong cytotoxicity against the human B-chronic lymphocytic leukaemia cell line MEC1 and the murine melanoma cell line B16F10. To analyse the potential role of YTX as an anti-cancer drug in vivo we used the well-established B16F10 melanoma preclinical mouse model. Our results demonstrate that a few local application of YTX around established tumours dramatically diminished tumour growth in the absence of any significant toxicity as determined by the absence of weight loss and haematological alterations. Our data support that YTX may have a minor role as an anti-allergic drug, but reveals an important potential for its use as an anti-cancer drug. PMID:27973568

  17. Structure transition in lipids and nucleic acids of tumor cells under anticancer drugs applications

    NASA Astrophysics Data System (ADS)

    Dovbeshko, G. I.; Repnytska, O. P.; Tryndiak, V. P.; Todor, I. N.

    2003-12-01

    Interaction of DNA and phospholipids from Carcinoma Guerina resistant and sensitive cells of Wistar line rats with anti-cancer drugs - cis-platin and doxorubicin (DOX) have been studied in vivo and in vitro experiments. Surface enhanced infrared absorption (SEIRA) spectroscopy was applied for registration of conformational changes in DNA and lipids induced by anti-cancer drugs. It has been shown in vivo experiment that doxorubicin influences less structural disordering of the membrane than cis-platin. Cis-platin creates irreversible complex with memebrane phospholipids, strongly interacting with phosophates and carbohydrate chains. Doxorubicin influences the ordering of carbohydrate chains and does not strongly influence phosphate heads. This change seems to be partially reversible. In contrast, in vivo experiment the doxorubicin strongly influences the DNA structure, leading to DNA stabilization and formation of new H-bonds in DNA-doxorubicin complex. We have not registered the interaction of DNA with cis-platin in vivo experiment. Experiment in vitro for cis-platin incubation with phospholipids from cancer cells during 0.5 hour at 37°C has not shown those drastic structural peculiarities that it was observed in vivo experiments.

  18. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis.

    PubMed

    Nakamura, Kazuki; Shinozuka, Kazumasa; Yoshikawa, Noriko

    2015-01-01

    Cordyceps sinensis, a fungus that parasitizes on the larva of Lepidoptera, has been used as a valued traditional Chinese medicine. We investigated the effects of water extracts of Cordyceps sinensis (WECS), and particularly focused on its anticancer and antimetastatic actions. Based on in vitro studies, we report that WECS showed an anticancer action, and this action was antagonized by an adenosine A3 receptor antagonist. Moreover, this anticancer action of WECS was promoted by an adenosine deaminase inhibitor. These results suggest that one of the components of WECS with an anticancer action might be an adenosine or its derivatives. Therefore, we focused on cordycepin (3'-deoxyadenosine) as one of the active ingredients of WECS. According to our experiments, cordycepin showed an anticancer effect through the stimulation of adenosine A3 receptor, followed by glycogen synthase kinase (GSK)-3β activation and cyclin D1 suppression. Cordycepin also showed an antimetastatic action through inhibiting platelet aggregation induced by cancer cells and suppressing the invasiveness of cancer cells via inhibiting the activity of matrix metalloproteinase (MMP)-2 and MMP-9, and accelerating the secretion of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 from cancer cells. In conclusion, cordycepin, an active component of WECS, might be a candidate anticancer and antimetastatic agent. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  19. Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl-N-phenylpyrimidin-2-amines.

    PubMed

    Toviwek, Borvornwat; Suphakun, Praphasri; Choowongkomon, Kiattawee; Hannongbua, Supa; Gleeson, M Paul

    2017-10-15

    Reported herein are efforts to profile 4-aryl-N-phenylpyrimidin-2-amines in terms of their anti-cancer activity towards non small-cell lung carcinoma (NSCLC) cells. We have synthesized new 4-aryl-N-phenylpyrimidin-2-amines and assessed them in terms of their cytotoxicity (A549, NCI-H187, MCF7, Vero & KB) and physicochemical properties (logD 7.4 and solubility). 13f and 13c demonstrated potent anti-cancer activity in A549 cells (0.2µM), compared to 0.4μM for the NSCLC drug Doxorubicin. 13f also displayed low experimental logD 7.4 (2.9) and the best solubility (∼40μM). Compounds 13b and 13d showed the best balance of A549 anti-cancer activity and selectivity. 13g showed good activity and selectivity comparable with the anti-cancer drug Doxorubicin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Design and synthesis of novel C14-urea-tetrandrine derivatives with potent anti-cancer activity.

    PubMed

    Lan, Junjie; Huang, Lan; Lou, Huayong; Chen, Chao; Liu, Tangjingjun; Hu, Shengcao; Yao, Yao; Song, Junrong; Luo, Jun; Liu, Yazhou; Xia, Bin; Xia, Lei; Zeng, Xueyi; Ben-David, Yaacov; Pan, Weidong

    2018-01-01

    Tetrandrine is a dibenzyltetrahydroisoquinoline alkaloid, isolated from traditional Chinese medicinal plant Stephania tetrandra, with anti-tumor activity. Our previous study identified several derivatives of tetrandrine showing better activities than parental compound against human hepatocellular carcinoma cells. To increase diversity and cytotoxic activities of the original compound, a series of novel 14-urea-tetrandrine derivatives were synthesized through structural modification of tetrandrine. These derivaties demonstrated a moderate to strong anti-proliferative activities against human cell lines HEL and K562 (Leukemia), prostate (PC3), breast (MDA-MB-231) and melanoma (WM9). Compound 4g showed strongest cytotoxic effect against PC3 cells with IC 50 value of 0.64 μM, which was 12-fold, 31-fold and 26-fold lower than the parental tetrandrine, 5-fluorouracil and cisplatin, respectively. Preliminary structure-activity relationship study indicated that urea subsititution was the key pharmacophore for the enhancement of their antitumor activities. Induction of apoprosis by 4g was associated with the activation of pro-apoptotic protein BAX and inhibition of antiapoptosis proteins survivin as well as Bcl-2. Moreover, activation of caspases led to increase cleavage of PARP, which further accelerates apoptotic cell death. These results reveal that the compound 4g may be used as a potential anticancer drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. The Influence of Different Oregano Species on the Antioxidant Activity Determined Using HPLC Postcolumn DPPH Method and Anticancer Activity of Carvacrol and Rosmarinic Acid

    PubMed Central

    Kubiliene, Asta; Marksa, Mindaugas; Petrikaite, Vilma; Vitkevičius, Konradas; Baranauskas, Algirdas

    2017-01-01

    The aim of this study was to evaluate concentration-dependent antioxidant and anticancer activities of CA and RA in ethanol extracts of three different Oregano species (Origanum onites L., Origanum vulgare L., and Origanum vulgare ssp. hirtum). The study revealed the highest RA antioxidant activity in O. vulgare ssp. hirtum (9550 ± 95 mmol/g) and the lowest in O. vulgare L. (2605 ± 52 mmol/g) (p < 0.05). The highest CA amount was present in O. onites L., which was 1.8 and 4.7 times higher (p < 0.05) than in O. vulgare ssp. hirtum and O. vulgare L., respectively. The anticancer activity was evaluated on human glioblastoma (U87) and triple-negative breast cancer (MDA-MB231) cell lines in vitro. RA anticancer activity was negligible. CA and the extracts were about 1.5–2 times more active against MDA-MB231 cell line (p < 0.05) compared to U87 cell line. The anticancer activities of three tested extracts were similar against U87 cell line (p > 0.05) but they had different activities against MDA-MB231 cell line. PMID:29181386

  2. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration.

    PubMed

    Din, Fakhar Ud; Choi, Ju Yeon; Kim, Dong Wuk; Mustapha, Omer; Kim, Dong Shik; Thapa, Raj Kumar; Ku, Sae Kwang; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-11-01

    Intravenously administered for the treatment of rectum cancer, irinotecan produces severe side effects due to very high plasma concentrations. A novel irinotecan-encapsulated double reverse thermosensitive nanocarrier system (DRTN) for rectal administration was developed as an alternative. The DRTN was fabricated by dispersing the thermosensitive irinotecan-encapsulated solid lipid nanoparticles (SLN) in the thermosensitive poloxamer solution. Its gel properties, pharmacokinetics, morphology, anticancer activity and immunohistopathology were assessed after its rectal administration to rats and tumor-bearing mice. In the DRTN, the solid form of the SLN and the liquid form of the poloxamer solution persisted at 25 °C; the former melted to liquid, and the latter altered to gel at 36.5 °C. The DRTN was easily administered to the anus, gelling rapidly and strongly after rectal administration. Compared to the conventional hydrogel and intravenously administered solution, it retarded dissolution and initial plasma concentration. The DRTN gave sustained release and nearly constant plasma concentrations of irinotecan at 1-3 h in rats, resulting in improved anticancer activity. It induced no damage to the rat rectum and no body weight loss in tumor-bearing mice. Thus, this irinotecan-encapsulated DRTN associated with a reduced burst effect, lack of toxicity and excellent antitumor efficacy would be strongly recommended as a rectal pharmaceutical product alternative to commercial intravenous injection in the treatment of rectum and colon cancer.

  3. Antibacterial and anticancer activities of acetone extracts from in vitro cultured lichen-forming fungi.

    PubMed

    Felczykowska, Agnieszka; Pastuszak-Skrzypczak, Alicja; Pawlik, Anna; Bogucka, Krystyna; Herman-Antosiewicz, Anna; Guzow-Krzemińska, Beata

    2017-06-07

    Lichens that were used in traditional medicine for ages produce numerous secondary metabolites, however our knowledge about biological activities of substances secreted by separated bionts is scarce. The main objectives of this study were to isolate and find optimal conditions for the growth of mycelia from three common lichen-forming fungi, i.e. Caloplaca pusilla, Protoparmeliopsis muralis and Xanthoria parietina and to evaluate antibacterial and antiproliferative activities of their acetone extracts. Agar disc diffusion and broth microdilution methods were used to test antimicrobial activity against six species of bacteria. MTT method, flow cytometry assay and DAPI staining were applied to test antiproliferative activity of selected extracts against MCF-7 (human breast adenocarcinoma), PC-3 (human prostate cancer) and HeLa (human cervix adenocarcinoma) cancer cells. P. muralis strongly inhibited the growth of Gram-positive bacteria, i.e. Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus and Staphylococcus epidermidis (MICs from 6.67 to 100.00 μg mL -1 ). X. parietina grown on PDA and G-LBM media decreased HeLa or MCF-7 cancer cells viability with IC 50 values of about 8 μg mL -1 , while C. pusilla grown on G-LBM medium showed the highest potency in decreasing MCF-7 (7.29 μg mL -1 ), PC-3 (7.96 μg mL -1 ) and HeLa (6.57 μg mL -1 ) cancer cells viability. We also showed induction of apoptosis in HeLa, PC-3 and MCF-7 cell lines treated with increasing concentrations of C. pusilla extract. We showed that selected acetone extracts demonstrated a strong antimicrobial and anticancer effects that suggests that aposymbiotically cultured lichen-forming fungi can be a source of antibacterial and antiproliferative compounds.

  4. Thymoquinone, as an anticancer molecule: from basic research to clinical investigation

    PubMed Central

    Asaduzzaman Khan, Md.; Tania, Mousumi; Fu, Shangyi; Fu, Junjiang

    2017-01-01

    Thymoquinone is an anticancer phytochemical commonly found in black cumin. In this review, we discuss the potential of thymoquinone as anticancer molecule, its mechanism of action and future usage in clinical applications. Thymoquinone exhibits anticancer activity via numerous mechanisms of action, specifically by showing selective antioxidant and oxidant activity, interfering with DNA structure, affecting carcinogenic signaling molecules/pathways and immunomodulation. In vitro activity of thymoquinone has been further implicated in animal models of cancer; however, no clinical application has been proven yet. This is the optimum time to focus on clinical trials for developing thymoquinone as a future drug in cancer therapeutics. PMID:28881699

  5. Thymoquinone, as an anticancer molecule: from basic research to clinical investigation.

    PubMed

    Asaduzzaman Khan, Md; Tania, Mousumi; Fu, Shangyi; Fu, Junjiang

    2017-08-01

    Thymoquinone is an anticancer phytochemical commonly found in black cumin. In this review, we discuss the potential of thymoquinone as anticancer molecule, its mechanism of action and future usage in clinical applications. Thymoquinone exhibits anticancer activity via numerous mechanisms of action, specifically by showing selective antioxidant and oxidant activity, interfering with DNA structure, affecting carcinogenic signaling molecules/pathways and immunomodulation. In vitro activity of thymoquinone has been further implicated in animal models of cancer; however, no clinical application has been proven yet. This is the optimum time to focus on clinical trials for developing thymoquinone as a future drug in cancer therapeutics.

  6. Thymoquinone-based nanotechnology for cancer therapy: promises and challenges.

    PubMed

    Ballout, Farah; Habli, Zeina; Rahal, Omar Nasser; Fatfat, Maamoun; Gali-Muhtasib, Hala

    2018-05-01

    Thymoquinone (TQ), the active ingredient of black seed, is a promising anticancer molecule that inhibits cancer cell growth and progression in vitro and in vivo. Despite the promising anticancer activities of TQ, its translation to the clinic is limited by its poor bioavailability and hydrophobicity. As such, we and others encapsulated TQ in nanoparticles to improve its delivery and limit undesirable cytotoxicity. These TQ-nanoparticle formulations showed improved anticancer and anti-inflammatory activities when compared with free TQ. Here, we provide an overview of the various TQ-nanoparticle formulations, highlight their superior efficacy and discuss up-to-date solutions to further enhance TQ bioavailability and anticancer activity, thus improving potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Influence of phosphorylation of THR-3, SER-11, and SER-15 on deoxycytidine kinase activity and stability.

    PubMed

    Smal, C; Ntamashimikiro, S; Arts, A; Van Den Neste, E; Bontemps, F

    2010-06-01

    Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxyribonucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We have recently shown that dCK is a phosphoprotein. Four in vivo phosphorylation sites were identified: Thr-3, Ser-11, Ser-15, and Ser-74. Site-directed mutagenesis demonstrated that phosphorylation of Ser-74, the major phosphorylated residue, strongly influences dCK activity in eucaryotic cells. Here, we show that phosphorylation of the three other sites, located in the N-terminal extremity of the protein, does not significantly modify dCK activity, but phosphorylation of Thr-3 could promote dCK stability.

  8. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.

    PubMed

    Lemieszek, Marta; Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known.

  9. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity.

  10. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning.

    PubMed

    Almajhdi, Fahad N; Fouad, H; Khalil, Khalil Abdelrazek; Awad, Hanem M; Mohamed, Sahar H S; Elsarnagawy, T; Albarrag, Ahmed M; Al-Jassir, Fawzi F; Abdo, Hany S

    2014-04-01

    In the present work, a series of 0, 1 and 7 wt% silver nano-particles (Ag NPs) incorporated poly lactic-co-glycolic acid (PLGA) nano-fibers were synthesized by the electrospinning process. The PLGA/Ag nano-fibers sheets were characterized using SEM, TEM and DSC analyses. The three synthesized PLGA/silver nano-fiber composites were screened for anticancer activity against liver cancer cell line using MTT and LDH assays. The anticancer activity of PLGA nano-fibers showed a remarkable improvement due to increasing the concentration of the Ag NPs. In addition to the given result, PLGA nano-fibers did not show any cytotoxic effect. However, PLGA nano-fibers that contain 1 % nano silver showed anticancer activity of 8.8 %, through increasing the concentration of the nano silver to 7 % onto PLGA nano-fibers, the anticancer activity was enhanced to a 67.6 %. Furthermore, the antibacterial activities of these three nano-fibers, against the five bacteria strains namely; E.coli o157:H7 ATCC 51659, Staphylococcus aureus ATCC 13565, Bacillus cereus EMCC 1080, Listeria monocytogenes EMCC 1875 and Salmonella typhimurium ATCC25566 using the disc diffusion method, were evaluated. Sample with an enhanced inhibitory effect was PLGA/Ag NPs (7 %) which inhibited all strains (inhibition zone diameter 10 mm); PLGA/Ag NPs (1 %) sample inhibited only one strain (B. cereus) with zone diameter 8 mm. The PLGA nano-fiber sample has not shown any antimicrobial activity. Based on the anticancer as well as the antimicrobial results in this study, it can be postulated that: PLGA nanofibers containing 7 % nano silver are suitable as anticancer- and antibiotic-drug delivery systems, as they will increase the anticancer as well as the antibiotic drug potency without cytotoxicity effect on the normal cells. These findings also suggest that Ag NPs, of the size (5-10 nm) evaluated in the present study, are appropriate for therapeutic application from a safety standpoint.

  11. Biosynthesis, Antibacterial Activity and Anticancer Effects Against Prostate Cancer (PC-3) Cells of Silver Nanoparticles Using Dimocarpus Longan Lour. Peel Extract.

    PubMed

    He, Yan; Du, Zhiyun; Ma, Shijing; Cheng, Shupeng; Jiang, Sen; Liu, Yue; Li, Dongli; Huang, Huarong; Zhang, Kun; Zheng, Xi

    2016-12-01

    Metal nanoparticles, particularly silver nanoparticles (AgNPs), are developing more important roles as diagnostic and therapeutic agents for cancers with the improvement of eco-friendly synthesis methods. This study demonstrates the biosynthesis, antibacterial activity, and anticancer effects of silver nanoparticles using Dimocarpus Longan Lour. peel aqueous extract. The AgNPs were characterized by UV-vis absorption spectroscopy, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscope (FTIR). The bactericidal properties of the synthesized AgNPs were observed via the agar dilution method and the growth inhibition test. The cytotoxicity effect was explored on human prostate cancer PC-3 cells in vitro by trypan blue assay. The expressions of phosphorylated stat 3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. The longan peel extract acted as a strong reducing and stabilizing agent during the synthesis. Water-soluble AgNPs of size 9-32 nm was gathered with a face-centered cubic structure. The AgNPs had potent bactericidal activities against gram-positive and gram-negative bacteria with a dose-related effect. AgNPs also showed dose-dependent cytotoxicity against PC-3 cells through a decrease of stat 3, bcl-2, and survivin, as well as an increase in caspase-3. These findings confirm the bactericidal properties and explored a potential anticancer application of AgNPs for prostate cancer therapy. Further research should be focused on the comprehensive study of molecular mechanism and in vivo effects on the prostate cancer.

  12. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action.

    PubMed

    Voruganti, Sukesh; Qin, Jiang-Jiang; Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-08-28

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.

  13. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review.

    PubMed

    Damasceno, Sarah S; Dantas, Bruna B; Ribeiro-Filho, Jaime; Antônio M Araújo, Demetrius; Galberto M da Costa, José

    2017-01-01

    The antioxidant properties of caffeic and ferulic acids in biological systems have been extensively demonstrated. As antioxidants, these compounds prevent the production of reactive oxygen species (ROS), which cause cell lesions that are associated with the development of several diseases, including cancer. Recent findings suggest that the chemoprotective action of these phenolic acids occurs through the following mechanisms: regulation of gene expression, chelation and / or reduction of transition metals, formation of covalent adducts and direct toxicity. The biological efficacy of these promising chemoprotective agents is strongly related with their chemical structure. Therefore, in this study, we discuss the structural characteristics of ferulic and caffeic acids that are responsible for their biological activities, as well as the mechanisms of action involved with the anti-cancer activity. Several reports indicated that the antioxidant effect of these phenylpropanoids results from reactions with free radicals with formation of stable products in the cells. The chelating effect of these compounds was also reported as an important protective mechanism against oxidative. Finally, the lipophilicity of these agents facilitates their entry into the cells, and thus, contributes to the anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Polyether ionophores-promising bioactive molecules for cancer therapy.

    PubMed

    Huczyński, Adam

    2012-12-01

    The natural polyether ionophore antibiotics might be important chemotherapeutic agents for the treatment of cancer. In this article, the pharmacology and anticancer activity of the polyether ionophores undergoing pre-clinical evaluation are reviewed. Most of polyether ionophores have shown potent activity against the proliferation of various cancer cells, including those that display multidrug resistance (MDR) and cancer stem cells (CSC). The mechanism underlying the anticancer activity of ionophore agents can be related to their ability to form complexes with metal cations and transport them across cellular and subcellular membranes. Increasing evidence shows that the anticancer activity of polyether ionophores may be a consequence of the induction of apoptosis leading to apoptotic cell death, arresting cell cycle progression, induction of the cell oxidative stress, loss of mitochondrial membrane potential, reversion of MDR, synergistic anticancer effect with other anticancer drugs, etc. Continued investigation of the mechanisms of action and development of new polyether ionophores and their derivatives may provide more effective therapeutic drugs for cancer treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Soluble Extract from Moringa oleifera Leaves with a New Anticancer Activity

    PubMed Central

    Jung, Il Lae

    2014-01-01

    Moringa oleifera has been regarded as a food substance since ancient times and has also been used as a treatment for many diseases. Recently, various therapeutic effects of M. oleifera such as antimicrobial, anticancer, anti-inflammatory, antidiabetic, and antioxidant effects have been investigated; however, most of these studies described only simple biological phenomena and their chemical compositions. Due to the increasing attention on natural products, such as those from plants, and the advantages of oral administration of anticancer drugs, soluble extracts from M. oleifera leaves (MOL) have been prepared and their potential as new anticancer drug candidates has been assessed in this study. Here, the soluble cold Distilled Water extract (4°C; concentration, 300 µg/mL) from MOL greatly induced apoptosis, inhibited tumor cell growth, and lowered the level of internal reactive oxygen species (ROS) in human lung cancer cells as well as other several types of cancer cells, suggesting that the treatment of cancer cells with MOL significantly reduced cancer cell proliferation and invasion. Moreover, over 90% of the genes tested were unexpectedly downregulated more than 2-fold, while just below 1% of the genes were upregulated more than 2-fold in MOL extract-treated cells, when compared with nontreated cells. Since severe dose-dependent rRNA degradation was observed, the abnormal downregulation of numerous genes was considered to be attributable to abnormal RNA formation caused by treatment with MOL extracts. Additionally, the MOL extract showed greater cytotoxicity for tumor cells than for normal cells, strongly suggesting that it could potentially be an ideal anticancer therapeutic candidate specific to cancer cells. These results suggest the potential therapeutic implications of the soluble extract from MOL in the treatment of various types of cancers. PMID:24748376

  16. Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib.

    PubMed

    Ivanova, Donika; Zhelev, Zhivko; Lazarova, Dessislava; Getsov, Plamen; Bakalova, Rumiana; Aoki, Ichio

    2018-03-01

    Recent studies provided convincing evidence for the anticancer activity of combined application of vitamin C and pro-vitamin K3 (menadione). The molecular pathways underlying this process are still not well established. The present study aimed to investigate the effect of the combination of vitamin C plus pro-vitamin K3 on the redox status of leukemia and normal lymphocytes, as well as their sensitizing effect for a variety of anticancer drugs. Cytotoxicity of the substances was analyzed by trypan blue staining and automated counting of live and dead cells. Apoptosis was analyzed by fluorescein isothiocyanate-annexin V test. Oxidative stress was evaluated by the intracellular levels of reactive oxygen and nitrogen species and protein-carbonyl products. Combined administration of 300 μM vitamin C plus 3 μM pro-vitamin K3 reduced the viability of leukemia lymphocytes by ~20%, but did not influence the viability of normal lymphocytes. All combinations of anticancer drug plus vitamins C and K3 were characterized by synergistic cytotoxicity towards Jurkat cells, compared to cells treated with drug alone for 24 h. In the case of barasertib and everolimus, this synergistic cytotoxicity increased within 72 hours. It was accompanied by strong induction of apoptosis, but a reduction of level of hydroperoxides and moderately increased protein-carbonyl products in leukemia cells. Leukemia lymphocytes were more sensitive to combined administration of anticancer drug (everolimus or barasertib) plus vitamins C and K3, compared to normal lymphocytes. The combination of vitamin C plus K3 seems to be a powerful redox system that could specifically influence redox homeostasis of leukemia cells and sensitize them to conventional chemotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum.

    PubMed

    Venugopal, K; Rather, H A; Rajagopal, K; Shanthi, M P; Sheriff, K; Illiyas, M; Rather, R A; Manikandan, E; Uvarajan, S; Bhaskar, M; Maaza, M

    2017-02-01

    In the present report, silver nanoparticles were synthesized using Piper nigrum extract for in vitro cytotoxicity efficacy against MCF-7 and HEP-2 cells. The silver nanoparticles (AgNPs) were formed within 20min and after preliminarily confirmation by UV-Visible spectroscopy (strong peak observed at ~441nm), they were characterized by using FT-IR and HR-TEM. The TEM images show spherical shape of biosynthesized AgNPs with particle size in the range 5-40nm while as compositional analysis were observed by EDAX. MTT assays were carried out for cytotoxicity of various concentrations of biosynthesized silver nanoparticles and Piper nigrum extract ranging from 10 to 100μg. The biosynthesized silver nanoparticles showed a significant anticancer activity against both MCF-7 and Hep-2 cells compared to Piper nigrum extract which was dose dependent. Our study thus revealed an excellent application of greenly synthesized silver nanoparticles using Piper nigrum. The study further suggested the potential therapeutic use of these nanoparticles in cancer study. Copyright © 2016. Published by Elsevier B.V.

  18. A Systematic Review of Iran's Medicinal Plants With Anticancer Effects.

    PubMed

    Asadi-Samani, Majid; Kooti, Wesam; Aslani, Elahe; Shirzad, Hedayatollah

    2016-04-01

    Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants' anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs. © The Author(s) 2015.

  19. Contribution of reactive oxygen species to the anticancer activity of aminoalkanol derivatives of xanthone.

    PubMed

    Sypniewski, Daniel; Szkaradek, Natalia; Loch, Tomasz; Waszkielewicz, Anna M; Gunia-Krzyżak, Agnieszka; Matczyńska, Daria; Sołtysik, Dagna; Marona, Henryk; Bednarek, Ilona

    2018-06-01

    Reactive oxygen species (ROS) are critically involved in the action of anticancer agents. In this study, we investigated the role of ROS in the anticancer mechanism of new aminoalkanol derivatives of xanthone. Most xanthones used in the study displayed significant pro-oxidant effects similar to those of gambogic acid, one of the most active anticancer xanthones. The pro-oxidant activity of our xanthones was shown both directly (by determination of ROS induction, effects on the levels of intracellular antioxidants, and expression of antioxidant enzymes) and indirectly by demonstrating that the overexpression of manganese superoxide dismutase decreases ROS-mediated cell senescence. We also observed that mitochondrial dysfunction and cellular apoptosis enhancement correlated with xanthone-induced oxidative stress. Finally, we showed that the use of the antioxidant N-acetyl-L-cysteine partly reversed these effects of aminoalkanol xanthones. Our results demonstrated that novel aminoalkanol xanthones mediated their anticancer activity primarily through ROS elevation and enhanced oxidative stress, which led to mitochondrial cell death stimulation; this mechanism was similar to the activity of gambogic acid.

  20. A promising anti-cancer and anti-oxidant agents based on the pyrrole and fused pyrrole: synthesis, docking studies and biological evaluation.

    PubMed

    Fatahala, Samar Said; Shalaby, Emad Ahmed; Kassab, Shaymaa Emam; Mohamed, Mossad Said

    2015-01-01

    A series of N-aryl derivatives of pyrrole and its related derivatives of fused form (namely; tetrahydroindole and dihydroindenopyrroles) were prepared in fair to good yields. The newly synthesized compounds were confirmed using IR, (1)H NMR, Mass spectral and elemental analysis. Tetrahydrobenzo[b] pyrroles Ia-d, 1,4-dihydroindeno[1,2-b]pyrroles IIa,b and pyrroles IIIa-c,e were evaluated for anticancer activity, coinciding with the antioxidant activity; using Di-Phenyl Picryl Hydrazyl (DPPH) tests. The cytotoxicity of the tested compounds (at a concentration of 100 and 200 μg /mL) was performed against HepG-2 and EACC cell lines. Compounds Ib, d and IIa showed promising antioxidant activity beside their anticancer activity. Docking studies were employed to justify the promising anticancer activity of Ib,d and IIa. Protein kinase (PKase)-PDB entry 1FCQ was chosen as target enzyme for this purpose using the MOLSOFT ICM 3.4-8C program. The docking results of the tested compounds went aligned with the respective anticancer assay results.

  1. Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora.

    PubMed

    Fiedler, Hans-Peter; Bruntner, Christina; Riedlinger, Julia; Bull, Alan T; Knutsen, Gjert; Goodfellow, Michael; Jones, Amanda; Maldonado, Luis; Pathom-aree, Wasu; Beil, Winfried; Schneider, Kathrin; Keller, Simone; Sussmuth, Roderich D

    2008-03-01

    A family of three novel aminofuran antibiotics named as proximicins was isolated from the marine Verrucosispora strain MG-37. Proximicin A was detected in parallel in the marine abyssomicin producer "Verrucosispora maris" AB-18-032. The characteristic structural element of proximicins is 4-amino-furan-2-carboxylic acid, a hitherto unknown gamma-amino acid. Proximicins show a weak antibacterial activity but a strong cytostatic effect to various human tumor cell lines.

  2. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  3. Facile synthesis and biological evaluation of novel symmetrical biphenyls as antitumor agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Chen; Hu, Zhigang; Wang, Sicen; He, Langchong

    2012-03-01

    As a continuation to our previous work in developing anticancer agents, eighteen symmetrical biphenyl derivatives structurally related to taspine were synthesized and evaluated in vitro and in vivo. All the compounds were prepared with varied substitutions in the phenyl ring of aniline moiety. The cytotoxicity and anticancer activity of biphenyls was evaluated against various human tumor and normal cell line. Antiproliferative assays indicated that some of them exhibited potent anticancer activity. The potent antiproliferative activity of these compounds against ECV304 suggested that these biphenyls could be served as antiangiogenic agents. The highly active compound (2) also exhibited potent growth inhibition against cancer cell lines in vivo. Our findings demonstrated that these symmetrical biphenyl derivatives would be a promising candidate as novel anticancer agents.

  4. Synthesis, characterisation, and in vitro anticancer activity of curcumin analogues bearing pyrazole/pyrimidine ring targeting EGFR tyrosine kinase.

    PubMed

    Ahsan, Mohamed Jawed; Khalilullah, Habibullah; Yasmin, Sabina; Jadav, Surender Singh; Govindasamy, Jeyabalan

    2013-01-01

    In search of potential therapeutics for cancer, we described herein the synthesis, characterization, and in vitro anticancer activity of a novel series of curcumin analogues. The anticancer effects were evaluated on a panel of 60 cell lines, according to the National Cancer Institute (NCI) screening protocol. There were 10 tested compounds among 14 synthesized compounds, which showed potent anticancer activity in both one-dose and 5-dose assays. The most active compound of the series was 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-yl(phenyl)methanone which showed mean growth percent of -28.71 in one-dose assay and GI₅₀ values between 0.0079 and 1.86 µM in 5-dose assay.

  5. The steroidal Na+/K+ ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative (3-R-POD) induces potent pro-apoptotic responses in colonic tumor cells.

    PubMed

    Alkahtani, Saad Hussin

    2014-06-01

    Recently, potent anticancer actions of the steroidal Na(+)/K(+) ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative 3 (3-R-POD) have been reported for multiple cell lines, including prostate and lung cancer cells. In the present study, the anticancer action of 3-R-POD was addressed in colonic tumor cells. Treatment of Caco2 colonic tumor cells with increasing concentrations of 3-R-POD induced potent, dose-dependent inhibition of cell growth as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the APOpercentage apoptosis assay revealed significant pro-apoptotic responses, suggesting that the anticancer activity of this steroidal Na(+)/K(+) ATPase inhibitor in colonic tumors takes places mainly through the induction of strong pro-apoptotic effects. Focussing on the molecular mechanism that may regulate these interactions, 3-R-POD was shown to induce significant early actin re-organization and late Protein Kinase B (AKT) de-phosphorylation. Finally, the 3-R-POD-induced inhibition of cell growth and early actin reorganization in colonic cancer cells remained unchanged when cells were pre-treated with pertussis toxin, thus excluding possible interactions of this inhibitor with G-coupled receptors. These results indicate that 3-R-POD induces potent pro-apoptotic responses in colonic tumor cells governed by actin re-organization and inhibition of AKT pro-survival signaling. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Anticancer activities of bovine and human lactoferricin-derived peptides.

    PubMed

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  7. Anticancer activity and anti-inflammatory studies of 5-aryl-1,4-benzodiazepine derivatives.

    PubMed

    Sandra, Cortez-Maya; Eduardo, Cortes Cortes; Simon, Hernandez-Ortega; Teresa, Ramirez Apan; Antonio, Nieto Camacho; Lijanova, Irina V; Marcos, Martinez-Garcia

    2012-07-01

    A series of 5-aryl-1,4-benzodiazepines with chloro- or fluoro-substituents in the second ring have been synthesized and their anti-inflammatory, myeloperoxidase and anticancer properties studied. The synthesized compounds showed potential anti-inflammatory and anticancer activities, which were enhanced in the presence of a chloro-substituent in the second ring of the 5-aryl-1,4- benzodiazepine.

  8. Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L.

    PubMed

    Mishra, Abheepsa; Gauri, Samiran S; Mukhopadhyay, Sourav K; Chatterjee, Soumya; Das, Shibendu S; Mandal, Santi M; Dey, Satyahari

    2014-04-01

    Small cyclic peptides exhibiting potent biological activity have great potential for anticancer therapy. An antiproliferative cyclic octapeptide, cyclosaplin was purified from somatic seedlings of Santalum album L. (sandalwood) using gel filtration and RP-HPLC separation process. The molecular mass of purified peptide was found to be 858 Da and the sequence was determined by MALDI-ToF-PSD-MS as 'RLGDGCTR' (cyclic). The cytotoxic activity of the peptide was tested against human breast cancer (MDA-MB-231) cell line in a dose and time-dependent manner. The purified peptide exhibited significant antiproliferative activity with an IC50 2.06 μg/mL. In a mechanistic approach, apoptosis was observed in differential microscopic studies for peptide treated MDA-MB-231 cells, which was further confirmed by mitochondrial membrane potential, DNA fragmentation assay, cell cycle analysis and caspase 3 activities. The modeling and docking experiments revealed strong affinity (kcal/mol) of peptide toward EGFR and procaspase 3. The co-localization studies revealed that the peptide sensitizes MDA-MB-231 cells by possibly binding to EGFR and induces apoptosis. This unique cyclic octapeptide revealed to be a favorable candidate for development of anticancer agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Selective Targeting of Cancer Stem Cells by 2-Aminodihydroquinoline Analogs.

    PubMed

    Park, Heejoo; Yu, Yeongji; Kim, Hyejin; Lee, Eun; Lee, Hani; Jeon, Raok; Kim, Woo-Young

    2017-04-01

    Many aminodihydroquinoline compounds have been studied to determine their cytotoxicity to cancer cells. However, anti-cancer stem cells (CSCs) activity of aminodihydroquinoline has not been tested in spite that CSC is believed to do an important roles in chemotherapy resistance and recurrence. The CSC selective targeting activities of 10 recently synthesized 2-aminodihydroquinoline analogs were examined on CSCs and bulk culture of a glioblastoma cell line. A diethylaminopropyl substituted aminodihydroquinoline, 5h, showed a strong anti-CSC effect and general cytotoxicity. However, a benzyl substituted aminodihydroquinoline, 5i, displayed the most effective anti-CSC effect, with no or small significant cytotoxic effect in bulk culture conditions. While 5h temporarily enhanced CSC marker-positive cells and eventually suppressed the CSC population, which is similar to other cytotoxic anticancer reagents reported, 5i selectively eliminated CSC marker-positive cells based on fluorescence activated cell sorter (FACS) analysis. 5h also temporarily activated some genes associated with signaling required for CSC, while 5i selectively suppressed these genes supporting that the differential effects are resulted from different molecular responses. In addition, the selective CSC effect is also found against a colon cancer cell line. Collectively, we suggest that these two novel aminodihydroquinoline compounds possess novel anti-CSC effects in colon and brain tumor derived cell lines probably through independent pathways.

  10. Anticancer substances of mushroom origin.

    PubMed

    Ivanova, T S; Krupodorova, T A; Barshteyn, V Y; Artamonova, A B; Shlyakhovenko, V A

    2014-06-01

    The present status of investigations about the anticancer activity which is inherent to medicinal mushrooms, as well as their biomedical potential and future prospects are discussed. Mushroom products and extracts possess promising immunomodulating and anticancer effects, so the main biologically active substances of mushrooms responsible for immunomodulation and direct cytoto-xicity toward cancer cell lines (including rarely mentioned groups of anticancer mushroom proteins), and the mechanisms of their antitumor action were analyzed. The existing to date clinical trials of mushroom substances are mentioned. Mushroom anticancer extracts, obtained by the different solvents, are outlined. Modern approaches of cancer treatment with implication of mushroom products, including DNA vaccinotherapy with mushroom immunomodulatory adjuvants, creation of prodrugs with mushroom lectins that can recognize glycoconjugates on the cancer cell surface, development of nanovectors etc. are discussed. The future prospects of mushroom anticancer substances application, including chemical modification of polysaccharides and terpenoids, gene engineering of proteins, and implementation of vaccines are reviewed.

  11. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity.

    PubMed

    Zhou, Qing; Hou, Yilin; Zhang, Li; Wang, Jianlin; Qiao, Youbei; Guo, Songyan; Fan, Li; Yang, Tiehong; Zhu, Lin; Wu, Hong

    2017-01-01

    Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity.

  12. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity

    PubMed Central

    Zhou, Qing; Hou, Yilin; Zhang, Li; Wang, Jianlin; Qiao, Youbei; Guo, Songyan; Fan, Li; Yang, Tiehong; Zhu, Lin; Wu, Hong

    2017-01-01

    Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity. PMID:28638469

  13. A polysaccharide from Armillaria mellea exhibits strong in vitro anticancer activity via apoptosis-involved mechanisms.

    PubMed

    Wu, Jun; Zhou, Jinxu; Lang, Yaoguo; Yao, Lei; Xu, Hai; Shi, Hubo; Xu, Shidong

    2012-11-01

    Armillaria mellea is a famous traditional Chinese medicinal and edible fungus. In this study, we purified a water-soluble polysaccharide (AMP) from the fruiting bodies of this fungus. AMP contained 94.8% carbohydrate, 2.3% uronic acid and 0.5% protein. Its molecular weight was determined as 4.6 × 10⁵ Da, as determined by high-performance gel-permeation chromatography (HPGPC). Gas chromatography (GC) analysis indicated that AMP was mainly composed of d-glucose. In vitro assay, AMP exhibited a potent tumor growth inhibitory effect on A549 cells, and induced cell cycle disruption in the G0/G1 phase, accompanied by an increment of apoptotic cells. Furthermore, AMP induced the disruption of mitochondrial membrane potential, thus leading to cytochrome c release from mitochondria and activation of caspase-3 and -9. Taken together, our results demonstrate that AMP possesses strong antitumor activities through the mitochondria dependent pathway and activation of caspase cascade through cytochrome c release. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties.

    PubMed

    Al-Said, Mansour S; Ghorab, Mostafa M; Nissan, Yassin M

    2012-07-02

    Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3-19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7) comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

  15. Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination.

    PubMed

    Sahu, Neha; Meena, Sanjeev; Shukla, Vijaya; Chaturvedi, Priyank; Kumar, Brijesh; Datta, Dipak; Arya, K R

    2018-03-01

    Medicinal plants used in traditional medicines are affordable, easily accessible, safer, less toxic and considered as a rich or efficient source of bioactive molecules for modern therapeutics. Artemisia nilagirica (AR) has a long history of use in Indian traditional medicine to combat a wide variety of diseases including cancer. Considering the vast potential of traditional healing plants to deliver safer, less toxic and efficient chemotherapeutics, we have examined anticancer activity of ethanolic extract, bioactive fractions and sub-fractions of AR against different human cancer cell lines along with their phytochemical analysis to understand the insights of novel anticancer activities for further preclinical studies. Fresh plant material of AR was procured from the wild, dried and ground. The grinded materials was extracted in ethanol (AR-01) and fractionated into butanol (AR-02), ethyl acetate (AR-03), hexane (AR-04) and water (AR-05). The cytotoxicity was evaluated against three different human cancer cell lines, i.e. colon (DLD-1), lung (A-549), and breast (MCF-7) using Sulforhodamine B (SRB) assay along with non-cancerous VERO cells as control and doxorubicin (DOX) as positive control. As we observed strong cytotoxicity of AR-03 and AR-04 fractions against tested cells and marked cytotoxic effects particularly in colon cancer cell lines, we further re-fractionated, AR-03 into (AR-03A, AR-03B, AR-03C, AR-03D, AR-03E) and AR-04 into (AR-04A, AR-04B, AR-04C) sub-fractions by column chromatography and investigated against the same panel of cell lines in addition to one more colon cancer cell line (HT-29). Phytochemical analysis was performed through HPLC-ESI-QTOF-MS/MS fragmentation. Ethyl acetate (AR-03) and hexane (AR-04) fractions were found to be the most cytotoxic against all the tested cell lines. Further, AR-03E and AR-04A sub-fractions were found more specific cytotoxic selectively against DLD-1 cancer cell lines at 100µg/ml concentration. HPLC-ESI-QTOF-MS/MS determination revealed the presence of 17 compounds in AR-01. Among them, 4 compounds were reported for the first time in this species. However, 3 identified compounds (artemorin, β-santonin and caryophyllene oxide) in AR-03E sub-fraction were commonly present in each bioactive fraction and may be considered as potential and safest cytotoxic agents for anticancer activity. Experimental evidences reported in this paper for anticancer activity validate the traditional wisdom of Artemisia nilagirica as an anticancer herbal drug. To our knowledge, this is our first novel observation of cytotoxicity and selectivity of ethyl acetate and hexane sub-fraction of AR-01 i.e. AR-03E and AR-04A respectively against DLD-1 human cancer cell lines. HPLC-ESI-QTOF-MS/MS determination attributes the identification of cytotoxic compounds which may be used for further preclinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Enhanced anti-cancer activities of a gold(III) pyrrolidinedithiocarbamato complex incorporated in a biodegradable metal-organic framework.

    PubMed

    Sun, Raymond Wai-Yin; Zhang, Ming; Li, Dan; Li, Mian; Wong, Alice Sze-Tsai

    2016-10-01

    An anti-cancer active gold(III) pyrrolidinedithiocarbamato complex [(PDTC)Au III Cl 2 ] (1) has been synthesized and characterized by means of X-ray crystallography. Compared to the pyrrolidinedithiocarbamate ligand itself, this gold(III) complex displays an up to 33-fold higher anti-cancer potency towards a panel of cancer cell lines including the cisplatin-resistant ovarian carcinoma cell line (A2780cis). As demonstrated by a set of Transwell® assay-based cytotoxicity experiments, incorporating this gold(III) complex in a zinc-based biodegradable metal-organic framework (MOF) displays a significant enhancement in anti-cancer activity towards A2780cis than the gold(III) complex alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Design, synthesis and molecular modeling studies of novel thiazolidine-2,4-dione derivatives as potential anti-cancer agents

    NASA Astrophysics Data System (ADS)

    Asati, Vivek; Bharti, Sanjay Kumar

    2018-02-01

    A series of novel thiazolidine-2,4-dione derivatives 4a-x have been designed, synthesized and evaluated for potential anti-cancer activity. The anti-cancer activity of synthesized compounds 4a-x were evaluated against selected human cancer cell line of breast (MCF-7) using sulforhodamine B (SRB) method. Among the synthesized compounds, 4x having 2-cyano phenyl group showed significant cytotoxic activity which is comparable to that of adriamycin as standard anti-cancer drug. The SAR study revealed that the substituted phenyl group on oxadiazole ring attached to thiazolidine-2,4-dione moiety showed significant growth inhibitory activity against MCF-7 cell line. The result of molecular modeling studies showed that compounds 4f, 4o and 4x having similar structural alignment as crystal ligand of protein.

  18. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects.

    PubMed

    Fedorov, Sergey N; Ermakova, Svetlana P; Zvyagintseva, Tatyana N; Stonik, Valentin A

    2013-12-02

    Many marine-derived polysaccharides and their analogues have been reported as showing anticancer and cancer preventive properties. These compounds demonstrate interesting activities and special modes of action, differing from each other in both structure and toxicity profile. Herein, literature data concerning anticancer and cancer preventive marine polysaccharides are reviewed. The structural diversity, the biological activities, and the molecular mechanisms of their action are discussed.

  19. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib.

    PubMed

    Kang, Sung Nam; Hong, Soon-Seok; Lee, Mi-Kyung; Lim, Soo-Jeong

    2012-05-30

    Tributyrin, a triglyceride analogue of butyrate, can act as a prodrug of an anticancer agent butyrate after being cleaved by intracellular enzymes. We recently demonstrated that the emulsion containing tributyrin as an inner oil phase possesses a potent anticancer activity. Herein we sought to develop tributyrin emulsion as a carrier of celecoxib, a poorly-water soluble drug with anticancer activity. Combined treatment of human HCT116 colon cancer cells with free celecoxib plus tributyrin emulsion inhibited the cellular proliferation more effectively than that of each drug alone, suggesting the possibility of tributyrin emulsion as a potential celecoxib carrier. The mean droplet size of emulsions tended to increase as the tributyrin content in emulsion increases and the concentration of celecoxib loaded in emulsions was affected by tributyrin content and the initial amount of celecoxib, but not by the total amount of surfactant mixture. The concentration of celecoxib required to inhibit the growth of HCT116 and B16-F10 cancer cells by 50% was 2.6- and 3.1-fold lowered by loading celecoxib in tributyrin emulsions, compared with free celecoxib. These data suggest that the anticancer activity of celecoxib was enhanced by loading in tributyrin emulsions, probably due to the solubilization capacity and anticancer activity of tributyrin emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Tricaproin Isolated From Simarouba glauca Inhibits the Growth of Human Colorectal Carcinoma Cell Lines by Targeting Class-1 Histone Deacetylases

    PubMed Central

    Jose, Asha; Chaitanya, Motamari V. N. L.; Kannan, Elango; Madhunapantula, SubbaRao V.

    2018-01-01

    While anticancer properties of Simarouba glauca (SG, commonly known as Paradise tree) are well documented in ancient literature, the underlying mechanisms leading to cancer cell death begin to emerge very recently. The leaves of SG have been used as potential source of anticancer agents in traditional medicine. Recently attempts have been made to isolate anticancer agents from the leaves of SG using solvent extraction, which identified quassinoids as the molecules with tumoricidal activity. However, it is not known whether the anti-cancer potential of SG leaves is just because of quassinoids alone or any other phytochemicals also contribute for the potency of SG leaf extracts. Therefore, SG leaves were first extracted with hexane, chloroform, ethyl acetate, 70% ethanol, water and anti-cancer potential (for inhibiting colorectal cancer (CRC) cells HCT-116 and HCT-15 proliferation) determined using Sulforhodamine-B (SRB) assay. The chloroform fraction with maximal anticancer activity was further fractionated by activity-guided isolation procedure and structure of the most potent compound determined using spectral analysis. Analysis of the structural characterization data showed the presence of tricaproin (TCN). TCN inhibited CRC cells growth in a time- and dose dependent manner but not the normal cell line BEAS-2B. Mechanistically, TCN reduced oncogenic Class-I Histone deacetylases (HDACs) activity, followed by inducing apoptosis in cells. In conclusion, the anti-cancer potential of SG is in part due to the presence of TCN in the leaves. PMID:29593526

  1. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    PubMed

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  2. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions

    PubMed Central

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-01-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells. PMID:28503089

  3. Anticancer activity of seaweeds.

    PubMed

    Gutiérrez-Rodríguez, Anllely G; Juárez-Portilla, Claudia; Olivares-Bañuelos, Tatiana; Zepeda, Rossana C

    2018-02-01

    Cancer is a major health problem worldwide and still lacks fully effective treatments. Therefore, alternative therapies, using natural products, have been proposed. Marine algae are an important component of the marine environment, with high biodiversity, and contain a huge number of functional compounds, including terpenes, polyphenols, phlorotannins, and polysaccharides, among others. These compounds have complex structures that have shown several biological activities, including anticancer activity, using in vitro and in vivo models. Moreover, seaweed-derived compounds target important molecules that regulate cancer processes. Here, we review our current understanding of the anticancer activity of seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    PubMed

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Anti-tumor effects of differentiation-inducing factor-1 in malignant melanoma: GSK-3-mediated inhibition of cell proliferation and GSK-3-independent suppression of cell migration and invasion.

