Sample records for strong bottom currents

  1. Observed bottom boundary layer transport and uplift on the continental shelf adjacent to a western boundary current

    NASA Astrophysics Data System (ADS)

    Schaeffer, A.; Roughan, M.; Wood, J. E.

    2014-08-01

    Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.

  2. Bottom currents and sediment transport in Long Island Sound: A modeling study

    USGS Publications Warehouse

    Signell, R.P.; List, J.H.; Farris, A.S.

    2000-01-01

    A high resolution (300-400 m grid spacing), process oriented modeling study was undertaken to elucidate the physical processes affecting the characteristics and distribution of sea-floor sedimentary environments in Long Island Sound. Simulations using idealized forcing and high-resolution bathymetry were performed using a three-dimensional circulation model ECOM (Blumberg and Mellor, 1987) and a stationary shallow water wave model HISWA (Holthuijsen et al., 1989). The relative contributions of tide-, density-, wind- and wave-driven bottom currents are assessed and related to observed characteristics of the sea-floor environments, and simple bedload sediment transport simulations are performed. The fine grid spacing allows features with scales of several kilometers to be resolved. The simulations clearly show physical processes that affect the observed sea-floor characteristics at both regional and local scales. Simulations of near-bottom tidal currents reveal a strong gradient in the funnel-shaped eastern part of the Sound, which parallels an observed gradient in sedimentary environments from erosion or nondeposition, through bedload transport and sediment sorting, to fine-grained deposition. A simulation of estuarine flow driven by the along-axis gradient in salinity shows generally westward bottom currents of 2-4 cm/s that are locally enhanced to 6-8 cm/s along the axial depression of the Sound. Bottom wind-driven currents flow downwind along the shallow margins of the basin, but flow against the wind in the deeper regions. These bottom flows (in opposition to the wind) are strongest in the axial depression and add to the estuarine flow when winds are from the west. The combination of enhanced bottom currents due to both estuarine circulation and the prevailing westerly winds provide an explanation for the relatively coarse sediments found along parts of the axial depression. Climatological simulations of wave-driven bottom currents show that frequent high-energy events occur along the shallow margins of the Sound, explaining the occurrence of relatively coarse sediments in these regions. Bedload sediment transport calculations show that the estuarine circulation coupled with the oscillatory tidal currents result in a net westward transport of sand in much of the eastern Sound. Local departures from this regional westward trend occur around topographic and shoreline irregularities, and there is strong predicted convergence of bedload transport over most of the large, linear sand ridges in the eastern Sound, providing a mechanism which prevents their decay. The strong correlation between the near-bottom current intensity based on the model results and the sediment response, as indicated by the distribution of sedimentary environments, provides a framework for predicting the long-term effects of anthropogenic activities.

  3. Near-bottom currents over the continental slope in the Mid-Atlantic Bight

    USGS Publications Warehouse

    Csanady, G.T.; Churchill, J.H.; Butman, B.

    1988-01-01

    From a set of 28 current meter records we have found that near-bottom currents faster than 0.2 m s-1 occur frequently over the outer continental shelf of the Mid-Atlantic Bight (bottom depth <210 m) but very rarely (<1% of the time) between bottom depths of 500 m and 2 km over the slope. The rarity of strong near-bottom flow over the middle and lower slope allows the accumulation of fine-grained sediment and organic carbon in this region. Fast near-bottom currents which do occur over the slope are invariably associated with topographic waves, although it is often superimposed inertial oscillations which increase current speed above the level of 0.2 m s-1. Episodes of intense inertial oscillations occur randomly and last typically for 10-20 days. Their energy source is unknown. Topographic wave energy exhibits a slight, but statistically significant, minimum over the mid-slope. These waves appear irregularly and vary both along isobaths and in time. The irregularity is presumably a consequence of random topographic wave generation by Gulf Stream instability. The current regime within sea-floor depressions in the slope (canyons and gullies) is distinctly different from that of the open slope; most notable is the near absence of topographic wave motion within depressions. ?? 1988.

  4. Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning

    NASA Astrophysics Data System (ADS)

    Ruan, Xiaozhou; Thompson, Andrew F.; Flexas, Mar M.; Sprintall, Janet

    2017-11-01

    The ocean's global overturning circulation regulates the transport and storage of heat, carbon and nutrients. Upwelling across the Southern Ocean's Antarctic Circumpolar Current and into the mixed layer, coupled to water mass modification by surface buoyancy forcing, has been highlighted as a key process in the closure of the overturning circulation. Here, using twelve high-resolution hydrographic sections in southern Drake Passage, collected with autonomous ocean gliders, we show that Circumpolar Deep Water originating from the North Atlantic, known as Lower Circumpolar Deep Water, intersects sloping topography in narrow and strong boundary currents. Observations of strong lateral buoyancy gradients, enhanced bottom turbulence, thick bottom mixed layers and modified water masses are consistent with growing evidence that topographically generated submesoscale flows over continental slopes enhance near-bottom mixing, and that cross-density upwelling occurs preferentially over sloping topography. Interactions between narrow frontal currents and topography occur elsewhere along the path of the Antarctic Circumpolar Current, which leads us to propose that such interactions contribute significantly to the closure of the overturning in the Southern Ocean.

  5. Near-bottom energy cascade from subinertial flows to ocean mixing in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, Z.; Zhao, Y.; Wang, W.; Li, J.; Xu, J.

    2013-12-01

    The motions with different scales in the bottom boundary layer are potentially important in controlling the water mass transportation. Many physical processes are involved in transferring energy from mesoscale to small-scale motions. Recent studies suggest that subinertial flows should be taken into account in the parameterization of deep-ocean mixing besides topography and tidal forcing. Here, we present the current velocity data obtained from 2 moored downward-looking ADCPs (Acoustic Doppler Current Profiler) and 1 RCM (Recording Current Meter) moored near the bottom boundary layer at a water depth of about 2000 m in the northeastern South China Sea from 2012 to 2013. Specifically, they include an ADCP 1200 kHz deployed at 30 m, an ADCP 300 kHz deployed at 110 m, and a RCM deployed at 40 m above the seafloor. Subinertial flows were calculated from the moored current velocity data by low-pass filtering with a cutoff frequency of 0.3 cycles per day (the local inertial period is about 35 hours). The horizontal subinertial flows were quite strong with average values of 2-5 cm/s. The strong downward vertical velocity with average values of 1-2 cm/s was observed during times of weak subinertial flows. The vertical propagation during both the times of weak and strong subinertial flows can also be shown by vector spectra of horizontal near-inertial current velocity. Turbulent kinetic energy production rate estimated indirectly with the variances of ADCP velocities will be compared with the subinertial kinetic energy to detect the processes of energy cascade from mesoscale motions to small-scale oscillations. The results presented in this study can provide an observational evidence for such energy cascade near the bottom boundary layer in the deep South China Sea.

  6. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Thran, Amanda C.; Dutkiewicz, Adriana; Spence, Paul; Müller, R. Dietmar

    2018-05-01

    Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the global distribution of modern contourite drifts strongly depends on the configuration of the world's most powerful bottom currents, many of which are associated with global meridional overturning circulation. Bathymetric obstacles frequently modify flow direction and intensity, imposing additional finer-scale control on drift occurrence. Mean bottom current speed over contourite-covered areas is only slightly higher (2.2 cm/s) than the rest of the global ocean (1.1 cm/s), falling below proposed thresholds deemed necessary to re-suspend and redistribute sediments (10-15 cm/s). However, currents fluctuate more frequently and intensely over areas with drifts, highlighting the role of intermittent, high-energy bottom current events in sediment erosion, transport, and subsequent drift accumulation. We identify eddies as a major driver of these bottom current fluctuations, and we find that simulated bottom eddy kinetic energy is over three times higher in contourite-covered areas in comparison to the rest of the ocean. Our work supports previous hypotheses which suggest that contourite deposition predominantly occurs due to repeated acute events as opposed to continuous reworking under average-intensity background flow conditions. This suggests that the contourite record should be interpreted in terms of a bottom current's susceptibility to experiencing periodic, high-speed current events. Our results also highlight the potential role of upper ocean dynamics in contourite sedimentation through its direct influence on deep eddy circulation.

  7. Reprint of Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2018-06-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  8. Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2017-05-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  9. Near-bed observations of high-concentration sediment transport in the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Ge, J.; Ding, P.

    2017-12-01

    The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density gradient from intruded salinity and local sediment suspension. Meanwhile, tripods' monitoring identified a significant cross-channel component of residual current, which could produce potential bottom sediment accumulation in the channel region within the North Passage.

  10. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.

    2016-04-01

    Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.

  11. Mean Lagrangian drift in continental shelf waves

    NASA Astrophysics Data System (ADS)

    Drivdal, M.; Weber, J. E. H.

    2012-04-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.

  12. Radiation stress and mean drift in continental shelf waves

    NASA Astrophysics Data System (ADS)

    Weber, Jan Erik H.; Drivdal, Magnus

    2012-03-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E̅̅ over the shelf region, the radiation stress tensor component S̅11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio S̅11/E̅ depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of latter depends on ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deepwater drilling accidents.

  13. Tide-surge Interaction Intensified by the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  14. Potential geologic hazards on the eastern Gulf of Cadiz slope (SW Spain)

    USGS Publications Warehouse

    Baraza, J.; Ercilla, G.; Nelson, C.H.

    1999-01-01

    Geologic hazards resulting from sedimentary, oceanographic and tectonic processes affect more than one third of the offshore Gulf of Cadiz, and are identified by interpreting high-resolution seismic profiles and sonographs. Hazards of sedimentary origin include the occurrence of slope instability processes in the form of single or multiple slumps occupying up to 147 km2 mainly concentrated in the steeper, upper slope area. Besides the presence of steep slopes, the triggering of submarine landslides is probably due to seismic activity and favoured by the presence of biogenic gas within the sediment. Gassy sediments and associated seafloor pockmarks cover more than 240 km2 in the upper slope. Hazards from oceanographic processes result from the complex system of bottom currents created by the interaction of the strong Mediterranean Undercurrent and the rough seafloor physiography. The local intensification of bottom currents is responsible for erosive processes along more than 1900 km2 in the upper slope and in the canyons eroded in the central area of the slope, undermining slopes and causing instability. The strong bottom currents also create a mobile seafloor containing bedforms in an area of the Gulf that extends more than 2500 km2, mostly in the continental slope terraces. Hazards of tectonic origin are important because the Gulf of Cadiz straddles two major tectonic regions, the Azores-Gibraltar fracture zone and the Betic range, which results in diapir uplift over an area of more than 1000 km2, and in active seismicity with earthquakes of moderate magnitude. Also, tsunamis produced by strong earthquakes occur in the Gulf of Cadiz, and are related to the tectonic activity along the Azores-Gibraltar fracture zone.

  15. Bottom currents observed in and around a submarine valley on the continental slope of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Lunyu; Xiong, Xuejun; Li, Xiaolong; Shi, Maochong; Guo, Yongqing; Chen, Liang

    2016-12-01

    Bottom currents at about 1000 m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observations reveal that bottom currents are strongly influenced by the topography, being along valley axis or isobaths. Power density spectrum analysis shows that all the currents have significant peaks at diurnal and semi-diurnal frequencies. Diurnal energy is dominant at the open slope site, which is consistent with many previous studies. However, at the site inside the valley the semi-diurnal energy dominates, although the distance between the two sites of observation is quite small (11 km) compared to a typical horizontal first-mode internal tide wavelength (200 km). We found this phenomenon is caused by the focusing of internal waves of certain frequencies in the valley. The inertial peak is found only at the open slope site in the first deployment but missing at the inside valley site and the rest of the deployments. Monthly averaged residual currents reveal that the near-bottom currents on the slope flow southwestward throughout the year except in August and September, 2013, from which we speculate that this is a result of the interaction between a mesoscale eddy and the canyon/sag topography. Currents inside the valley within about 10 mab basically flow along slope and in the layers above the 10 mab the currents are northwestward, that is, from the deep ocean to the shelf. The monthly mean current vectors manifest an Ekman layer-like vertical structure at both sites, which rotate counter-clockwise looking from above.

  16. Resuspension and Shelf-Deep Ocean Exchange in the Northern California Current: New Insights From Underwater Gliders

    NASA Astrophysics Data System (ADS)

    Erofeev, A.; Barth, J. A.; Shearman, R. K.; Pierce, S. D.

    2016-02-01

    Shelf-deep ocean exchange is dominated by wind-driven upwelling and downwelling in the northern California Current. The interaction of strong, along-shelf jets with coastline and bottom topographic features can also create significant cross-margin exchange. We are using data from over 60,000 kilometers of autonomous underwater glider tracks to understand the temporal and spatial distribution of shelf-deep ocean exchange off central Oregon. Year-round glider observations of temperature, salinity, depth-averaged currents, chlorophyll fluorescence, light backscatter, and colored dissolved organic matter fluorescence from a single cross-margin transect are used to examine shelf-deep ocean exchange mechanisms. During summer, cross-margin exchange is dominated by wind-driven upwelling and the relaxation or reversal of the dominant southward winds. This process has been fairly well observed and studied due to the relatively low sea states and winds during summer. There is far less data from fall and winter off Oregon, a time of strong winds and large waves. We use autonomous underwater gliders to sample during the winter, including through the fall and spring transitions. Glider observations of suspended material detected via light backscatter, show time-space variations in resuspension in the bottom boundary layer due to winds, waves and currents. Examples of shelf-deep ocean exchange are shown by layers with high light backscatter separating from the bottom near the shelf break and extending into the interior along isopycnals. We describe these features and events in relationship to wind-forcing, along-shelf flows, and other forcing mechanisms.

  17. Response of Euphausia pacifica to small-scale shear in turbulent flow over a sill in a fjord

    PubMed Central

    Ianson, Debby; Allen, Susan E.; Mackas, David L.; Trevorrow, Mark V.; Benfield, Mark C.

    2011-01-01

    Zooplankton in the ocean respond to visual and hydro-mechanical cues such as small-scale shear in turbulent flow. In addition, they form strong aggregations where currents intersect sloping bottoms. Strong and predictable tidal currents over a sill in Knight Inlet, Canada, make it an ideal location to investigate biological behaviour in turbulent cross-isobath flow. We examine acoustic data (38, 120 and 200 kHz) collected there during the daylight hours, when the dominant zooplankters, Euphausia pacifica have descended into low light levels at ∼90 m. As expected, these data reveal strong aggregations at the sill. However, they occur consistently 10–20 m below the preferred light depth of the animals. We have constructed a simple model of the flow to investigate this phenomenon. Tracks of individual animals are traced in the flow and a variety of zooplankton behaviours tested. Our results indicate that the euphausiids must actively swim downward when they encounter the bottom boundary layer (bbl) to reproduce the observed downward shift in aggregation patterns. We suggest that this behaviour is cued by the small-scale shear in the bbl. Furthermore, this behaviour is likely to enhance aggregations found in strong flows at sills and on continental shelves. PMID:21954320

  18. Bottom friction optimization for a better barotropic tide modelling

    NASA Astrophysics Data System (ADS)

    Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy

    2015-04-01

    At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction is evaluated.

  19. Sedimentation and near-bottom currents in the South-Western Atlantic

    NASA Astrophysics Data System (ADS)

    Emelyanov, Emelyan M.

    2008-01-01

    The aims of the paper are: 1) to study the bottom relief and Late Quaternary bottom sediments of the South-Western Atlantic from the Amazon cone to the Vema Channel and Rio Grande Rise, and 2) to reconstruct recent and palaeo-Antarctic near-bottom currents (AABW). For this purpose, we used three main Parasound seismic profiles: 30 cores (up to 500 cm in length), the nanoplankton stratigraphy of 9 cores from the Brazilian lithological profile (along 24 °W), and literature sources. No soft sedimentes were found in the Vema channel; the bottom of the channel is acoustically "hard". Our geological data confirm that AABW flows mainly through this channel. The velocity of this flow should be higher than 100 cm.s-1. Only this strong current is able to rewash not only soft Holocene sediments, but also consolidated Quaternary deposits. Soft layered sediments occur at a depth less than 4200 m in the Hunter channel. Consequently, the AABW is able to flow from the Argentine Basin to the Brazil Basin only at a depth of more than 4200 m in this channel. Brown red clay or yellowish gray miopelagic clay prevail in the Brazil Deep. The age of red clay in the cores is different: Early or Late Pleistocene, or Holocene. Clay was rewashed and re-deposited in many areas of the deep. This means that the hydrodynamics sometimes was very active at a depth of 4000-5000 m in the Brazil Deep. The presence of conturite and turbidite interlayers in the red clay of the S. America continental base confirms the occurrence of a strong jet of the AABW (Deep Western Boundary current - DWBC) here. Antarctic and other diatoms were brought by AABW from Antarctica up to 10-5 °S. An unusual Pleistocene Ethmodiscus rex ooze was discovered at the latitude of 20 °S. Our data confirm the occurrence in the area between 10-5 °S of two mid-oceanic channels, one of them (EMOC) being located on a large sedimentary swell. The AABW in the cross-section from the Amazon River to the MAR flows through the Nara (depth 4640-4660 m) plain. This flow was confirmed by hydrochemical data. The AABW started to appear in the Rio Grande Rise region, about 50-30 mill. years. Cyclic events of glaciation and interglacial transitions throughout the Miocene-Pleistocene is a mechanism that caused the AABW currents to become more intensive or passive, with the result that the intensity of the influx of these waters from the Brazilian Basin into the Guiana Basin also changed from strong to weak.

  20. Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front

    NASA Astrophysics Data System (ADS)

    Bateman, S. P.; Simeonov, J.; Calantoni, J.

    2017-12-01

    The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.

  1. Origin and history of the Charleston Bump - Geological formations, currents, bottom conditions, and their relationship to wreckfish habitats on the Blake Plateau

    USGS Publications Warehouse

    Popenoe, P.; Manheim, F.T.

    2001-01-01

    The Charleston Bump is a structural and topographic high on the northern Blake Plateau that overlies a seaward offset of the edge of continental crust. The feature causes the bottom to shoal and deflects the Gulf Stream offshore, causing an intensification of bottom currents. The area has been swept by strong currents since late Cretaceous time, but the strongest currents have occurred in the Neogene (last ???25 million years). Nondepositional conditions prevail at present, but erosion of the bottom is checked where the bottom is armored by a hard surficial layer of phosphorite pavement. The phosphorite pavements were formed by re-cementation of eroded residues of phosphorite-rich sediments of early-Neogene age. In some places there are multiple pavements separated by poorly lithified sediments. Submersible observations indicate that the south, or current-facing flank of the Charleston Bump has several deep (>100 m) scour depressions, the southern flanks of which form cliffs characterized by ledges and overhangs. In other areas discrete layers of older Paleogene rocks have been partly eroded away, leaving cliff-like steps of 5 m or more relief. Conglomeratic phosphorite pavement layers up to 1 m thick armor most of the bottom. Where breached by scour, these pavements form both low-relief ledges and rock piles. These features form a reef-like environment of caves and overhangs utilized by wreckfish Polyprion americanus and barrelfish Hyperoglyphe perciformis as shelter from the current and as staging areas to prey on passing schools of squid. Wreckfish and other large fish were often localized in rugged bottom habitat, including caves and other shelter areas. We observed wreckfish darting from shelters to feed on passing schools of squid. Present and past observations, are consistent with the concept that impingement of the Gulf Stream at the Charleston Bump compresses midwater fauna from much thicker water layers, providing food for a flourishing big-fish fauna. During our dives we noted currents often exceeding 1 knot, and ranging to 2.4 knots. Evidence of fossil, manganese-iron-encrusted megaripples suggest even greater current regimes in the past. Investigation of the site of an earlier report of possible freshwater discharge failed to find any evidence of a closed sinkhole or freshwater discharge. Rather, we concluded that the apparent loss of buoyancy experienced by the submarine was probably caused by downward-directed eddy currents generated by currents sweeping across the pavement/void interface of a more than 100-m high cliff 3 km south of the reported location.

  2. Seasonal seafloor oxygen dynamics on the Romanian Black Sea Shelf

    NASA Astrophysics Data System (ADS)

    Friedrich, Jana; Balan, Sorin; van Beusekom, Justus E.; Naderipour, Celine; Secrieru, Dan

    2017-04-01

    The Black Sea suffers from the combined effects of anthropogenic eutrophication, overfishing and climate forcing. As a result, its broad and shallow western shelf in particular has a history of ecosystem collapse during the 1970s to the mid-1990s, which followed a slow recovery since the late 1990s due to reduction in anthropogenic pressures. Because of eutrophication, increased oxygen consumption caused recurrent widespread seasonal seafloor hypoxia in a system that is already naturally prone to decrease in bottom water oxygen during summer. On the shelf, reduced bottom water ventilation is a strong natural driver for seafloor hypoxia, due to strong seasonal thermohaline stratification as a result of freshwater inflow from the large rivers Danube, Dniester and Dniepro. To understand the present seasonal dynamics of seafloor oxygen on the Romanian shelf, a seafloor mooring was deployed in 2010 and 2016 during summer and autumn, for three and six months, respectively. The mooring, consisting of an Aanderaa SEAGUARD sensor package attached to an acoustic release, was deployed in 30 m water depth in the Portita region - north of Constanta and south of the Danube River Mouths. The in-situ time series of seafloor oxygen, temperature, turbidity, salinity, and current velocities and directions, combined with CTD profiles, benthic oxygen consumption rates based on ex-situ incubations of sediment cores, and pelagic oxygen respiration rates provide a set of information that allows biological and hydrophysical controls on seafloor oxygen to be identified. We observed the built-up of the thermohaline stratification during late spring and early summer, accompanied by steady decrease in bottom water oxygen. Superimposed settling of particles to the seafloor eventually led to the formation of seafloor hypoxia in late summer. Anticyclonic currents resemble diurnal tidal cycles, albeit low in magnitude. The effects of a strong rainstorm and a Danube flood event in late September were visible in a short-term increase in bottom water oxygen. The autumn storm events over the Black Sea led to seafloor ventilation and stepwise increase of bottom water oxygen on the shelf, which continues during the stormy winter season.

  3. Modern sedimentary environments in Boston Harbor, Massachusetts

    USGS Publications Warehouse

    Knebel, H.J.; Rendigs, R. R.; Bothner, Michael H.

    1991-01-01

    Analyses of sidescan-sonar records supplemented by available bathymetric, sedimentary, subbottom, and bottom-current data reveal the distributions of the following three categories of sedimentary environments within the glaciated, topographically complex Boston Harbor estuary in Massachusetts. 1) Environments of erosion appear on the sonographs either as patterns with isolated strong reflections or as uniform patterns of strong reflectivity. These patterns define outcrops of bedrock or till and coarse lag deposits that are being scoured and winnowed by tidal- and wave-induced currents. Erosional areas are located primarily along mainland and insular shores, within large channels that have strong tidal currents, atop submerged ridges and knolls, and across much of the harbor entrance. 2) Environments of deposition are depicted on the sidescan-sonar records as smooth, featureless surfaces that have low to moderate reflectivity. Depositional environments are found predominantly over shallow subtidal flats and in broad bathymetric lows where tidal currents are weak. Sediments within depositional areas are organic-rich sandy and clayey silts that are accumulating at rates ranging from 0.01 to 0.11 g/cm 2 /yr or 4000 to 46,100 metric tons/yr. The cumulative mass of modern mud in harbor depocenters is 24.3 million metric tons. 3) Environments of sediment reworking constitute areas affected by a combination of erosional and depositional processes. They are characterized on the sonographs by mosaics of light and dark patches produced by relatively subtle and gradational changes in reflectivity. Reworked sediments have diverse grain sizes that overlap and are transitional between those of the other two sedimentary environments, and they are indicative of highly variable bottom currents.

  4. What a drag: Quantifying the global impact of chronic bottom trawling on continental shelf sediment

    USGS Publications Warehouse

    Oberle, Ferdinand K.J.; Storlazzi, Curt; Hanebuth, Till J.J.

    2016-01-01

    Continental shelves worldwide are subject to intense bottom trawling that causes sediment to be resuspended. The widely used traditional concepts of modern sedimentary transport systems on the shelf rely only on estimates for naturally driven sediment resuspension such as through storm waves, bottom currents, and gravity-driven flows but they overlook a critical anthropogenic factor. The strong influence of bottom trawling on a source-to-sink sediment budget is explored on the NW Iberian shelf. Use of Automated Information System vessel tracking data provides for a high-resolution vessel track reconstruction and the accurate calculation of the spatial distribution of bottom trawling intensity and associated resuspended sediment load. The mean bottom trawling-induced resuspended sediment mass for the NW Iberian shelf is 13.50 Mt yr− 1, which leads to a six-fold increase in off-shelf sediment transport when compared to natural resuspension mechanisms. The source-to-sink budget analysis provides evidence that bottom trawling causes a rapid erosion of the fine sediment on human time scales. Combining global soft sediment distribution data of the shelves with worldwide bottom trawling intensity estimates we show that the bottom trawling-induced resuspended sediment mass amounts to approximately the same mass of all sediment entering the shelves through rivers. Spatial delineations between natural and anthropogenic sediment resuspension areas are presented to aid in marine management questions.

  5. Regional variability in sea ice melt in a changing Arctic

    PubMed Central

    Perovich, Donald K.; Richter-Menge, Jacqueline A.

    2015-01-01

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323

  6. Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea

    NASA Astrophysics Data System (ADS)

    Plähn, Olaf; Baschek, Burkard; Badewien, Thomas H.; Walter, Maren; Rhein, Monika

    2002-08-01

    Conductivity-temperature-depth tracer and direct current measurements collected in the northern Red Sea in February and March 1999 are used to study the formation of deep and bottom water in that region. Historical data showed that open ocean convection in the Red Sea can contribute to the renewal of intermediate or deep water but cannot ventilate the bottom water. The observations in 1999 showed no evidence for open ocean convection in the Red Sea during the winter 1998/1999. The overflow water from the Gulf of Aqaba was found to be the densest water mass in the northern Red Sea. An anomaly of the chlorofluorocarbon component CFC-12 observed in the Gulf of Aqaba and at the bottom of the Red Sea suggests a strong contribution of this water mass to the renewal of bottom water in the Red Sea. The CFC data obtained during this cruise are the first available for this region. Because of the new signal, it is possible for the first time to subdivide the deep water column into deep and bottom water in the northern Red Sea. The available data set also shows that the outflow water from the Gulf of Suez is not dense enough to reach down to the bottom of the Red Sea but was found about 250 m above the bottom.

  7. Optimization of Phase Change Memory with Thin Metal Inserted Layer on Material Properties

    NASA Astrophysics Data System (ADS)

    Harnsoongnoen, Sanchai; Sa-Ngiamsak, Chiranut; Siritaratiwat, Apirat

    This works reports, for the first time, the thorough study and optimisation of Phase Change Memory (PCM) structure with thin metal inserted chalcogenide via electrical resistivity (ρ) using finite element modeling. PCM is one of the best candidates for next generation non-volatile memory. It has received much attention recently due to its fast write speed, non-destructive readout, superb scalability, and great compatibility with current silicon-based mass fabrication. The setback of PCM is a high reset current typically higher than 1mA based on 180nm lithography. To reduce the reset current and to solve the over-programming failure, PCM with thin metal inserted chalcogenide (bottom chalcogenide/metal inserted/top chalcogenide) structure has been proposed. Nevertheless, reports on optimisation of the electrical resistivity using the finite element method for this new PCM structure have never been published. This work aims to minimize the reset current of this PCM structure by optimizing the level of the electrical resistivity of the PCM profile using the finite element approach. This work clearly shows that PCM characteristics are strongly affected by the electrical resistivity. The 2-D simulation results reveal clearly that the best thermal transfer of and self-joule-heating at the bottom chalcogenide layer can be achieved under conditions; ρ_bottom chalcogenide > ρ_metal inserted > ρ_top chalcogenide More specifically, the optimized electrical resistivity of PCMTMI is attained with ρ_top chalcogenide: ρ_metal inserted: ρ_bottom chalcogenide ratio of 1:6:16 when ρ_top chalcogenide is 10-3 Ωm. In conclusion, high energy efficiency can be obtained with the reset current as low as 0.3mA and with high speed operation of less than 30ns.

  8. Anomalous abundances of deep-sea fauna on a rocky bottom exposed to strong currents

    USGS Publications Warehouse

    Genin, A.; Paull, C.K.; Dillon, William P.

    1992-01-01

    Unusually high abundances of sponges and gorgonian corals, covering as much as 25% of the bottom, occur at depths greater than 3.5 km on the Blake Spur, a rocky cliff-dominated feature on the western Atlantic continental margin. This is the first report of such high abundances of megafauna from a non-hydrothermal or otherwise chemosynthetically enriched site in abyssal depths. Animal densities at other steep rocky sites at similar depths are usually lower by more than an order of magnitude. The deep slope of the Blake Spur is exposed to the vigorous Western Boundary Undercurrent, with local flow speeds that may exceed 100 cm s-1. Currents can control this anomalous animal abundance by removing sediments and by enhancing fluxes, rather than concentrations, of food particles to the dominant suspension feeders. ?? 1992.

  9. Effect of internal tides in the distribution and abundance of microzooplankton in Todos Santos Bay (Ensenada, B.C.)

    NASA Astrophysics Data System (ADS)

    Valencia, A.; Ibañez Tejero, L.; Ladah, L. B.; Sanchez Velasco, L.; Barton, E. D.

    2016-02-01

    Microzooplankton trophically connects phytoplankton and zooplanktonic adults. Their distribution and abundance can be directly related to the inherent physical processes in the marine environment. In coastal waters, the distribution and transport of zooplankton, including microzooplankton, can be influenced by high frequency effects such as internal tides. To date, most of the work on planktonic organisms and their interaction with the internal tide has been focused on a few species, such as barnacles, bryozoans and crabs. The aim of this study was to determine the effect of internal tide on the vertical distribution and abundance of microzooplankton, with an emphasis on copepod nauplii, during the evolution of the internal tide in a summer period of strong thermal stratification. Samples were obtained by vertical plankton net (150 micron mesh) hauls at three depth strata (surface, mid-water and bottom in 25 m depth), independently, with a sampling frequency of every hour. The internal tide was detected by rapid changes in temperature and currents observed with thermistor chains and a bottom-mounted upward looking ADCP. Preliminary results shows a strong mode-1 baroclinic tidal signal. The highest abundance of copepod nauplii and microzooplankton biomass occurred at depth, associated with a strong tidal current. The abundance of copepod nauplii and the abundance of microzooplankton biomass in the surface and intermediate strata showed strong vertical displacements between both strata. Data suggest the vertical distribution of microzooplankton can be dependent on the internal tide.

  10. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Lavaleye, M. M. S.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M. J. N.; de Haas, H.; Brooke, S.; van Weering, T. C. E.

    2014-05-01

    The Cape Lookout cold-water coral area off the coast of North Carolina forms the shallowest and northernmost cold-water coral mound area on the Blake Plateau in the NW Atlantic. Cold-water coral habitats near Cape Lookout are occasionally bathed in the Gulf Stream, which is characterised by oligotrophic warm water and strong surface currents. Here, we present the first insights into the mound distribution and morphology, sedimentary environment and coral cover and near-bed environmental conditions as recorded by bottom landers from this coral area. The mounds occur between 320 and 550 m water depth and are characterised by high acoustic backscatter indicating the presence of hard structure. Three distinct mound morphologies were observed: (1) a mound with a flattened top at 320 m, (2) multi-summited mounds with a teardrop shape in the middle part of the area and (3) a single mound at 540 m water depth. Echosounder profiles show the presence of a strong reflector underneath all mound structures that forms the base of the mounds. This reflector cropped out at the downstream side of the single mound and consists of carbonate slabs. Video analysis revealed that all mounds are covered by Lophelia pertusa and that living colonies only occur close to the summits of the SSW side of the mounds, which is the side that faces the strongest currents. Off-mound areas were characterised by low backscatter and sediment ripples, indicating the presence of relatively strong bottom currents. Two bottom landers were deployed amidst the coral mounds between December 2009 and May 2010. Both landers recorded prominent events, characterised by large fluctuations in environmental conditions near the seabed as well as in the overlying water column. The period between December and April was characterised by several events of increasing temperature and salinity, coinciding with increased flow and near-bed acoustic backscatter. During these events temperature fluctuated by up to 9 °C within a day, which is the largest temperature variability as measured so far in a cold-water coral habitat. Warm events, related to Gulf Stream meanders, had the duration of roughly 1 week and the current during these events was directed to the NNE. The consequences of such events must be significant given the strong effects of temperature on the metabolism of cold-water corals. Furthermore, elevated acoustic backscatter values and high mass fluxes were also recorded during these events, indicating a second stressor that may affect the corals. The abrasive nature of sand in combination with strong currents might sand blast the corals. We conclude that cold-water corals near Cape Lookout live under extreme conditions that limit mound growth at present.

  11. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Lavaleye, M. J. N.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M.; de Haas, H.; Brooke, S.; van Weering, T.

    2013-12-01

    The Cape Lookout cold-water coral area off the coast of North Carolina forms the shallowest and northernmost cold-water coral mound area on the Blake Plateau in the NW Atlantic. Cold-water coral habitats near Cape Lookout are occasionally bathed in the Gulf Stream, which is characterised by oligotrophic warm water and strong surface currents. Here, we present the first insights into the mound distribution and morphology, sedimentary environment and coral cover and near-bed environmental conditions as recorded by bottom landers from this coral area. The mounds occur between 320-550 m water depth and are characterised by high acoustic backscatter indicating the presence of hard structure. Three distinct mound morphologies were observed, (1) a mound with a flattened top at 320 m, (2) multi-summited mounds with a tear drop shape in the middle part of the area and (3) a single mound at 540 m water depth. Echosounder profiles show the presence of a strong reflector underneath all mound structures that forms the base of the mounds. This reflector cropped out at the downstream side of the single mound and consists of carbonate slabs. Video analysis revealed that all mounds are covered by Lophelia pertusa and that living colonies only occur close to the summits of the SSW side of the mounds, which is the side that faces the strongest currents. Off mound areas were characterised by low backscatter and sediment ripples, indicating the presence of relatively strong bottom currents. Two bottom landers were deployed amidst the coral mounds between December 2009 and May 2010. Both landers recorded prominent features near the seabed as well as in the overlying water column. The period between December and April was characterised by several events of increasing temperature and salinity, coinciding with increased flow and near-bed acoustic backscatter. During these events temperature fluctuated by up to 9 °C within a day, which is the largest temperature variability as measured so far in a cold-water coral habitat. Warm events, related to Gulf Stream meanders, had the duration of roughly one week and the current during these events was directed to the NNE. The consequences of such events must be significant given the strong effects of temperature on the metabolism of cold-water corals. Furthermore, elevated acoustic backscatter values and high mass fluxes were also recorded during these events, indicating a second stressor that may affect the corals. The abrasive nature of sand in combination with strong currents might sand blast the corals. We conclude that cold-water corals near Cape Lookout live under extreme conditions that limit mound growth at present.

  12. Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure

    NASA Astrophysics Data System (ADS)

    Brown, W. S.; Marques, G. M.

    2013-07-01

    High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper Outer Zone subregion (33m) bottom current lateral shear and water column stretching/squashing was significant in modulating the eddy motion. We conclude that the transient eddy motions in the GSC region are phase eddies that accompany the change of tide across the GSC and are (1) generated by bottom stress gradients in the shallower nearshore - an issue which needs to be better understood for improved future forecasting.