    PubMed

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Kubo, Momoko; Igawa, Kazunobu; Tomooka, Katsuhiko; Sasaguri, Toshiyuki

    2017-08-15

    Differentiation-inducing factor-1 (DIF-1) isolated from Dictyostelium discoideum strongly inhibits the proliferation of various mammalian cells through the activation of glycogen synthase kinase-3 (GSK-3). To evaluate DIF-1 as a novel anti-cancer agent for malignant melanoma, we examined whether DIF-1 has anti-proliferative, anti-migratory, and anti-invasive effects on melanoma cells using in vitro and in vivo systems. DIF-1 reduced the expression levels of cyclin D1 and c-Myc by facilitating their degradation via GSK-3 in mouse (B16BL6) and human (A2058) malignant melanoma cells, and thereby strongly inhibited their proliferation. DIF-1 suppressed the canonical Wnt signaling pathway by lowering the expression levels of transcription factor 7-like 2 and β-catenin, key transcription factors in this pathway. DIF-1 also inhibited cell migration and invasion, reducing the expression of matrix metalloproteinase-2; however, this effect was not dependent on GSK-3 activity. In a mouse lung tumor formation model, repeated oral administrations of DIF-1 markedly reduced melanoma colony formation in the lung. These results suggest that DIF-1 inhibits cell proliferation by a GSK-3-dependent mechanism and suppresses cell migration and invasion by a GSK-3-independent mechanism. Therefore, DIF-1 may have a potential as a novel anti-cancer agent for the treatment of malignant melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hydrogen sulfide-releasing naproxen suppresses colon cancer cell growth and inhibits NF-κB signaling.

    PubMed

    Kodela, Ravinder; Nath, Niharika; Chattopadhyay, Mitali; Nesbitt, Diandra E; Velázquez-Martínez, Carlos A; Kashfi, Khosrow

    2015-01-01

    Colorectal cancer (CRC) is the second leading cause of death due to cancer and the third most common cancer in men and women in the USA. Nuclear factor kappa B (NF-κB) is known to be activated in CRC and is strongly implicated in its development and progression. Therefore, activated NF-κB constitutes a bona fide target for drug development in this type of malignancy. Many epidemiological and interventional studies have established nonsteroidal anti-inflammatory drugs (NSAIDs) as a viable chemopreventive strategy against CRC. Our previous studies have shown that several novel hydrogen sulfide-releasing NSAIDs are promising anticancer agents and are safer derivatives of NSAIDs. In this study, we examined the growth inhibitory effect of a novel H2S-releasing naproxen (HS-NAP), which has a repertoire as a cardiovascular-safe NSAID, for its effects on cell proliferation, cell cycle phase transitions, and apoptosis using HT-29 human colon cancer cells. We also investigated its effect as a chemo-preventive agent in a xenograft mouse model. HS-NAP suppressed the growth of HT-29 cells by induction of G0/G1 arrest and apoptosis and downregulated NF-κB. Tumor xenografts in mice were significantly reduced in volume. The decrease in tumor mass was associated with a reduction of cell proliferation, induction of apoptosis, and decreases in NF-κB levels in vivo. Therefore, HS-NAP demonstrates strong anticancer potential in CRC.

  7. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin

    PubMed Central

    Yoon, M J; Kang, Y J; Lee, J A; Kim, I Y; Kim, M A; Lee, Y S; Park, J H; Lee, B Y; Kim, I A; Kim, H S; Kim, S-A; Yoon, A-R; Yun, C-O; Kim, E-Y; Lee, K; Choi, K S

    2014-01-01

    Although curcumin suppresses the growth of a variety of cancer cells, its poor absorption and low systemic bioavailability have limited its translation into clinics as an anticancer agent. In this study, we show that dimethoxycurcumin (DMC), a methylated, more stable analog of curcumin, is significantly more potent than curcumin in inducing cell death and reducing the clonogenicity of malignant breast cancer cells. Furthermore, DMC reduces the tumor growth of xenografted MDA-MB 435S cells more strongly than curcumin. We found that DMC induces paraptosis accompanied by excessive dilation of mitochondria and the endoplasmic reticulum (ER); this is similar to curcumin, but a much lower concentration of DMC is required to induce this process. DMC inhibits the proteasomal activity more strongly than curcumin, possibly causing severe ER stress and contributing to the observed dilation. DMC treatment upregulates the protein levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and Noxa, and the small interfering RNA-mediated suppression of CHOP, but not Noxa, markedly attenuates DMC-induced ER dilation and cell death. Interestingly, DMC does not affect the viability, proteasomal activity or CHOP protein levels of human mammary epithelial cells, suggesting that DMC effectively induces paraptosis selectively in breast cancer cells, while sparing normal cells. Taken together, these results suggest that DMC triggers a stronger proteasome inhibition and higher induction of CHOP compared with curcumin, giving it more potent anticancer effects on malignant breast cancer cells. PMID:24625971

  8. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency

    NASA Astrophysics Data System (ADS)

    Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji

    2016-08-01

    Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics.

  9. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity.

    PubMed

    Mantu, Dorina; Antoci, Vasilichia; Moldoveanu, Costel; Zbancioc, Gheorghita; Mangalagiu, Ionel I

    2016-01-01

    The design, synthesis, structure, and in vitro anticancer and antimycobacterial activity of new hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives are described. The strategy adopted for synthesis is straight and efficient, involving a three-step setup procedure: N-acylation, N-alkylation, and quaternization of nitrogen heterocycle. The solubility in microbiological medium and anticancer and antimycobacterial activity of a selection of new synthesized compounds were evaluated. The hybrid derivatives have an excellent solubility in microbiological medium, which make them promising from the pharmacological properties point of view. One of the hybrid compounds, 9 (with a benzimidazole and 8-aminoquinoline skeleton), exhibits a very good and selective antitumor activity against Renal Cancer A498 and Breast Cancer MDA-MB-468. Moreover, the anticancer assay suggests that the hybrid Imz (Bimz)/2-AP (8-AQ) compounds present a specific affinity to Renal Cancer A498. Concerning the antimycobacterial activity, only the hybrid compound, 9, has a significant activity. SAR correlations have been performed.

  10. Evaluation of anti-tumorigenic activity of BP3B against colon cancer with patient-derived tumor xenograft model.

    PubMed

    Kim, Hye-Youn; Kim, Jinhee; Ha Thi, Huyen Trang; Bang, Ok-Sun; Lee, Won-Suk; Hong, Suntaek

    2016-11-18

    KIOM-CRC#BP3B (BP3B) is a novel herbal prescription that is composed of three plant extracts. Our preliminary study identified that BP3B exhibited potent anti-proliferative activity against various types of cancer cell lines in vitro. Because the in vivo anti-tumor effect of BP3B is not evaluated before clinical trial, we want to test it using patient's samples. To confirm the in vivo anti-cancer effect of BP3B, we used genetically characterized patient-derived colon tumor xenograft (PDTX) mouse model. Anti-cancer activity was evaluated with apoptosis, proliferation, angiogenesis and histological analysis. Oral administration of BP3B significantly inhibited the tumor growth in two PDTX models. Furthermore, TUNEL assay showed that BP3B induced apoptosis of tumor tissues, which was associated with degradation of PARP and Caspase 8 and activation of Caspase 3. We also observed that BP3B inhibited cancer cell proliferation by down-regulation of Cyclin D1 and induction of p27 proteins. Inhibition of angiogenesis in BP3B-treated group was observed with immunofluorescence staining using CD31 and Tie-2 antibodies. These findings indicated that BP3B has a strong growth-inhibitory activity against colon cancer in in vivo model and will be a good therapeutic candidate for treatment of refractory colon cancer.

  11. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives.

    PubMed

    Li, Yang; Feng, Ling; Song, Zhi-Fang; Li, Hai-Bei; Huai, Qi-Yong

    2016-02-06

    A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent.

  12. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  13. Functionalization of peptide nucleolipid bioconjugates and their structure anti-cancer activity relationship studies.

    PubMed

    Rana, Niki; Cultrara, Christopher; Phillips, Mariana; Sabatino, David

    2017-09-01

    In the search for more potent peptide-based anti-cancer conjugates the generation of new, functionally diverse nucleolipid derived D-(KLAKLAK) 2 -AK sequences has enabled a structure and anti-cancer activity relationship study. A reductive amination approach was key for the synthesis of alkylamine, diamine and polyamine derived nucleolipids as well as those incorporating heterocyclic functionality. The carboxy-derived nucleolipids were then coupled to the C-terminus of the D-(KLAKLAK) 2 -AK killer peptide sequence and produced with and without the FITC fluorophore for investigating biological activity in cancer cells. The amphiphilic, α-helical peptide-nucleolipid bioconjugates were found to exhibit variable effects on the viability of MM.1S cells, with the histamine derived nucleolipid peptide bioconjugate displaying the most significant anti-cancer effects. Thus, functionally diverse nucleolipids have been developed to fine-tune the structure and anti-cancer properties of killer peptide sequences, such as D-(KLAKLAK) 2 -AK. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery

    PubMed Central

    2018-01-01

    Paclitaxel and docetaxel are among the most widely used chemotherapeutic drugs against various types of cancer. However, these drugs cause undesirable side effects as well as drug resistance. Therefore, it is essential to develop next-generation taxoid anticancer agents with better pharmacological properties and improved activity especially against drug-resistant and metastatic cancers. The SAR studies by the authors have led to the development of numerous highly potent novel second- and third-generation taxoids with systematic modifications at the C-2, C-10, and C-3′ positions. The third-generation taxoids showed virtually no difference in potency against drug-resistant and drug-sensitive cell lines. Some of the next-generation taxoids also exhibited excellent potency against cancer stem cells. This account summarizes concisely investigations into taxoids over 25 years based on a strong quest for the discovery and development of efficacious next-generation taxoids. Discussed herein are SAR studies on different types of taxoids, a common pharmacophore proposal for microtubule-stabilizing anticancer agents and its interesting history, the identification of the paclitaxel binding site and its bioactive conformation, characteristics of the next-generation taxoids in cancer cell biology, including new aspects of their mechanism of action, and the highly efficacious tumor-targeted drug delivery of potent next-generation taxoids. PMID:29468872

  15. Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds

    PubMed Central

    Costa, Margarida; Garcia, Mónica; Costa-Rodrigues, João; Costa, Maria Sofia; Ribeiro, Maria João; Fernandes, Maria Helena; Barros, Piedade; Barreiro, Aldo; Vasconcelos, Vitor; Martins, Rosário

    2013-01-01

    The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria. PMID:24384871

  16. Synthesis, DNA binding ability and anticancer activity of 2-heteroaryl substituted benzimidazoles linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates.

    PubMed

    Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda

    2013-08-01

    As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.

  17. Pea, Pisum sativum, and Its Anticancer Activity

    PubMed Central

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment. PMID:28503053

  18. Possible Anticancer Mechanisms of Some Costus speciosus Active Ingredients Concerning Drug Discovery.

    PubMed

    El-Far, Ali H; Badria, Faried A; Shaheen, Hazem M

    2016-01-01

    Costus speciosus is native to South East Asia, especially found in India, Srilanka, Indonesia and Malaysia. C. speciosus have numerous therapeutic potentials against a wide variety of complains. The therapeutic properties of C. speciosus are attributed to the presence of various ingredients such as alkaloids, flavonoids, glycosides, phenols, saponins, sterols and sesquiterpenes. This review presented the past, present, and the future status of C. speciosus active ingredients to propose a future use as a potential anticancer agent. All possible up-regulation of cellular apoptotic molecules as p53, p21, p27, caspases, reactive oxygen species (ROS) generation and others attribute to the anticancer activity of C. speciosus along the down-regulation of anti-apoptotic agents such as Akt, Bcl2, NFKB, STAT3, JAK, MMPs, actin, surviving and vimentin. Eventually, we recommend further investigation of different C. speciosus extracts, using some active ingredients and evaluate the anticancer effect of these chemicals against different cancers.

  19. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms

    PubMed Central

    Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil

    2016-01-01

    Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape. PMID:27491007

  20. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms

    NASA Astrophysics Data System (ADS)

    Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil

    2016-08-01

    Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape.

  1. Synthesis and cytotoxic evaluation of novel symmetrical taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Sicen; He, Langchon

    2011-07-01

    It has been demonstrated that taspine derivatives act as anticancer agents, thus we designed and synthesized a novel class of symmetrical biphenyl derivatives. We evaluated the cytotoxicity and antitumor activity of biphenyls against five human tumor and normal cell lines. The results indicated that the majority of the compounds exhibited anticancer activity equivalent to or greater than the positive control. Compounds (11) and (12) demonstrated the most potent cytotoxic activity with IC₅₀ values between 19.41 µM and 29.27 µM. The potent antiproliferative capabilities of these compounds against ECV304 human transformed endothelial cells indicated that these biphenyls could potentially serve as antiangiogenic agents. We also reviewed the relationship between structure and activity based on the experimental results. Our findings provide a good starting point for further development of symmetrical biphenyl derivatives as potential novel anticancer agents.

  2. Current situation and future usage of anticancer drug databases.

    PubMed

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  3. Cisplatin binds to pre-miR-200b and impairs its processing to mature microRNA.

    PubMed

    Mezencev, R; Wartell, R M

    2018-01-01

    Cisplatin is an important anticancer drug with a complex mode of action, a variety of possible targets, and numerous resistance mechanisms. While genomic DNA has traditionally been considered to be its most critical anticancer target, several lines of evidence suggest that various RNAs and other biomolecules may play a role in its anticancer mode of action. In this report we demonstrate that cisplatin modifies pre-miR-200b, impairs its processing to mature miRNA, and decreases miR-200b expression in ovarian cancer cells. Considering the role of miR-200b in epithelial-to-mesenchymal transition and cancer chemosensitivity, cisplatin-induced modification of pre-miR-200b and subsequent deregulation of mature miR-200b may, depending on cell context, limit anticancer activity of this important anticancer drug. More gener- ally, precursor miRNAs may be important targets of cisplatin and play a role in this drug's anticancer activity or modulate cell responses to this drug.

  4. Withaferin-A Induces Apoptosis in Osteosarcoma U2OS Cell Line via Generation of ROS and Disruption of Mitochondrial Membrane Potential.

    PubMed

    Zhang, Hui-Liang; Zhang, Hong

    2017-01-01

    Withaferin-A (WF-A) is a well-known dietary compound isolated from Withania sominifera . It has tremendous pharmacological potential and has been shown to exhibit antiproliferative activity against several types of cancerous cells. Currently, the main focus of anti-cancer therapeutic development is to identify apoptosis inducing drug-like molecules. Osteosarcoma is a rare type of osteocancer, affecting human. The present study therefore focused on the evaluation of antitumor potential of WF-A against several osteosarcoma cell lines. MTT assay was used to evaluate WF-A against osteosarcoma cell lines and to calculate the IC 50 . DAPI staining was used to confirm the apoptosis inducing potential of WF-A. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, and Western blotting were used to confirm the basis of apoptosis. The results revealed that that WF-A exhibited strong antiproliferative activity against all the cells lines, with IC 50 ranging from 0.32 to 7.6 μM. The lowest IC 50 (0.32 μM) was observed against U2OS cell line and therefore it was selected for further analysis. DAPI staining indicated that WF-A exhibited antiproliferative activity via induction of apoptosis. Moreover, WF-A induced ROS-mediated reduction in mitochondrial membrane potential ΔΨm) in a dose-dependent manner and activation of caspase-3 in osteosarcoma cells. We propose that WF-A may prove a potent therapeutic agent for inducing apoptosis in osteosarcoma cell lines via generation of ROS and disruption of mitochondrial membrane potential. WF-A exhibits strong anticancer activity against osteosarcoma cell linesAntiproliferative activity of WF-A is via induction of apoptosisWF-A induced ROS-mediated reduction in mitochondrial membrane potentialWF-A induced expression of caspase-3 in osteosarcoma cells. Abbreviations used: WA: Withaferin A; ROS: Reactive oxygen species; OS: Osteosarcoma; MMP: Mitochondrial membrane potential.

  5. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy.

    PubMed

    Liechtenstein, Therese; Perez-Janices, Noemi; Blanco-Luquin, Idoia; Goyvaerts, Cleo; Schwarze, Julia; Dufait, Ines; Lanna, Alessio; Ridder, Mark De; Guerrero-Setas, David; Breckpot, Karine; Escors, David

    Efficacious antitumor vaccines strongly stimulate cancer-specific effector T cells and counteract the activity of tumor-infiltrating immunosuppressive cells. We hypothesised that combining cytokine expression with silencing programmed cell death ligand 1 (PD-L1) could potentiate anticancer immune responses of lentivector vaccines. Thus, we engineered a collection of lentivectors that simultaneously co-expressed an antigen, a PD-L1-silencing shRNA, and various T cell-polarising cytokines, including interferon γ (IFNγ), transforming growth factor β (TGFβ) or interleukins (IL12, IL15, IL23, IL17A, IL6, IL10, IL4). In a syngeneic B16F0 melanoma model and using tyrosinase related protein 1 (TRP1) as a vaccine antigen, we found that simultaneous delivery of IL12 and a PD-L1-silencing shRNA was the only combination that exhibited therapeutically relevant anti-melanoma activities. Mechanistically, we found that delivery of the PD-L1 silencing construct boosted T cell numbers, inhibited in vivo tumor growth and strongly cooperated with IL12 cytokine priming and antitumor activities. Finally, we tested the capacities of our vaccines to counteract tumor-infiltrating myeloid-derived suppressor cell (MDSC) activities ex vivo . Interestingly, the lentivector co-expressing IL12 and the PD-L1 silencing shRNA was the only one that counteracted MDSC suppressive activities, potentially underlying the observed anti-melanoma therapeutic benefit. We conclude that (1) evaluation of vaccines in healthy mice has no significant predictive value for the selection of anticancer treatments; (2) B16 cells expressing xenoantigens as a tumor model are of limited value; and (3) vaccines which inhibit the suppressive effect of MDSC on T cells in our ex vivo assay show promising and relevant antitumor activities.

  6. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy

    PubMed Central

    Liechtenstein, Therese; Perez-Janices, Noemi; Blanco-Luquin, Idoia; Goyvaerts, Cleo; Schwarze, Julia; Dufait, Ines; Lanna, Alessio; Ridder, Mark De; Guerrero-Setas, David; Breckpot, Karine; Escors, David

    2014-01-01

    Efficacious antitumor vaccines strongly stimulate cancer-specific effector T cells and counteract the activity of tumor-infiltrating immunosuppressive cells. We hypothesised that combining cytokine expression with silencing programmed cell death ligand 1 (PD-L1) could potentiate anticancer immune responses of lentivector vaccines. Thus, we engineered a collection of lentivectors that simultaneously co-expressed an antigen, a PD-L1-silencing shRNA, and various T cell-polarising cytokines, including interferon γ (IFNγ), transforming growth factor β (TGFβ) or interleukins (IL12, IL15, IL23, IL17A, IL6, IL10, IL4). In a syngeneic B16F0 melanoma model and using tyrosinase related protein 1 (TRP1) as a vaccine antigen, we found that simultaneous delivery of IL12 and a PD-L1-silencing shRNA was the only combination that exhibited therapeutically relevant anti-melanoma activities. Mechanistically, we found that delivery of the PD-L1 silencing construct boosted T cell numbers, inhibited in vivo tumor growth and strongly cooperated with IL12 cytokine priming and antitumor activities. Finally, we tested the capacities of our vaccines to counteract tumor-infiltrating myeloid-derived suppressor cell (MDSC) activities ex vivo. Interestingly, the lentivector co-expressing IL12 and the PD-L1 silencing shRNA was the only one that counteracted MDSC suppressive activities, potentially underlying the observed anti-melanoma therapeutic benefit. We conclude that (1) evaluation of vaccines in healthy mice has no significant predictive value for the selection of anticancer treatments; (2) B16 cells expressing xenoantigens as a tumor model are of limited value; and (3) vaccines which inhibit the suppressive effect of MDSC on T cells in our ex vivo assay show promising and relevant antitumor activities. PMID:25954597

  7. Hepatocyte SLAMF3 reduced specifically the multidrugs resistance protein MRP-1 and increases HCC cells sensitization to anti-cancer drugs

    PubMed Central

    Eugenio, Mélanie Simoes; Demey, Baptiste; Singh, Amrathlal Rabbind; Ossart, Christèle; Bagami, Mohammed Al; Regimbeau, Jean-Marc; Nguyen-Khac, Eric; Naassila, Mickael

    2016-01-01

    Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients. PMID:27081035

  8. Hepatocyte SLAMF3 reduced specifically the multidrugs resistance protein MRP-1 and increases HCC cells sensitization to anti-cancer drugs.

    PubMed

    Fouquet, Grégory; Debuysscher, Véronique; Ouled-Haddou, Hakim; Eugenio, Mélanie Simoes; Demey, Baptiste; Singh, Amrathlal Rabbind; Ossart, Christèle; Al Bagami, Mohammed; Regimbeau, Jean-Marc; Nguyen-Khac, Eric; Naassila, Mickael; Marcq, Ingrid; Bouhlal, Hicham

    2016-05-31

    Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients.

  9. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    PubMed Central

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  10. Interactions of cisplatin with non-DNA targets and their influence on anticancer activity and drug toxicity: the complex world of the platinum complex.

    PubMed

    Mezencev, Roman

    2015-01-01

    Since the discovery of its anticancer activity in 1970s, cisplatin and its analogs have become widely used in clinical practice, being administered to 40-80% of patients undergoing chemotherapy for solid tumors. The fascinating story of this drug continues to evolve presently, which includes advances in our understanding of complexity of molecular mechanisms involved in its anticancer activity and drug toxicity. While genomic DNA has been generally recognized as the most critical pharmacological target of cisplatin, the results reported across multiple disciplines suggest that other targets and molecular interactions are likely involved in the anticancer mode of action, drug toxicity and resistance of cancer cells to this remarkable anticancer drug. This article reviews interactions of cisplatin with non-DNA targets, including RNAs, proteins, phospholipids and carbohydrates in the context of its pharmacological activity and drug toxicity. Some of these non-DNA targets and associated mechanisms likely act in a highly concerted manner towards the biological outcome in cisplatin-treated tumors; therefore, the understanding of complexity of cisplatin interactome may open new avenues for modulation of its clinical efficacy or for designing more efficient platinum-based anticancer drugs to reproduce the success of cisplatin in the treatment of highly curable testicular germ cell tumors in its therapeutic applications to other cancers.

  11. Curcumin as therapeutics for the treatment of head and neck squamous cell carcinoma by activating SIRT1

    PubMed Central

    Hu, An; Huang, Jing-Juan; Li, Rui-Lin; Lu, Zhao-Yang; Duan, Jun-Li; Xu, Wei-Hua; Chen, Xiao-Ping; Fan, Jing-Ping

    2015-01-01

    SIRT1 is one of seven mammalian homologs of Sir2 that catalyzes NAD+-dependent protein deacetylation. The aim of the present study is to explore the effect of SIRT1 small molecule activator on the anticancer activity and the underlying mechanism. We examined the anticancer activity of a novel oral agent, curcumin, which is the principal active ingredient of the traditional Chinese herb Curcuma Longa. Treatment of FaDu and Cal27 cells with curcumin inhibited growth and induced apoptosis. Mechanistic studies showed that anticancer activity of curcumin is associated with decrease in migration of HNSCC and associated angiogenesis through activating of intrinsic apoptotic pathway (caspase-9) and extrinsic apoptotic pathway (caspase-8). Our data demonstrating that anticancer activity of curcumin is linked to the activation of the ATM/CHK2 pathway and the inhibition of nuclear factor-κB. Finally, increasing SIRT1 through small molecule activator curcumin has shown beneficial effects in xenograft mouse model, indicating that SIRT1 may represent an attractive therapeutic target. Our studies provide the preclinical rationale for novel therapeutics targeting SIRT1 in HNSCC. PMID:26299580

  12. Utilization of metabonomics to identify serum biomarkers in murine H22 hepatocarcinoma and deduce antitumor mechanism of Rhizoma Paridis saponins.

    PubMed

    Qiu, Peiyu; Man, Shuli; Yang, He; Fan, Wei; Yu, Peng; Gao, Wenyuan

    2016-08-25

    Murine H22 hepatocarcinoma model is so popular to be used for the preclinical anticancer candidate's evaluation. However, the metabolic biomarkers of this model were not identified. Meanwhile, Rhizoma Paridis saponins (RPS) as natural products have been found to show strong antitumor activity, while its anti-cancer mechanism is not clear. To search for potential metabolite biomarkers of this model, serum metabonomics approach was applied to detect the variation of metabolite biomarkers and the related metabolism genes and signaling pathway were used to deduce the antitumor mechanisms of RPS. As a result, ten serum metabolites were identified in twenty-four mice including healthy mice, non-treated cancer mice, RPS-treated cancer mice and RPS-treated healthy mice. RPS significantly decreased tumor weight correlates to down-regulating lactate, acetate, N-acetyl amino acid and glutamine signals (p < 0.05), which were marked metabolites screened according to the very important person (VIP), loading plot and receiver operating characteristic curve (ROC) tests. For the analysis of metabolic enzyme related genes, RPS reversed the aerobic glycolysis through activating tumor suppressor p53 and PTEN, and suppressed FASN to inhibit lipogenesis. What's more, RPS repressed Myc and GLS expression and decreased glutamine level. The regulating PI3K/Akt/mTOR and HIF-1α/Myc/Ras networks also participated in these metabolic changes. Taken together, RPS suppressed ATP product made the tumor growth slow, which indicated a good anti-cancer effect and new angle for understanding the mechanism of RPS. In conclusion, this study demonstrated that the utility of (1)H NMR metabolic profiles taken together with tumor weight and viscera index was a promising screening tool for evaluating the antitumor effect of candidates. In addition, RPS was a potent anticancer agent through inhibiting cancer cellular metabolism to suppress proliferation in hepatoma H22 tumor murine, which promoted the application of RPS in the future. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Preferences of advanced cancer patients for communication on anticancer treatment cessation and the transition to palliative care.

    PubMed

    Umezawa, Shino; Fujimori, Maiko; Matsushima, Eisuke; Kinoshita, Hiroya; Uchitomi, Yosuke

    2015-12-01

    The objective of this study was to clarify the communication preferences of patients with advanced cancer regarding discussions about ending anticancer treatment and transitioning to palliative care and to explore the variables associated with those preferences. Participants were 106 Japanese patients with cancer who had been informed at least 1 week earlier about the cessation of their anticancer treatment. They completed a survey measuring their preferences for communication about ending anticancer treatment and transitioning to palliative care as well as their demographic characteristics. Medical records were also examined to investigate medical characteristics. Results of the descriptive analysis indicated that patients strongly preferred their physicians to listen to their distress and concerns (96%), to assure them that their painful symptoms would be controlled (97.1%), and to explain the status of their illness and the physical symptoms that would likely occur in the future (95.1%). Multiple regression analyses identified the factors associated with these preferences: telling patients to prepare mentally and informing them of their expected life expectancy were associated with cancer site; sustaining hope was associated with cancer site and children; and empathic paternalism was associated with duration since cancer diagnosis. The majority of patients preferred their physicians to be realistic about their likely future and wanted to be reassured that their painful symptoms would be controlled. For patients with cancer at certain sites, those with children, and those more recently diagnosed, physicians should communicate carefully and actively by providing information on life expectancy and mental preparation, sustaining hope, and behaving with empathic paternalism. © 2015 American Cancer Society.

  14. Label-free Raman spectroscopy for accessing intracellular anticancer drug release on gold nanoparticles.

    PubMed

    Ock, Kwang-Su; Ganbold, Erdene Ochir; Park, Jin; Cho, Keunchang; Joo, Sang-Woo; Lee, So Yeong

    2012-06-21

    We investigated glutathione (GSH)-induced purine or pyrimidine anticancer drug release on gold nanoparticle (AuNP) surfaces by means of label-free Raman spectroscopy. GSH-triggered releases of 6-thioguanine (6TG), gemcitabine (GEM), acycloguanosine (ACY), and fadrozole (FAD) were examined in a comparative way by means of surface-enhanced Raman scattering (SERS). The GSH-induced dissociation constant of GEM (or ACY/FAD) from AuNPs was estimated to be larger by more than 38 times than that of 6TG from the kinetic relationship. Tripeptide control experiments were presented to check the turn-off Raman signalling mechanism. Dark-field microscopy (DFM) and transmission electron microscopy (TEM) indicated the intracellular AuNP loads. After their cellular uptake, GEM, ACY, and FAD would not show SERS intensities as strong as 6TG. This may be due to easier release of GEM, ACY, and FAD than 6TG by intracellular reducing species including GSH. We observed fairly strong SERS signals of GEM and 6TG in cell culture media solution. Our CCK-8 cytotoxicity assay data support that 6TG-AuNPs did not exhibit a substantial decrease in cell viability presumably due to strong binding. Label-free confocal Raman spectroscopy can be utilized as an effective tool to access intracellular anticancer drug release.

  15. 2-Deoxy-D-glucose Sensitizes Cancer Cells to Barasertib and Everolimus by ROS-independent Mechanism(s).

    PubMed

    Zhelev, Zhivko; Ivanova, Donika; Aoki, Ichio; Saga, Tsuneo; Bakalova, Rumiana

    2015-12-01

    The aim of the present study was to investigate: (i) the possibility of sensitizing cancer cells to anticancer drugs using the redox modulator 2-deoxy-D-glucose (2-DDG); (ii) to find such combinations with synergistic cytotoxic effect; (iii) and to clarify the role of reactive oxygen species (ROS) for induction of apoptosis and cytotoxicity through these combinations. The study covers 15 anticancer drugs--both conventional and new-generation. Four parameters were analyzed simultaneously in Jurkat leukemia cells, treated by drugs or 2-DDG (separately or in combination): cell viability, induction of apoptosis, levels of ROS, and level of protein-carbonyl products. Very well-expressed synergistic cytotoxic effects were found after 48-h treatment of Jurkat cells with 2-DDG in combination with: palbociclib, everolimus, lonafarnib, bortezomib, and barasertib. The synergistic cytotoxic effect of everolimus with 2-DDG was accompanied by very strong induction of apoptosis in cells, but a very strong reduction of ROS level. Changes in the levels of protein-carbonyl products were not detected. The synergistic cytotoxic effect of barasertib with 2-DDG was accompanied by very strong induction of apoptosis in cells, without any increase of ROS levels, but with an enhancement of protein-carbonyl products. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Cytotoxic Activity and Antiproliferative Effects of Crude Skin Secretion from Physalaemus nattereri (Anura: Leptodactylidae) on in vitro Melanoma Cells.

    PubMed

    Cruz e Carvalho, Andréa; Márquez, César Augusto Prías; Azevedo, Ricardo Bentes; Joanitti, Graziella Anselmo; Pires Júnior, Osmindo Rodrigues; Fontes, Wagner; Castro, Mariana S

    2015-10-08

    Anuran secretions are rich sources of bioactive molecules, including antimicrobial and antitumoral compounds. The aims of this study were to investigate the therapeutic potential of Physalaemus nattereri skin secretion against skin cancer cells, and to assess its cytotoxic action mechanisms on the murine melanoma cell line B16F10. Our results demonstrated that the crude secretion reduced the viability of B16F10 cells, causing changes in cell morphology (e.g., round shape and structure shrinkage), reduction in mitochondrial membrane potential, increase in phosphatidylserine exposure, and cell cycle arrest in S-phase. Together, these changes suggest that tumor cells die by apoptosis. This skin secretion was also subjected to chromatographic fractioning using RP-HPLC, and eluted fractions were assayed for antiproliferative and antibacterial activities. Three active fractions showed molecular mass components in a range compatible with peptides. Although the specific mechanisms causing the reduced cell viability and cytotoxicity after the treatment with crude secretion are still unknown, it may be considered that molecules, such as the peptides found in the secretion, are effective against B16F10 tumor cells. Considering the growing need for new anticancer drugs, data presented in this study strongly reinforce the validity of P. nattereri crude secretion as a rich source of new anticancer molecules.

  17. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities

    PubMed Central

    Shanab, Sanaa MM; Mostafa, Soha SM; Shalaby, Emad A; Mahmoud, Ghada I

    2012-01-01

    Objective To investigate the antioxidant and anticancer activities of aqueous extracts of nine microalgal species. Methods Variable percentages of major secondary metabolites (total phenolic content, terpenoids and alkaloids) as well as phycobiliprotein pigments (phycocyanin, allophycocyanin and phycoerythrin) in the aqueous algal extracts were recorded. Antioxidant activity of the algal extracts was performed using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) test and 2,2′- azino-bis (ethylbenzthiazoline-6-sulfonic acid (ABTS.+) radical cation assay. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma cell (EACC) and Human hepatocellular cancer cell line (HepG2). Results Antioxidant activity of the algal extracts was performed using DPPH test and ABTS.+ radical cation assays which revealed 30.1-72.4% and 32.0-75.9% respectively. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma Cell (EACC) and Human Hepatocellular cancer cell line (HepG2) with an activity ranged 87.25% and 89.4% respectively. Culturing the promising cyanobacteria species; Nostoc muscorum and Oscillatoria sp. under nitrogen stress conditions (increasing and decreasing nitrate content of the normal BG11 medium, 1.5 g/L), increased nitrate concentration (3, 6 and 9 g/L) led to a remarkable increase in phycobilin pigments followed by an increase in both antioxidant and anticancer activities in both cyanobacterial species. While the decreased nitrate concentration (0.75, 0.37 and 0.0 g/L) induced an obvious decrease in phycobilin pigments with complete absence of allophycocyanin in case of Oscillatoria sp. Conclusions Nitrogen starvation (0.00 g/L nitrate) induced an increase and comparable antioxidant and anticancer activities to those cultured in the highest nitrate content. PMID:23569980

  18. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    PubMed

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-07-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.

  19. Immunologically active biomaterials for cancer therapy.

    PubMed

    Ali, Omar A; Mooney, David J

    2011-01-01

    Our understanding of immunological regulation has progressed tremendously alongside the development of materials science, and at their intersection emerges the possibility to employ immunologically active biomaterials for cancer immunotherapy. Strong and sustained anticancer, immune responses are required to clear large tumor burdens in patients, but current approaches for immunotherapy are formulated as products for delivery in bolus, which may be indiscriminate and/or shortlived. Multifunctional biomaterial particles are now being developed to target and sustain antigen and adjuvant delivery to dendritic cells in vivo, and these have the potential to direct and prolong antigen-specific T cell responses. Three-dimensional immune cell niches are also being developed to regulate the recruitment, activation and deployment of immune cells in situ to promote potent antitumor responses. Recent studies demonstrate that materials with immune targeting and stimulatory capabilities can enhance the magnitude and duration of immune responses to cancer antigens, and preclinical results utilizing material-based immunotherapy in tumor models show a strong therapeutic benefit, justifying translation to and future testing in the clinic.

  20. Laetrile/Amygdalin (PDQ®)—Health Professional Version

    Cancer.gov

    Laetrile (Amygdalin) has shown little anticancer activity in animal studies and no anticancer activity in human clinical trials. Laetrile is not approved for use in the United States. Get detailed information about use of Laetrile for cancer in this summary for clinicians.

  1. Laetrile/Amygdalin (PDQ®)—Patient Version

    Cancer.gov

    Laetrile (Amygdalin) has shown little anticancer activity in animal studies and no anticancer activity in human clinical trials. Laetrile is not approved for use in the United States. Learn more about the use of Laetrile for cancer in this expert-reviewed summary.

  2. Studies on anticancer activities of lactoferrin and lactoferricin.

    PubMed

    Yin, Cui Ming; Wong, Jack Ho; Xia, Jiang; Ng, Tzi Bun

    2013-09-01

    This review mainly summarizes results of recent studies on the anticancer activity of the multifunctional protein lactoferrin (Lf) and its derived peptide lactoferricin (Lfcin). The basic information on Lf and Lfcin, such as their sources, structures, and biological properties which favor their antitumor activity is introduced. The major anticancer mechanisms of Lf and Lfcin including cell cycle arrest, apoptosis, anti-angiogenesis, antimetastasis, immune modulation and necrosis are discussed. Other information from in vivo studies employing a mouse model is also provided. In addition, the roles of talatoferrin and delta lactoferrin, as well as improvement in drug delivery will be covered.

  3. Molecular designing and in silico evaluation of darunavir derivatives as anticancer agents

    PubMed Central

    Mahto, Manoj kumar; Yellapu, Nanda Kumar; Kilaru, Ravendra Babu; Chamarthi, Naga Raju; Bhaskar, Matcha

    2014-01-01

    Darunavir is a synthetic nonpeptidic protease inhibitor which has been tested for anticancer properties. To deduce and enhance the anticancer activity of the Darunavir, we have modified its reactive moiety in an effective way. We designed 9 analogues in ChemBioOffice 2010 and minimized using the LigPrep tool of Schrödinger 2011. These analogues can obstruct the activity of other signalling pathways which are implicated in many tumors. Results of the QikProp showed that all the analogues lied in the specified range of all the pharmacokinetic (ADMET) properties required to become the successful drug. Docking study was performed to test its anticancer activity against the biomarkers of the five main types of cancers i.e. bone, brain, breast, colon and skin cancer. Grid was generated for each oncoproteins by specifying the active site amino acids. The binding model of best scoring analogue with each protein was assessed from their G-scores and disclosed by docking analysis using the XP visualizer tool. An analysis of the receptor-ligand interaction studies revealed that these nine Darunavir analogues are active against all cancer biomarkers and have the features to prove themselves as anticancer drugs, further to be synthesized and tested against the cell lines. PMID:24966524

  4. TIPdb: a database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan.

    PubMed

    Lin, Ying-Chi; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng; Tung, Chun-Wei

    2013-01-01

    The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs.

  5. TIPdb: A Database of Anticancer, Antiplatelet, and Antituberculosis Phytochemicals from Indigenous Plants in Taiwan

    PubMed Central

    Lin, Ying-Chi; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng; Tung, Chun-Wei

    2013-01-01

    The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs. PMID:23766708

  6. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells

    PubMed Central

    2011-01-01

    Background Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS. PMID:21453492

  7. Half-sandwich ruthenium(II) biotin conjugates as biological vectors to cancer cells.

    PubMed

    Babak, Maria V; Plażuk, Damian; Meier, Samuel M; Arabshahi, Homayon John; Reynisson, Jóhannes; Rychlik, Błażej; Błauż, Andrzej; Szulc, Katarzyna; Hanif, Muhammad; Strobl, Sebastian; Roller, Alexander; Keppler, Bernhard K; Hartinger, Christian G

    2015-03-23

    Ruthenium(II)-arene complexes with biotin-containing ligands were prepared so that a novel drug delivery system based on tumor-specific vitamin-receptor mediated endocytosis could be developed. The complexes were characterized by spectroscopic methods and their in vitro anticancer activity in cancer cell lines with various levels of major biotin receptor (COLO205, HCT116 and SW620 cells) was tested in comparison with the ligands. In all cases, coordination of ruthenium resulted in significantly enhanced cytotoxicity. The affinity of Ru(II) -biotin complexes to avidin was investigated and was lower than that of unmodified biotin. Hill coefficients in the range 2.012-2.851 suggest strong positive cooperation between the complexes and avidin. To estimate the likelihood of binding to the biotin receptor/transporter, docking studies with avidin and streptavidin were conducted. These explain, to some extent, the in vitro anticancer activity results and support the conclusion that these novel half-sandwich ruthenium(II)-biotin conjugates may act as biological vectors to cancer cells, although no clear relationship between the cellular Ru content, the cytotoxicity, and the presence of the biotin moiety was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Potential Anticancer Properties of Grape Antioxidants

    PubMed Central

    Zhou, Kequan; Raffoul, Julian J.

    2012-01-01

    Dietary intake of foods rich in antioxidant properties is suggested to be cancer protective. Foods rich in antioxidant properties include grape (Vitis vinifera), one of the world's largest fruit crops and most commonly consumed fruits in the world. The composition and cancer-protective effects of major phenolic antioxidants in grape skin and seed extracts are discussed in this review. Grape skin and seed extracts exert strong free radical scavenging and chelating activities and inhibit lipid oxidation in various food and cell models in vitro. The use of grape antioxidants are promising against a broad range of cancer cells by targeting epidermal growth factor receptor (EGFR) and its downstream pathways, inhibiting over-expression of COX-2 and prostaglandin E2 receptors, or modifying estrogen receptor pathways, resulting in cell cycle arrest and apoptosis. Interestingly, some of these activities were also demonstrated in animal models. However, in vivo studies have demonstrated inconsistent antioxidant efficacy. Nonetheless, a growing body of evidence from human clinical trials has demonstrated that consumption of grape, wine and grape juice exerts many health-promoting and possible anti-cancer effects. Thus, grape skin and seed extracts have great potential in cancer prevention and further investigation into this exciting field is warranted. PMID:22919383

  9. Structure elucidation, anticancer and antioxidant activities of a novel polysaccharide from Gomphus clavatus Gray.

    PubMed

    Ding, Xiang; Hou, Yiling; Zhu, Yuanxiu; Wang, Panpan; Fu, Lei; Zhu, Hongqing; Zhang, Nan; Qin, Hang; Qu, Wei; Wang, Fang; Hou, Wanru

    2015-06-01

    A novel heteropolysaccharide from the fruiting bodies of Gomphus clavatus Gray was isolated through Sephadex G-200 and DEAE-cellulose columns. The Gomphus clavatus Gray polysaccharide (GCG-1) was mainly composed of β-D-glucosepyranose (β-D-Glu) and α-D-galactopyranose (α-D-Gal) in a ratio of 3:2 and had a molecular weight of ~50,000 Da. The structure of GCG-1 was investigated by a combination of total hydrolysis, gas chromatography-mass spectrometry, methylation analysis, nuclear magnetic resonance spectroscopy and infrared spectra. The results indicated that GCG-1 had a backbone of (1 → 4)-β-D-glucosepyranose residues with branches at O-6 and the branches consisted of two with (1 → 3)-α-D-galactopyranose residue. Antioxidation test in vitro showed that it possessed strong free radical scavenging activity, which may be comparable to vitamin C and butylated hydroxytoluene. GCG-1 also induced the apoptosis of HepG-2 cells and affected the mRNA expression of various housekeeping genes in the HepG-2 cells. The results indicated that Gomphus clavatus Gray may be an ideal sources for antioxidant and anticancer agents.

  10. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis

    PubMed Central

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug. PMID:19541726

  11. Direct regulation of IL-2 by curcumin.

    PubMed

    Oh, Jin-Gyo; Hwang, Da-Jeong; Heo, Tae-Hwe

    2018-01-01

    Interleukin-2 (IL-2) is a crucial growth factor for both regulatory and effector T cells. Thus, IL-2 plays a critical role in the stimulation and suppression of immune responses. Recently, anti-IL-2 antibodies (Abs) have been shown to possess strong IL-2 modulatory activities by affecting the interaction between IL-2 and IL-2 receptors. In this study, we screened an herbal library to identify a compound that regulates IL-2, which resulted in the identification of curcumin as a direct binder and inhibitor of IL-2. Curcumin is a phytochemical with well-known anti-cancer properties. In this study, curcumin mimicked or altered the binding pattern of anti-IL-2 Abs against IL-2 and remarkably inhibited the interaction of recombinant IL-2 with the IL-2 receptor α, CD25. Interestingly, curcumin neutralized the biological activities of IL-2 both in vitro and in vivo. In this report, we elucidated the unsolved mechanism of the anti-cancer effect of curcumin by identifying IL-2 as a direct molecular target. Curcumin, as a small molecule IL-2 modulator, has the potential to be used to treat IL-2 related pathologic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines

    PubMed Central

    Takeshima, Mikako; Ono, Misaki; Higuchi, Takako; Chen, Chen; Hara, Takayuki; Nakano, Shuji

    2014-01-01

    Although lycopene, a major carotenoid component of tomatoes, has been suggested to attenuate the risk of breast cancer, the underlying preventive mechanism remains to be determined. Moreover, it is not known whether there are any differences in lycopene activity among different subtypes of human breast cancer cells. Using ER/PR positive MCF-7, HER2-positive SK-BR-3 and triple-negative MDA-MB-468 cell lines, we investigated the cellular and molecular mechanism of the anticancer activity of lycopene. Lycopene treatment for 168 consecutive hours exhibited a time-dependent and dose-dependent anti-proliferative activity against these cell lines by arresting the cell cycle at the G0/G1 phase at physiologically achievable concentrations found in human plasma. The greatest growth inhibition was observed in MDA-MB-468 where the sub-G0/G1 apoptotic population was significantly increased, with demonstrable cleavage of PARP. Lycopene induced strong and sustained activation of the ERK1/2, with concomitant cyclin D1 suppression and p21 upregulation in these three cell lines. In triple negative cells, lycopene inhibited the phosphorylation of Akt and its downstream molecule mTOR, followed by subsequent upregulation of proapoptotic Bax without affecting anti-apoptotic Bcl-xL. Taken together, these data indicate that the predominant anticancer activity of lycopene in MDA-MB-468 cells suggests a potential role of lycopene for the prevention of triple negative breast cancer. PMID:24397737

  13. Design and Synthesis of Curcumin-Like Diarylpentanoid Analogues as Potential Anticancer Agents.

    PubMed

    Qudjani, Elahe; Iman, Maryam; Davood, Asghar; Ramandi, Mahdi F; Shafiee, Abbas

    2016-01-01

    Curcumin is a polyphenolic natural compound with multiple targets that used for the prophylaxis and treatment of some type of cancers like cervical and pancreatic cancers. Some recent patent for curcumin for cancer has also been reviewed. In this study, ten new curcumin derivatives were designed and synthesized and their cytostatic activity evaluated against the Hela and Panc cell lines that some of them showed more activity than curcumin. In the present study, a series of mono-carbonyl derivatives of curcumin were designed and prepared. The details of the synthesis and chemical characterization of the synthesized compounds are described. The cytostatic activities of the designed compounds are assessed in two different tumor cell lines using MTT test. In vitro screening for human cervix carcinoma cell lines (Hela) and pancreatic cell lines (Panc-1) at 24 and 48 hour showed that all the analogs possessed good activity against these tumor cell lines and compounds 5a, 5c and 6 with high potency can be used as a new lead compounds for the designing and finding new and potent cytostatic agents. Docking studies indicated that compound 5c readily binds the active site of human glyoxalase I protein via two strong hydrogen bonds engaging residues of Glu-99 and Lys-156. Our results are useful in guiding a design of optimized ligands with improved pharmacokinetic properties and increased of anti-cancer activity vs. the prototype curcumin compound.