  13. Western Ross Sea continental slope gravity currents

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin

    2009-06-01

    Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (<-1 °C), salty (>34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real, may reflect the influence of the large iceberg C-19 over Drygalski Trough until its departure in mid-May 2003, when there was a marked decrease in the coldest, saltiest gravity current adjacent to Drygalski Trough. Northward transport of cold, saline, recently ventilated Antarctic Bottom Water observed in March 2004 off Cape Adare was ˜1.7 Sv, including ˜0.4 Sv of High Salinity Shelf Water.

  14. Regional variability in sea ice melt in a changing Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2015-07-13

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Correcting the vertical component of ocean bottom seismometers for the effects of tilt and compliance

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Forsyth, D. W.

    2013-12-01

    Typically there are very high noise levels at long periods on the horizontal components of ocean bottom seismographs due to the turbulent interaction of bottom currents with the seismometer package on the seafloor. When there is a slight tilt of the instrument, some of the horizontal displacement caused by bottom currents leaks onto the vertical component record, which can severely increase the apparent vertical noise. Another major type of noise, compliance noise, is created when pressure variations associated with water (gravity) waves deform the seabed. Compliance noise increases with decreasing water depth, and at water depths of less than a few hundred meters, compliance noise typically obscures most earthquake signals. Following Crawford and Webb (2000), we have developed a methodology for reducing these noise sources by 1-2 orders of magnitude, revealing many events that could not be distinguished before noise reduction. Our methodology relies on transfer functions between different channels. We calculate the compliance noise in the vertical displacement record by applying a transfer function to the differential pressure gauge record. Similarly, we calculate the tilt-induced bottom current noise in the vertical displacement record by applying a transfer function to the horizontal displacement records. Using data from the Cascadia experiment and other experiments, we calculate these transfer functions at a range of stations with varying tilts and water depths. The compliance noise transfer function depends strongly on water depth, and we provide a theoretical and empirical description of this dependence. Tilt noise appears to be very highly correlated with instrument design, with negligible tilt noise observed for the 'abalone' instruments from the Scripps Institute of Oceanography and significant tilt observed for the Woods Hole Oceanographic Institution instruments in the first year deployment of the Cascadia experiment. Tilt orientation appears relatively constant, but we observe significant day-to-day variation in tilt angle, requiring the calculation of a tilt transfer function for each individual day for optimum removal of bottom current noise. In removing the compliance noise, there is some distortion of the signal. We show how to correct for this distortion using theoretical and empirical transfer functions between pressure and displacement records for seismic signals.

  16. Abyssal Upwelling and Downwelling and the role of boundary layers

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Ferrari, R. M.

    2016-02-01

    The bottom-intensified mixing activity arising from the interaction of internal tides with bottom topography implies that the dianeutral advection in the ocean interior is downwards, rather than upwards as is required by continuity. The upwelling of Bottom Water through density surfaces in the deep ocean is however possible because of the sloping nature of the sea floor. A budget study of the abyss (deeper than 2000m) will be described that shows that while the upwelling of Bottom Water might be 25 Sv, this is achieved by very strong upwelling in the bottom turbulent boundary layer (of thickness 50m) of 100 Sv and strong downwelling in the ocean interior of 75 Sv. This downwelling occurs within 10 degrees of longitude of the continental boundaries. This near-boundary confined strong upwelling and downwelling clearly has implications for the Stommel-Arons circulation.

  17. Rapid Changes in Water Properties on a Shallow Reef in the Chesapeake Bay due to a Wind Driven Internal Seiche

    NASA Astrophysics Data System (ADS)

    Kilbourne, B.

    2016-12-01

    The Chesapeake Bay Interpretive Buoy System has collected oceanographic and meteorological observations in Chesapeake Bay from 2007 to the present. The relatively long and well resolved time series of wind, current, and salinity data provided by this array creates an opportunity to better understand the many finescale circulation pathways in Chesapeake Bay. The mean vertical structure of Chesapeake Bay is approximated by a three layer system: a well-mixed surface boundary layer from 1 to 8 m depth, a stratified transition layer from 8 to 15 m depth, and a well-mixed bottom boundary layer from 15 m to the bottom (typically < 30 m). The conditions in the surface and bottom boundary layers can be strikingly different with the bottom layer being saltier, lower in pH, and lower in dissolved oxygen than the surface layer. The Gooses Reef station of this array is located on `Gooses Reef', a shallow bar just 10 m in depth, dividing the Choptank River basin from the main channel of the Chesapeake Bay. This shallow bar provides habitat for oysters, a keystone species in the Chesapeake Bay, and is both commercially and ecologically critical to the region. These shallow habitats are threatened when anoxic (< 0.5 mg l-1 O2) conditions exist in the upper 10 m of the water column. The Gooses Reef station is unique in the array due to the addition of a bottom mounted sensor package; data from August 2012 show rapid changes in the salinity (11 to 17 PSU), dissolved oxygen (6 to 0.05 mg l-1) , and pH (8.3 to 7.7) at the bottom. Investigations of wind and current data before these rapid changes show along channel wind stress oscillations near the M2 tidal frequency. Current profiles from the buoy ADCP show low-frequency along-channel baroclinic oscillations. Observed currents appear to be an internal seiche, forced by resonance between the along-channel wind and diurnal tide. At the Gooses Reef bar, this internal seiche forced the bottom boundary layer up and over the bar, causing the sudden shift in water properties. These observations highlight the strong physical controls on local water conditions in the Chesapeake Bay and similar estuaries.

  18. Variability at Multiple Scales: Using an Array of Current and Pressure Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    DTIC Science & Technology

    2016-11-29

    travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents

  19. Variability at Multiple Scales: Using an Array of Current- and Pressure-Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    DTIC Science & Technology

    2016-11-29

    travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents

  20. Sun-stirred Kraken Mare: Circulation in Titan's seas induced by solar heating and methane precipitation

    NASA Astrophysics Data System (ADS)

    Tokano, T.; Lorenz, R. D.

    2015-10-01

    Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Strong summer precipitation at high latitudes causes compositional stratification and increase of the nearsurface methane mole fraction towards the north pole. The resultant latitudinal density contrast drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. Weak precipitation induces gyres rather than meridional overturning.

  1. Sand waves on an epicontinental shelf: Northern Bering Sea

    USGS Publications Warehouse

    Field, M.E.; Nelson, C.H.; Cacchione, D.A.; Drake, D.E.

    1981-01-01

    Sand waves and current ripples occupy the crests and flanks of a series of large linear sand ridges (20 km ?? 5 km ?? 10 m high) lying in an open-marine setting in the northern Bering Sea. The sand wave area, which lies west of Seward Peninsula and southeast of Bering Strait, is exposed to the strong continuous flow of coastal water northward toward Bering Strait. A hierarchy of three sizes of superimposed bedforms, all facing northward, was observed in successive cruises in 1976 and 1977. Large sand waves (height 2 m; spacing 200 m) have smaller sand waves (height 1 m; spacing 20 m) lying at a small oblique angle on their stoss slopes. The smaller sand waves in turn have linguoid ripples on their stoss slopes. Repeated studies of the sand wave fields were made both years with high-resolution seismic-reflection profiles, side-scan sonographs, underwater photographs, current-meter stations, vibracores, and suspended-sediment samplers. Comparison of seismic and side-scan data collected along profile lines run both years showed changes in sand wave shape that indicate significant bedload transport within the year. Gouge marks made in sediment by keels of floating ice also showed significantly different patterns each year, further documenting modification to the bottom by sediment transport. During calm sea conditions in 1977, underwater video and camera observations showed formation and active migration of linguoid and straight-crested current ripples. Current speeds 1 m above the bottom were between 20 and 30 cm/s. Maximum current velocities and sand wave migration apparently occur when strong southwesterly winds enhance the steady northerly flow of coastal water. Many cross-stratified sand bodies in the geologic record are interpreted as having formed in a tidal- or storm-dominated setting. This study provides an example of formation and migration of large bedforms by the interaction of storms with strong uniform coastal currents in an open-marine setting. ?? 1981.

  2. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    PubMed

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  3. California State Waters Map Series: Drakes Bay and vicinity, California

    USGS Publications Warehouse

    Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.

    2015-01-01

    Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.

  4. The effect of bottom friction on tidal dipolar vortices and the associated transport

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Kamp, Leon; van Heijst, Gertjan

    2016-11-01

    Tidal dipolar vortices can be formed in a semi-enclosed basin as the tides flow in and out through an inlet. If they are strong enough to overcome the opposing tidal currents, these vortices can travel away from the inlet due to their self-propelling mechanism, and hence, act as an efficient transport agent for suspended material. We present results of two-dimensional numerical simulations of the flow through an idealized tidal inlet, with either a linear or a nonlinear parameterization of the bottom friction. We then quantify the effect of the bottom friction on the propagation of the dipolar vortex and on its ability as a transport agent by computing the flushing and residence times of passive particles. Bottom friction is detrimental to the ability of tidal dipolar vortices to propagate and hinders transport away from the inlet. The magnitude of this effect is related to the relative duration of the tidal period as compared to the typical decay time scale of the vortex dipole. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.

  5. An Annual Cycle Of Currents Around Tsushima Island And Resulting Inflow Conditions In The Sea Of Japan

    NASA Astrophysics Data System (ADS)

    Perkins, H.; Teague, W. J.; Chang, K.-I.; Suk, M.-S.; Lee, J.-C.; Book, J. W.; Jacobs, G. A.

    A ten-month long time series of current measurements has been made on two sections across Korea/Tsushima Strait, thus revealing most of an annual cycle of the Tsushima Current that flows into the Japan/East Sea. One section is southwest, the other north- east, of Tsushima Island, giving respectively conditions upstream and downstream of the Island. Along the bathymetric slope upstream of the Island, the current consists of a single, broad stream concentrated in mid-channel. Downstream, this single core is found to have separated into two branches, one on each of the Strait. Between these two near-coastal streams, in the apparent wake of the Island, currents are variable and lack a well-defined mean. This separation persisted during all seasons despite vari- ation in total transport by a factor of two, from 3.5 Sv in October 1999 to 1.7 Sv in January 2000, and despite changes from maximum to minimum stratification. Both branches of the divided current were stronger during high transport and weaker during low transport, but since each branch was measured by only one or two moorings, trans- port estimates for the separate branches are not available. Strongest currents occurred at the surface close to the Korean coast near Ulsan in early fall with low-pass surface currents reaching 90 cm/s during October and November. Farther downstream, outside the measurement area, the two branches define the inflow to the Japan/East Sea. The branch along the Japanese coast remains close to the coast. It undergoes strong annual variability but is steady on shorter time scales. The Korean branch of the current also undergoes strong annual changes but experiences very strong variability, especially in winter. This branch is thought to switch between two paths. The first parallels the Ko- rean coast; the second follows bathymetric contours that lead it back to the Japanese coast. A mechanism for switching between these paths is provided by vorticity asso- ciated with bottom intrusions of cold water in the area. Seasonal variations of flow into the Japan Sea thus depend on the interplay between seasonal variations around Tsushima Island and intrusions of cold bottom water.

  6. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Chen, Youfan; Zhao, Yuanhong; Henze, Daven K.; Zhu, Liye; Song, Yu; Paulot, Fabien; Liu, Xuejun; Pan, Yuepeng; Lin, Yi; Huang, Binxiang

    2018-01-01

    Current estimates of agricultural ammonia (NH3) emissions in China differ by more than a factor of 2, hindering our understanding of their environmental consequences. Here we apply both bottom-up statistical and top-down inversion methods to quantify NH3 emissions from agriculture in China for the year 2008. We first assimilate satellite observations of NH3 column concentration from the Tropospheric Emission Spectrometer (TES) using the GEOS-Chem adjoint model to optimize Chinese anthropogenic NH3 emissions at the 1/2° × 2/3° horizontal resolution for March-October 2008. Optimized emissions show a strong summer peak, with emissions about 50 % higher in summer than spring and fall, which is underestimated in current bottom-up NH3 emission estimates. To reconcile the latter with the top-down results, we revisit the processes of agricultural NH3 emissions and develop an improved bottom-up inventory of Chinese NH3 emissions from fertilizer application and livestock waste at the 1/2° × 2/3° resolution. Our bottom-up emission inventory includes more detailed information on crop-specific fertilizer application practices and better accounts for meteorological modulation of NH3 emission factors in China. We find that annual anthropogenic NH3 emissions are 11.7 Tg for 2008, with 5.05 Tg from fertilizer application and 5.31 Tg from livestock waste. The two sources together account for 88 % of total anthropogenic NH3 emissions in China. Our bottom-up emission estimates also show a distinct seasonality peaking in summer, consistent with top-down results from the satellite-based inversion. Further evaluations using surface network measurements show that the model driven by our bottom-up emissions reproduces the observed spatial and seasonal variations of NH3 gas concentrations and ammonium (NH4+) wet deposition fluxes over China well, providing additional credibility to the improvements we have made to our agricultural NH3 emission inventory.

  7. Prefrontal bore mixing

    NASA Astrophysics Data System (ADS)

    van Haren, Hans; Duineveld, Gerard; de Stigter, Henko

    2017-09-01

    Rainbow Ridge, a 1950 m deep upthrusted ultramafic block along the axis of the Mid-Atlantic Ridge, has an active hydrothermal vent system at 2400 m on its western slope. However, within 1 km from the vent excessive temperatures are barely measurable, probably due to strong turbulent mixing. This mixing is studied here using a 400 m long high-resolution temperature sensor array moored with a 600 m ranging 75 kHz acoustic Doppler current profiler. Rich internal wave turbulence was recorded, characterized by 100-200 m upshoots and >200 m large overturning in particular near the end of the warming phase of the up and down moving tide. These highly nonlinear internal waves of tides interacting with buoyancy frequency waves extend up to 400 m above the sloping bottom of the ridge. While a turbulent "bottom boundary layer" could barely be defined, the more intense turbulence higher up in the water column is suggested to lead to the strong dispersion of the hydrothermal plume.

  8. Dynamics of particle export on the Northwest Atlantic margin

    NASA Astrophysics Data System (ADS)

    Hwang, Jeomshik; Manganini, Steven J.; Montluçon, Daniel B.; Eglinton, Timothy I.

    2009-10-01

    The Northwest Atlantic margin is characterized by high biological productivity in shelf and slope surface waters. In addition to carbon supply to underlying sediments, the persistent, intermediate depth nepheloid layers emanating from the continental shelves, and bottom nepheloid layers maintained by strong bottom currents associated with the southward flowing Deep Western Boundary Current (DWBC), provide conduits for export of organic carbon over the margin and/or to the interior ocean. As a part of a project to understand dynamics of particulate organic carbon (POC) cycling in this region, we examined the bulk and molecular properties of time-series sediment trap samples obtained at 968 m, 1976 m, and 2938 m depths from a bottom-tethered mooring on the New England slope (water depth, 2988 m). Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low Δ 14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radiocarbon mass balance, about 30% (±10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of resuspended sediment. A strong correlation between Δ 14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles. Our results suggest that lateral transport of organic matter, particularly that resulting from sediment resuspension, should be considered in addition to vertical supply of organic matter derived from primary production, in order to understand carbon cycling and export over continental margins.

  9. Sediment movement along the U.S. east coast continental shelf-I. Estimates of bottom stress using the Grant-Madsen model and near-bottom wave and current measurements

    USGS Publications Warehouse

    Lyne, V.D.; Butman, B.; Grant, W.D.

    1990-01-01

    Bottom stress is calculated for several long-term time-series observations, made on the U.S. east coast continental shelf during winter, using the wave-current interaction and moveable bed models of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808; 1982, Journal of Geophysical Research, 87, 469-482). The wave and current measurements were obtained by means of a bottom tripod system which measured current using a Savonius rotor and vane and waves by means of a pressure sensor. The variables were burst sampled about 10% of the time. Wave energy was reasonably resolved, although aliased by wave groupiness, and wave period was accurate to 1-2 s during large storms. Errors in current speed and direction depend on the speed of the mean current relative to the wave current. In general, errors in bottom stress caused by uncertainties in measured current speed and wave characteristics were 10-20%. During storms, the bottom stress calculated using the Grant-Madsen models exceeded stress computed from conventional drag laws by a factor of about 1.5 on average and 3 or more during storm peaks. Thus, even in water as deep as 80 m, oscillatory near-bottom currents associated with surface gravity waves of period 12 s or longer will contribute substantially to bottom stress. Given that the Grant-Madsen model is correct, parameterizations of bottom stress that do not incorporate wave effects will substantially underestimate stress and sediment transport in this region of the continental shelf.

  10. Oceanic response to Typhoon Nari (2007) in the East China Sea

    NASA Astrophysics Data System (ADS)

    Oh, Kyung-Hee; Lee, Seok; Kang, Sok-Kuh; Song, Kyu-Min

    2017-06-01

    The oceanic response to a typhoon in the East China Sea (ECS) was examined using thermal and current structures obtained from ocean surface drifters and a bottom-moored current profiler installed on the right side of the typhoon's track. Typhoon Nari (2007) had strong winds as it passed the central region of the ECS. The thermal structure in the ECS responded to Typhoon Nari (2007) very quickly: the seasonal thermocline abruptly collapsed and the sea surface temperature dropped immediately by about 4°C after the typhoon passed. The strong vertical mixing and surface cooling caused by the typhoon resulted in a change in the thermal structure. Strong near-inertial oscillation occurred immediately after the typhoon passed and lasted for at least 4-5 days, during which a strong vertical current existed in the lower layer. Characteristics of the near-inertial internal oscillation were observed in the middle layer. The clockwise component of the inertial frequency was enhanced in the surface layer and at 63 m depth after the typhoon passed, with these layers almost perfectly out of phase. The vertical shear current was intensified by the interaction of the wind-driven current in the upper layer and the background semi-diurnal tidal current during the arrival of the typhoon, and also by the near-inertial internal oscillation after the typhoon passage. The strong near-inertial internal oscillation persisted without significant interfacial structure after the mixing of the thermocline, which could enhance the vertical mixing over several days.

  11. Acoustic water bottom investigation with a remotely operated watercraft survey system

    NASA Astrophysics Data System (ADS)

    Yamasaki, Shintaro; Tabusa, Tomonori; Iwasaki, Shunsuke; Hiramatsu, Masahiro

    2017-12-01

    This paper describes a remotely operated investigation system developed by combining a modern leisure-use fish finder and an unmanned watercraft to survey water bottom topography and other data related to bottom materials. Current leisure-use fish finders have strong depth sounding capabilities and can provide precise sonar images and bathymetric information. Because these sonar instruments are lightweight and small, they can be used on unmanned small watercraft. With the developed system, an operator can direct the heading of an unmanned watercraft and monitor a PC display showing real-time positioning information through the use of onboard equipment and long-distance communication devices. Here, we explain how the system was developed and demonstrate the use of the system in an area of submerged woods in a lake. The system is low cost, easy to use, and mobile. It should be useful in surveying areas that have heretofore been hard to investigate, including remote, small, and shallow lakes, for example, volcanic and glacial lakes.

  12. A model to determine open or closed cellular convection

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.; Kalnay, E.

    1981-01-01

    A simple mechanism is proposed to explain the observed presence in the atmosphere of open or closed cellular convection. If convection is produced by cooling concentrated near the top of the cloud layer, as in radiative cooling of stratus clouds, it develops strong descending currents which are compensated by weak ascent over most of the horizontal area, and closed cells result. Conversely, heating concentrated near the bottom of a layer, as when an air mass is heated by warm water, results in strong ascending currents compensated by weak descent over most of the area, or open cells. This mechanism is similar to the one suggested by Stommel (1962) to explain the smallness of the oceans' sinking regions. The mechanism is studied numerically by means of a two-dimensional, nonlinear Boussinesq model.

  13. The Late Pleistocene Contourites on Ceara Rise: Stratigraphy, Sedimentology and Paleoceanography

    NASA Astrophysics Data System (ADS)

    Ivanova, E. V.; Murdmaa, I.; Borisov, D.; Seitkalieva, E.; Ovsepyan, E.

    2016-12-01

    The study of sediment cores obtained during the cruises 35 (2012) and 50 (2015) of RV Akademic Ioffe from the Ceara Rise in the western tropical Atlantic strongly supports a significant influence of bottom (contour) currents on the Late Quaternary sedimentation. Seismic evidence of contourites in the study area (migrating contourite sediment waves, furrows) was previously described by Kumar and Embley (1977) and Curry et al. (1995). Widespread distribution of seismic waves on the rise and adjacent areas was suggested by Murdmaa et al (2014) based on the results of high-resolution seismic profiling with SES-2000 deep (4-5 kHz) in 2012. Our sediment cores recovered intercalation of bioturbated clays and silty clays with thin linear or wavy sand and silt layers and lenses implying strong bottom current control on sedimentation. The stratigraphic frame of the reference core AI-3426 retrieved near the summit of the Ceara Rise, at the water depth of 3046 m is based on the foraminiferal (Globorotalia menardii zones), oxygen isotope and AMS-14C data. The core recovered sediments of the last 140 ka with very rich and well-preserved tropical planktic foraminiferal assemblages. G. menardii is common within MIS 1 and 5 and is almost absent in MIS 2-4 and upper MIS 6. The abundance of benthic foraminifers is rather low. However, dominance of Globocassidulina subglobosa in benthic assemblages likely indicates a moderate bottom-current activity on the Ceara Rise during the last glacial. The other 4-5m long sediment cores collected along the seismic profile from the northern and southern slopes demonstrate the similar contourite sedimentological features and insignificant reworking of the Neogene foraminiferal species as inferred from the core AI-3426 along with the significant variations in foraminiferal preservation during the Pleistocene. The study is supported by the projects RSF 14-50-00095, RFBR 14-05-00744 and RFBR 16-35-60111, and Program I3P by RAS.

  14. Environmental Drivers of the Canadian Arctic Megabenthic Communities

    PubMed Central

    Roy, Virginie; Iken, Katrin; Archambault, Philippe

    2014-01-01

    Environmental gradients and their influence on benthic community structure vary over different spatial scales; yet, few studies in the Arctic have attempted to study the influence of environmental gradients of differing spatial scales on megabenthic communities across continental-scales. The current project studied for the first time how megabenthic community structure is related to several environmental factors over 2000 km of the Canadian Arctic, from the Beaufort Sea to northern Baffin Bay. Faunal trawl samples were collected between 2007 and 2011 at 78 stations from 30 to 1000 m depth and patterns in biomass, density, richness, diversity, and taxonomic composition were examined in relation to indirect/spatial gradients (e.g., depth), direct gradients (e.g., bottom oceanographic variables), and resource gradients (e.g., food supply proxies). Six benthic community types were defined based on their biomass-based taxonomic composition. Their distribution was significantly, but moderately, associated with large-scale (100–1000 km) environmental gradients defined by depth, physical water properties (e.g., bottom salinity), and meso-scale (10–100 km) environmental gradients defined by substrate type (hard vs. soft) and sediment organic carbon content. We did not observe a strong decline of bulk biomass, density and richness with depth or a strong increase of those community characteristics with food supply proxies, contrary to our hypothesis. We discuss how local- to meso-scale environmental conditions, such as bottom current regimes and polynyas, sustain biomass-rich communities at specific locations in oligotrophic and in deep regions of the Canadian Arctic. This study demonstrates the value of considering the scales of variability of environmental gradients when interpreting their relevance in structuring of communities. PMID:25019385

  15. A comparative study of thermal characteristics of GaN-based VCSELs with three different typical structures

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Xu, Rong-Bin; Xu, Huan; Ying, Lei-Ying; Zheng, Zhi-Wei; Zhang, Bao-Ping; Li, Mo; Zhang, Jian

    2018-01-01

    Thermal characteristics of GaN-based vertical cavity surface emitting lasers (VCSELs) with three typical structures were investigated both theoretically and experimentally. The simulation results based on a steady state quasi three-dimensional cylindrical model show that the thermal resistance (R th) is affected by cavity length, mesa size, as well as the bottom distributed Bragg reflector (DBR) size, and the detail further depends on different structures. Among different devices, GaN VCSEL with a hybrid cavity formed by one nitride bottom DBR and another dielectric top DBR is featured with lower R th, which is meanwhile affected strongly by the materials of the epitaxial bottom DBR. The main issues affecting the thermal dissipation in VCSELs with double dielectric DBRs are the bottom dielectric DBR and the dielectric current-confinement layer. To validate the simulation results, GaN-based VCSEL bonded on a copper plate was fabricated. R th of this device was measured and the results agreed well with the simulation. This work provides a better understanding of the thermal characteristics of GaN-based VCSELs and is useful in optimizing the structure design and improving the device performance.

  16. Influence of pre-annealing of printed silver electrodes on ultrafast laser ablation of short thin-film transistor channels on flexible substrates

    NASA Astrophysics Data System (ADS)

    Wiig, M. S.; You, C. C.; Brox-Nilsen, C.; Foss, S. E.

    2018-02-01

    The cutoff frequency and current from an organic thin-film transistor (OTFT) are strongly dependent on the length and to some extent on the uniformity of the transistor channel. Reducing the channel length can improve the OTFT performance with the increase in the current and frequency. Picosecond laser ablation of the printed Ag electrodes, compatible with roll-to-roll fabrication, has been investigated. The ablation threshold was found to be similar for the laser wavelengths tested: 515 nm and 1030 nm. Short transistor channels could be opened both after light annealing at 70 °C and after annealing at 140 °C. The channels in the lightly cured films had a significantly less scale formation, which is critical for avoiding shunts in the device. By moving from bottom electrodes fully defined by printing to the bottom electrodes where the transistor channel is opened by the laser, the channel length could be reduced from 40 μm to less than 5 μm.

  17. Seafloor habitat mapping of the New York Bight incorporating sidescan sonar data

    USGS Publications Warehouse

    Lathrop, R.G.; Cole, M.; Senyk, N.; Butman, B.

    2006-01-01

    The efficacy of using sidescan sonar imagery, image classification algorithms and geographic information system (GIS) techniques to characterize the seafloor bottom of the New York Bight were assessed. The resulting seafloor bottom type map was compared with fish trawl survey data to determine whether there were any discernable habitat associations. An unsupervised classification with 20 spectral classes was produced using the sidescan sonar imagery, bathymetry and secondarily derived spatial heterogeneity to characterize homogenous regions within the study area. The spectral classes, geologic interpretations of the study region, bathymetry and a bottom landform index were used to produce a seafloor bottom type map of 9 different bottom types. Examination of sediment sample data by bottom type indicated that each bottom type class had a distinct composition of sediments. Analysis of adult summer flounder, Paralichthys dentatus, and adult silver hake, Merluccius bilinearis, presence/absence data from trawl surveys did not show evidence of strong associations between the species distributions and seafloor bottom type. However, the absence of strong habitat associations may be more attributable to the coarse scale and geographic uncertainty of the trawl sampling data than conclusive evidence that no habitat associations exist for these two species. ?? 2006 Elsevier Ltd. All rights reserved.

  18. Reducing the contact resistance in bottom-contact-type organic field-effect transitors using an AgO x interface layer

    NASA Astrophysics Data System (ADS)

    Minagawa, Masahiro; Kim, Yeongin; Claus, Martin; Bao, Zhenan

    2017-09-01

    Bottom-contact organic field-effect transistors (OFETs) are prepared by inserting an AgO x layer between a pentacene layer and the source-drain electrodes. The contact resistance in the device is ˜8.1 kΩ·cm with an AgO x layer oxidized for 60 s but reaches 116.9 kΩ·cm with a non-oxidized Ag electrode. The drain current and mobility in the OFETs with the AgO x layer increase with the oxidization time and then gradually plateau, and this trend strongly depends on the work function of the Ag surface. Further, the hole injection is enhanced by the presence of Ag2O but inhibited by the presence of AgO.

  19. 49 CFR 537.7 - Pre-model year and mid-model year reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... List the model types in order of increasing average inertia weight from top to bottom down the left... form. List the model types in order of increasing average inertia weight from top to bottom down the... trucks in your fleet that meet the mild and strong hybrid vehicle definitions. For each mild and strong...

  20. 49 CFR 537.7 - Pre-model year and mid-model year reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... List the model types in order of increasing average inertia weight from top to bottom down the left... form. List the model types in order of increasing average inertia weight from top to bottom down the... trucks in your fleet that meet the mild and strong hybrid vehicle definitions. For each mild and strong...

  1. Dynamics of the Sediment Plume Over the Yangtze Bank in the Yellow and East China Seas

    NASA Astrophysics Data System (ADS)

    Luo, Zhifa; Zhu, Jianrong; Wu, Hui; Li, Xiangyu

    2017-12-01

    A distinct sediment plume exists over the Yangtze Bank in the Yellow and East China Seas (YECS) in winter, but it disappears in summer. Based on satellite color images, there are two controversial viewpoints about the formation mechanism for the sediment plume. One viewpoint is that the sediment plume forms because of cross-shelf sediment advection of highly turbid water along the Jiangsu coast. The other viewpoint is that the formation is caused by local bottom sediment resuspension and diffused to the surface layer through vertical turbulent mixing. The dynamic mechanism of the sediment plume formation has been unclear until now. This issue was explored by using a numerical sediment model in the present paper. Observed wave, current, and sediment data from 29 December 2016 to 16 January 2017 were collected near the Jiangsu coast and used to validate the model. The results indicated that the model can reproduce the hydrodynamic and sediment processes. Numerical experiments showed that the bottom sediment could be suspended by the bottom shear stress and diffuse to the surface layer by vertical mixing in winter; however, the upward diffusion is restricted by the strong stratification in summer. The sediment plume is generated locally due to bottom sediment resuspension primarily via tide-induced bottom shear stress rather than by cross-shelf sediment advection over the Yangtze Bank.

  2. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    PubMed

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  3. Sources and fate of microplastics in marine and beach sediments of the Southern Baltic Sea-a preliminary study.

    PubMed

    Graca, Bożena; Szewc, Karolina; Zakrzewska, Danuta; Dołęga, Anna; Szczerbowska-Boruchowska, Magdalena

    2017-03-01

    Microplastics' (particles size ≤5 mm) sources and fate in marine bottom and beach sediments of the brackish are strongly polluted Baltic Sea have been investigated. Microplastics were extracted using sodium chloride (1.2 g cm -3 ). Their qualitative identification was conducted using micro-Fourier-transform infrared spectroscopy (μFT-IR). Concentration of microplastics varied from 25 particles kg -1 d.w. at the open sea beach to 53 particles kg -1  d.w. at beaches of strongly urbanized bay. In bottom sediments, microplastics concentration was visibly lower compared to beach sediments (0-27 particles kg -1  d.w.) and decreased from the shore to the open, deep-sea regions. The most frequent microplastics dimensions ranged from 0.1 to 2.0 mm, and transparent fibers were predominant. Polyester, which is a popular fabrics component, was the most common type of microplastic in both marine bottom (50%) and beach sediments (27%). Additionally, poly(vinyl acetate) used in shipbuilding as well as poly(ethylene-propylene) used for packaging were numerous in marine bottom (25% of all polymers) and beach sediments (18% of all polymers). Polymer density seems to be an important factor influencing microplastics circulation. Low density plastic debris probably recirculates between beach sediments and seawater in a greater extent than higher density debris. Therefore, their deposition is potentially limited and physical degradation is favored. Consequently, low density microplastics concentration may be underestimated using current methods due to too small size of the debris. This influences also the findings of qualitative research of microplastics which provide the basis for conclusions about the sources of microplastics in the marine environment.

  4. Impact of Natural (Storm) and Anthropogenic (Trawl) Resuspension the Sediment Transport on the Gulf of Lion's Shelf (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ferre, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.

    2006-12-01

    Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. On shelves with strong fishing activity, resuspension by bottom trawling processes can modify the scale of natural disturbance by waves and currents. Recent field data shows that the impact of bottom trawls on the resuspension of the fine sediments per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of river-borne particles and shelf sediments on the Gulf of Lion's Shelf. Realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers were developed. Simulations were conducted for a 16-month period to characterize the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediment. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents is controlled by the shear stress, whereas resuspension by the bottom trawler fleet is controlled by its density and distribution. Natural resuspension by waves and currents mostly occurs during short winter episodes, and is concentrated on the inner-shelf. Trawling-induced resuspension, in contrast, occurs regularly throughout the year and is concentrated on the outer shelf. The total annual net resuspension by trawls (8×106 T y-1 is four orders of magnitude lower than the resuspension induced by waves and currents (4×1010 T y-1. However, because trawled regions are located on the outer shelf, closer to the continental slope, export of fine sediment resuspended by trawls (0.6×106 T y-1 is only one order of magnitude lower than export associated with natural resuspension (8×106 T y-1. A simulation combining both resuspension processes reveals a decrease of about 10% in resuspension and export rates, compared with the sum of each individual process.

  5. Connections Among the Spatial and Temporal Structures in Tidal Currents, Internal Bores, and Surficial Sediment Distributions Over the Shelf off Palos Verdes, California

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Xu, Jingping; Signell, Richard P.; Steele, Alex

    2009-01-01

    The topography of the Continental Shelf in the central portion of the Southern California Bight has rapid variations over relatively small spatial scales. The width of the shelf off the Palos Verdes peninsula, just northwest of Los Angeles, California, is only 1 to 3 km. About 7 km southeast of the peninsula, the shelf within San Pedro Bay widens to about 20 km. In 2000, the Los Angeles County Sanitation District began deploying a dense array of moorings in this complex region of the central Southern California Bight to monitor local circulation patterns. Moorings were deployed at 13 sites on the Palos Verdes shelf and within the northwestern portion of San Pedro Bay. At each site, a mooring supported a string of thermistors and an adjacent bottom platform housed an Acoustic Doppler Current Profiler. These instruments collected vertical profiles of current and temperature data continuously for one to two years. The variable bathymetry in the region causes rapid changes in the amplitudes and spatial structures of barotropic tidal currents, internal tidal currents, and in the associated nonlinear baroclinic currents that occur at approximate tidal frequencies. The largest barotropic tidal constituent is M2, the principal semidiurnal tide. The amplitude of this tidal current changes over fairly short along-shelf length scales. Tidal-current amplitudes are largest in the transition region between the two shelves; they increase from about 5 cm/s over the northern San Pedro shelf to nearly 10 cm/s on the southern portion of the Palos Verdes Shelf. Tidal-current amplitudes are then reduced to less than 2 cm/s over the very narrow section of the northern Palos Verdes shelf that lies just 6 km upcoast of the southern sites. Models suggest that the amplitude of the barotropic M2 tidal currents, which propagate toward the northwest primarily as a Kelvin wave, is adjusting to the short topographic length scales in the region. Semidiurnal sea-level oscillations are, as expected, independent of these topographic variations; they have a uniform amplitude and phase structure over the entire region. Because the cross-shelf angle of the seabed over most of the Palos Verdes shelf is 1 to 3 degrees, which is critical for the local generation and/or enhancement of nonlinear characteristics in semidiurnal internal tides, some internal tidal-current events have strong asymmetric current oscillations that are enhanced near the seabed. Near-bottom currents in these events are directed primarily offshore with amplitudes that exceed 30 cm/s. The spatial patterns in these energetic near-bottom currents have fairly short-length scales. They are largest over the inner shelf and in the transition region between the Palos Verdes and San Pedro shelves. This spatial pattern is similar to that found in the barotropic tidal currents. Because these baroclinic currents have an approximate tidal frequency, an asymmetric vertical structure, and a somewhat stable phase, they can produce a non-zero depth-mean flow for periods of a few months. These baroclinic currents can interact with the barotropic tidal current and cause an apparent increase (or decrease) in the estimated barotropic tidal-current amplitude. The apparent amplitude of the barotropic tidal current may change by 30 to 80 percent or more in a current record that is less than three months long. The currents and surficial sediments in this region are in dynamic equilibrium in that the spatial patterns in bottom stresses generated by near-bed currents from surface tides, internal tides, and internal bores partly control the spatial patterns in the local sediments. Coarser sediments are found in the regions with enhanced bottom stresses (that is, over the inner shelf and in the region between the Palos Verdes and San Pedro shelves). Finer sediments are found over the northwestern portion of the Palos Verdes shelf, where near-bottom currents are relatively weak. The nonlinear asymmetries in the i

  6. Transport calculations in the Tasman and Coral seas

    NASA Astrophysics Data System (ADS)

    Thompson, R. O. R. Y.; Veronis, G.