  14. Fisetin Reduces Cell Viability Through Up-Regulation of Phosphorylation of ERK1/2 in Cholangiocarcinoma Cells.

    PubMed

    Kim, Nayoung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Jae Min; Kang, Min-Jung; Kim, Bo Hye; Lee, Jung-Su; Ryu, Ji Kon; Kim, Yong-Tae

    2016-11-01

    Cholangiocarcinoma (CCA) is a malignancy with poor prognosis and limited therapeutic options. Effective prevention and treatment of CCA require developing novel anticancer agents and improved therapeutic regimens. As natural products are concidered a rich source of potential anticancer agents, we investigated the anticancer effect of fisetin in combination with gemcitabine. Cytotoxic effect of fisetin and gemcitabine on a human CCA cell line SNU-308 was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptosis assay using propidium iodine and annexin V. Molecular mechanisms of fisetin action in CCA were investigated by western blotting. Fisetin was found to inhibit survival of CCA cells, through strongly phosphorylating ERK. It also induced cellular apoptosis additively in combination with gemcitabine. Expression of cellular proliferative markers, such as phospho-p65 and myelocytomatosis (MYC), were reduced by fisetin. These results suggest fisetin in combination with gemcitabine as a candidate for use in improved anticancer regimens. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Anti-cancer effect of novel PAK1 inhibitor via induction of PUMA-mediated cell death and p21-mediated cell cycle arrest.

    PubMed

    Woo, Tae-Gyun; Yoon, Min-Ho; Hong, Shin-Deok; Choi, Jiyun; Ha, Nam-Chul; Sun, Hokeun; Park, Bum-Joon

    2017-04-04

    Hyper-activation of PAK1 (p21-activated kinase 1) is frequently observed in human cancer and speculated as a target of novel anti-tumor drug. In previous, we also showed that PAK1 is highly activated in the Smad4-deficient condition and suppresses PUMA (p53 upregulated modulator of apoptosis) through direct binding and phosphorylation. On the basis of this result, we have tried to find novel PAK1-PUMA binding inhibitors. Through ELISA-based blind chemical library screening, we isolated single compound, IPP-14 (IPP; Inhibitor of PAK1-PUMA), which selectively blocks the PAK1-PUMA binding and also suppresses cell proliferation via PUMA-dependent manner. Indeed, in PUMA-deficient cells, this chemical did not show anti-proliferating effect. This chemical possessed very strong PAK1 inhibition activity that it suppressed BAD (Bcl-2-asoociated death promoter) phosphorylation and meta-phase arrest via Aurora kinase inactivation in lower concentration than that of previous PAK1 kinase, FRAX486 and AG879. Moreover, our chemical obviously induced p21/WAF1/CIP1 (Cyclin-dependent kinase inhibitor 1A) expression by releasing from Bcl-2 (B-cell lymphoma-2) and by inhibition of AKT-mediated p21 suppression. Considering our result, IPP-14 and its derivatives would be possible candidates for PAK1 and p21 induction targeted anti-cancer drug.

  16. Medicinal plants combating against cancer--a green anticancer approach.

    PubMed

    Sultana, Sabira; Asif, Hafiz Muhammad; Nazar, Hafiz Muhammad Irfan; Akhtar, Naveed; Rehman, Jalil Ur; Rehman, Riaz Ur

    2014-01-01

    Cancer is the most deadly disease that causes the serious health problems, physical disabilities, mortalities, and morbidities around the world. It is the second leading cause of death all over the world. Although great advancement have been made in the treatment of cancer progression, still significant deficiencies and room for improvement remain. Chemotherapy produced a number of undesired and toxic side effects. Natural therapies, such as the use of plant-derived products in the treatment of cancer, may reduce adverse and toxic side effects. However, many plants exist that have shown very promising anticancer activities in vitro and in vivo but their active anticancer principle have yet to be evaluated. Combined efforts of botanist, pharmacologist and chemists are required to find new lead anticancer constituent to fight disease. This review will help researchers in the finding of new bioactive molecules as it will focus on various plants evaluated for anticancer properties in vitro and in vivo.

  17. Phycocyanin: A Potential Drug for Cancer Treatment

    PubMed Central

    Jiang, Liangqian; Wang, Yujuan; Yin, Qifeng; Liu, Guoxiang; Liu, Huihui; Huang, Yajing; Li, Bing

    2017-01-01

    Phycocyanin isolated from marine organisms has the characteristics of high efficiency and low toxicity, and it can be used as a functional food. It has been reported that phycocyanin has anti-oxidative function, anti-inflammatory activity, anti-cancer function, immune enhancement function, liver and kidney protection pharmacological effects. Thus, phycocyanin has an important development and utilization as a potential drug, and phycocyanin has become a new hot spot in the field of drug research. So far, there are more and more studies have shown that phycocyanin has the anti-cancer effect, which can block the proliferation of cancer cells and kill cancer cells. Phycocyanin exerts anti-cancer activity by blocking tumor cell cell cycle, inducing tumor cell apoptosis and autophagy, thereby phycocyanin can serve as a promising anti-cancer agent. This review discusses the therapeutic use of phycocyanin and focuses on the latest advances of phycocyanin as a promising anti-cancer drug. PMID:29151925

  18. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    PubMed

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  19. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria.

    PubMed

    Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean

    2016-09-01

    The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.

  20. Synergistic anticancer activity of curcumin and catechin: an in vitro study using human cancer cell lines.

    PubMed

    Manikandan, R; Beulaja, M; Arulvasu, C; Sellamuthu, S; Dinesh, D; Prabhu, D; Babu, G; Vaseeharan, B; Prabhu, N M

    2012-02-01

    The most practical approach to reduce morbidity and mortality of cancer is to delay the process of carcinogenesis by usage of anticancer agents. This necessitates that safer compounds are to be critically examined for anticancer activity especially, those derived from natural sources. A spice commonly found in India and the surrounding regions, is turmeric, derived from the rhizome of Curcuma longa and the major active component is a phytochemical termed curcumin. Green tea is one of the most popular beverages used worldwide, produced from the leaves of evergreen plant Camellia sinensis and the major active ingredients are polyphenolic compounds known as catechins. In this study, synergistic anticancer activity of curcumin and catechin was evaluated in human colon adenocarcinoma HCT 15, HCT 116, and human larynx carcinoma Hep G-2 cell lines. Although, both curcumin or catechin inhibited the growth of above cell lines, interestingly, in combination of both these compounds highest level of growth control was observed. The anticancer activity shown is due to cytotoxicity, nuclear fragmentation as well as condensation, and DNA fragmentation associated with the appearance of apoptosis. These results suggest that curcumin and catechin in combination can inhibit the proliferation of HCT 15, HCT 116, as well as Hep G-2 cells efficiently through induction of apoptosis. Copyright © 2011 Wiley Periodicals, Inc.

  1. Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs.

    PubMed

    Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash

    2010-06-01

    In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies.

  2. Lesson Learned from Nature for the Development of Novel Anti-Cancer Agents: Implication of Isoflavone, Curcumin, and their Synthetic Analogs

    PubMed Central

    Sarkar, Fazlul H.; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash

    2011-01-01

    In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies. PMID:20345353

  3. Antioxidant and selective anticancer activities of two Euphorbia species in human acute myeloid leukemia.

    PubMed

    Ben Jannet, Soumaya; Hymery, Nolwenn; Bourgou, Soumaya; Jdey, Ahmed; Lachaal, Mokhtar; Magné, Christian; Ksouri, Riadh

    2017-06-01

    In this study, two Euphorbia species (i.e. terracina and paralias) were investigated for their cytotoxic and antioxidant activities. Cytotoxicity of plant methanol and chloroform fractions was examined towards human acute myeloid leukemia (THP1) and human colon epithelial (Caco2) cancer cell lines, as well as CD 14 and IEC-6 normal cells by targeting various modulators of apoptosis or inflammation. Moreover, secondary metabolite pools (phenolic classes, alkaloids, terpenes, saponins) and antioxidant activities (DPPH, ABTS and O 2 - scavenging, as well as FRAP tests) were assessed in plant extracts. Both Euphorbia species appeared to be rich in phenolic compounds and terpenoids, Moreover, E. terracina polar and apolar fractions and E. paralias polar fraction were highly active against THP1 cells, with IC 50 values of 2.08, 14.43 and 54.58μg/mL, respectively. However, no cytotoxicity was found against normal cells (CD14 + monocytes). The results indicate that the three fractions induce apoptosis in THP1 cell line after 6h of exposure. Furthermore, apoptosis caused by apolar fraction was related to a caspase-dependent process, whereas other death pathways seemed to be involved with the polar fractions. An enhanced production of reactive oxygen species was detected upon cell treatment with plant extracts. Interestingly, they have no effect on cytokine TNF-α secretion in THP1 and normal cells compared to untreated cells, indicating that the three fractions caused no inflammation. Euphorbia terracina and E. paralias polar fractions showed strong antioxidant activity with potent scavenging capacity against DPPH, ABTS and superoxide radicals. Moreover, these fractions displayed a very high ferric reducing power. These findings confirm the strong antioxidant capacity of Euphorbia plants and suggest a targeted anti-cancer effect with a potent anti-proliferative property of E. terracina and E. paralias extracts, which induce programmed cell death in leukemia cell lines but not in normal monocytes cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    PubMed

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  5. Anticancer Activity of Bacterial Proteins and Peptides.

    PubMed

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  6. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  7. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.

    PubMed

    Rajagopal, Sriram; Kumar, R Ajaya; Deevi, Dhanvanthri S; Satyanarayana, Chitkala; Rajagopalan, R

    2003-01-01

    Andrographis paniculata plant extract is known to possess a variety of pharmacological activities. Andrographolide, the major constituent of the extract is implicated towards its pharmacological activity. We studied the cellular processes and targets modulated by andrographolide treatment in human cancer and immune cells. Andrographolide treatment inhibited the in vitro proliferation of different tumor cell lines, representing various types of cancers. The compound exerts direct anticancer activity on cancer cells by cell-cycle arrest at G0/G1 phase through induction of cell-cycle inhibitory protein p27 and decreased expression of cyclin-dependent kinase 4 (CDK4). Immunostimulatory activity of andrographolide is evidenced by increased proliferation of lymphocytes and production of interleukin-2. Andrographolide also enhanced the tumor necrosis factor-alpha production and CD marker expression, resulting in increased cytotoxic activity of lymphocytes against cancer cells, which may contribute for its indirect anticancer activity. The in vivo anticancer activity of the compound is further substantiated against B16F0 melanoma syngenic and HT-29 xenograft models. These results suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities and hence has the potential for being developed as a cancer therapeutic agent.

  8. Synergistic anticancer effect of the extracts from Polyalthia evecta caused apoptosis in human hepatoma (HepG2) cells

    PubMed Central

    Machana, Sasipawan; Weerapreeyakul, Natthida; Barusrux, Sahapat; Thumanu, Kanjana; Tanthanuch, Waraporn

    2012-01-01

    Objective To evaluate the anticancer activity of the extract fraction of Polyalthia evecta (P. evecta) (Pierre) Finet & Gagnep and the synergistic anticancer effect of the extracts from P. evecta by using the ATR/FT-IR spectroscopy. Methods The 50% ethanol-water crude leaf extract of P. evecta (EW-L) was prepared and was further fractionated to isolate various fractions. The anticancer activity was investigated from cytotoxicity against HepG2 using a neutral red assay and apoptosis induction by evaluation of nuclei morphological changes after DAPI staining. Synergistic anticancer effects of the extracts from P. evecta were performed using the ATR/FT-IR spectroscopy. Results The result showed that the EW-L showed higher cytotoxicity and apoptosis induction in HepG2 cells than its fractionated extracts. The hexane extract exhibited higher cytotoxicity and apoptosis induction than the water extracts, but less than the EW-L. The combined water and hexane extracts apparently increased cytotoxicity and apoptosis induction. The %apoptotic cells induced by the extract mixture were increased about 2-fold compared to the single hexane extract. Conclusions The polar extract fraction is necessary for the anticancer activity of the non-polar extract fraction. The ATR/FT-IR spectra illustrates the physical interaction among the constituents in the extract mixture and reveals the presence of polyphenolic constituents in the EW-L, which might play a role for the synergistic anticancer effect. PMID:23569977

  9. Exploration of (hetero)aryl derived thienylchalcones for antiviral and anticancer activities.

    PubMed

    Patil, Vikrant; Patil, Siddappa A; Patil, Renukadevi; Bugarin, Alejandro; Beaman, Kenneth; Patil, Shivaputra A

    2018-05-23

    Search for new antiviral and anticancer agents are essential because of the emergence of drug resistance in recent years. In continuation of our efforts in identifying the new small molecule antiviral and anticancer agents, we identified chalcones as potent antiviral and anticancer agents. With the aim of identifying the broad acting antiviral and anticancer agents, we discovered substituted aryl/heteroaryl derived thienyl chalcones as antiviral and anticancer agents. A focused set of thienyl chalcone derivaties II-VI was screened for selected viruses Hepatitis B virus (HBV), Herpes simplex virus 1 (HSV-1), Human cytomegalovirus (HCMV), Dengue virus 2 (DENV2), Influenza A (H1N1) virus, MERS coronavirus, Poliovirus 1 (PV 1), Rift Valley fever (RVF), Tacaribe virus (TCRV), Venezuelan equine encephalitis virus (VEE) and Zika virus (ZIKV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. Additionally, a cyclopropylquinoline derivative IV has been screened for 60 human cancer cell lines using the Development Therapeutics Program (DTP) of NCI. All thienyl chalcone derivatives II-VI displayed moderate to excellent antiviral activity towards several viruses tested. Compounds V and VI were turned out be active compounds towards human cytomegalovirus for both normal strain (AD169) as well as resistant isolate (GDGr K17). Particularly, cyano derivative V showed very high potency (EC50: <0.05 µM) towards AD169 strain of HCMV compared to standard drug Ganciclovir (EC50: 0.12 µM). Additionally, it showed moderate activity in the secondary assay (AD169; EC50: 2.30 µM). The cyclopropylquinoline derivative IV displayed high potency towards Rift Valley fever virus (RVFV) and Tacaribe virus (TCRV). The cyclopropylquinoline derivative IV is nearly 28 times more potent in our initial in vitro visual assay (EC50: 0.39 μg/ml) and nearly 17 times more potent in neutral red assay (EC50: 0.71 μg/ml) compared to the standard drug Ribavirin (EC50: 11 μg/ml; visual assay and EC50: 12 μg/ml; neutral red assay). It is nearly 12 times more potent in our initial in vitro visual assay (EC50: >1 μg/ml) and nearly 8 times more potent in neutral red assay (EC50: >1.3 μg/ml) compared to the standard drug Ribavirin (EC50: 12 μg/ml; visual assay and EC50: 9.9 μg/ml; neutral red assay) towards Tacaribe virus (TCRV). Additionally, cyclopropylquinoline derivative IV has shown strong growth inhibitory activity towards three major cancer (colon, breast, and leukemia) cell lines and moderate growth inhibition shown towards other cancer cell lines screened. Compounds V and VI were demonstrated viral inhibition towards Human cytomegalovirus, whereas cyclopropylquinoline derivative IV towards Rift Valley fever virus and Tacaribe virus. Additionally, cyclopropylquinoline derivative IV has displayed very good cytotoxicity against colon, breast and leukemia cell lines in vitro. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Explorative study on the anticancer activity, selectivity and metabolic stability of related analogs of aminosteroid RM-133.

    PubMed

    Perreault, Martin; Maltais, René; Dutour, Raphaël; Poirier, Donald

    2016-11-01

    RM-133 is a key representative of a new family of aminosteroids reported as potent anticancer agents. Although RM-133 produced interesting results in 4 mouse xenograft cancer models when injected subcutaneously, it needs to be improved to increase its in vivo potency. Thus, to obtain an analog of RM-133 with a better drug potential, a structure-activity relationship study was conducted by synthesizing eleven RM-133-related compounds and addressing their antiproliferative activity on 3 human cancer cells (HL-60, OVCAR-3 and PANC-1) and 3 human normal cell lines (primary ovary, pancreas and renal proximal tubule) as well as their metabolic stability in human liver microsomes. When the 2β-tertiary amine of RM-133 was transformed into a salt or moved to position 3β, the anticancer activity was lost. Modifying the orientation of the side chain of RM-133 increased anticancer activity and selectivity, but led to a drastic loss of stability. The protection of the 3α-hydroxyl of RM-133 by the formation of an ester or a carbamate stabilized the molecule against the phase I metabolic enzymes without affecting its anticancer activity. In comparison to RM-133, the 3-dimethylcarbamate derivative 3 is more selective for cancer cells over normal cells and is much more stable in liver microsomes. Those results support the use of a pro-drug strategy targeting the 3α-hydroxyl of RM-133 as an approach to improve its drug properties. The work presented will enable the development of an optimized anticancer drug of the aminosteroid family that is suitable for a future phase I clinical trial. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells12

    PubMed Central

    Rothweiler, Florian; Michaelis, Martin; Brauer, Peter; Otte, Jürgen; Weber, Kristoffer; Fehse, Boris; Doerr, Hans Wilhelm; Wiese, Michael; Kreuter, Jörg; Al-Abed, Yousef; Nicoletti, Ferdinando; Cinatl, Jindrich

    2010-01-01

    The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors. PMID:21170266

  12. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.

    PubMed

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-11-25

    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  13. Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins.

    PubMed

    Cai, Yuee; Zhang, Jinming; Chen, Nelson G; Shi, Zhi; Qiu, Jiange; He, Chengwei; Chen, Meiwan

    2017-07-01

    Tannins, polyphenols in medicinal plants, have been divided into two groups of hydrolysable and condensed tannins, including gallotannins, ellagitannins, and (-)-epigallocatechin-3-gallate (EGCG). Potent anticancer activities have been observed in tannins (especially EGCG) with multiple mechanisms, such as apoptosis, cell cycle arrest, and inhibition of invasion and metastases. Furthermore, the combinational effects of tannins and anticancer drugs have been demonstrated in this review, including chemoprotective, chemosensitive, and antagonizing effects accompanying with anticancer effect. However, the applications of tannins have been hindered due to their poor liposolubility, low bioavailability, off-taste, and shorter half-life time in human body, such as EGCG, gallic acid, and ellagic acid. To tackle these obstacles, novel drug delivery systems have been employed to deliver tannins with the aim of improving their applications, such as gelatin nanoparticles, micelles, nanogold, liposomes, and so on. In this review, the chemical characteristics, anticancer properties, and drug delivery systems of tannins were discussed with an attempt to provide a systemic reference to promote the development of tannins as anticancer agents. © 2016 Wiley Periodicals, Inc.

  14. Isolation and Characterization of the Anticancer Compound Piceatannol from Sophora Interrupta Bedd

    PubMed Central

    Mathi, Pardhasaradhi; Das, Snehasish; Nikhil, Kumar; Roy, Partha; Yerra, Srikanth; Ravada, Suryachandra Rao; Bokka, Venkata Raman; Botlagunta, Mahendran

    2015-01-01

    Background: Sophora belongs to the family of Fabaceae and the species in this genus are currently used as a folklore medicine for preventing a variety of ailments including cancer. Our aim was to identify and validate an anticancer compound from Sophora interrupta using multi-spectroscopic, anticancer screening, and molecular docking approach. Methods: The cytotoxicity of the various solvent extracts, petroleum ether, n-butanol, and ethyl acetate (EtOAc) of the S. interrupta root powder was evaluated in a breast cancer cell lines (MCF-7). The extract that had anticancer activity was subjected to column chromatography based on the polarity of the solvents. The anticancer activity of the elution fractions was validated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The isolated metabolite fraction with anticancer activity was run through a C18 column isocratic and gradient high-performance liquid chromatography (HPLC). The structure of the isolated compound was characterized using 1H nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometer methods. Results: The crude EtAOc extract effectively inhibited the proliferation of MCF-7 cells. The column eluted chloroform and EtOAc (4:6) fraction of the EtOAc extract showed significant anticancer activity in the MCF-7 cells compared with normal mesenchymal stem cells. This fraction showed three major peaks in the HPLC chromatogram and the first major peak with a retention time (RT) of 7.153 was purified using preparative-HPLC. The structure of the compound is a piceatannol, which is a metabolic product of resveratrol. Piceatannol formed direct two hydrogen bond interactions between Cys912 (2H), and Glu878 of vascular endothelial growth factor receptor 1 (VEGFR1) with a glide-score (G-score) of −10.193, and two hydrogen bond interactions between Cys919, and Asp1046 of VEGFR2, with a G-score of −8.359. The structure is similar to that of the crystallized protein for VEGFR1 and R2. Conclusions: Piceatannol is a secondary metabolite of S. interrupta that has anticancer activity. Moreover, piceatannol has been isolated for the first time from S. interrupta. PMID:26605022

  15. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis

    PubMed Central

    Kao, Chi H.J.; Bishop, Karen S.; Xu, Yuanye; Han, Dug Yeo; Murray, Pamela M.; Marlow, Gareth J.; Ferguson, Lynnette R.

    2016-01-01

    Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis. PMID:27006591

  16. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, A.; Konforte, D; Poduch, E

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro,more » 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.« less

  17. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.

    PubMed

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.

  18. Anticancer and Immunopotentiating Activities of Crude Polysaccharides from Pleurotus nebrodensis on Mouse Sarcoma 180.

    PubMed

    Cha, Youn Jeong; Alam, Nuhu; Lee, Jae Seong; Lee, Kyung Rim; Shim, Mi Ja; Lee, Min Woong; Kim, Hye Young; Shin, Pyung Gyun; Cheong, Jong Chun; Yoo, Young Bok; Lee, Tae Soo

    2012-12-01

    Pleurotus nebrodensis is an edible and commercially available mushroom in Korea. This study was conducted in order to evaluate the anticancer and immunopotentiating activities of crude polysaccharides, extracted in methanol, neutral saline, and hot water (hereafter referred to as Fr. MeOH, Fr. NaCl, and Fr. HW, respectively) from the fruiting bodies of P. nebrodensis. β-Glucan and protein contents in Fr. MeOH, Fr. NaCl, and Fr. HW extracts of P. nebrodensis ranged from 23.79~36.63 g/100 g and 4.45~6.12 g/100 g, respectively. Crude polysaccharides were not cytotoxic against sarcoma 180, HT-29, NIH3T3, and RAW 264.7 cell lines at a range of 10~2,000 µg/mL. Intraperitoneal injection with crude polysaccharides resulted in a life prolongation effect of 11.76~27.06% in mice previously inoculated with sarcoma 180. Treatment with Fr. NaCl resulted in an increase in the numbers of spleen cells by 1.49 fold at the concentration of 50 µg/mL, compared with control. Fr. HW improved the immuno-potentiating activity of B lymphocytes through an increase in alkaline phosphatase activity by 1.65 fold, compared with control at 200 µg/mL. Maximum production of nitric oxide (14.3 µM) was recorded in the Fr. NaCl fraction at 200 µg/mL. Production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) was significantly higher, compared to control, and IL-6 production was highest, in contrast to TNF-α, IL-1β, and positive control, concanavalin at the tested concentration of the various fractions. Results of the current study suggest that polysaccharides extracted from P. nebrodensis have a strong anticancer effect and may be useful as an ingredient of biopharmaceutical products for treatment of cancer.

  19. Methanethiosulfonate derivatives as ligands of the STAT3-SH2 domain.

    PubMed

    Gabriele, Elena; Ricci, Chiara; Meneghetti, Fiorella; Ferri, Nicola; Asai, Akira; Sparatore, Anna

    2017-12-01

    With the aim to discover new STAT3 direct inhibitors, potentially useful as anticancer agents, a set of methanethiosulfonate drug hybrids were synthesized. The in vitro tests showed that all the thiosulfonic compounds were able to strongly and selectively bind STAT3-SH2 domain, whereas the parent drugs were completely devoid of this ability. In addition, some of them showed a moderate antiproliferative activity on HCT-116 cancer cell line. These results suggest that methanethiosulfonate moiety can be considered a useful scaffold in the preparation of new direct STAT3 inhibitors. Interestingly, an unusual kind of organo-sulfur derivative, endowed with valuable antiproliferative activity, was occasionally isolated. [Formula: see text].

  20. Mutasynthesis of a potent anticancer sibiromycin analogue.

    PubMed

    Yonemoto, Isaac T; Li, Wei; Khullar, Ankush; Reixach, Natàlia; Gerratana, Barbara

    2012-06-15

    Pursuit of the actinomycete pyrrolobenzodiazepine natural product sibiromycin as a chemotherapeutic agent has been limited by its cardiotoxicity. Among pyrrolobenzodiazepines, cardiotoxicity is associated with hydroxylation at position 9. Deletion of the methyltransferase gene sibL abolishes the production of sibiromycin. Supplementation of growth media with 4-methylanthranilic acid can substitute for its native 3-hydroxy congener. Cultures grown in this fashion yielded 9-deoxysibiromycin. In this study, we characterize the structure and biological activity of sibiromycin and 9-deoxysibiromycin methyl carbinolamines. Preliminary in vitro evidence suggests that 9-deoxysibiromycin exhibits reduced cardiotoxicity while gaining antitumor activity. These results strongly support further exploration of the production and evaluation of monomeric and dimeric glycosylated pyrrolobenzodiazepine analogues of sibiromycin.

  1. Synthesis and Biological Screening of Pyrano[3,2-c]quinoline Analogues as Anti-inflammatory and Anticancer Agents.

    PubMed

    Upadhyay, Kuldip D; Dodia, Narsinh M; Khunt, Rupesh C; Chaniara, Ravi S; Shah, Anamik K

    2018-03-08

    A series of pyrano[3,2- c ]quinoline based structural analogues was synthesized using one-pot multicomponent condensation between 2,4-dihydroxy-1-methylquinoline, malononitrile, and diverse un(substituted) aromatic aldehydes. The synthesized compounds were evaluated for their anti-inflammatory and cytotoxicity activity. Initially, all the compounds were evaluated for the percent inhibition of cytokine release, and cytotoxicity activity and 50% inhibitory concentrations (IC 50 ) were also determined. Based on the primary results, it was further studied for their ability to inhibit TNF-α production in the human peripheral blood mononuclear cells (hPBMC) assay. The screening results revealed that compound 4c , 4f , 4i , and 4j were found most active candidates of the series against both anti-inflammatory and anticancer activity. The structure-activity relationship is discussed and suggested that 3-substitution on the aryl ring at C4 position of the pyrano[3,2- c ]quinolone structural motif seems to be an important position for both TNF-α and IL-6 inhibition and anticancer activity as well. However, structural diversity with electron withdrawing, electron donating, sterically hindered, and heteroaryl substitution sincerely affected both the inflammation and anticancer activities.

  2. Polymeric anticancer drugs with pH-controlled activation.

    PubMed

    Ulbrich, Karel; Subr, Vladimír

    2004-04-23

    Use of macromolecular water-soluble carriers of anti-cancer drugs represents a promising approach to cancer therapy. Release of drugs from the carrier system is a prerequisite for therapeutic activity of most macromolecular anti-cancer conjugates. Incorporation of acid-sensitive spacers between the drug and carrier enables release of an active drug from the carrier in a tumor tissue, either in slightly acidic extracellular fluids or, after endocytosis, in endosomes or lysosomes of cancer cells. This paper reviews advances in development and study of properties of various acid-sensitive macromolecular drug delivery systems, starting from simple polymer-drug conjugates to ending with site-specific antibody-targeted polymer-drug conjugates.

  3. Antiproliferative Activity of Cyanophora paradoxa Pigments in Melanoma, Breast and Lung Cancer Cells

    PubMed Central

    Baudelet, Paul-Hubert; Gagez, Anne-Laure; Bérard, Jean-Baptiste; Juin, Camille; Bridiau, Nicolas; Kaas, Raymond; Thiéry, Valérie; Cadoret, Jean-Paul; Picot, Laurent

    2013-01-01

    The glaucophyte Cyanophora paradoxa (Cp) was chemically investigated to identify pigments efficiently inhibiting malignant melanoma, mammary carcinoma and lung adenocarcinoma cells growth. Cp water and ethanol extracts significantly inhibited the growth of the three cancer cell lines in vitro, at 100 µg·mL−1. Flash chromatography of the Cp ethanol extract, devoid of c-phycocyanin and allophycocyanin, enabled the collection of eight fractions, four of which strongly inhibited cancer cells growth at 100 µg·mL−1. Particularly, two fractions inhibited more than 90% of the melanoma cells growth, one inducing apoptosis in the three cancer cells lines. The detailed analysis of Cp pigment composition resulted in the discrimination of 17 molecules, ten of which were unequivocally identified by high resolution mass spectrometry. Pheophorbide a, β-cryptoxanthin and zeaxanthin were the three main pigments or derivatives responsible for the strong cytotoxicity of Cp fractions in cancer cells. These data point to Cyanophora paradoxa as a new microalgal source to purify potent anticancer pigments, and demonstrate for the first time the strong antiproliferative activity of zeaxanthin and β-cryptoxanthin in melanoma cells. PMID:24189278

  4. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity.

    PubMed

    Xia, Yi; Qu, Fanqi; Peng, Ling

    2010-08-01

    Synthetic nucleoside mimics are important candidates in the searing for antiviral and anticancer drugs. Ribavirin, the first antiviral nucleoside drug, is unique in its antiviral activity with mutilple modes of action, which are mainly due to its special triazole heterocycle as nucleobase. Additionally, introducing aromatic functionalities to the nucleobase is able to confer novel mechanisms of action for nucleoside mimics. With the aim to combine the special characteristics of unnatural triazole heterocycles with those of the appended aromatic groups on the nucleobases, novel 1,2,4-triazole nucleoside analogs bearing aromatic moieties were designed and developed. The present short review summarizes the molecular design, chemical synthesis and biological activity of these triazole nucleoside analogs. Indeed, the discovery of antiviral and anticancer activities shown by these triazole nucleosides as well as the new mechanism underlying the biological activity by one of the anticancer leads has validated the rationale for molecular design and impacted us to further explore the concept with the aim of developing structurally novel nucleoside drug candidates with new modes of action.

  5. Improved Anticancer Effect of Magnetite Nanocomposite Formulation of GALLIC Acid (Fe₃O₄-PEG-GA) Against Lung, Breast and Colon Cancer Cells.

    PubMed

    Rosman, Raihana; Saifullah, Bullo; Maniam, Sandra; Dorniani, Dena; Hussein, Mohd Zobir; Fakurazi, Sharida

    2018-02-02

    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.

  6. Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus.

    PubMed

    Ahsan, Mohamed Jawed; Ahsan, Mohamed Jawed

    2016-01-01

    We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration 10 μM) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and 100 μM) and three dose related parameters GI50, TGI and LC50 were calculated for each (3a-g) in micro molar drug concentrations (μM). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a GI50 of 0.03 μM. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with GI50 values between 0.23 and 2.67 μM.

  7. Synthesis and Anti-cancer Activity of Novel Thiazolidinone Analogs of 6-Aminoflavone.

    PubMed

    Moorkoth, Sudheer

    2015-01-01

    Novel heterocyclic analogs were synthesized by combining a flavone nucleus and thiazolidinone ring in an effort to potentiate the existing anti-cancer activity of flavone. The syntheses of 6-aminoflavone, 6-amino-3-methoxyflavone, 6-amino-3-methoxy-3',4'-dimethxyflavone and their corresponding thiazolidinone analogs were performed. Fifteen novel analogs were synthesized and evaluated for their anti-cancer activity using cell-based assay techniques and in vivo testing. As expected, the analogs improved cytotoxicity and were shown to increase the life span of cancer-bearing mice. Cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays in HeLa, MDA-MB-435, and Vero cell lines. In vivo evaluation of anti-cancer activity performed in albino mice bearing Dalton's ascites carcinoma showed that the new analogs enhanced life span and prevented increases in body weight owing to tumor volumes. Moreover, cell-cycle analysis and Hoechst staining analysis proved the apoptotic potential of these analogs. Preliminary pharmacokinetic evaluation was carried out on the synthesized compounds to determine the lipophilicity and pKa. Lipophilicity was determined using high-performance liquid chromatography and the results showed a direct correlation between the observed anti-cancer activity and log P value, while pKa values indicated the ionizing range which is a prediction tool for solubility and permeability.

  8. In vitro, in vivo and in silico analysis of the anticancer and estrogen-like activity of guava leaf extracts.

    PubMed

    Rizzo, L Y; Longato, G B; Ruiz, A Lt G; Tinti, S V; Possenti, A; Vendramini-Costa, D B; Sartoratto, A; Figueira, G M; Silva, F L N; Eberlin, M N; Souza, T A C B; Murakami, M T; Rizzo, E; Foglio, M A; Kiessling, F; Lammers, T; Carvalho, J E

    2014-01-01

    Anticancer drug research based on natural compounds enabled the discovery of many drugs currently used in cancer therapy. Here, we report the in vitro, in vivo and in silico anticancer and estrogen-like activity of Psidium guajava L. (guava) extracts and enriched mixture containing the meroterpenes guajadial, psidial A and psiguadial A and B. All samples were evaluated in vitro for anticancer activity against nine human cancer lines: K562 (leukemia), MCF7 (breast), NCI/ADR-RES (resistant ovarian cancer), NCI-H460 (lung), UACC-62 (melanoma), PC-3 (prostate), HT-29 (colon), OVCAR-3 (ovarian) and 786-0 (kidney). Psidium guajava's active compounds displayed similar physicochemical properties to estradiol and tamoxifen, as in silico molecular docking studies demonstrated that they fit into the estrogen receptors (ERs). The meroterpene-enriched fraction was also evaluated in vivo in a Solid Ehrlich murine breast adenocarcinoma model, and showed to be highly effective in inhibiting tumor growth, also demonstrating uterus increase in comparison to negative controls. The ability of guajadial, psidial A and psiguadials A and B to reduce tumor growth and stimulate uterus proliferation, as well as their in silico docking similarity to tamoxifen, suggest that these compounds may act as Selective Estrogen Receptors Modulators (SERMs), therefore holding significant potential for anticancer therapy.

  9. Anticancer effect and structure-activity analysis of marine products isolated from metabolites of mangrove fungi in the South China Sea.

    PubMed

    Tao, Li-yang; Zhang, Jian-ye; Liang, Yong-ju; Chen, Li-ming; Zhen, Li-sheng; Wang, Fang; Mi, Yan-jun; She, Zhi-gang; To, Kenneth Kin Wah; Lin, Yong-cheng; Fu, Li-wu

    2010-04-01

    Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86) exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising candidates for further development as clinically useful chemotherapeutic drugs. Furthermore, DNA intercalation was not involved in their anticancer activities, as determined by DNA binding assay. On the other hand, the structure-activity analysis indicated that the hydroxyl group was important for their cytotoxic activity and that bulky functional groups such as phenyl rings could result in a loss of biological activity, which will direct the further development of marine product-based derivatives.

  10. Discovering some novel 7-chloroquinolines carrying a biologically active benzenesulfonamide moiety as a new class of anticancer agents.

    PubMed

    Al-Dosari, Mohammed Salem; Ghorab, Mostafa Mohamed; Al-Said, Mansour Sulaiman; Nissan, Yassin Mohammed

    2013-01-01

    Based on the reported anticancer activity of quinolines, a new series of 7-chloroquinoline derivatives bearing the biologically active benzenesulfonamide moiety 2-17 and 19-25 were synthesized starting with 4,7-dichloroquinolne 1. Compound 17 was the most active compound with IC(50) value 64.41, 75.05 and 30.71 µM compared with Doxorubicin as reference drug with IC(50) values 82.53, 88.32 and 73.72 µM on breast cancer cells, skin cancer cells and neuroblastoma, respectively. All the synthesized compounds were evaluated for their in vitro anticancer activity on breast cancer cells, skin cancer cells and neuroblastoma cells. Most of the synthesized compounds showed moderate activity. In order to suggest the mechanism of action for their cytotoxic activity, molecular docking for all synthesized compounds was done on the active site of phosphoinositide kinase (PI3K) and good results were obtained.

  11. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

    PubMed

    Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella

    2013-12-01

    Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications. Copyright © 2013. Published by Elsevier B.V.

  12. Theoretical research into anticancer activity of diterpenes isolated from the paraiban flora.

    PubMed

    Ishiki, Hamilton; Junior, Francisco J B Mendonça; Santos, Paula F; Tavares, Josean F; Tavares, Josean F; Silva, Marcelo S; Scotti, Marcus T

    2014-07-01

    Many studies of the scientific literature discuss the anticancer activity of diterpenes inhibiting the Akt/IKK/NF-kappaB pro-survival signaling cascade, mainly by the activation of serine/threonine phosphatase PP2A. The aim of this work was to evaluate and compare the anticancer potential of three atisane, three kaurane and three trachylobane diterpenes extracted from the roots of Xylopia langsdorffiana. Thus, we investigated the reactivity (H-L(GAP) parameter), HOMO atmosphere favorable to neutralize the radical reactivity, and the docking of compounds with PP2A. With all approaches, this theoretical study showed that atisane diterpenes have favorable characteristics for antitumor activity, like electron donating ability and greater hydrophilic interactions with the enzyme, by inhibition of Akt/IKK/NF-kappaB, and activation of PP2A.

  13. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity

    PubMed Central

    Deep, Gagan; Kumar, Rahul; Jain, Anil K.; Dhar, Deepanshi; Panigrahi, Gati K.; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P.; Oberlies, Nicholas H.; Agarwal, Rajesh

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1–5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47phox). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity. PMID:26979487

  14. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα

    PubMed Central

    Alam, Sarfaraz; Khan, Feroz

    2014-01-01

    Due to the high mortality rate in India, the identification of novel molecules is important in the development of novel and potent anticancer drugs. Xanthones are natural constituents of plants in the families Bonnetiaceae and Clusiaceae, and comprise oxygenated heterocycles with a variety of biological activities along with an anticancer effect. To explore the anticancer compounds from xanthone derivatives, a quantitative structure activity relationship (QSAR) model was developed by the multiple linear regression method. The structure–activity relationship represented by the QSAR model yielded a high activity–descriptors relationship accuracy (84%) referred by regression coefficient (r2=0.84) and a high activity prediction accuracy (82%). Five molecular descriptors – dielectric energy, group count (hydroxyl), LogP (the logarithm of the partition coefficient between n-octanol and water), shape index basic (order 3), and the solvent-accessible surface area – were significantly correlated with anticancer activity. Using this QSAR model, a set of virtually designed xanthone derivatives was screened out. A molecular docking study was also carried out to predict the molecular interaction between proposed compounds and deoxyribonucleic acid (DNA) topoisomerase IIα. The pharmacokinetics parameters, such as absorption, distribution, metabolism, excretion, and toxicity, were also calculated, and later an appraisal of synthetic accessibility of organic compounds was carried out. The strategy used in this study may provide understanding in designing novel DNA topoisomerase IIα inhibitors, as well as for other cancer targets. PMID:24516330

  15. Bio-fabrication of catalytic platinum nanoparticles and their in vitro efficacy against lungs cancer cells line (A549).

    PubMed

    Ullah, Sadeeq; Ahmad, Aftab; Wang, Aoke; Raza, Muslim; Jan, Amin Ullah; Tahir, Kamran; Rahman, Aziz Ur; Qipeng, Yuan

    2017-08-01

    Platinum based drugs are considered as effective agents against various types of carcinoma; however, the severe toxicity associated with the chemically prepared platinum complexes limit their practical applications. Similarly, water pollution caused by various organic moieties is another serious health problem worldwide. Hence, an intense need exists to develop new, effective and biocompatible materials with catalytic and biomedical applications. In the present contribution, we prepared platinum nanoparticles (PtNPs) by a green route using phytochemicals as a source of reducing and stabilizing agents. Well dispersed and crystalline PtNPs of spherical shapes were prepared and characterized. The bio-fabricated PtNPs were used as catalyst and anticancer agents. Catalytic performance of the PtNPs showed that 84% of the methylene blue can be reduced in 32min under visible light irradiation (K=0.078min -1 ). Similarly the catalytic conversion of 4-nitrophenol to 4-aminophenol was achieved in <20min (K=0.124min -1 ). The in vitro anticancer study revealed that biogenic PtNPs are the efficient nano-agents possessing strong anticancer activity against the lungs cancer cells line (A549). Interestingly, the as prepared PtNPs were well tolerated by normal human cells, and therefore, could be effective and biocompatible agents in the treatment of different cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Towards personalized medicine with a three-dimensional micro-scale perfusion-based two-chamber tissue model system

    PubMed Central

    Ma, Liang; Barker, Jeremy; Zhou, Changchun; Li, Wei; Zhang, Jing; Lin, Biaoyang; Foltz, Gregory; Küblbeck, Jenni; Honkakoski, Paavo

    2013-01-01

    A three-dimensional micro-scale perfusion-based two-chamber (3D-μPTC) tissue model system was developed to test the cytotoxicity of anticancer drugs in conjunction with liver metabolism. Liver cells with different cytochrome P450 (CYP) subtypes and glioblastoma multiforme (GBM) brain cancer cells were cultured in two separate chambers connected in tandem. Both chambers contained a 3D tissue engineering scaffold fabricated with biodegradable poly(lactic acid) (PLA) using a solvent-free approach. We used this model system to test the cytotoxicity of anticancer drugs, including temozolomide (TMZ) and ifosfamide (IFO). With the liver cells, TMZ showed a much lower toxicity to GBM cells under both 2D and 3D cell culture conditions. Comparing 2D, GBM cells cultured in 3D had much high viability under TMZ treatment. IFO was used to test the CYP-related metabolic effects. Cells with different expression levels of CYP3A4 differed dramatically in their ability to activate IFO, which led to strong metabolism-dependent cytotoxicity to GBM cells. These results demonstrate that our 3D-μPTC system could provide a more physiologically realistic in vitro environment than the current 2D monolayers for testing metabolism-dependent toxicity of anticancer drugs. It could therefore be used as an important platform for better prediction of drug dosing and schedule towards personalized medicine. PMID:22429982

  17. Design, synthesis and characterization of novel quinacrine analogs that preferentially kill cancer over non-cancer cells through the down-regulation of Bcl-2 and up-regulation of Bax and Bad.

    PubMed

    Solomon, V Raja; Almnayan, Danah; Lee, Hoyun

    2017-09-08

    Both quinacrine, which contains a 9-aminoacridine scaffold, and thiazolidin-4-one are promising anticancer leads. In an attempt to develop effective and potentially safe anticancer agents, we synthesized 23 novel hybrid compounds by linking the main structural unit of the 9-aminoacridine ring with the thiazolidin-4-one ring system, followed by examination of their anticancer effects against three human breast tumor cell lines and matching non-cancer cells. Most of the hybrid compounds showed good activities, and many of them possessed the preferential killing property against cancer over non-cancer cells. In particular, 3-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-2-(2,6-difluoro-phenyl)-thiazolidin-4-one (11; VR118) effectively killed/inhibited proliferation of cancer cells at IC 50 values in the range of 1.2-2.4 μM. Furthermore, unlike quinacrine or cisplatin, compound 11 showed strong selectivity for cancer cell killing, as it could kill cancer cells 7.6-fold (MDA-MB231 vs MCF10A) to 14.7-fold (MCF7 vs MCF10A) more effectively than matching non-cancer cells. Data from flow cytometry, TUNEL and Western blot assays showed that compound 11 kills cancer cells by apoptosis through the down-regulation of Bcl-2 (but not Bcl-X L ) survival protein and up-regulation of Bad and Bax pro-apoptotic proteins. Thus, compound 11 is a highly promising lead for an effective and potentially anticancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Liposomal formulation of {alpha}-tocopheryl maleamide: In vitro and in vivo toxicological profile and anticancer effect against spontaneous breast carcinomas in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turanek, Jaroslav; Wang Xiufang; Knoetigova, Pavlina

    2009-06-15

    The vitamin E analogue {alpha}-tocopheryl succinate ({alpha}-TOS) is an efficient anti-cancer drug. Improved efficacy was achieved through the synthesis of {alpha}-tocopheryl maleamide ({alpha}-TAM), an esterase-resistant analogue of {alpha}-tocopheryl maleate. In vitro tests demonstrated significantly higher cytotoxicity of {alpha}-TAM towards cancer cells (MCF-7, B16F10) compared to {alpha}-TOS and other analogues prone to esterase-catalyzed hydrolysis. However, in vitro models demonstrated that {alpha}-TAM was cytotoxic to non-malignant cells (e.g. lymphocytes and bone marrow progenitors). Thus we developed lyophilized liposomal formulations of both {alpha}-TOS and {alpha}-TAM to solve the problem with cytotoxicity of free {alpha}-TAM (neurotoxicity and anaphylaxis), as well as the low solubilitymore » of both drugs. Remarkably, neither acute toxicity nor immunotoxicity implicated by in vitro tests was detected in vivo after application of liposomal {alpha}-TAM, which significantly reduced the growth of cancer cells in hollow fiber implants. Moreover, liposomal formulation of {alpha}-TAM and {alpha}-TOS each prevented the growth of tumours in transgenic FVB/N c-neu mice bearing spontaneous breast carcinomas. Liposomal formulation of {alpha}-TAM demonstrated anti-cancer activity at levels 10-fold lower than those of {alpha}-TOS. Thus, the liposomal formulation of {alpha}-TAM preserved its strong anti-cancer efficacy while eliminating the in vivo toxicity found of the free drug applied in DMSO. Liposome-based targeted delivery systems for analogues of vitamin E are of interest for further development of efficient and safe drug formulations for clinical trials.« less

  19. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature.

    PubMed

    Negi, Beena; Kumar, Deepak; Rawat, Diwan S

    2017-01-01

    In the search of bioactive molecules, nature has always been an important source and most of the drugs in clinic are either natural products or derived from natural products. The ocean has played significant role as thousands of molecules and their metabolites with different types of biological activity such as antimicrobial, anti-inflammatory, anti-malarial, antioxidant, anti HIV and anticancer activity have been isolated from marine organisms. In particular, marine peptides have attracted much attention due to their high specificity against cancer cell lines that may be attributed to the various unusual amino acid residues and their sequences in the peptide chain. This review aims to identify the various anticancer agents isolated from the marine system and their anticancer potential. We did literature search for the anticancer peptides isolated from the different types of microorganism found in the marine system. Total one eighty eight papers were reviewed concisely and most of the important information from these papers were extracted and kept in the present manuscript. This review gives details about the isolation, anticancer potential and mechanism of action of the anticancer peptides of the marine origin. Many of these molecules such as aplidine, dolastatin 10, didemnin B, kahalalide F, elisidepsin (PM02734) are in clinical trials for the treatment of various cancers. With the interdisciplinary and collaborative research and technical advancements we can search more promising and affordable anticancer drugs in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. In vitro cytotoxic screening of selected Saudi medicinal plants.

    PubMed

    Almehdar, Hussein; Abdallah, Hossam M; Osman, Abdel-Moneim M; Abdel-Sattar, Essam A

    2012-04-01

    Many natural products from plants have been identified to exert anticancer activity. It might be expected to be a challenge to look at the Saudi plants in order to discover new sources for new molecules which may have anticancer activity. The methanolic extracts of forty species of plants traditionally used in Saudi Arabia for the treatment of a variety of diseases were tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of the tested plants were determined using three human cancer cell lines, namely, breast cancer (MCF7), hepatocellular carcinoma (HEPG2), and cervix cancer (HELA) cells. In addition, human normal melanocyte (HFB4) was used as normal nonmalignant cells. Sulforhodamine B colorimetric assay was used to evaluate the in vitro cytotoxic activity of the different extracts. The growth inhibition of 50% (IC(50)) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug, was used as the positive control. Nine plant extracts were chosen for further fractionation based on their activity and availability. Interesting cytotoxic activity was observed for Hypoestes forskaolii, Withania somnifera, Solanum glabratum, Adenium obesum, Pistacia vera oleoresin, Caralluma quadrangula, Eulophia petersii, Phragmanthera austroarabica, and Asparagus officinalis. Other extracts showed poor activity.