    1980-05-01

    The inverse method ( WUNSCH, Reviews of Geophysics and Space Physics, 16, 583-620, 1978) has been used to determine the flow for a closed-box region in the Tasman and Coral seas. The object of the study was to determine the large scale transport through the region, and in particular, to obtain an updated estimate of the amount of water carried by the East Australian Current. We conclude that there was no evidence of an East Australian Current in late March, 1960, when the only strong, identifiable feature was a cyclonic gyre in the CoralSea. As an East Australian Current has been identified at other times, the flow appears to be transient. A series of experiments testing various aspects of the use of the inverse method in such problems is also reported. Transports in the bottom layer are shown to be sensitive to noise and to the procedure adopted for extrapolating available data to the bottom, particularly in regions of large topographic variations. The importance of working with synoptic, as opposed to climatological, data is demonstrated by the experiments. It is also shown that local eddies can affect solution at relatively distant points.

  7. Observations of Near-Bottom Currents with Low-Cost SeaHorse Tilt Current Meters

    DTIC Science & Technology

    2010-09-30

    DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Observations of Near-Bottom Currents with Low-Cost SeaHorse Tilt...sheremet/ SeaHorse LONG-TERM GOALS The SeaHorse TCM is a low-cost, easy to use, robust current meter based on the drag principle. Use of a large...2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Observations of Near-Bottom Currents with Low-Cost SeaHorse

  8. Seafloor environments within the Boston Harbor- Massachusetts Bay sedimentary system: A regional synthesis

    USGS Publications Warehouse

    Knebel, H.J.; Circe, R.C.

    1995-01-01

    Modern seafloor sedimentary environments within the glaciated, topographically complex Boston Harbor and Massachusetts Bay area have been interpreted and mapped from an extensive collection of sidescan sonar records and supplemental marine geologic data. Three categories of environments are present that reflect the dominant long-term processes of erosion or nondeposition, deposition, and sediment reworking. (1) Environments of erosion or nondeposition comprise exposures of bedrock, glacial drift, coarse lag deposits, and possibly coastal plain rocks that contain sediments (where present) ranging from boulder fields to gravelly sands and occur in areas of relatively strong currents. (2) Environments of deposition contain fine-grained sediments ranging from muddy sands to muds that have accumulated in areas of predominantly weak bottom currents. (3) Environments of sediment reworking contain patches with textures ranging from sandy gravels to muds that have been produced by a combination of erosion and deposition in areas with variable bottom currents. The distribution of sedimentary environments across the Boston Harbor-Massachusetts Bay area is extremely patchy. Locally, this patchiness is due either to modifications of bottom-current strength (caused by the irregular topography and differences in water depth) or to small-scale changes in the supply of fine-grained sediments. Regional patchiness, however, reflects differences in geologic and oceanographic conditions among the estuarine, inner shelf, and basinal parts of the sedimentary system. The estuarine part of the system (Boston Harbor) is a depositional trap for fine-grained sediments because it is protected from large waves, has generally weak and variable tidal currents, and receives a large supply of fine grained detritus from natural and anthropogenic sources. The inner shelf, on the other hand, is largely an area of erosion or nondeposition due to sediment removal and redistribution during past sea-level changes, to sediment resuspension and winnowing by modern waves and currents, and to an inadequate supply of fine-grained sediments. The basinal part of the system (Stellwagen Basin) is mainly a tranquil depositional environment in which fine-grained sediments from several potential sources settle through the water column and accumulate under weak bottom currents. This study indicates areas within the Boston Harbor-Massachusetts Bay sedimentary system where fine-grained sediments and associated contaminants are likely to be either moved or deposited. It also provides a guide to the locations and variability of benthic habitats.

  9. Directional bottom roughness associated with waves, currents, and ripples

    USGS Publications Warehouse

    Sherwood, Christopher R.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    Roughness lengths are used in wave-current bottom boundary layer models to parameterize drag associated with grain roughness, the effect of saltating grains during sediment transport, and small-scale bottom topography (ripples and biogenic features). We made field measurements of flow parameters and recorded sonar images of ripples at the boundary of a sorted-bedform at ~12-m depth on the inner shelf for a range of wave and current conditions over two months. We compared estimates of apparent bottom roughness inferred from the flow measurements with bottom roughness calculated using ripple geometry and the Madsen (1994) one-dimensional (vertical) wave-current bottom boundary layer model. One result of these comparisons was that the model over predicted roughness of flow from the dormant large ripples when waves were small. We developed a correction to the ripple-roughness model that incorporates an apparent ripple wavelength related to the combined wave-current flow direction. This correction provides a slight improvement for low-wave conditions, but does not address several other differences between observations and the modeled roughness.

  10. Map of Distribution of Bottom Sediments on the Continental Shelf, Gulf of Alaska

    USGS Publications Warehouse

    Evans, Kevin R.; Carlson, Paul R.; Hampton, Monty A.; Marlow, Michael S.; Barnes, Peter W.

    2000-01-01

    Introduction The U.S. Geological Survey has a long history of exploring marine geology in the Gulf of Alaska. As part of a cooperative program with other federal and state agencies, the USGS is investigating the relations between ocean-floor geology and benthic marine biohabitats. This bottom sediment map, compiled from published literature will help marine biologists develop an understanding of sea-floor geology in relation to various biological habitats. The pattern of sea-floor sedimentation and bottom morphology in the Gulf of Alaska reflects a complex interplay of regional tectonism, glacial advances and retreats, oceanic and tidal currents, waves, storms, eustatic change, and gravity-driven processes. This map, based on numerous cruises during the period of 1970-1996, shows distribution of bottom sediments in areas of study on the continental shelf. The samples were collected with piston, box, and gravity corers, and grab samplers. The interpretations of sediment distribution are the products of sediment size analyses combined with interpretations of high-resolution seismic reflection profiles. The sea floor was separated into several areas as follows: Cook Inlet -- Hazards studies in this embayment emphasized sediment distribution, sediment dynamics, bedforms, shallow faults, and seafloor stability. Migrating mega-sandwaves, driven by strong tidal currents, influence seabed habitats and stability of the seafloor, especially near pipelines and drilling platforms. The coarseness of the bottom sediment reinforces the influence of the strong tidal currents on the seafloor habitats. Kodiak Shelf -- Tectonic framework studies demonstrate the development of an accretionary wedge as the Pacific Plate underthrusts the Alaskan landmass. Seismic data across the accretionary wedge reveal anomalies indicative of fluid/gas vent sites in this segment of the continental margin. Geologic hazards research shows that movement along numerous shallow faults poses a risk to sea floor structures. Sea-floor sediment on shallow banks is eroded by seasonal wave-generated currents. The winnowing action of the large storm waves results in concentrations of gravel over broad segments of the Kodiak shelf. Northeastern Gulf of Alaska -- Tectonic framework studies demonstrate that rocks of distant origin (Yakutat terrane) are currently attached to and moving with the Pacific Plate, as it collides with and is subducted beneath southern Alaska. This collision process has led to pronounced structural deformation of the continental margin and adjacent southern Alaska. Consequences include rapidly rising mountains and high fluvial and glacial sedimentation rates on the adjacent margin and ocean floor. The northeastern Gulf of Alaska shelf also has concentrations of winnowed (lag) gravel on Tarr Bank and on the outer shelf southeast of Yakutat Bay. Between Kayak Island and Yakutat Bay the outer shelf consists of pebbly mud (diamict). This diamict is a product of glacial marine sedimentation during the Pleistocene and is present today as a relict sediment. A prograding wedge of Holocene sediment consisting of nearshore sand grading seaward into clayey silt and silty clay covers the relict pebbly mud to mid-shelf and beyond. Shelf and slope channel systems transport glacially derived sediment across the continental margin into Surveyor Channel, an abyssal fan and channel system that reaches over 1,000 km to the Aleutian Trench.

  11. Estimates of suspended-sediment flux and bedform activity on the inner portion of the Eel continental shelf

    USGS Publications Warehouse

    Cacchione, D.A.; Wiberg, P.L.; Lynch, J.; Irish, J.; Traykovski, P.

    1999-01-01

    Energetic waves, strong bottom currents, and relatively high rates of sediment discharge from the Eel River combined to produce large amounts of suspended-sediment transport on the inner continental shelf near the Eel River during the winter of 1995-1996. Bottom-boundary-layer (BBL) measurements at a depth of ~50 m using the GEOPROBE tripod showed that the strongest near-bottom flows (combined wave and current speeds of over 1 m/s) and highest sediment concentrations (exceeding 2 g/l at ~1.2 m above the bed) occurred during two storms, one in December 1995 and the other in February 1996. Discharge from the Eel River during these storms was estimated at between 2 and 4 x 103 m3/s. Suspended-sediment flux (SSF) was measured 1.2 m above the bed and calculated throughout the BBL, by applying the tripod data to a shelf sediment-transport model. These results showed initially northward along-shelf SSF during the storms, followed by abrupt and persistent southward reversals. Along-shelf flux was more pronounced during and after the December storm than in February. Across-shelf SSF over the entire measurement period was decidedly seaward. This seaward transport could be responsible for surficial deposits of recent sediment on the outer shelf and upper continental slope in this region. Sediment ripples and larger bedforms were observed in the very fine to fine sand at 50-m depth using a sector-scanning sonar mounted on the tripod. Ripple wavelengths estimated from the sonar images were about 9 cm, which compared favorably with photographs of the bottom taken with a camera mounted on the tripod. The ripple patterns were stable during periods of low combined wave-current bottom stresses, but changed significantly during high-stress events, such as the February storm. Two different sonic altimeters recorded changes in bed elevation of 10 to 20 cm during the periods of measurement. These changes are thought to have been caused principally by the migration of low-amplitude, long-wavelength sand waves into the measurement area.

  12. Possible Significance of Early Paleozoic Fluctuations in Bottom Current Intensity, Northwest Iapetus Ocean

    NASA Astrophysics Data System (ADS)

    Lash, Gary G.

    1986-06-01

    Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.

  13. Processes controlling the remobilization of surficial sediment and formation of sedimentary furrows in north-central Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; Knebel, H.J.; Lewis, R.S.; DiGiacomo-Cohen, M. L.

    2002-01-01

    Sidescan sonar, bathymetric, subbottom, and bottom-photographic surveys and sediment sampling have improved our understanding of the processes that control the complex distribution of bottom sediments and benthic habitats in Long Island Sound. Although the deeper (>20 m) waters of the central Sound are long-term depositional areas characterized by relatively weak bottom-current regimes, our data reveal the localized presence of sedimentary furrows. These erosional bedforms occur in fine-grained cohesive sediments (silts and clayey silts), trend east-northeast, are irregularly spaced, and have indistinct troughs with gently sloping walls. The average width and relief of the furrows is 9.2 m and 0.4 m, respectively. The furrows average about 206 m long, but range in length from 30 m to over 1,300 m. Longitudinal ripples, bioturbation, and nutclam shell debris are common within the furrows. Although many of the furrows appear to end by gradually narrowing, some furrows show a "tuning fork" joining pattern. Most of these junctions open toward the east, indicating net westward sediment transport. However, a few junctions open toward the west suggesting that oscillating tidal currents are the dominant mechanism controlling furrow formation. Sedimentary furrows and longitudinal ripples typically form in environments which have recurring, directionally stable, and occasionally strong currents. The elongate geometry and regional bathymetry of Long Island Sound combine to constrain the dominant tidal and storm currents to east-west flow directions and permit the development of these bedforms. Through resuspension due to biological activity and the subsequent development of erosional bedforms, fine-grained cohesive sediment can be remobilized and made available for transport farther westward into the estuary.

  14. Processes controlling the remobilization of surficial sediment and formation of sedimentary furrows in North-Central Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; Knebel, H.J.; Lewis, R.S.; DiGiacomo-Cohen, M. L.

    2002-01-01

    Sidescan sonar, bathymetric, subbottom, and bottom-photographic surveys and sediment sampling have improved our understanding of the processes that control the complex distribution of bottom sediments and benthic habitats in Long Island Sound. Although the deeper (>20 m) waters of the central Sound are long-term depositional areas characterized by relatively weak bottom-current regimes, our data reveal the localized presence of sedimentary furrows. These erosional bedforms occur in fine-grained cohesive sediments (silts and clayey silts), trend east-northeast, are irregularly spaced, and have indistinct troughs with gently sloping walls. The average width and relief of the furrows is 9.2 m and 0.4 m, respectively. The furrows average about 206 m long, but range in length from 30 m to over 1,300 m. Longitudinal ripples, bioturbation, and nutclam shell debris are common within the furrows. Although many of the furrows appear to end by gradually narrowing, some furrows show a "tuning fork" joining pattern. Most of these junctions open toward the east, indicating net westward sediment transport. However, a few junctions open toward the west suggesting that oscillating tidal currents are the dominant mechanism controlling furrow formation. Sedimentary furrows and longitudinal ripples typically form in environments which have recurring, directionally stable, and occasionally strong currents. The elongate geometry and regional bathymetry of Long Island Sound combine to constrain the dominant tidal and storm currents to east-west flow directions and permit the development of these bedforms. Through resuspension due to biological activity and the subsequent development of erosional bedforms, fine-grained cohesive sediment can be remobilized and made available for transport farther westward into the estuary.

  15. Bottom-current and wind-pattern changes as indicated by Late Glacial and Holocene sediments from western Lake Geneva (Switzerland)

    USGS Publications Warehouse

    Girardclos, S.; Baster, I.; Wildi, W.; Pugin, A.; Rachoud-Schneider, A. -M.

    2003-01-01

    The Late-Glacial and Holocene sedimentary history of the Hauts-Monts area (western Lake Geneva, Switzerland) is reconstructed combining high resolution seismic stratigraphy and well-dated sedimentary cores. Six reflections and seismic units are defined and represented by individual isopach maps, which are further combined to obtain a three-dimensional age-depth model. Slumps, blank areas and various geometries are identified using these seismic data. The sediment depositional areas have substantially changed throughout the lake during the end of the Late-Glacial and the Holocene. These changes are interpreted as the result of variations in the intensity of deep lake currents and the frequency of strong winds determining the distribution of sediment input from the Versoix River and from reworking of previously deposited sediments within the lacustrine basin. The identified changes in sediment distribution allowed us to reconstruct the lake's deep-current history and the evolution of dominant strong wind regimes from the Preboreal to present times.

  16. The vertical structure of the circulation and dynamics in Hudson Shelf Valley

    USGS Publications Warehouse

    Lentz, Steven J.; Butman, Bradford; Harris, Courtney K.

    2014-01-01

    Hudson Shelf Valley is a 20–30 m deep, 5–10 km wide v-shaped submarine valley that extends across the Middle Atlantic Bight continental shelf. The valley provides a conduit for cross-shelf exchange via along-valley currents of 0.5 m s−1 or more. Current profile, pressure, and density observations collected during the winter of 1999–2000 are used to examine the vertical structure and dynamics of the flow. Near-bottom along-valley currents having times scales of a few days are driven by cross-shelf pressure gradients setup by wind stresses, with eastward (westward) winds driving onshore (offshore) flow within the valley. The along-valley momentum balance in the bottom boundary layer is predominantly between the pressure gradient and bottom stress because the valley bathymetry limits current veering. Above the bottom boundary layer, the flow veers toward an along-shelf (cross-valley) orientation and a geostrophic balance with some contribution from the wind stress (surface Ekman layer). The vertical structure and strength of the along-valley current depends on the magnitude and direction of the wind stress. During offshore flows driven by westward winds, the near-bottom stratification within the valley increases resulting in a thinner bottom boundary layer and weaker offshore currents. Conversely, during onshore flows driven by eastward winds the near-bottom stratification decreases resulting in a thicker bottom boundary layer and stronger onshore currents. Consequently, for wind stress magnitudes exceeding 0.1 N m−2, onshore along-valley transport associated with eastward wind stress exceeds the offshore transport associated with westward wind stress of the same magnitude.

  17. Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk

    NASA Astrophysics Data System (ADS)

    Cieślikiewicz, Witold; Dudkowska, Aleksandra; Gic-Grusza, Gabriela; Jędrasik, Jan

    2017-11-01

    The principal goal of this study is to get some preliminary insights about the intensity of water movement generated by wind waves, and due to the currents in the bottom waters of Gulf of Gdańsk, during severe storms. The Gulf of Gdańsk is located in the southern Baltic Sea. This paper presents the results of analysis of wave and current-induced velocities during extreme wind conditions, which are determined based on long-term historical records. The bottom velocity fields originated from wind wave and wind currents, during analysed extreme wind events, are computed independently of each other. The long-term wind wave parameters for the Baltic Sea region are derived from the 44-year hindcast wave database generated in the framework of the project HIPOCAS funded by the European Union. The output from the numerical wave model WAM provides the boundary conditions for the model SWAN operating in high-resolution grid covering the area of the Gulf of Gdańsk. Wind current velocities are calculated with the M3D hydrodynamic model developed in the Institute of Oceanography of the University of Gdańsk based on the POM model. The three dimensional current fields together with trajectories of particle tracers spreading out of bottom boundary layer are modelled, and the calculated fields of bottom velocities are presented in the form of 2D maps. During northerly winds, causing in the Gulf of Gdańsk extreme waves and most significant wind-driven circulation, the wave-induced bottom velocities are greater than velocities due to currents. The current velocities in the bottom layer appeared to be smaller by an order of magnitude than the wave-induced bottom orbital velocities. Namely, during most severe northerly storms analysed, current bottom velocities ranged about 0.1-0.15 m/s, while the root mean square of wave-induced near-seabed velocities reached maximum values of up to 1.4 m/s in the southern part of Gulf of Gdańsk.

  18. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea

    PubMed Central

    Stalder, Claudio; Vertino, Agostina; Rosso, Antonietta; Rüggeberg, Andres; Pirkenseer, Claudius; Spangenberg, Jorge E.; Spezzaferri, Silvia; Camozzi, Osvaldo; Rappo, Sacha; Hajdas, Irka

    2015-01-01

    Cold-water coral (CWC) ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago). However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata) that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents PMID:26447699

  19. MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2011-09-01

    This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottommore » of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.« less

  20. Long-term observations of bottom conditions and sediment movement on the Atlantic continental shelf; time-lapse photography from instrumented tripod

    USGS Publications Warehouse

    Butman, Bradford; Bryden, Cynthia G.; Pfirman, Stephanie L.; Strahle, William J.; Noble, Marlene A.

    1984-01-01

    An instrument system that measures bottom current, temperature, light transmission, and pressure, and that photographs the bottom at 2- to 6-hour intervals has been developed to study sediment transport on the Atlantic Continental Shelf. Instruments have been deployed extensively along the United States East Coast Continental Shelf for periods of from 2 to 6 months to study the frequency, direction, and rate of bottom sediment movement, and the processes causing movement. The time-lapse photographs are used to (1) characterize the bottom benthic community and surface microtopography; (2) monitor changes in the bottom topography and near-bottom water column caused by currents and storms (for example, ripple generation and migration, sediment resuspension); and (3) monitor seasonal changes in the bottom benthic community and qualitative effects of this community on the bottom sediments.

  1. Southward flow on the western flank of the Florida Current

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Hirons, Amy; Maingot, Christopher; Dean, Cayla W.; Dodge, Richard E.; Yankovsky, Alexander E.; Wood, Jon; Weisberg, Robert H.; Luther, Mark E.; McCreary, Julian P.

    2017-07-01

    A suite of long-term in situ measurements in the Straits of Florida, including the ADCP bottom moorings at an 11-m isobath and 244-m isobath (Miami Terrace) and several ADCP ship transects, have revealed a remarkable feature of the ocean circulation - southward flow on the western, coastal flank of the Florida Current. We have observed three forms of the southward flow - a seasonally varying coastal countercurrent, an undercurrent jet attached to the Florida shelf, and an intermittent undercurrent on the Miami Terrace. According to a 13-year monthly climatology obtained from the near-shore mooring, the coastal countercurrent is a persistent feature from October through January. The southward flow in the form of an undercurrent jet attached to the continental slope was observed during five ship transects from April through September but was not observed during three transects in February, March, and November. This undercurrent jet is well mixed due to strong shear at its top associated with the northward direction of the surface flow (Florida Current) and friction at the bottom. At the same time, no statistically significant seasonal cycle has been observed in the undercurrent flow on the Miami Terrace. Theoretical considerations suggest that several processes could drive the southward current, including interaction between the Florida Current and the shelf, as well as forcing that is independent of the Florida Current. The exact nature of the southward flow on the western flank of the Florida Current is, however, unknown.

  2. Distribution of biogenic silica and quartz in recent deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Leinen, Margaret; Cwienk, Douglas; Heath, G. Ross; Biscaye, Pierre E.; Kolla, V.; Thiede, Jørn; Dauphin, J. Paul

    1986-03-01

    All available quartz and biogenic silica concentrations from deep-sea surface sediments were intercalibrated, plotted, and contoured on a calcium-carbonate-free basis. The maps show highest concentrations of biogenic silica (opal) along the west African coast, along equatorial divergences in all oceans, and at the Polar Front in the southern Indian Ocean. These are all areas where upwelling is strong and there is high biological productivity. Quartz in pelagic sediments deposited far from land is generally eolian in origin. Its distribution reflects dominant wind systems in the Pacific, but in much of the Atlantic and Indian oceans the distribution pattern is strongly modified by turbidite deposition and bottom current processes.

  3. Diurnal tides in the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Kowalik, Z.; Proshutinsky, A. Y.

    1993-01-01

    A 2D numerical model with a space grid of about 14 km is applied to calculate diurnal tidal constituents K(1) and O(1) in the Arctic Ocean. Calculated corange and cotidal charts show that along the continental slope, local regions of increased sea level amplitude, highly variable phase and enhanced currents occur. It is shown that in these local regions, shelf waves (topographic waves) of tidal origin are generated. In the Arctic Ocean and Northern Atlantic Ocean more than 30 regions of enhanced currents are identified. To prove the near-resonant interaction of the diurnal tides with the local bottom topography, the natural periods of oscillations for all regions have been calculated. The flux of energy averaged over the tidal period depicts the gyres of semitrapped energy, suggesting that the shelf waves are partially trapped over the irregularities of the bottom topography. It is shown that the occurrence of near-resonance phenomenon changes the energy flow in the tidal waves. First, the flux of energy from the astronomical sources is amplified in the shelf wave regions, and afterwards the tidal energy is strongly dissipated in the same regions.

  4. Relationships between contourite deposition, climate and slope instability: new insights from the Demerara Plateau (French Guyana)

    NASA Astrophysics Data System (ADS)

    Tallobre, C.; Bassetti, M. A.; Loncke, L.; Giresse, P.; Bayon, G.; Buscail, R.

    2015-12-01

    A Contourite Depositional System (CDS) has been described at the Demerara Plateau (DP) based on seismic investigations, but little is known about the mechanisms of associated sediment deposition and its interaction with past deep ocean circulation patterns (e.g. bottom current velocity) and bottom morphology related to ancient event of slope instability. The new seismic and bathymetric data recently acquired allow describing in details the CDS on the DP. Erosional and syn-sedimentary features on the seafloor (comet tail, « longitudinal waves », contourite drifts and moats) have been observed, helping to constrain the sedimentary processes at the origin of the CDS construction. Also, the recovery and multi-proxy analysis of sediment cores allows the characterization of sedimentary environments and possible relation with climate forcing. These sediment cores are characterized by the presence of several beds rich in glauconite grains. Glauconite can form at the sediment/water interface by winnowing effect that prevent sediment deposition and increase the residence time at the seafloor. Under strong winnowing conditions, glauconite grains can develop at several stages of maturity. We observed that the residence time and hence the maturity of glauconite is reflected by the color changes (light to dark green), the presence of crack on grains, the formation of (secondary) glauconite lamellae and decrease of grain porosity. A chronological framework (based on radiocarbon dates and δ18O variations) of contourite sequences at the studied location indicates correlation with grain-size parameters (sortable silt) and allows one to further constrain their dynamics through time. The combination of these proxies allows us to estimate and understand the evolution and the impact of the bottom current on sedimentation on the DP during the last 80 ky. These results show the potentiality of the glauconite study to estimate the relative variation of bottom current velocity at margins.

  5. An Optimized Combined Wave and Current Bottom Boundary Layer Model for Arbitrary Bed Roughness

    DTIC Science & Technology

    2017-06-30

    Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Flood and Storm Protection Division (HF), Coastal ...ER D C/ CH L TR -1 7- 11 Coastal Inlets Research Program An Optimized Combined Wave and Current Bottom Boundary Layer Model for...client/default. Coastal Inlets Research Program ERDC/CHL TR-17-11 June 2017 An Optimized Combined Wave and Current Bottom Boundary Layer Model

  6. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis.

    PubMed

    Vidal, Mayra C; Murphy, Shannon M

    2018-01-01

    Primary consumers are under strong selection from resource ('bottom-up') and consumer ('top-down') controls, but the relative importance of these selective forces is unknown. We performed a meta-analysis to compare the strength of top-down and bottom-up forces on consumer fitness, considering multiple predictors that can modulate these effects: diet breadth, feeding guild, habitat/environment, type of bottom-up effects, type of top-down effects and how consumer fitness effects are measured. We focused our analyses on the most diverse group of primary consumers, herbivorous insects, and found that in general top-down forces were stronger than bottom-up forces. Notably, chewing, sucking and gall-making herbivores were more affected by top-down than bottom-up forces, top-down forces were stronger than bottom-up in both natural and controlled (cultivated) environments, and parasitoids and predators had equally strong top-down effects on insect herbivores. Future studies should broaden the scope of focal consumers, particularly in understudied terrestrial systems, guilds, taxonomic groups and top-down controls (e.g. pathogens), and test for more complex indirect community interactions. Our results demonstrate the surprising strength of forces exerted by natural enemies on herbivorous insects, and thus the necessity of using a tri-trophic approach when studying insect-plant interactions. © 2017 John Wiley & Sons Ltd/CNRS.

  7. Current induced domain wall motion in antiferromagnetically coupled (Co70Fe30/Pd) multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoliang; He, Shikun; Huang, Lisen; Qiu, Jinjun; Zhou, Tiejun; Panagopoulos, Christos; Han, Guchang; Teo, Kie-Leong

    2016-10-01

    We investigate the current induced domain wall (DW) motion in the ultrathin CoFe/Pd multilayer based synthetically antiferromagnetic (SAF) structure nanowires by anomalous Hall effect measurement. The threshold current density (Jth) for the DW displacement decreases and the DW velocity (v) increases accordingly with the exchange coupling Jex between the top and bottom ferromagnetic CoFe/Pd multilayers. The lowest Jth = 9.3 × 1010 A/m2 and a maximum v = 150 m/s with J = 1.5 × 1012 A/m2 are achieved due to the exchange coupling torque (ECT) generated in the SAF structure. The strength of ECT is dependent on both of Jex and the strong spin-orbit torque mainly generated by Ta layer.

  8. Alongshore momentum transfer to the nearshore zone from energetic ocean waves generated by passing hurricanes

    NASA Astrophysics Data System (ADS)

    Mulligan, Ryan P.; Hanson, Jeffrey L.

    2016-06-01

    Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.

  9. Bottom-boundary-layer measurements on the continental shelf off the Ebro River, Spain

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.; Losada, M.A.; Medina, R.

    1990-01-01

    Measurements of currents, waves and light transmission obtained with an instrumented bottom tripod (GEOPROBE) were used in conjunction with a theoretical bottom-boundary-layer model for waves and currents to investigate sediment transport on the continental shelf south of the Ebro River Delta, Spain. The current data show that over a 48-day period during the fall of 1984, the average transport at 1 m above the seabed was alongshelf and slightly offshore toward the south-southwest at about 2 cm/s. A weak storm passed through the region during this period and caused elevated wave and current speeds near the bed. The bottom-boundary-layer model predicted correspondingly higher combined wave and current bottom shear velocities at this time, but the GEOPROBE optical data indicate that little to no resuspension occurred. This result suggests that the fine-grained bottom sediment, which has a clay component of 80%, behaves cohesively and is more difficult to resuspend than noncohesive materials of similar size. Model computations also indicate that noncohesive very fine sand in shallow water (20 m deep) was resuspended and transported mainly as bedload during this storm. Fine-grained materials in shallow water that are resuspended and transported as suspended load into deeper water probably account for the slight increase in sediment concentration at the GEOPROBE sensors during the waning stages of the storm. The bottom-boundary-layer data suggest that the belt of fine-grained bottom sediment that extends along the shelf toward the southwest is deposited during prolonged periods of low energy and southwestward bottom flow. This pattern is augmented by enhanced resuspension and transport toward the southwest during storms. ?? 1990.

  10. Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests

    DTIC Science & Technology

    2013-09-30

    bottom form stress (pressure force) and bottom boundary layers – all the aspects associated with turbulent flows over steep topography in the presence of...filaments, and eddies; topographic current separation, form stress , and submesoscale vortex generation; Our work on isoneutral diffusion for tracers...Bump region, are due to the contribution of the bottom stress curl. Fig. 4 shows how the Gulf Stream path is directly linked to the Bottom Pressure

  11. An instrument system for long-term sediment transport studies on the continental shelf

    USGS Publications Warehouse

    Butman, Bradford; Folger, David W.

    1979-01-01

    A bottom-mounted instrument system has been designed and built to monitor processes of bottom sediment movement on the continental shelf. The system measures bottom current speed and direction, pressure, temperature, and light transmission and photographs the bottom. The system can be deployed for periods of 2–6 months to monitor intermitent processes of sediment movement such as storms and to assess seasonal variability. Deployments of the system on the U.S. east coast continental shelf show sediment resuspension and changes in bottom microtopography due to surface waves, tidal currents, and storms.

  12. Seafloor environments in the Long Island Sound estuarine system

    USGS Publications Warehouse

    Knebel, H.J.; Signell, R.P.; Rendigs, R. R.; Poppe, L.J.; List, J.H.

    1999-01-01

    Four categories of modern seafloor sedimentary environments have been identified and mapped across the large, glaciated, topographically complex Long Island Sound estuary by means of an extensive regional set of sidescan sonographs, bottom samples, and video-camera observations and supplemental marine-geologic and modeled physical-oceanographic data. (1) Environments of erosion or nondeposition contain sediments which range from boulder fields to gravelly coarse-to-medium sands and appear on the sonographs either as patterns with isolated reflections (caused by outcrops of glacial drift and bedrock) or as patterns of strong backscatter (caused by coarse lag deposits). Areas of erosion or nondeposition were found across the rugged seafloor at the eastern entrance of the Sound and atop bathymetric highs and within constricted depressions in other parts of the basin. (2) Environments of bedload transport contain mostly coarse-to-fine sand with only small amounts of mud and are depicted by sonograph patterns of sand ribbons and sand waves. Areas of bedload transport were found primarily in the eastern Sound where bottom currents have sculptured the surface of a Holocene marine delta and are moving these sediments toward the WSW into the estuary. (3) Environments of sediment sorting and reworking comprise variable amounts of fine sand and mud and are characterized either by patterns of moderate backscatter or by patterns with patches of moderate-to-weak backscatter that reflect a combination of erosion and deposition. Areas of sediment sorting and reworking were found around the periphery of the zone of bedload transport in the eastern Sound and along the southern nearshore margin. They also are located atop low knolls, on the flanks of shoal complexes, and within segments of the axial depression in the western Sound. (4) Environments of deposition are blanketed by muds and muddy fine sands that produce patterns of uniformly weak backscatter. Depositional areas occupy broad areas of the basin floor in the western part of the Sound. The regional distribution of seafloor environments reflects fundamental differences in marine-geologic conditions between the eastern and western parts of the Sound. In the funnel-shaped eastern part, a gradient of strong tidal currents coupled with the net nontidal (estuarine) bottom drift produce a westward progression of environments ranging from erosion or nondeposition at the narrow entrance to the Sound, through an extensive area of bedload transport, to a peripheral zone of sediment sorting. In the generally broader western part of the Sound, a weak tidal-current regime combined with the production of particle aggregates by biologic or chemical processes, cause large areas of deposition that are locally interrupted by a patchy distribution of various other environments where the bottom currents are enhanced by and interact with the seafloor topography.

  13. Shoaling of nonlinear internal waves in Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.C.; Butman, B.; Pineda, J.

    2008-01-01

    The shoaling of the nonlinear internal tide in Massachusetts Bay is studied with a fully nonlinear and nonhydrostatic model. The results are compared with current and temperature observations obtained during the August 1998 Massachusetts Bay Internal Wave Experiment and observations from a shorter experiment which took place in September 2001. The model shows how the approaching nonlinear undular bore interacts strongly with a shoaling bottom, offshore of where KdV theory predicts polarity switching should occur. It is shown that the shoaling process is dominated by nonlinearity, and the model results are interpreted with the aid of a two-layer nonlinear but hydrostatic model. After interacting with the shoaling bottom, the undular bore emerges on the shallow shelf inshore of the 30-m isobath as a nonlinear internal tide with a range of possible shapes, all of which are found in the available observational record. Copyright 2008 by the American Geophysical Union.

  14. 75 FR 5708 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... suspended by wave action near the bottom, and are moved by bottom currents or directly as bedload. Tidal, wind and wave forces contribute to generating bottom currents, which act in relation to the sediment... littoral zone, limit wave effects due to mounding, and keep material from reentering the navigation channel...

  15. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait.

    PubMed

    Droghei, R; Falcini, F; Casalbore, D; Martorelli, E; Mosetti, R; Sannino, G; Santoleri, R; Chiocci, F L

    2016-11-03

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary "current" that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  16. Deep water characteristics and circulation in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin

    2018-04-01

    This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.

  17. Comparative ontogenetic behavior and migration of kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, from the Amur River

    USGS Publications Warehouse

    Zhuang, P.; Kynard, B.; Zhang, L.; Zhang, T.; Cao, W.

    2003-01-01

    We conducted laboratory experiments with kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, to develop a conceptual model of early behavior. We daily observed embryos (first life phase after hatching) and larvae (period initiating exogenous feeding) to day-30 (late larvae) for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Day-0 embryos of both species strongly preferred bright, open habitat and initiated a strong, downstream migration that lasted 4 days (3 day peak) for kaluga and 3 days (2 day peak) for Amur sturgeon. Kaluga migrants swam far above the bottom (150 cm) on only 1 day and moved day and night; Amur sturgeon migrants swam far above the bottom (median 130 cm) during 3 days and were more nocturnal than kaluga. Post-migrant embryos of both species moved day and night, but Amur sturgeon used dark, cover habitat and swam closer to the bottom than kaluga. The larva period of both species began on day 7 (cumulative temperature degree-days, 192.0 for kaluga and 171.5 for Amur sturgeon). Larvae of both species preferred open habitat. Kaluga larvae strongly preferred bright habitat, initially swam far above the bottom (median 50-105 cm), and migrated downstream at night during days 10-16 (7-day migration). Amur sturgeon larvae strongly avoided illumination, had a mixed response to white substrate, swam 20-30 cm above the bottom during most days, and during days 12-34 (most of the larva period) moved downstream mostly at night (23-day migration). The embryo-larva migration style of the two species likely shows convergence of non-related species for a common style in response to environmental selection in the Amur River. The embryo-larva migration style of Amur sturgeon is unique among Acipenser yet studied.

  18. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea.

    PubMed

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai

    2016-04-14

    Energetic fluctuations with periods of 9-14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography.

  19. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea

    PubMed Central

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai

    2016-01-01

    Energetic fluctuations with periods of 9–14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography. PMID:27075644

  20. A new instrument system to investigate sediment dynamics on continental shelves

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.

    1979-01-01

    A new instrumented tripod, the GEOPROBE system, has been constructed and used to collect time-series data on physical and geological parameters that are important in bottom sediment dynamics on continental shelves. Simultaneous in situ digital recording of pressure, temperature, light scattering, and light transmission, in combination with current velocity profiles measured with a near-bottom vertical array of electromagnetic current meters, is used to correlate bottom shear generated by a variety of oceanic processes (waves, tides, mean flow, etc.) with incipient movement and resuspension of bottom sediment. A bottom camera system that is activated when current speeds exceed preset threshold values provides a unique method to identify initial sediment motion and bed form development. Data from a twenty day deployment of the GEOPROBE system in Norton Sound, Alaska, during the period September 24 - October 14, 1976 show that threshold conditions for sediment movement are commonly exceeded, even in calm weather periods, due to the additive effects of tidal currents, mean circulation, and surface waves. ?? 1979.

  1. Oceanographic influences on the sea ice cover in the Sea of Okhotsk

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Parkinson, C. L.

    1981-01-01

    Sea ice conditions in the Sea of Okhotsk, as determined by satellite images from the electrically scanning microwave radiometer on board Nimbus 5, were analyzed in conjunction with the known oceanography. In particular, the sea ice coverage was compared with the bottom bathymetry and the surface currents, water temperatures, and salinity. It is found that ice forms first in cold, shallow, low salinity waters. Once formed, the ice seems to drift in a direction approximating the Okhotsk-Kuril current system. Two basic patterns of ice edge positioning which persist for significant periods were identified as a rectangular structure and a wedge structure. Each of these is strongly correlated with the bathymetry of the region and with the known current system, suggesting that convective depth and ocean currents play an important role in determining ice patterns.

  2. Relative contributions of external forcing factors to circulation and hydrographic properties in a micro-tidal bay

    NASA Astrophysics Data System (ADS)

    Yoon, Seokjin; Kasai, Akihide

    2017-11-01

    The dominant external forcing factors influencing estuarine circulation differ among coastal environments. A three-dimensional regional circulation model was developed to estimate external influence indices and relative contributions of external forcing factors such as external oceanic forcing, surface heat flux, wind stress, and river discharge to circulation and hydrographic properties in Tango Bay, Japan. Model results show that in Tango Bay, where the Tsushima Warm Current passes offshore of the bay, under conditions of strong seasonal winds and river discharge, the water temperature and salinity are strongly influenced by surface heat flux and river discharge in the surface layer, respectively, while in the middle and bottom layers both are mainly controlled by open boundary conditions. The estuarine circulation is comparably influenced by all external forcing factors, the strong current, surface heat flux, wind stress, and river discharge. However, the influence degree of each forcing factor varies with temporal variations in external forcing factors as: the influence of open boundary conditions is higher in spring and early summer when the stronger current passes offshore of the bay, that of surface heat flux reflects the absolute value of surface heat flux, that of wind stress is higher in late fall and winter due to strong seasonal winds, and that of river discharge is higher in early spring due to snow-melting and summer and early fall due to flood events.

  3. Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES)

    NASA Astrophysics Data System (ADS)

    Sheen, K. L.; Brearley, J. A.; Naveira Garabato, A. C.; Smeed, D. A.; Waterman, S.; Ledwell, J. R.; Meredith, M. P.; St. Laurent, L.; Thurnherr, A. M.; Toole, J. M.; Watson, A. J.

    2013-06-01

    The spatial distribution of turbulent dissipation rates and internal wavefield characteristics is analyzed across two contrasting regimes of the Antarctic Circumpolar Current (ACC), using microstructure and finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). Mid-depth turbulent dissipation rates are found to increase from O>(1×10-10Wkg -1>) in the Southeast Pacific to O>(1×10-9Wkg -1>) in the Scotia Sea, typically reaching 3×10-9Wkg -1 within a kilometer of the seabed. Enhanced levels of turbulent mixing are associated with strong near-bottom flows, rough topography, and regions where the internal wavefield is found to have enhanced energy, a less-inertial frequency content and a dominance of upward propagating energy. These results strongly suggest that bottom-generated internal waves play a major role in determining the spatial distribution of turbulent dissipation in the ACC. The energy flux associated with the bottom internal wave generation process is calculated using wave radiation theory, and found to vary between 0.8 mW m-2 in the Southeast Pacific and 14 mW m-2 in the Scotia Sea. Typically, 10%-30% of this energy is found to dissipate within 1 km of the seabed. Comparison between turbulent dissipation rates inferred from finestructure parameterizations and microstructure-derived estimates suggests a significant departure from wave-wave interaction physics in the near-field of wave generation sites.

  4. Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.

    PubMed

    Yuhki, A; Nogawa, M; Takatani, S

    2000-06-01

    In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.

  5. Long-term tilt and acceleration data from the Logatchev Hydrothermal Vent Field, Mid-Atlantic Ridge, measured by the Bremen Ocean Bottom Tiltmeter

    NASA Astrophysics Data System (ADS)

    Fabian, Marcus; Villinger, Heinrich

    2008-07-01

    Long-term seafloor deformations in the Logatchev Hydrothermal Vent Field (LHF) at the Mid-Atlantic Ridge are largely unexplored and unknown, even though the LHF has been the focus of international research for many years. As seafloor tilt and vertical acceleration provide key information about seafloor deformations, the Bremen Ocean Bottom Tiltmeter (OBT) was deployed in May 2005 at position 14°45'11.7″N, 44°58'47.0″W, 3035 m water depth in the LHF. The OBT recorded 384 days and was recovered in January 2007. Strong tilt steps and strong gradual tilt changes over less than a minute to days in the range of some 10 mrad and aligned mostly with the topography possibly indicate nearby mass movements like avalanches of bulk material due to local uplift or subsidence or may show tectonic activity. A vertically aligned high-resolution microelectromechanical systems (MEMS) accelerometer of type Servo K-Beam in the sensor package seems to be helpful to distinguish between tilt signals caused by a true rotation and fake tilt related to a transient translational motion of the OBT in a horizontal direction. Hodographs show elliptic motion patterns with about 1 mrad total tilt amplitude and distinct orientations of tilt toward hydrothermal vents. It is up to speculation whether the latter signals are related to hydrothermal fluid circulation. The amplitude spectra of these tilt signals and acceleration show discrete lines mostly between 0.1 and 50 mHz. The spectra show the periodic character of those signals and also proof that tides or bottom currents, which are known to show lower signal frequencies, or tremor, which generally has higher frequencies, are most likely not the reason. Compared with studies onshore and offshore, the LHF is most likely an area of strong and highly variable seafloor deformations.

  6. Evaluating wave-current interaction in an urban estuary and flooding implications for coastal communities

    NASA Astrophysics Data System (ADS)

    Cifuentes-Lorenzen, A.; O'Donnell, J.; Howard-Strobel, M. M.; Fake, T.; McCardell, G.

    2016-12-01

    Accurate hydrodynamic-wave coupled coastal circulation models aid the prediction of storm impacts, particularly in areas where data is absent, and can inform mitigation options. They are essential everywhere to account for the effects of climate change. Here, the Finite Volume Community Ocean Model (FVCOM) was used to estimate the residual circulation inside a small urban estuary, Long Island Sound, during three severe weather events of different magnitude (i.e. 1/5, 1/25 and 1/50 year events). The effect of including wave coupling using a log-layer bottom boundary and the bottom wave-current coupling, following the approach of Madsen (1994) on the simulated residual circulation was assessed. Significant differences in the solutions were constrained to the near surface (s>-0.3) region. No significant difference in the depth-averaged residual circulation was detected. When the Madsen (1994) bottom boundary layer model for wave-current interaction was employed, differences in residual circulation resulted. The bottom wave-current interaction also plays an important role in the wave dynamics. Significant wave heights along the northern Connecticut shoreline were enhanced by up to 15% when the bottom wave-current interaction was included in the simulations. The wave-induced bottom drag enhancement has a substantial effect on tides in the Sound, possibly because it is nearly resonant at semidiurnal frequencies. This wave-current interaction current leads to severe tidal dampening ( 40% amplitude reduction) at the Western end of the estuary in the modeled sea surface displacement. The potential magnitude of these effects means that wave current interaction should be included and carefully evaluated in models of estuaries that are useful.

  7. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins.

    PubMed

    Zeimpekis, I; Sun, K; Hu, C; Ditshego, N M J; Thomas, O; de Planque, M R R; Chong, H M H; Morgan, H; Ashburn, P

    2016-04-22

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH(-1) is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH(-1) measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%.

  8. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins

    NASA Astrophysics Data System (ADS)

    Zeimpekis, I.; Sun, K.; Hu, C.; Ditshego, N. M. J.; Thomas, O.; de Planque, M. R. R.; Chong, H. M. H.; Morgan, H.; Ashburn, P.

    2016-04-01

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH-1 is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH-1 measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%.

  9. Secondary currents in a curved, stratified, estuarine channel

    USGS Publications Warehouse

    Lacy, J.R.; Monismith, Stephen G.

    2001-01-01

    This paper presents a study of secondary circulation in a curved stratified channel in northern San Francisco Bay over a 12.5-hour tidal cycle. Secondary currents were strong at times (varying by up to 35 cm/s from top to bottom) but relatively transient, as the balance between centrifugal and lateral baroclinic forcing changed over time. The short travel time around the bend did not allow a steady state balance to develop between centrifugal and lateral baroclinic forcing. During the flood tide the confluence of two streams with different velocities produced a strong lateral gradient in streamwise velocity. As a result, lateral advection was a significant term in the streamwise momentum balance, having the same order of magnitude as the barotropic and baroclinic pressure gradients, and the frictional terms. During the first part of the ebb, secondary currents were induced by lateral baroclinic forcing. The direction of the secondary circulation reversed later in the ebb, as the baroclinic forcing became weaker than the centrifugal acceleration. The gradient Richardson number showed that stratification was stable over most of the tidal cycle, decreasing the importance of friction and allowing secondary currents to persist. Copyright 2001 by the American Geophysical Union.

  10. Observations of near-bottom currents in Bornholm Basin, Slupsk Furrow and Gdansk Deep

    NASA Astrophysics Data System (ADS)

    Bulczak, A. I.; Rak, D.; Schmidt, B.; Beldowski, J.

    2016-06-01

    Dense bottom currents are responsible for transport of the salty inflow waters from the North Sea driving ventilation and renewal of Baltic deep waters. This study characterises dense currents in three deep locations of the Baltic Proper: Bornholm Basin (BB), Gdansk Basin (GB) and Slupsk Furrow (SF). These locations are of fundamental importance for the transport and pollution associated with chemical munitions deposited in BB and GB after 2nd World War. Of further importance the sub-basins are situated along the pathway of dense inflowing water.Current velocities were measured in the majority of the water column during regular cruises of r/v Oceania and r/v Baltica in 2001-2012 (38 cruises) by 307 kHz vessel mounted (VM), downlooking ADCP. Additionally, the high-resolution CTD and oxygen profiles were collected. Three moorings measured current velocity profiles in SF and GB over the summer 2012. In addition, temperature, salinity, oxygen and turbidity were measured at about 1 m above the bottom in GB. The results showed that mean current speed across the Baltic Proper was around 12 cm s-1 and the stronger flow was characteristic to the regions located above the sills, in the Bornholm and Slupsk Channels, reaching on average about 20 cm s-1. The results suggest that these regions are important for the inflow of saline waters into the eastern Baltic and are the areas of intense vertical mixing. The VM ADCP observations indicate that the average near-bottom flow across the basin can reach 35±6 cm s-1. The mooring observations also showed similar near-bottom flow velocities. However, they showed that the increased speed of the near-bottom layer occurred frequently in SF and GB during short time periods lasting for about few to several days or 10-20% of time. The observations showed that the bottom mixed layer occupies at least 10% of the water column and the turbulent mixing induced by near-bottom currents is likely to produce sediment resuspension and transport within the layer in all three sub-basins. The turbidity measurements, performed for 5-month-long time period over the summer 2012 in GB show that increased sediment resuspension is associated with a faster near-bottom flow.

  11. Methane release from the southern Brazilian margin during the last glacial.

    PubMed

    Portilho-Ramos, R C; Cruz, A P S; Barbosa, C F; Rathburn, A E; Mulitza, S; Venancio, I M; Schwenk, T; Rühlemann, C; Vidal, L; Chiessi, C M; Silveira, C S

    2018-04-13

    Seafloor methane release can significantly affect the global carbon cycle and climate. Appreciable quantities of methane are stored in continental margin sediments as shallow gas and hydrate deposits, and changes in pressure, temperature and/or bottom-currents can liberate significant amounts of this greenhouse gas. Understanding the spatial and temporal dynamics of marine methane deposits and their relationships to environmental change are critical for assessing past and future carbon cycle and climate change. Here we present foraminiferal stable carbon isotope and sediment mineralogy records suggesting for the first time that seafloor methane release occurred along the southern Brazilian margin during the last glacial period (40-20 cal ka BP). Our results show that shallow gas deposits on the southern Brazilian margin responded to glacial-interglacial paleoceanographic changes releasing methane due to the synergy of sea level lowstand, warmer bottom waters and vigorous bottom currents during the last glacial period. High sea level during the Holocene resulted in an upslope shift of the Brazil Current, cooling the bottom waters and reducing bottom current strength, reducing methane emissions from the southern Brazilian margin.

  12. Model simulations of dense bottom currents in the Western Baltic Sea

    NASA Astrophysics Data System (ADS)

    Burchard, Hans; Janssen, Frank; Bolding, Karsten; Umlauf, Lars; Rennau, Hannes

    2009-01-01

    Only recently, medium intensity inflow events into the Baltic Sea have gained more awareness because of their potential to ventilate intermediate layers in the Southern Baltic Sea basins. With the present high-resolution model study of the Western Baltic Sea a first attempt is made to obtain model based realistic estimates of turbulent mixing in this area where dense bottom currents resulting from medium intensity inflow events are weakened by turbulent entrainment. The numerical model simulation which is carried out using the General Estuarine Transport Model (GETM) during nine months in 2003 and 2004 is first validated by means of three automatic stations at the Drogden and Darss Sills and in the Arkona Sea. In order to obtain good agreement between observations and model results, the 0.5×0.5 nautical mile bathymetry had to be adjusted in order to account for the fact that even at that scale many relevant topographic features are not resolved. Current velocity, salinity and turbulence observations during a medium intensity inflow event through the Øresund are then compared to the model results. Given the general problems of point to point comparisons between observations and model simulations, the agreement is fairly good with the characteristic features of the inflow event well represented by the model simulations. Two different bulk measures for mixing activity are then introduced, the vertically integrated decay of salinity variance, which is equal to the production of micro-scale salinity variance, and the vertically integrated turbulent salt flux, which is related to an increase of potential energy due to vertical mixing of stably stratified flow. Both measures give qualitatively similar results and identify the Drogden and Darss Sills as well as the Bornholm Channel as mixing hot spots. Further regions of strong mixing are the dense bottom current pathways from these sills into the Arkona Sea, areas around Kriegers Flak (a shoal in the western Arkona Sea) and north-west of the island of Rügen.

  13. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

    NASA Astrophysics Data System (ADS)

    Svet, V. D.; Tsysar', S. A.

    2018-01-01

    Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

  14. Neogene sedimentation and erosion in the Amirante Passage, western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Johnson, D. A.; Ledbetter, M. T.; Damuth, J. E.

    1983-02-01

    Twenty piston cores from the northern Mascarene Basin and Amirante Passage reflect the effects of the Deep Western Boundary Current (DWBC) upon the lithologic and stratigraphic record of the late Cenozoic. The cores span a depth interval of 3350 to 5200 m, representing the transition zone between modern North Atlantic Deep Water (NADW)-Circumpolar Water (CPW) and the underlying Antarctic Bottom Water (AABW). During the late Cretaceous and for much of the Paleogene, pelagic sedimentation occurred in the absence of significant bottom current activity. The formation of the global psychrosphere near the Eocene-Oligocene boundary initiated the DWBC, part of which could enter the Madagascar Basin via deep fractures in the Southwest Indian Ridge. The DWBC was well developed before the early Miocene, transporting course detrital sands northward into the passage from turbidite deposits along the continental margin of Madagascar. The DWBC was confined to depths below ˜ 4 km until the middle Miocene, when the flow strengthened and shoaled to depths <3300 m. Strong DWBC flow continued intermittently until the latest Pleistocene, producing extensive erosional surfaces. Today the flow of the DWBC is relatively weak, with strong only below ˜ 3850 m in the western channels. Pleistocene and late Tertiary erosion at intermediate depths (3 to 4 km) in the Indian Ocean contrasts with depositional continuity at the same depths farther 'upstream' in NADW. Fluctuations in the intensity of circumpolar flow rather than in the rate of production of NADW may have been the major controlling factor in the late Tertiary erosional history of the Amirante Passage.

  15. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Zeliang; Hamilton, James; Su, Jie

    2017-06-01

    Understanding the mechanisms that drive exchanges between the Arctic Ocean and adjacent oceans is critical to building our knowledge of how the Arctic is reacting to a warming climate, and how potential changes in Arctic Ocean freshwater export may impact the AMOC (Atlantic Meridional Overturning Circulation). Here, freshwater pathways from the Arctic Ocean to the North Atlantic are investigated using a 1 degree global model. An EOF analysis of modeled sea surface height (SSH) demonstrates that while the second mode accounts for only 15% of the variability, the associated geostrophic currents are strongly correlated with freshwater exports through CAA (Canadian Arctic Archipelago; r = 0.75), Nares Strait (r = 0.77) and Fram Strait (r = -0.60). Separation of sea level into contributing parts allows us to show that the EOF1 is primarily a barotropic mode reflecting variability in bottom pressure equivalent sea level, while the EOF2 mode reflects changes in steric height in the Arctic Basin. This second mode is linked to momentum wind driven surface current, and dominates the Arctic Ocean freshwater exports. Both the Arctic Oscillation and Arctic Dipole atmospheric indices are shown to be linked to Arctic Ocean freshwater exports, with the forcing associated with the Arctic Dipole reflecting the out-of-phase relationship between transports through the CAA and those through Fram Strait. Finally, observed freshwater transport variation through the CAA is found to be strongly correlated with tide gauge data from the Beaufort Sea coast (r = 0.81), and with the EOF2 mode of GRACE bottom pressure data (r = 0.85) on inter-annual timescales.

  16. A downslope propagating thermal front over the continental slope

    NASA Astrophysics Data System (ADS)

    van Haren, Hans; Hosegood, Phil J.

    2017-04-01

    In the ocean, internal frontal bores above sloping topography have many appearances, depending on the local density stratification, and on the angle and source of generation of the carrier wave. However, their common characteristics are a backward breaking wave, strong sediment resuspension, and relatively cool (denser) water moving more or less upslope underneath warm (less dense) water. In this paper, we present a rare example of a downslope moving front of cold water moving over near-bottom warm water. Large backscatter is observed in the downslope moving front's trailing edge, rather than the leading edge as is common in upslope moving fronts. Time series observations have been made during a fortnight in summer, using a 101 m long array of high-resolution temperature sensors moored with an acoustic Doppler current profiler at 396 m depth in near-homogeneous waters, near a small canyon in the continental slope off the Malin shelf (West-Scotland, UK). Occurring between fronts that propagate upslope with tidal periodicity, the rare downslope propagating one resembles a gravity current and includes strong convective turbulence coming from the interior rather than the more usual frictionally generated turbulence arising from interaction with the seabed. Its turbulence is 3-10 times larger than that of more common upslope propagating fronts. As the main turbulence is in the interior with a thin stratified layer close to the bottom, little sediment is resuspended by a downslope propagating front. The downslope propagating front is suggested to be generated by oblique propagation of internal (tidal) waves and flow over a nearby upstream promontory.

  17. Studies of Current Circulation at Ocean Waste Disposal Sites

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Henry, R.

    1976-01-01

    The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.

  18. The off-shore Transport of China Coastal Current over Taiwan Bank in Winter

    NASA Astrophysics Data System (ADS)

    Liao, E.; Yan, X. H.; Oey, L. Y.; Jiang, Y.

    2016-12-01

    In winter, an off-shore flow of China Coastal Current can be inferred from satellite and in-situ data over the Taiwan Bank. The dynamics related to this off-shore flow have not been previously explained and are examined here using observations and model. Influenced by southward wind stress and opposing pressure gradient, currents over the Taiwan Bank can be classified into three regimes. The southward China Coastal Current flows pass the Taiwan Bank when the wind stress is stronger than a critical value which depends on the opposite pressure gradient force. The coastal current turns northward under a weak wind stress. Two opposite currents converge over the bank and a branch of the coastal current then turns into the northward warm current when these two forces are in balance. Analysis of the vorticity balance shows that the cross-isobath movement is related to a negative bottom stress curl over the Taiwan Bank. Both bottom Ekman transport and shear and curvature vorticity related to the weak bottom slope over the Taiwan Bank contribute to the bottom stress curl. Composite analyses using observations tend to support the model results.

  19. Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hebbeln, D.; Wienberg, C.; Wintersteller, P.; Freiwald, A.; Becker, M.; Beuck, L.; Dullo, C.; Eberli, G. P.; Glogowski, S.; Matos, L.; Forster, N.; Reyes-Bonilla, H.; Taviani, M.; MSM 20-4 shipboard scientific party, the

    2013-11-01

    With an extension of >40 km2 the recently discovered Campeche cold-water coral province located at the northeastern rim of the Campeche Bank in the southern Gulf of Mexico belongs to the largest coherent cold-water coral areas discovered so far. The Campeche province consists of numerous 20 to 40 m high coral ridges that are developed in intermediate water depths of 500 to 600 m. The ridges are colonized by a vivid cold-water coral ecosystem that covers the upper flanks and summits. The rich coral community is dominated by the framework-building scleractinia Enallopsammia profunda and Lophelia pertusa while the associated benthic megafauna shows a rather scarce occurrence. The recent environmental setting is characterized by a high surface water production caused by a local upwelling center and a dynamic bottom water regime comprising vigorous bottom currents, internal waves and strong density contrasts, which all together provide optimal conditions for the growth of cold-water corals. The strong hydrodynamics - potentially supported by the diel vertical migration of zooplankton in the Campeche area - drive the delivering of food particles to the corals. The Campeche cold-water coral province is, thus, an excellent example highlighting the importance of the hydrographic setting in securing the food supply for the development of large and vivid cold-water coral ecosystems.

  20. First studies of bottom boundary currents in the Ría de Vigo (NW Iberian upwelling system)

    NASA Astrophysics Data System (ADS)

    Villacieros-Robineau, N.; Herrera, J. H.; Castro, C. G.; Piedracoba, S.; Rosón, G.

    2012-04-01

    The NW Iberian Upwelling system has a set of physical and chemical characteristics that determine the ecology at the coast, specifically inside the Rías Baixas where activities like raft culture have a significant weight in the local economy. Although several studies have dealt with the physical processes driving the rías general circulation, no previous research has faced the study of bottom boundary currents. This work studies the behavior of bottom currents inside the Rías Baixas and identifies their possible forcing mechanism. For tackling this issue, high resolution time series of bottom currents by means of a downwards looking ADCP (3-5 meters above the bottom) were recorded at one site in the Ría de Vigo covering the four seasons of the climate year 2004 - 2005. Our analysis shows that most of the time (aprox. 70 -80%), the bottom currents respond to a logarithmic profile being possible to apply the law of the wall. This pattern can be applied to the residual component and also to the tidal component of the currents. Based on this logarithmic fit, we have obtained characteristic parameters like shear stress and shear velocity. Our results point to a coupling among shear stress, shelf winds and runoff. Other important conclusion is the relative importance of tidal shear stress versus residual shear stress because the typical assumption of tidal has more influence is not true always. In some occasions when there are neap tides and high shelf winds the residual stress could be just three times the tidal ones.

  1. Cuttlefish Sepia officinalis Preferentially Respond to Bottom Rather than Side Stimuli When Not Allowed Adjacent to Tank Walls

    PubMed Central

    Taniguchi, Darcy A. A.; Gagnon, Yakir; Wheeler, Benjamin R.; Johnsen, Sönke; Jaffe, Jules S.

    2015-01-01

    Cuttlefish are cephalopods capable of rapid camouflage responses to visual stimuli. However, it is not always clear to what these animals are responding. Previous studies have found cuttlefish to be more responsive to lateral stimuli rather than substrate. However, in previous works, the cuttlefish were allowed to settle next to the lateral stimuli. In this study, we examine whether juvenile cuttlefish (Sepia officinalis) respond more strongly to visual stimuli seen on the sides versus the bottom of an experimental aquarium, specifically when the animals are not allowed to be adjacent to the tank walls. We used the Sub Sea Holodeck, a novel aquarium that employs plasma display screens to create a variety of artificial visual environments without disturbing the animals. Once the cuttlefish were acclimated, we compared the variability of camouflage patterns that were elicited from displaying various stimuli on the bottom versus the sides of the Holodeck. To characterize the camouflage patterns, we classified them in terms of uniform, disruptive, and mottled patterning. The elicited camouflage patterns from different bottom stimuli were more variable than those elicited by different side stimuli, suggesting that S. officinalis responds more strongly to the patterns displayed on the bottom than the sides of the tank. We argue that the cuttlefish pay more attention to the bottom of the Holodeck because it is closer and thus more relevant for camouflage. PMID:26465786

  2. Search for the flavor-changing neutral-current decay t-->Zq in pp collisions at sqrt[s] = 1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Saltzberg, D; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sutherland, M; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-11-07

    We report a search for the flavor-changing neutral-current decay of the top quark t-->Zq (q=u, c) in pp collisions at sqrt[s]=1.96 TeV using a data sample corresponding to an integrated luminosity of 1.9 fb(-1) collected by the CDF II detector. This decay is strongly suppressed in the standard model and an observation of a signal at the Fermilab Tevatron would be an indication of physics beyond the standard model. Using Z+ > or = 4 jet final state candidate events, with and without an identified bottom quark jet, we obtain an upper limit of B(t-->Zq) < 3.7% at 95% C.L.

  3. Storm-induced redistribution of deepwater sediments in Lake Ontario

    USGS Publications Warehouse

    Halfman, J.D.; Dittman, D.E.; Owens, R.W.; Etherington, M.D.

    2006-01-01

    High-resolution seismic reflection profiles, side-scan sonar profiles, and surface sediment analyses for grain size (% sand, silt & clay), total organic carbon content, and carbonate content along shore-perpendicular transects offshore of Olcott and Rochester in Lake Ontario were utilized to investigate cm-thick sands or absence of deep-water postglacial sediments in water depths of 130 to 165 m. These deepwater sands were observed as each transect approached and occupied the "sills," identified by earlier researchers, between the three deepest basins of the lake. The results reveal thin (0 to 5-cm) postglacial sediments, lake floor lineations, and sand-rich, organic, and carbonate poor sediments at the deepwater sites (> 130 m) along both transects at depths significantly below wave base, epilimnetic currents, and internal wave activity. These sediments are anomalous compared to shallower sediments observed in this study and deeper sediments reported by earlier research, and are interpreted to indicate winnowing and resuspension of the postglacial muds. We hypothesize that the mid-lake confluence of the two-gyre surface current system set up by strong storm events extends down to the lake floor when the lake is isothermal, and resuspends and winnows lake floor sediment at these locations. Furthermore, we believe that sedimentation is more likely to be influenced by bottom currents at these at these sites than in the deeper basins because these sites are located on bathymetric highs between deeper depositional basins of the lake, and the bathymetric constriction may intensify any bottom current activity at these sites.

  4. Comparison of shelf currents off central California prior to and during the 1997-1998 El Nino

    USGS Publications Warehouse

    Ryan, H.F.; Noble, M.A.

    2005-01-01

    Moored current, temperature, salinity, and pressure data were collected at three sites that transect the narrow continental shelf offshore of Davenport, CA, starting in August 1996 and continuing to the spring of 1998. This data set allowed a comparison of oceanographic conditions prior to (8/96-3/97) and during (8/97-3/98) the last major El Nin??o. During this El Nin??o, mean temperatures over the 8-month time period were about 3??C warmer than during the prior year at all of the sites. Correlations between near-surface and near-bottom temperatures, and between near-surface temperature and wind stress decreased during the El Nin??o compared to conditions the year before. The mean alongshore currents were more strongly poleward during El Nin??o at sites over the mid-shelf and near the shelf break. There was a general tendency for the energy in alongshore currents to move toward lower frequencies during the El Nin??o, particularly at the sites farther offshore. The processes that forced the shelf flows changed in relative importance throughout the study. The local alongshore wind stress was less important in driving shelf currents during the El Nin??o when much of the wind-induced upwelling was confined to less than 5 km of the coast. The observed strong poleward shelf currents on the mid- to outer-shelf were not clearly tied to local forcing, but were remotely driven, most likely by slope currents. The response of the Davenport shelf to an El Nin??o event may differ from other areas since the shelf is narrow, the wind forcing is weaker than areas to the north and south, and the shelf may be at times isolated by fronts that form at strong upwelling centers. In the winter, strong storm-related winds are important in driving currents at periods not only in the synoptic wind band, but also for periods on the order of 20 d and longer.

  5. Weak wind-wave/tide interaction over fixed and moveable bottoms: a formulation and some preliminary results

    NASA Astrophysics Data System (ADS)

    Kagan, B. A.; Alvarez, O.; Izquierdo, A.

    2005-05-01

    The formulation of weak wind-wave/low-frequency current interaction is discussed comprehensively as applied to fixed- and moveable-bottom cases. It involves (1) a dependence of the drag coefficient on the ratio between wave and current bottom friction velocity amplitudes, (2) the resistance law for the oscillatory, rough, turbulent bottom boundary layer (BBL) which accounts for the usually neglected effects of rotation and the phase difference between the bottom stress and the friction-free current velocity, (3) the expression for the BBL depth in terms of the bottom Rossby number and (4) the bottom roughness predictor of Grant and Madsen (J. Geophys. Res., 87 (1982) 469) in the version of Tolman (J. Phys. Oceanogr., 24 (1994) 994). The formulation is implemented in the UCA (University of Cadiz) 2D nonlinear, high-resolution, hydrodynamic model and used to study the influence of wind-wave/tide interaction, bottom mobility and the improved flow-resistance description on the M 2 tidal dynamics of Cadiz Bay. The inclusion of either of the first two factors can cause the drag coefficient to increase significantly over its reference value. If the third factor is included, changes in the drag coefficient are quite moderate. This is because the effect of rotation is opposite in sign to the effect of phase difference, so that these effects taken together very nearly balance. The reason why bottom mobility has such an important influence on shallow-water tidal dynamics as wind-wave/tide interaction has, is the occurrence of the large irregular variations in the drag coefficient that accompany sediment motion.

  6. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    NASA Astrophysics Data System (ADS)

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-11-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  7. Tidal currents and anticyclonic motions on two North Pacific seamounts

    USGS Publications Warehouse

    Genin, A.; Noble, M.; Lonsdale, P.F.

    1989-01-01

    Near-bottom currents were measured for several days at three sites on the summits of Fieberling Guyot (32??26???N, 127??46???W) and Horizon Guyot (19??15???N, 160??00???W). Three moorings comprised of two current meters were deployed on each summit; two moorings were deployed on opposite sides of the rim of the summit and one mooring was deployed near the center of the summit. The observed currents were strong, with maximum speeds of 48 and 24 cm s-1 on Fieberling and Horizon, respectively. The currents at specific frequencies were enhanced relative to those in the surrounding ocean. Diurnal currents were the dominant component of the current field on Fieberling Guyot. They accounted for 39-68% of the energy and had amplitudes around 12 cm s-1. We suspect that these diurnal currents were waves trapped over the seamount. Semidiurnal internal tidal currents were the strongest currents over Horizon Guyot, with amplitudes around 4 cm s-1. The flow patterns determined in this study seemed to affect the biological and geological characteristics of the seamounts. ?? 1990.

  8. Characterization of bottom sediments in the Río de la Plata estuary

    NASA Astrophysics Data System (ADS)

    Simionato, Claudia G.; Moreira, Diego

    2016-04-01

    Bottom sediments and surface water samples were collected in the intermediate and outer Río de la Plata Estuary during 2009-2010, in six repeated cruises, with 26 stations each. Samples were processed for grain size using a laser particle size analyzer, and water and organic matter contents. The aim of this work is to analyze this data set to provide a comprehensive and objective characterization of the bottom sediments distribution, to study their composition and to progress in the construction of a conceptual model of the involved physical mechanisms. Principal Components Analysis is applied to the bottom sediments size histograms to investigate the spatial patterns. Variations in grain-size parameters contain information on possible sediment transport patterns, which were analyzed by means of trend vectors. Sediments show a gradational arrangement of textures, sand dominant at the head, silt in the intermediate estuary and clayey silt and clay at its mouth; textures become progressively more poorly sorted offshore, and the water and organic matter contents increase. And seem to be strongly related to the geometry and the hydrodynamics. Along the Northern coast of the intermediate estuary, well sorted medium and fine silt predominates, whereas in the Southern coast, coarser and less sorted silt prevails, due to differences in tidal currents and/or in water pathways. Around Barra del Indio, clay prevails over silt and sand, and the water and organic matter contents reach a maximum, probably due flocculation, and the reduction of the currents. Immediately seawards the salt wedge, net transport reverses its direction and well sorted coarser sand from the adjacent shelf dominates. Relict sediment is observed around the Santa Lucía River, consisting of poorly sorted fine silt and clay. The inferred net transport suggests convergence at the Barra del Indio shoal, which is consistent with the constant growing of the banks.

  9. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    NASA Astrophysics Data System (ADS)

    Robert, C. G.; Ayob, A.; Zaki, M. F. Muhammad; Razali, M. E.; Lew, E. V.; Hong, P. Y.

    2018-03-01

    Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  10. Evaluation of Pollution Level in Zolotoy Rog Bay (Peter the Great Gulf, the Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Kazachkova, Y.; Lazareva, L.; Petukhov, V.

    2017-11-01

    The results of the hydrochemical research of water and bottom sediments of the Zolotoy Rog Bay in July 2015 are presented below. It is shown that, as a result of a large amount of polluted sewage entering The Zolotoy Rog Bay, the concentrations of organic substances (BOD5) and petroleum hydrocarbons in the water exceed the MPC. The concentrations of heavy metals in soils exceed both the background level and the level of permissible values. As a result of the calculation of the bottom accumulation (CBA) coefficient for oil hydrocarbons, the situation in the Zolotoy Rog Bay can be classified as an ecological disaster. According to the total pollution index (Zc) of heavy metals, the bottom sediments of the Zolotoy Rog Bay are characterized as strongly and very strongly polluted.