  1. Anti-cancer effect of ursolic acid activates apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer

    PubMed Central

    Gai, Wen-Tao; Yu, Da-Peng; Wang, Xin-Sheng; Wang, Pei-Tao

    2016-01-01

    Ursolic acid is a type of pentacyclic triterpene compound with multiple pharmacological activities including cancer resistance, protection from liver injury, antisepsis, anti-inflammation and antiviral activity. The present study aimed to investigate the anticancer effect of ursolic acid. Ursolic acid activates cell apoptosis and its pro-apoptotic mechanism remains to be fully elucidated. Cell Counting kit-8 assays, flow cytometric analysis and analysis of caspase-3 and caspase-9 activity were used to estimate the anticancer effect of ursolic acid on DU145 prostate cancer cells. The protein expression of cytochrome c, rho-associated protein kinase (ROCK), phosphatase and tensin homolog (PTEN) and cofilin-1 were examined using western blot analysis. In the present study, ursolic acid significantly suppressed cell growth and induced apoptosis, as well as increasing caspase-3 and caspase-9 activities of DU145 cells. Furthermore, cytoplasmic and mitochondrial cytochrome c protein expression was significantly activated and suppressed, respectively, by ursolic acid. Ursolic acid significantly suppressed the ROCK/PTEN signaling pathway and inhibited cofilin-1 protein expression in DU145 cells. The results of the present study indicate that the anticancer effect of ursolic acid activates cell apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer. PMID:27698874

  2. Screening and evaluation of antiparasitic and in vitro anticancer activities of Panamanian endophytic fungi.

    PubMed

    Martínez-Luis, Sergio; Cherigo, Lilia; Higginbotham, Sarah; Arnold, Elizabeth; Spadafora, Carmenza; Ibañez, Alicia; Gerwick, William H; Cubilla-Rios, Luis

    2011-06-01

    Many compounds produced by fungi have relevant pharmaceutical applications. The purpose of this study was to collect and isolate endophytic fungi from different regions of Panama and then to test their potential therapeutic activities against Leishmania donovani, Plasmodium falciparum, and Trypanosoma cruzi as well as their anticancer activities in MCF-7 cells. Of the 25 fungal isolates obtained, ten of them had good anti-parasitic potential, showing selective activity against L. donovani; four had significant anti-malarial activity; and three inhibited the growth of T. cruzi. Anticancer activity was demonstrated in four isolates. Of the active isolates, Edenia sp. strain F0755, Xylaria sp. strain F1220, Aspergillus sp. strain F1544, Mycoleptodiscus sp. strain F0194, Phomopsis sp. strain F1566, Pycnoporus sp. strain F0305, and Diaporthe sp. strain F1647 showed the most promise based on their selective bioactivity and lack of toxicity in the assays.

  3. Tubulin polymerization-stimulating activity of Ganoderma triterpenoids.

    PubMed

    Kohno, Toshitaka; Hai-Bang, Tran; Zhu, Qinchang; Amen, Yhiya; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Shimizu, Kuniyoshi

    2017-04-01

    Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.

  4. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells.

    PubMed

    Kim, Seong-Hoon; Ryu, Hye Guk; Lee, Juhyun; Shin, Joon; Harikishore, Amaravadhi; Jung, Hoe-Yune; Jung, Hoe-Youn; Kim, Ye Seul; Lyu, Ha-Na; Oh, Eunji; Baek, Nam-In; Choi, Kwan-Yong; Yoon, Ho Sup; Kim, Kyong-Tai

    2015-09-28

    Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.

  5. Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms

    PubMed Central

    Gupta, Parul; Wright, Stephen E.; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent. PMID:25152445

  6. Preliminary in vitro evaluation of the anti-proliferative activity of guanylhydrazone derivatives.

    PubMed

    França, Paulo H B; Da Silva-Júnior, Edeildo F; Aquino, Pedro G V; Santana, Antônio E G; Ferro, Jamylle N S; De Oliveira Barreto, Emiliano; Do Ó Pessoa, Cláudia; Meira, Assuero Silva; De Aquino, Thiago M; Alexandre-Moreira, Magna S; Schmitt, Martine; De Araújo-Júnior, João X

    2016-03-01

    Guanylhydrazones have shown promising antitumor activity in preclinical tumor models in several studies. In this study, we aimed at evaluating the cytotoxic effect of a series of synthetic guanylhydrazones. Different human tumor cell lines, by including HCT-8 (colon carcinoma), MDA-MB-435 (melanoma) and SF-295 (glioblastoma) were continuous exposed to guanylhydrazone derivatives for 72 hours and growth inhibition of tumor cell lines and macrophages J774 was measured using tetrazolium salt (MTT) assay. Compounds 7, 11, 16 and 17 showed strong cytotoxic activity with IC50 values lower than 10 μmol L(-1) against four tumor cell lines. Among them, 7 was less toxic to non-tumor cells. Finally, obtained data suggest that guanylhydrazones may be regarded as potential lead compounds for the design of novel anticancer agents.

  7. Pellitorine, a potential anti-cancer lead compound against HL6 and MCT-7 cell lines and microbial transformation of piperine from Piper Nigrum.

    PubMed

    Ee, Gwendoline Cheng Lian; Lim, Chyi Meei; Rahmani, Mawardi; Shaari, Khozirah; Bong, Choon Fah Joseph

    2010-04-05

    Pellitorine (1), which was isolated from the roots of Piper nigrum, showed strong cytotoxic activities against HL60 and MCT-7 cell lines. Microbial transformation of piperine (2) gave a new compound 5-[3,4-(methylenedioxy)phenyl]-pent-2-ene piperidine (3). Two other alkaloids were also found from Piper nigrum. They are (E)-1-[3',4'-(methylenedioxy)cinnamoyl]piperidine (4) and 2,4-tetradecadienoic acid isobutyl amide (5). These compounds were isolated using chromatographic methods and their structures were elucidated using MS, IR and NMR techniques.

  8. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells.

    PubMed

    Yim, Dongsool; Singh, Rana P; Agarwal, Chapla; Lee, Sookyeon; Chi, Hyungjoon; Agarwal, Rajesh

    2005-02-01

    We isolated a coumarin compound decursin (C(19)H(20)O(5); molecular weight 328) from Korean angelica (Angelica gigas) root and characterized it by spectroscopy. Here, for the first time, we observed that decursin (25-100 micromol/L) treatment for 24 to 96 hours strongly inhibits growth and induces death in human prostate carcinoma DU145, PC-3, and LNCaP cells. Furthermore, we observed that decursinol [where (CH(3))(2)-C=CH-COO- side chain of decursin is substituted with -OH] has much lower effects compared with decursin, suggesting a possible structure-activity relationship. Decursin-induced growth inhibition was associated with a strong G(1) arrest (P < 0.001) in DU145 and LNCaP cells, and G(1), S as well as G(2)-M arrests depending upon doses and treatment times in PC-3 cells. Comparatively, decursin was nontoxic to human prostate epithelial PWR-1E cells and showed only moderate growth inhibition and G(1) arrest. Consistent with G(1) arrest in DU145 cells, decursin strongly increased protein levels of Cip1/p21 but showed a moderate increase in Kip1/p27 with a decrease in cyclin-dependent kinases (CDK); CDK2, CDK4, CDK6, and cyclin D1, and inhibited CDK2, CDK4, CDK6, cyclin D1, and cyclin E kinase activity, and increased binding of CDK inhibitor (CDKI) with CDK. Decursin-caused cell death was associated with an increase in apoptosis (P < 0.05-0.001) and cleaved caspase-9, caspase-3, and poly(ADP-ribose) polymerase; however, pretreatment with all-caspases inhibitor (z-VAD-fmk) only partially reversed decursin-induced apoptosis, suggesting the involvement of both caspase-dependent and caspase-independent pathways. These findings suggest the novel anticancer efficacy of decursin mediated via induction of cell cycle arrest and apoptosis selectively in human prostate carcinoma cells.

  9. Cytotoxic Activity and Antiproliferative Effects of Crude Skin Secretion from Physalaemus nattereri (Anura: Leptodactylidae) on in vitro Melanoma Cells

    PubMed Central

    Cruz e Carvalho, Andréa; Prías Márquez, César Augusto; Azevedo, Ricardo Bentes; Joanitti, Graziella Anselmo; Pires Júnior, Osmindo Rodrigues; Fontes, Wagner; Castro, Mariana S.

    2015-01-01

    Anuran secretions are rich sources of bioactive molecules, including antimicrobial and antitumoral compounds. The aims of this study were to investigate the therapeutic potential of Physalaemus nattereri skin secretion against skin cancer cells, and to assess its cytotoxic action mechanisms on the murine melanoma cell line B16F10. Our results demonstrated that the crude secretion reduced the viability of B16F10 cells, causing changes in cell morphology (e.g., round shape and structure shrinkage), reduction in mitochondrial membrane potential, increase in phosphatidylserine exposure, and cell cycle arrest in S-phase. Together, these changes suggest that tumor cells die by apoptosis. This skin secretion was also subjected to chromatographic fractioning using RP-HPLC, and eluted fractions were assayed for antiproliferative and antibacterial activities. Three active fractions showed molecular mass components in a range compatible with peptides. Although the specific mechanisms causing the reduced cell viability and cytotoxicity after the treatment with crude secretion are still unknown, it may be considered that molecules, such as the peptides found in the secretion, are effective against B16F10 tumor cells. Considering the growing need for new anticancer drugs, data presented in this study strongly reinforce the validity of P. nattereri crude secretion as a rich source of new anticancer molecules. PMID:26457717

  10. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum).

    PubMed

    Majdalawieh, Amin F; Carr, Ronald I

    2010-04-01

    Although the immunomodulatory effects of many herbs have been extensively studied, research related to possible immunomodulatory effects of various spices is relatively scarce. Here, the potential immunomodulatory effects of black pepper and cardamom are investigated. Our data show that black pepper and cardamom aqueous extracts significantly enhance splenocyte proliferation in a dose-dependent, synergistic fashion. Enzyme-linked immunosorbent assay experiments reveal that black pepper and cardamom significantly enhance and suppress, respectively, T helper (Th)1 cytokine release by splenocytes. Conversely, Th2 cytokine release by splenocytes is significantly suppressed and enhanced by black pepper and cardamom, respectively. Experimental evidence suggests that black pepper and cardamom extracts exert pro-inflammatory and anti-inflammatory roles, respectively. Consistently, nitric oxide production by macrophages is significantly augmented and reduced by black pepper and cardamom, respectively. Remarkably, it is evident that black pepper and cardamom extracts significantly enhance the cytotoxic activity of natural killer cells, indicating their potential anti-cancer effects. Our findings strongly suggest that black pepper and cardamom exert immunomodulatory roles and antitumor activities, and hence they manifest themselves as natural agents that can promote the maintenance of a healthy immune system. We anticipate that black pepper and cardamom constituents can be used as potential therapeutic tools to regulate inflammatory responses and prevent/attenuate carcinogenesis.

  11. Evaluation of estrogenic, antiestrogenic and genotoxic activity of nemorosone, the major compound found in brown Cuban propolis

    PubMed Central

    2013-01-01

    Background Brown propolis is the major type of propolis found in Cuba; its principal component is nemorosone, the major constituent of Clusia rosea floral resins. Nemorosone has received increasing attention due to its strong in vitro anti-cancer action. The citotoxicity of nemorosone in several human cancer cell lines has been reported and correlated to the direct action it has on the estrogen receptor (ER). Breast cancer can be treated with agents that target estrogen-mediated signaling, such as antiestrogens. Phytoestrogen can mimic or modulate the actions of endogenous estrogens and the treatment of breast cancer with phytoestrogens may be a valid strategy, since they have shown anti-cancer activity. Methods The aim of the present investigation was to assess the capacity of nemorosone to interact with ERs, by Recombinant Yeast Assay (RYA) and E-screen assays, and to determine by comet assay, if the compound causes DNA-damaging in tumoral and non-tumoral breast cells. Results Nemorosone did not present estrogenic activity, however, it inhibited the 17-β-estradiol (E2) action when either of both methods was used, showing their antiestrogenicity. The DNA damage induced by the benzophenone in cancer and normal breast cells presented negative results. Conclusion These findings suggest that nemorosone may have therapeutic application in the treatment of breast cancer. PMID:23902919

  12. Ultrasound-assisted extraction of polysaccharides from Artemisia selengensis Turcz and its antioxidant and anticancer activities.

    PubMed

    Wang, Juan; Lu, He Dong; Muḥammad, Umair; Han, Jin Zhi; Wei, Zhao Hui; Lu, Zhao Xin; Bie, Xiao Mei; Lu, Feng Xia

    2016-02-01

    Artemisia selengensis Turcz (AST) is a perennial herb with therapeutic and economic applications in China. The effects of ultrasound-assisted extraction (UAE) parameters upon extraction yield (EY%), antioxidant and antitumor activities of the polysaccharides extracts were studied by using a factorial design and response surface methodology. The optimal conditions determined were as: ultrasonic power 146 W, extraction time 14.5 min. and extraction temperature 60 °C. The average molecular weights of two homogeneous polysaccharides (APS1 and APS2) purified by DEAE cellulose-52 and Sephadex G-100 column chromatography were 125.4 and 184.1 kDa, respectively. Monosaccharide analysis showed that APS1 and APS2 were composed of five common monomers i.e., galactose, mannose, arabinose, xylose and rhamnose and one different monomer glucose and galacturonic acid respectively, with a most abundant part in molar % of APS1 and APS2 were glucose (83.01 %) and galacturonic acid (48.87 %) while least were xylose (0.80 %) and mannose (1.73 %) respectively. The antioxidant properties were determined by evaluating DPPH, hydroxyl radical scavenging activity and reducing power which indicated both APS1 and APS2 showed strong scavenging activities and anticancer activities on HT-29, BGC823 and antitumor activity on HepG-2. As UAE improved the polysaccharides yield than CSE, meanwhile, no significant difference of polysaccharides chemical compositions. Therefore, the present study suggests that the consumption of AST leaves may beneficial for the treatment of many diseases.

  13. In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit.

    PubMed

    Balachandran, C; Emi, N; Arun, Y; Yamamoto, Y; Ahilan, B; Sangeetha, B; Duraipandiyan, V; Inaguma, Yoko; Okamoto, Akinao; Ignacimuthu, S; Al-Dhabi, N A; Perumal, P T

    2015-12-05

    The present study was undertaken to investigate the anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit and to explore the molecular mechanisms of action in MCF-7 cells. Cytotoxic properties of hexane, ethyl acetate and methanol extracts were carried out against MCF-7 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Ethyl acetate extract showed good cytototoxic activities compared to hexane and methanol extracts. Methyl caffeate was isolated from the ethyl acetate extract using column chromatography. Cytotoxic properties of methyl caffeate was investigated against MCF-7, A549, COLO320, HepG-2 and Vero cells. The compound showed potent cytotoxic properties against MCF-7 cells compared to A549, COLO320 and HepG-2 cells. Methyl caffeate significantly reduced cell proliferation and increased formation of fragmented DNA and apoptotic body in MCF-7 cells. Bcl-2, Bax, Bid, p53, caspase-3, PARP and cytochrome c release were detected by western blot analysis. The activities of caspases-3 and PARP gradually increased after the addition of isolated compound. Bcl-2 protein was down regulated; Bid and Bax were up regulated after the treatment with methyl caffeate. Molecular docking studies showed that the compound bound stably to the active sites of poly (ADP-ribose) polymerase-1 (PARP1), B cell CLL/lymphoma-2 (BCL-2), E3 ubiquitin-protein ligase (MDM2) and tubulin. The results strongly suggested that methyl caffeate induced apoptosis in MCF-7 cells via caspase activation through cytochrome c release from mitochondria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  15. Anticancer Effects of Extracts from the Fruit of Morinda Citrifolia (Noni) in Breast Cancer Cell Lines.

    PubMed

    Sharma, K; Pachauri, S D; Khandelwal, K; Ahmad, H; Arya, A; Biala, P; Agrawal, S; Pandey, R R; Srivastava, A; Srivastav, A; Saxena, J K; Dwivedi, A K

    2016-03-01

    Morinda citrifolia L. (NONI) fruits have been used for thousands of years for the treatment of many health problems including cancer, cold, diabetes, flu, hypertension, and pain. Plant extracts have reported several therapeutic benefits, but extraction of individual compound from the extract often exhibits limited clinical utility as the synergistic effect of various natural ingredients gets lost. They generally constitute polyphenols and flavonoids. Studies have suggested that these phytochemicals, especially polyphenols, display high antioxidant properties, which help to reduce the risk of degenerative diseases, such as cancer and cardiovascular diseases. Several in-vitro and in-vivo studies have shown that Noni fruits have antioxidant, anti-inflammatory, anti-dementia, liver-protective, anticancer, analgesic, and immunomodulatory effects. Till date about 7 in vitro cancer studies have been done, but a detailed in vitro study including cell cycle and caspase activation assay on breast cancer cell line has not been done. In the present study different Noni fruit fractions have tested on cancer cell lines MCF-7, MDA-MB-231 (breast adenocarcinoma) and one non-cancer cell line HEK-293 (Human embryonic kidney). Out of which ethylacetate extract showed a higher order of in vitro anticancer activity profile. The ethylacetate extract strongly inhibited the proliferation of MCF-7, MDA-MB-231 and HEK-293 cell lines with IC50 values of 25, 35, 60 µg/ml respectively. The extract showed increase in apoptotic cells in MCF-7 and MDA-MB-231 cells and arrested the cell cycle in the G1/S phase in MCF-7 and G0/G1 phase in MDA-MB-231 cells. Noni extract also decreases the intracellular ROS generation and mitochondrial membrane potential. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation

    PubMed Central

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies. PMID:29743861

  17. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine

    PubMed Central

    Liu, Minghua; Zhao, Ge; Cao, Shousong; Zhang, Yangyang; Li, Xiaofang; Lin, Xiukun

    2017-01-01

    Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed. PMID:28119606

  18. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.

    PubMed

    Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata

    2018-01-01

    A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.

  19. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4

    PubMed Central

    Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan

    2013-01-01

    Objective To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Methods Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Results Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. Conclusions The study revealed that the maximum amount of pigment could be produced to treat cancer. PMID:23905024

  20. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4.

    PubMed

    Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan

    2013-08-01

    To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7 cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. The study revealed that the maximum amount of pigment could be produced to treat cancer.

  1. Antioxidant Activity and ROS-Dependent Apoptotic Effect of Scurrula ferruginea (Jack) Danser Methanol Extract in Human Breast Cancer Cell MDA-MB-231

    PubMed Central

    Marvibaigi, Mohsen; Amini, Neda; Supriyanto, Eko; Abdul Majid, Fadzilah Adibah; Kumar Jaganathan, Saravana; Jamil, Shajarahtunnur; Hamzehalipour Almaki, Javad; Nasiri, Rozita

    2016-01-01

    Scurrula ferruginea (Jack) Danser is one of the mistletoe species belonging to Loranthaceae family, which grows on the branches of many deciduous trees in tropical countries. This study evaluated the antioxidant activities of S. ferruginea extracts. The cytotoxic activity of the selected extracts, which showed potent antioxidant activities, and high phenolic and flavonoid contents, were investigated in human breast cancer cell line (MDA-MB-231) and non-cancer human skin fibroblast cells (HSF-1184). The activities and characteristics varied depending on the different parts of S. ferruginea, solvent polarity, and concentrations of extracts. The stem methanol extract showed the highest amount of both phenolic (273.51 ± 4.84 mg gallic acid/g extract) and flavonoid contents (163.41 ± 4.62 mg catechin/g extract) and strong DPPH• radical scavenging (IC50 = 27.81 μg/mL) and metal chelation activity (IC50 = 80.20 μg/mL). The stem aqueous extract showed the highest ABTS•+ scavenging ability. The stem methanol and aqueous extracts exhibited dose-dependent cytotoxic activity against MDA-MB-231 cells with IC50 of 19.27 and 50.35 μg/mL, respectively. Furthermore, the extracts inhibited the migration and colony formation of MDA-MB-231 cells in a concentration-dependent manner. Morphological observations revealed hallmark properties of apoptosis in treated cells. The methanol extract induced an increase in ROS generation and mitochondrial depolarization in MDA-MB-231 cells, suggesting its potent apoptotic activity. The present study demonstrated that the S. ferruginea methanol extract mediated MDA-MB-231 cell growth inhibition via induction of apoptosis which was confirmed by Western blot analysis. It may be a potential anticancer agent; however, its in vivo anticancer activity needs to be investigated. PMID:27410459

  2. Role of Dopamine Receptors in the Anticancer Activity of ONC201.

    PubMed

    Kline, Christina Leah B; Ralff, Marie D; Lulla, Amriti R; Wagner, Jessica M; Abbosh, Phillip H; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S

    2018-01-01

    ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201's interaction with DRD2 plays a role in ONC201's anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type-specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201's anticancer effects. Although ONC201's anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201's anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201's ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Anticancer Principles from Medicinal Piper (胡椒 Hú Jiāo) Plants

    PubMed Central

    Wang, Yue-Hu; Morris-Natschke, Susan L.; Yang, Jun; Niu, Hong-Mei; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-01-01

    The ethnomedical uses of Piper (胡椒 Hú Jiāo) plants as anticancer agents, in vitro cytotoxic activity of both extracts and compounds from Piper plants, and in vivo antitumor activity and mechanism of action of selected compounds are reviewed in the present paper. The genus Piper (Piperaceae) contains approximately 2000 species, of which 10 species have been used in traditional medicines to treat cancer or cancer-like symptoms. Studies have shown that 35 extracts from 24 Piper species and 32 compounds from Piper plants possess cytotoxic activity. Amide alkaloids account for 53% of the major active principles. Among them, piplartine (piperlongumine) shows the most promise, being toxic to dozens of cancer cell lines and having excellent in vivo activity. It is worthwhile to conduct further anticancer studies both in vitro and in vivo on Piper plants and their active principles. PMID:24872928

  4. Novel Gold(I) Thiolate Derivatives Synergistic with 5-Fluorouracil as Potential Selective Anticancer Agents in Colon Cancer.

    PubMed

    Atrián-Blasco, Elena; Gascón, Sonia; Rodrı Guez-Yoldi, Ma Jesus; Laguna, Mariano; Cerrada, Elena

    2017-07-17

    New gold(I) thiolate complexes have been synthesized and characterized, and their physicochemical properties and anticancer activity have been tested. The coordination of PTA derivatives provides optimal hydrophilicity/lipophilicity properties to the complexes, which present high solution stability. Moreover, the complexes show a high anticancer activity against Caco-2 cells, comparable to that of auranofin, and a very low cytotoxic activity against enterocyte-like differentiated cells. Their activity has been shown to produce cell death by apoptosis and arrest of the cell cycle because of interaction with the reductase enzymes and consequent reactive oxygen species production. Some of these new complexes are also able to decrease the necessary dose of 5-fluorouracil, a drug used for the treatment of colon cancer, by a synergistic mechanism.

  5. Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines.

    PubMed

    Sirisha, Kalam; Achaiah, Garlapati; Reddy, Vanga Malla

    2010-06-01

    A series of twenty new 4-substituted-2,6-dimethyl-3,5-bis-N-(heteroaryl)-carbamoyl-1,4-dihydropyridines have been prepared from a three-component one-pot condensation reaction of N-heteroaryl acetoacetamide, an aromatic/heteroaromatic aldehyde, and ammonium acetate under four different experimental conditions. Except for the conventional method, all the experimental conditions were simple, eco-friendly, economical, and the reactions were rapid and high-yielding. The methods employed have been compared in terms of yields, cost, and simplicity. The synthesized compounds were characterized by different spectroscopic techniques and evaluated for their in-vitro anticancer, antibacterial, and antitubercular activities. Amongst the compounds tested, compound 25 exhibited the highest anticancer activity while compounds 14 and 18 exhibited significant antibacterial and antitubercular activities.

  6. Clopidogrel in a combined therapy with anticancer drugs—effect on tumor growth, metastasis, and treatment toxicity: Studies in animal models

    PubMed Central

    Denslow, Agnieszka; Świtalska, Marta; Jarosz, Joanna; Papiernik, Diana; Porshneva, Kseniia; Nowak, Marcin

    2017-01-01

    Clopidogrel, a thienopyridine derivative with antiplatelet activity, is widely prescribed for patients with cardiovascular diseases. In addition to antiplatelet activity, antiplatelet agents possess anticancer and antimetastatic properties. Contrary to this, results of some studies have suggested that the use of clopidogrel and other thienopyridines accelerates the progression of breast, colorectal, and prostate cancer. Therefore, in this study, we aimed to evaluate the efficacy of clopidogrel and various anticancer agents as a combined treatment using mouse models of breast, colorectal, and prostate cancer. Metastatic dissemination, selected parameters of platelet morphology and biochemistry, as well as angiogenesis were assessed. In addition, body weight, blood morphology, and biochemistry were evaluated to test toxicity of the studied compounds. According to the results, clopidogrel increased antitumor and/or antimetastatic activity of chemotherapeutics such as 5-fluorouracil, cyclophosphamide, and mitoxantrone, whereas it decreased the anticancer activity of doxorubicin, cisplatin, and tamoxifen. The mechanisms of such divergent activities may be based on the modulation of tumor vasculature via factors, such as transforming growth factor β1 released from platelets. Moreover, clopidogrel increased the toxicity of docetaxel and protected against mitoxantrone-induced toxicity, which may be due to the modulation of hepatic enzymes and protection of the vasculature, respectively. These results demonstrate that antiplatelet agents can be useful but also dangerous in anticancer treatment and therefore use of thienopyridines in patients undergoing chemotherapy should be carefully evaluated. PMID:29206871

  7. Anticancer Drugs from Marine Flora: An Overview

    PubMed Central

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease. PMID:21461373

  8. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis.

    PubMed

    Ramamoorthy, Sathishkumar; Gnanakan, Ananthan; S Lakshmana, Senthil; Meivelu, Moovendhan; Jeganathan, Arun

    2018-06-15

    In the present study, extracellular polysaccharides (EPS) producing bacterium Bacillus thuringiensis RSK CAS4 was isolated from ascidian Didemnum granulatum and its production was optimized by response surface methodology. Fructose and galactose were found as the major monosaccharides in the EPS from the strain RSK CAS4. Functional groups and structural characteristics of the EPS were characterized with FT-IR and 1 HNMR. The purified EPS showed potent antioxidant properties in investigation against DPPH, hydroxyl, superoxide free radicals. In vitro anticancer activity of purified EPS was evaluated on HEp-2 cells, A549 and Vero cell lines. Growth of cancer cells was inhibited by the EPS in a dose-dependent manner and maximum anticancer activity was found to be 76% against liver cancer at 1000 μg/ml. The antioxidant and anticancer potentials of theEPS from marine bacterium Bacillusthuringiensis RSK CAS4 suggests it as a potential natural source and its scopeas an alternative to synthetics for pharmaceutical application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery.

    PubMed

    Zhao, Yi; Wang, Wei; Guo, Shutao; Wang, Yuhua; Miao, Lei; Xiong, Yang; Huang, Leaf

    2016-06-06

    Metformin, a widely implemented anti-diabetic drug, exhibits potent anticancer efficacies. Herein a polymeric construction of Metformin, PolyMetformin (PolyMet) is successfully synthesized through conjugation of linear polyethylenimine (PEI) with dicyandiamide. The delocalization of cationic charges in the biguanide groups of PolyMet reduces the toxicity of PEI both in vitro and in vivo. Furthermore, the polycationic properties of PolyMet permits capture of siRNA into a core-membrane structured lipid-polycation-hyaluronic acid (LPH) nanoparticle for systemic gene delivery. Advances herein permit LPH-PolyMet nanoparticles to facilitate VEGF siRNA delivery for VEGF knockdown in a human lung cancer xenograft, leading to enhanced tumour suppressive efficacy. Even in the absence of RNAi, LPH-PolyMet nanoparticles act similarly to Metformin and induce antitumour efficacy through activation of the AMPK and inhibition of the mTOR. In essence, PolyMet successfully combines the intrinsic anticancer efficacy of Metformin with the capacity to carry siRNA to enhance the therapeutic activity of an anticancer gene therapy.

  10. Anticancer drugs from marine flora: an overview.

    PubMed

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  11. Anti-cancer effect of novel PAK1 inhibitor via induction of PUMA-mediated cell death and p21-mediated cell cycle arrest

    PubMed Central

    Woo, Tae-Gyun; Yoon, Min-Ho; Hong, Shin-Deok; Choi, Jiyun; Ha, Nam-Chul; Sun, Hokeun; Park, Bum-Joon

    2017-01-01

    Hyper-activation of PAK1 (p21-activated kinase 1) is frequently observed in human cancer and speculated as a target of novel anti-tumor drug. In previous, we also showed that PAK1 is highly activated in the Smad4-deficient condition and suppresses PUMA (p53 upregulated modulator of apoptosis) through direct binding and phosphorylation. On the basis of this result, we have tried to find novel PAK1-PUMA binding inhibitors. Through ELISA-based blind chemical library screening, we isolated single compound, IPP-14 (IPP; Inhibitor of PAK1-PUMA), which selectively blocks the PAK1-PUMA binding and also suppresses cell proliferation via PUMA-dependent manner. Indeed, in PUMA-deficient cells, this chemical did not show anti-proliferating effect. This chemical possessed very strong PAK1 inhibition activity that it suppressed BAD (Bcl-2-asoociated death promoter) phosphorylation and meta-phase arrest via Aurora kinase inactivation in lower concentration than that of previous PAK1 kinase, FRAX486 and AG879. Moreover, our chemical obviously induced p21/WAF1/CIP1 (Cyclin-dependent kinase inhibitor 1A) expression by releasing from Bcl-2 (B-cell lymphoma-2) and by inhibition of AKT-mediated p21 suppression. Considering our result, IPP-14 and its derivatives would be possible candidates for PAK1 and p21 induction targeted anti-cancer drug. PMID:28423593

  12. Synthesis and antitumoral activity of novel 3-(2-substituted-1,3,4-oxadiazol-5-yl) and 3-(5-substituted-1,2,4-triazol-3-yl) beta-carboline derivatives.

    PubMed

    Formagio, Anelise S Nazari; Tonin, Lilian T Düsman; Foglio, Mary Ann; Madjarof, Christiana; de Carvalho, João Ernesto; da Costa, Willian Ferreira; Cardoso, Flávia P; Sarragiotto, Maria Helena

    2008-11-15

    Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.

  13. 6-Gingerol inhibits osteosarcoma cell proliferation through apoptosis and AMPK activation.

    PubMed

    Fan, Jingzhang; Yang, Xin; Bi, Zhenggang

    2015-02-01

    6-Gingerol, a major component of ginger, is demonstrated to possess a variety of pharmacological activities. Despite demonstration of its anti-cancer activity, the exact mechanism underlying the effects of 6-gingerol against sarcoma remains sketchy. In the present study, we investigated the anti-cancer effects of 6-gingerol on osteosarcoma cells. MTT assay was performed to determine cell viability. Phosphorylation and protein levels were determined by immunoblotting. Cell cycle was determined using flow cytometry. Quantitative polymerase chain reaction was employed to determine the changes in the messenger RNA (mRNA) expression of genes. Treatment with 6-gingerol resulted in a significant decrease in the viability of osteosarcoma cells in a dose-dependent fashion. In parallel, the number of cells arrested at the sub-G1 cell cycle phase was significantly increased. The results showed that 6-gingerol induced activation of caspase cascades and regulated cellular levels of Bcl2 and Bax. Moreover, 6-gingerol activated AMP-activated protein kinase (AMPK) signaling associated with the apoptotic pathways. Our findings suggest that 6-gingerol suppresses the growth of osteosarcoma cells. The anti-cancer activity is attributed to the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling incorporating with 6-gingerol-induced AMPK activation. The study identifies a new molecular mechanism by which AMPK is involved in anti-cancer effects of 6-gingerol.

  14. Anticancer agents derived from natural cinnamic acids.

    PubMed

    Su, Ping; Shi, Yaling; Wang, Jinfeng; Shen, Xiuxiu; Zhang, Jie

    2015-01-01

    Cancer is the most dangerous disease that causes deaths all over the world. Natural products have afforded a rich source of drugs in a number of therapeutic fields including anticancer agents. Many significant drugs have been derived from natural sources by structural optimization of natural products. Cinnamic acid has gained great interest due to its antiproliferative, antioxidant, antiangiogenic and antitumorigenic potency. Currently it has been observed that cinnamic acid and its analogs such as caffeic acid, sinapic acid, ferulic acid, and isoferulic acid display various pharmacological activities, such as immunomodulation, anti-inflammation, anticancer and antioxidant. They have served to be the major sources of potential leading anticancer compounds. In this review, we focus on the anticancer potency of cinnamic acid derivatives and novel strategies to design these derivatives. We hope this review will be useful for researchers who are interested in developing anticancer agents.

  15. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities

    PubMed Central

    Al-Zahrani, Ateeq Ahmed

    2018-01-01

    Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd PMID:29774137

  16. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities.

    PubMed

    Al-Zahrani, Ateeq Ahmed

    2018-01-30

    Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd.

  17. Fatty acid composition and anticancer activity in colon carcinoma cell lines of Prunus dulcis seed oil.

    PubMed

    Mericli, Filiz; Becer, Eda; Kabadayı, Hilal; Hanoglu, Azmi; Yigit Hanoglu, Duygu; Ozkum Yavuz, Dudu; Ozek, Temel; Vatansever, Seda

    2017-12-01

    Almond oil is used in traditional and complementary therapies for its numerous health benefits due to high unsaturated fatty acids content. This study investigated the composition and in vitro anticancer activity of almond oil from Northern Cyprus and compared with almond oil from Turkey. Almond oil from Northern Cyprus was obtained by supercritical CO 2 extraction and analyzed by GC-MS. Almond oil of Turkey was provided from Turkish pharmacies. Different concentrations of almond oils were incubated for 24 and 48 h with Colo-320 and Colo-741 cells. Cell growth and cytotoxicity were measured by MTT assays. Anticancer and antiprolifetarive activities of almond oils were investigated by immunocytochemistry using antibodies directed against to BMP-2, β-catenin, Ki-67, LGR-5 and Jagged 1. Oleic acid (77.8%; 75.3%), linoleic acid (13.5%; 15.8%), palmitic acid (7.4%; 6.3%), were determined as the major compounds of almond oil from Northern Cyprus and Turkey, respectively. In the MTT assay, both almond oils were found to be active against Colo-320 and Colo-741 cells with 1:1 dilution for both 24 h and 48 h. As a result of immunohistochemical staining, while both almond oils exhibited significant antiproliferative and anticancer activity, these activities were more similar in Colo-320 cells which were treated with Northern Cyprus almond oil. Almond oil from Northern Cyprus and Turkey may have anticancer and antiproliferative effects on colon cancer cells through molecular signalling pathways and, thus, they could be potential novel therapeutic agents.

  18. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity

    NASA Astrophysics Data System (ADS)

    Yugandhar, Pulicherla; Vasavi, Thirumalanadhuni; Uma Maheswari Devi, Palempalli; Savithramma, Nataru

    2017-10-01

    In recent times, nanoparticles are attributed to green nanotechnology methods to know the synergistic biological activities. To accomplish this phenomenon, present study was aimed to synthesize copper oxide nanoparticles (CuO NPs) by using Syzygium alternifolium stem bark, characterized those NPs using expository tools and to elucidate high prioritized antimicrobial and anticancer activities. Synthesized particles exhibited a color change pattern upon synthesis and affirmed its respective broad peak at 285 nm which was analyzed through UV-vis spectroscopy. FT-IR study confirmed that phenols and primary amines were mainly involved in capping and stabilization of nanoparticles. DLS and Zeta potential studies revealed narrow size of particles with greater stability. XRD studies revealed the crystallographic nature of particles with 17.2 nm average size. Microscopic analysis by using TEM revealed that particle size range from 5-13 nm and most of them were spherical in shape, non-agglomerated and poly-dispersed in condition. Antimicrobial studies of particles showed highest inhibitory activity against E. coli and T. harzianum among bacterial and fungal strains, respectively. The scope of this study is extended by examining anticancer activity of CuO NPs. This study exhibited potential anticancer activity towards MDA-MB-231 human breast cancer lines. Overall, these examinations relate that the S. alternifolium is described as efficient well-being plant and probabilistically for the design and synthesis of nanoparticles for human health. This study paves a way to better understand antimicrobial and anticancer therapeutic drug potentials of nanoparticles to design and analysis of pharmaceuticals by in vivo and in vitro approaches.

  19. In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma.

    PubMed

    Rajasekar, Seetharaman; Park, Da Jung; Park, Cheol; Park, Sejin; Park, Young Hoon; Kim, Sun Tae; Choi, Yung Hyun; Choi, Young Whan

    2012-11-21

    Lithospermum erythrorhizon has long been used in traditional Asian medicine for the treatment of diseases including skin cancer. In this study, hexane extract from the roots of Lithospermum erythrorhizon (LEH) was chemically characterized and its anticancer activity was tested against the most aggressive form of skin cancer. The in vitro anticancer studies viz. cell growth, cell cycle and apoptosis, and the expression of tumor regulating proteins were analyzed against B16F10 melanoma cells. In addition, C57BL/6 mice models were used to evaluate the in vivo anticancer potential of LEH. Mice were intraperitoneally injected with LEH at doses of 0.1 and 10mg/kg every 3 days. The tumor inhibition ratio was determined after 21 days of treatment and the histopathological analyses of the tumor tissues were compared. Further, LEH was purified and its active compounds were structurally elucidated and identified by NMR spectra and quantified by HPLC analyses. LEH effectively inhibits the growth of melanoma cells with an IC(50) of 2.73μg/ml. Cell cycle analysis revealed that LEH increased the percentage of cells in sub-G1 phase by dose dependent manner. LEH exhibited down regulation of anti-apoptotic Bcl-2 family proteins and up regulation of apoptotic Bax protein expression. Importantly, LEH induced cleavage of poly (ADP-ribose) polymerase (PARP) and activated the caspase cascade (caspase 3) with this cleavage mediating the apoptosis of B16F10 cells. LEH treatment at a dose of 10mg/kg for 21 days in experimental mice implanted with tumors resulted in significant reduction of the tumor growth (43%) and weight (36%). Histopathology analysis of LEH treated tumor tissues showed evidence of increased necrotic cells in a concentration dependent manner. Meanwhile, five naphthoquinone compounds [Shikonin (1); Deoxyshikonin (2); β-Hydroxyisovalerylshikonin (3); Acetylshikonin (4) and Isobutyrylshikonin (5)] were purified from LEH and responsible for its anticancer activity. LEH induced apoptosis in B16F10 cells by activation of caspase 3 and inducing sub-G1 cell cycle arrest. LEH exhibited both in vitro and in vivo anticancer activity. Shikonin derivatives in the LEH are responsible for the anticancer activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Effectiveness of activated carbon masks in preventing anticancer drug inhalation.

    PubMed

    Sato, Junya; Kogure, Atushi; Kudo, Kenzo

    2016-01-01

    The exposure of healthcare workers to anticancer drugs such as cyclophosphamide (CPA) is a serious health concern. Anticancer drug pollution may spread outside biological safety cabinets even when a closed system is used. The inhalation of vaporized anticancer drugs is thought to be the primary route of exposure. Therefore, it is important that healthcare workers wear masks to prevent inhalation of anticancer drugs. However, the permeability of medical masks to vaporized anticancer drugs has not been examined. Furthermore, the performance differences between masks including activated carbon with chemical adsorptivity and non-activated carbon masks are uncertain. We investigated activated carbon mask permeability to vaporized CPA, and assessed whether inhibition of vaporized CPA permeability was attributable to the masks' adsorption abilities. A CPA solution (4 mg) was vaporized in a chamber and passed through three types of masks: Pleated-type cotton mask (PCM), pleated-type activated carbon mask (PAM), and stereoscopic-type activated carbon mask (SAM); the flow rate was 1.0 L/min for 1 h. The air was then recovered in 50 % ethanol. CPA quantities in the solution were determined by liquid chromatography time-of-flight mass spectrometry. To determine CPA adsorption by the mask, 5 cm 2 of each mask was immersed in 10 mL of CPA solution (50-2500 μg/mL) for 1 h. CPA concentrations were measured by high-performance liquid chromatography with ultraviolet detection. For the control (no mask), 3.735 ± 0.543 μg of CPA was recovered from the aerated solution. Significantly lower quantities were recovered from PCM (0.538 ± 0.098 μg) and PAM (0.236 ± 0.193 μg) ( p  < 0.001 and p  < 0.001 vs control, respectively). CPA quantities recovered from all of SAM samples were below the quantification limit. When a piece of the SAM was immersed in the CPA solution, a marked decrease to less than 3.1 % of the initial CPA concentration was observed. The SAM exhibited good adsorption ability, and this characteristic may contribute to avoiding inhalation exposure to vaporized CPA. These results suggest that wearing activated carbon masks may prevent anticancer drug inhalation by healthcare workers.

  1. Reversion of the P-glycoprotein-mediated multidrug resistance of cancer cells by FK-506 derivatives.

    PubMed

    Jachez, B; Boesch, D; Grassberger, M A; Loor, F

    1993-04-01

    FK-506 is a resistance-modulating agent (RMA) for tumor cells whose multidrug resistance (MDR) involves a P-glycoprotein (Pgp)-mediated anti-cancer drug efflux. The family of FK-506 relatives and derivatives includes analogs which display a whole range of chemosensitizing strengths, from no detectable RMA activity to a complete reversion of the MDR phenotype. Similarly, FK-506 analogs display a whole range of immunosuppressive activities, including inactive ones. FK-506 was compared for RMA activity with 11 FK-506 analogs which were at least 20-fold less active than FK-506 for the inhibition of the bi-directional mixed lymphocyte reaction displayed the whole range of RMA activity. One such strong RMA derivative of FK-506 (SDZ 280-629) was further shown able to restore completely daunomycin retention by highly resistant MDR P388 tumor cells.

  2. Exploring the Cytotoxic Potential of Triterpenoids-enriched Fraction of Bacopa monnieri by Implementing In vitro, In vivo, and In silico Approaches.

    PubMed

    Mallick, Md Nasar; Khan, Washim; Parveen, Rabea; Ahmad, Sayeed; Sadaf; Najm, Mohammad Zeeshan; Ahmad, Istaq; Husain, Syed Akhtar

    2017-10-01

    Bacopa monnieri (BM) is a herbaceous plant traditionally used from time immemorial in Ayurvedic and folklore medicines. We hypothesized that the extract of the whole plant might contain numerous molecules with having antitumor activities that could be very effective in killing of human cancer cells. This work investigated anticancer activity of bioactive fraction of BM. The hydroalcoholic extract of BM was fractionated with different solvent, namely, hexane, dichloromethane (DCM), acetone, methanol, and water. The in vitro anticancer activity was performed against various Human Cancer Cell lines, namely, Colon (HT29, Colo320, and Caco2), Lung (A549), Cervix (HeLa, SiHa), and Breast (MCF-7, MDAMB-231). Further, DCM fraction was evaluated in vivo for anticancer activity against Ehrlich ascites carcinoma (EAC) tumor-bearing mice since it showed the best cytotoxicity at 72 h (IC 50 41.0-60.0 µg/mL). The metabolic fingerprinting of these extract were carried out using high-performance thin-layer chromatography along with quantification of bacoside A, bacoside B, cucurbitacin B, cucurbitacin E, and bittulinic acid. Oral administration of DCM fraction at a dose of 40 mg/kg rendered prominent reduction of tumor regression parameters such as tumor weight, packed cell volume, tumor volume and viable tumor cell count as compared to the untreated mice of the EAC control group. The anticancer activity of DCM fraction may be due to the presence of large amount of bacoside A, B and cucurbitacins. The molecular docking studies of major metabolites with targeted proteins predicted the anticancer activity of DCM fraction which was in support of in vivo activity. The in vitro , in vivo , analytical and in silico studies on DCM fraction of Bacopa monieri has proved its great potential for development of anticancer phytopharmaceuticals. A new HPTLC method has been developed and validated for the qualitative and quantitative analysis of bacoside A, B, cucurbitacin B, D, E and bittulinic acid in Bacopa monnieri extract. Enrichment of active anticancer metabolites was done by polarity based fractionations of hydroalcoholic extract of Bacopa. DCM fraction of a hydroalcoholic extract of Bacopa showed anticancer potential against human cancer cell line (IC50 41.0-60.0 µg/mL) and in EAC treated mice (at a dose of 40 mg/kg body weight). The anticancer activity of Bacopa may be due to the presence of bacosides and cucurbitacin and it was confirmed by in silico screening. Abbreviations used: DBM: DCM fraction of Bacopa monnieri; DCM: Dichloromethane; EAC: Ehrlich ascites carcinoma; HCT: Hematocrit; HGB: Hemoglobin; HPTLC: High performance thin layer chromatography; ICH: International council for Harmonisation; LOD: Limit of detection; LOQ: Limit of quantification; LYM: Lymphocytes; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular haemoglobin concentration (MCHC); MCV: Mean corpuscular volume; MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PLT: Platelet; RBC: Red blood cell; RDW: Red blood cell distribution width; RSD: Relative standard deviation; WBC: White blood cells.