  11. The effects of environmental factors on daytime sandeel distribution and abundance on the Dogger Bank

    NASA Astrophysics Data System (ADS)

    van der Kooij, Jeroen; Scott, Beth E.; Mackinson, Steven

    2008-10-01

    Spring distribution and abundance of lesser sandeels during the day were linked to zooplankton densities, seabed substrate and various hydrographic factors using small scale empirical data collected in two areas on the Dogger Bank in 2004, 2005 and 2006. The results of a two-step generalized additive model (GAM) suggested that suitable seabed substrate and temperature best explain sandeel distribution (presence/absence) and that sandeel abundance (given presence) was best described by a model that included bottom temperature, difference between surface and bottom temperature and surface salinity. The current study suggests that suitable seabed substrate explains sandeel distribution in the water column. Bottom temperature and surface salinity also played an important role in explaining distribution and abundance, and we speculate that sandeels favour hydrographically dynamic areas. Contrary to our hypothesis sandeels were not strongly associated with areas of high zooplankton density. We speculate that in early spring on the western Dogger Bank plankton is still patchily distributed and that sandeels only emerge from the seabed when feeding conditions near their night-time burrowing habitat are optimal. The results also suggested that when abundance is over a threshold level, the number of sandeel schools increased rather than the schools becoming bigger. This relationship between patchiness and abundance has implications for mortality rates and hence fisheries management.

  12. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ferré, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.

    2008-08-01

    Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998-April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6×10 6 t y -1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3×10 9 t y -1). However the net resuspension (erosion/deposition budget) for trawling (0.4×10 6 t y -1) was only one order of magnitude lower than that for waves and currents (9.2×10 6 t y -1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts) and took place primarily at the southwestern end of the Gulf. Off-shelf transport was favoured during the winter 1999 by a very intense episode of dense shelf water cascading. Export of sediment resuspended by trawls (0.4×10 6 t y -1) was one order of magnitude lower than export associated with natural resuspension (8.5×10 6 t y -1). Trawling-induced resuspension is thought to represent one-third of the total export of suspended sediment from the shelf. A simulation combining both resuspension processes reveals no significant changes in resuspension and export rates compared with the sum of each individual process, suggesting the absence of interference between both processes.

  13. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (west Africa). Consequences for sedimentation and southeast Atlantic upwelling

    NASA Astrophysics Data System (ADS)

    Séranne, Michel; Nzé Abeigne, César-Rostand

    1999-10-01

    Seismic reflection profiles on the slope of the south Gabon continental margin display furrows 2 km wide and some 200 m deep, that develop normal to the margin in 500-1500 m water depth. Furrows are characterised by an aggradation/progradation pattern which leads to margin-parallel, northwestward migration of their axes through time. These structures, previously interpreted as turbidity current channels, display the distinctive seismic image and internal organisation of sediment drifts, constructed by the activity of bottom currents. Sediment drifts were initiated above a major Oligocene unconformity, and they developed within a Oligocene to Present megasequence of general progradation of the margin, whilst they are markedly absent from the underlying Late Cretaceous-Eocene aggradation megasequence. The presence of upslope migrating sediment waves, and the northwest migration of the sediment drifts indicate deposition by bottom current flowing upslope, under the influence of the Coriolis force. Such landwards-directed bottom currents on the slope probably represent coastal upwelling, which has been active along the west Africa margin throughout the Neogene.

  14. Southern Ocean bottom water characteristics in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, CéLine; Heywood, Karen J.; Stevens, David P.; Ridley, Jeff K.

    2013-04-01

    Southern Ocean deep water properties and formation processes in climate models are indicative of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean temperature and density averaged over 1986-2005 from 15 CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models are compared with an observed climatology, focusing on bottom water. Bottom properties are reasonably accurate for half the models. Ten models create dense water on the Antarctic shelf, but it mixes with lighter water and is not exported as bottom water as in reality. Instead, most models create deep water by open ocean deep convection, a process occurring rarely in reality. Models with extensive deep convection are those with strong seasonality in sea ice. Optimum bottom properties occur in models with deep convection in the Weddell and Ross Gyres. Bottom Water formation processes are poorly represented in ocean models and are a key challenge for improving climate predictions.

  15. Implications of heavy quark-diquark symmetry for excited doubly heavy baryons and tetraquarks

    NASA Astrophysics Data System (ADS)

    Mehen, Thomas

    2017-11-01

    We give heavy quark-diquark symmetry predictions for doubly heavy baryons and tetraquarks in light of the recent discovery of the Ξcc ++ by LHCb. For five excited doubly charm baryons that are predicted to lie below the ΛcD threshold, we give predictions for their electromagnetic and strong decays using a previously developed chiral Lagrangian with heavy quark-diquark symmetry. Based on the mass of the Ξcc ++, the existence of a doubly heavy bottom I =0 tetraquark that is stable to strong and electromagnetic decays has been predicted. If the mass of this state is below 10405 MeV, as predicted in some models, we argue using heavy quark-diquark symmetry that the JP=1+ I =1 doubly bottom tetraquark state will lie just below the open bottom threshold and likely be a narrow state as well. In this scenario, we compute strong decay width for this state using a new Lagrangian for doubly heavy tetraquarks which is related to the singly heavy baryon Lagrangian by heavy quark-diquark symmetry.

  16. Deep inflow into the Mozambique Basin

    NASA Astrophysics Data System (ADS)

    Read, J. F.; Pollard, R. T.

    1999-02-01

    More than 200 conductivity-temperature-depth (CTD) stations were worked around the Southwest Indian Ridge and Del Caño Rise as part of the World Ocean Circulation Experiment. A selection of these data provides information about the inflow of bottom water into the Mozambique Basin. The basin is closed below 3000 m, yet the inflow is significantly large, of order 1 Sv (1 Sv = 106 m3 s-1). Estimates of the basin-scale upwelling at 4000 m suggest that the vertical velocity is also large, 10 × 10-5 cm s-1 or more, an order of magnitude greater than global ocean estimates. Examination of the characteristics of the bottom water in the Mozambique and Agulhas Basins and the Prince Edward Fracture Zone shows that bottom water enters the Mozambique Basin from the Agulhas Basin and also directly from the Enderby Basin. Most of the transport enters the Mozambique Basin via the Agulhas Basin, where two regions of northward flow below 4000 m are found. The major flow, on the eastern flank of the Mozambique Ridge, is through and above the deep, extending (5900 m) trench that connects the Agulhas and Mozambique Basins. The second, weaker flow enters the Transkei Basin along the deep eastern flank of the Agulhas Plateau, then turning east into the Mozambique Basin. The only source of bottom water to the Agulhas Basin is the Enderby Basin, but a more direct route between the Enderby and Mozambique Basins exists via the Prince Edward fracture, which extends deeper than 4000 m throughout its length and links the two basins directly across the Southwest Indian Ridge. Full depth CTD stations trace the changing characteristics of the deep and bottom water in the fracture, and moored current meter data show the strength and persistence of the throughflow. Strong mixing with the overlying deep water elevates the salt content of the bottom water by comparison with the other water in the Mozambique Basin. Thus two distinct bottom waters of the Mozambique Basin originate in the same place (the Enderby Basin), and their different characteristics are solely a function of the routes they have taken and the processes encountered along the different pathways.

  17. Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics.

    PubMed

    Gooday, Andrew J

    2003-01-01

    Foraminiferal research lies at the border between geology and biology. Benthic foraminifera are a major component of marine communities, highly sensitive to environmental influences, and the most abundant benthic organisms preserved in the deep-sea fossil record. These characteristics make them important tools for reconstructing ancient oceans. Much of the recent work concerns the search for palaeoceanographic proxies, particularly for the key parameters of surface primary productivity and bottom-water oxygenation. At small spatial scales, organic flux and pore-water oxygen profiles are believed to control the depths at which species live within the sediment (their 'microhabitats'). Epifaunal/shallow infaunal species require oxygen and labile food and prefer relatively oligotrophic settings. Some deep infaunal species can tolerate anoxia and are closely linked to redox fronts within the sediment; they consume more refractory organic matter, and flourish in relatively eutrophic environments. Food and oxygen availability are also key factors at large (i.e. regional) spatial scales. Organic flux to the sea floor, and its seasonality, strongly influences faunal densities, species compositions and diversity parameters. Species tend to be associated with higher or lower flux rates and the annual flux range of 2-3 g Corg m-2 appears to mark an important faunal boundary. The oxygen requirements of benthic foraminifera are not well understood. It has been proposed that species distributions reflect oxygen concentrations up to fairly high values (3 ml l-1 or more). Other evidence suggests that oxygen only begins to affect community parameters at concentrations < 0.5 ml l-1. Different species clearly have different thresholds, however, creating species successions along oxygen gradients. Other factors such as sediment type, hydrostatic pressure and attributes of bottom-water masses (particularly carbonate undersaturation and current flow) influence foraminiferal distributions, particularly on continental margins where strong seafloor environmental gradients exist. Epifaunal species living on elevated substrata are directly exposed to bottom-water masses and flourish where suspended food particles are advected by strong currents. Biological interactions, e.g. predation and competition, must also play a role, although this is poorly understood and difficult to quantify. Despite often clear qualitative links between environmental and faunal parameters, the development of quantitative foraminiferal proxies remains problematic. Many of these difficulties arise because species can tolerate a wide range of non-optimal conditions and do not exhibit simple relationships with particular parameters. Some progress has been made, however, in formulating proxies for organic fluxes and bottom-water oxygenation. Flux proxies are based on the Benthic Foraminiferal Accumulation Rate and multivariate analyses of species data. Oxygen proxies utilise the relative proportions of epifaunal (oxyphilic) and deep infaunal (low-oxygen tolerant) species. Yet many problems remain, particularly those concerning the calibration of proxies, the closely interwoven effects of oxygen and food availability, and the relationship between living assemblages and those preserved in the permanent sediment record.

  18. Deep-water bedforms induced by refracting Internal Solitary Waves

    NASA Astrophysics Data System (ADS)

    Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco

    2017-04-01

    Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  19. A robust multi-frequency mixing algorithm for suppression of rivet signal in GMR inspection of riveted structures

    NASA Astrophysics Data System (ADS)

    Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish

    2016-02-01

    The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.

  20. Man induced change in community control in the north-western Black Sea: The top-down bottom-up balance.

    PubMed

    Bănaru, Daniela; Harmelin-Vivien, Mireille; Boudouresque, Charles F

    2010-05-01

    The present study shows how marine commercial fish food webs dramatically changed in the north-western Black Sea on both pelagic and benthic environments. Fisheries landings, diversity and equitability strongly decreased between 1965-1970 and 2001-2005. Fishes adapted their feeding behaviour to the increasingly low species diversity of the Black Sea communities. Their food web became poor and simplified following the loss of many top predator species and their trophic links. Linkage density, connectivity and Lyapunov stability proxy strongly decreased. The north-western Black Sea system switched from a complex top-down and bottom-up functioning pattern to a dominantly bottom-up functioning pattern. This study contributes to a better understanding of these transformations within the Danube-Black Sea system in the last decades. An attempt is made to relate these changes with river inputs, fisheries and coastal pollution. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the water column is analyzed in the range 0.0016 - 0.0032. For the three main wind directions considered in this work, for a wind speed of 80 km/h, the complex current structure of the Berre lagoon is analysed. In the nearshore zones, strong alongshore downwind currents are generated, reaching values of the order of 1m/s (up to 1.5 m/s) at the free surface, and 0.5 - 0.6 m/s at the bottom. References Alekseenko E., B. Roux, A. Sukhinov, R. Kotarba, D. Fougere. Coastal hydrodynamics in a windy lagoon; submitted to Computers and Fluids, oct. 2012 Csanady G. T.: Large-scale motion in the Great Lakes, Journal of Geophysical Research, 72(16), 4151-4161, 1967. Csanady G. T. : Baroclinic boundary currents and long edge-waves in basins with sloping shores. J. Physical Oceanography 1(2):92-104, 1971. Hunter, J.R. and Hearn, C.J.: Lateral and vertical variations in the wind-driven circulations in long, shallow lakes, Journal of Geophysical Research, 92 (C12), 1987. Hearn, C.J. and Hunter, J.R.: A note on the equivalence of some two- and three-dimensional models of wind-driven barotropic flow in shallow seas, Applied Mathematical Modelling, 14, 553-556, 1990. Mathieu P.P., Deleersnijder E., Cushman-Roisin B., Beckers J.M. and Bolding K.: The role of topography in small well-mixed bays, with application to the lagoon of Mururoa. Continental Shelf research, 22(9), 1379-1395, 2002. A. Pérez-Ruzafa, C. Marcos, I.M. Pérez-Ruzafa (2011). Mediterranean coastal lagoons in an ecosystem and aquatic resources management context//Physics and Chemistry of the Earth, Parts A/B/C, Volume 36, Issues 5-6, 2011, Pages 160-166 Young I.R., Wind generated ocean waves. Ocean Engineering Series Editors. Elsevier, 1999, ISBN: 0-08-043317-0.

  2. Sediment Resuspension and Transport During Bora in the Western Adriatic Coastal Current

    NASA Astrophysics Data System (ADS)

    Mullenbach, B. L.; Geyer, W. R.; Sherwood, C. R.

    2004-12-01

    The Western Adriatic Coastal Current (WACC) is an important agent for along-shelf transport of sediment and fresh water in the western Adriatic Sea. The WACC is driven by a combination of buoyancy forcing from the Po River (northern Adriatic) and wind forcing from northeasterly Bora winds. The large seasonal pulse of freshwater (during the winter) from the Po River influences WACC strength; however, preliminary results from current measurements and model runs indicate that the WACC responds quickly and strongly to Bora wind events, with a strengthening of the current moving southward. Along-margin sediment transport to the south is significantly increased as a result of Bora wind events, presumably because of enhanced wave resuspension and WACC velocity. Elevated sediment fluxes have been observed in both the upper water column (i.e., core of the WACC) and bottom boundary layer (BBL) during these events, which suggests that wind-driven currents may be coupled with the near-bottom transport. This study addresses the interaction of the WACC with the BBL and the impact of this interaction on sediment transport in the western Adriatic. Two benthic tripods were deployed from November 2002 to June 2003 on an across-shelf transect near the Chienti River (at 10 and 20-m water depth), in the region where WACC begins to intensify (200 km south of Po River). Continuous measurements of suspended sediment concentration and current velocity were recorded in the upper-water column and BBL to document sediment transport events. A time series of sediment fluxes and shear velocities (from currents only, u*c; from waves and currents, u*wc) were calculated from these data. Results show that suspended sediment concentrations near the seabed (few cmab) during Bora wind events are strongly correlated with u*wc, which supports a previous hypothesis that wave resuspension (rather than direct fluvial input) is responsible for much of the suspended sediment available for transport southward of the Po River. In contrast, suspended sediment concentrations farther away from the bed (50 cmab) are highly correlated with u*c, but not with u*wc. These results suggest that WACC velocity during Bora events controls the ability of sediment to escape the wave boundary layer and be suspended farther away from the seabed. This implies that turbulence induced by currents, rather than waves, allows sediment to move higher in the water column and become available for transport by fast-moving currents generated by the WACC, thus producing strong southward sediment fluxes observed during Bora events. Specific mechanisms responsible for the vertical structure of suspended sediment and estimates of vertically integrated fluxes during these Bora events are yet to be established because of the difficulty in estimating suspended sediment concentrations throughout the water column from acoustic data; these issues are still under investigation and progress will be assessed.

  3. Instability of bottom-water redox conditions during accumulation of Quaternary sediment in the Japan Sea

    USGS Publications Warehouse

    Piper, D.Z.; Isaacs, C.M.

    1996-01-01

    The concentrations of Cd, Cr, Cu, Mo, Ni, Sb, U, V, and Zn were measured in early Quaternary sediment (1.32 to 1.08 Ma) from the Oki Ridge in the Japan Sea. The elements were partitioned between a detrital fraction, composed of terrigenous and volcaniclastic aluminosilicate debris, and a marine fraction, composed of biogenic and hydrogenous debris derived from seawater. The most important factors controlling minor-element accumulation rates in the marine fraction were (1) primary productivity in the photic zone, which largely controlled the flux of particulate organic-matter-bound minor elements settling through the water column and onto the seafloor, and (2) bottom-water redox, which determined the suite of elements that accumulated directly from seawater. This marine fraction of minor elements on Oki Ridge recorded six periods of high minor-element abundance. Assuming a constant bulk sediment accumulation rate, each period lasted roughly 5,000 to 10,000 years with a 41,000-year cycle. Accumulation rates of individual elements such as Cd, Mo, and U suggest sulfate-reducing conditions were established in the bottom water during the 10,000-year periods; accumulation rates of Cr and V during the intervening periods are indicative of less reducing, denitrifying conditions. Interelement ratios, for example, Cu:Mo, V:Cr, and Sb:Mo, further reflect bottom-water instability, such that bottom-water redox actually varied from sulfate reducing to denitrifying during the periods of highest minor-element accumulation rates; it varied from denitrifying to oxidizing during the intervening periods. Sediment lithology supports these interpretations of the minor-element distributions; the sediment is finely laminated for several of the periods represented by Cd, Mo, and U maxima and weakly laminated to bioturbated for the intervening periods. The geochemistry of this sediment demonstrates the unambiguous signal of Mo, principally, but of several other minor elements as well in recording sulfate-reducing conditions in bottom water. The forcing function that altered their accumulation, that is, that altered primary productivity and bottom water redox conditions, is problematic. Currently held opinion suggests that O2 depletion was most strongly developed during glacial advances. Low sea level during such times is interpreted to have enhanced primary productivity and restricted bottom-water advection.

  4. Habitat selection models for Pacific sand lance (Ammodytes hexapterus) in Prince William Sound, Alaska

    USGS Publications Warehouse

    Ostrand, William D.; Gotthardt, Tracey A.; Howlin, Shay; Robards, Martin D.

    2005-01-01

    We modeled habitat selection by Pacific sand lance (Ammodytes hexapterus) by examining their distribution in relation to water depth, distance to shore, bottom slope, bottom type, distance from sand bottom, and shoreline type. Through both logistic regression and classification tree models, we compared the characteristics of 29 known sand lance locations to 58 randomly selected sites. The best models indicated a strong selection of shallow water by sand lance, with weaker association between sand lance distribution and beach shorelines, sand bottoms, distance to shore, bottom slope, and distance to the nearest sand bottom. We applied an information-theoretic approach to the interpretation of the logistic regression analysis and determined importance values of 0.99, 0.54, 0.52, 0.44, 0.39, and 0.25 for depth, beach shorelines, sand bottom, distance to shore, gradual bottom slope, and distance to the nearest sand bottom, respectively. The classification tree model indicated that sand lance selected shallow-water habitats and remained near sand bottoms when located in habitats with depths between 40 and 60 m. All sand lance locations were at depths <60 m and 93% occurred at depths <40 m. Probable reasons for the modeled relationships between the distribution of sand lance and the independent variables are discussed.

  5. The study of the stress - strain state of the tank with bottom water drainage during operation

    NASA Astrophysics Data System (ADS)

    Shchipkova, Yu V.; Tokarev, V. V.

    2018-04-01

    Bottom drainage from tank is a current problem in modern tank usage. This article proposes the use of the bottom drainage system from the tank with the shape of the sloped cone to the centre of it. Changing the bottom design alters the stress - strain state to be analyzed in the Ansys. The analysis concluded that the proposed drainage system should be applied.

  6. Geothermal heat flux in the Amundsen Sea sector of West Antarctica: New insights from temperature measurements, depth to the bottom of the magnetic source estimation, and thermal modeling

    NASA Astrophysics Data System (ADS)

    Dziadek, R.; Gohl, K.; Diehl, A.; Kaul, N.

    2017-07-01

    Focused research on the Pine Island and Thwaites glaciers, which drain the West Antarctic Ice Shelf (WAIS) into the Amundsen Sea Embayment (ASE), revealed strong signs of instability in recent decades that result from variety of reasons, such as inflow of warmer ocean currents and reverse bedrock topography, and has been established as the Marine Ice Sheet Instability hypothesis. Geothermal heat flux (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal heat flux for (paleo) ice sheet stability. Due to a complex tectonic and magmatic history of West Antarctica, the region is suspected to exhibit strong heterogeneous geothermal heat flux variations. We present an approach to investigate ranges of realistic heat fluxes in the ASE by different methods, discuss direct observations, and 3-D numerical models that incorporate boundary conditions derived from various geophysical studies, including our new Depth to the Bottom of the Magnetic Source (DBMS) estimates. Our in situ temperature measurements at 26 sites in the ASE more than triples the number of direct GHF observations in West Antarctica. We demonstrate by our numerical 3-D models that GHF spatially varies from 68 up to 110 mW m-2.

  7. Numerical simulations of the stratified oceanic bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory parallelism.

  8. Bottom friction. A practical approach to modelling coastal oceanography

    NASA Astrophysics Data System (ADS)

    Bolanos, Rodolfo; Jensen, Palle; Kofoed-Hansen, Henrik; Tornsfeldt Sørensen, Jacob

    2017-04-01

    Coastal processes imply the interaction of the atmosphere, the sea, the coastline and the bottom. The spatial gradients in this area are normally large, induced by orographic and bathymetric features. Although nowadays it is possible to obtain high-resolution bathymetry, the details of the seabed, e.g. sediment type, presence of biological material and living organisms are not available. Additionally, these properties as well as bathymetry can also be highly dynamic. These bottom characteristics are very important to describe the boundary layer of currents and waves and control to a large degree the dissipation of flows. The bottom friction is thus typically a calibration parameter in numerical modelling of coastal processes. In this work, we assess this process and put it into context of other physical processes uncertainties influencing wind-waves and currents in the coastal areas. A case study in the North Sea is used, particularly the west coast of Denmark, where water depth of less than 30 m cover a wide fringe along the coast, where several offshore wind farm developments are being carried out. We use the hydrodynamic model MIKE 21 HD and the spectral wave model MIKE 21 SW to simulate atmosphere and tidal induced flows and the wind wave generation and propagation. Both models represent state of the art and have been developed for flexible meshes, ideal for coastal oceanography as they can better represent coastlines and allow a variable spatial resolution within the domain. Sensitivity tests to bottom friction formulations are carried out into context of other processes (e.g. model forcing uncertainties, wind and wave interactions, wind drag coefficient). Additionally, a map of varying bottom properties is generated based on a literature survey to explore the impact of the spatial variability. Assessment of different approaches is made in order to establish a best practice regarding bottom friction and coastal oceanographic modelling. Its contribution is also assessed during storm conditions, where its most evident impact is expected as waves are affected by the bottom processes in larger areas, making bottom dissipation more efficient. We use available waves and current measurements in the North Sea (e.g. Ekofisk, Fino platforms and some other coastal stations at the west coast of Denmark) to quantify the importance of processes influencing waves and currents in the coastal zone and putting it in the context of the importance of bottom friction and other processes uncertainties.

  9. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    PubMed Central

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-01-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities. PMID:27808239

  10. Rhythms at the bottom of the deep sea: Cyclic current flow changes and melatonin patterns in two species of demersal fish

    NASA Astrophysics Data System (ADS)

    Wagner, H.-J.; Kemp, K.; Mattheus, U.; Priede, I. G.

    2007-11-01

    We have studied physical and biological rhythms in the deep demersal habitat of the Northeastern Atlantic. Current velocity and direction changes occurred at intervals of 12.4 h, demonstrating that they could have an impact of tidal activity, and also showed indications of other seasonal changes. As an indicator of biological rhythms, we measured the content of pineal and retinal melatonin in the grenadier Coryphaenoides armatus and the deep-sea eel Synaphobranchus kaupii, and determined the spontaneous release of melatonin in long-term (52 h minimum) cultures of isolated pineal organs and retinae in S. kaupii. The results of the release experiments show statistically significant signs of synchronicity and periodicity suggesting the presence of an endogenous clock. The melatonin content data show large error bars typical of cross-sectional population studies. When the data are plotted according to a lunar cycle, taken as indication of a tidal rhythm, both species show peak values at the beginning of the lunar day and night and lower values during the second half of lunar day and night and during moonrise and moonset. Statistical analysis, however, shows that the periodicity of the melatonin content is not significant. Taken together these observations strongly suggest that (1) biological rhythms are present in demersal fish, (2) the melatonin metabolism shows signs of periodicity, and (3) tidal currents may act as zeitgeber at the bottom of the deep sea.

  11. Water and sediment dynamics in the Red River mouth and adjacent coastal zone

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.

    2007-02-01

    The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.

  12. A bottom-up approach to the strong CP problem

    NASA Astrophysics Data System (ADS)

    Diaz-Cruz, J. L.; Hollik, W. G.; Saldana-Salazar, U. J.

    2018-05-01

    The strong CP problem is one of many puzzles in the theoretical description of elementary particle physics that still lacks an explanation. While top-down solutions to that problem usually comprise new symmetries or fields or both, we want to present a rather bottom-up perspective. The main problem seems to be how to achieve small CP violation in the strong interactions despite the large CP violation in weak interactions. In this paper, we show that with minimal assumptions on the structure of mass (Yukawa) matrices, they do not contribute to the strong CP problem and thus we can provide a pathway to a solution of the strong CP problem within the structures of the Standard Model and no extension at the electroweak scale is needed. However, to address the flavor puzzle, models based on minimal SU(3) flavor groups leading to the proposed flavor matrices are favored. Though we refrain from an explicit UV completion of the Standard Model, we provide a simple requirement for such models not to show a strong CP problem by construction.

  13. Order of magnitude improvement of nano-contact spin torque nano-oscillator performance.

    PubMed

    Banuazizi, Seyed Amir Hossein; Sani, Sohrab R; Eklund, Anders; Naiini, Maziar M; Mohseni, Seyed Majid; Chung, Sunjae; Dürrenfeld, Philipp; Malm, B Gunnar; Åkerman, Johan

    2017-02-02

    Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (t Cu ) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing t Cu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.

  14. Waves plus currents at a right angle: The rippled bed case

    NASA Astrophysics Data System (ADS)

    Faraci, C.; Foti, E.; Musumeci, R. E.

    2008-07-01

    The present paper deals with wave plus current flow over a fixed rippled bed. More precisely, modifications of the current profiles due to the superimposition of orthogonal cylindrical waves have been investigated experimentally. Since the experimental setup permitted only the wave dominated regime to be investigated (i.e., the regime where orbital velocity is larger than current velocity), also a numerical k-ɛ turbulence closure model has been developed in order to study a wider range of parameters, thus including the current dominated regime (i.e., where current velocity is larger than wave orbital one). In both cases a different response with respect to the flat bed case has been found. Indeed, in the flat bed case laminar wave boundary layers in a wave dominated regime induce a decrease in bottom shear stresses, while the presence of a rippled bed behaves as a macroroughness, which causes the wave boundary layer to become turbulent and therefore the current velocity near the bottom to be smaller than the one in the case of current only, with a consequent increase in the current bottom roughness.

  15. Dissociable Effects of Aging and Mild Cognitive Impairment on Bottom-Up Audiovisual Integration.

    PubMed

    Festa, Elena K; Katz, Andrew P; Ott, Brian R; Tremont, Geoffrey; Heindel, William C

    2017-01-01

    Effective audiovisual sensory integration involves dynamic changes in functional connectivity between superior temporal sulcus and primary sensory areas. This study examined whether disrupted connectivity in early Alzheimer's disease (AD) produces impaired audiovisual integration under conditions requiring greater corticocortical interactions. Audiovisual speech integration was examined in healthy young adult controls (YC), healthy elderly controls (EC), and patients with amnestic mild cognitive impairment (MCI) using McGurk-type stimuli (providing either congruent or incongruent audiovisual speech information) under conditions differing in the strength of bottom-up support and the degree of top-down lexical asymmetry. All groups accurately identified auditory speech under congruent audiovisual conditions, and displayed high levels of visual bias under strong bottom-up incongruent conditions. Under weak bottom-up incongruent conditions, however, EC and amnestic MCI groups displayed opposite patterns of performance, with enhanced visual bias in the EC group and reduced visual bias in the MCI group relative to the YC group. Moreover, there was no overlap between the EC and MCI groups in individual visual bias scores reflecting the change in audiovisual integration from the strong to the weak stimulus conditions. Top-down lexicality influences on visual biasing were observed only in the MCI patients under weaker bottom-up conditions. Results support a deficit in bottom-up audiovisual integration in early AD attributable to disruptions in corticocortical connectivity. Given that this deficit is not simply an exacerbation of changes associated with healthy aging, tests of audiovisual speech integration may serve as sensitive and specific markers of the earliest cognitive change associated with AD.

  16. Ocean Current Effects on Marine Seismic Systems and Deployments.

    DTIC Science & Technology

    1982-01-01

    UNCLASSIFIED NOROA-TN 132 N 44, i . 4- iv L~~~ Kr~4~ !jj A r qt4 : ~’~A71 I0 AII ABSTRACT Upper level and near bottom current measurements were made...indicated a variable yet generally slow 1 " current regime which posed minimal threat of cable entanglement. Current [ measurements made 5 m off bottom during...diameters a iv -ALI-- - 1. 1. Introduction Two types of physical oceanographic measurements were supplied by NORDA Code 331 In support of the March-April

  17. Engineering spin-orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuo-Feng; Wang, Ding-Shuo; Lai, Chih-Huang, E-mail: chlai@mx.nthu.edu.tw

    To address thermal stability issues for spintronic devices with a reduced size, we investigate spin-orbit torque in Co/Pt multilayers with strong perpendicular magnetic anisotropy. Note that the spin-orbit torque arises from the global imbalance of the spin currents from the top and bottom interfaces for each Co layer. By inserting Ta or Cu layers to strengthen the top-down asymmetry, the spin-orbit torque efficiency can be greatly modified without compromised perpendicular magnetic anisotropy. Above all, the efficiency builds up as the number of layers increases, realizing robust thermal stability and high spin-orbit-torque efficiency simultaneously in the multilayers structure.

  18. The effect of wind induced bottom shear stress and salinity on Zostera noltii replanting in a Mediterranean coastal lagoon

    NASA Astrophysics Data System (ADS)

    Alekseenko, E.; Roux, B.; Fougere, D.; Chen, P. G.

    2017-03-01

    The paper concerns the wind influence on bottom shear stress and salinity levels in a Mediterranean semi-enclosed coastal lagoon (Etang de Berre), with respect to a replanting program of Zostera noltii. The MARS3D numerical model is used to analyze the 3D current, salinity and temperature distribution induced by three meteorological, oceanic and anthropogenic forcings in this lagoon. The numerical model has been carefully validated by comparison with daily observations of the vertical salinity and temperature profiles at three mooring stations, for one year. Then, two modelling scenarios are considered. The first scenario (scen.#1), starting with a homogeneous salinity of S = 20 PSU and without wind forcing, studies a stratification process under the influence of a periodic seawater inflow and a strong freshwater inflow from a hydropower plant (250 m3/s). Then, in the second scenario (scen.#2), we study how a strong wind of 80 km/h can mix the haline stratification obtained at the end of scen.#1. The most interesting results concern four nearshore replanting areas; two are situated on the eastern side of EB and two on the western side. The results of scen.#2 show that all these areas are subject to a downwind coastal jet. Concerning bottom salinity, the destratification process is very beneficial; it always remains greater than 12 PSU for a N-NW wind of 80 km/h and an hydropower runoff of 250 m3/s. Special attention is devoted to the bottom shear stress (BSS) for different values of the bottom roughness parameter (for gravels, sands and silts), and to the bottom salinity. Concerning BSS, it presents a maximum near the shoreline and decreases along transects perpendicular to the shoreline. There exists a zone, parallel to the shoreline, where BSS presents a minimum (close to zero). When comparing the BSS value at the four replanting areas with the critical value, BSScr, at which the sediment mobility would occur, we see that for the smaller roughness values (ranging from z0 = 3.5 × 10-4 mm, to 3.5 × 10-2 mm) BSS largely surpasses this critical value. For a N-NW wind speed of 40 km/h (which is blowing for around 100 days per year), BSS still largely surpasses BSScr - at least for the silt sediments (ranging from z0 = 3.5 × 10-4 mm, to 3.5 × 10-3 mm). This confirms the possibility that the coastal jet could generate sediment mobility which could have a negative impact for SAV replanting.

  19. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean

    USGS Publications Warehouse

    Biscaye, P.E.; Eittreim, S.L.

    1977-01-01

    Vertical profiles of light scattering from over 1000 L-DGO nephelometer stations in the Atlantic Ocean have been used to calculate mass concentrations of suspended particles based on a calibration from the western North American Basin. From these data are plotted the distributions of particulate concentrations at clear water and in the more turbid near-bottom water. Clear water is the broad minimum in concentration and light scattering that occurs at varying mid-depths in the water column. Concentrations at clear water are as much as one-to-two orders of magnitude lower than those in surface water but still reflect a similar geographic distribution: relatively higher concentrations at ocean margins, especially underneath upwelling areas, and the lowest concentrations underneath central gyre areas. These distributions within the clear water reflect surface-water biogenic productivity, lateral injection of particles from shelf areas and surface circulation patterns and require that the combination of downward vertical and horizontal transport processes of particles retain this pattern throughout the upper water column. Below clear water, the distribution of standing crops of suspended particulate concentrations in the lower water column are presented. The integration of mass of all particles per unit area (gross particulate standing crop) reflects a relative distribution similar to that at the surface and at clear water levels, superimposed on which is the strong imprint of boundary currents along the western margins of the Atlantic. Reducing the gross particulate standing crop by the integral of the concentration of clear water yields a net particulate standing crop. The distribution of this reflects primarily the interaction of circulating abyssal waters with the ocean bottom, i.e. a strong nepheloid layer which is coincident with western boundary currents and which diminishes in intensity equatorward. The resuspended particulate loads in the nepheloid layer of the basins west of the Mid-Atlantic Ridge, resulting from interaction of abyssal currents with the bottom, range from ??? 2 ?? 106 tons in the equatorial Guyana Basin to ??? 50 ?? 106 tons in the North American Basin. The total resuspended particulate load in the western basins (111 ?? 106 tons) is almost an order of magnitude greater than that in the basins east of the Mid-Atlantic Ridge (13 ?? 106 tons). The net northward flux of resuspended particles carried in the AABW drops from ??? 8 ?? 106 tons/year between the southern and northern ends of the Brazil Basin and remains ??? 1 ?? 106 tons/year across the Guyana Basin. ?? 1977.

  20. Role of cold water and beta-effect in the formation of the East Korean Warm Current in the East/Japan Sea: a numerical experiment

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Yub; Cho, Yang-Ki; Kim, Young Ho

    2018-06-01

    The contributions of bottom cold water and planetary β-effect to the formation of the East Korean Warm Current (EKWC), the western boundary current in the East/Japan Sea (EJS), were evaluated using an idealized three-dimensional numerical model. The model results suggest that the bottom cold water and, to a lesser extent, the planetary β-effect both contribute to the formation of the EKWC. The cold water functions as the bottom of the upper layer, to control the EKWC via conservation of potential vorticity. It is known that cold waters, such as the North Korean Cold Water and Korea Strait Bottom Cold Water often observed during summer along the southwestern coast of the EJS, originate from the winter convection in the northern area. Observational studies consistently show that the EKWC strengthens in summer when the cold water extends further south along the western boundary.

  1. Spin currents and spin-orbit torques in ferromagnetic trilayers.

    PubMed

    Baek, Seung-Heon C; Amin, Vivek P; Oh, Young-Wan; Go, Gyungchoon; Lee, Seung-Jae; Lee, Geun-Hee; Kim, Kab-Jin; Stiles, M D; Park, Byong-Guk; Lee, Kyung-Jin

    2018-06-01

    Magnetic torques generated through spin-orbit coupling 1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field 9-14 . One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation 16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.

  2. Effect of asymmetrical eddy currents on magnetic diagnosis signals for equilibrium reconstruction in the Sino-UNIted Spherical Tokamak.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Wang, L

    2014-11-01

    The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms.

  3. Improving Reading Fluency and Comprehension in Adult ESL Learners Using Bottom-Up and Top-Down Vocabulary Training

    ERIC Educational Resources Information Center

    Oliver, Rhonda; Young, Shahreen

    2016-01-01

    The current research examines the effect of two methods of vocabulary training on reading fluency and comprehension of adult English as second language (ESL) tertiary-bound students. The methods used were isolated vocabulary training (bottom-up reading) and vocabulary training in context (top-down reading). The current exploratory and…

  4. Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank

    NASA Astrophysics Data System (ADS)

    Xue, Mi-An; Zheng, Jinhai; Lin, Pengzhi; Xiao, Zhong

    2017-08-01

    A finite difference model for solving Navier Stokes equations with turbulence taken into account is used to investigate viscous liquid sloshing-wave interaction with baffles in a tank. The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.

  5. Chemical Munitions Search & Assessment-An evaluation of the dumped munitions problem in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Bełdowski, Jacek; Klusek, Zygmunt; Szubska, Marta; Turja, Raisa; Bulczak, Anna I.; Rak, Daniel; Brenner, Matthias; Lang, Thomas; Kotwicki, Lech; Grzelak, Katarzyna; Jakacki, Jaromir; Fricke, Nicolai; Östin, Anders; Olsson, Ulf; Fabisiak, Jacek; Garnaga, Galina; Nyholm, Jenny Rattfelt; Majewski, Piotr; Broeg, Katja; Söderström, Martin; Vanninen, Paula; Popiel, Stanisław; Nawała, Jakub; Lehtonen, Kari; Berglind, Rune; Schmidt, Beata

    2016-06-01

    Chemical Munitions Search & Assessment (CHEMSEA) project has performed studies on chemical weapon (CW) detection, sediment pollution and spreading as well as biological effects of chemical warfare agents (CWAs) dumped in the Baltic Sea. Results suggest that munitions containing CWAs are more scattered on the seafloor than suspected, and previously undocumented dumpsite was discovered in Gdansk Deep. Pollution of sediments with CWA degradation products was local and close to the detected objects; however the pollution range was larger than predicted with theoretical models. Bottom currents observed in the dumpsites were strong enough for sediment re-suspension, and contributed to the transport of polluted sediments. Diversity and density of the faunal communities were poor at the dumping sites in comparison to the reference area, although the direct effects of CWA on benthos organisms were difficult to determine due to hypoxic or even anoxic conditions near the bottom. Equally, the low oxygen might have affected the biological effects assessed in cod and caged blue mussels. Nonetheless, both species showed significantly elevated molecular and cellular level responses at contaminated sites compared to reference sites.

  6. Bottom-up construction of artificial molecules for superconducting quantum processors

    NASA Astrophysics Data System (ADS)

    Poletto, Stefano; Rigetti, Chad; Gambetta, Jay M.; Merkel, Seth; Chow, Jerry M.; Corcoles, Antonio D.; Smolin, John A.; Rozen, Jim R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, Matthias

    2012-02-01

    Recent experiments on transmon qubits capacitively coupled to superconducting 3-dimensional cavities have shown coherence times much longer than transmons coupled to more traditional planar resonators. For the implementation of a quantum processor this approach has clear advantages over traditional techniques but it poses the challenge of scalability. We are currently implementing multi-qubits experiments based on a bottom-up scaling approach. First, transmon qubits are fabricated on individual chips and are independently characterized. Second, an artificial molecule is assembled by selecting a particular set of previously characterized single-transmon chips. We present recent data on a two-qubit artificial molecule constructed in this way. The two qubits are chosen to generate a strong Z-Z interaction by matching the 0-1 transition energy of one qubit with the 1-2 transition of the other. Single qubit manipulations and state tomography cannot be done with ``traditional'' single tone microwave pulses but instead specifically shaped pulses have to be simultaneously applied on both qubits. Coherence times, coupling strength, and optimal pulses for decoupling the two qubits and perform state tomography are presented

  7. Bridging a possible gap of GRACE observations in the Arctic Ocean using existing GRACE data and in situ bottom pressure sensors

    NASA Astrophysics Data System (ADS)

    Peralta Ferriz, C.; Morison, J.

    2014-12-01

    Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1

  8. Channel Bottom Morphology in the Deltaic Reach of the Song Hau (mekong) River Channel in Vietnam

    NASA Astrophysics Data System (ADS)

    Allison, M. A.; Weathers, H. D., III; Meselhe, E. A.

    2016-02-01

    Boat-based, channel bathymetry and bankline elevation studies were conducted in the tidal and estuarine Mekong River channel using multibeam bathymetry and LIDAR corrected for elevation by RTK satellite positioning. Two mapping campaigns, one at high discharge in October 2014 and one at low discharge in March 2015, were conducted in the lower 100 km reach of the Song Hau distributary channel to (1) examine bottom morphology and its relationship to sediment transport, and (2) to provide information to setup the grid for a multi-dimensional and reduced complexity models of channel hydrodynamics and sediment dynamics. Sand fields were identified in multibeam data by the presence of dunes that were as large as 2-4 m high and 40-80 m wavelength and by clean sands in bottom grabs. Extensive areas of sand at the head and toe of mid-channel islands displayed 10-25 m diameter circular pits that could be correlated with bucket dredge, sand mining activities observed at some of the sites. Large areas of the channel floor were relict (containing little or no modern sediment) in the high discharge campaign, identifiable by the presence of along channel erosional furrows and terraced outcrops along the channel floor and margins. Laterally extensive flat areas were also observed in the channel thalweg. Both these and the relict areas were sampled by bottom grab as stiff silty clays. Complex cross-channel combinations of these morphologies were observed in some transects, suggesting strong bottom steering of tidal and riverine currents. Relative to high discharge, transects above and below the salt penetration limit showed evidence of shallowing in the thalweg and adjacent sloping areas at low discharge in March 2015. This shallowing, combined with the reduced extent of sand fields and furrowed areas, and soft muds in grabs, suggests seasonal trapping of fine grained sediment is occurring by estuarine and tidal circulation.

  9. Millennial-scale ocean current intensity changes off southernmost Chile and implications for Drake Passage throughflow

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Arz, H. W.; Kilian, R.; Baeza Urrea, O.; Caniupan, M.; Kissel, C.; Lange, C.

    2012-04-01

    The Antarctic Circumpolar Current (ACC) plays an essential role in the thermohaline circulation and global climate. Today a large volume of ACC water passes through the Drake Passage, a major geographic constrain for the circumpolar flow. Satellite tracked surface drifters have shown that Subantarctic Surface water of the ACC is transported northeastward across the Southeast Pacific from ~53°S/100°W towards the Chilean coast at ~40°S/75°W where surface waters bifurcate and flow northward into the Peru Chile Current (PCC) finally reaching the Eastern Tropical Pacific, and southwards into the Cape Horn Current (CHC). The CHC thus transports a significant amount of northern ACC water towards the Drake Passage and reaches surface current velocities of up to 35 cm/s within a narrow belt of ~100-150 km width off the coast. Also at deeper water levels, an accelerated southward flow occurs along the continental slope off southernmost South America that likewise substantially contributes to the Drake Passage throughflow. Here we report on high resolution geochemical and grain-size records from core MD07-3128 (53°S; 1032 m water depth) which has been retrieved from the upper continental slope off the Pacific entrance of the Magellan Strait beneath the CHC. Magnetic grain-sizes and grain-size distributions of the terrigenous fraction reveal large amplitude changes between the Holocene and the last glacial, as well as millennial-scale variability (most pronounced during Marine Isotope Stage). Magnetic grain-sizes, silt/clay ratios, fine sand contents, sortable silt contents, and sortable silt mean grain-sizes are substantially higher during the Holocene suggesting strongly enhanced current activity. The high absolute values imply flow speeds larger than 25 cm/s as currently observed in the CHC surface current. Furthermore, winnowing processes through bottom current activity and changes in the availability of terrigenous material (ice-sheet extension and related supply of silt/clay, efficiency of the fjords in trapping sediment) might have contributed to the observed grain-size variations. Assuming that surface and bottom current strength changes are the major controlling factors, our data suggest a strongly enhanced CHC and deeper flow during the Holocene compared to the mean of the last glacial. During MIS 3, several phases of stronger current flow mostly correlate with warm sea surface temperatures at the site and, within age uncertainties, with millennial-scale warm phases in Antarctic ice cores. Taken together our data can be interpreted in terms of strongly reduced contributions of northern ACC water to the Drake Passage throughflow during the glacial in general and during millennial-scale cold phases in particular. At the same time, advection of northern ACC water into the PCC was probably enhanced. These results are consistent with model runs showing largely reduced volume transport through the Drake Passage during the last glacial maximum and an increasing throughflow during the last deglaciation that might have affected the strengthening of the Atlantic Meridional Overturning Circulation.

  10. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments

    USGS Publications Warehouse

    Signell, Richard P.; Beardsley, Robert C.; Graber, H. C.; Capotondi, A.

    1990-01-01

    The effect of wind waves on the steady wind-driven circulation in a narrow, shallow bay is investigated with a two-dimensional (y, z) circulation model and the Grant and Madsen [1979] bottom-boundary layer model, which includes wave-current interaction. A constant wind stress is applied in the along-channel x direction to a channel with a constant cross-sectional profile h(y). The wind-induced flushing of shallow bays is shown to be sensitive to both the shape of the cross section and the effects of surface waves. The flushing increases with increasing , where h′ is the standard deviation of cross-channel depth and  is the mean depth. This is consistent with the findings of Hearn et al. [1987]. The flushing decreases, however, with the inclusion of surface wave effects which act to increase the bottom drag felt by the currents. Increasing effective bottom friction reduces the strength of the circulation, while the along-bay surface slope, bottom stress and the structure of current profiles remain nearly unchanged. An implication of the circulation dependence on wave-current interaction is that low-frequency oscillatory winds may drive a mean circulation when the wave field changes with wind direction.x

  11. Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Ling, C.-H.; Gartner, J.W.; Wang, P.-F.

    1999-01-01

    A field investigation of the hydrodynamics and the resuspension and transport of participate matter in a bottom boundary layer was carried out in South San Francisco Bay (South Bay), California, during March-April 1995. Using broadband acoustic Doppler current profilers, detailed measurements of turbulent mean velocity distribution within 1.5 m above bed have been obtained. A global method of data analysis was used for estimating bottom roughness length zo and bottom shear stress (or friction velocities u*). Field data have been examined by dividing the time series of velocity profiles into 24-hour periods and independently analyzing the velocity profile time series by flooding and ebbing periods. The global method of solution gives consistent properties of bottom roughness length zo and bottom shear stress values (or friction velocities u*) in South Bay. Estimated mean values of zo and u* for flooding and ebbing cycles are different. The differences in mean zo and u* are shown to be caused by tidal current flood-ebb inequality, rather than the flooding or ebbing of tidal currents. The bed shear stress correlates well with a reference velocity; the slope of the correlation defines a drag coefficient. Forty-three days of field data in South Bay show two regimes of zo (and drag coefficient) as a function of a reference velocity. When the mean velocity is >25-30 cm s-1, the ln zo (and thus the drag coefficient) is inversely proportional to the reference velocity. The cause for the reduction of roughness length is hypothesized as sediment erosion due to intensifying tidal currents thereby reducing bed roughness. When the mean velocity is <25-30 cm s-1, the correlation between zo and the reference velocity is less clear. A plausible explanation of scattered values of zo under this condition may be sediment deposition. Measured sediment data were inadequate to support this hypothesis, but the proposed hypothesis warrants further field investigation.

  12. Distribution and transport of suspended particulate matter in Monterey Canyon, California

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.; Eittreim, S.L.; Rosenfeld, L.K.; Schwing, F.B.; Pilskaln, C.H.

    2002-01-01

    From August 1993 to August 1994, six moorings that measure current, temperature, salinity, and water clarity were deployed along the axis of Monterey Canyon to study the circulation and transport of water and suspended particulate matter through the canyon system. The moorings occupied three sites that are morphologically different: a narrow transverse section (axis width 900 m) at 1450 m water depth, a wide transverse section at 2837 m, and a third site in the fan valley axis farther offshore at 3223 m that recorded for 3 yr. In addition, CTD/transmissometer casts were conducted within and near the Monterey Canyon during four cruises. Our data show a mainly biogenic, surface turbid layer, a limited intermediate nepheloid layer, and a bottom nepheloid layer. There is a consistent presence of a turbid layer within the canyon at a water depth of about 1500 m. Tidal flow dominates at all sites, but currents above the canyon rim and within the canyon appear to belong to two distinct dynamic systems. Bottom intensification of currents plays an important role in raising the near-bottom shear stress high enough that bottom sediments are often, if not always, resuspended. Mean flow pattern suggests a convergence zone between the narrow and wide site: the near-bed (100 m above bottom where the lowest current meter was located) mean transport is down-canyon at the 1450-m site, while the near-bottom transport at the 2837-m site is up-canyon, at a smaller magnitude. Transport at the 3223-m site is dominantly NNW, cross-canyon, with periods of up-canyon flow over 3 yr. A very high-turbidity event was recorded 100 m above the canyon bottom at the narrow site. The event started very abruptly and lasted more than a week. This event was not detected at either of the deeper sites. A canyon head flushing event is likely the cause. ?? 2002 Elsevier Science B.V. All rights reserved.

  13. The Pianosa Contourite Depositional System (Northern Tyrrhenian Sea): drift morphology and Plio-Quaternary stratigraphic evolution

    NASA Astrophysics Data System (ADS)

    Miramontes Garcia, Elda; Cattaneo, Antonio; Jouet, Gwenael; Thereau, Estelle; Thomas, Yannick; Rovere, Marzia; Cauquil, Eric; Trincardi, Fabio

    2016-04-01

    The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7-0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish and the turbidite system was disconnected, resulting in a lower sediment influx.

  14. Relative contributions of local wind and topography to the coastal upwelling intensity in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Dongxiao; Shu, Yeqiang; Xue, Huijie; Hu, Jianyu; Chen, Ju; Zhuang, Wei; Zu, TingTing; Xu, Jindian

    2014-04-01

    Topographically induced upwelling caused by the interaction between large-scale currents and topography was observed during four cruises in the northern South China Sea (NSCS) when the upwelling favorable wind retreated. Using a high-resolution version of the Princeton Ocean Model, we investigate relative contributions of local wind and topography to the upwelling intensity in the NSCS. The results show that the topographically induced upwelling is sensitive to alongshore large-scale currents, which have an important contribution to the upwelling intensity. The topographically induced upwelling is comparable with the wind-driven upwelling at surface and has a stronger contribution to the upwelling intensity than the local wind does at bottom in the near-shore shelf region. The widened shelf to the southwest of Shanwei and west of the Taiwan Banks intensifies the bottom friction, especially off Shantou, which is a key factor for topographically induced upwelling in terms of bottom Ekman transport and Ekman pumping. The local upwelling favorable wind enhances the bottom friction as well as net onshore transport along the 50 m isobath, whereas it has less influence along the 30 m isobath. This implies the local wind is more important in upwelling intensity in the offshore region than in the nearshore region. The contribution of local upwelling favorable wind on upwelling intensity is comparable with that of topography along the 50 m isobath. The effects of local upwelling favorable wind on upwelling intensity are twofold: on one hand, the wind transports surface warm water offshore, and as a compensation of mass the bottom current transports cold water onshore; on the other hand, the wind enhances the coastal current, and the bottom friction in turn increases the topographically induced upwelling intensity.

  15. Constrained circulation at Endeavour ridge facilitates colonization by vent larvae.

    PubMed

    Thomson, Richard E; Mihály, Steven F; Rabinovich, Alexander B; McDuff, Russell E; Veirs, Scott R; Stahr, Frederick R

    2003-07-31

    Understanding how larvae from extant hydrothermal vent fields colonize neighbouring regions of the mid-ocean ridge system remains a major challenge in oceanic research. Among the factors considered important in the recruitment of deep-sea larvae are metabolic lifespan, the connectivity of the seafloor topography, and the characteristics of the currents. Here we use current velocity measurements from Endeavour ridge to examine the role of topographically constrained circulation on larval transport along-ridge. We show that the dominant tidal and wind-generated currents in the region are strongly attenuated within the rift valley that splits the ridge crest, and that hydrothermal plumes rising from vent fields in the valley drive a steady near-bottom inflow within the valley. Extrapolation of these findings suggests that the suppression of oscillatory currents within rift valleys of mid-ocean ridges shields larvae from cross-axis dispersal into the inhospitable deep ocean. This effect, augmented by plume-driven circulation within rift valleys having active hydrothermal venting, helps retain larvae near their source. Larvae are then exported preferentially down-ridge during regional flow events that intermittently over-ride the currents within the valley.

  16. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior.

    PubMed

    Tatari, K; Smets, B F; Albrechtsen, H-J

    2016-09-15

    The biokinetic behavior of NH4(+) removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4(+) loadings in a continuous-flow lab-scale assay. NH4(+) removal capacity, estimated from short term loading up-shifts, was at least 10 times higher in the top than in the middle and bottom filter layers, consistent with the stratification of Ammonium Oxidizing Bacteria (AOB). AOB density increased consistently with the NH4(+) removal rate, indicating their primarily role in nitrification under the imposed experimental conditions. The maximum AOB cell specific NH4(+) removal rate observed at the bottom was at least 3 times lower compared to the top and middle layers. Additionally, a significant up-shift capacity (4.6 and 3.5 times) was displayed from the top and middle layers, but not from the bottom layer at increased loading conditions. Hence, AOB with different physiological responses were active at the different depths. The biokinetic analysis predicted that despite the low NH4(+) removal capacity at the bottom layer, the entire filter is able to cope with a 4-fold instantaneous loading increase without compromising the effluent NH4(+). Ultimately, this filter up-shift capacity was limited by the density of AOB and their biokinetic behavior, both of which were strongly stratified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Quark masses and strong coupling constant in 2+1 flavor QCD

    DOE PAGES

    Maezawa, Y.; Petreczky, P.

    2016-08-30

    We present a determination of the strange, charm and bottom quark masses as well as the strong coupling constant in 2+1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be mc/ms = 11.877(91) and mb/mc = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: α s(μ =more » m c) = 0.3697(85) and mc(μ = mc) = 1.267(12) GeV. Our result for αs corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value α s(μ = M Z, n f = 5) = 0.11622(84).« less

  18. Do different attention capture paradigms measure different types of capture?

    PubMed

    Roque, Nelson A; Wright, Timothy J; Boot, Walter R

    2016-10-01

    When something captures our attention, why does it do so? This topic has been hotly debated, with some arguing that attention is captured only by salient stimuli (bottom-up view) and others arguing capture is always due to a match between a stimulus and our goals (top-down view). Many different paradigms have provided evidence for 1 view or the other. If either of these strong views are correct, then capture represents a unitary phenomenon, and there should be a high correlation between capture in these paradigms. But if there are different types of capture (top-down, bottom-up), then some attention capture effects should be correlated and some should not. In 2 studies, we collected data from several paradigms used in support of claims of top-down and bottom-up capture in relatively large samples of participants. Contrary to either prediction, measures of capture were not strongly correlated. Results suggest that capture may in fact be strongly determined by idiosyncratic task demands and strategies. Relevant to this lack of relations among tasks, we observed that classic measures of attention capture demonstrated low reliability, especially among measures used to support bottom-up capture. Implications for the low reliability of capture measures are discussed. We also observed that the proportion of participants demonstrating a pattern of responses consistent with capture varied widely among classic measures of capture. Overall, results demonstrate that, even for relatively simple laboratory measures of attention, there are still important gaps in knowledge regarding what these paradigms measure and how they are related.

  19. Sedimentary environments within a glaciated estuarine-inner shelf system: Boston Harbor and Massachusetts Bay

    USGS Publications Warehouse

    Knebel, H.J.

    1993-01-01

    Three modern sedimentary environments have been identified and mapped across the glaciated Boston Harbor estuary and adjacent inner shelf of Massachusetts Bay by means of an extensive set of sidescan sonar records and supplemental bathymetric, sedimentary, subbottom and bottom-current data. 1. (1) Environments of erosion and nondeposition appear on the sonographs either as patterns with isolated reflections (caused by outcrops of bedrock, glacial drift, and coastal plain rocks) or as patterns of strong backscatter (caused by coarse-grained lag deposits). Sediments in these environments range from boulder fields to gravelly sands with megaripples. Inside the harbor, areas of erosion or nondeposition are found primarily near mainland and insular shores and within constricted tidal channels, whereas, on the shelf, they are present over extensive areas of hummocky topography near the coast and atop local bathymetric highs offshore. 2. (2) Environments of sediment reworking are characterized on the sonographs by patterns with patches of strong to weak backscatter caused by a combination of erosional and depositional processes. These environments have diverse grain sizes that range from sandy gravels to muds. Within the harbor, the locations of reworked sediments are uncorrelated with the bottom topography, but, on the shelf, they are found on the lower flanks of bathymetric highs, within broad lows and in relatively deep water (30-50 m). 3. (3) Environments of deposition are depicted on the sonographs as uniform patterns of weak backscatter. These areas contain relatively fine-grained muddy sands and muds. Inside the harbor, depositional environments are found over extensive subtidal flats and within sheltered depressions, whereas, on the shelf, they are restricted to broad lows mainly in deep water. The extreme patchiness of modern sedimentary environments within the Boston Harbor-Massachusetts Bay system reflects the interaction between the irregular bottom topography and both geologic and oceanographic processes. The estuarine part of the system is an effective trap for fine-grained detritus because of its protected nature, low wave climate, and large supply of sediments. The open shelf, however, is largely mantled by winnowed and sorted sediments as a result of erosion during past sea-level fluctuations, sediment resuspension and transport by modern waves and currents, and a spatially variable supply of fine-grained sediments.

  20. Estimating Discharge, Depth and Bottom Friction in Sand Bed Rivers Using Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Czapiga, M. J.; Holland, K. T.

    2017-12-01

    We developed an inversion model for river bathymetry estimation using measurements of surface currents, water surface elevation slope and shoreline position. The inversion scheme is based on explicit velocity-depth and velocity-slope relationships derived from the along-channel momentum balance and mass conservation. The velocity-depth relationship requires the discharge value to quantitatively relate the depth to the measured velocity field. The ratio of the discharge and the bottom friction enter as a coefficient in the velocity-slope relationship and is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. Completing the inversion requires an estimate of the bulk friction, which in the case of sand bed rivers is a strong function of the size of dune bedforms. We explored the accuracy of existing and new empirical closures that relate the bulk roughness to parameters such as the median grain size diameter, ratio of shear velocity to sediment fall velocity or the Froude number. For given roughness parameterization, the inversion solution is determined iteratively since the hydraulic roughness depends on the unknown depth. We first test the new hydraulic roughness parameterization using estimates of the Manning roughness in sand bed rivers based on field measurements. The coupled inversion and roughness model is then tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID.

  1. High Energy Benthic Boundary Layer Experiment (HEBBLE): Preliminary program plan and conceptual design

    NASA Technical Reports Server (NTRS)

    Frewing, K.

    1980-01-01

    Deep sea processes of flow-sediment interaction, particularly the role of high energy ocean bottom current events in forming the seafloor topography, transporting material, and mixing the bottom of the water column are examined. A series of observations at and near the sea bottom, in water depths of 4 to 5 km, in areas of the western North Atlantic where high energy current events occur, include site surveys and physical reconnaissance to identify suitable areas and positions, and one or more six month experiments to investigate temporal and spatial variations of high energy events within the boundary layer and their interaction with the seabed. Descriptions of proposed HEBBLE activities are included, with emphasis on technology transfer to the oceanographic community through design, fabrication, testing, and operation of an instrumented ocean bottom lander.

  2. Overview of the sedimentological processes in the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Benetti, S.; Weaver, P.; Wilson, P.

    2003-04-01

    The sedimentary processes operating within the western North Atlantic continental margin include both along-slope sediment transport, which builds sediment drifts and waves, and down-slope processes involving mass wasting. Sedimentation along a large stretch of the margin (north of 32°N) has been heavily influenced by processes that occurred during glacial times (e.g. cutting of canyons and infilling of abyssal plains) when large volumes of sediment were supplied to the shelf edge either by ice grounded on continental shelves or river discharge. The large area of sea floor occupied by depositional basins and abyssal plains testifies to the dominance of turbidity currents. The widespread presence of slide complexes in this region has been related to earthquakes and melting of gas hydrates. South of 32°N, because of the low sediment supply from rivers even during glacial times and the reduced sedimentation due to the erosive effects of the Gulf Stream, few canyon systems and slides are observed and Tertiary sediment cover is thin and irregular. Turbidity currents filled re-entrant basins in the Florida-Bahama platform. Tectonic activity is primarily responsible for the overall morphology and sedimentation pattern along the Caribbean active margin. Along the whole margin, the reworking of bottom sediments by deep-flowing currents seems to be particularly active during interglacials. To some extent this observation must reflect the diminished effect of downslope transport during interglacials, but our data also contribute to the debate over changes in deep water circulation strength on glacial-interglacial timescales. Strong bottom circulation, an open basin system and high sediment supply have led to the construction of large elongate contourite drifts, mantled by smaller scale bedforms. These drifts are mostly seen in regions protected or distant from the masking influence of turbidity currents and sediment mass movements.

  3. Circulation and water properties in the landfast ice zone of the Alaskan Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Weingartner, Thomas J.; Danielson, Seth L.; Potter, Rachel A.; Trefry, John H.; Mahoney, Andy; Savoie, Mark; Irvine, Cayman; Sousa, Leandra

    2017-09-01

    Moorings, hydrography, satellite-tracked drifters, and high-frequency radar data describe the annual cycle in circulation and water properties in the landfast ice zone (LIZ) of the Alaskan Beaufort Sea. Three seasons, whose duration and characteristics are controlled by landfast ice formation and ablation, define the LIZ: ;winter;, ;break-up;, and ;open-water;. Winter begins in October with ice formation and ends in June when rivers commence discharging. Winter LIZ ice velocities are zero, under-ice currents are weak ( 5 cm s-1), and poorly correlated with winds and local sea level. The along-shore momentum balance is between along-shore pressure gradients and bottom and ice-ocean friction. Currents at the landfast ice-edge are swift ( 35 cm s-1), wind-driven, with large horizontal shears, and potentially unstable. Weak cross-shore velocities ( 1 cm s-1) imply limited exchanges between the LIZ and the outer shelf in winter. The month-long break-up season (June) begins with the spring freshet and concludes when landfast ice detaches from the bottom. Cross-shore currents increase, and the LIZ hosts shallow ( 2 m), strongly-stratified, buoyant and sediment-laden, under-ice river plumes that overlie a sharp, 1 m thick, pycnocline across which salinity increases by 30. The plume salt balance is between entrainment and cross-shore advection. Break-up is followed by the 3-month long open-water season when currents are swift (≥20 cm s-1) and predominantly wind-driven. Winter water properties are initialized by fall advection and evolve slowly due to salt rejection from ice. Fall waters and ice within the LIZ derive from local rivers, the Mackenzie and/or Chukchi shelves, and the Arctic basin.

  4. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site

    NASA Astrophysics Data System (ADS)

    Harris, Courtney K.; Wiberg, Patricia L.

    1997-09-01

    Modeling shelf sediment transport rates and bed reworking depths is problematic when the wave and current forcing conditions are not precisely known, as is usually the case when long-term sedimentation patterns are of interest. Two approaches to modeling sediment transport under such circumstances are considered. The first relies on measured or simulated time series of flow conditions to drive model calculations. The second approach uses as model input probability distribution functions of bottom boundary layer flow conditions developed from wave and current measurements. Sediment transport rates, frequency of bed resuspension by waves and currents, and bed reworking calculated using the two methods are compared at the mid-shelf STRESS (Sediment TRansport on Shelves and Slopes) site on the northern California continental shelf. Current, wave and resuspension measurements at the site are used to generate model inputs and test model results. An 11-year record of bottom wave orbital velocity, calculated from surface wave spectra measured by the National Data Buoy Center (NDBC) Buoy 46013 and verified against bottom tripod measurements, is used to characterize the frequency and duration of wave-driven transport events and to estimate the joint probability distribution of wave orbital velocity and period. A 109-day record of hourly current measurements 10 m above bottom is used to estimate the probability distribution of bottom boundary layer current velocity at this site and to develop an auto-regressive model to simulate current velocities for times when direct measurements of currents are not available. Frequency of transport, the maximum volume of suspended sediment, and average flux calculated using measured wave and simulated current time series agree well with values calculated using measured time series. A probabilistic approach is more amenable to calculations over time scales longer than existing wave records, but it tends to underestimate net transport because it does not capture the episodic nature of transport events. Both methods enable estimates to be made of the uncertainty in transport quantities that arise from an incomplete knowledge of the specific timing of wave and current conditions. 1997 Elsevier Science Ltd

  5. Acoustic measurements of the spatial and temporal structure of the near-bottom boundary layer in the 1990-1991 STRESS experiment

    NASA Astrophysics Data System (ADS)

    Lynch, James F.; Irish, James D.; Gross, Thomas F.; Wiberg, Patricia L.; Newhall, Arthur E.; Traykovski, Peter A.; Warren, Joseph D.

    1997-08-01

    As part of the 1990-1991 Sediment TRansport Events on Shelves and Slopes (STRESS) experiment, a 5 MHz Acoustic BackScatter System (ABSS) was deployed in 90 m of water to measure vertical profiles of near-bottom suspended sediment concentration. By looking at the vertical profile of concentration from 0 to 50 cm above bottom (cmab) with 1 cm vertical resolution, the ABSS was able to examine the detailed structure of the bottom boundary layer created by combined wave and current stresses. The acoustic profiles clearly showed the wave-current boundary layer, which extends to (order) 10 cmab. The profiles also showed evidence of an "intermediate" boundary layer, also influenced by combined wave and current stresses, just above the wave-current boundary layer. This paper examines the boundary-layer structure by comparing acoustic data obtained by the authors to a 1-D eddy viscosity model formulation. Specifically, these data are compared to a simple extension of the Grant-Glenn-Madsen model formulation. Also of interest is the appearance of apparently 3-D "advective plume" structures in these data. This is an interesting feature in a site which was initially chosen to be a good example of (temporally averaged) 1-D bottom boundary-layer dynamics. Computer modeling and sector-scanning sonar images are presented to justify the plausibility of observing 3-D structure at the STRESS site. 1997 Elsevier Science Ltd

  6. Modelling and in-situ measurements of intense currents during a winter storm in the Gulf of Aigues-Mortes (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Michaud, Héloïse; Leredde, Yann; Estournel, Claude; Berthebaud, Éric; Marsaleix, Patrick

    2013-09-01

    While oceanic circulation in the Gulf of Lion (GoL) has often been studied in calm weather or with northerly winds (Tramontane or Mistral) through observations and numerical circulation models, few studies have focused on southeasterly storm events. Yet, correct representation of the circulation during storms is crucial if the suspension of sediments is to be correctly modelled throughout the Gulf. The purpose of this paper is to describe the hydrodynamics in the Gulf of Aigues-Mortes (NW of the GoL) during the storm of 18 February 2007 by using a set of data from an ADCP station placed at a depth of 65 m on the sea bed off the coast at Sète, supplemented by the ocean circulation model SYMPHONIE. This storm was characterized by a moderate south-easterly wind (15 m . s-1) and waves of up to 5 m of significant height at its apex. At the ADCP, strong currents of up to 0.8 m . s-1 near the surface and 0.5 m . s-1 near the bottom were recorded, parallel to the coast, flowing towards the south-west. The simulated currents were widely underestimated, even taking the effect of waves into account in the model. It was suspected that the representation of the wind in the atmospheric model was an underestimation. A new simulation was therefore run with an arbitrarily chosen stronger wind and its results were in much better agreement with the measurements. A simplified theoretical analysis successfully isolated the wind-induced processes, responsible for the strong currents measured during the apex and the strong vertical shear that occurred at the beginning of the storm. These processes were: 1/ the barotropic geostrophic current induced by a wind parallel to the coast and 2/ the Ekman spiral. The duration of the storm (about 36 h at the apex) explains the continuous increase of the current as predicted by the theory. The frictionally induced Ekman transport explains the current shear in the surface layer in the rising stage of the storm, and the addition of high waves and strong wind at the apex is more in favour of strong vertical mixing in the surface layer.