  3. Exploring the Cytotoxic Potential of Triterpenoids-enriched Fraction of Bacopa monnieri by Implementing In vitro, In vivo, and In silico Approaches

    PubMed Central

    Mallick, Md. Nasar; Khan, Washim; Parveen, Rabea; Ahmad, Sayeed; Sadaf; Najm, Mohammad Zeeshan; Ahmad, Istaq; Husain, Syed Akhtar

    2017-01-01

    Background: Bacopa monnieri (BM) is a herbaceous plant traditionally used from time immemorial in Ayurvedic and folklore medicines. We hypothesized that the extract of the whole plant might contain numerous molecules with having antitumor activities that could be very effective in killing of human cancer cells. Objectives: This work investigated anticancer activity of bioactive fraction of BM. Materials and Methods: The hydroalcoholic extract of BM was fractionated with different solvent, namely, hexane, dichloromethane (DCM), acetone, methanol, and water. The in vitro anticancer activity was performed against various Human Cancer Cell lines, namely, Colon (HT29, Colo320, and Caco2), Lung (A549), Cervix (HeLa, SiHa), and Breast (MCF-7, MDAMB-231). Further, DCM fraction was evaluated in vivo for anticancer activity against Ehrlich ascites carcinoma (EAC) tumor-bearing mice since it showed the best cytotoxicity at 72 h (IC50 41.0–60.0 µg/mL). The metabolic fingerprinting of these extract were carried out using high-performance thin-layer chromatography along with quantification of bacoside A, bacoside B, cucurbitacin B, cucurbitacin E, and bittulinic acid. Results: Oral administration of DCM fraction at a dose of 40 mg/kg rendered prominent reduction of tumor regression parameters such as tumor weight, packed cell volume, tumor volume and viable tumor cell count as compared to the untreated mice of the EAC control group. The anticancer activity of DCM fraction may be due to the presence of large amount of bacoside A, B and cucurbitacins. The molecular docking studies of major metabolites with targeted proteins predicted the anticancer activity of DCM fraction which was in support of in vivo activity. Conclusion: The in vitro, in vivo, analytical and in silico studies on DCM fraction of Bacopa monieri has proved its great potential for development of anticancer phytopharmaceuticals. SUMMARY A new HPTLC method has been developed and validated for the qualitative and quantitative analysis of bacoside A, B, cucurbitacin B, D, E and bittulinic acid in Bacopa monnieri extract. Enrichment of active anticancer metabolites was done by polarity based fractionations of hydroalcoholic extract of Bacopa. DCM fraction of a hydroalcoholic extract of Bacopa showed anticancer potential against human cancer cell line (IC50 41.0-60.0 µg/mL) and in EAC treated mice (at a dose of 40 mg/kg body weight). The anticancer activity of Bacopa may be due to the presence of bacosides and cucurbitacin and it was confirmed by in silico screening. Abbreviations used: DBM: DCM fraction of Bacopa monnieri; DCM: Dichloromethane; EAC: Ehrlich ascites carcinoma; HCT: Hematocrit; HGB: Hemoglobin; HPTLC: High performance thin layer chromatography; ICH: International council for Harmonisation; LOD: Limit of detection; LOQ: Limit of quantification; LYM: Lymphocytes; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular haemoglobin concentration (MCHC); MCV: Mean corpuscular volume; MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PLT: Platelet; RBC: Red blood cell; RDW: Red blood cell distribution width; RSD: Relative standard deviation; WBC: White blood cells. PMID:29142420

  4. WE-FG-BRA-01: Cancer Treatment Utilizing Photo-Activation of Psoralen with KV X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, M; Yoon, S; Meng, B

    Purpose: This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with immunogenic anti-cancer potential. Psoralen therapies have been limited due to the requirement for psoralen activation by UVA light. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and reradiate (phosphoresce) at UV wavelengths. Methods: The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed tomore » X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry to investigate treatment induced apoptosis. Methylene blue staining, and WST assays were also used. X-PACT was then evaluated in an in-vivo pilot study on BALBc mice with syngeneic 4T1 tumors, including control arms for X-PACT components. Analysis focused on tumor growth delay. Results: A multivariable regression analysis of 36 independent in-vitro irradiation experiments demonstrated that X-PACT induces significant tumor cell apoptosis and cytotoxicity on all three tumor cell lines in-vitro (p<0.0001). Neither psoralen nor phosphor alone had a strongly significant effect. The in-vivo studies show a pronounced tumor growth delay when compared to controls (42% reduction at 25 days, p=0.0002). Conclusions: These studies demonstrate for the first time a therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation generate UVA light in-situ (including deep seated lesions) which in-turn photo-activates powerful anticancer therapeutics which may lead to short and long term therapeutic effect. This work was supported by Immunolight Llc.« less

  5. Facile synthesis of ferromagnetic Ni doped CeO2 nanoparticles with enhanced anticancer activity

    NASA Astrophysics Data System (ADS)

    Abbas, Fazal; Jan, Tariq; Iqbal, Javed; Ahmad, Ishaq; Naqvi, M. Sajjad H.; Malik, Maaza

    2015-12-01

    NixCe1-xO2 (where x = 0, 0.01, 0.03, 0.05 and 0.07) nanoparticles were synthesized by soft chemical method and were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, UV-vis absorption spectroscopy and vibrating sample magnetometer (VSM). XRD and Raman results indicated the formation of single phase cubic fluorite structure for the synthesized nanoparticles. Ni dopant induced excessive structural changes such as decrease in crystallite size as well as lattice constants and enhancement in oxygen vacancies in CeO2 crystal structure. These structural variations significantly influenced the optical and magnetic properties of CeO2 nanoparticles. The synthesized NixCe1-xO2 nanoparticles exhibited room temperature ferromagnetic behavior. Ni doping induced effects on the cytotoxicity of CeO2 nanoparticles were examined against HEK-293 healthy cell line and SH-SY5Y neuroblastoma cancer cell line. The prepared NixCe1-xO2 nanoparticles demonstrated differential cytotoxicity. Furthermore, anticancer activity of CeO2 nanoparticles observed to be significantly enhanced with Ni doping which was found to be strongly correlated with the level of reactive oxygen species (ROS) production. The prepared ferromagnetic NixCe1-xO2 nanoparticles with differential cytotoxic nature may be potential for future targeted cancer therapy.

  6. Cycloartane-3,24,25-triol inhibits MRCKα kinase and demonstrates promising anti prostate cancer activity in vitro.

    PubMed

    Lowe, Henry I C; Watson, Charah T; Badal, Simone; Toyang, Ngeh J; Bryant, Joseph

    2012-11-14

    Given the high occurrence of prostate cancer worldwide and one of the major sources of the discovery of new lead molecules being medicinal plants, this research undertook to investigate the possible anti-cancer activity of two natural cycloartanes; cycloartane-3,24,25-diol (extracted in our lab from Tillandsia recurvata) and cycloartane-3,24,25-triol (purchased). The inhibition of MRCKα kinase has emerged as a potential solution to restoring the tight regulation of normal cellular growth, the loss of which leads to cancer cell formation. Kinase inhibition was investigated using competition binding (to the ATP sites) assays which have been previously established and authenticated and cell proliferation was measured using the WST-1 assay. Cycloartane-3,24,25-triol demonstrated strong selectivity towards the MRCKα kinase with a Kd50 of 0.26 μM from a total of 451 kinases investigated. Cycloartane-3,24,25-triol reduced the viability of PC-3 and DU145 cell lines with IC50 values of 2.226 ± 0.28 μM and 1.67 ± 0.18 μM respectively. These results will prove useful in drug discovery as Cycloartane-3,24,25-triol has shown potential for development as an anti-cancer agent against prostate cancer.

  7. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beninati, Simone, E-mail: beninati@bio.uniroma2.it; Oliverio, Serafina; Cordella, Martina

    2014-08-08

    Highlights: • We studied the anticancer potential of a new emerging molecule, α-mangostin (α-M). • We provide first evidences on the effects of α-M on transglutaminase activity. • We deeply examined the antimetastatic effects of α-M through many in vitro assays. • Proteomic analysis revealed that α-M promotes a reorganization at cellular level. - Abstract: In this study, we have evaluated the potential antineoplastic effects of α-mangostin (α-M), the most representative xanthone in Garcinia mangostana pericarp, on melanoma cell lines. This xanthone markedly inhibits the proliferation of high-metastatic B16-F10 melanoma cells. Furthermore, by deeply analyzing which steps in the metastaticmore » process are influenced by xanthone it was observed that α-M strongly interferes with homotypic aggregation, adhesion, plasticity and invasion ability of B16-F10 cells, probably by the observed reduction of metalloproteinase-9 activity. The antiproliferative and antimetastatic properties of α-M have been established in human SK-MEL-28 and A375 melanoma cells. In order to identify pathways potentially involved in the antineoplastic properties of α-M, a comparative mass spectrometry proteomic approach was employed. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of α-M on melanoma.« less

  8. Discovery of a drug targeting microenvironmental support for lymphoma cells by screening using patient-derived xenograft cells

    PubMed Central

    Sugimoto, Keiki; Hayakawa, Fumihiko; Shimada, Satoko; Morishita, Takanobu; Shimada, Kazuyuki; Katakai, Tomoya; Tomita, Akihiro; Kiyoi, Hitoshi; Naoe, Tomoki

    2015-01-01

    Cell lines have been used for drug discovery as useful models of cancers; however, they do not recapitulate cancers faithfully, especially in the points of rapid growth rate and microenvironment independency. Consequently, the majority of conventional anti-cancer drugs are less sensitive to slow growing cells and do not target microenvironmental support, although most primary cancer cells grow slower than cell lines and depend on microenvironmental support. Here, we developed a novel high throughput drug screening system using patient-derived xenograft (PDX) cells of lymphoma that maintained primary cancer cell phenotype more than cell lines. The library containing 2613 known pharmacologically active substance and off-patent drugs were screened by this system. We could find many compounds showing higher cytotoxicity than conventional anti-tumor drugs. Especially, pyruvinium pamoate showed the highest activity and its strong anti-tumor effect was confirmed also in vivo. We extensively investigated its mechanism of action and found that it inhibited glutathione supply from stromal cells to lymphoma cells, implying the importance of the stromal protection from oxidative stress for lymphoma cell survival and a new therapeutic strategy for lymphoma. Our system introduces a primary cancer cell phenotype into cell-based phenotype screening and sheds new light on anti-cancer drug development. PMID:26278963

  9. Combination of Osthole and Cisplatin Against Rhabdomyosarcoma TE671 Cells Yielded Additive Pharmacologic Interaction by Means of Isobolographic Analysis.

    PubMed

    Jarząb, Agata; Łuszczki, Jarogniew; Guz, Małgorzata; Skalicka-Woźniak, Krystyna; Hałasa, Marta; Smok-Kalwat, Jolanta; Polberg, Krzysztof; Stepulak, Andrzej

    2018-01-01

    Osthole is a simple coumarin that has been found to have anticancer, anti-inflammatory, antiviral, anticoagulant, anticonvulsant and antiallergic activities. The aim of this study was to analyze the combined anti-proliferative effect of cisplatin (CDDP) and osthole on a rhabdomyosarcoma cell line, and assess the pharmacology of drug-drug interaction between these drugs using isobolographic analysis. The anticancer actions of osthole in combination with CDDP were evaluated using the tetrazolium dye-based MTT cell proliferation assay. Osthole and CDDP applied together augmented their anti-cancer activities and yielded an additive type of pharmacologic interaction by means of isobolographic analysis. Combined therapy using osthole and cisplatin could be suggested as a potential chemotherapy regimen against rhabdomyosarcoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    PubMed

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  11. Preparation of biocompatible copolymeric micelles as a carrier of atorvastatin and rosuvastatin for potential anticancer activity study.

    PubMed

    Hamidreza Kheiri, Manjili; Alimohammadi, Niusha; Danafar, Hossein

    2018-05-18

    Statins are widely used for the treatment of hypercholesterolemia. However, their inhibitory action on HMG-CoA reductase also results in the depletion of intermediate biosynthetic products, which importantly contribute to cell proliferation. The aim of the present study was to compare the effects of the individual commercially available statins on investigational breast cancer. Thus, in this study, biodegradable polymeric micelles as carrier of statins were prepared using biodegradable copolymers (PCL-PEG-PCL). These nanoparticles were prepared with two statins (atorvastatin and rosuvastatin) and drug loading, release, kinetic release, and anti-cancer activity of these drugs were studied. The triblock copolymer PCL-PEG-PCL was synthesized by a ring opening polymerization of e-caprolactone in the presence of PEG as the initiator and Sn(oct) 2 as the catalyst. The synthesized copolymers and nanoparticles were characterized by FTIR, HNMR, GPC, DLS, and AFM analyses. The drug loading and release of drugs were studied by UV-Vis. Additionally, MTT assays on HFF-2 cell lines were performed for determination of biocompatibility of micelles. Finally, the anticancer activity of micelles was studied on MCF-7 breast cancer cell lines. The results showed that the average diameter of nanoparticles was less than 45 nm. The loading capacity of atorvastatin and rosuvastatin was 20.0 ± 1.01% and 13.21 ± 1.18%, respectively, and encapsulation efficiency of atorvastatin and rosuvastatin was 88.19 ± 1.11% and 69.32 ± 0.23%, respectively. The results showed strong and dose-dependent inhibition of cell (MCF-7line) growth by the nanoparticles compared with statins. The result of cell viability assay on the MCF-7 cell line verified that the bare nanoparticles showed little inherent cytotoxicity whereas the statins-loaded nanoparticles were cytotoxic.

  12. Induction of apoptosis in human cervical carcinoma HeLa cells by active compounds from Hypericum ascyron L.

    PubMed

    Li, Xiu-Mei; Luo, Xue-Gang; He, Jun-Fang; Wang, Nan; Zhou, Hao; Yang, Pei-Long; Zhang, Tong-Cun

    2018-03-01

    Hypericum ascyron L. (Great St. Johnswort), which belongs to the Hypericaceae family, has been used for the treatment of hematemesis, metrorrhagia, rheumatism, swelling, stomach ache, abscesses, dysentery and irregular menstruation for >2,000 years in China. The aim of the present study was to clarify the anticancer activity compounds from H. ascyron L. and the underlying molecular mechanism. Anticancer activity of H. ascyron L. extract was evaluated using an MTT assay. To confirm the anticancer mechanism of activity compounds, Hoechst 33258, Annexin V-fluorescein isothiocyanate/propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate, rhodamine 123 staining and caspase-3 activity analysis were performed. The results demonstrated that the anti-proliferative action of the mixture of kaempferol 3-O-β-(2″-acetyl) galactopyranoside (K) and quercetin (Q) (molar ratio, 1:1) was significantly increased compared with either of these two compounds separately, and the active fraction of the H. ascyron L. extract |(HALE). HALE, indicating that the anti-proliferative function of H. ascyron L. may be a synergic effect of K and Q. Furthermore, the inhibitory effect of KQ on the growth of HeLa cells was mediated by the induction of apoptosis. To the best of our knowledge, the present study is the first to identify that KQ exhibits significant anti-proliferation activity on HeLa cells via the apoptotic pathway, and is also the first to evaluate the anticancer potential of H. ascyron L. The results of the present study may provide a rational base for the use of H. ascyron L. in the clinic, and shed light on the development of novel anticancer drugs.

  13. Anti-proliferative and apoptosis induction activities of extracts from Thai medicinal plant recipes selected from MANOSROI II database.

    PubMed

    Manosroi, Jiradej; Sainakham, Mathukorn; Manosroi, Worapaka; Manosroi, Aranya

    2012-05-07

    ETHONOPHARMACOLOGICAL RELEVANCES: Traditional medicines have long been used by the Thai people. Several medicinal recipes prepared from a mixture of plants are often used by traditional medicinal practitioners for the treatment of many diseases including cancer. The recipes collected from the Thai medicinal text books were recorded in MANOSROI II database. Anticancer recipes were searched and selected by a computer program using the recipe indication keywords including Ma-reng and San which means cancer in Thai, from the database for anticancer activity investigation. To investigate anti-cancer activities of the Thai medicinal plant recipes selected from the "MANOSROI II" database. Anti-proliferative and apoptotic activities of extracts from 121 recipes selected from 56,137 recipes in the Thai medicinal plant recipe "MANOSROI II" database were investigated in two cancer cell lines including human mouth epidermal carcinoma (KB) and human colon adenocarcinoma (HT-29) cell lines using sulforhodamine B (SRB) assay and acridine orange (AO) and ethidium bromide (EB) staining technique, respectively. In the SRB assay, recipes NE028 and, S003 gave the highest anti-proliferation activity on KB and HT29 with the IC(50) values of 2.48±0.24 and 6.92±0.49μg/ml, respectively. In the AO/EB staining assay, recipes S016 and NE028 exhibited the highest apoptotic induction in KB and HT-29 cell lines, respectively. This study has demonstrated that the three Thai medicinal plant recipes selected from "MANOSROI II" database (NE028, S003 and S016) gave active anti-cancer activities according to the NCI classification which can be further developed for anti-cancer treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines.

    PubMed

    Mandalapu, Dhanaraju; Saini, Karan S; Gupta, Sonal; Sharma, Vikas; Yaseen Malik, Mohd; Chaturvedi, Swati; Bala, Veenu; Hamidullah; Thakur, Subhadra; Maikhuri, Jagdamba P; Wahajuddin, Muhammad; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu Lal

    2016-09-01

    The anti-cancer property of curcumin, an active component of turmeric, is limited due to its poor solubility, stability and bioavailability. To enhance its efficacy, we designed a novel series of twenty-four monocarbonyl curcumin analogue-1,2,3-triazole conjugates and evaluated their anti-cancer activity towards endocrine related cancers. The new compounds (17-40) were synthesized through CuAAC click reaction and SAR analysis carried out. Out of these all, compound 17 showed most significant anti-cancer activity against prostate cancer cells with IC50 values of 8.8μM and 9.5μM in PC-3 and DU-145 cells, respectively. Another compound 26 showed significant anti-cancer activity against breast cancer cells with IC50 of 6μM, 10μM and 6.4μM in MCF-7, MDA-MB-231 and 4T1 cells, respectively while maintaining low toxicity towards non-cancer originated cell line, HEK-293. Compounds 17 and 26 arrested cell cycle and induced mitochondria-mediated apoptosis in cancer cells. Further, both of these compounds significantly down-regulated cell proliferation marker (PCNA), inhibited activation of cell survival protein (Akt phosphorylation), upregulated pro-apoptotic protein (Bax) and down-regulated anti-apoptotic protein (Bcl-2) in their respective cell lines. In addition, in vitro stability, solubility and plasma binding studies of the compounds 17 and 26 showed them to be metabolically stable. Thus, this study identified two new curcumin monocarbonyl-1,2,3-triazole conjugate compounds with more potent activity than curcumin against breast and prostate cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves.

    PubMed

    Xie, Jian-Hua; Liu, Xin; Shen, Ming-Yue; Nie, Shao-Ping; Zhang, Hui; Li, Chang; Gong, De-Ming; Xie, Ming-Yong

    2013-02-15

    A Cyclocarya paliurus (Batal.) Iljinskaja polysaccharide (CPP) was isolated and purified by hot water extraction, ethanol precipitation, deproteinisation and anion-exchange chromatography. Its physicochemical properties were characterised by gel permeation chromatography (GPC), gas chromatography-mass spectrometry (GC-MS), thermal gravimetric analysis (TGA), Fourier transform infrared spectrometry (FTIR), UV-visible spectrophotometry, dynamic light scattering (DLS) and viscometry analysis. The anticancer effect of CPP in human gastric cancer HeLa cells was also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the molecular weight of CPP was 900 kDa, and it contained 64.8% total sugar, 23.5% uronic acid, 9.26% protein, and six kinds of monosaccharides, including glucose, rhamnose, arabinose, xylose, mannose and galactose, with molar percentages of 32.7%, 9.33%, 30.6%, 3.48%, 10.4%, and 13.5%, respectively. Furthermore, the results showed that CPP exhibited a strong inhibition effect on the growth of human gastric cancer HeLa cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Novel morphology change of Au-Methotrexate conjugates: From nanochains to discrete nanoparticles.

    PubMed

    Wang, Wei-Yuan; Zhao, Xiu-Fen; Ju, Xiao-Han; Wang, Yu; Wang, Lin; Li, Shu-Ping; Li, Xiao-Dong

    2016-12-30

    A novel morphology change of Au-methotrexate (Au-MTX) conjugates that could transform from nanochains to discrete nanoparticles was achieved by a simple, one-pot, and hydrothermal growth method. Herein, MTX was used efficiently as a complex-forming agent, reducing agent, capping agent, and importantly a targeting anticancer drug. The formation mechanism suggested a similarity with the molecular imprinting technology. The Au-MTX complex induced the MTX molecules to selectively adsorb on different crystal facets of gold nanoparticles (AuNPs) and then formed gold nanospheres. Moreover, the abundantly binding MTX molecules promoted directional alignment of these gold nanospheres to further form nanochains. More interestingly, the linear structures gradually changed into discrete nanoparticles by adding different amount of ethylene diamine tetra (methylene phosphonic acid) (EDTMPA) into the initial reaction solution, which likely arose from the strong electrostatic effect of the negatively charged phosphonic acid groups. Compared with the as-prepared nanochains, the resultant discrete nanoparticles showed almost equal drug loading capacity but with higher drug release control, colloidal stability, and in vitro anticancer activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Methyl-cyclopentadienyl Ruthenium Compounds with 2,2'-Bipyridine Derivatives Display Strong Anticancer Activity and Multidrug Resistance Potential.

    PubMed

    Côrte-Real, Leonor; Teixeira, Ricardo G; Gírio, Patrícia; Comsa, Elisabeta; Moreno, Alexis; Nasr, Rachad; Baubichon-Cortay, Hélène; Avecilla, Fernando; Marques, Fernanda; Robalo, M Paula; Mendes, Paulo; Ramalho, João P Prates; Garcia, M Helena; Falson, Pierre; Valente, Andreia

    2018-04-16

    New ruthenium methyl-cyclopentadienyl compounds bearing bipyridine derivatives with the general formula [Ru(η 5 -MeCp)(PPh 3 )(4,4'-R-2,2'-bpy)] + (Ru1, R = H; Ru2, R = CH 3 ; and Ru3, R = CH 2 OH) have been synthesized and characterized by spectroscopic and analytical techniques. Ru1 crystallized in the monoclinic P2 1 / c, Ru2 in the triclinic P1̅, and Ru3 in the monoclinic P2 1 / n space group. In all molecular structures, the ruthenium center adopts a "piano stool" distribution. Density functional theory calculations were performed for all complexes, and the results support spectroscopic data. Ru1 and Ru3 were poor substrates of the main multidrug resistance human pumps, ABCB1, ABCG2, ABCC1, and ABCC2, while Ru2 displayed inhibitory properties of ABCC1 and ABCC2 pumps. Importantly, all compounds displayed a very high cytotoxic profile for ovarian cancer cells (sensitive and resistant) that was much more pronounced than that observed with cisplatin, making them very promising anticancer agents.

  18. Resveratrol and Pterostilbene Exhibit Anticancer Properties Involving the Downregulation of HPV Oncoprotein E6 in Cervical Cancer Cells.

    PubMed

    Chatterjee, Kaushiki; AlSharif, Dina; Mazza, Christina; Syar, Palwasha; Al Sharif, Mohamed; Fata, Jimmie E

    2018-02-21

    Cervical cancer is one of the most common cancers in women living in developing countries. Due to a lack of affordable effective therapy, research into alternative anticancer compounds with low toxicity such as dietary polyphenols has continued. Our aim is to determine whether two structurally similar plant polyphenols, resveratrol and pterostilbene, exhibit anticancer and anti-HPV (Human papillomavirus) activity against cervical cancer cells. To determine anticancer activity, extensive in vitro analyses were performed. Anti-HPV activity, through measuring E6 protein levels, subsequent downstream p53 effects, and caspase-3 activation, were studied to understand a possible mechanism of action. Both polyphenols are effective agents in targeting cervical cancer cells, having low IC50 values in the µM range. They decrease clonogenic survival, reduce cell migration, arrest cells at the S-phase, and reduce the number of mitotic cells. These findings were significant, with pterostilbene often being more effective than resveratrol. Resveratrol and to a greater extent pterostilbene downregulates the HPV oncoprotein E6, induces caspase-3 activation, and upregulates p53 protein levels. Results point to a mechanism that may involve the downregulation of the HPV E6 oncoprotein, activation of apoptotic pathways, and re-establishment of functional p53 protein, with pterostilbene showing greater efficacy than resveratrol.

  19. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  20. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.

    PubMed

    Aggarwal, Bharat B; Yuan, Wei; Li, Shiyou; Gupta, Subash C

    2013-09-01

    Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Combining anti-cancer drugs with artificial sweeteners: synthesis and anti-cancer activity of saccharinate (sac) and thiosaccharinate (tsac) complexes cis-[Pt(sac)2(NH3)2] and cis-[Pt(tsac)2(NH3)2].

    PubMed

    Al-Jibori, Subhi A; Al-Jibori, Ghassan H; Al-Hayaly, Lamaan J; Wagner, Christoph; Schmidt, Harry; Timur, Suna; Baris Barlas, F; Subasi, Elif; Ghosh, Shishir; Hogarth, Graeme

    2014-12-01

    The new platinum(II) complexes cis-[Pt(sac)2(NH3)2] (sac=saccharinate) and cis-[Pt(tsac)2(NH3)2] (tsac=thiosaccharinate) have been prepared, the X-ray crystal structure of cis-[Pt(sac)2(NH3)2] x H2O reveals that both saccharinate anions are N-bound in a cis-arrangement being inequivalent in both the solid-state and in solution at room temperature. Preliminary anti-cancer activity has been assessed against A549 human alveolar type-II like cell lines with the thiosaccharinate complex showing good activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. UDP-Glucuronosyltransferase 1A Compromises Intracellular Accumulation and Anti-Cancer Effect of Tanshinone IIA in Human Colon Cancer Cells

    PubMed Central

    Liu, Miao; Wang, Qiong; Liu, Fang; Cheng, Xuefang; Wu, Xiaolan; Wang, Hong; Wu, Mengqiu; Ma, Ying; Wang, Guangji; Hao, Haiping

    2013-01-01

    Background and Purpose NAD(P)H: quinone oxidoreductase 1 (NQO1) mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation is the dominant metabolic pathway of tanshinone IIA (TSA), a promising anti-cancer agent. UGTs are positively expressed in various tumor tissues and play an important role in the metabolic elimination of TSA. This study aims to explore the role of UGT1A in determining the intracellular accumulation and the resultant apoptotic effect of TSA. Experimental Approach We examined TSA intracellular accumulation and glucuronidation in HT29 (UGT1A positive) and HCT116 (UGT1A negative) human colon cancer cell lines. We also examined TSA-mediated reactive oxygen species (ROS) production, cytotoxicity and apoptotic effect in HT29 and HCT116 cells to investigate whether UGT1A levels are directly associated with TSA anti-cancer effect. UGT1A siRNA or propofol, a UGT1A9 competitive inhibitor, was used to inhibit UGT1A expression or UGT1A9 activity. Key Results Multiple UGT1A isoforms are positively expressed in HT29 but not in HCT116 cells. Cellular S9 fractions prepared from HT29 cells exhibit strong glucuronidation activity towards TSA, which can be inhibited by propofol or UGT1A siRNA interference. TSA intracellular accumulation in HT29 cells is much lower than that in HCT116 cells, which correlates with high expression levels of UGT1A in HT29 cells. Consistently, TSA induces less intracellular ROS, cytotoxicity, and apoptotic effect in HT29 cells than those in HCT116 cells. Pretreatment of HT29 cells with UGT1A siRNA or propofol can decrease TSA glucuronidation and simultaneously improve its intracellular accumulation, as well as enhance TSA anti-cancer effect. Conclusions and Implications UGT1A can compromise TSA cytotoxicity via reducing its intracellular exposure and switching the NQO1-triggered redox cycle to metabolic elimination. Our study may shed a light in understanding the cellular pharmacokinetic and molecular mechanism by which UGTs determine the chemotherapy effects of drugs that are UGTs’ substrates. PMID:24244442

  3. Synthesis and Anticancer Activity of Epipolythiodiketopiperazine Alkaloids

    PubMed Central

    Boyer, Nicolas; Morrison, Karen C.; Kim, Justin; Hergenrother, Paul J.; Movassaghi, Mohammad

    2013-01-01

    The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure–activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines, and kill cancer cellsviainduction of apoptosis. Several traits thatbode well for the translational potential of the ETP class of natural products includeconcise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sitesthat should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo. PMID:23914293

  4. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities

    PubMed Central

    Zhang, Yong; Jiang, Peixin; Ye, Min; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2012-01-01

    Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones. PMID:23202971

  5. NPCARE: database of natural products and fractional extracts for cancer regulation.

    PubMed

    Choi, Hwanho; Cho, Sun Young; Pak, Ho Jeong; Kim, Youngsoo; Choi, Jung-Yun; Lee, Yoon Jae; Gong, Byung Hee; Kang, Yeon Seok; Han, Taehoon; Choi, Geunbae; Cho, Yeeun; Lee, Soomin; Ryoo, Dekwoo; Park, Hwangseo

    2017-01-01

    Natural products have increasingly attracted much attention as a valuable resource for the development of anticancer medicines due to the structural novelty and good bioavailability. This necessitates a comprehensive database for the natural products and the fractional extracts whose anticancer activities have been verified. NPCARE (http://silver.sejong.ac.kr/npcare) is a publicly accessible online database of natural products and fractional extracts for cancer regulation. At NPCARE, one can explore 6578 natural compounds and 2566 fractional extracts isolated from 1952 distinct biological species including plants, marine organisms, fungi, and bacteria whose anticancer activities were validated with 1107 cell lines for 34 cancer types. Each entry in NPCARE is annotated with the cancer type, genus and species names of the biological resource, the cell line used for demonstrating the anticancer activity, PubChem ID, and a wealth of information about the target gene or protein. Besides the augmentation of plant entries up to 743 genus and 197 families, NPCARE is further enriched with the natural products and the fractional extracts of diverse non-traditional biological resources. NPCARE is anticipated to serve as a dominant gateway for the discovery of new anticancer medicines due to the inclusion of a large number of the fractional extracts as well as the natural compounds isolated from a variety of biological resources.

  6. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  7. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed

    Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-06-19

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  8. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  9. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  10. Studies on the secondary metabolites of a Pseudoalteromonas sp. isolated from sediments collected at the northeastern coast of Brazil.

    PubMed

    Arthaud, Isabelle D B; Rodrigues, Felipe A R; Jimenez, Paula C; Montenegro, Raquel C; Angelim, Alysson L; Maciel, Vânia M M; Silveira, Edilberto R; Freitas, Hozana P S; Sousa, Thiciana S; Pessoa, Otília D L; Lotufo, Tito M C; Costa-Lotufo, Letícia V

    2012-02-01

    Continuing search for anticancer compounds from the marine environment, we have studied microorganisms that inhabit intertidal sediments of the northeastern Brazilian coast. Of the 32 strains isolated, 13 were selected for biological evaluation of their crude extracts. The acetate extract obtained from a Gram-negative bacterium was strongly active against cancer cell lines with IC(50) values that ranged from 0.04 (HL60 leukemia cells) to 0.26 μg/ml (MDA MB-435 melanoma cells). The bacterium was identified as a Pseudoalteromonas sp. based on 16S rRNA gene sequencing. A bioassay-guided fractionation of the active extract led to the isolation of prodigiosin, a well-known tripyrrole red pigment with immunosuppressive and anticancer activities. Further experiments with ErbB-2 overexpressing cell lines, including HB4a-C3.6 (moderate overexpression), HB4a-C5.2 (high overexpression), and the parental HB4a cell line, were performed. Prodigiosin was moderately active toward HB4a cells with an IC(50) of 4.6 μg/ml, while it was 115 and 18 times more active toward HB4a-C3.6 cells (IC(50) of 0.04 μg/ml) and HB4a-C5.2 (IC(50) of 0.26 μg/ml) cells, respectively. These data suggest that, in spite of its previously described apoptosis-inducing properties, prodigiosin can selectively recognize cells overexpressing ErbB-2, which could be highly appealing in human breast cancer therapy. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Identification and Quantification of the Main Active Anticancer Alkaloids from the Root of Glaucium flavum

    PubMed Central

    Bournine, Lamine; Bensalem, Sihem; Wauters, Jean-Noël; Iguer-Ouada, Mokrane; Maiza-Benabdesselam, Fadila; Bedjou, Fatiha; Castronovo, Vincent; Bellahcène, Akeila; Tits, Monique; Frédérich, Michel

    2013-01-01

    Glaucium flavum is used in Algerian folk medicine to remove warts (benign tumors). Its local appellations are Cheqiq el-asfar and Qarn el-djedyane. We have recently reported the anti-tumoral activity of Glaucium flavum root alkaloid extract against human cancer cells, in vitro and in vivo. The principal identified alkaloid in the extract was protopine. This study aims to determine which component(s) of Glaucium flavum root extract might possess potent antitumor activity on human cancer cells. Quantitative estimation of Glaucium flavum alkaloids was realized by HPLC-DAD. Glaucium flavum effect on human normal and cancer cell viability was determined using WST-1 assay. Quantification of alkaloids in Glaucium flavum revealed that the dried root part contained 0.84% of protopine and 0.07% of bocconoline (w/w), while the dried aerial part contained only 0.08% of protopine, glaucine as the main alkaloid, and no bocconoline. In vitro evaluation of the growth inhibitory activity on breast cancer and normal cells demonstrated that purified protopine did not reproduce the full cytotoxic activity of the alkaloid root extract on cancer cell lines. On the other hand, bocconoline inhibited strongly the viability of cancer cells with an IC50 of 7.8 μM and only a low cytotoxic effect was observed against normal human cells. Our results showed for the first time that protopine is the major root alkaloid of Glaucium flavum. Finally, we are the first to demonstrate a specific anticancer effect of Glaucium flavum root extract against breast cancer cells, which can be attributed, at least in part, to bocconoline. PMID:24317429

  12. Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum.

    PubMed

    Bournine, Lamine; Bensalem, Sihem; Wauters, Jean-Noël; Iguer-Ouada, Mokrane; Maiza-Benabdesselam, Fadila; Bedjou, Fatiha; Castronovo, Vincent; Bellahcène, Akeila; Tits, Monique; Frédérich, Michel

    2013-12-02

    Glaucium flavum is used in Algerian folk medicine to remove warts (benign tumors). Its local appellations are Cheqiq el-asfar and Qarn el-djedyane. We have recently reported the anti-tumoral activity of Glaucium flavum root alkaloid extract against human cancer cells, in vitro and in vivo. The principal identified alkaloid in the extract was protopine. This study aims to determine which component(s) of Glaucium flavum root extract might possess potent antitumor activity on human cancer cells. Quantitative estimation of Glaucium flavum alkaloids was realized by HPLC-DAD. Glaucium flavum effect on human normal and cancer cell viability was determined using WST-1 assay. Quantification of alkaloids in Glaucium flavum revealed that the dried root part contained 0.84% of protopine and 0.07% of bocconoline (w/w), while the dried aerial part contained only 0.08% of protopine, glaucine as the main alkaloid, and no bocconoline. In vitro evaluation of the growth inhibitory activity on breast cancer and normal cells demonstrated that purified protopine did not reproduce the full cytotoxic activity of the alkaloid root extract on cancer cell lines. On the other hand, bocconoline inhibited strongly the viability of cancer cells with an IC50 of 7.8 µM and only a low cytotoxic effect was observed against normal human cells. Our results showed for the first time that protopine is the major root alkaloid of Glaucium flavum. Finally, we are the first to demonstrate a specific anticancer effect of Glaucium flavum root extract against breast cancer cells, which can be attributed, at least in part, to bocconoline.

  13. Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds

    PubMed Central

    Nabekura, Tomohiro

    2010-01-01

    Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC) transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (-)-epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized. PMID:22069634

  14. The role of arsenic in the hydrolysis and DNA metalation processes in an arsenous acid-platinum(ii) anticancer complex.

    PubMed

    Marino, T; Parise, A; Russo, N

    2017-01-04

    Platinum(ii)-based molecules are the most commonly used anticancer drugs in the chemotherapeutic treatment of tumours but possess serious side effects and some cancer types exhibit resistance with respect to these compounds (e.g. cisplatin). For these reasons, the research of new compounds that can bypass this limitation is in continuous development. Recently, mixed Pt(ii)-As(iii) systems have been synthesized and tested as potential anticancer agents. The mechanism of action of these kinds of drugs is unclear. Since in other platinum(ii) containing drugs, hydrolysis plays an important role in the activation of the compound before it reaches DNA, we have explored the aquation process using density functional theory (DFT), focusing our attention on the arsenoplatin complex, [Pt(μ-NHC(CH 3 )O) 2 ClAs(OH) 2 ]. As DNA is believed to be the cellular target for Pt anticancer drugs, the metalation mechanism of DNA purine bases has been also investigated. Also for this new drug it appears that guanine is the preferred site with respect to adenine as with other platinum-containing compounds. A comparison with cisplatin is performed in order to highlight the contribution of arsenic in the anticancer activity of this new proposed anticancer agent.

  15. Cancer Chemoprevention Effects of Ginger and its Active Constituents: Potential for New Drug Discovery.

    PubMed

    Wang, Chong-Zhi; Qi, Lian-Wen; Yuan, Chun-Su

    2015-01-01

    Ginger is a commonly used spice and herbal medicine worldwide. Besides its extensive use as a condiment, ginger has been used in traditional Chinese medicine for the management of various medical conditions. In recent years, ginger has received wide attention due to its observed antiemetic and anticancer activities. This paper reviews the potential role of ginger and its active constituents in cancer chemoprevention. The phytochemistry, bioactivity, and molecular targets of ginger constituents, especially 6-shogaol, are discussed. The content of 6-shogaol is very low in fresh ginger, but significantly higher after steaming. With reported anti-cancer activities, 6-shogaol can be served as a lead compound for new drug discovery. The lead compound derivative synthesis, bioactivity evaluation, and computational docking provide a promising opportunity to identify novel anticancer compounds originating from ginger.

  16. Blechnum Orientale Linn - a fern with potential as antioxidant, anticancer and antibacterial agent

    PubMed Central

    2010-01-01

    Background Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally for the treatment of various skin diseases, stomach pain, urinary bladder complaints and sterilization of women. The aim of the study was to evaluate antioxidant, anticancer and antibacterial activity of five solvent fractions obtained from the methanol extract of the leaves of Blechnum orientale Linn. Methods Five solvent fractions were obtained from the methanol extract of B. orientale through successive partitioning with petroleum ether, chloroform, ethyl acetate, butanol and water. Total phenolic content was assessed using Folin-Ciocalteu's method. The antioxidant activity was determined by measuring the scavenging activity of DPPH radicals. Cytotoxic activity was tested against four cancer cell lines and a non-malignant cell using MTT assay. Antibacterial activity was assessed using the disc diffusion and broth microdilution assays. Standard phytochemical screening tests for saponins, tannins, terpenoids, flavonoids and alkaloids were also conducted. Results The ethyl acetate, butanol and water fractions possessed strong radical scavenging activity (IC50 8.6-13.0 μg/ml) and cytotoxic activity towards human colon cancer cell HT-29 (IC50 27.5-42.8 μg/ml). The three extracts were also effective against all Gram-positive bacteria tested: Bacillus cereus, Micrococcus luteus, methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA) and Stapylococcus epidermidis(minimum inhibitory concentration MIC 15.6-250 μg/ml; minimum bactericidal concentration MBC 15.6-250 μg/ml). Phytochemical analysis revealed the presence of flavonoids, terpenoids and tannins. Ethyl acetate and butanol fractions showed highest total phenolic content (675-804 mg gallic acid equivalent/g). Conclusions The results indicate that this fern is a potential candidate to be used as an antioxidant agent, for colon cancer therapy and for treatment of MRSA infections and other MSSA/Gram-positive bacterial infectious diseases. PMID:20429956

  17. A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy

    NASA Astrophysics Data System (ADS)

    Chen, Chunping; Yee, Lee Kim; Gong, Hua; Zhang, Yong; Xu, Rong

    2013-05-01

    In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after localization in cancer cells. A better anticancer efficiency was obtained over the nanovehicles than the free drug which can be attributed to their positively charged surfaces for favorable interaction with the negatively charged cell membranes. The multifunctional nanovehicles designed in this work are expected to be promising material candidates for simultaneous tumor optical imaging and therapy.In this work, a new multifunctional nanovehicle for tumor optical imaging and therapy was developed using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors, and MgAl-layered double hydroxide (LDH) nanosheets as anticancer drug nanovehicles. Monodispersed Y2O3:Er3+,Yb3+ nanophosphors were readily synthesized by the urea assisted homogenous precipitation method. Hierarchically structured LDH nanosheets intercalated with an anticancer drug, fluorouracil (5FU), were deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 by a simple precipitation method followed by hydrothermal treatment. The resultant Y2O3:Er3+,Yb3+@SiO2@LDH-5FU nanovehicles exhibit strong red upconversion fluorescence under the excitation of a 980 nm laser, which allows tracking of the nanovehicles after localization in cancer cells. A better anticancer efficiency was obtained over the nanovehicles than the free drug which can be attributed to their positively charged surfaces for favorable interaction with the negatively charged cell membranes. The multifunctional nanovehicles designed in this work are expected to be promising material candidates for simultaneous tumor optical imaging and therapy. Electronic supplementary information (ESI) available: TEM images of Y2O3:Er3+,Yb3+@SiO2 synthesized by using different amounts of TEOS, and confocal scanning laser microscopy images (Z stack) of MCF-7 cells incubated with Y2O3:Er3+,Yb3+@SiO2@LDH-5FU for 30 min and 24 h. See DOI: 10.1039/c3nr00781b

  18. Nitrosoureas: a review of experimental antitumor activity.

    PubMed

    Schabel, F M

    1976-06-01

    The chemical class of drugs known as the nitrosoureas are a recently developed group of very active alkylating-agent anticancer drugs which are best represented by BCNU, CCNU, and methyl-CCNU (meCCNU). The nitrosoureas are among the most active, if not the most active, anticancer drugs both quantitatively (log kill of sensitive tumor cells in vivo) and qualitatively (spectrum of mouse, rat, and hamster tumors responding to treatment). Therapeutic anticancer activity of the nitrosoureas has been consistently observed with oral as well as parenteral administration. The nitrosoureas are clearly the most active group of anticancer drugs observed against experimental meningeal leukemias and intracerebrally implanted transplantable primary tumors of central nervous system origin (eg, gliomas, ependymoblastomas, and astrocytomas in mice and hamsters). The nitrosoureas have been observed to be less than additive in lethal toxicity for vital normal cells in the mouse in combination with representatives of the other major classes of anticancer agents, eg, purine antagonists, pyrimidine antagonists, inhibitors of DNA polymerase(s) or ribonucleotide reductase(s), mitotic inhibitors, drugs that bind to or intercalate with DNA, and other alkylating agents. Therapeutic synergism against one or more transplantable or spontaneous tumors of mice, rats, or hamsters with one of several nitrosoureas in two-drug combinations with representatives of most of the major classes of anticancer agents listed above has been reported. With a number of advanced-stages mouse tumors, generally considered to be refractory to treatment with most anticancer agents, long-term cures have been obtained with combination-drug or combined-modality (surgery plus chemotherapy) treatment. The demonstrated lack of cross-resistance of several leukemias and solid tumors of mice selected for resistance to BCNU, meCCNU, or other alkylating agents suggests that the widely held opinion that all alkylating agents are very similar in biologic mechanism of action, and therefore resistance to one alkylating agent probably predicts cross-resistance to all alkylating agents, may no longer be tenable. If not, then alkylating-agent drug combinations, either used alone or combined with other treatment modalities (eg, surgery) which have been reported to result in therapeutic improvement in a number of experimental murine tumor systems, may be indicated for serious consideration as surgical adjuvant chemotherapy by surgeons or as primary therapy by medical oncologists.

  19. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    PubMed

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  20. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    PubMed

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Anticancer Activities of C18-, C19-, C20-, and Bis-Diterpenoid Alkaloids Derived from Genus Aconitum.

    PubMed

    Ren, Meng-Yue; Yu, Qing-Tian; Shi, Chun-Yu; Luo, Jia-Bo

    2017-02-13

    Cancer is one of the most common lethal diseases, and natural products have been extensively studied as anticancer agents considering their availability, low toxicity, and economic affordability. Plants belonging to the genus Aconitum have been widely used medically in many Asian countries since ancient times. These plants have been proven effective for treating several types of cancer, such as lung, stomach, and liver cancers. The main effective components of Aconitum plants are diterpenoid alkaloids-which are divided into C 18 -, C 19 -, C 20 -, and bis-diterpenoid alkaloids-are reportedly some of the most promising, naturally abundant compounds for treating cancer. This review focuses on the progress of diterpenoid alkaloids with different structures derived from Aconitum plants and some of their derivatives with potential anticancer activities. We hope that this work can serve as a reference for further developing Aconitum diterpenoid alkaloids as anticancer agents.

  2. New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer.

    PubMed

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Verrico, Annalisa; Miele, Andrea; Monti, Ludovica; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Ricci, Biancamaria; Soriani, Alessandra; Santoni, Angela; Caraglia, Michele; Porto, Stefania; Da Pozzo, Eleonora; Martini, Claudia; Brancale, Andrea; Marinelli, Luciana; Novellino, Ettore; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Bigogno, Chiara; Dondio, Giulio; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2015-08-13

    We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethoxyphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4-7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20-50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer.

  3. New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Verrico, Annalisa; Miele, Andrea; Monti, Ludovica; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Ricci, Biancamaria; Soriani, Alessandra; Santoni, Angela; Caraglia, Michele; Porto, Stefania; Pozzo, Eleonora Da; Martini, Claudia; Brancale, Andrea; Marinelli, Luciana; Novellino, Ettore; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Bigogno, Chiara; Dondio, Giulio; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2015-01-01

    We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethox-yphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4–7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20–50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer. PMID:26132075

  4. Synthesis and Evaluation of In Vitro Antibacterial and Antitumor Activities of Novel N,N-Disubstituted Schiff Bases

    PubMed Central

    Luo, Heng; Xia, Yu-fen; Sun, Bao-fei; Huang, Li-rong; Wang, Xing-hui; Lou, Hua-yong; Zhu, Xu-hui

    2017-01-01

    To get inside the properties of N,N-disubstituted Schiff bases, we synthesized three high-yielding benzaldehyde Schiff bases. We used the reaction between salicylaldehyde and different diamine compounds, including diamine, ethanediamine, and o-phenylenediamine, determining the structure of obtained molecules by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectroscopy. We thus evaluated the microbicidal and antitumor activity of these compounds, showing that salicylaldehyde-hydrazine hydrate Schiff base (compound 1a) significantly inhibited the growth of S. aureus; salicylaldehyde-o-phenylenediamine Schiff base (compound 1c) displayed a strong capability to inhibit the proliferation of leukemia cell lines K562 and HEL. Moreover, we observed that the antibacterial action of 1a might be associated with the regulation of the expression of key virulence genes in S. aureus. Compound 1c resulted in a strong apoptotic activity against leukemia cells, also affecting the cell cycle distribution. Overall, our novel N,N-disubstituted Schiff bases possess unique antibacterial or antitumor activities that exhibit the potent application prospect in prophylactic or therapeutic interventions, providing new insights for developing new antibacterial and anticancer chemical agents. PMID:28713593

  5. Synthesis of Some Novel Fused Pyrimido[4″,5″:5',6']-[1,2,4]triazino[3',4':3,4] [1,2,4]triazino[5,6-b]indoles with Expected Anticancer Activity.

    PubMed

    Ali, Rania S; Saad, Hosam A

    2018-03-19

    Our current goal is the synthesis of polyheterocyclic compounds starting from 3-amino-[1,2,4]triazino[5,6- b ]indole 1 and studying their anticancer activity to determine whether increasing of the size of the molecules increases the anticancer activity or not. 1-Amino[1,2,4]triazino[3',4':3,4]-[1,2,4]triazino[5,6- b ]indole-2-carbonitrile ( 4 ) was prepared by the diazotization of 3-amino[1,2,4]-triazino[5,6- b ]indole 1 followed by coupling with malononitrile in basic medium then cyclization under reflux to get 4 . Also, new fused pyrimido[4″,5″:5',6'][1,2,4]triazino-[3',4':3,4][1,2,4]triazino[5,6- b ]indole derivative 6 was prepared and used to obtain polycyclic heterocyclic systems. Confirmation of the synthesized compounds' structures was carried out using elemental analyses and spectral data (IR, ¹H-NMR and 13 C-NMR and mass spectra). The anticancer activity of some of the synthesized compounds was tested against HepG2, HCT-116 and MCF-7 cell lines. The anticancer screening results showed that some derivatives display good activity which was more potent than that of the reference drug used. Molecular docking was used to predict the binding between some of the synthesized compounds and the prostate cancer 2q7k hormone and breast ‎cancer 3hb5 receptors.

  6. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents.