  7. Long-term impact of bottom trawling on pelagic-benthic coupling in the southern North Sea (German Bight)

    NASA Astrophysics Data System (ADS)

    Friedrich, Jana; van Beusekom, Justus E. E.; Neumann, Andreas; Naderipour, Celine; Janssen, Felix; Ahmerkamp, Soeren; Holtappels, Moritz; Schueckel, Ulrike

    2016-04-01

    The southern North Sea, and the German Bight, has been systematically bottom-trawled at least since the late 19th century (Christiansen, 2009; Reiss et al., 2009; Kröncke 2011; Emeis et al., 2015, Neumann et al., 2016). As a result, benthic habitats and benthic biogenic structures created by bivalves, polychaetes and hydroids where destroyed or reduced. The parallel removal of hard substrate (gravel and boulders) avoids the resettlement of hard-substrate depended species. For example, the Oyster ground, a huge oyster bank a hundred years ago (Olsen, 1883), turned into a muddy depression today. In addition, shallow depth of max 40 m, strong tidal currents and frequent storms result in a high-energy environment with low sedimentation rates and recurrent sediment resuspension. The decrease in benthic filtering capacity by disturbance in epifauna and bottom roughness (Callaway et al., 2007) apparently influence pelagic-benthic coupling of biogeochemical fluxes. Heip et al. (1995) indicate that benthic respiration at depths prevailing in the German Bight accounts for 10-40% of total respiration, whereas pelagic respiration accounts for 60-90%. Previous estimates are in the middle of this range (Heip et al., 1995). To test these hypotheses and to assess the partitioning of benthic and pelagic processes, and the factors influencing organic matter mineralization, we measured pelagic production and respiration based on Winkler titration, in-situ benthic fluxes using chamber landers, we did ex-situ incubations of intact sediment cores and analysed still images from a towed benthic video sled. In addition, O2 fluxes in permeable sediments were estimated by integrating the volumetric rate measurements of the upper sediment layer over in-situ microsensor-measured O2 penetration depth. Our current results show significant seasonality in benthic respiration, with highest rates in summer and lowest rates in winter. No significant differences in total benthic respiration rates were measured on sandy (permeable) and silty (diffusive) sediments, whereas significant differences of microbial O2 uptake were observed indeed between permeable and diffusive sediments. Nevertheless, when considering the multitude of different methods, we found that benthic respiration over the season seemed to be governed mainly by settling of fresh organic matter during calm periods and its rapid turnover in a region where strong tidal and wind-forced currents distribute suspended particles over large areas. Summer pelagic respiration rates were an order of magnitude higher then benthic rates, and account for 88-93% of total respiration, which represents 79-98% of pelagic primary production. Our measurements of benthic respiration account for 7-12% of the total in the German Bight, which is lower compared to earlier studies. Strong tidal and wind-forced currents along with the lack of complex three-dimensional biogenic structures seem to prevent settling of suspended matter and foster resuspension, thereby supporting pelagic turnover processes. Hence, we assume that benthic turnover might have been higher before systematic bottom trawling destroyed the bottom hydrobiological regime. Today, due to the strong current regime in the German Bight, the pelagic system appears to be a largely closed system of production and respiration, with comparably little for export to the benthic system due to absence of biogenic structures. References Callaway R, Engelhard GH, Dann J, Cotter J, Rumohr H (2007) One century of North Sea epibenthos and fishing: comparison between 1902-1912, 1982-1985 and 2000. Marine Ecology Progress Series 346, 27-43. Christiansen S (2009) Towards good environmental status - A network of marine protected areas for the North Sea. In: Lutter S (ed) WWF Germany, Fankfurt/Main Emeis K-C, van Beusekom J, Callies U, Ebinghaus R, Kannen A, Kraus G, Kröncke I, Lenhart H, Lorkowski I, Matthias V, Möllmann C, Pätsch J, Scharfe M, Thomas H, Weisse R, Zorita E (2015) The North Sea -A shelf sea in the Anthropocene. Journal of Marine Systems 141:18-33 Heip CHR, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaerd K (1995) Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology: an Annual Review 33:1-149 Kröncke I (2011) Changes in Dogger Bank macrofauna communities in the 20th century caused by fishing and climate. Estuarine, Coastal and Shelf Sciences 94 (3): 234-245. Neumann H, Diekmann R, Kröncke I (2016) The influence of habitat characteristics and fishing effort on functional composition of epifauna in the south-eastern North Sea. Estuarine, Coastal and Shelf Sciences 169: 182-194. Olsen OT (1883) The Piscatorial Atlas of the North Sea, English and St. George's Channels. Taylor and Francis, London Reiss H, Greenstreet S, Sieben K, Ehrich S, Piet G, Quirijns F, Robinson F, Wolff W, Kröncke I (2009) Effects of fishing disturbance on benthic communities and secondary production within an intensively fished area. Marine Ecology Progress Series 394:201-213

  8. Creation of Functional Micro/Nano Systems through Top-down and Bottom-up Approaches

    PubMed Central

    Wong, Tak-Sing; Brough, Branden; Ho, Chih-Ming

    2009-01-01

    Mimicking nature’s approach in creating devices with similar functional complexity is one of the ultimate goals of scientists and engineers. The remarkable elegance of these naturally evolved structures originates from bottom-up self-assembly processes. The seamless integration of top-down fabrication and bottom-up synthesis is the challenge for achieving intricate artificial systems. In this paper, technologies necessary for guided bottom-up assembly such as molecular manipulation, molecular binding, and the self assembling of molecules will be reviewed. In addition, the current progress of synthesizing mechanical devices through top-down and bottom-up approaches will be discussed. PMID:19382535

  9. Harpacticoid copepod diversity at two physically reworked sites in the deep sea

    NASA Astrophysics Data System (ADS)

    Thistle, David

    1998-01-01

    Grassle's and Jumars' theories of diversity maintenance in the quiescent deep sea view millimeter-to-meter-scale patchiness (mostly of biological origin) as crucial. In other deep-sea regions, episodes of strong near-bottom flow put the surficial sediment layers into motion, obliterating the biologically produced, millimeter-to-meter-scale patchiness. Under these theories, sites eroded so frequently that such patchiness is eliminated almost as soon as it is created should have lower diversities than sites where the time between erosive events is sufficient for this type of patchiness to be produced and exploited. I tested this prediction by comparing the diversities of harpacticoid copepods at two sites on Fieberling Guyot to determine whether Grassle's and Jumars' theories can be extended to the portion of the deep sea that experiences episodic erosive flows. At White Sand Swale (=WSS) (32°27.581'N, 127°47.839'W), strong near-bottom flows erode the surficial sediment daily. At Sea Pen Rim (=SPR) (32°27.631'N, 127°49.489'W), strong near-bottom flows erode the surficial sediment a few times annually. Contrary to expectation, the diversity of harpacticoid copepods was significantly greater at WSS than at SPR. However, the erosion regime at WSS may create small-scale patchiness that promotes harpacticoid diversity.

  10. Bottom current deposition in the Antarctic Wilkes Land margin during the Oligocene

    NASA Astrophysics Data System (ADS)

    Salabarnada, Ariadna; Escutia, Carlota; Nelson, Hans C.; Evangelinos, Dimitris; López-Quirós, Adrián

    2017-04-01

    Sediment cores collected from the Antarctic Wilkes Land continental rise at IODP site 1356 provide evidence for bottom current sedimentation taking place since the early Oligocene (i.e., 33.6 Ma) (Escutia et al., 2011). Correlation between site 1356 sediments and the regional grid of multichannel seismic reflection profiles, complemented with bathymetric data, allow us to differentiate a variety of contourite deposits resulting from the interaction between bottom currents and seafloor paleomorphologies. Contourite deposits are identified based on the seismic signature, reflector configuration and geometry of the depositional bodies as elongated-mounded drifts, giant mounded drifts, confined drifts, infill drifts, plastered drifts, sediment waves, and moats. Based on the spatial and temporal distribution of these deposits, we differentiate three phases in contourite deposition in this margin: Phase 1) from 33.6-28 Ma sheeted drift morphologies dominate, related to high-energy deposits associated with fast flowing currents during the early Oligocene; Phase 2) At around 28 Ma, mounded drift morphologies and moat channels start forming. Continued intensification of contour currents results in larger contourite morphologies such as giant mounded drifts and moats forming around structural heights present in the Wilkes Land basin (e.g, the Adelie Rift Block). Phase 3) A shift in current configuration is recorded at around 15 Ma above regional unconformity WL-U5, which marks the Oligocene-Miocene Transition. This change is shown by a migration to the North of the drift crests and by a dominance of down-slope sedimentation processes that is indicated by mass transport deposits and channel levee formation. We interpret the evolution of the contourite deposits during the Oligocene in this margin to be driven by changes in the intensity of bottom current activity over time resulting from ice sheet growth, evolution of bottom morphology and related changes in paleoceanographic configuration in the Southern Ocean. This contribution results from work funded by the Spanish Ministry of Economy and Competitivity Grant CTM2014-60451-C2-1-P and FEDER funds.

  11. Subtidal circulation on the Alabama shelf during the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Dzwonkowski, Brian; Park, Kyeong

    2012-03-01

    Water column velocity and hydrographic measurements on the inner Alabama shelf are used to examine the flow field and its forcing dynamics during the Deepwater Horizon oil spill disaster in the spring and summer of 2010. Comparison between two sites provides insight into the flow variability and dynamics of a shallow, highly stratified shelf in the presence of complicating geographic and bathymetric features. Seasonal currents reveal a convergent flow with strong, highly sheared offshore flow near a submarine bank just outside of Mobile Bay. At synoptic time scales, the flow is relatively consistent with typical characteristics of wind-driven Ekman coastal circulation. Analysis of the depth-averaged along-shelf momentum balance indicates that both bottom stress and along-shelf pressure gradient act to counter wind stress. As a consequence of the along-shelf pressure gradient and thermal wind shear, flow reversals in the bottom currents can occur during periods of transitional winds. Despite the relatively short distance between the two sites (14 km), significant spatial variability is observed. This spatial variability is argued to be a result of local variations in the bathymetry and density field as the study region encompasses a submarine bank near the mouth of a major freshwater source. Given the physical parameters of the system, along-shelf flow in this region would be expected to separate from the local isobaths, generating a mean offshore flow. The local, highly variable density field is expected to be, in part, responsible for the differences in the vertical variability in the current profiles.

  12. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics

    PubMed Central

    Hughes Clarke, John E.

    2016-01-01

    Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms−1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms. PMID:27283503

  13. Effect of roughness formulation on the performance of a coupled wave, hydrodynamic, and sediment transport model

    USGS Publications Warehouse

    Ganju, Neil K.; Sherwood, Christopher R.

    2010-01-01

    A variety of algorithms are available for parameterizing the hydrodynamic bottom roughness associated with grain size, saltation, bedforms, and wave–current interaction in coastal ocean models. These parameterizations give rise to spatially and temporally variable bottom-drag coefficients that ostensibly provide better representations of physical processes than uniform and constant coefficients. However, few studies have been performed to determine whether improved representation of these variable bottom roughness components translates into measurable improvements in model skill. We test the hypothesis that improved representation of variable bottom roughness improves performance with respect to near-bed circulation, bottom stresses, or turbulence dissipation. The inner shelf south of Martha’s Vineyard, Massachusetts, is the site of sorted grain-size features which exhibit sharp alongshore variations in grain size and ripple geometry over gentle bathymetric relief; this area provides a suitable testing ground for roughness parameterizations. We first establish the skill of a nested regional model for currents, waves, stresses, and turbulent quantities using a uniform and constant roughness; we then gauge model skill with various parameterization of roughness, which account for the influence of the wave-boundary layer, grain size, saltation, and rippled bedforms. We find that commonly used representations of ripple-induced roughness, when combined with a wave–current interaction routine, do not significantly improve skill for circulation, and significantly decrease skill with respect to stresses and turbulence dissipation. Ripple orientation with respect to dominant currents and ripple shape may be responsible for complicating a straightforward estimate of the roughness contribution from ripples. In addition, sediment-induced stratification may be responsible for lower stresses than predicted by the wave–current interaction model.

  14. EVALUATION OF COMMERCIAL, MICROBIAL-BASED PRODUCTS TO TREAT PARAFFIN DEPOSITION IN TANK BOTTOMS AND OIL PRODUCTION EQUIPMENT

    EPA Science Inventory

    Introduction:

    Paraffins are naturally-occurring components of crude oils, but often form solids within oil reservoirs and on oil production equipment when oil is harvested from hot subsurface temperatures to the cooler surface environments. Microbial t...

  15. Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier.

    PubMed

    Del Valle-Zermeño, R; Chimenos, J M; Giró-Paloma, J; Formosa, J

    2014-12-01

    The presence of neoformed cement-like phases during the weathering of non-stabilized freshly quenched bottom ash favors the development of a bound pavement material with improved mechanical properties. Use of weathered and freshly quenched bottom ash mix layers placed one over the other allowed the retention of leached heavy metals and metalloids by means of a reactive percolation barrier. The addition of 50% of weathered bottom ash to the total subbase content diminished the release of toxic species to below environmental regulatory limits. The mechanisms of retention and the different processes and factors responsible of leaching strongly depended on the contaminant under concern as well as on the chemical and physical factors. Thus, the immediate reuse of freshly quenched bottom ash as a subbase material in road constructions is possible, as both the mechanical properties and long-term leachability are enhanced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Low-scale warped extra dimension and its predilection for multiple top quarks

    NASA Astrophysics Data System (ADS)

    Jung, Sunghoon; Wells, James D.

    2010-11-01

    Within warped extra dimension models that explain flavor through geometry, flavor changing neutral current constraints generally force the Kaluza-Klein scale to be above many TeV. This creates tension with a natural electroweak scale. On the other hand, a much lower scale compatible with precision electroweak and flavor changing neutral current constraints is allowed if we decouple the Kaluza-Klein states of Standard Model gauge bosons from light fermions ( c light ≃ c b ≃ 0 .5 bulk mass parameters). The main signature for this approach is four top quark production via the Kaluza-Klein excitations’ strong coupling to top quarks. We study single lepton, like-sign dilepton, and trilepton observables of four-top events at the Large Hadron Collider. The like-sign dilepton signature typically has the largest discovery potential for a strongly coupled right-handed top case ( M KK ˜ 2 - 2 .5 TeV), while single lepton is the better when the left-handed top couples most strongly ( M KK ˜ 2 TeV). We also describe challenging lepton-jet collimation issues in the like-sign dilepton and trilepton channels. An alternative single lepton observable is considered which takes advantage of the many bottom quarks in the final state. Although searches of other particles may compete, we find that four top production via Kaluza-Klein gluons is most promising in a large region of this parameter space.

  17. Flow separation of currents in shallow water

    USGS Publications Warehouse

    Signell, Richard P.

    1989-01-01

    Flow separation of currents in shallow coastal areas is investigated using a boundary layer model for two-dimensional (depth-averaged) tidal flow past an elliptic headland. If the shoaling region near the coast is narrow compared to the scale of the headland, bottom friction causes the flow to separate just downstream of the point where the pressure gradient switches from favoring to adverse. As long as the shoaling region at the coast is well resolved, the inclusion of eddy viscosity and a no-slip boundary condition have no effect on this result. An approximate analytic solution for the pressure gradient along the boundary is obtained by assuming the flow away from the immediate vicinity of the boundary is irrotational. On the basis of the pressure gradient obtained from the irrotational flow solution, flow separation is a strong function of the headland aspect ratio, an equivalent Reynolds number, and a Keulegan-Carpenter number.

  18. Review: Application of coal bottom ash as aggregate replacement in highway embankment, acoustic absorbing wall and asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Afiza Mohammed, Syakirah; Rehan Karim, Mohamed

    2017-06-01

    Worldwide annual production of coal bottom ash waste was increased in the last decade and is being dumped on landfill over the years. Its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. There is a pressing and on-going need to develop new recycling methods for coal bottom ash. The utilization of coal bottom ash in highway engineering is one of the options to reduce the environmental problems related to the disposal of bottom ash. The present review describe the physical and chemical properties of coal bottom ash waste and its current application as highway embankment material, as acoustic absorbing material and as aggregate replacement in asphalt mixtures. The purpose of this review is to stimulate and promote the effective recycling of coal bottom ash in highway engineering industry.

  19. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.

    2012-06-01

    The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600-1,150 m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60 m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals ( Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand. Evidently, slope breaks such as escarpments and deep-water canyon headwalls are important structural elements in the development of mature carbonate mounds induced by deep-water coral growth. Stable isotope data show no evidence of methane-derived carbon in the carbonates and lithified sediments of the Porcupine Bank Canyon mounds.

  20. Laboratory Experiments Modelling Sediment Transport by River Plumes

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Gingras, Murray; Knudson, Calla; Steverango, Luke; Surma, Chris

    2016-11-01

    Through lock-release laboratory experiments, the transport of particles by hypopycnal (surface) currents is examined as they flow into a uniform-density and a two-layer ambient fluid. In most cases the tank is tilted so that the current flows over a slope representing an idealization of a sediment-bearing river flowing into the ocean and passing over the continental shelf. When passing into a uniform-density ambient, the hypopycnal current slows and stops as particles rain out, carrying some of the light interstitial fluid with them. Rather than settling on the bottom, in many cases the descending particles accumulate to form a hyperpycnal (turbidity) current that flows downslope. This current then slows and stops as particles both rain out to the bottom and also rise again to the surface, carried upward by the light interstitial fluid. For a hypopycnal current flowing into a two-layer fluid, the current slows as particles rain out and accumulate at the interface of the two-layer ambient. Eventually these particles penetrate through the interface and settle to the bottom with no apparent formation of a hyperpycnal current. Analyses are performed to characterize the speed of the currents and stopping distances as they depend upon experiment parameters. Natural Sciences and Engineering Research Council.

  1. Directional antennas for electromagnetic mapping in a borehole

    DOEpatents

    Reagor, David Wesley; Nguyen, Doan Ngoc; Ashworth, Stephen Paul

    2017-05-02

    A bottom hole assembly used for a field operation is disclosed herein. The bottom hole assembly can include at least one directional antenna disposed on an outer surface of a first tubing pipe of a tubing string, where the at least one directional antenna receives a first electric current from at least one power source, where the first electric current generates a first magnetic field that radiates from the at least one directional antenna into a formation. The bottom hole assembly can also include at least one receiver disposed on a second tubing pipe of the tubing string, where the at least one receiver receives the first magnetic field returning from the formation.

  2. Variability of stratification according to operation of the tidal power plant in Lake Sihwa, South Korea.

    NASA Astrophysics Data System (ADS)

    Woo, S. B.; Song, J. I.; Jang, T. H.; Park, C. J.; Kwon, H. K.

    2017-12-01

    Artificial forcing according to operation of the tidal power plant (TPP) affects the physical environmental changes near the power plant. Strong turbulence by generation is expected to change the stratification structure of the Lake Sihwa inside. In order to examine the stratification changes by the power plant operation, ship bottom mounted observation were performed for 13 hours using an acoustic Doppler current profiler (ADCP) and Conductivity-Temperature-Depth (CTD) in Lake Sihwa at near TPP. The strong stratification in Sihwa Lake is maintained before TPP operation. The absence of external forces and freshwater inflow from the land forms the stratification in the Lake. Strong winds in a stratification statement lead to two-layer circulation. After wind event, multi-layer velocity structure is formed which lasted for approximately 4 h. After TPP operation, the jet flow was observed in entire water column at the beginning of the power generation. Vortex is formed by strong jet flow and maintained throughout during power generation period. Strong turbulence flow is generated by the turbine blades, enhancing vertical mixing. External forces, which dominantly affect Lake Sihwa, have changed from the wind to the turbulent flow. The stratification was extinguished by strong turbulent flow and becomes fully-mixed state. Changes in stratification structure are expected to affect material transport and ecological environment change continuously.

  3. Interactions of Top-Down and Bottom-Up Mechanisms in Human Visual Cortex

    PubMed Central

    McMains, Stephanie; Kastner, Sabine

    2011-01-01

    Multiple stimuli present in the visual field at the same time compete for neural representation by mutually suppressing their evoked activity throughout visual cortex, providing a neural correlate for the limited processing capacity of the visual system. Competitive interactions among stimuli can be counteracted by top-down, goal-directed mechanisms such as attention, and by bottom-up, stimulus-driven mechanisms. Because these two processes cooperate in everyday life to bias processing toward behaviorally relevant or particularly salient stimuli, it has proven difficult to study interactions between top-down and bottom-up mechanisms. Here, we used an experimental paradigm in which we first isolated the effects of a bottom-up influence on neural competition by parametrically varying the degree of perceptual grouping in displays that were not attended. Second, we probed the effects of directed attention on the competitive interactions induced with the parametric design. We found that the amount of attentional modulation varied linearly with the degree of competition left unresolved by bottom-up processes, such that attentional modulation was greatest when neural competition was little influenced by bottom-up mechanisms and smallest when competition was strongly influenced by bottom-up mechanisms. These findings suggest that the strength of attentional modulation in the visual system is constrained by the degree to which competitive interactions have been resolved by bottom-up processes related to the segmentation of scenes into candidate objects. PMID:21228167

  4. Three-dimensional mapping of red stingray ( Dasyatis akajei) movement with reference to bottom topography

    NASA Astrophysics Data System (ADS)

    Otaki, Takayoshi; Hamana, Masahiro; Tanoe, Hideaki; Miyazaki, Nobuyuki; Shibuno, Takuro; Komatsu, Teruhisa

    2015-06-01

    Most demersal fishes maintain strong relations with bottom substrates and bottom depths and/or topography during their lives. It is important to know these relations to for understand their lives. In Tokyo Bay, red stingray, Dasyatis akajei, classified as near-threatened species by IUCN, has increased since the 1980s. It is a top predator and engages in ecosystem engineer by mixing the sand bed surface through burring behavior, and greatly influences a coastal ecosystem. It is reported that this species invades in plage and tidal flats and has sometimes injured beachgoers and people gathering clams in Tokyo bay. Thus, it is necessary to know its behavior and habitat use to avoid accidents and to better conserve the biodiversity of ecosystems. However, previous studies have not examined its relationship with the bottom environment. This study aims to describe its behavior in relation to the bottom environment. We sounded three dimensional bottom topography of their habitat off Kaneda Cove in Tokyo Bay with interferometric sidescan sonar system and traced the movement of red stingrays by attaching a data logger system to survey their migration. The results revealed that red stingray repeated vertical movement between the surface and bottom, and used not only sand beds but also rocky beds.

  5. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE PAGES

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    2017-05-23

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  6. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  7. Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors.

    PubMed

    Kang, Jihoon; Shin, Nayool; Jang, Do Young; Prabhu, Vivek M; Yoon, Do Y

    2008-09-17

    A comprehensive structural and electrical characterization of solution-processed blend films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) semiconductor and poly(alpha-methylstyrene) (PalphaMS) insulator was performed to understand and optimize the blend semiconductor films, which are very attractive as the active layer in solution-processed organic thin-film transistors (OTFTs). Our study, based on careful measurements of specular neutron reflectivity and grazing-incidence X-ray diffraction, showed that the blends with a low molecular-mass PalphaMS exhibited a strong segregation of TIPS-pentacene only at the air interface, but surprisingly the blends with a high molecular-mass PalphaMS showed a strong segregation of TIPS-pentacene at both air and bottom substrate interfaces with high crystallinity and desired orientation. This finding led to the preparation of a TIPS-pentacene/PalphaMS blend active layer with superior performance characteristics (field-effect mobility, on/off ratio, and threshold voltage) over those of neat TIPS-pentacene, as well as the solution-processability of technologically attractive bottom-gate/bottom-contact OTFT devices.

  8. Sediment transport on the Palos Verdes shelf, California

    USGS Publications Warehouse

    Ferre, B.; Sherwood, C.R.; Wiberg, P.L.

    2010-01-01

    Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature-salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m-1 yr-1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ???0.2 mm yr-1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation rates (???5 mm yr-1), but do not preclude higher localized rates near abrupt transitions in sediment characteristics. However, low particle settling velocities and strong currents result in transport length-scales that are long relative to the narrow width of the PV shelf, which combined with the significant offshore component in transport, means that transport of resuspended sediment towards deep water is as likely as transport along the axis of the effluent-affected deposit.

  9. The South Carolina Coastal Erosion Study: Numerical modeling of circulation and sediment transport in Long Bay, SC

    NASA Astrophysics Data System (ADS)

    Warner, J. C.; Sullivan, C.; Voulgaris, G.; Work, P.; Haas, K.; Hanes, D. M.

    2004-12-01

    Long Bay, South Carolina, is a heavily populated coastal region that supports a large tourism industry. Sand resources are important for both recreation and coastal habitat. Earlier geological framework studies have identified a large sand deposit oblique to the shoreline, oriented clockwise in the offshore direction. This sand feature is ~ 10 km long, 2 km wide, and in excess of 3m thick, possibly providing a source for beach nourishment material. Objectives of this study are to describe the physical processes that control the transport of sediment in Long Bay, specifically off the coast of Myrtle Beach, South Carolina. Specifically we seek to 1) measure and model the oceanographic circulation in the region, 2) identify the processes that maintain the presence of the offshore sand feature, 3) quantify the control that the shoal exerts on the nearshore through changes in wave energy propagation, and 4) identify consequences of removal of the offshore sand feature. Both observational and numerical experiments are used to study the oceanographic circulation and transport of sediment. The observational study is described in an accompanying poster and consists of eight sites that measured tides, surface waves, currents, salinity, temperature, suspended sediment concentrations, and bed forms from October 2003 to April 2004. Numerical modeling for circulation and sediment transport in the study region uses a new version of ROMS (v2.1) that now includes transport of multiple grain sizes, coupling of sediment transport to wave bottom boundary layer models, and evolution of the bottom morphology. The SWAN model is used to compute wave propagation. Results indicate that currents in the study area are strongly influenced by both tidal motion and wind driven setup / setdown. The presence of the offshore sand feature alters the residual flows in the region. Sediment transport is more significant during periods of sustained strong winds that generate local waves. Wind direction plays a key role in determining the direction and magnitude of sediment transport.

  10. Regional circulation around Heard and McDonald Islands and through the Fawn Trough, central Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    van Wijk, Esmee M.; Rintoul, Stephen R.; Ronai, Belinda M.; Williams, Guy D.

    2010-05-01

    The fine-scale circulation around the Heard and McDonald Islands and through the Fawn Trough, Kerguelen Plateau, is described using data from three high-resolution CTD sections, Argo floats and satellite maps of chlorophyll a, sea surface temperature (SST) and absolute sea surface height (SSH). We confirm that the Polar Front (PF) is split into two branches over the Kerguelen Plateau, with the NPF crossing the north-eastern limits of our survey carrying 25 Sv to the southeast. The SPF was associated with a strong eastward-flowing jet carrying 12 Sv of baroclinic transport through the deepest part of Fawn Trough (relative to the bottom). As the section was terminated midway through the trough this estimate is very likely to be a lower bound for the total transport. We demonstrate that the SPF contributes to the Fawn Trough Current identified by previous studies. After exiting the Fawn Trough, the SPF crossed Chun Spur and continued as a strong north-westward flowing jet along the eastern flank of the Kerguelen Plateau before turning offshore between 50°S and 51.5°S. Measured bottom water temperatures suggest a deep water connection between the northern and southern parts of the eastern Kerguelen Plateau indicating that the deep western boundary current continues at least as far north as 50.5°S. Analysis of satellite altimetry derived SSH streamlines demonstrates a southward shift of both the northern and southern branches of the Polar Front from 1994 to 2004. In the direct vicinity of the Heard and McDonald islands, cool waters of southern origin flow along the Heard Island slope and through the Eastern Trough bringing cold Winter Water (WW) onto the plateau. Complex topography funnels flow through canyons, deepens the mixed layer and increases productivity, resulting in this area being the preferred foraging region for a number of satellite-tracked land-based predators.

  11. Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard

    2016-04-01

    Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the hydrostatic assumption (Lazure and Dumas, 2008, Blumberg et al., 1986). Precisely, we introduce a formulation of the surface drag coefficient as a logarithmic function of the sea surface roughness (Zhang et al., 2009), which in turn can be predicted from the height and steepness of the waves (Taylor and Yelland, 2000), measured by the bottom pressure sensors. Using numerous field data, Taylor and Yelland (2000) showed that the surface drag coefficient values in lakes and sheltered waters are typically significantly higher than is observed in the open ocean. In particular, the effect of limited water depth is very significant in the case of the strong wind forcing. Wind waves propagating into shoaling water begin to be limited by bottom friction and become "younger". This kind of approach is used to predict a more relevant surface drag coefficient for the coastal areas of the Mediterranean Berre lagoon (France) for which experimental data of pressure measurements under storm conditions are available (Paquier, 2014). This is important to better understand the development problematics of the nearshore submerged aquatic vegetation (Alekseenko et al., 2013). *This work is supported by grant of Russian Foundation for Basic Research (RFBR) n°16-35-00526 and by the French Water Agency (Agence de l'Eau-RMC - convention n°2010-0042). References 1. E. Alekseenko E., Roux B., Sukhinov A., Kotarba R., Fougere D.: Near shoreline hydrodynamics in a Mediterranean lagoon. Nonlinear Processes in Geophysics, 20, 189-198, 2013. 2. Blumberg A.F. and Mellor G.L.: A description of a Tree-Dimensional Coastal Ocean Circulation Model, Geophysical Fluid Dynamics Program, Princeton Univ., Princeton, New Jersey, 1-16, 1986. 3. Davies A., Xing M., Jiuxing I.: Processes influencing wind-induced current profiles in near coastal stratified regions. Continental Shelf Research 23 (14-15): 1379-1400, 2003. 4. Jones, I.S.F. and Toba Y. (Eds.): Wind Stress over the Ocean. Cambridge Univ. Press, 307pp, 2001. 5. Lazure P. and Dumas F.: An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Wat. Res. 31: 233-250, 2008. 6. Paquier A-E.: - Interactions de la dynamique hydro-sédimentaire avec les herbiers de phanérogames, Étang de Berre ; PhD thesis Aix-Marseille University; 27 Nov. 2014. 7. Taylor P. and Yelland M.: The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves, Physical Oceanography, 2000. 8. Young I.R., Banner M.L., Donelan M.A., Babanin A.V., Melville W.K., Veron F., and McCormic C.: An Integrated Study of the Wind Wave Source Term Balance in Finite Depth Water, J. Atmos. Oceanic Technol. 22: 814-831, 2004. 9. Zhang H, Sannasiraj S.A., and Chan E.S.: Wind Wave Effects on Hydrodynamic Modeling of Ocean Circulation in the South China Sea, The Open Civil Engineering Journal, 3, 48-61, 2009.

  12. Current and lattice matched tandem solar cell

    DOEpatents

    Olson, Jerry M.

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  13. Circulation on the Inner-Shelf of Long Bay, South Carolina: Vertical Current Variability and Evidence for Cross-Shelf Variation in Near-Bed Currents

    NASA Astrophysics Data System (ADS)

    Gutierrez, B. T.; Voulgaris, G.; Work, P. A.; Seim, H.; Warner, J. C.

    2004-12-01

    Cross-shelf variations of near-bed currents and variations in vertical flow were investigated on the inner shelf of Long Bay, South Carolina during the spring and fall of 2001. Current meters sampled near-bed currents at six locations as well as vertical current profiles at three of the sites. The observations showed that the tides accounted for approximately 45-66% of the flow variability. The dominant tidal component, the semi-diurnal constituent M2, exhibited tidal ellipse orientations that are increasingly aligned with the coast closer to the shore. The largest M2 current magnitudes were identified closest to shore and over the top of a sand shoal located 5.5 km offshore of Myrtle Beach. The remaining flow variability was associated with sub-tidal flows which respond to the passage of low-pressure systems across the region. These weather systems were characterized by periods of southwesterly winds in advance of low-pressure centers followed by northeasterly winds as the systems passed over the study area. When strong southwesterly winds persisted, surface flow was oriented approximately in the direction of the wind. At the same time near-bottom flows were also directed to the northeast in the direction of the wind except during periods of stratification when vertical current profiles suggest near-bed onshore flow. The stratified flows were observed mainly during the spring deployment. For periods of strong northeasterly winds, currents were directed alongshore to the southwest and exhibited little variation throughout the water column. These observations are consistent with recent field and modeling studies for the inner-shelf. Comparison of the near-bed flow measurements during the fall deployment revealed a cross-shore gradient in alongshore flow during periods of strong northeasterly winds. During these episodes flows at the offshore measurement stations were oriented in the direction of the wind, while flows closest to shore occurred in the opposite direction. These observations reveal 1) conditions which contribute to cross-shore transport and 2) the presence of an alongshore flow gradient which may affect sediment transport patterns during certain meteorological conditions.

  14. Morphosedimentary and hydrographic features of the northern Argentine margin: The interplay between erosive, depositional and gravitational processes and its conceptual implications

    NASA Astrophysics Data System (ADS)

    Preu, Benedict; Hernández-Molina, F. Javier; Violante, Roberto; Piola, Alberto R.; Paterlini, C. Marcelo; Schwenk, Tilmann; Voigt, Ines; Krastel, Sebastian; Spiess, Volkhard

    2013-05-01

    Bottom currents and their margin-shaping character became a central aspect in the research field of sediment dynamics and paleoceanography during the last decades due to their potential to form large contourite depositional systems (CDS), consisting of both erosive and depositional features. A major CDS at the northern Argentine continental margin was studied off the Rio de la Plata River by means of seismo- and hydro-acoustic methods including conventional and high-resolution seismic, parametric echosounder and single and swath bathymetry. Additionally, hydrographic data were considered allowing jointly interpretation of morphosedimentary features and the oceanographic framework, which is dominated by the presence of the dynamic and highly variable Brazil-Malvinas Confluence. We focus on three regional contouritic terraces identified on the slope in the vicinity of the Mar del Plata Canyon. The shallowest one, the La Plata Terrace (˜500 m), is located at the Brazil Current/Antarctic Intermediate Water interface characterized by its deep and distinct thermocline. In ˜1200 m water depth the Ewing Terrace correlates with the Antarctic Intermediate Water/Upper Circumpolar Deep Water interface. At the foot of the slope in ˜3500 m the Necochea Terrace marks the transition between Lower Circumpolar Deep Water and Antarctic Bottom Water during glacial times. Based on these correlations, a comprehensive conceptual model is proposed, in which the onset and evolution of contourite terraces is controlled by short- and long-term variations of water mass interfaces. We suggest that the terrace genesis is strongly connected to the turbulent current pattern typical for water mass interfaces. Furthermore, the erosive processes necessary for terrace formation are probably enhanced due to internal waves, which are generated along strong density gradients typical for water mass interfaces. The terraces widen through time due to locally focused, partly helical currents along the steep landward slopes and more tabular conditions seaward along the terrace surface. Considering this scheme of contourite terrace development, lateral variations of the morphosedimentary features off northern Argentina can be used to derive the evolution of the Brazil-Malvinas Confluence on geological time scales. We propose that the Brazil-Malvinas Confluence in modern times is located close to its southernmost position in the Quaternary, while its center was shifted northward during cold periods.

  15. Distributed Memory Breadth-First Search Revisited: Enabling Bottom-Up Search

    DTIC Science & Technology

    2013-01-03

    Jun. 1972. [2] W. McLendon III, B. Hendrickson, S . J. Plimpton , and L. Rauchwerger, “Finding strongly connected components in distributed graphs,” J...Breadth-First Search Revisited: Enabling Bottom-Up Search 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) University of California at Berkeley,Electrical

  16. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water

    PubMed Central

    van Wijk, Esmee

    2018-01-01

    Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise. PMID:29675467

  17. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.

    PubMed

    Silvano, Alessandro; Rintoul, Stephen Rich; Peña-Molino, Beatriz; Hobbs, William Richard; van Wijk, Esmee; Aoki, Shigeru; Tamura, Takeshi; Williams, Guy Darvall

    2018-04-01

    Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise.

  18. The Hillary Canyon and the Iselin Bank (Eastern Ross Sea, Antarctica): Alongslope and Downslope Route For Ross Sea Bottom Water

    NASA Astrophysics Data System (ADS)

    De Santis, L.; Bergamasco, A.; Colizza, E.; Geletti, R.; Accaino, F.; Wardell, N.; Olivo, E.; Petronio, L.; Henrys, S. A.; Black, J.; Mckay, R. M.; Bohm, G.

    2015-12-01

    The modern seabed of the Antarctic continental slope generally does not show a rugged geomorphology. Channel systems incise the lower continental rise, but in most cases they are inherited features formed as channel-levee turbiditic systems during past, more temperate times. The Hillary Canyon cuts the eastern Ross Sea continental slope and rise, to the Southeast of the Iselin Bank, and is directly connected to the Glomar Challenger Trough on the continental shelf. Cold dense salty water forms today in the Ross Sea polynya, spreads below the Ross Ice Shelf, becomes supercooled, fills up the landward deepening Glomar Challenger Trough and then spills over the sill of the shelf edge and flows downslope, often along the Hillary Canyon, in a geostrophic way, deviated westwards by the Coriolis Force, but sometimes also with a cascading a-geostrophic behaviour. This supercold water signal was found on the continental slope down to 1200 m depth. The shape of this tongue of modified ISW, whose thickness reaches up to 100 m, is very narrow, suggesting that the overflow occurs in very localized areas along the slope. Here we combine seismic stratigraphy analysis of multichannel seismic reflection profiles, box and gravity cores in the Hillary Canyon and along the eastern flank of the Iselin Bank, with seabed bathymetry and numerical modelling of thevertical and spatial distribution of the water masses, in order to identify modern and past pathways of the Ross Sea Bottom Water current. The results of this work show that the Hillary Canyon and the sediment mounds that formed along its flanks have been active since early Miocene times. Sediment drift-moat features and sediment waves are indicative of strong Northwest bottom currents reworking the seabed sediments at different water depths along the slope, possibly since the late Miocene. These sediment drifts are some of the targets of the IODP proposal 751-full.

  19. Cold-water coral distributions in the drake passage area from towed camera observations--initial interpretations.

    PubMed

    Waller, Rhian G; Scanlon, Kathryn M; Robinson, Laura F

    2011-01-25

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.

  20. Cold-Water Coral Distributions in the Drake Passage Area from Towed Camera Observations – Initial Interpretations

    PubMed Central

    Waller, Rhian G.; Scanlon, Kathryn M.; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions. PMID:21283585

  1. Cold-water coral distributions in the Drake Passage area from towed camera observations - Initial interpretations

    USGS Publications Warehouse

    Waller, Rhian G.; Catanach, Kathryn Scanlon; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.

  2. Cold-water coral distributions in the drake passage area from towed camera observations - Initial interpretations

    USGS Publications Warehouse

    Waller, Rhian G.; Scanlon, Kathryn M.; Robinson, Laura F.