    PubMed

    Chaves, Joana Darc S; Tunes, Luiza Guimarães; de J Franco, Chris Hebert; Francisco, Thiago Martins; Corrêa, Charlane Cimini; Murta, Silvane M F; Monte-Neto, Rubens Lima; Silva, Heveline; Fontes, Ana Paula S; de Almeida, Mauro V

    2017-02-15

    The current anticancer and antileishmanial drug arsenal presents several limitations concerning their specificity, efficacy, costs and the emergence of drug-resistant cells lines, which encourages the urgent need to search for new alternatives. Inspired by the fact that gold(I)-based compounds are promising antitumoral and antileishmanial drug candidates, we synthesized novel gold(I) complexes containing phosphine and 5-phenyl-1,3,4-oxadiazole-2-thione and evaluated their anticancer and antileishmanial activities. Synthesis was performed by reacting 5-phenyl-1,3,4-oxadiazole-2-thione derivatives with chloro(triphenylphosphine)gold(I) and chloro(triethylphosphine)gold(I). The novel compounds were characterized by infrared, Raman, 1 H, 13 C nuclear magnetic resonance, high-resolution mass spectra, and x-ray crystallography. The coordination of the ligands to gold(I) occurred through the exocyclic sulfur atom. All gold(I) complexes were active at low micromolar or nanomolar range with IC 50 values ranging from <0.10 to 1.66 μM against cancer cell lines and from 0.9 to 4.2 μM for Leishmania infantum intracellular amastigotes. Compound (6-A) was very selective against murine melanoma B16F10, colon cancer CT26.WT cell lines and L. infantum intracellular amastigotes. Compound (7-B) presented the highest anticancer activity against both cancer cell lines while the promising antileishmanial lead was compound (6-A). Tiethylphosphine gold(I) complexes were more active than the conterparts triphenylphosphine derivatives for both anticancer and antileishmanial activities. Triethylphosphine gold(I) derivatives presented antimony cross-resistance in L. guyanensis demonstrating their potential to be used as chemical tools to better understand mechanisms of drug resistance and action. These findings revealed the anticancer and antileishmanial potential of gold(I) oxadiazole phosphine derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Camel urine components display anti-cancer properties in vitro.

    PubMed

    Al-Yousef, Nujoud; Gaafar, Ameera; Al-Otaibi, Basem; Al-Jammaz, Ibrahim; Al-Hussein, Khaled; Aboussekhra, Abdelilah

    2012-10-11

    While camel urine (CU) is widely used in the Arabian Peninsula to treat various diseases, including cancer, its exact mechanism of action is still not defined. The objective of the present study is to investigate whether camel urine has anti-cancer effect on human cells in vitro. The annexinV/PI assay was used to assess apoptosis, and immunoblotting analysis determined the effect of CU on different apoptotic and oncogenic proteins. Furthermore, flow cytometry and Elispot were utilized to investigate cytotoxicity and the effect on the cell cycle as well as the production of cytokines, respectively. Camel urine showed cytotoxicity against various, but not all, human cancer cell lines, with only marginal effect on non-tumorigenic epithelial and normal fibroblast cells epithelial and fibroblast cells. Interestingly, 216 mg/ml of lyophilized CU inhibited cell proliferation and triggered more than 80% of apoptosis in different cancer cells, including breast carcinomas and medulloblastomas. Apoptosis was induced in these cells through the intrinsic pathway via Bcl-2 decrease. Furthermore, CU down-regulated the cancer-promoting proteins survivin, β-catenin and cyclin D1 and increased the level of the cyclin-dependent kinase inhibitor p21. In addition, we have shown that CU has no cytotoxic effect against peripheral blood mononuclear cells and has strong immuno-inducer activity through inducing IFN-γ and inhibiting the Th2 cytokines IL-4, IL-6 and IL-10. CU has specific and efficient anti-cancer and potent immune-modulator properties in vitro. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics.

    PubMed

    Gogoi, Barbi; Gogoi, Dhrubajyoti; Silla, Yumnam; Kakoti, Bibhuti Bhushan; Bhau, Brijmohan Singh

    2017-01-31

    Plant-derived natural products (NPs) play a vital role in the discovery of new drug molecules and these are used for development of novel therapeutic drugs for a specific disease target. Literature review suggests that natural products possess strong inhibitory efficacy against various types of cancer cells. Clerodendrum indicum and Clerodendrum serratum are reported to have anticancer activity; therefore a study was carried out to identify selective anticancer agents from these plants species. In this report, we employed a docking weighted network pharmacological approach to understand the multi-therapeutics potentiality of C. indicum and C. serratum against various types of cancer. A library of 53 natural products derived from these plants was compiled from the literature and three dimensional space analyses were performed in order to establish the drug-likeness of the NPs library. Further, an NPs-cancer network was built based on docking. We predicted five compounds, namely apigenin 7-glucoside, hispidulin, scutellarein-7-O-beta-d-glucuronate, acteoside and verbascoside, to be potential binding therapeutics for cancer target proteins. Apigenin 7-glucoside and hispidulin were found to have maximum binding interactions (relationship) with 17 cancer drug targets in terms of docking weighted network pharmacological analysis. Hence, we used an integrative approach obtained from network pharmacology for identifying combinatorial drug actions against the cancer targets. We believe that our present study may provide important clues for finding novel drug inhibitors for cancer.

  9. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    PubMed

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  10. Flavocoxid, a Nutraceutical Approach to Blunt Inflammatory Conditions

    PubMed Central

    Squadrito, Francesco; Mecchio, Anna

    2014-01-01

    Flavonoids, from Scutellaria baicalensis (Chinese skullcap) and Acacia catechu (black catechu), have been shown to exert a variety of therapeutic effects, including anti-inflammatory, antiviral, antibacterial, and anticancer activities. Flavocoxid is a mixed extract containing baicalin and catechin and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Controlled clinical trials and a postmarketing study have clearly shown that flavocoxid is as effective as naproxen in managing the signs and symptoms of osteoarthritis of the knee and it has better upper gastrointestinal, renal, and respiratory safety profile than naproxen. Flavocoxid may therefore provide a potential therapeutic approach to the treatment of chronic inflammatory conditions. PMID:25242871

  11. Flavocoxid, a nutraceutical approach to blunt inflammatory conditions.

    PubMed

    Bitto, Alessandra; Squadrito, Francesco; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Mecchio, Anna; Galfo, Federica; Altavilla, Domenica

    2014-01-01

    Flavonoids, from Scutellaria baicalensis (Chinese skullcap) and Acacia catechu (black catechu), have been shown to exert a variety of therapeutic effects, including anti-inflammatory, antiviral, antibacterial, and anticancer activities. Flavocoxid is a mixed extract containing baicalin and catechin and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Controlled clinical trials and a postmarketing study have clearly shown that flavocoxid is as effective as naproxen in managing the signs and symptoms of osteoarthritis of the knee and it has better upper gastrointestinal, renal, and respiratory safety profile than naproxen. Flavocoxid may therefore provide a potential therapeutic approach to the treatment of chronic inflammatory conditions.

  12. Helleborus purpurascens-Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds.

    PubMed

    Segneanu, Adina-Elena; Grozescu, Ioan; Cziple, Florentina; Berki, Daniel; Damian, Daniel; Niculite, Cristina Mariana; Florea, Alexandru; Leabu, Mircea

    2015-12-11

    There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  13. Anti-tumor effects of an engineered 'killer' transfer RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Dong-hui; Lee, Jiyoung; Frankenberger, Casey

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer tRNA with anti-cancer effects. Black-Right-Pointing-Pointer tRNA induced protein misfolding. Black-Right-Pointing-Pointer tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA{sup Ser}(AAU) is an engineered human tRNA{sup Ser} with an anticodon coding for isoleucine. Here we test the possibility that tRNA{sup Ser}(AAU) can be an effective killing agent of breast cancer cells and canmore » effectively inhibit tumor-formation in mice. We found that tRNA{sup Ser}(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA{sup Ser}(AAU) in both tumorigenic and non-tumorigenic cells. tRNA{sup Ser}(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA{sup Ser}(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA{sup Ser}(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA{sup Ser}(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.« less

  14. Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study

    PubMed Central

    Choudhari, Milind K.; Haghniaz, Reihaneh; Rajwade, Jyutika M.; Paknikar, Kishore M.

    2013-01-01

    Indian stingless bee propolis has a complex chemical nature and is reported to possess various medicinal properties. In the present study, anticancer activity of the ethanolic extract of propolis (EEP) was explored by testing the cytotoxic and apoptotic effect in four different cancer cell lines, namely, MCF-7 (human breast cancer), HT-29 (human colon adenocarcinoma), Caco-2 (human epithelial colorectal adenocarcinoma), and B16F1 (murine melanoma), at different concentrations. Cytotoxicity was evaluated by MTT assay and Trypan blue dye exclusion assay. EEP at a concentration of 250 μg/mL exhibited ≥50% mortality in all cell lines tested (i.e., IC50 value). EEP revealed a concentration and time dependent cytotoxic effect. Apoptosis was estimated by differential staining (ethidium bromide/acridine orange) and TUNEL (deoxynucleotidyl transferase-dUTP nick end labeling) assay. Light microscopy and atomic force microscopy demonstrated morphological features of apoptosis in all the cell lines after treatment with 250 μg/mL EEP for 24 h. Thus, early onset of apoptosis is the reason for anticancer activity of Indian stingless bee propolis. Further, the antioxidant potential of Indian stingless bee propolis was demonstrated to substantiate its anticancer activity. PMID:23762169

  15. A Mn(II) complex of boradiazaindacene (BODIPY) loaded graphene oxide as both LED light and H2O2 enhanced anticancer agent.

    PubMed

    Xu, Xiao-Lei; Shao, Jian; Chen, Qiu-Yun; Li, Cheng-Hao; Kong, Meng-Yun; Fang, Fang; Ji, Ling; Boison, Daniel; Huang, Tao; Gao, Jing; Feng, Chang-Jian

    2016-06-01

    Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Anticancer activity of Indian stingless bee propolis: an in vitro study.

    PubMed

    Choudhari, Milind K; Haghniaz, Reihaneh; Rajwade, Jyutika M; Paknikar, Kishore M

    2013-01-01

    Indian stingless bee propolis has a complex chemical nature and is reported to possess various medicinal properties. In the present study, anticancer activity of the ethanolic extract of propolis (EEP) was explored by testing the cytotoxic and apoptotic effect in four different cancer cell lines, namely, MCF-7 (human breast cancer), HT-29 (human colon adenocarcinoma), Caco-2 (human epithelial colorectal adenocarcinoma), and B16F1 (murine melanoma), at different concentrations. Cytotoxicity was evaluated by MTT assay and Trypan blue dye exclusion assay. EEP at a concentration of 250 μg/mL exhibited ≥50% mortality in all cell lines tested (i.e., IC50 value). EEP revealed a concentration and time dependent cytotoxic effect. Apoptosis was estimated by differential staining (ethidium bromide/acridine orange) and TUNEL (deoxynucleotidyl transferase-dUTP nick end labeling) assay. Light microscopy and atomic force microscopy demonstrated morphological features of apoptosis in all the cell lines after treatment with 250 μg/mL EEP for 24 h. Thus, early onset of apoptosis is the reason for anticancer activity of Indian stingless bee propolis. Further, the antioxidant potential of Indian stingless bee propolis was demonstrated to substantiate its anticancer activity.

  17. Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer

    PubMed Central

    Godugu, Chandraiah; Doddapaneni, Ravi; Safe, Stephen H.; Singh, Mandip

    2017-01-01

    The present study demonstrates the promising anticancer effects of novel C-substituted diindolylmethane (DIM) derivatives DIM-10 and DIM-14 in aggressive TNBC models. In vitro studies demonstrated that these compounds possess strong anticancer effects. Caco-2 permeability studies resulted in poor permeability and poor oral bioavailability was demonstrated by pharmacokinetic studies. Nano structured lipid carrier (NLC) formulations were prepared to increase the clinical acceptance of these compounds. Significant increase in oral bioavailability was observed with NLC formulations. Compared to DIM-10, DIM-10 NLC formulation showed increase in Cmax and AUC values by 4.73 and 11.19-folds, respectively. Similar pattern of increase was observed with DIM-14 NLC formulations. In dogs DIM-10 NLC formulations showed an increase of 2.65 and 2.94-fold in Cmax and AUC, respectively. The anticancer studies in MDA-MB-231 orthotopic TNBC models demonstrated significant reduction in tumor volumes in DIM-10 and DIM-14 NLC treated animals. Our studies suggest that NLC formulation of both DIM-10 and 14 is effective in TNBC models. PMID:27586082

  18. The protein kinase promiscuities in the cancer-preventive mechanisms of NSAIDs

    PubMed Central

    Norvaisas, Povilas; Chan, Diana; Yokoi, Kenji; Dave, Bhuvanesh

    2016-01-01

    NSAIDs have been observed to have cancer-preventive properties, but the actual mechanism is elusive. We hypothesize that NSAIDs might have an effect through common pathways and targets of anticancer drugs by exploiting promiscuities of anticancer drug targets. Here, we have explored NSAIDs by their structural and pharmacophoric similarities with small anticancer molecules. In-silico analyses have shown a strong similarity between NSAIDs and protein kinase (PK) inhibitors. The calculated affinities of NSAIDs were found to be lower than the affinities of anticancer drugs, but higher than the affinities of compounds that are not specific to PKs. The competitive inhibition model suggests that PK might be inhibited by around 10%, which was confirmed by biochemical screening of some NSAIDs against PKs. NSAIDs did not affect all PKs universally, but had specificities for certain sets of PKs, which differed according to the NSAID. The study revealed potentially new features and mechanisms of NSAIDs that are useful in explaining their role in cancer prevention, which might lead to clinically significant breakthroughs in the future. PMID:25714784

  19. Effect of Phosphodiesterase in Regulating the Activity of Lysosomes in the HeLa Cell Line.

    PubMed

    Hong, Eun-Seon; Kim, Bit-Na; Kim, Yang-Hoon; Min, Jiho

    2017-02-28

    The transport of lysosomal enzymes into the lysosomes depends on the phosphorylation of their chains and the binding of the phosphorylated residues to mannose-6-phosphate receptors. The efficiency of separation depends more on the phosphodiesterases (PDEs) than on the activity of the phosphorylation of mannose residues and can be determined in vitro. PDEs play important roles in regulation of the activation of lysosomes. The expression of proteins was confirmed by western blotting. All PDE4 series protein expression was reduced in high concentrations of rolipram. As a result of observing the fluorescence intensity after rolipram treatment, the lysosomal enzyme was activated at low concentrations and suppressed at high concentrations. High concentrations of rolipram recovered the original function. Antimicrobial activity was not shown in either 10 or 100 µ concentrations of rolipram in treated HeLa cells in vitro. However, the higher anticancer activity at lower rolipram concentration was shown in lysosomal enzyme treated with 10 µ of rolipram. The anticancer activity was confirmed through cathepsin B and D assay. Tranfection allowed examination of the relationship between PDE4 and lysosomal activity in more detail. Protein expression was confirmed to be reduced. Fluorescence intensity showed decreased activity of lysosomes and ROS in cells transfected with the antisense sequences of PDE4 A, B, C, and D. PDE4A showed anticancer activity, whereas lysosome from cells transfected with the antisense sequences of PDE4 B, C, and D had decreased anticancer activity. These results showed the PDE4 A, B, C, and D are conjunctly related with lysosomal activity.

  20. Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs

    PubMed Central

    2013-01-01

    A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP–NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy. PMID:23663277

  1. Caffeine induces sustained apoptosis of human gastric cancer cells by activating the caspase-9/caspase-3 signalling pathway

    PubMed Central

    Liu, Hanyang; Zhou, Yan; Tang, Liming

    2017-01-01

    Caffeine is one of the most widely consumed substances found in beverages, and has demonstrated anticancer effects in several types of cancer. The present study aimed to examine the anticancer effects of caffeine on gastric cancer (GC) cells (MGC-803 and SGC-7901) in vitro, and to determine whether the apoptosis-related caspase-9/−3 pathway is associated with these effects. The sustained antiproliferative effects of caffeine on gastric cancer were also investigated. GC cell viability and proliferation were evaluated using cell counting and colony forming assays, following treatment with various concentrations of caffeine. Flow cytometry was performed to assess cell cycle dynamics and apoptosis. Western blot analysis was conducted to detect the activity of the caspase-9/−3 pathway. The results indicated that caffeine treatment significantly suppressed GC cell growth and viability and induced apoptosis by activating the caspase-9/−3 pathway. Furthermore, the anticancer effects of caffeine appeared to be sustained, as the caspase-9/−3 pathway remained active following caffeine withdrawal. In conclusion, caffeine may function as a sustained anticancer agent by activating the caspase-9/−3 pathway, which indicates that it may be useful as a therapeutic candidate in gastric cancer. PMID:28677810

  2. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  3. Design and synthesis of aminocoumarin derivatives as DPP-IV inhibitors and anticancer agents.

    PubMed

    Soni, Rina; Soman, Shubhangi S

    2018-09-01

    DPP-IV "a moonlighting protein" has immerged as promising pathway to control Type 2 diabetes as well as found to play key role in earlier stages of cancer. Here we have reported design, synthesis and applications of aminocoumarin derivatives as DPP-IV inhibitors. Compounds have been synthesized and studied for their DPP-IV inhibition activity. Three compounds have shown moderate inhibition at 100 µM concentration. All compounds were also screened for their anticancer activity against A549 (Lung cancer cell line), MCF-7 (Breast cancer cell line) using MTT assay. One of the compounds has shown very good anticancer activity with IC 50 value 24 ± 0.1 nM against A549 cell line. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Anticancer effects of different seaweeds on human colon and breast cancers.

    PubMed

    Moussavou, Ghislain; Kwak, Dong Hoon; Obiang-Obonou, Brice Wilfried; Maranguy, Cyr Abel Ogandaga; Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Dae Hoon; Pissibanganga, Ordelia Gwenaelle Manvoudou; Ko, Kisung; Seo, Jae In; Choo, Young Kug

    2014-09-24

    Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.

  5. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions.

    PubMed

    E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote

    2016-01-01

    Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  6. QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Khan, Feroz; Srivastava, Santosh Kumar

    2013-12-01

    For the prediction of anticancer activity of glycyrrhetinic acid (GA-1) analogs against the human lung cancer cell line (A-549), a QSAR model was developed by forward stepwise multiple linear regression methodology. The regression coefficient (r(2)) and prediction accuracy (rCV(2)) of the QSAR model were taken 0.94 and 0.82, respectively in terms of correlation. The QSAR study indicates that the dipole moments, size of smallest ring, amine counts, hydroxyl and nitro functional groups are correlated well with cytotoxic activity. The docking studies showed high binding affinity of the predicted active compounds against the lung cancer target EGFR. These active glycyrrhetinic acid derivatives were then semi-synthesized, characterized and in-vitro tested for anticancer activity. The experimental results were in agreement with the predicted values and the ethyl oxalyl derivative of GA-1 (GA-3) showed equal cytotoxic activity to that of standard anticancer drug paclitaxel.

  7. A facile stereoselective synthesis of dispiro-indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids and evaluation of their antimycobacterial, anticancer and AchE inhibitory activities.

    PubMed

    Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu

    2016-11-15

    A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC 50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC 50 <1.56μM) and 6l (IC 50 =2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC 50 values of 1.10 and 1.16μmol/L respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthesis and Anticancer Activity of 3-(Substituted Aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiao-Ping; Lan, Lan; Wang, Shuai; Zhao, Kai; Xin, Yu-Xuan; Qi, Qi; Wang, Yao-Lin; Mao, Zhen-Min

    2017-02-01

    A series of 3-(substituted aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT-26, HeLa, MGC80-3, NCI-H460 and SGC-7901 cells (IC 50  = 8.2 - 31.7 μm); 3g, 3n and 3a were the most potent compounds against CHO (IC 50  = 8.2 μm), HCT-15 (IC 50  = 21 μm) and MCF-7 cells (IC 50  = 18.7 μm), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC 50  > 100 μm). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  9. In vitro and in vivo anti-cancer activity of silymarin on oral cancer.

    PubMed

    Won, Dong-Hoon; Kim, Lee-Han; Jang, Boonsil; Yang, In-Hyoung; Kwon, Hye-Jeong; Jin, Bohwan; Oh, Seung Hyun; Kang, Ju-Hee; Hong, Seong-Doo; Shin, Ji-Ae; Cho, Sung-Dae

    2018-05-01

    Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.

  10. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei.

    PubMed

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2013-06-01

    The essential oil from Cedrelopsis grevei leaves, an aromatic and medicinal plant from Madagascar, is widely used in folk medicine. Essential oil was characterized by GC-MS and quantified by GC-FID. Sixty-four components were identified. The major constituents were: (E)-β-farnesene (27.61%), δ-cadinene (14.48%), α-copaene (7.65%) and β-elemene (6.96%). The essential oil contained a complex mixture consisting mainly sesquiterpene hydrocarbons (83.42%) and generally sesquiterpenes (98.91%). The essential oil was tested cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum), antiinflammatory and antioxidant (ABTS and DPPH assays) activities. C. grevei essential oil was active against MCF-7 cell lines (IC50=21.5 mg/L), against P. falciparum, (IC50=17.5mg/L) and antiinflammatory (IC50=21.33 mg/L). The essential oil exhibited poor antioxidant activity against DPPH (IC50>1000 mg/L) and ABTS (IC50=110 mg/L) assays. A bibliographical review was carried out of all essential oils identified and tested with respect to antiplasmodial, anticancer and antiinflammatory activities. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial, anticancer and antiinflammatory). According to the obtained correlations, 1,4-cadinadiene (R(2)=0.61) presented a higher relationship with antimalarial activity. However, only (Z)-β-farnesene (R(2)=0.73) showed a significant correlation for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    NASA Astrophysics Data System (ADS)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  12. Anticancer agent ABT-737 possesses anti-atopic dermatitis activity via blockade of caspase-1 in atopic dermatitis in vitro and in vivo models.

    PubMed

    Jeong, Hyun-Ja; Ryu, Ka-Jung; Kim, Hyung-Min

    2018-06-29

    Previous studies reported that depletion of Bcl-2 has a protective effect against allergic diseases. Furthermore, recently our study showed that anticancer drug has antiallergic inflammatory effect. An anticancer agent ABT-737 is an inhibitor of Bcl-2 and has an anti-inflammatory effect. However, the antiallergic inflammatory activity of ABT-737 is still unknown. Here, we aimed to explore the anti-atopic dermatitis (AD) activity and the mechanism of ABT-737 in AD models. HaCaT cells were used for in vitro experiments. To evaluate the effect of ABT-737 in vivo model, BalB/c mice were orally administered ABT-737 for 6 weeks in 2,4-dinitrofluorobenzene (DNFB)-induced AD-like murine model. Major assays were enzyme-linked immunosorbent assay, reverse transcription-PCR, caspase-1 assay, histamine assay, and H&E staining. ABT-737 significantly decreased thymic stromal lymphopoietin (TSLP) secretion and caspase-1 activity in activated HaCaT cells. In DNFB-induced AD mice, oral administration of ABT-737 alleviated clinical severity and scratching behavior. ABT-737 decreased levels of AD-related biomarkers including IgE, histamine, TSLP, and inflammatory cytokines. In addition, ABT significantly reduced caspase-1 activity in skin lesions of AD mice. ABT-737 elicited an anti-AD activity via suppression of caspase-1 activation in AD in vitro and in vivo models. Therefore, this study provides important information regarding the use of anticancer drugs for controlling allergic inflammatory diseases.

  13. Anticancer Effects of Sandalwood (Santalum album).

    PubMed

    Santha, Sreevidya; Dwivedi, Chandradhar

    2015-06-01

    Effective management of tumorigenesis requires development of better anticancer agents with greater efficacy and fewer side-effects. Natural products are important sources for the development of chemotherapeutic agents and almost 60% of anticancer drugs are of natural origin. α-Santlol, a sesquiterpene isolated from Sandalwood, is known for a variety of therapeutic properties including anti-inflammatory, anti-oxidant, anti-viral and anti-bacterial activities. Cell line and animal studies reported chemopreventive effects of sandalwood oil and α-santalol without causing toxic side-effects. Our laboratory identified its anticancer effects in chemically-induced skin carcinogenesis in CD-1 and SENCAR mice, ultraviolet-B-induced skin carcinogenesis in SKH-1 mice and in vitro models of melanoma, non-melanoma, breast and prostate cancer. Its ability to induce cell-cycle arrest and apoptosis in cancer cells is its most reported anticancer mechanism of action. The present review discusses studies that support the anticancer effect and the mode of action of sandalwood oil and α-santalol in carcinogenesis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Study on Anticancer Activity of Extracts of Sponges Collected from Biak Water, Indonesia

    NASA Astrophysics Data System (ADS)

    Trianto, A.; Ridhlo, A.; Triningsih, D. W.; Tanaka, J.

    2017-02-01

    Indonesia is center of biodiversity where marine sponges are abundant. a source of bioactive compounds with various pharmaceutical properties such as anticancer, antifungal, antibacterial, antioxidants, anti-inflammatory, and anti-malarial. In a continuation of a search for biologically active molecules from marine organisms we investigated the potency of marine sponges as anticancer. A total of 106 sponge specimens were collected between 3-40 m depths by SCUBA diving in Biak waters during August 2005. The specimens were extracted with methanol to provided crude extracts. The methanolic extracts were tested against NBT-T2 cell line. The assay result showed that 8.5 %, 29.2 % and 46.2 % of the extract have activity against the cell line at 0.1, 1.0 and 10.0 μg/mL. While, a 16.0 % of the extract did not showed activity against the cell line.

  15. Quinazoline clubbed 1,3,5-triazine derivatives as VEGFR2 kinase inhibitors: design, synthesis, docking, in vitro cytotoxicity and in ovo antiangiogenic activity.

    PubMed

    Pathak, Prateek; Shukla, Parjanya Kumar; Kumar, Vikas; Kumar, Ankit; Verma, Amita

    2018-04-16

    A series of quinazoline clubbed 1,3,5-triazine derivatives (QCT) were synthesized and evaluated for their in vitro anticancer activity against HeLa (human cervical cancer), MCF-7 (human breast cancer cell), HL-60 (human promyelocytic leukemia cell), HepG2 (human Hepatocellular carcinoma cell), and one normal cell line HFF (human foreskin fibroblasts). In vitro assay result encouraged to further move towards in ovo anticancer evaluation using chick embryo. The series of QCT derivatives showed higher anticancer and antiangiogenic activity against HeLa and MCF-7 cell lines. In the series, synthetic molecule 8d, 8l, and 8m displayed significant activity. Further, these results substantiated by docking study on VGFR2. SAR study concluded that the potency of drugs depends on the nature of aliphatic substitution and the heterocyclic ring system.

  16. Prediction of anticancer activity of diterpenes isolated from the paraiban flora through a PLS model and molecular surfaces.

    PubMed

    Scotti, Luciana; Scotti, Marcus T; Ishiki, Hamilton; Junior, Francisco J B M; dos, Santos Paula F; Tavares, Josean F; da Silva, Marcelo S

    2014-05-01

    The aim of this work was to predict the anticancer potential of 3 atisane, and 3 trachylobane diterpene compounds extracted from the roots of Xylopia langsdorffiana. The prediction of anticancer activity as expressed against PC-3 tumor cells was made using a PLS model built with 26 diterpenes in the training set. Significant statistical measures were obtained. The six investigated diterpenes were applied to the model and their activities against PC-3 cells were calculated. All the diterpenes were active, with atisane diterpenes showing the higher pICso values. In human prostate carcinoma PC-3 cells, the apoptosis mechanism is related to an inhibition of IKK/NF-KB. Antioxidant potential implies a greater electronic molecular atmosphere (increased donor electron capacity), which can reduce radical reactivity, and facilitate post donation charge accommodation. Molecular surfaces indicated a much greater electronic cloud over atisane diterpenes.

  17. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  18. Anticancer potential of new steroidal thiazolidin-4-one derivatives. Mechanisms of cytotoxic action and effects on angiogenesis in vitro.

    PubMed

    Živković, Marijana B; Matić, Ivana Z; Rodić, Marko V; Novaković, Irena T; Krivokuća, Ana M; Sladić, Dušan M; Krstić, Natalija M

    2017-11-01

    The synthesis and cytotoxic activities determination of new steroidal mono- and bis(thiazolidin-4-ones) 4a-f and 5a-f have been performed. Their anticancer action was also evaluated in comparison to previously synthesized and reported corresponding steroidal thiosemicarbazones. All compounds were obtained as stereoisomeric mixtures with different configuration (E or Z) in the hydrazone moiety at the C-3 position. After several consecutive crystallizations diastereomerically pure major (E)-isomers of mono-thiazolidin-4-ones were isolated. The structure and stereochemistry of 2,4-thiazolidinedione,2-[(17-oxoandrost-4-en-3-ylidene)hydrazone] were confirmed by X-ray analysis. A pathway for the formation of thiazolidin-4-one ring was proposed. The steroid thiazolidinone derivatives examined in this study exerted selective concentration-dependent cytotoxic activities on six tested malignant cell lines. Ten out of twelve examined compounds exhibited strong cytotoxic effects on K562 cells (IC 50 values from 8.5μM to 14.9μM), eight on HeLa cells (IC 50 values ranging from 8.9μM to 15.1μM) while against MDA-MB-361 cells six compouds exerted similar or even higher cytotoxic action (IC 50 values from 12.7μM to 25.6μM) than cisplatin (21.5μM) which served as a positive control. Eight of these ten compounds showed high selectivity in the cytotoxic action against HeLa and K562 cancer cell lines when compared with normal human fibroblasts MRC-5 and normal human PBMC. The study of mechanisms of the anticancer activity of the two selected compounds, mono- and bis(thiazolidin-4-one) derivatives of 19-norandrost-4-ene-3,17-dione 4a and 5a, revealed that both of these compounds induced apoptosis in HeLa cells through extrinsic and intrinsic signalling pathways. Treatment of EA.hy926 cells with sub-toxic concentrations of these compounds led to the inhibition of cell connecting and sprouting, and tube formation. The synthesized compounds exhibited poor antioxidant activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antiproliferative and phytochemical analyses of leaf extracts of ten Apocynaceae species

    PubMed Central

    Wong, Siu Kuin; Lim, Yau Yan; Abdullah, Noor Rain; Nordin, Fariza Juliana

    2011-01-01

    Background: The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves. Materials and Methods: In this study, leaf extracts of 10 Apocynaceae species were assessed for antiproliferative (APF) activities using the sulforhodamine B assay. Their extracts were also analyzed for total alkaloid content (TAC), total phenolic content (TPC), and radical scavenging activity (RSA) using the Dragendorff precipitation, Folin–Ciocalteu, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, respectively. Results: Leaf extracts of Alstonia angustiloba, Calotropis gigantea, Catharanthus roseus, Nerium oleander, Plumeria obtusa, and Vallaris glabra displayed positive APF activities. Extracts of Allamanda cathartica, Cerbera odollam, Dyera costulata, and Kopsia fruticosa did not show any APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activities against all six human cancer cell lines. Against breast cancer cells of MCF-7 and MDA-MB-231, DCM extracts of C. gigantea and N. oleander were stronger than or comparable to standard drugs of xanthorrhizol, curcumin, and tamoxifen. All four extracts of N. oleander were effective against MCF-7 cells. Extracts of Kopsia fruticosa had the highest TAC while those of Dyera costulata had the highest TPC and RSA. Extracts of C. gigantea and V. glabra inhibited the growth of all six cancer cell lines while all extracts of N. oleander were effective against MCF-7 cells. Conclusion: Extracts of C. gigantea, V. glabra, and N. oleander therefore showed great promise as potential candidates for anticancer drugs. The wide-spectrum APF activities of these three species are reported for the first time and their bioactive compounds warrant further investigation. PMID:21772753

  20. Unraveling the Molecular Mechanism of Benzothiophene and Benzofuran scaffold merged compounds binding to anti-apoptotic Myeloid cell leukemia 1.

    PubMed

    Marimuthu, Parthiban; Singaravelu, Kalaimathy

    2018-05-10

    Myeloid cell leukemia 1 (Mcl1), is an anti-apoptotic member of the Bcl-2 family proteins, has gained considerable importance due to its overexpression activity prevents the oncogenic cells to undergo apoptosis. This overexpression activity of Mcl1 eventually develops strong resistance to a wide variety of anticancer agents. Therefore, designing novel inhibitors with potentials to elicit higher binding affinity and specificity to inhibit Mcl1 activity is of greater importance. Thus, Mcl1 acts as an attractive cancer target. Despite recent experimental advancement in the identification and characterization of Benzothiophene and Benzofuran scaffold merged compounds the molecular mechanisms of their binding to Mcl1 are yet to be explored. The current study demonstrates an integrated approach -pharmacophore-based 3D-QSAR, docking, Molecular Dynamics (MD) simulation and free-energy estimation- to access the precise and comprehensive effects of current inhibitors targeting Mcl1 together with its known activity values. The pharmacophore -ANRRR.240- based 3D-QSAR model from the current study provided high confidence (R 2 =0.9154, Q 2 =0.8736, and RMSE=0.3533) values. Furthermore, the docking correctly predicted the binding mode of highly active compound 42. Additionally, the MD simulation for docked complex under explicit-solvent conditions together with free-energy estimation exhibited stable interaction and binding strength over the time period. Also, the decomposition analysis revealed potential energy contributing residues -M231, M250, V253, R265, L267, and F270- to the complex stability. Overall, the current investigation might serve as a valuable insight, either to (i) improve the binding affinity of the current compounds or (ii) discover new generation anti-cancer agents that can effectively downregulate Mcl1 activity.

  1. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways.

    PubMed

    Déziel, Bob A; Patel, Kunal; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert A R

    2010-10-15

    Prostate cancer is one of the most common cancers in the Western world, and it is believed that an individual's diet affects his risk of developing cancer. There has been an interest in examining phytochemicals, the secondary metabolites of plants, in order to determine their potential anti-cancer activities in vitro and in vivo. In this study we document the effects of proanthocyanidins (PACs) from the American Cranberry (Vaccinium macrocarpon) on matrix metalloproteinase (MMP) activity in DU145 human prostate cancer cells. Cranberry PACs decreased cellular viability of DU145 cells at a concentration of 25 µg/ml by 30% after 6 h of treatment. Treatment of DU145 cells with PACs resulted in an inhibition of both MMPs 2 and 9 activity. PACs increased the expression of TIMP-2, a known inhibitor of MMP activity, and decreased the expression of EMMPRIN, an inducer of MMP expression. PACs decreased the expression of PI-3 kinase and AKT proteins, and increased the phosphorylation of both p38 and ERK1/2. Cranberry PACs also decreased the translocation of the NF-κB p65 protein to the nucleus. Cranberry PACs increased c-jun and decreased c-fos protein levels. These results suggest that cranberry PACs decreases MMP activity through the induction and/or inhibition of specific temporal MMP regulators, and by affecting either the phosphorylation status and/or expression of MAP kinase, PI-3 kinase, NF-κB and AP-1 pathway proteins. This study further demonstrates that cranberry PACs are a strong candidate for further research as novel anti-cancer agents. © 2010 Wiley-Liss, Inc.

  2. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    PubMed Central

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  3. Preclinical Investigations of PM01183 (Lurbinectedin) as a Single Agent or in Combination with Other Anticancer Agents for Clear Cell Carcinoma of the Ovary

    PubMed Central

    Takahashi, Ryoko; Mabuchi, Seiji; Kawano, Mahiru; Sasano, Tomoyuki; Matsumoto, Yuri; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Sawada, Kenjiro; Kimura, Tadashi

    2016-01-01

    Objective The objective of this study was to evaluate the antitumor effects of lurbinectedin as a single agent or in combination with existing anticancer agents for clear cell carcinoma (CCC) of the ovary, which is regarded as an aggressive, chemoresistant, histological subtype. Methods Using human ovarian CCC cell lines, the antitumor effects of lurbinectedin, SN-38, doxorubicin, cisplatin, and paclitaxel as single agents were assessed using the MTS assay. Then, the antitumor effects of combination therapies involving lurbinectedin and 1 of the other 4 agents were evaluated using isobologram analysis to examine whether these combinations displayed synergistic effects. The antitumor activity of each treatment was also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines. Finally, we determined the effects of mTORC1 inhibition on the antitumor activity of lurbinectedin-based chemotherapy. Results Lurbinectedin exhibited significant antitumor activity toward chemosensitive and chemoresistant CCC cells in vitro. An examination of mouse CCC cell xenografts revealed that lurbinectedin significantly inhibits tumor growth. Among the tested combinations, lurbinectedin plus SN-38 resulted in a significant synergistic effect. This combination also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Everolimus significantly enhanced the antitumor activity of lurbinectedin-based chemotherapies. Conclusions Lurbinectedin, a new agent that targets active transcription, exhibits antitumor activity in CCC when used as a single agent and has synergistic antitumor effects when combined with irinotecan. Our results indicate that lurbinectedin is a promising agent for treating ovarian CCC, both as a first-line treatment and as a salvage treatment for recurrent lesions that develop after platinum-based or paclitaxel treatment. PMID:26986199

  4. Antimicrobial and anticancer efficacy of antineoplastic agent capped gold nanoparticles.

    PubMed

    Selvaraj, V; Grace, A Nirmala; Alagar, M; Hamerton, I

    2010-04-01

    Synthesis of thioguanine (TG)-capped Au nanoparticles (Au@TG) and their enhanced in vitro antimicrobial and anticancer efficacy against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, E. coli, Aspergillus fumigatus, Aspergillus niger and Hep2 cancer cell (Human epidermiod cell) have been reported. The nature of binding between 6-TG and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The present experimental studies suggests that Au@TG are more potential than TG towards antimicrobial and anticancer activities. Hence, gold nanoparticles have the potential to be used as effective carriers for anticancer drug.

  5. Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities

    PubMed Central

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum–palladium bimetallic nanoparticles (Pt–PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2–5 nm, while PdNPs and Pt–PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88%±1.73% elemental Pt and 68.96%±1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm−1, attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm−1, associated with C–H stretching, N–H bending in primary amines, N–O stretching in nitro group, and C–C stretch, respectively. Anticancer activity against HeLa cells showed that Pt–PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt–PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals. PMID:26719690

  6. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.

    PubMed

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.

  7. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line.

    PubMed

    Salahuddin, H; Mansoor, Q; Batool, R; Farooqi, A A; Mahmood, T; Ismail, M

    2016-04-30

    Bioactive chemicals isolated from plants have attracted considerable attention over the years and overwhelmingly increasing laboratory findings are emphasizing on tumor suppressing properties of these natural agents in genetically and chemically induced animal carcinogenesis models. We studied in vitro anticancer activity of organic extracts of Cynodon dactylon and Oxalis corniculata on Hep2 cell line and it was compared with normal human corneal epithelial cells (HCEC) by using MTT assay. Real Time PCR was conducted for p53 and PTEN genes in treated cancer cell line. DNA fragmentation assay was also carried out to note DNA damaging effects of the extracts. The minimally effective concentration of ethanolic extract of Cynodon dactylon and methanolic extract of Oxalis corniculata that was nontoxic to HCEC but toxic to Hep2 was recorded (IC50) at a concentration of 0.042mg/ml (49.48 % cell death) and 0.048mg/ml (47.93% cell death) respectively, which was comparable to the positive control. Our results indicated dose dependent increase in cell death. P53 and PTEN did not show significant increase in treated cell line. Moreover, DNA damaging effects were also not detected in treated cancer cell line. Anticancer activity of these plants on the cancer cell line showed the presence of anticancer components which should be characterized to be used as anticancer therapy.

  8. Anti-cancer activity of ZnO chips by sustained zinc ion release.

    PubMed

    Moon, Seong-Hee; Choi, Won Jin; Choi, Sik-Won; Kim, Eun Hye; Kim, Jiyeon; Lee, Jeong-O; Kim, Seong Hwan

    2016-01-01

    We report anti-cancer activity of ZnO thin-film-coated chips by sustained release of zinc ions. ZnO chips were fabricated by precisely tuning ZnO thickness using atomic layer deposition, and their potential to release zinc ions relative to the number of deposition cycles was evaluated. ZnO chips exhibited selective cytotoxicity in human B lymphocyte Raji cells while having no effect on human peripheral blood mononuclear cells. Of importance, the half-maximal inhibitory concentration of the ZnO chip on the viability of Raji cells was 121.5 cycles, which was comparable to 65.7 nM of daunorubicin, an anti-cancer drug for leukemia. Molecular analysis of cells treated with ZnO chips revealed that zinc ions released from the chips increased cellular levels of reactive oxygen species, including hydrogen peroxide, which led to the down-regulation of anti-apoptotic molecules (such as HIF-1α, survivin, cIAP-2, claspin, p-53, and XIAP) and caspase-dependent apoptosis. Because the anti-cancer activity of ZnO chips and the mode of action were comparable to those of daunorubicin, the development and optimization of ZnO chips that gradually release zinc ions might have clinical anti-cancer potential. A further understanding of the biological action of ZnO-related products is crucial for designing safe biomaterials with applications in disease treatment.

  9. Design, synthesis and in vitro evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Singh, Abhishek K; Khan, Feroz; Srivastava, Santosh K; Pant, Aditya B

    2014-01-01

    In the present work, QSAR model was derived by multiple linear regression method for the prediction of anticancer activity of 18β-glycyrrhetinic acid derivatives against the human breast cancer cell line MCF-7. The QSAR model for anti-proliferative activity against MCF-7 showed high correlation (r(2)=0.90 and rCV(2)=0.83) and indicated that chemical descriptors namely, dipole moment (debye), steric energy (kcal/mole), heat of formation (kcal/mole), ionization potential (eV), LogP, LUMO energy (eV) and shape index (basic kappa, order 3) correlate well with activity. The QSAR virtually predicted that active derivatives were first semi-synthesized and characterized on the basis of their (1)H and (13)C NMR spectroscopic data and then were in-vitro tested against MCF-7 cancer cell line. In particular, octylamide derivative of glycyrrhetinic acid GA-12 has marked cytotoxic activity against MCF-7 similar to that of standard anticancer drug paclitaxel. The biological assays of active derivative selected by virtual screening showed significant experimental activity.

  10. Peroxisome Proliferator Activated Receptor A Ligands as Anticancer Drugs Targeting Mitochondrial Metabolism

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2011-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary therapeutic approach. This idea is based on hitting the cancer cell metabolic weak points through PPAR α mediated stimulation of mitochondrial fatty acid oxidation and ketogenesis with simultaneous reduction of glucose and glutamine consumption. PPAR α activity is induced by fasting and its molecular consequences overlap with the effects of calorie restriction and ketogenic diet (CRKD). CRKD induces increase of NAD+/NADH ratio and drop in ATP/AMP ratio. The first one is the main stimulus for enhanced protein deacetylase SIRT1 activity; the second one activates AMP-dependent protein kinase (AMPK). Both SIRT1 and AMPK exert their major metabolic activities such as fatty acid oxidation and block of glycolysis and protein, nucleotide and fatty acid synthesis through the effector protein peroxisome proliferator activated receptor gamma 1 α coactivator (PGC-1α). PGC-1α cooperates with PPAR α and their activities might contribute to potential anticancer effects of CRKD, which were reported for various brain tumors. Therefore, PPAR α activation can engage molecular interplay among SIRT1, AMPK, and PGC-1α that provides a new, low toxicity dietary approach supplementing traditional anticancer regimen. PMID:21133850

  11. Anticancer effects of resveratrol in canine hemangiosarcoma cell lines.

    PubMed

    Carlson, A; Alderete, K S; Grant, M K O; Seelig, D M; Sharkey, L C; Zordoky, B N M

    2018-06-01

    Hemangiosarcoma (HSA) is a highly malignant tumour with aggressive biological behaviour. HSAs are more common in dogs than other domestic animals. The median survival time of dogs with HSA remains short, even with chemotherapy and surgery. Therefore, there is a critical need to improve the adjuvant chemotherapeutic regimens to improve clinical outcomes in dogs with HSA. Resveratrol has been shown to possess strong anti-proliferative and/or pro-apoptotic properties in human cancer cell lines. Nevertheless, the potential anticancer effects of resveratrol have not been reported in canine HSAs. The objective of this study is to determine the growth inhibitory effects of resveratrol in HSA cells when used alone or in combination with doxorubicin, a commonly used chemotherapeutic agent. Frog and DD-1 canine HSA cell lines were treated with varying concentrations of resveratrol with and without doxorubicin. Cell viability was measured by the MTT assay. The expression of apoptotic proteins, activation of p38 mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were assessed by western blotting. Similar to human cancer cell lines, resveratrol markedly inhibited the growth and induced apoptosis in both HSA cell lines. Mechanistically, resveratrol activated p38 MAPK, but did not affect the AMPK or the ERK1/2 pathways. Additional experiments showed that resveratrol augmented the growth-inhibitory and apoptotic effects of doxorubicin in both HSA cell lines. These findings suggest that resveratrol has pro-apoptotic effects in canine HSA cells; therefore, its use as a potential adjunct therapy in canine HSA patients warrants further investigation. © 2017 John Wiley & Sons Ltd.

  12. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S

    2016-03-01

    Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.

  13. Evaluation of phenolic composition, antioxidant, anti-inflammatory and anticancer activities of Polygonatum verticillatum (L.).

    PubMed

    Kumar Singh, Sandeep; Patra, Arjun

    2018-04-18

    Polygonatum verticillatum (L.) All. (Ruscaceae), one of the Ashtawarga plants, is widely used for treatment of various ailments. The present study was undertaken to determine the phenolic composition, antioxidant, anti-inflammatory and anticancer activities of several extracts (petroleum ether, dichloromethane, chloroform, ethanol, and aqueous) from the rhizomes of the plant. Coarsely powdered dry rhizome was successively extracted with different solvents of increasing polarity (petroleum ether, dichloromethane, chloroform, ethanol and water). The phenolic compositions, in terms of total phenolic content (TPC), total flavonoid content (TFC) and total condensed tannin content (TTC), were evaluated with the Folin-Ciocalteu assay, aluminum chloride colorimetric assay and vanillin spectrophotometric assay, respectively. Total antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays were used to assess the antioxidant potential of each extract. A protein denaturation model and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were used to evaluate in vitro anti-inflammatory and anticancer activities, respectively. Gas chromatography-mass spectrometry (GC/MS) analysis was carried out to demonstrate various phytoconstituents in each extract. Correlation studies were also performed between phenolic composition (TPC, TFC and TTC) and different biological activities. Ethanol extract showed maximum TPC (0.126 mg/g, gallic acid equivalent in dry sample), TFC (0.094 mg/g, rutin equivalent in dry sample) and TTC (29.32 mg/g, catechin equivalent in dry sample), as well as antioxidant and anti-inflammatory properties. Chloroform extract exhibited the strongest cytotoxicity against the human breast cancer cell line, MCF-7. GC/MS analysis revealed the presence of 90 different phytoconstituents among the extracts. Antioxidant and anti-inflammatory activities had a positive correlation with TPC, TFC and TTC. However, the anticancer activity showed a negative correlation with TPC, TFC and TTC. From the present study, it can be concluded that P. verticillatum possessed remarkable antioxidant, anti-inflammatory, and anticancer activities, which could be due to different secondary metabolites of the plant. Phenolic compounds are likely responsible for antioxidant and anti-inflammatory activities. However, flavonoids and other compounds might contribute to the anticancer potential of the plant. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  14. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives?

    PubMed Central

    Cirmi, Santa; Ferlazzo, Nadia; Lombardo, Giovanni E.; Maugeri, Alessandro; Calapai, Gioacchino; Gangemi, Sebastiano; Navarra, Michele

    2016-01-01

    Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology. PMID:27827912

  15. The Impact of Skin Problems on the Quality of Life in Patients Treated with Anticancer Agents: A Cross-Sectional Study.

    PubMed

    Lee, Jaewon; Lim, Jin; Park, Jong Seo; Kim, Miso; Kim, Tae-Yong; Kim, Tae Min; Lee, Kyung-Hun; Keam, Bhumsuk; Han, Sae-Won; Mun, Je-Ho; Cho, Kwang Hyun; Jo, Seong Jin

    2017-12-14

    Patients treated with anticancer agents often experience a variety of treatment-related skin problems, which can impair their quality of life. In this cross-sectional study, Dermatology Life Quality Index (DLQI) and clinical information were evaluated in patients under active anticancer treatment using a questionnaire survey and their medical records review. Of 375 evaluated subjects with anticancer therapy, 136 (36.27%) and 114 (30.40%) were treated for breast cancer and colorectal cancer, respectively. We found that women, breast cancer, targeted agent use, and longer duration of anticancer therapy were associated with higher dermatology-specific QoL distraction. In addition, itching, dry skin, easy bruising, pigmentation, papulopustules on face, periungual inflammation, nail changes, palmoplantar lesions were associated with significantly higher DLQI scores. Periungual inflammation and palmoplantar lesions scored the highest DLQI. We believe our findings can be helpful to clinicians in counseling and managing the patients undergoing anticancer therapy.

  16. Myricetin: A Dietary Molecule with Diverse Biological Activities

    PubMed Central

    Semwal, Deepak Kumar; Semwal, Ruchi Badoni; Combrinck, Sandra; Viljoen, Alvaro

    2016-01-01

    Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities. PMID:26891321

  17. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.

    PubMed

    Yadav, Dharmendra K; Rai, Reeta; Kumar, Naresh; Singh, Surjeet; Misra, Sanjeev; Sharma, Praveen; Shaw, Priyanka; Pérez-Sánchez, Horacio; Mancera, Ricardo L; Choi, Eun Ha; Kim, Mi-Hyun; Pratap, Ramendra

    2016-12-06

    The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.

  18. HLBT-100: a highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L.

    PubMed

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Ayeah, Kenneth N; Bryant, Joseph

    2017-01-01

    The incidence and mortalities from cancers remain on the rise worldwide. Despite significant efforts to discover and develop novel anticancer agents, many cancers remain in the unmet need category. As such, efforts to discover and develop new and more effective and less toxic agents against cancer remain a top global priority. Our drug discovery approach is natural products based with a focus on plants. Tillandsia recurvata (L.) L. is one of the plants selected by our research team for further studies based on previous bioactivity findings on the anticancer activity of this plant. The plant biomass was extracted using supercritical fluid extraction technology with CO 2 as the mobile phase. Bioactivity guided isolation was achieved by use of chromatographic technics combined with anti-proliferative assays to determine the active fraction and subsequently the pure compound. Following in house screening, the identified molecule was submitted to the US National Cancer Institute for screening on the NCI60 cell line panel using standard protocols. Effect of HLBT-100 on apoptosis, caspase 3/7, cell cycle and DNA fragmentation were assessed using standard protocols. Antiangiogenic activity was carried out using the ex vivo rat aortic ring assay. A flavonoid of the flavanone class was isolated from T. recurvata (L.) L. with potent anticancer activity. The molecule was code named as HLBT-100 (also referred to as HLBT-001). The compound inhibited brain cancer (U87 MG), breast cancer (MDA-MB231), leukemia (MV4-11), melanoma (A375), and neuroblastoma (IMR-32) with IC 50 concentrations of 0.054, 0.030, 0.024, 0.003 and 0.05 µM, respectively. The molecule also exhibited broad anticancer activity in the NCI60 panel inhibiting especially hematological, colon, CNS, melanoma, ovarian, breast and prostate cancers. Twenty-three of the NCI60 cell lines were inhibited with GI 50 values <0.100 µM. In terms of potential mechanisms of action, the molecule demonstrated effect on the cell cycle as evidenced by the accumulation of cells with 

  19. Antitumor Activity of Monoterpenes Found in Essential Oils

    PubMed Central

    Sobral, Marianna Vieira; Xavier, Aline Lira; Lima, Tamires Cardoso; de Sousa, Damião Pergentino

    2014-01-01

    Cancer is a complex genetic disease that is a major public health problem worldwide, accounting for about 7 million deaths each year. Many anticancer drugs currently used clinically have been isolated from plant species or are based on such substances. Accumulating data has revealed anticancer activity in plant-derived monoterpenes. In this review the antitumor activity of 37 monoterpenes found in essential oils is discussed. Chemical structures, experimental models, and mechanisms of action for bioactive substances are presented. PMID:25401162

  20. Novel pyrazole derivatives with oxa/thiadiazolyl, pyrazolyl moieties and pyrazolo[4,3-d]-pyrimidine derivatives as potential antimicrobial and anticancer agents.

    PubMed

    Hafez, Hend N; El-Gazzar, Abdel-Rhman B A; Al-Hussain, Sami A

    2016-05-15

    A series of [4-amino-3-(4-chlorophenyl)-1H-pyrazol-5-yl](3,5-dimethyl-1H-pyrazol-1-yl)-methanone and 6-amino-3-(4-chlorophenyl)-5-methyl-1,6-dihydro-7H-pyrazolo[4,3-d]-pyrimidin-7-one have been synthesized from ethyl 4-amino-3-(4-chlorophenyl)-pyrazol-5-carboxylate. The newly synthesized compounds were characterized by IR, (1)H NMR, (13)CNMR, Mass spectra and Elemental analysis. The compounds were evaluated for their in vitro antimicrobial and anticancer activity. Among the synthesized compounds, compounds 7a,b and 15 exhibited higher anticancer activity than the doxorubicin as reference drug. Most of the newly synthesized compounds have good to excellent antimicrobial activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synthesis and evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents.

    PubMed

    Bhat, Mahima; Poojary, Boja; Kalal, Bhuvanesh Sukhlal; Gurubasavaraja Swamy, Purawarga Matada; Kabilan, Senthamaraikannan; Kumar, Vasantha; Shruthi, Nooji; Alias Anand, Selvam Athavan; Pai, Vinitha Ramanath

    2018-05-01

    To synthesize a series of new thiazolidinone-pyrazole hybrids (5a-o) and assess their anticancer (in vitro and in vivo) and antimicrobial activities. The compounds 5h (against Ehrlich ascites carcinoma cells), 5e and 5i (against the human breast cancer [MDA-MB231] cell line) exhibited potent anticancer activity. All the compounds except 5g and 5e found to be less toxic for the human dermal fibroblast cells. The effective interactions of the compounds in silico with MDM2 exemplified their inhibitory potency. The derivatives also showed moderate antimicrobial activity. The halogen atoms on various positions of the N-arylamino ring played an advantageous role in elevating the potency of the molecules. Thus, these conjugates could be used as a lead for further optimization to achieve promising therapeutics.

  2. Non-traditional platinum compounds for improved accumulation, oral bioavailability, and tumor targeting.

    PubMed

    Lovejoy, Katherine S; Lippard, Stephen J

    2009-12-28

    The five platinum anticancer compounds currently in clinical use conform to structure-activity relationships formulated (M. J. Cleare and J. D. Hoeschele, Bioinorg. Chem., 1973, 2, 187-210) shortly after the discovery that cis-diamminedichloroplatinum(II), cisplatin, has antitumor activity in mice. These compounds are neutral platinum(II) species with two am(m)ine ligands or one bidentate chelating diamine and two additional ligands that can be replaced by water through aquation reactions. The resulting cations ultimately form bifunctional adducts on DNA. Information about the chemistry of these platinum compounds and correlations of their structures with anticancer activity have provided guidance for the design of novel anticancer drug candidates based on the proposed mechanisms of action. This article discusses advances in the synthesis and evaluation of such non-traditional platinum compounds, including cationic and tumor-targeting constructs.

  3. Synthesis, structure, antimycobacterial and anticancer evaluation of new pyrrolo-phenanthroline derivatives.

    PubMed

    Al Matarneh, Cristina M; Mangalagiu, Ionel I; Shova, Sergiu; Danac, Ramona

    2016-01-01

    A study concerning design, synthesis, structure and in vitro antimycobacterial and anticancer evaluation of new fused derivatives with pyrrolo[2,1-c][4,7]phenanthroline skeleton is described. The strategy adopted for synthesis involves a [3 + 2] dipolar cycloaddition of several in situ generated 4,7-phenanthrolin-4-ium ylides to different substituted alkynes and alkenes. Stereo- and regiochemistry of cycloaddition reactions were discussed. The structure of the new compounds was proven unambiguously, single-crystal X-ray diffraction studies including. The antimycobacterial and anticancer activity of a selection of new synthesized compounds was evaluated against Mycobacterium tuberculosis H37Rv under aerobic conditions and 60 human tumour cell line panel, respectively. Five of the tested compounds possess a moderate antimycobacterial activity, while two of the compounds have a significant antitumor activity against renal cancer and breast cancer.

  4. Fine-Tuning the Antimicrobial Profile of Biocompatible Gold Nanoparticles by Sequential Surface Functionalization Using Polyoxometalates and Lysine

    PubMed Central

    Daima, Hemant K.; Selvakannan, P. R.; Shukla, Ravi; Bhargava, Suresh K.; Bansal, Vipul

    2013-01-01

    Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPsTyr) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner. The observation from the antimicrobial studies on a gram negative bacterium Escherichia coli were further validated by investigating the anticancer properties of these step-wise surface-controlled materials against A549 human lung carcinoma cells, which showed a similar toxicity pattern. These studies highlight that the nanomaterial toxicity and biological applicability are strongly governed by their surface corona. PMID:24147146

  5. Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine.

    PubMed

    Daima, Hemant K; Selvakannan, P R; Shukla, Ravi; Bhargava, Suresh K; Bansal, Vipul

    2013-01-01

    Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPs(Tyr)) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner. The observation from the antimicrobial studies on a gram negative bacterium Escherichia coli were further validated by investigating the anticancer properties of these step-wise surface-controlled materials against A549 human lung carcinoma cells, which showed a similar toxicity pattern. These studies highlight that the nanomaterial toxicity and biological applicability are strongly governed by their surface corona.

  6. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity.

    PubMed

    Chiang, Yi-Kun; Kuo, Ching-Chuan; Wu, Yu-Shan; Chen, Chung-Tong; Coumar, Mohane Selvaraj; Wu, Jian-Sung; Hsieh, Hsing-Pang; Chang, Chi-Yen; Jseng, Huan-Yi; Wu, Ming-Hsine; Leou, Jiun-Shyang; Song, Jen-Shin; Chang, Jang-Yang; Lyu, Ping-Chiang; Chao, Yu-Sheng; Wu, Su-Ying

    2009-07-23

    A pharmacophore model, Hypo1, was built on the basis of 21 training-set indole compounds with varying levels of antiproliferative activity. Hypo1 possessed important chemical features required for the inhibitors and demonstrated good predictive ability for biological activity, with high correlation coefficients of 0.96 and 0.89 for the training-set and test-set compounds, respectively. Further utilization of the Hypo1 pharmacophore model to screen chemical database in silico led to the identification of four compounds with antiproliferative activity. Among these four compounds, 43 showed potent antiproliferative activity against various cancer cell lines with the strongest inhibition on the proliferation of KB cells (IC(50) = 187 nM). Further biological characterization revealed that 43 effectively inhibited tubulin polymerization and significantly induced cell cycle arrest in G(2)-M phase. In addition, 43 also showed the in vivo-like anticancer effects. To our knowledge, 43 is the most potent antiproliferative compound with antitubulin activity discovered by computer-aided drug design. The chemical novelty of 43 and its anticancer activities make this compound worthy of further lead optimization.

  7. Apoptosis induction and anti-cancer activity of LeciPlex formulations.

    PubMed

    Dhawan, Vivek V; Joshi, Ganesh V; Jain, Ankitkumar S; Nikam, Yuvraj P; Gude, Rajiv P; Mulherkar, Rita; Nagarsenker, Mangal S

    2014-10-01

    Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.

  8. Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest.

    PubMed

    Qi, Fei; Yan, Qiang; Zheng, Zhaozheng; Liu, Jian; Chen, Yan; Zhang, Guiyang

    2018-01-01

    Colon cancer ranks second in mortality among all human malignancies, creating thus a need for exploration of novel molecules that would prove effective, cost-effective and with lower toxicity. In the recent past monoterpenes have gained tremendous attention for their anticancer activity. In the present study we evaluated the anticancer effects of two important monoterpenes, geraniol and geranyl acetate against colo-205 cancer cells. The antiproliferative activity was determined by MTT assay. Apoptosis was assessed by DAPI staining and DNA damage was checked by comet assay. The cell cycle analysis was carried out by flow cytometry and protein expression was examined by western blotting. The results showed that both geraniol and geranyl acetate exhibited significant anticancer activity against colo-205 cancer cell line with IC50 values of 20 and 30 μM respectively. To find out the underlying mechanism, DAPI staining was carried out and it was observed that both the monoterpenes, geraniol and geranyl acetate, induced apoptosis in colo-205 cells. The apoptosis was also associated with upregulation of Bax and downregulation of Bcl-2 expressions, indicative of mitochondrial apoptosis. Moreover, these two monoterpenes could trigger DNA damage and G2/M cell cycle arrest in colo-205 cells. Taken together, we propose that geraniol and geranyl acetate may prove to be important lead molecular candidates for the treatment of colon cancer. Their anticancer activity can be attributed to the ability to trigger apoptosis, DNA damage and cell cycle arrest.

  9. Synthesis of Rapamycin Derivatives Containing the Triazole Moiety Used as Potential mTOR-Targeted Anticancer Agents.

    PubMed

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-06-01

    Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Modulation of butyrate anticancer activity by solid lipid nanoparticle delivery: an in vitro investigation on human breast cancer and leukemia cell lines.

    PubMed

    Foglietta, Federica; Serpe, Loredana; Canaparo, Roberto; Vivenza, Nicoletta; Riccio, Giovanna; Imbalzano, Erica; Gasco, Paolo; Zara, Gian Paolo

    2014-01-01

    Histone modification has emerged as a promising approach to cancer therapy. The short-chain fatty acid, butyric acid, a histone deacetylase (HD) inhibitor, has shown anticancer activity. Butyrate transcriptional activation is indeed able to withdraw cancer cells from the cell cycle, leading to programmed cell death. Since butyrate's clinical use is hampered by unfavorable pharmacokinetic and pharmacodynamic properties, delivery systems, such as solid lipid nanoparticles (SLN), have been developed to overcome these constraints. In order to outline the influence of butyrate delivery on its anticancer activity, the effects of butyrate as a free (sodium butyrate, NB) or nanoparticle (cholesteryl butyrate solid lipid nanoparticles, CBSLN) formulation on the growth of different human cancer cell lines, such as the promyelocytic leukemia, HL-60, and the breast cancer, MCF-7 was investigated. A detailed investigation into the mechanism of the induced cytotoxicity was also carried out, with a special focus on the modulation of HD and cyclin-dependent kinase (CDK) mRNA gene expression by real time PCR analysis. In HL-60 cells, CBSLN induced a higher and prolonged expression level of the butyrate target genes at lower concentrations than NB. This led to a significant decrease in cell proliferation, along with considerable apoptosis, cell cycle block in the G0/G1 phase, significant inhibition of total HD activity and overexpression of the p21 protein. Conversely, in MCF-7 cells, CBSLN did not enhance the level of expression of the butyrate target genes, leading to the same anticancer activity as that of NB. Solid lipid nanoparticles were able to improve butyrate anticancer activity in HL-60, but not in MCF-7 cells. This is consistent with difference in properties of the cells under study, such as expression of the TP53 tumor suppressor, or the transporter for short-chain fatty acids, SLC5A8.

  11. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangling; Luo, Peihua; Wang, Jincheng

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 andmore » 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy.« less

  12. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles

    PubMed Central

    Pan-In, Porntip; Wanichwecharungruang, Supason; Hanes, Justin; Kim, Anthony J

    2014-01-01

    Garcinia mangostana Linn extract (GME) is a natural product that has received considerable attention in cancer therapy, and has the potential to reduce side effects of chemotherapeutics and improve efficacy. We formulated GME-encapsulated ethyl cellulose (GME-EC) and a polymer blend of ethyl cellulose and methyl cellulose (GME-EC/MC) nanoparticles. We achieved high drug-loading and encapsulation efficiency using a solvent-displacement method with particle sizes around 250 nm. Cellular uptake and accumulation of GME was higher for GME-encapsulated nanoparticles compared to free GME. In vitro cytotoxicity analysis showed effective anticancer activity of GME-EC and GME-EC/MC nanoparticles in HeLa cells in a dose-dependent manner. GME-EC/MC nanoparticles showed approximately twofold-higher anticancer activity compared to GME-EC nanoparticles, likely due to their enhanced bioavailability. GME-encapsulated nanoparticles primarily entered HeLa cells by clathrin-mediated endocytosis and trafficked through the endolysosomal pathway. As far as we know, this is the first report on the cellular uptake and intracellular trafficking mechanism of drug-loaded cellulose-based nanoparticles. In summary, encapsulation of GME using cellulose-derivative nanoparticles – GME-EC and GME-EC/MC nanoparticles – successfully improved the bioavailability of GME in aqueous solution, enhanced cellular uptake, and displayed effective anticancer activity. PMID:25125977

  13. In vivo anti-cancer activity of Korean Angelica gigas and its major pyranocoumarin decursin.

    PubMed

    Lee, Hyo Jeong; Lee, Hyo Jung; Lee, Eun Ok; Lee, Jae Ho; Lee, Kuen Sung; Kim, Kwan Hyun; Kim, Sung-Hoon; Lü, Junxuan

    2009-01-01

    We have reported that a 10-herbal traditional formula containing Korean Angelica gigas Nakai (AGN) exerts potent anti-cancer efficacy and identified decursin and decursinol angelate (DA) from AGN as novel anti-androgens. Here, we determined whether AGN would exert in vivo anti-cancer activity and whether decursin or DA could account for its efficacy. The AGN ethanol extract was tested against the growth of mouse Lewis lung cancer (LLC) allograft in syngenic mice or human PC-3 and DU145 prostate cancer xenograft in immunodeficient mice. The pharmacokinetics of decursin and DA were determined. The AGN extract significantly inhibited LLC allograft growth (30 mg/kg) and PC-3 and DU145 xenograft growth (100 mg/kg) without affecting the body weight of the host mice. Biomarker analyses revealed decreased cell proliferation (Ki67, PCNA), decreased angiogenesis (VEGF, microvessel density) and increased apoptosis (TUNEL, cPARP) in treated tumors. Decursin and DA injected intraperitoneally were rapidly hydrolyzed to decursinol. Decursinol and decursin at 50 mg/kg inhibited LLC allograft growth to the same extent, comparable to 30 mg AGN/kg. Therefore the AGN extract possessed significant in vivo anti-cancer activity, but decursin and DA only contributed moderately to that activity, most likely through decursinol.

  14. Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex.

    PubMed

    Yang, Li; Tan, Jun; Wang, Bo-Chu; Zhu, Lian-Cai

    2014-12-01

    To synthesize and characterize a novel metal complex of Mn (II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, (1)H NMR, and (13)C NMR data were used to characterize the structure of the complex. The cytotoxicity of the complex against the human cancer cell lines HepG2, HeLa, MCF-7, B16, and MDA-MB-231 was tested by the MTT assay and flow cytometry. Emodin was coordinated with Mn(II) through the 9-C=O and 1-OH, and the general formula of the complex was Mn(II) (emodin)2·2H2O. In studies of the cytotoxicity, the complex exhibited significant activity, and the IC50 values of the complex against five cancer cell lines improved approximately three-fold compared with those of emodin. The complex could induce cell morphological changes, decrease the percentage of viability, and induce G0/G1 phase arrest and apoptosis in cancer cells. The coordination of emodin with Mn(II) can improve its anticancer activity, and the complex Mn(II) (emodin)2·2H2O could be studied further as a promising anticancer drug. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  15. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate.

    PubMed

    Lis, Paweł; Jurkiewicz, Paweł; Cal-Bąkowska, Magdalena; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2016-03-01

    In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP.

  16. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate

    PubMed Central

    Lis, Paweł; Jurkiewicz, Paweł; Cal-Bąkowska, Magdalena; Ko, Young H.; Pedersen, Peter L.; Goffeau, Andre; Ułaszewski, Stanisław

    2016-01-01

    In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP. PMID:26862728

  17. Cycloartane-3,24,25-triol inhibits MRCKα kinase and demonstrates promising anti prostate cancer activity in vitro

    PubMed Central

    2012-01-01

    Background Given the high occurrence of prostate cancer worldwide and one of the major sources of the discovery of new lead molecules being medicinal plants, this research undertook to investigate the possible anti-cancer activity of two natural cycloartanes; cycloartane-3,24,25-diol (extracted in our lab from Tillandsia recurvata) and cycloartane-3,24,25-triol (purchased). The inhibition of MRCKα kinase has emerged as a potential solution to restoring the tight regulation of normal cellular growth, the loss of which leads to cancer cell formation. Methods Kinase inhibition was investigated using competition binding (to the ATP sites) assays which have been previously established and authenticated and cell proliferation was measured using the WST-1 assay. Results Cycloartane-3,24,25-triol demonstrated strong selectivity towards the MRCKα kinase with a Kd50 of 0.26 μM from a total of 451 kinases investigated. Cycloartane-3,24,25-triol reduced the viability of PC-3 and DU145 cell lines with IC50 values of 2.226 ± 0.28 μM and 1.67 ± 0.18 μM respectively. Conclusions These results will prove useful in drug discovery as Cycloartane-3,24,25-triol has shown potential for development as an anti-cancer agent against prostate cancer. PMID:23151005

  18. Effects of Metformin, Buformin, and Phenformin on the Post Initiation Stage of Chemically-Induced Mammary Carcinogenesis in the Rat

    PubMed Central

    Zhu, Zongjian; Jiang, Weiqin; Thompson, Matthew D.; Echeverria, Dimas; McGinley, John N.; Thompson, Henry J.

    2015-01-01

    Metformin is a widely prescribed drug for the treatment of type-2 diabetes. Although epidemiological data have provided a strong rationale for investigating the potential of this biguanide for use in cancer prevention and control, uncertainty exists whether metformin should be expected to have an impact in non-diabetic patients. Furthermore, little attention has been given to the possibility that other biguanides may have anticancer activity. In this study, the effects of clinically relevant doses of metformin (9.3mmol/kg diet), buformin (7.6 mmol/kg diet), and phenformin (5.0 mmol/kg diet) were compared to rats fed control diet (AIN93-G) during the post initiation stage of 1-methyl-1-nitrosourea-induced (50 mg/kg body weight) mammary carcinogenesis (n = 30/group). Plasma, liver, skeletal muscle, visceral fat, mammary gland, and mammary carcinoma concentrations of the biguanides were determined. In comparison to the control group, buformin decreased cancer incidence, multiplicity, and burden; whereas, metformin and phenformin had no statistically significant effect on the carcinogenic process relative to the control group. Buformin did not alter fasting plasma glucose or insulin. Within mammary carcinomas, evidence was obtained that buformin treatment perturbed signaling pathways related to energy sensing. However, further investigation is needed to determine the relative contributions of host systemic and cell autonomous mechanisms to the anticancer activity of biguanides such as buformin. PMID:25804611

  19. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs.

    PubMed

    Zhang, Jin; Jiang, Xiangdong; Jiang, Yingnan; Guo, Mingrui; Zhang, Shouyue; Li, Jingjing; He, Jun; Liu, Jie; Wang, Jinhui; Ouyang, Liang

    2016-01-27

    Vascular endothelial growth factor receptor (VEGFR) is a very important receptor tyrosine kinase (RTK) that can induce angiogenesis, increase cell growth and metastasis, reduce apoptosis, alter cytoskeletal function, and affect other biologic changes. Moreover, it is identified to be deregulated in varieties of human cancers. Therefore, VEGFR turn out to be a remarkable target of significant types of anticancer drugs in clinical trials. On the other side, c-Met is the receptor of hepatocyte growth factor (HGF) and a receptor tyrosine kinase. Previous studies have shown that c-Met elicits many different signaling pathways mediating cell proliferation, migration, differentiation, and survival. Furthermore, the correlation between aberrant signaling of the HGF/c-Met pathway and aggressive tumor growth, poor prognosis in cancer patients has been established. Recent reports had shown that c-Met/HGF and VEGFR/VEGF (vascular endothelial growth factor) can act synergistically in the progression of many diseases. They were also found to be over expressed in many human cancers. Thus, in a variety of malignancies, VEGFR and c-Met receptor tyrosine kinases have acted as therapeutic targets. With the development of molecular biology techniques, further understanding of the human tumor disease pathogenesis and interrelated signaling pathways known to tumor cells, using a single target inhibitors have been difficult to achieve the desired therapeutic effect. At this point, with respect to the combination of two inhibitors, a single compound which is able to inhibit both VEGFR and c-Met may put forward the advantage of raising anticancer activity. With the strong interest in these compounds, this review represents a renewal of previous works on the development of dual VEGFR and c-Met small molecule inhibitors as novel anti-cancer agents. Newly collection derivatives have been mainly describing in their biological profiles and chemical structures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. (-)-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer.

    PubMed

    Crous-Masó, Joan; Palomeras, Sònia; Relat, Joana; Camó, Cristina; Martínez-Garza, Úrsula; Planas, Marta; Feliu, Lidia; Puig, Teresa

    2018-05-11

    (-)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.

  1. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. The Design and Development of Potent Small Molecules as Anticancer Agents Targeting EGFR TK and Tubulin Polymerization

    PubMed Central

    Ihmaid, Saleh; Ahmed, Hany E. A.; Zayed, Mohamed F.

    2018-01-01

    Some novel anthranilate diamides derivatives 4a–e, 6a–c and 9a–d were designed and synthesized to be evaluated for their in vitro anticancer activity. Structures of all newly synthesized compounds were confirmed by infra-red (IR), high-resolution mass (HR-MS) spectra, 1H nuclear magnetic resonance (NMR) and 13C nuclear magnetic resonance (NMR) analyses. Cytotoxic screening was performed according to (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT) assay method using erlotinib as a reference drug against two different types of breast cancer cells. The molecular docking study was performed for representative compounds against two targets, epidermal growth factor receptor (EGFR) and tubulin in colchicine binding site to assess their binding affinities in order to rationalize their anticancer activity in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticancer activity for these newly synthesized compounds. Biological data for most of the anthranilate diamide showed excellent activity with nanomolar or sub nanomolar half maximal inhibitory concentration (IC50) values against tumor cells. EGFR tyrosine kinase (TK) inhibition assay, tubulin inhibition assay and apoptosis analysis were performed for selected compounds to get more details about their mechanism of action. Extensive structure activity relationship (SAR) analyses were also carried out. PMID:29385728

  3. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis.

    PubMed

    Ha, Tae Kwun; Jung, Inae; Kim, Mi Eun; Bae, Sung Kwon; Lee, Jun Sik

    2017-07-01

    Thyroid cancer is the most common endocrine malignancy and can range in severity from relatively slow-growing occult differentiated thyroid cancer to uniformly aggressive and fatal anaplastic thyroid cancer. A subset of patients with papillary thyroid cancer present with aggressive disease that is refractory to conventional treatment. Myricetin is a flavonol compound found in a variety of berries as well as walnuts and herbs. Previous studies have demonstrated that myricetin exhibits anti-cancer activity against several tumor types. However, an anti-cancer effect of myricetin against human papillary thyroid cancer (HPTC) cells has not been established. The present investigation was undertaken to gain insights into the molecular mechanism of the anti-cancer activity of myricetin against HPTC cells. We examined the cytotoxicity, DNA damaging, and cell cycle arresting activities of myricetin using SNU-790 HPTC cells. We found that myricetin exhibited cytotoxicity and induced DNA condensation in SNU-790 HPTC cells in a dose-dependent manner. Moreover, myricetin up-regulated the activation of caspase cascades and the Bax:Bcl-2 expression ratio. In addition, myricetin induced the release of apoptosis-inducing factor (AIF) and altered the mitochondrial membrane potential. Our results suggest that myricetin induces the death of SNU-790 HPTC cells and thus may prove useful in the development of therapeutic agents for human thyroid cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Testing therapeutic potency of anticancer drugs in animal studies: a commentary.

    PubMed

    Den Otter, Willem; Steerenberg, Peter A; Van der Laan, Jan Willem

    2002-04-01

    Regulatory authorities for medicines in European countries deal with many applications for admission to the market of anticancer drugs. Each application must be supported by preclinical and clinical data, among which testing of the therapeutic activity of drugs in animals is important. Recently, the Committee for Proprietary Medicinal Products (CPMP) has released a note for guidance on the preclinical evaluation of anticancer medicinal products. This note provides only general statements regarding tests of anticancer drugs in rodents. This stimulates considerations on how to organize and how to evaluate these tests. In this article we describe our considerations regarding these items based on our experience with applications in The Netherlands since 1993. (c) 2002 Elsevier Science (USA).

  5. Effects of Plants and Isolates of Celastraceae Family on Cancer Pathways.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Seyed, Mohamed Ali

    2015-01-01

    The evaluation of crude drugs of natural origin as sources of new effective anticancer agents continues to be important due to the lack of effective anticancer drugs currently used in practice which are generally accompanied with adverse effects at different levels of severity. The aim of this concise review is to gather existing literature on anticancer potential of extracts and compounds isolated from Celastraceae species. This review covers six genera (Maytenus, Tripterygium, Hippocratea, Gymnosporia, Celastrus and Austroplenckia) belonging to this family and their 33 isolates. Studies carried out by using different cell lines have shown remarkable indication of anticancer activity, however, only a restricted number of studies have been reported using in vivo tumor models. Some of the compounds, such as triptolide, celastrol and demethylzeylasteral from T. wilfordii, have been extensively studied on their mechanisms of action due to their potent activity on various cancer cell lines. Such promising lead compounds should generate considerable interest among scientists to improve their therapeutic potential with fewer side effects by molecular modification.

  6. Anticancer activity of Carica papaya: a review.

    PubMed

    Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K

    2013-01-01

    Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells

    PubMed Central

    Huang, Shile

    2014-01-01

    Dihydroartemisinin (DHA), an antimalarial drug, has previously unrecognized anticancer activity, and is in clinical trials as a new anticancer agent for skin, lung, colon and breast cancer treatment. However, the anticancer mechanism is not well understood. Here, we show that DHA inhibited proliferation and induced apoptosis in rhabdomyosarcoma (Rh30 and RD) cells, and concurrently inhibited the signaling pathways mediated by the mammalian target of rapamycin (mTOR), a central controller for cell proliferation and survival, at concentrations (<3 μM) that are pharmacologically achievable. Of interest, in contrast to the effects of conventional mTOR inhibitors (rapalogs), DHA potently inhibited mTORC1-mediated phosphorylation of p70 S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 but did not obviously affect mTORC2-mediated phosphorylation of Akt. The results suggest that DHA may represent a novel class of mTORC1 inhibitor and may execute its anticancer activity primarily by blocking mTORC1-mediated signaling pathways in the tumor cells. PMID:23929438

  8. Isolation and antitumor efficacy evaluation of a polysaccharide from Nostoc commune Vauch.

    PubMed

    Guo, Min; Ding, Guo-Bin; Guo, Songjia; Li, Zhuoyu; Zhao, Liangqi; Li, Ke; Guo, Xiangrong

    2015-09-01

    Nostoc commune Vauch. has been traditionally used as a healthy food and medicine for centuries especially in China. It has been demonstrated that the polysaccharides isolated from Nostoc commune Vauch. exhibit strong antimicrobial and antioxidant activities. However, little is known about their anticancer activities and the underlying mechanisms of action. Herein, we report the isolation of a polysaccharide from Nostoc commune Vauch. (NVPS), and its physicochemical properties were analyzed. In an attempt to demonstrate the potential application of NVPS in tumor chemotherapy, the in vitro antitumor activity was determined. NVPS significantly suppressed the growth and proliferation of MCF-7 and DLD1 cells. The molecular mechanism underlying this in vitro antitumor efficacy was elucidated, and the results indicated that NVPS simultaneously triggered intrinsic, extrinsic and endoplasmic reticulum stress (ERS)-mediated apoptotic signaling pathways. Collectively, these findings demonstrate that NVPS could be used as a novel promising source of natural antitumor agents.

  9. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    PubMed

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  10. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities.

    PubMed

    Srinivasan, Balasubramanian; Johnson, Thomas E; Lad, Rahul; Xing, Chengguo

    2009-11-26

    Chalcone is a privileged structure, demonstrating promising anti-inflammatory and anticancer activities. One potential mechanism is to suppress nuclear factor kappa B (NF-kappaB) activation. The structures of chalcone-based NF-kappaB inhibitors vary significantly that there is minimum information about their structure-activity relationships (SAR). This study aims to establish SAR of chalcone-based compounds to NF-kappaB inhibition, to explore the feasibility of developing simple chalcone-based potent NF-kappaB inhibitors, and to evaluate their anticancer activities. Three series of chalcones were synthesized in one to three steps with the key step being aldol condensation. These candidates demonstrated a wide range of NF-kappaB inhibitory activities, some of low micromolar potency, establishing that structural complexity is not required for NF-kappaB inhibition. Lead compounds also demonstrate potent cytotoxicity against lung cancer cells. Their cytotoxicities correlate moderately well with their NF-kappaB inhibitory activities, suggesting that suppressing NF-kappaB activation is likely responsible for at least some of the cytotoxicities. One lead compound effectively inhibits lung tumor growth with no signs of adverse side effects.

  11. Alkyl isothiocyanates suppress epidermal growth factor receptor kinase activity but augment tyrosine kinase activity.

    PubMed

    Nomura, Takahiro; Uehara, Yoshimasa; Kawajiri, Hiroo; Ryoyama, Kazuo; Yamori, Takao; Fuke, Yoko

    2009-10-01

    We have reported the in vitro and in vivo anticancer activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) derived from a Japanese spice, wasabi. In order to obtain some clues about the mechanism of the anticancer activity, we have studied the effect of alkyl isothiocyanates (MITCs) on protein kinase activities. The anti-autophosphorylation activity of MITCs with respect to the epidermal growth factor (EGF)-stimulated receptor kinase of A431 epidermoid carcinoma cells was examined by incorporation of radioactive ATP into an acid-insoluble fraction. Their anti-phosphorylation activity with respect to the non-receptor protein kinase was analyzed by a standard SDS-PAGE method. All the tested MITCs interfered with the EGF-stimulated receptor kinase activity in a dose-dependent manner, although their effects were less than 1/10 of that of erbstatin in microg/ml. On the other hand, the MITCs did not interfere with non-receptor kinases (kinase A, kinase C, tyrosine kinase and calmodulin dependent kinase III), but enhanced non-receptor tyrosine kinase. A possible anticancer mechanism of MITCs may involve the suppression of EGF receptor kinase activity and augmentation of non-receptor PTK.

  12. The position of imidazopyridine and metabolic activation are pivotal factors in the antimutagenic activity of novel imidazo[1,2-a]pyridine derivatives.

    PubMed

    El-Sayed, Wael M; Hussin, Warda A; Al-Faiyz, Yasair S; Ismail, Mohamed A

    2013-09-05

    The antimutagenic activity of eight novel imidazo[1,2-a]pyridine derivatives (I-VIII) against sodium azide (NaN3) and benzo[a]pyrene (B[a]P) was evaluated using the Salmonella reverse mutation assay. At non-toxic concentrations (12.5-50 µM), imidazopyridines I, II, III, and V with a terminal imidazopyridine group were mutagenic, while derivatives VII and VIII with a central imidazopyridine group were not mutagenic. Compounds IV, VII, and VIII exerted a moderate antimutagenic activity against NaN3 under pre-exposure conditions, and a strong activity (>40%) against B[a]P in the presence of S9 under both pre- and co-exposure conditions and mostly independent on the dose. Imidazopyridines possibly inhibited the microsomal-dependent activation of B[a]P. The demethylated derivative VII was the most active antimutagen. All imidazopyridines had a low to moderate antioxidant activity. The antibacterial activity of imidazopyridines was sporadic and moderate probably due to the failure of bacteria to convert imidazopyridines into active metabolites. The position of imidazopyridine was a pivotal factor in the mutagenic/antimutagenic activity. The strong antimutagenic compounds were dicationic planar compounds with a centered imidazo[1,2-a]pyridine spacer. With LD50 of 60 mg/kg in mice for both derivatives VII and VIII, it is safe to investigate the anticancer activity of these derivatives in animal models. © 2013 Elsevier B.V. All rights reserved.

  13. Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections.

    PubMed

    Chen, Jin; He, Zheng-Min; Wang, Feng-Ling; Zhang, Zheng-Sheng; Liu, Xiu-zhen; Zhai, Dan-Dan; Chen, Wei-Dong

    2016-02-05

    Invasive fungal infections (IFI) are important complications of cancer, and they have become a major cause of morbidity and mortality in cancer patients. Effective anti-infection therapy is necessary to inhibit significant deterioration from these infections. However, they are difficult to treat, and increasing antifungal drug resistance often leads to a relapse. Curcumin, a natural component that is isolated from the rhizome of Curcuma longa plants, has attracted great interest among many scientists studying solid cancers over the last half century. Interestingly, curcumin provides an ideal alternative to current therapies because of its relatively safe profile, even at high doses. To date, curcumin's potent antifungal activity against different strains of Candida, Cryptococcus, Aspergillus, Trichosporon and Paracoccidioides have been reported, indicating that curcumin anticancer drugs may also possess an antifungal role, helping cancer patients to resist IFI complications. The aim of this review is to discuss curcumin's dual pharmacological activities regarding its applications as a natural anticancer and antifungal agent. These dual pharmacological activities are expected to lead to clinical trials and to improve infection survival among cancer patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Discovery of Quinoline-Derived Trifluoromethyl Alcohols, Determination of Their in vivo Toxicity and Anticancer Activity in a Zebrafish Embryo Model.

    PubMed

    Sittaramane, Vinoth; Padgett, Jihan; Salter, Philip; Williams, Ashley; Luke, Shauntelle; McCall, Rebecca; Arambula, Jonathan F; Graves, Vincent B; Blocker, Mark; Van Leuven, David; Bowe, Keturah; Heimberger, Julia; Cade, Hannah C; Immaneni, Supriya; Shaikh, Abid

    2015-11-01

    In this study the rational design, synthesis, and anticancer activity of quinoline-derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp(3) -C-H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4-trifluoro-3-hydroxy-3-(quinolin-2-ylmethyl)butanoate (1), 2-benzyl-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (2), and trifluoro-3-(isoquinolin-1-yl)-2-(thiophen-2-yl)propan-2-ol (3). Compounds 2 and 3 were found to be more toxic than compound 1; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2, with an LC50 value of 14.14 μm, has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthetic cyclin dependent kinase inhibitors. New generation of potent anti-cancer drugs.

    PubMed

    Hajdúch, M; Havlíèek, L; Veselý, J; Novotný, R; Mihál, V; Strnad, M

    1999-01-01

    The unsatisfactory results of current anti-cancer therapies require the active search for new drugs, new treatment strategies and a deeper understanding of the host-tumour relationship. From this point of view, the drugs with a capacity to substitute the functions of altered tumour suppressor genes are of prominent interest. Since one of the main functions of oncosuppressors is to mediate cell cycle arrest via modification of cyclin dependent kinases (CDKs) activity, the compounds with ability to substitute altered functions of these genes in neoplastic cells are of prominent interest. Synthetic inhibitors of cyclin dependent kinases (CDKIs) are typical representatives of such drugs. Olomoucine (OC), flavopiridol (FP), butyrolactone I (BL) and their derivatives selectively inhibit CDKs and thus constrain tumor cell proliferation under in vitro and/or in vivo conditions. We originally discovered OC and its inhibitory activity toward CDK1 family of CDKs, and recently reported the induction of apoptosis and tumor regression following OC application. Moreover, the OC family of synthetic CDKIs has the capacity of directly inhibit CDK7, the principal enzyme required for activating other CDKs, and thus these compounds are the first known CDK7 inhibitors. Its unique mechanism of action and potent anti-cancer activity under both in vitro and in vivo conditions provide a unique tool to inhibit tumour cell proliferation, and to selectively induce apoptosis in neoplastic tissues. The mechanisms of anti-cancer activities of FP, BL, OC and related synthetic CDKIs are compared and discussed in this paper.

  16. Photo-inducible cytotoxic and clastogenic activities of 3,6-di-substituted acridines obtained by acylation of proflavine.

    PubMed

    Benchabane, Yohann; Di Giorgio, Carole; Boyer, Gérard; Sabatier, Anne-Sophie; Allegro, Diane; Peyrot, Vincent; De Méo, Michel

    2009-06-01

    The cytotoxicity and photo-enhanced cytotoxicity of a series of 18 3,6-di-substituted acridines were evaluated on both tumour CHO cells and human normal keratinocytes, and compared to their corresponding clastogenicity as assessed by the micronucleus assay. Compounds 2f tert-butyl N-[(6-tert-butoxycarbonylamino)acridin-3-yl]carbamate and 2d N-[6-(pivalamino)acridin-3-yl]pivalamide displayed a specific cytotoxicity on CHO cells. These results suggested that the two derivatives could be considered as interesting candidates for anticancer chemotherapy and hypothesized that the presence of 1,1-dimethylethyl substituents was responsible for a strong nonclastogenic cytotoxicity. Compounds 2b and 2c, on the contrary, displayed a strong clastogenicity. They indicated that the presence of nonbranched aliphatic chains on positions 3 and 6 of the acridine rings tended to induce a significant clastogenic effect. Finally, they established that most of the acridine compounds could be photo-activated by UVA-visible rays and focussed on the significant role of light irradiation on their biological properties.

  17. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  18. Multimodal HDAC Inhibitors with Improved Anticancer Activity.

    PubMed

    Schobert, Rainer; Biersack, Bernhard

    2018-01-01

    Histone deacetylases (HDACs) play a significant role in the proliferation and dissemination of cancer and represent promising epigenetic drug targets. The HDAC inhibitor vorinostat featuring a zinc-binding hydroxamate fragment was already clinically approved. However, HDAC inhibitors containing hydroxamic acids are often hampered by acquired or intrinsic drug resistance and may lead to enhanced tumor aggressiveness. In order to overcome these drawbacks of hydroxamate HDAC inhibitors, a series of multimodal derivatives of this compound class, including such with different zinc-binding groups, was recently developed and showed promising anticancer activity. This review provides an overview of the chemistry and pleiotropic anticancer modes of action of these conceptually new HDAC inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species?

    PubMed

    Levina, Aviva; Lay, Peter A

    2017-07-18

    Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H 2 VO 4 - ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to V V and/or V IV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The apoptotic and anti-proliferative activity of Origanum majorana extracts on human leukemic cell line.

    PubMed

    Abdel-Massih, Roula M; Fares, Rida; Bazzi, Samer; El-Chami, Nisrine; Baydoun, Elias

    2010-08-01

    Scientists are constantly searching for phytochemicals and compounds with anti-cancer and antioxidant activity. In this study, the anti-proliferative activity of plant extracts from Origanum majorana (marjoram) was tested on human lymphoblastic leukemia cell line Jurkat. Cytotoxicity was examined using non-radioactive cytotoxicity assay and the IC(50) was calculated. At non-cytotoxic concentrations, the viability of cells decreased with increase of concentration of plant extract. The anti-proliferative effect was also found to be dose-dependent. Analysis via flow cytometry shows that marjoram extracts stimulated apoptosis. Induction of apoptosis was caused by an up-regulation of p53 protein levels and down-regulation of Bcl-2alpha. Marjoram exhibited a strong scavenging activity (SC(50)=0.03mg dry weight). The conclusions from this study suggest that marjoram extracts exhibit anti-proliferative effect and high antioxidant activity. For that it merits further investigation as a potential therapeutic agent. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    PubMed Central

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  2. Developments in platinum anticancer drugs

    NASA Astrophysics Data System (ADS)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  3. [Basic Studies on Locoregional Injection of a Newly Designed Chitin Sol].

    PubMed

    Chiba, Takehiro; Sugitachi, Akio; Kume, Kouhei; Segawa, Takenori; Nishinari, Yutaka; Ishida, Kaoru; Noda, Hironobu; Nishizuka, Satoshi; Kimura, Yusuke; Koeda, Keisuke; Sasaki, Akira

    2015-11-01

    Systemic chemotherapy in advanced cancer cases often provokes serious adverse events. We aimed to examine the fundamental properties and efficacy of a novel chitin sol, an anti-cancer agent with minor side effects designed to avoid the adverse effects of chemotherapy and enhance the QOL and ADL of patients. DAC-70 was used to create the novel agent termed DAC-70 sol. The anti-proliferative activity was assayed by the WST method using different types of cell lines. The anti-cancer efficacy of the novel agent was examined using cancer-bearing mice. DAC-70 sol was easily injectable through a 21-G needle. The sol suppressed proliferation of the cells in vitro. Intra-tumor injection of DAC-70 sol inhibited the rapid growth of solid tumors in the mice. CDDP-loaded DAC-70 sol, CDDP/DAC-70 sol, successfully controlled malignant ascites in the mice (p<0.05). Neither recurrence nor severe complications were encountered in these animals. These basic data strongly suggest that locoregional administration of our newly designed DAC-70 sol and CDDP/DAC-70 sol is clinically useful as novel cancer chemotherapy for advanced cases. This warrants further clinical studies in cancer chemotherapy.

  4. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates.

    PubMed

    Abdelaziz, Hadeer M; Gaber, Mohamed; Abd-Elwakil, Mahmoud M; Mabrouk, Moustafa T; Elgohary, Mayada M; Kamel, Nayra M; Kabary, Dalia M; Freag, May S; Samaha, Magda W; Mortada, Sana M; Elkhodairy, Kadria A; Fang, Jia-You; Elzoghby, Ahmed O

    2018-01-10

    There is progressive evolution in the use of inhalable drug delivery systems (DDSs) for lung cancer therapy. The inhalation route offers many advantages, being non-invasive method of drug administration as well as localized delivery of anti-cancer drugs to tumor tissue. This article reviews various inhalable colloidal systems studied for tumor-targeted drug delivery including polymeric, lipid, hybrid and inorganic nanocarriers. The active targeting approaches for enhanced delivery of nanocarriers to lung cancer cells were illustrated. This article also reviews the recent advances of inhalable microparticle-based drug delivery systems for lung cancer therapy including bioresponsive, large porous, solid lipid and drug-complex microparticles. The possible strategies to improve the aerosolization behavior and maintain the critical physicochemical parameters for efficient delivery of drugs deep into lungs were also discussed. Therefore, a strong emphasis is placed on the approaches which combine the merits of both nanocarriers and microparticles including inhalable nanocomposites and nanoaggregates and on the optimization of such formulations using the proper techniques and carriers. Finally, the toxicological behavior and market potential of the inhalable anti-cancer drug delivery systems are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Inhibition of Intracellular ROS Accumulation by Formononetin Attenuates Cisplatin-Mediated Apoptosis in LLC-PK1 Cells

    PubMed Central

    Lee, Haesol; Lee, Dahae; Kang, Ki Sung; Song, Ji Hoon; Choi, You-Kyoung

    2018-01-01

    Cisplatin is a well-known anticancer drug frequently used for treating solid tumors, including ovarian, testicular, bladder, and cervical tumors. However, usage of cisplatin has been limited because of its adverse effects, particularly nephrotoxicity. Therefore, the present study sought to investigate the protective effect of formononetin against cisplatin-induced cytotoxicity in LLC-PK1 pig kidney epithelial cells as well as the anticancer effect of cisplatin in three different human cervical cancer cell lines, including HeLa, SiHa, and CaSKi cells. We first demonstrated that formononetin strongly prevented cisplatin-induced LLC-PK1 cell death. Although formononetin had no anticancer effect, it did not interrupt the anticancer effect of cisplatin in human cervical carcinoma cell lines. Furthermore, the treatment with formononetin reduced reactive oxygen species (ROS) accumulation and chromatin condensation. The percentage of Annexin V-positive cells also increased following cisplatin treatment. Finally, formononetin-inhibited c-Jun N-terminal kinase (JNK) phosphorylation, cleavage of caspase-8 and caspase-3, and the ratio of Bax to Bcl-2 increased with cisplatin. Taken together, these findings suggest that formononetin may be a possible option to prevent nephrotoxicity induced by cisplatin during treatment for cervical cancer. PMID:29534504

  6. Inhibition of Intracellular ROS Accumulation by Formononetin Attenuates Cisplatin-Mediated Apoptosis in LLC-PK1 Cells.

    PubMed

    Lee, Haesol; Lee, Dahae; Kang, Ki Sung; Song, Ji Hoon; Choi, You-Kyoung

    2018-03-12

    Cisplatin is a well-known anticancer drug frequently used for treating solid tumors, including ovarian, testicular, bladder, and cervical tumors. However, usage of cisplatin has been limited because of its adverse effects, particularly nephrotoxicity. Therefore, the present study sought to investigate the protective effect of formononetin against cisplatin-induced cytotoxicity in LLC-PK1 pig kidney epithelial cells as well as the anticancer effect of cisplatin in three different human cervical cancer cell lines, including HeLa, SiHa, and CaSKi cells. We first demonstrated that formononetin strongly prevented cisplatin-induced LLC-PK1 cell death. Although formononetin had no anticancer effect, it did not interrupt the anticancer effect of cisplatin in human cervical carcinoma cell lines. Furthermore, the treatment with formononetin reduced reactive oxygen species (ROS) accumulation and chromatin condensation. The percentage of Annexin V-positive cells also increased following cisplatin treatment. Finally, formononetin-inhibited c-Jun N-terminal kinase (JNK) phosphorylation, cleavage of caspase-8 and caspase-3, and the ratio of Bax to Bcl-2 increased with cisplatin. Taken together, these findings suggest that formononetin may be a possible option to prevent nephrotoxicity induced by cisplatin during treatment for cervical cancer.

  7. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin.

    PubMed

    Tyagi, Amit Kumar; Prasad, Sahdeo; Yuan, Wei; Li, Shiyou; Aggarwal, Bharat B

    2015-12-01

    Considering that as many as 80% of the anticancer drugs have their roots in natural products derived from traditional medicine, we examined compounds other than curcumin from turmeric (Curcuma longa) that could exhibit anticancer potential. Present study describes the isolation and characterization of another turmeric-derived compound, β-sesquiphellandrene (SQP) that exhibits anticancer potential comparable to that of curcumin. We isolated several compounds from turmeric, including SQP, α-curcumene, ar-turmerone, α-turmerone, β-turmerone, and γ-turmerone, only SQP was found to have antiproliferative effects comparable to those of curcumin in human leukemia, multiple myeloma, and colorectal cancer cells. While lack of the NF-κB-p65 protein had no effect on the activity of SQP, lung cancer cells that expressed p53 were more susceptible to the cytotoxic effect of SQP than were cells that lacked p53 expression. SQP was also found to be highly effective in suppressing cancer cell colony formation and inducing apoptosis, as shown by assays of intracellular esterase activity, plasma membrane integrity, and cell-cycle phase. SQP was found to induce cytochrome c release and activate caspases that lead to poly ADP ribose polymerase cleavage. SQP exposure was associated with downregulation of cell survival proteins such cFLIP, Bcl-xL, Bcl-2, c-IAP1, and survivin. Furthermore, SQP was found to be synergistic with the chemotherapeutic agents velcade, thalidomide and capecitabine. Overall, our results indicate that SQP has anticancer potential comparable to that of curcumin.

  8. Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior (Jack) R.M.Sm grown in different locations of Malaysia.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah; Ashkani, Sadegh

    2015-09-23

    Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties. E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL. In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.

  9. Identification of acetylshikonin as the novel CYP2J2 inhibitor with anti-cancer activity in HepG2 cells.

    PubMed

    Park, See-Hyoung; Phuc, Nguyen Minh; Lee, Jongsung; Wu, Zhexue; Kim, Jieun; Kim, Hyunkyoung; Kim, Nam Doo; Lee, Taeho; Song, Kyung-Sik; Liu, Kwang-Hyeon

    2017-01-15

    Acetylshikonin is one of the biologically active compounds derived from the root of Lithospermum erythrorhizon, a medicinal plant with anti-cancer and anti-inflammation activity. Although there have been a few previous reports demonstrating that acetylshikonin exerts anti-cancer activity in vitro and in vivo, it is still not clear what is the exact molecular target protein of acetylshikonin in cancer cells. The purpose of this study is to evaluate the inhibitory effect of acetylshikonin against CYP2J2 enzyme which is predominantly expressed in human tumor tissues and carcinoma cell lines. The inhibitory effect of acetylshikonin on the activities of CYP2J2-mediated metabolism were investigated using human liver microsomes (HLMs), and its cytotoxicity against human hepatoma HepG2 cells was also evaluated. Astemizole, a representative CYP2J2 probe substrate, was incubated in HLMs in the presence or absence of acetylshikonin. After incubation, the samples were analyzed by liquid chromatography and triple quadrupole mass spectrometry. The anti-cancer activity of acetylshikonin was evaluated on human hepatocellular carcinoma HepG2 cells. WST-1, cell counting, and colony formation assays were further adopted for the estimation of the growth rate of HepG2 cells treated with acetylshikonin. Acetylshikonin inhibited CYP2J2-mediated astemizole O-demethylation activity (K i = 2.1µM) in a noncompetitive manner. The noncompetitive inhibitory effect of acetylshikonin on CYP2J2 enzyme was also demonstrated using this 3D structure, which showed different binding location of astemizole and acetylshikonin in CYP2J2 model. It showed cytotoxic effects against human hepatoma HepG2 cells (IC 50 = 2μM). In addition, acetylshikonin treatment inhibited growth of human hepatocellular carcinoma HepG2 cells leading to apoptosis accompanied with p53, bax, and caspase3 activation as well as bcl2 down-regulation. Taken together, our present study elucidates acetylshikonin displays the inhibitory effects against CYP2J2 in HLMs and anti-cancer activity in human hepatocellular carcinoma HepG2 cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Traditional West African pharmacopeia, plants and derived compounds for cancer therapy.

    PubMed

    Sawadogo, Wamtinga Richard; Schumacher, Marc; Teiten, Marie-Hélène; Dicato, Mario; Diederich, Marc

    2012-11-15

    Traditional pharmacopeia is strongly involved in the continuous search for the well being of African populations. The World Health Organization (WHO) estimates that 80% of the population of developing countries relies on traditional medicine for their primary care needs. Medicinal plants are the major resource of this folk medicine where several species are used for the treatment of diseases with an inflammatory and/or infectious component as it is the case of old wounds, skin diseases and malfunctions affecting internal organs such as liver, lung, prostate and kidney. Many of these pathologies described by practitioners of traditional medicine have similarities with certain cancers, but the lack of training of many of these healers does not allow them to establish a link with cancer. However, ethnobotanical and ethnopharmacological surveys conducted by several researchers allowed to identify plants of interest for cancer treatment. Most scientific investigations on these plants demonstrated an anti-inflammatory or antioxidant effect, and sometimes, antiproliferative and cytotoxic activities against cancer cells were reported as well. The emergence of resistance to cancer chemotherapy has forced researchers to turn to natural products of plant and marine origin. In the West African sub-region, research on natural anti-cancer molecules is still in its infancy stage because of very limited financial resources and the scarcity of adequate technical facilities. However, several plants were investigated for their anticancer properties through north-south or south-south partnerships. In this review, we will review the role of West African traditional pharmacopeia in cancer treatment as well as medicinal plants with anti-cancer properties. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Anticancer Properties of Distinct Antimalarial Drug Classes

    PubMed Central

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  12. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests.

    PubMed

    Lefranc, Florence; Tabanca, Nurhayat; Kiss, Robert

    2017-10-01

    This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. [Quod medicina aliis, aliis est acre venenum**--venoms as a source of anticancer agents].

    PubMed

    Kucińska, Małgorzata; Ruciński, Piotr; Murias, Marek

    2013-01-01

    Natural product derived from plants and animals were used in folk medicine for centuries. The venoms produced by animals for hunting of self-defence are rich in bioactive compounds with broad spectrum of biological activity. The papers presents the most promising compounds isolated from venoms of snakes, scorpions and toads. For these compounds both: mechanism of anticancer activity as well as possibilities of clinical use are presented.

  14. Recent discoveries of anticancer flavonoids.

    PubMed

    Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe

    2017-12-15

    In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrphostins.

    PubMed

    de J Hiller, Noemi; A A E Silva, Nayane; Faria, Robson X; Souza, André Luís A; Resende, Jackson A L C; Borges Farias, André; Correia Romeiro, Nelilma; de Luna Martins, Daniela

    2018-06-01

    Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)-(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine-phosphorylation-regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Impediments to enhancement of CPT-11 anticancer activity by E. coli directed beta-glucuronidase therapy.

    PubMed

    Hsieh, Yuan-Ting; Chen, Kai-Chuan; Cheng, Chiu-Min; Cheng, Tian-Lu; Tao, Mi-Hua; Roffler, Steve R

    2015-01-01

    CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti-tumor activity.

  17. Evaluation of in vitro anticancer activity of 1,8-Cineole-containing n-hexane extract of Callistemon citrinus (Curtis) Skeels plant and its apoptotic potential.

    PubMed

    Sampath, Sowndarya; Veeramani, Vidhya; Krishnakumar, Gopal Shankar; Sivalingam, Udhayakumar; Madurai, Suguna Lakshmi; Chellan, Rose

    2017-09-01

    Plants are the source of a variety of secondary metabolites, which are often used in the anticancer activity. Discovering new anticancer drug from herbal source is more important in both biological and pharmacological activities. Hence, the objective of this study is to identify the anticancer agent in Callistemon citrinus (Curtis) Skeels (CC) for the treatment of cancer. Very recently we have reported an increased antioxidant activity in the ethanolic and methanolic extracts (EE and ME) of CC but significantly reduced activity (rather increased cytotoxicity), in the n-hexane extract (HE). In this study, the cytotoxicity of all the three solvent extracts was tested against A431, MG-63 and HaCaT cell lines by MTT assay. Interestingly HE has showed increased anti-proliferative effect against the cancer cells but was resisted by non-malignant cells. HPLC and GC-MS analysis revealed the presence of 1,8-Cineole as a predominant compound in HE, the semi-purified bioactive extract. Henceforth, this would be called HE-C and be used for further analyses to understand its mode of action on induced apoptosis/necrosis. Alamar blue assay of HE-C showed cytotoxicity and change in morphological characteristics, which was confirmed by AO/EB staining using fluorescence microscopy, ultra-structural features of apoptosis using SEM and TEM. HE-C induced cell death was also detected by FACS using FITC-labelled Annexin-V and Propidium iodide. ROS generation was monitored using DCF-DA by flow cytometry. The overall results suggested that the selective extract (HE-C) containing 1,8-Cineole has shown potential anti-cancer activity in a dose-dependent manner, and cell death was induced through ROS-mediated apoptosis. Our findings provide an insight into the potential of 1,8-Cineole as a novel drug for killing cancer cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Impediments to Enhancement of CPT-11 Anticancer Activity by E. coli Directed Beta-Glucuronidase Therapy

    PubMed Central

    Hsieh, Yuan-Ting; Chen, Kai-Chuan; Cheng, Chiu-Min; Cheng, Tian-Lu; Tao, Mi-Hua; Roffler, Steve R.

    2015-01-01

    CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti-tumor activity. PMID:25688562

  19. Morin impedes Yap nuclear translocation and fosters apoptosis through suppression of Wnt/β-catenin and NF-κB signaling in Mst1 overexpressed HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumal, NaveenKumar; Perumal, MadanKumar; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390

    Recent clinical and experimental evidences strongly acclaim Yes-associated protein (Yap), a key oncogenic driver in liver carcinogenesis, as a therapeutic target. Of the known multiple schemes to inhibit Yap activity, activation of Mammalian Sterile 20-like Kinase 1 (Mst1), an upstream regulator of Yap, appears to be a promising one. In this study, we hypothesize that morin, a bioflavonoid, mediates its anti-cancer effect through the activation of Mst1/hippo signaling in liver cancer cells. To test this hypothesis, both full length Mst1 (F-Mst1) and kinase active N-terminal Mst1 (N-Mst1)-overexpressed HepG2 cells were used. Exposure of F-Mst1 overexpressed HepG2 cells to morin activatedmore » Mst1 by caspase-3 cleavage and thereby inhibited Yap nuclear translocation and fostered apoptosis. Morin suppressed NF-κB p65 and Wnt/β-catenin signaling through Mst1 activation via cleavage and phosphorylation, leading to cell death. Annexin-V/PI staining further confirmed the induction of apoptosis in morin treated F-Mst1 overexpressed cells. The present study shows that morin targets cell survival molecules such as NF-κB p65 and β-catenin through activation of hippo signaling. Therefore, morin could be considered as a potential anti-cancer agent against liver cancer. - Highlights: • Morin induced cytotoxicity in cultured HepG2 cells. • Morin activated hippo pathway via Mst1 activation in transfected HepG2 cells. • Morin suppressed Wnt/β-catenin signaling and induced G0/G1 cell cycle arrest. • Morin inhibited NF-κB signaling through Mst1 activation in transfected HepG2 cells. • Morin potentiates apoptosis through Mst1-JNK-caspase mediated mechanism in HepG2 cells.« less

  20. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Vijay; Agarwal, Rajesh; Singh, Rana P., E-mail: ranaps@hotmail.com

    Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20–40 μM evodiamine treatment for 24–48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survivalmore » of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer. - Highlights: • Evodiamine, a novel plant alkaloid, relatively selectively inhibited growth and survival of human lung cancer cells. • Increased cancer cell apoptosis involving mitochondrial membrane depolarization. • Increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. • DR5 and caspase-8 extrinsic pathway was also activated in p53-independent manner. • Thus evodiamine could be a potential anticancer agent against lung cancer.« less

  1. Antioxidant Peptides from Terrestrial and Aquatic Plants Against Cancer.

    PubMed

    Marquez-Rios, Enrique; Del-Toro-Sanchez, Carmen Lizette

    2018-02-13

    Cancer is the leading cause of morbidity and mortality worldwide. Therefore, the search for new and less aggressive treatments is currently the focus of the anticancer research. An attractive alternative for this purpose is the use of bioactive peptides from plants. Plants live everywhere on Earth, both on land and in water, and they are a major source of diverse molecules with pharmacological potential as antioxidant peptides. Hence, this review focuses on the importance of the antioxidant activity of terrestrial and aquatic plant peptides against cancer throughout several mechanisms. The influence of the antioxidant activity of peptides by different factors such as molecular weight and amino acid composition as a crucial factor for anticancer activity is also revised. Furthermore, the relation of antioxidant activity with anticancer property as well as safety and legal aspects of protein hydrolysates and bioactive peptides for their use in cancer treatments is discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage

    PubMed Central

    Peng, Xiaohua; Gandhi, Varsha

    2013-01-01

    Targeting tumor cells is an important strategy to improve the selectivity of cancer therapies. With the advanced studies in cancer biology, we know that cancer cells are usually under increased oxidative stress. The high level of reactive oxygen species in cancer cells has been exploited for developing novel therapeutic strategies to preferentially kill cancer cells. Our group, amongst others, have used boronic acids/esters as triggers for developing ROS-activated anticancer prodrugs that target cancer cells. The selectivity was achieved by combining a specific reaction between boronates and H2O2 with the efficient masking of drug toxicity in the prodrug via boronates. Prodrugs activated via ferrocene-mediated oxidation have also been developed to improve the selectivity of anticancer drugs. We describe how the strategies of ROS-activation can be used for further development of new ROS-targeting prodrugs, eventually leading to novel approaches and/or combined technology for more efficient and selective treatment of cancers. PMID:22900465

  3. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone

    PubMed Central

    Liu, Jinsong; Zeng, Youyun; Shi, Shuai; Xu, Lihua; Zhang, Hualin; Pathak, Janak L; Pan, Yihuai

    2017-01-01

    Treatment of cancer metastasized to bone is still a challenge due to hydrophobicity, instability, and lack of target specificity of anticancer drugs. Poly (ethylene glycol)-poly (ε-caprolactone) polymer (PEG-PCL) is an effective, biodegradable, and biocompatible hydrophobic drug carrier, but lacks bone specificity. Polyaspartic acid with eight peptide sequences, that is, (Asp)8, has a strong affinity to bone surface. The aim of this study was to synthesize (Asp)8-PEG-PCL nanoparticles as a bone-specific carrier of hydrophobic drugs to treat cancer metastasized to bone. 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and transmission electron microscopy data showed that (Asp)8-PEG-PCL nanoparticles (size 100 nm) were synthesized successfully. (Asp)8-PEG-PCL nanoparticles did not promote erythrocyte aggregation. Fluorescence microscopy showed clear uptake of Nile red-loaded (Asp)8-PEG-PCL nanoparticles by cancer cells. (Asp)8-PEG-PCL nanoparticles did not show cytotoxic effect on MG63 and human umbilical vein endothelial cells at the concentration of 10–800 μg/mL. (Asp)8-PEG-PCL nanoparticles bound with hydroxyapatite 2-fold more than PEG-PCL. Intravenously injected (Asp)8-PEG-PCL nanoparticles accumulated 2.7-fold more on mice tibial bone, in comparison to PEG-PCL. Curcumin is a hydrophobic anticancer drug with bone anabolic properties. Curcumin was loaded in the (Asp)8-PEG-PCL. (Asp)8-PEG-PCL showed 11.07% loading capacity and 95.91% encapsulation efficiency of curcumin. The curcumin-loaded (Asp)8-PEG-PCL nanoparticles gave sustained release of curcumin in high dose for >8 days. The curcumin-loaded (Asp)8-PEG-PCL nanoparticles showed strong antitumorigenic effect on MG63, MCF7, and HeLa cancer cells. In conclusion, (Asp)8-PEG-PCL nanoparticles were biocompatible, permeable in cells, a potent carrier, and an efficient releaser of hydrophobic anticancer drug and were bone specific. The curcumin-loaded (Asp)8-PEG-PCL nanoparticles showed strong antitumorigenic ability in vitro. Therefore, (Asp)8-PEG-PCL nanoparticles could be a potent carrier of hydrophobic anticancer drugs to treat the cancer metastasized to bone. PMID:28507436

  4. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone.

    PubMed

    Liu, Jinsong; Zeng, Youyun; Shi, Shuai; Xu, Lihua; Zhang, Hualin; Pathak, Janak L; Pan, Yihuai

    2017-01-01

    Treatment of cancer metastasized to bone is still a challenge due to hydrophobicity, instability, and lack of target specificity of anticancer drugs. Poly (ethylene glycol)-poly (ε-caprolactone) polymer (PEG-PCL) is an effective, biodegradable, and biocompatible hydrophobic drug carrier, but lacks bone specificity. Polyaspartic acid with eight peptide sequences, that is, (Asp) 8 , has a strong affinity to bone surface. The aim of this study was to synthesize (Asp) 8 -PEG-PCL nanoparticles as a bone-specific carrier of hydrophobic drugs to treat cancer metastasized to bone. 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and transmission electron microscopy data showed that (Asp) 8 -PEG-PCL nanoparticles (size 100 nm) were synthesized successfully. (Asp) 8 -PEG-PCL nanoparticles did not promote erythrocyte aggregation. Fluorescence microscopy showed clear uptake of Nile red-loaded (Asp) 8 -PEG-PCL nanoparticles by cancer cells. (Asp) 8 -PEG-PCL nanoparticles did not show cytotoxic effect on MG63 and human umbilical vein endothelial cells at the concentration of 10-800 μg/mL. (Asp) 8 -PEG-PCL nanoparticles bound with hydroxyapatite 2-fold more than PEG-PCL. Intravenously injected (Asp) 8 -PEG-PCL nanoparticles accumulated 2.7-fold more on mice tibial bone, in comparison to PEG-PCL. Curcumin is a hydrophobic anticancer drug with bone anabolic properties. Curcumin was loaded in the (Asp) 8 -PEG-PCL. (Asp) 8 -PEG-PCL showed 11.07% loading capacity and 95.91% encapsulation efficiency of curcumin. The curcumin-loaded (Asp) 8 -PEG-PCL nanoparticles gave sustained release of curcumin in high dose for >8 days. The curcumin-loaded (Asp) 8 -PEG-PCL nanoparticles showed strong antitumorigenic effect on MG63, MCF7, and HeLa cancer cells. In conclusion, (Asp) 8 -PEG-PCL nanoparticles were biocompatible, permeable in cells, a potent carrier, and an efficient releaser of hydrophobic anticancer drug and were bone specific. The curcumin-loaded (Asp) 8 -PEG-PCL nanoparticles showed strong antitumorigenic ability in vitro. Therefore, (Asp) 8 -PEG-PCL nanoparticles could be a potent carrier of hydrophobic anticancer drugs to treat the cancer metastasized to bone.

  5. Synthesis and structure-activity relationship studies of furan-ring fused chalcones as antiproliferative agents.

    PubMed

    Saito, Yusuke; Kishimoto, Maho; Yoshizawa, Yuko; Kawaii, Satoru

    2015-02-01

    As part of our continuing investigation of flavonoid derivatives as potential anticancer substances, the synthesis of 25 cinnamoyl derivatives of benzofuran as furan-fused chalcones was carried-out and these compounds were further evaluated for their antiproliferative activity towards HL60 promyelocytic leukemia cells. In comparison with 2',4'-dihydroxychalcone, attachment of a furan moiety on the A-ring enhanced activity by more than twofold. Benzofurans may be useful in the design of biologically active flavonoids. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  7. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.

    PubMed

    Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava

    2012-12-05

    Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.

  8. Vitamin C-driven epirubicin loading into liposomes.

    PubMed

    Lipka, Dominik; Gubernator, Jerzy; Filipczak, Nina; Barnert, Sabine; Süss, Regine; Legut, Mateusz; Kozubek, Arkadiusz

    2013-01-01

    The encapsulation of anticancer drugs in a liposome structure protects the drug during circulation and increases drug accumulation in the cancer tissue and antitumor activity while decreasing drug toxicity. This paper presents a new method of active drug loading based on a vitamin C pH/ion gradient. Formulations were characterized in terms of the following parameters: optimal external pH, time and drug-to-lipid ratio for the purpose of remote loading, and in vitro stability. In the case of the selected drug, epirubicin (EPI), its coencapsulation increases its anticancer activity through a possibly synergistic effect previously reported by other groups for a free nonencapsulated drug/vitamin C cocktail. The method also has another advantage over other remote-loading methods: it allows faster drug release through liposome destabilization at the tumor site, thanks to the very good solubility of the EPI vitamin C salt, as seen on cryogenic transmission electron microscopy images. This influences the drug-release process and increases the anticancer activity of the liposome formulation. The liposomes are characterized as stable, with very good pharmacokinetics (half-life 18.6 hours). The antitumor activity toward MCF-7 and 4T-1 breast cancer cells was higher in the case of EPI loaded via our gradient than via an ammonium sulfate gradient. Finally, the EPI liposomal formulation and the free drug were tested using the murine 4T-1 breast cancer model. The antitumor activity of the encapsulated drug was confirmed (tumor-growth inhibition over 40% from day 16 until the end of the experiment), and the free drug was shown to have no anticancer activity at the tested dose.

  9. Photodynamic therapy influence on anti-cancer immunity

    NASA Astrophysics Data System (ADS)

    Isaeva, O. G.; Osipov, V. A.

    2010-02-01

    The system of partial differential equations describing tumor-immune dynamics with angiogenesis taken into account is presented. For spatially homogeneous case, the steady state analysis of the model is carried out. The effects of single photodynamic impact are numerically simulated. In the case of strong immune response we found that the photodynamic therapy (PDT) gives rise to the substantial shrinkage of tumor size which is accompanied by the increase of IL-2 concentration. On the contrary, the photodynamic stimulation of weak immune response is shown to be insufficient to reduce the tumor. These findings indicate the important role of anti-cancer immune response in the long-term tumor control after PDT.

  10. Photodynamic therapy influence on anti-cancer immunity

    NASA Astrophysics Data System (ADS)

    Isaeva, O. G.; Osipov, V. A.

    2009-10-01

    The system of partial differential equations describing tumor-immune dynamics with angiogenesis taken into account is presented. For spatially homogeneous case, the steady state analysis of the model is carried out. The effects of single photodynamic impact are numerically simulated. In the case of strong immune response we found that the photodynamic therapy (PDT) gives rise to the substantial shrinkage of tumor size which is accompanied by the increase of IL-2 concentration. On the contrary, the photodynamic stimulation of weak immune response is shown to be insufficient to reduce the tumor. These findings indicate the important role of anti-cancer immune response in the long-term tumor control after PDT.

  11. Anti-cancer scopes and associated mechanisms of Scutellaria extract and flavonoid wogonin

    USDA-ARS?s Scientific Manuscript database

    Extracts of Scutellaria species have been used in Eastern traditional medicine as well in the Americas for the treatment of several human ailments, including cancer. Crude extracts or flavonoids derived from Scutellaria have been scientifically studied for potential anti-cancer activity using in vit...

  12. Synergistic effect of PEGylated resveratrol on delivery of anticancer drugs.

    PubMed

    Wang, Wenlong; Zhang, Liang; Le, Yuan; Chen, Jian-Feng; Wang, Jiexin; Yun, Jimmy

    2016-02-10

    Resveratrol (RES) is a natural polyphenol which can be considered as a nutraceutical because of its benefits such as anticancer and antioxidant activity. In this paper, we designed polymer-RES conjugates as anticancer drug carrier for synergistic therapeutic effect in cancer treatment. Bicalutamide (BIC) was used as a model drug to investigate the drug release behaviors and in vitro anticancer performance. PEG-RES and PEG-Glycine-RES nanoparticles were prepared and characterized. The size of the prepared particles was around 50 nm with RES content of 17.2 and 16.3 wt% for PEG-RES and PEG-Glycine-RES, respectively, and BIC loading efficiency were of 81.6% and 84.5%, separately. Release rate of RES from conjugates depended on the stability of ester group against hydrolysis. BIC release was much faster than RES release. The anticancer activity of BIC loaded PEGylated RES nanoparticles was much better than that of free BIC, indicating the conjugates provided a synergetic cytotoxicity to cancer cells. Confocal laser scanning microscopy observation and flow cytometry analyses indicated that PEGylated RES conjugates were more efficiently internalized into cells, released drug into cytoplasm. These results suggest that PEGylated RES conjugates show great potential for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Phylogenetic Tree Analysis of the Cold-Hot Nature of Traditional Chinese Marine Medicine for Possible Anticancer Activity

    PubMed Central

    Song, Xuxia; Li, Xuebo; Zhang, Fengcong; Wang, Changyun

    2017-01-01

    Traditional Chinese Marine Medicine (TCMM) represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA) displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms) via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1) Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2) Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3) Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources. PMID:28191021

  14. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis.

    PubMed

    Saini, Karan Singh; Hamidullah; Ashraf, Raghib; Mandalapu, Dhanaraju; Das, Sharmistha; Siddiqui, Mohd Quadir; Dwivedi, Sonam; Sarkar, Jayanta; Sharma, Vishnu Lal; Konwar, Rituraj

    2017-04-01

    Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.

  16. Classification of current anticancer immunotherapies

    PubMed Central

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  17. Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances.

    PubMed

    Tyagi, Nikhil; Tyagi, Monika; Pachauri, Manendra; Ghosh, Prahlad C

    2015-11-01

    Cancer is one of the most common devastating disease affecting millions of people per year worldwide. To fight against cancer, a number of natural plant compounds have been exploited by researchers to discover novel anti-cancer therapeutics with minimum or no side effects and plants have proved their usefulness in anti-cancer therapy in past few years. Ricin, a cytotoxic plant protein isolated from castor bean seeds, is a ribosome-inactivating protein which destroys the cells by inhibiting proteins synthesis. Ricin presents great potential as anti-cancer agent and exerts its anti-cancer activity by inducing apoptosis in cancer cells. In this review, we summarize the current information on anti-cancer properties of plant toxin ricin, its potential applications in cancer therapy, challenges associated with its use as therapeutic agent and the recent advances made to overcome these challenges. Nanotechnology could open the doors for quick development of ricin-based anti-cancer therapeutics. Conceivably, ricin may serve as a chemotherapeutic agent against cancer by utilizing nanocarriers for its targeted delivery to cancer cells.

  18. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    PubMed

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Journey of the ALK-inhibitor CH5424802 to phase II clinical trial.

    PubMed

    Latif, Muhammad; Saeed, Aamer; Kim, Seong Hwan

    2013-09-01

    The anaplastic lymphoma kinase (ALK) receptor tyrosine kinase represents a potential therapeutic target. Specially, a variety of alterations in the ALK gene including mutations, overexpression, amplification, translocations and structural rearrangements, are involved in human cancer tumorigenesis. The second-generation ALK inhibitor CH5424802 (development code: AF802; Chugai Pharmaceutical, a subsidiary of Roche) achieves tumor regression with excellent tolerance and shows promising efficacy in patients with ALK-positive non-small cell lung cancer. CH5424802 shows good kinase selectivity, has a promising pharmacokinetics profile, and has strong antiproliferative activity in several ALK-driven tumor models. CH5424802 has also shown anti-tumor activity in mouse xenograft studies. Here, we summarize recent advances and the evidence that CH5424802 acts as an ALK inhibitor. We also discuss its potential for further development as an anticancer drug in clinical trials.

  20. Matrix metalloproteinase inhibitors as anticancer agents.

    PubMed

    Konstantinopoulos, Panagiotis A; Karamouzis, Michalis V; Papatsoris, Athanasios G; Papavassiliou, Athanasios G

    2008-01-01

    The important role of matrix metalloproteinases (MMPs) in the process of carcinogenesis is well established. However, despite very promising activity in a plethora of preclinical models, MMP inhibitors (MMPIs) failed to demonstrate a statistically significant survival advantage in advanced stage clinical trials in most human malignancies. Herein, we review the implication of MMPs in carcinogenesis, outline the pharmacology and current status of various MMPIs as anticancer agents and discuss the etiologies for the discrepancy between their preclinical and clinical evaluation. Finally, strategies for effective incorporation of MMPIs in current anticancer therapies are proposed.

  1. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.

    PubMed

    Zhang, Ning; Yu, Zhimei; Yang, Xiaohong; Hu, Ping; He, Yun

    2018-04-25

    Artemisinin is a potential anticancer agent with an interesting trioxane sesquiterpene structure. In order to improve the biological activity and metabolic stability of artemisinin, a series of novel ring-contracted artemisinin dimers were synthesized. These dimers were evaluated by MTT assay against six cancer cell lines. Most of the dimmers exhibited improved antiproliferative activities over artemisinin. Especially, compound 8b showed the most pronounced anti-cancer activity for PC12 cancer cells with an IC 50 value of 1.56 μM. Thus, PC12 cancer cells were used to further investigate the mechanism of antiproliferation for this series of compounds. Compound 8b arrested cell cycle at G1 phase and induced cell apoptosis via up-regulation of Bad, Bax, caspase-3 and caspase-9 protein expressions while inhibiting the expression of Bcl-xL. The present studies are the first to synthesize the ring-contracted artemisinin as dimers and show that these dimers have potent anti-tumor activities against several cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Carrier-Free, Pure Nanodrug Formed by the Self-Assembly of an Anticancer Drug for Cancer Immune Therapy.

    PubMed

    Fan, Lulu; Zhang, Bingchen; Xu, Aixiao; Shen, Zhichun; Guo, Yan; Zhao, Ruirui; Yao, Huilu; Shao, Jing-Wei

    2018-06-04

    Ursolic acid (UA) is a food-plant-derived natural product which has good anticancer activities and low toxicity. However, the poor water solubility of UA limits its application in clinic. To address this issue, we developed a carrier-free nanodrug by self-assembly of UA. Here, we showed that UA nanoparticles (NPs) have a near-spherical shape with a diameter of ∼150 nm. UA NPs exhibited higher antiproliferative activity; significantly caused apoptosis; decreased the expression of COX-2/VEGFR2/VEGFA; and increased the immunostimulatory activity of TNF-α, IL-6, and IFN-β and decreased the activity of STAT-3 in A549 cells in vitro. Furthermore, UA NPs could inhibit tumor growth and have the ability of liver protection in vivo. More importantly, UA NPs could significantly improve the activation of CD4+ T-cells, which indicated that UA NPs have the potential for immunotherapy. Overall, a carrier-free UA nanodrug may be a promising drug to further enhance their anticancer efficacy and immune function.

  3. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    PubMed Central

    Somasekharan, Syam Prakash; El-Naggar, Amal; Sorensen, Poul H.

    2016-01-01

    Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted. PMID:27656243

  4. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities

    NASA Astrophysics Data System (ADS)

    Manikandan, Ramar; Manikandan, Beulaja; Raman, Thiagarajan; Arunagirinathan, Koodalingam; Prabhu, Narayanan Marimuthu; Jothi Basu, Muthuramalingam; Perumal, Muthulakshmi; Palanisamy, Subramanian; Munusamy, Arumugam

    2015-03-01

    The present study was aimed at biosynthesis of silver nanoparticles (AgNPs) using ethanolic extract of rose (Rosa indica) petals and testing their potential antibacterial activity using selective human pathogenic microbes, anticancer activity using human colon adenocarcinoma cancer cell line HCT 15 as well as anti-inflammatory activity using rat peritoneal macrophages in vitro. The biologically synthesized AgNPs were also characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The characterized AgNPs showed an effective antibacterial activity against Gram negative (Escherichia coli, Klebsiella pneumoniae) than Gram positive (Streptococcus mutans, Enterococcus faecalis) bacteria. MTT assay, analysis of nuclear morphology, mRNA expression of Bcl-2, Bax and protein expression of caspase 3 as well as 9, indicated potential anticancer activity. In addition, green synthesized AgNPs also attenuated cytotoxicity, nuclear morphology and free radical generation (O2- and NO) by rat peritoneal macrophages in vitro. The results of our study show the potential green synthesis of silver nanoparticles in mitigating their toxicity while retaining their antibacterial activities.

  5. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com; Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Ourmore » results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.« less

  6. Process optimization and photostability of silymarin nanostructured lipid carriers: effect on UV-irradiated rat skin and SK-MEL 2 cell line.

    PubMed

    Singh, Pooja; Singh, Mahendra; Kanoujia, Jovita; Arya, Malti; Saraf, Shailendra K; Saraf, Shubhini A

    2016-10-01

    The objective of the present work was to formulate a novel stable delivery system which would not only overcome the solubility issue of silymarin, but also help to increase the therapeutic value by better permeation, anticancer action and reduced toxicity. This was envisaged through the recent developments in nanotechnology, combined with the activity of the phytoconstituent silymarin. A 2(3) full factorial design based on three independent variables was used for process optimization of nanostructured lipid carriers (NLC). Developed formulations were evaluated on the basis of particle size, morphology, in vitro drug release, photostability and cell line studies. Optimized silymarin-NLC was incorporated into carbopol gel and further assessed for rheological parameters. Stable behaviour in presence of light was proven by photostability testing of formulation. Permeability parameters were significantly higher in NLC as compared to marketed phytosome formulation. The NLC based gel described in this study showed faster onset, and prolonged activity up to 24 h and better action against edema as compared to marketed formulation. In case of anticancer activity of silymarin-NLC against SK-MEL 2 cell lines, silymarin-NLC proved to possess anticancer activity in a dose-dependent manner (10-80 μM) and induced apoptosis at 80 μM in SK-MEL 2 cancer cells. This work documents for the first time that silymarin can be formulated into nanostructured lipoidal carrier system for enhanced permeation, greater stability as well as anticancer activity for skin.

  7. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate.

    PubMed

    O'Connor, Stephen; Szwej, Emilia; Nikodinovic-Runic, Jasmina; O'Connor, Aisling; Byrne, Annette T; Devocelle, Marc; O'Donovan, Norma; Gallagher, William M; Babu, Ramesh; Kenny, Shane T; Zinn, Manfred; Zulian, Qun Ren; O'Connor, Kevin E

    2013-04-01

    The biodegradable polymer medium chain length polyhydroxyalkanoate (mclPHA), produced by Pseudomonas putida CA-3, was depolymerised and the predominant monomer (R)-3-hydroxydecanoic acid (R10) purified. R10 was conjugated to a d-peptide DP18 and its derivatives. All peptides conjugated with R10 exhibited greater anti-cancer activity compared to the unconjugated peptides. Unconjugated and conjugated peptides were cytocidal for cancer cells. Conjugation of R10 to peptides was essential for enhanced anti-proliferation activity, as unconjugated mixes did not result in enhancement of anti-cancer activity. The conjugation of R10 resulted in more rapid uptake of peptides into HeLa and MiaPaCa cells compared to unconjugated peptide. Both unconjugated and R10 conjugated peptides localized to the mitochondria of HeLa and MiaPaCa cells and induced apoptosis. Peptide conjugated with a terminally hydroxylated decanoic acid (ω-hydroxydecanoic acid) exhibited 3.3 and 6.3 fold higher IC(50) values compared to R10 conjugated peptide indicating a role for the position of the hydroxyl moiety in enhancement of anti-cancer activity. Conjugation of decanoic acid (C10) to peptides resulted in similar or higher IC(50) values compared to R10 conjugates but C10 conjugates did not exhibit any cancer selectivity. Combination studies showed that R10DP18L exhibited synergy with cisplatin, gemcitabine, and taxotere with IC(50) values in the nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Structural characterization and anticancer activity (MCF7 and MDA-MB-231) of polysaccharides fractionated from brown seaweed Sargassum wightii.

    PubMed

    Vaikundamoorthy, Ramalingam; Krishnamoorthy, Varunkumar; Vilwanathan, Ravikumar; Rajendran, Rajaram

    2018-05-01

    The purpose of this study was to investigate the anticancer activity of polysaccharides from brown seaweed Sargassum wightii (SWP) on human breast cancer cells. Initially, two polysaccharide fractions (SWP1 and SWP2) were isolated and purified from the crude polysaccharides using DEAE-52 cellulose and Sephadex G-100 column chromatography. As a result, SWP1 was obtained with the yield of 21.48% was characterized using chemical analysis, GC-MS, 1 H NMR and 13 C NMR. The chemical composition of the extracted polysaccharide contains a neutral polysaccharide with a high total sugar content and low protein, phenol and flavonoid content. GC-MS analysis revealed the presence of galactofuranose and arabinose and NMR spectra shows the presence of β-galactose signals. Anticancer activity shows that the polysaccharides significantly reduce the proliferation of breast cancer cells (MCF7 and MDA-MB-231) in a dose-dependent manner. Further, polysaccharides induced the apoptosis in the breast cancer cells by increasing ROS generation, cleaving mitochondrial membrane and nuclei damage. Finally, polysaccharides increased the activity of caspase 3/9, thus leads to apoptosis of breast cancer. Together, polysaccharides from S. wightii could be a new source of natural anticancer agent against breast cancer with potential value in the manufacturing supplements and drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers.

    PubMed

    Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert

    2013-03-01

    The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs. © 2012 Wiley Periodicals, Inc.

  10. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure–Activity Relationships, and Molecular Mechanisms of Action

    PubMed Central

    Nag, Subhasree Ashok; Qin, Jiang-Jiang; Wang, Wei; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-κB and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure–activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors. PMID:22403544

  11. Noscapinoids with anti-cancer activity against human acute lymphoblastic leukemia cells (CEM): a three dimensional chemical space pharmacophore modeling and electronic feature analysis.

    PubMed

    Naik, Pradeep K; Santoshi, Seneha; Joshi, Harish C

    2012-01-01

    We have identified a new class of microtubule-binding compounds-noscapinoids-that alter microtubule dynamics at stoichiometric concentrations without affecting tubulin polymer mass. Noscapinoids show great promise as chemotherapeutic agents for the treatment of human cancers. To investigate the structural determinants of noscapinoids responsible for anti-cancer activity, we tested 36 structurally diverse noscapinoids in human acute lymphoblastic leukemia cells (CEM). The IC(50) values of these noscapinoids vary from 1.2 to 56.0 μM. Pharmacophore models of anti-cancer activity were generated that identify two hydrogen bond acceptors, two aromatic rings, two hydrophobic groups, and one positively charged group as essential structural features. Additionally, an atom-based quantitative structure-activity relationship (QSAR) model was developed that gave a statistically satisfying result (R(2) = 0.912, Q(2) = 0.908, Pearson R = 0.951) and effectively predicts the anti-cancer activity of training and test set compounds. The pharmacophore model presented here is well supported by electronic property analysis using density functional theory at B3LYP/3-21*G level. Molecular electrostatic potential, particularly localization of negative potential near oxygen atoms of the dimethoxy isobenzofuranone ring of active compounds, matched the hydrogen bond acceptor feature of the generated pharmacophore. Our results further reveal that all active compounds have smaller lowest unoccupied molecular orbital (LUMO) energies concentrated over the dimethoxy isobenzofuranone ring, azido group, and nitro group, which is indicative of the electron acceptor capacity of the compounds. Results obtained from this study will be useful in the efficient design and development of more active noscapinoids.

  12. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles.

    PubMed

    Venkatesan, Jayachandran; Lee, Jin-Young; Kang, Dong Seop; Anil, Sukumaran; Kim, Se-Kwon; Shim, Min Suk; Kim, Dong Gyu

    2017-05-01

    The main aim of this study was to obtain porous antimicrobial composites consisting of chitosan, alginate, and biosynthesized silver nanoparticles (AgNPs). Chitosan and alginate were used owing to their pore-forming capacity, while AgNPs were used for their antimicrobial property. The developed porous composites of chitosan-alginate-AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The FT-IR results revealed the presence of a strong chemical interaction between chitosan and alginate due to polyelectrolyte complex; whereas, the XRD results confirmed the presence of AgNPs in the composites. The dispersion of AgNPs in the porous membrane was uniform with a pore size of 50-500μm. Antimicrobial activity of the composites was checked with Escherichia coli and Staphylococcus aureus. The developed composites resulted in the formation of a zone of inhibition of 11±1mm for the Escherichia coli, and 10±1mm for Staphylococcus aureus. The bacterial filtration efficiency of chitosan-alginate-AgNPs was 1.5-times higher than that of the chitosan-alginate composite. The breast cancer cell line MDA-MB-231 was used to test the anticancer activity of the composites. The IC 50 value of chitosan-alginate-AgNPs on MDA-MB-231 was 4.6mg. The developed chitosan-alginate-AgNPs composite showed a huge potential for its applications in antimicrobial filtration and cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis of 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone as a candidate anticancer against cervical (WiDr), colon (HeLa), and breast (T47d) cancer cell lines in vitro

    NASA Astrophysics Data System (ADS)

    Matsjeh, Sabirin; Swasono, Respati Tri; Anwar, Chairil; Solikhah, Eti Nurwening; Lestari, Endang

    2017-03-01

    The compound 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone have been synthesized through Claisen-Schmidt reaction from 2-hydroxyacetophenone and 2,4-dihydroxyacetophenone with 4-hydroxy-3-methoxy benzaldehida (vanillin) in aqueous KOH 40% and KSF montmorillonite as catalyst in methanol. All these products were characterized by FT-IR, TLC Scanner, GC-MS, MS-Direct, and 1H-NMR and 13C-NMR spectrometer. Both of these compounds were tested citotoxycity activity as an anticancer against cervical, colon, and breast cancer cells (Hela, WiDr, and T47D cell lines) using MTT assay in vitro. Dose series given test solution concentration on Hela, WiDr, and T47D cells started from 6,25; 25; 50 and 100 µg/mL with incubation treatment for 24 hours. The result of study showed that the 2',4-dihydroxy-3-methoxychalcone as bright yellow crystal with the melting point of 114-115 °C and the yield of 13.77% and the 2',4',4-trihydroxy-3-methoxychalcone as bright yellow crystals with the melting point of 195-197 °C and the yield of 6%. Other 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone also exhibited cytotoxic activity against the cancer cell lines, with the 2',4',4-trihydroxy-3-methoxychalcone showed greater activities than the 2',4-dihydroxy-3-methoxychalcone in WiDr cell lines. The 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone exhibited strong anticancer activities with IC50 value below 20 µg/mL. The activity of 2',4',4-trihydroxy-3-methoxychalcone showed the most active against Hela and WiDr cell lines with IC50 value 8.53 and 2.66 µg/mL respectively, than T47D cell lines with IC50 value 24.61 µg/mL. The test results cytotoxic of 2',4-dihydroxy-3-methoxychalcone showed the most active against Hela and WiDr cell lines with IC50 value 12.80, 19.57 µg/mL than T47D cell lines with IC50 value of 20.73 µg/mL. IC50 value indicated that 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone potential as inhibitors in Hela, WiDr and T47D cell lines.

  14. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model.

    PubMed

    Roel, María; Rubiolo, Juan A; Guerra-Varela, Jorge; Silva, Siguara B L; Thomas, Olivier P; Cabezas-Sainz, Pablo; Sánchez, Laura; López, Rafael; Botana, Luis M

    2016-12-13

    The marine environment constitutes an extraordinary resource for the discovery of new therapeutic agents. In the present manuscript we studied the effect of 3 different sponge derived guanidine alkaloids, crambescidine-816, -830, and -800. We show that these compounds strongly inhibit tumor cell proliferation by down-regulating cyclin-dependent kinases 2/6 and cyclins D/A expression while up-regulating the cell cyclin-dependent kinase inhibitors -2A, -2D and -1A. We also show that these guanidine compounds disrupt tumor cell adhesion and cytoskeletal integrity promoting the activation of the intrinsic apoptotic signaling, resulting in loss of mitochondrial membrane potential and concomitant caspase-3 cleavage and activation. The crambescidin 816 anti-tumor effect was fnally assayed in a zebrafish xenotransplantation model confirming its potent antitumor activity against colorectal carcinoma in vivo.Considering these results crambescidins could represent promising natural anticancer agents and therapeutic tools.

  16. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model

    PubMed Central

    Roel, María; Rubiolo, Juan A.; Guerra-Varela, Jorge; Silva, Siguara B. L.; Thomas, Olivier P.; Cabezas-Sainz, Pablo; Sánchez, Laura; López, Rafael; Botana, Luis M.

    2016-01-01

    The marine environment constitutes an extraordinary resource for the discovery of new therapeutic agents. In the present manuscript we studied the effect of 3 different sponge derived guanidine alkaloids, crambescidine-816, -830, and -800. We show that these compounds strongly inhibit tumor cell proliferation by down-regulating cyclin-dependent kinases 2/6 and cyclins D/A expression while up-regulating the cell cyclin-dependent kinase inhibitors -2A, -2D and -1A. We also show that these guanidine compounds disrupt tumor cell adhesion and cytoskeletal integrity promoting the activation of the intrinsic apoptotic signaling, resulting in loss of mitochondrial membrane potential and concomitant caspase-3 cleavage and activation. The crambescidin 816 anti-tumor effect was fnally assayed in a zebrafish xenotransplantation model confirming its potent antitumor activity against colorectal carcinoma in vivo. Considering these results crambescidins could represent promising natural anticancer agents and therapeutic tools. PMID:27825113

  17. Trivanillic polyphenols with anticancer cytostatic effects through the targeting of multiple kinases and intracellular Ca2+ release

    PubMed Central

    Lamoral-Theys, Delphine; Wauthoz, Nathalie; Heffeter, Petra; Mathieu, Véronique; Jungwirth, Utte; Lefranc, Florence; Nève, Jean; Dubois, Jacques; Dufrasne, François; Amighi, Karim; Berger, Walter; Gailly, Philippe; Kiss, Robert

    2012-01-01

    Abstract Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC50in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs. PMID:21810170

  18. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor progression and metastasis in prostate cancer

    USDA-ARS?s Scientific Manuscript database

    The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol (Res), found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of Res, the ...

  19. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  20. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A., E-mail: mab@mayo.ed

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereasmore » Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.« less

Top