    2011-01-01

    Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean), yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage), using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Coldwater corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals) were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace) and alcyonacean (soft) corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature) between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these isolated features, particularly in Polar regions.

  3. Southern Ocean Bottom Water Characteristics in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Heywood, Karen; Stevens, David; Ridley, Jeff

    2013-04-01

    The depiction of Southern Ocean deep water properties and formation processes in climate models is an indicator of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean potential temperature and density averaged over 1986-2005 from fifteen CMIP5 climate models are compared with an observed climatology, focusing on bottom water properties. The mean bottom properties are reasonably accurate for half of the models, but the other half may not yet have approached an equilibrium state. Eleven models create dense water on the Antarctic shelf, but it does not spill off and propagate northwards, alternatively mixing rapidly with less dense water. Instead most models create deep water by open ocean deep convection. Models with large deep convection areas are those with a strong seasonal cycle in sea ice. The most accurate bottom properties occur in models hosting deep convection in the Weddell and Ross gyres.

  4. Ocean Thermal Conversion (OTEC) Project Bottom Cable Protection Study: Environmental Characteristics and Hazards Analysis,

    DTIC Science & Technology

    1981-10-01

    Chesaneake Division, Naval Facilities Engineering Command, Washington, DC) 34. "Strait of Belle Isle Crossing HVDC Transmission - Submarine Cable...phenomena; such as wind storm generated wave action, bottom currents, bottom mudslides, or seismic activity; as well as human activity, such as...engaging a cable. Ship anchors are used to develop holding power on the seafloor for mooring a floating body permanently or temporary on site. The major

  5. Stable Molecular Diodes Based on π-π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes.

    PubMed

    Song, Peng; Guerin, Sarah; Tan, Sherman Jun Rong; Annadata, Harshini Venkata; Yu, Xiaojiang; Scully, Micheál; Han, Ying Mei; Roemer, Max; Loh, Kian Ping; Thompson, Damien; Nijhuis, Christian A

    2018-03-01

    In molecular electronics, it is important to control the strength of the molecule-electrode interaction to balance the trade-off between electronic coupling strength and broadening of the molecular frontier orbitals: too strong coupling results in severe broadening of the molecular orbitals while the molecular orbitals cannot follow the changes in the Fermi levels under applied bias when the coupling is too weak. Here, a platform based on graphene bottom electrodes to which molecules can bind via π-π interactions is reported. These interactions are strong enough to induce electronic function (rectification) while minimizing broadening of the molecular frontier orbitals. Molecular tunnel junctions are fabricated based on self-assembled monolayers (SAMs) of Fc(CH 2 ) 11 X (Fc = ferrocenyl, X = NH 2 , Br, or H) on graphene bottom electrodes contacted to eutectic alloy of gallium and indium top electrodes. The Fc units interact more strongly with graphene than the X units resulting in SAMs with the Fc at the bottom of the SAM. The molecular diodes perform well with rectification ratios of 30-40, and they are stable against bias stressing under ambient conditions. Thus, tunnel junctions based on graphene with π-π molecule-electrode coupling are promising platforms to fabricate stable and well-performing molecular diodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Geochemistry of the rare earth elements in ferromanganese nodules from DOMES Site A, northern equatorial Pacific

    USGS Publications Warehouse

    Calvert, S.E.; Piper, D.Z.; Baedecker, P.A.

    1987-01-01

    The distribution of rare earth elements (REE) in ferromanganese nodules from DOMES Site A has been determined by instrumental neutron activation methods. The concentrations of the REE vary markedly. Low concentrations characterize samples from a depression (the valley), in which Quaternary sediments are thin or absent; high concentrations are found in samples from the surrounding abyssal hills (the highlands) where the Quaternary sediment section is relatively thick. Moreover, the valley nodules are strongly depleted in the light trivalent REE (LREE) and Ce compared with nodules from the highlands, some of the former showing negative Ce anomalies. The REE abundances in the nodules are strongly influenced by the REE abundances in coexisting bottom water. Some controls on the REE chemistry of bottom waters include: a) the more effective removal of the LREE relative to the HREE from seawater because of the greater degree of complexation of the latter elements with seawater ligands, b) the very efficient oxidative scavenging of Ce on particle surfaces in seawater, and c) the strong depletion of both Ce and the LREE in, or a larger benthic flux of the HREE into, the Antarctic Bottom Water (AABW) which flows through the valley. The distinctive REE chemistry of valley nodules is a function of their growth from geochemically evolved AABW. In contrast, the REE chemistry of highland nodules indicates growth from a local, less evolved seawater source. ?? 1987.

  7. Sea bottom topography imaging with SAR

    NASA Technical Reports Server (NTRS)

    Vanderkooij, M. W. A.; Wensink, G. J.; Vogelzang, J.

    1992-01-01

    It is well known that under favorable meteorological and hydrodynamical conditions the bottom topography of shallow seas can be mapped with airborne or spaceborne imaging radar. This phenomenon was observed for the first time in 1969 by de Loor and co-workers in Q-band Side Looking Airborne Radar (SLAR) imagery of sandwaves in the North Sea. It is now generally accepted that the imaging mechanism consists of three steps: (1) interaction between (tidal) current and bottom topography causes spatial modulations in the surface current velocity; (2) modulations in the surface current velocity give rise to variations in the spectrum of wind-generated waves, as described by the action balance equation; and (3) variations in the wave spectrum show up as intensity modulations in radar imagery. In order to predict radar backscatter modulations caused by sandwaves, an imaging model, covering the three steps, was developed by the Dutch Sea Bottom Topography Group. This model and some model results will be shown. On 16 Aug. 1989 an experiment was performed with the polarimetric P-, L-, and C-band synthetic aperture radar (SAR) of NASA/JPL. One scene was recorded in SAR mode. On 12 Jul. 1991 another three scenes were recorded, of which one was in the ATI-mode (Along-Track Interferometer). These experiments took place in the test area of the Sea Bottom Topography Group, 30 km off the Dutch coast, where the bottom topography is dominated by sand waves. In-situ data were gathered by a ship in the test area and on 'Measuring Platform Noordwijk', 20 km from the center of the test area. The radar images made during the experiment were compared with digitized maps of the bottom. Furthermore, the profiles of radar backscatter modulation were compared with the results of the model. During the workshop some preliminary results of the ATI measurements will be shown.

  8. Very large dune formation along the Ebro outer continental shelf (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Lo Iacono, Claudio; Guillén, Jorge; Puig, Pere; Ribó, Marta; Ballesteros, Maria; Palanques, Albert; Farrán, Marcelli; Acosta, Juan

    2010-05-01

    Large and very large subaqueous dunes have been observed in a number of outer shelf regions around the world, tipically developing on fossil sand bodies and ridges. Dunes observed on outer shelves usually display large dimensions with maximum wavelength reaching up to 500 m and heights up to 20 m. Forcing mechanisms able to induce their formation have been described as strong bottom currents related to tidal variations and water masses flowing under geostrophic conditions, generally controlled and enhanced by local geomorphologic configurations. In this study, such bed features have been recognized, mapped and measured around the Columbretes Islands (Ebro continental shelf - Western Mediterranean) with the aim to reconstruct which are the potential forcing processes that could generate them in relation to the local settings of the area. Swath-bathymetry around the Columbretes Islands was collected using 30 kHz and 180 kHz Multi Beam echo-sounders for a 50-400 m water depth range. Bathymetric data revealed the presence of three main relict sand bodies along the outer shelf, for a 80-116 m depth range, above which asymmetrical, slightly asymmetrical and symmetrical large and very large 2D and 3D subaqueous dunes were observed. Dunes range from 150 to 760 m in wavelength and from tens of cm to 6 m in height. These bedforms are composed of sandy sediments, presumably coming from the degraded relict sand bodies on which they developed, mixed to the fine fractions coming from the recent draping holocenic sediments. The orientation of the dunes is SSW and progressively turns to W directions moving towards the southernmost sector of the area, following the trend of the shelf-edge. Observed dunes display a strong asymmetric profile for those occurring along the shelf-edge (Symmetry Index (SI): 2.6) and lose progressively their asymmetry towards the inner portion of the shelf (SI: 0.5), being 0.6 the minimum SI value to classify the dunes as asymmetric. The subaqueous dunes observed along the studied region are amongst the largest ever recognized on an outer shelf setting. Morphologic characters and the orientation towards SW and W directions suggest the Liguro-Provenzal-Catalan geostrophic current as the primary forcing factor in their formation. Contemporary hydrodynamic measurement at the Ebro continental shelf-edge show that near-bottom wave action is negligible in this area, whereas maximum shear stresses induced by currents are able to resuspend fine sand particles and prevent the relict transgressive deposits from being covered by mud. However, recorded nearbottom currents generate shear stresses below the critical value for transport the relict coarse sands found in the study area and form large bedforms. The comparison of successive bathymetric images and the relation wavelength/height suggest that the described very large dunes are inactive features over long periods, as observed in similar environments along several continental margins. Thus, the morphological configuration of the Columbretes outer shelf must have played a crucial role in enhancing the southward flowing bottom currents during energetic hydrodynamic events, giving them the potential to generate such bedforms.

  9. Grain size analysis and depositional environment of shallow marine to basin floor, Kelantan River Delta

    NASA Astrophysics Data System (ADS)

    Afifah, M. R. Nurul; Aziz, A. Che; Roslan, M. Kamal

    2015-09-01

    Sediment samples were collected from the shallow marine from Kuala Besar, Kelantan outwards to the basin floor of South China Sea which consisted of quaternary bottom sediments. Sixty five samples were analysed for their grain size distribution and statistical relationships. Basic statistical analysis like mean, standard deviation, skewness and kurtosis were calculated and used to differentiate the depositional environment of the sediments and to derive the uniformity of depositional environment either from the beach or river environment. The sediments of all areas were varied in their sorting ranging from very well sorted to poorly sorted, strongly negative skewed to strongly positive skewed, and extremely leptokurtic to very platykurtic in nature. Bivariate plots between the grain-size parameters were then interpreted and the Coarsest-Median (CM) pattern showed the trend suggesting relationships between sediments influenced by three ongoing hydrodynamic factors namely turbidity current, littoral drift and waves dynamic, which functioned to control the sediments distribution pattern in various ways.

  10. Observation of Tropical Cyclone-Induced Shallow Water Currents in Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Shen, Junqiang; Qiu, Yun; Zhang, Shanwu; Kuang, Fangfang

    2017-06-01

    The data from three stations equipped with Acoustic Doppler Current Profilers (ADCPs) deployed in the shallow water of the Taiwan Strait (TWS) were used to study the shallow coastal ocean response to five quasi-continuous tropical cyclone (TC) events in the late summer 2006. We revealed that, in the forced stage, when the large and strong TC (Bilis) transited, the geostrophic currents were formed which dominated the whole event, while the strong but relatively small one (Saomai) or the weak one (Bopha) primarily leaded to the generation of Ekman currents. In the relaxation stage, the barotropic subinertial waves and/or the baroclinic near-inertial oscillations (NIOs) were triggered. Typically, during the transit of the Saomai, subinertial waves were induced which demonstrated a period of 2.8-4.1 days and a mean alongshore phase velocity of 14.9 ± 3.2 m/s in the form of free-barotropic continental shelf waves. However, the NIOs are only notable in the area in which the water column is stably stratified and also where the wind stress is dominated by the clockwise component and accompanied by high-frequency (near-inertial) variations. We also demonstrated that, due to the damping effects, the nonlinear wave-wave interaction (e.g., between NIO and semidiurnal tide in our case), together with the well-known bottom friction, led to the rapid decay of the observed TC-induced near-inertial currents, giving a typical e-folding time scale of 1-3 inertial periods. Moreover, such nonlinear wave-wave interaction was even found to play a major role during the spring tide in TWS.

  11. Effect of subseabed salt domes on Tidal Residual currents in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Mashayekh Poul, Hossein; Backhaus, Jan; Dehghani, Ali; Huebner, Udo

    2016-05-01

    Geological studies in the Persian Gulf (PG) have revealed the existence of subseabed salt-domes. With suitable filtering of a high-resolution PG seabed topography, it is seen that the domes leave their signature in the seabed, i.e., numerous hills and valleys with amplitudes of several tens of meters and radii from a few up to tens of kilometers. It was suspected that the "shark skin" of the PG seabed may affect the tidal residual flow. The interaction of tidal dynamics and these obstacles was investigated in a nonlinear hydrodynamic numerical tidal model of the PG. The model was first used to characterize flow patterns of residual currents generated by a tidal wave passing over symmetric, elongated and tilted obstacles. Thereafter it was applied to the entire PG. The model was forced at its open boundary by the four dominant tidal constituents residing in the PG. Each tidal constituent was simulated separately. Results, i.e., tidal residual currents in the PG, as depicted by Lagrangian trajectories reveal a stationary flow that is very rich in eddies. Each eddy can be identified with a topographic obstacle. This confirms that the tidal residual flow field is strongly influenced by the nonlinear interaction of the tidal wave with the bottom relief which, in turn, is deformed by salt-domes beneath the seabed. Different areas of maximum residual current velocities are identified for major tidal constituents. The pattern of trajectories indicates the presence of two main cyclonic gyres and several adjacent gyres rotating in opposite directions and a strong coastal current in the northern PG.

  12. Dynamic relationship between ocean bottom pressure and bathymetry around northern part of Hikurangi

    NASA Astrophysics Data System (ADS)

    Muramoto, T.; Inazu, D.; Ito, Y.; Hino, R.; Suzuki, S.

    2017-12-01

    In recent years, observation using ocean bottom pressure recorders for the purpose of the evaluation of sea floor crustal deformation is in great vogue. The observation network set up for the observation of sea floor is densely spaced compared with the instrument network for the observation of ocean. Therefore, it has the characteristic that it can observe phenomena on a local scale. In this study, by using these in situ data, we discuss ocean phenomena on a local scale. In this study, we use a high-resolution ocean model (Inazu Ocean Model) driven by surface air pressure and surface wind vector published by the Japan Meteorological Agency. We perform a hindcast experiment for ocean bottom pressure anomaly from April 2013 to June 2017. Then, we compare these results with in situ data. In this study, we use observed pressure records which were recorded by autonomous type instrument spanning a period from April 2013 to June 2017 off the coast of North Island in New Zealand. Consequently, we found this model can simulate not only the amplitude but also phase of non-tidal oceanic variation of East Cape Current (ECC) off the coast of North Island of New Zealand. Then, we calculate cross-correlation coefficient between the data at the OBP sites. We revealed that the ocean bottom pressure shows different behavior on the west side from the east side of edge of the continental shelf. This result implies that the submarine slope induces a dynamic effect and contributes to the seasonal variation of ocean bottom pressure. In addition, we calculate the velocity of the surface current in this area using our model, and consider the relationship between it and ocean bottom pressure variation. Taken together, we can say that the barotropic flow in the direction of south-west extends to the bottom of the sea in this area. Therefore, the existence of local cross-isobath currents is suggested. Our result indicates bathymetry has dynamic effect to ocean circulation on local scale and at the same time the surface ocean circulation contributes to ocean bottom pressure considerably.

  13. Flood Tide Transport of Blue Crab Postlarvae: Limitations in a Lagoonal Estuary

    NASA Astrophysics Data System (ADS)

    Cudaback, C.; Eggleston, D.

    2005-05-01

    Blue crabs, an important commercial species, spend much of their life in estuaries along the east coast. The larvae spawn at or near the ocean, but the juveniles mature in the lower salinity waters of the estuary. It is generally believed that blue crab postlarvae migrate into near surface waters on flood, possibly cued by increasing salinity, and return to the bottom on ebb. Over several tidal cycles, the postlarvae travel a significant distance up-estuary. This model applies quite well to Chesapeake Bay, which has a strong along-estuary salinity gradient and large tides, but may not apply as well to Pamlico Sound, where circulation and salinity are more wind-driven than tidal. A recently completed study (N. Reyns, PhD), indicates that postlarval blue crabs use flood tides and wind-driven currents to cross Pamlico Sound. This study was based on observations with good spatial coverage, but limited vertical and temporal resolution. We have recently completed a complementary study, sampling crab larvae around the clock at four depths at a single location. Preliminary results from the new study suggest that the crab postlarvae do swim all the way to the surface, on flood only, and that flood currents are strongest slightly below the surface. These observations suggest the utility of flood tide transport in this system. However, near bottom salinity does not seem to be driven by tides; at this point it is unclear what cue might trigger the vertical migration of the postlarvae.

  14. Characteristics of the near-bottom suspended sediment field over the continental shelf off northern California based on optical attenuation measurements during STRESS and SMILE

    NASA Astrophysics Data System (ADS)

    Trowbridge, J. H.; Butman, B.; Limeburner, R.

    1994-08-01

    Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment.

  15. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    PubMed

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can constitute an attractive option of the waste management system, when physical-mechanical devices are not available or could not be implemented in old MSWI systems. The suggested procedure may lead to the improvement of recovery efficiency up to 83% for CRM and 94% for other valuable metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Numerical investigation of split flows by gravity currents into two-layered stratified water bodies

    NASA Astrophysics Data System (ADS)

    Cortés, A.; Wells, M. G.; Fringer, O. B.; Arthur, R. S.; Rueda, F. J.

    2015-07-01

    The behavior of a two-dimensional (2-D) gravity current impinging upon a density step in a two-layered stratified basin is analyzed using a high-resolution Reynolds-Averaged Navier-Stokes model. The gravity current splits at the density step, and the portion of the buoyancy flux becoming an interflow is largely controlled by the vertical distribution of velocity and density within the gravity current and the magnitude of the density step between the two ambient layers. This is in agreement with recent laboratory observations. The strongest changes in the ambient density profiles occur as a result of the impingement of supercritical currents with strong density contrasts, for which a large portion of the gravity current detaches from the bottom and becomes an interflow. We characterize the current partition process in the simulated experiments using the densimetric Froude number of the current (Fr) across the density step (upstream and downstream). When underflows are formed, more supercritical currents are observed downstream of the density step compared to upstream (Fru < Frd), and thus, stronger mixing of the current with the ambient water downstream. However, when split flows and interflows are formed, smaller Fr values are identified after the current crosses the density step (Fru > Frd), which indicates lower mixing between the current and ambient water after the impingement due to the significant stripping of interfacial material at the density step.

  17. Pipeline bottoming cycle study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle workingmore » fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.« less

  18. Dynamics of the Antarctic Circumpolar Current as seen by GRACE (Invited)

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Dobslaw, H.; Bergmann, I.

    2010-12-01

    The Antarctic Circumpolar Current, being the strongest and longest ocean current on Earth, connects the three great ocean basins and contributes substantially to the global re-distribution of water masses, with a significant impact on global climate. Observational coverage from in-situ measurements is sparse due to the harsh environmental conditions, and satellite altimetry does not capture the full extent of the current due to seasonal sea-ice coverage. Ocean bottom pressure variations as sensed with the satellite gravity mission GRACE provide a promising way to broaden our observational basis. Besides monthly mean gravity fields that provide ocean bottom pressure variations averaged over 30 days, several alternative GRACE products with higher temporal resolution have been developed during the most recent years. These include 10-day solutions from GRGS Toulouse, weekly solutions from the GFZ Potsdam as well as constrained daily solutions from the University of Bonn which have been obtained by means of a Kalman filtering approach. In this presentation, ocean bottom pressure derived from these alternative GRACE releases will be contrasted against both in-situ observations and output from a numerical ocean model, highlighting the additional information contained in these GRACE solutions with respect to the standard monthly fields. By means of statistical analyses of ocean bottom pressure variations and barotropic transports it will be demonstrated how these new GRACE releases are contributing to our understanding of this highly dynamic great ocean conveyor.

  19. Bottom-water oxygenation and environmental change in Santa Monica Basin, southern California during the last 22 kyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balestra, Barbara; Krupinksi, Nadine Quintana; Erhoina, Tzvetina

    The Southern California Borderland (SCB) is a region that experiences strong natural variations in bottom water oxygen and pH. Here, we use marine sediments from the Santa Monica Basin (SMB) to reconstruct environmental conditions and changes in the basin's bottom water oxygenation from the Last Glacial Maximum (LGM) to present, and compare the records to the adjacent Santa Barbara Basin (SBB) and Santa Lucia Slope (SLS). High-resolution records of benthic foraminiferal oxygen and carbon isotopes (δ 18O and δ 13C), benthic foraminiferal assemblages, and bulk sedimentary organic matter geochemistry records exhibit major changes associated with late Quaternary millennial-scale global climatemore » oscillations. Our data show the dominance of low-oxygen benthic foraminifera assemblages during warm intervals, and assemblages representing higher dissolved oxygen during cooler intervals, as also seen in SBB and SLS. But, our record shows a stronger and longer-lasting oxygen minimum zone (OMZ) between the end of the Bølling-Allerød (B-A) and the Early Holocene (including the Younger Dryas) than at neighboring sites, indicated by dominance of Bolivina tumida (characteristic of major hypoxia) in the assemblage. The middle to late Holocene (from ~ 8.8 to 0 ka) had weaker hypoxia than the early Holocene, with assemblages mainly composed of Bolivina argentea and Uvigerina peregrina. The SMB remains mostly slightly low in oxygen throughout the studied interval, with differences in the degree of hypoxia relative to SBB and SLS (especially from the B-A to the Early Holocene) likely due to its greater depth and its more southern geographic position and therefore decreased exposure to North Pacific Intermediate Water current. Regional effects, such as changing intermediate water source and/or changing ventilation (oxygenation) of the intermediate water source, also affect SMB deep water. Our analysis utilizing parallel geochemical and micropaleontological records brings new insights into bottom water and climate conditions in SMB, indicating regional similarities and differences with adjacent basins, and provides insight into the causes for changes in bottom water oxygenation.« less

  20. Bottom-water oxygenation and environmental change in Santa Monica Basin, southern California during the last 22 kyr

    DOE PAGES

    Balestra, Barbara; Krupinksi, Nadine Quintana; Erhoina, Tzvetina; ...

    2017-09-29

    The Southern California Borderland (SCB) is a region that experiences strong natural variations in bottom water oxygen and pH. Here, we use marine sediments from the Santa Monica Basin (SMB) to reconstruct environmental conditions and changes in the basin's bottom water oxygenation from the Last Glacial Maximum (LGM) to present, and compare the records to the adjacent Santa Barbara Basin (SBB) and Santa Lucia Slope (SLS). High-resolution records of benthic foraminiferal oxygen and carbon isotopes (δ 18O and δ 13C), benthic foraminiferal assemblages, and bulk sedimentary organic matter geochemistry records exhibit major changes associated with late Quaternary millennial-scale global climatemore » oscillations. Our data show the dominance of low-oxygen benthic foraminifera assemblages during warm intervals, and assemblages representing higher dissolved oxygen during cooler intervals, as also seen in SBB and SLS. But, our record shows a stronger and longer-lasting oxygen minimum zone (OMZ) between the end of the Bølling-Allerød (B-A) and the Early Holocene (including the Younger Dryas) than at neighboring sites, indicated by dominance of Bolivina tumida (characteristic of major hypoxia) in the assemblage. The middle to late Holocene (from ~ 8.8 to 0 ka) had weaker hypoxia than the early Holocene, with assemblages mainly composed of Bolivina argentea and Uvigerina peregrina. The SMB remains mostly slightly low in oxygen throughout the studied interval, with differences in the degree of hypoxia relative to SBB and SLS (especially from the B-A to the Early Holocene) likely due to its greater depth and its more southern geographic position and therefore decreased exposure to North Pacific Intermediate Water current. Regional effects, such as changing intermediate water source and/or changing ventilation (oxygenation) of the intermediate water source, also affect SMB deep water. Our analysis utilizing parallel geochemical and micropaleontological records brings new insights into bottom water and climate conditions in SMB, indicating regional similarities and differences with adjacent basins, and provides insight into the causes for changes in bottom water oxygenation.« less

  1. Current structure of strongly nonlinear interfacial solitary waves

    NASA Astrophysics Data System (ADS)

    Semin, Sergey; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim; Churaev, Egor

    2015-04-01

    The characteristics of highly nonlinear solitary internal waves (solitons) in two-layer flow are computed within the fully nonlinear Navier-Stokes equations with use of numerical model of the Massachusetts Institute of Technology (MITgcm). The verification and adaptation of the model is based on the data from laboratory experiments [Carr & Davies, 2006]. The present paper also compares the results of our calculations with the computations performed in the framework of the fully nonlinear Bergen Ocean Model [Thiem et al, 2011]. The comparison of the computed soliton parameters with the predictions of the weakly nonlinear theory based on the Gardner equation is given. The occurrence of reverse flow in the bottom layer directly behind the soliton is confirmed in numerical simulations. The trajectories of Lagrangian particles in the internal soliton on the surface, on the interface and near the bottom are computed. The results demonstrated completely different trajectories at different depths of the model area. Thus, in the surface layer is observed the largest displacement of Lagrangian particles, which can be more than two and a half times larger than the characteristic width of the soliton. Located at the initial moment along the middle pycnocline fluid particles move along the elongated vertical loop at a distance of not more than one third of the width of the solitary wave. In the bottom layer of the fluid moves in the opposite direction of propagation of the internal wave, but under the influence of the reverse flow, when the bulk of the velocity field of the soliton ceases to influence the trajectory, it moves in the opposite direction. The magnitude of displacement of fluid particles in the bottom layer is not more than the half-width of the solitary wave. 1. Carr, M., and Davies, P.A. The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid. Phys. Fluids, 2006, vol. 18, No. 1, 1 - 10. 2. Thiem, O., Carr, M., Berntsen, J., and Davies, P.A. Numerical simulation of internal solitary wave-induced reverse flow and associated vortices in a shallow, two-layer fluid benthic boundary layer. Ocean Dynamics, 2011, vol. 61, No. 6, 857 - 872.

  2. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys

    NASA Astrophysics Data System (ADS)

    Gambacorta, G.; Bersezio, R.; Weissert, H.; Erba, E.

    2016-06-01

    The upper Albian-lower Turonian pelagic successions of the Tethys record processes acting during the onset, core, and recovery from perturbed conditions across oceanic anoxic event (OAE) 1d, OAE 2, and the mid-Cenomanian event I (MCE I) relative to intervening intervals. Five sections from Umbria-Marche and Belluno Basins (Italy) were analyzed at high resolution to assess processes in surface and deep waters. Recurrent facies stacking patterns (SP) and their associations record periods of bottom current activity coupled with surface changes in trophic level. Climate changes appear to have been influential on deep circulation dynamics. Under greenhouse conditions, vigorous bottom currents were arguably induced by warm and dense saline deep waters originated on tropical shelves in the Tethys and/or proto-Atlantic Ocean. Tractive facies postdating intermittent anoxia during OAE 1d and in the interval bracketed by MCE I and OAE 2 are indicative of feeble bottom currents, though capable of disrupting stratification and replenish deep water with oxygen. The major warming at the onset of OAE 2 might have enhanced the formation of warm salty waters, possibly producing local hiatuses at the base of the Bonarelli Level and winnowing at the seafloor. Hiatuses detected at the top of the Bonarelli Level possibly resulted from most effective bottom currents during the early Turonian thermal maximum. Times of minimal sediment displacement correlate with cooler climatic conditions and testify a different mechanism of deep water formation, as further suggested by a color change to reddish lithologies of the post-OAE 1d and post-OAE 2 intervals.

  3. Bottom-up GGM algorithm for constructing multiple layered hierarchical gene regulatory networks

    USDA-ARS?s Scientific Manuscript database

    Multilayered hierarchical gene regulatory networks (ML-hGRNs) are very important for understanding genetics regulation of biological pathways. However, there are currently no computational algorithms available for directly building ML-hGRNs that regulate biological pathways. A bottom-up graphic Gaus...

  4. Measuring Zonal Transport Variability of the Antarctic Circumpolar Current Using GRACE Ocean Bottom Pressure

    NASA Astrophysics Data System (ADS)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2012-12-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). Using OBP data from the JPL ECCO model and the Gravity Recovery and Climate Experiment (GRACE), we examine the zonal transport variability of the ACC integrated between the major fronts between 2003-2010. The JPL ECCO data are used to determine average front positions for the time period studies, as well as where transport is mainly zonal. Statistical analysis will be conducted to determine the uncertainty of the GRACE observations using a simulated data set. We will also begin looking at low frequency changes and how coherent transport variability is from region to region of the ACC. Correlations with bottom pressure south of the ACC and the average basin transports will also be calculated to determine the probability of using bottom pressure south of the ACC as a means for describing the ACC dynamics and transport.

  5. Measurements in the bottom boundary layer on the Amazon subaqueous delta

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.; Kayen, R.W.; Sternberg, R.W.; Kineke, G.C.; Tate, G.B.

    1995-01-01

    An instrumented bottom tripod (GEOPROBE) recorded flow and suspended sediment data in the bottom boundary layer above the lower foresets of the Amazon subaqueous delta in 65 m mean water depth in February, 1990. After about two weeks of operation the apparent seafloor at the tripod site rapidly elevated over a 14-hour period by about 44 cm. This sudden change, which was detected by an acoustic altimeter and which caused the loss of signals from the lowermost GEOPROBE current and optical sensors, is though to have been caused by the incursion of a dense bottom layer of fluid mud that migrated downslope from shallower sections of the foresets. The fluid-mud migration across the outer part of the foresets, if a repetitive and occasional process in this region, could be a major mechanism for episodic seaward growth of the delta. Current velocity profiles are used to estimate shear velocities, u*, and roughness lengths, zo, during the first two weeks of measurements. -from Authors

  6. Observations of turbulent mixing in a shallow coral reef

    NASA Astrophysics Data System (ADS)

    Huang, Z. C.

    2016-02-01

    In situ measurements of waves, currents, and turbulence are presented to study turbulence properties within a depression that is surrounded by multiple coral-reef colonies in a fringing reef in Hobihu, Nan-Wan Bay, southern Taiwan. Turbulence was measured using a dual velocimetry technique, and wave bias contamination in the turbulence is controlled using ogive curve testing of the turbulent shear stress. The observed turbulent dissipation rate is approximately five times greater than simultaneous observations over the nearby sandy bottom site, which indicates stronger mixing within the coral reef than on sandy bottoms. Energetic downward momentum flux exists due to sweeping process; the turbulent kinetic energy is transported downward into the depression through the mechanisms of vertical turbulent transport and advection. The observed turbulent dissipation rate exceeds the shear production rate, which suggests that transport terms or other source terms might be important. The wake flow caused by the resistance force of coral colonies is examined. The form drag coefficient was estimated from the time-averaged alongshore linear momentum between two sites upstream and within the coral reef. The work done due to the form drag, which is termed the wake production, is found to strongly correlate and approximate well to the observed turbulent dissipation rate. The effects of waves and currents on the wake production are discussed. The observed TSS can be described well by classic turbulence closure model when the empirical stability function is adjusted. This study suggests that the complex canopy structure of multiple colonies and the coexistence of the wave-induced and current flows are significant factors for energetic turbulence in the coral reef, which could have positive effects to the health of the coral reefs.

  7. Sea-floor morphology and sedimentary environments of western Block Island Sound, northeast of Gardiners Island, New York

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Lawrence J.; Danforth, William W.; Blackwood, Dann S.; Clos, Andrew R.; Parker, Castle E.

    2014-01-01

    Multibeam-echosounder data, collected during survey H12299 by the National Oceanic and Atmospheric Administration in a 162-square-kilometer area of Block Island Sound, northeast of Gardiners Island, New York, are used along with sediment samples and bottom photography, collected at 37 stations in this area by the U.S. Geological Survey during cruise 2013-005-FA, to interpret sea-floor features and sedimentary environments. These data and interpretations provide important base maps for future studies of the sea floor, focused, for example, on benthic ecology and resource management. The features and sedimentary environments on the sea floor are products of the glacial history and modern tidal regime. Features include bedforms such as sand waves and megaripples, boulders, a large current-scoured depression, exposed glaciolacustrine sediments, and areas of modern marine sediment. Sand covers much of the study area and is often in the form of sand waves and megaripples, which indicate environments characterized by coarse-grained bedload transport. Boulders and gravelly lag deposits, which indicate environments of erosion or nondeposition, are found off the coast of Gardiners Island and on bathymetric highs, probably marking areas where deposits associated with recessional ice-front positions, the northern flank of the terminal moraine, or coastal-plain sediments covered with basal till are exposed. Bottom photographs and video of boulders show that they are commonly covered with sessile fauna. Strong tidal currents have produced the deep scour depression along the northwestern edge of the study area. The eastern side of this depression is armored with a gravel lag. Sea-floor areas characterized by modern marine sediments appear featureless at the 2-meter resolution of the bathymetry and flat to current rippled in the photography. These modern environments are indicative of sediment sorting and reworking.

  8. What is Bottom-Up and What is Top-Down in Predictive Coding?

    PubMed Central

    Rauss, Karsten; Pourtois, Gilles

    2013-01-01

    Everyone knows what bottom-up is, and how it is different from top-down. At least one is tempted to think so, given that both terms are ubiquitously used, but only rarely defined in the psychology and neuroscience literature. In this review, we highlight the problems and limitations of our current understanding of bottom-up and top-down processes, and we propose a reformulation of this distinction in terms of predictive coding. PMID:23730295

  9. Dynamics of internal waves on the Southeast Florida shelf: Implications for cross-shelf exchange and turbulent mixing on a barrier reef system

    NASA Astrophysics Data System (ADS)

    Davis, Kristen Alexis

    The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August 2003 suggests that, during the summer months, instabilities in the Florida Current and nonlinear internal waves are the primary mechanisms driving cross-shelf transport on the outer shelf Surface tide, wind, and wave-driven transport were found to be small in comparison. Additionally, this data set highlights the importance of baroclinic processes to cross-shelf transport in this region. In the last phase of my research, I sought to investigate how boundary layer dynamics over a rough coral bed were modified by shoaling internal waves and to understand the implications for mixing and mass transfer to the bed. Results are presented from an observational study of the turbulent bottom boundary layer on the outer Southeast Florida shelf in July and August 2005. Turbulence in the reef bottom boundary layer is highly variable in time and is modified by near bed flow, shear, and stratification driven by shoaling internal waves. We examined turbulence in the bottom boundary layer during a typical internal wave event and found that in addition to the episodic onshore transport of cool, subthermocline water masses, with elevated nutrient concentrations, bottom-intensified currents from shoaling internal waves can increase turbulent dissipation and mixing in the reef bottom boundary layer. Additionally, we show that estimates of flux Richardson number, calculated directly from measurements of dissipation and buoyancy flux, support the dependence of R f on turbulent intensity, epsilon/nuN 2, a relationship that has only been previously shown in laboratory and numerical work. While the importance of surface gravity waves in generating turbulent mixing and controlling mass transfer on coral reefs has been well documented in the literature, this work represents the first time the appropriate field data have been collected for a detailed dynamic analysis of the physical effects and biological implications of internal waves on reef ecosystems. Results from these studies suggest that for reef communities exposed to continental shelf and slope processes, internal waves may play an important role in cross-shelf transport and mass transfer to benthic organisms and may be essential to modeling key biological processes, the connectivity of coral populations, or designing and managing marine reserves and fisheries.

  10. A Simple Probabilistic Model for Estimating the Risk of Standard Air Dives

    DTIC Science & Technology

    2004-12-01

    Decompression Models Table Al. Decompression Table Based on the StandAir Model and Comparison with the VVaI-1 8 Algorithm. A-l-A-4 Table A2. The VVaI-1 8...cannot be as strong as might be desired - especially for dives with long TDTs. Comparisons of the positions of the dive-outcome symbols with the... comparisons for several depth/bottom-time combinations. The three left-hand panels, for dives with short bottom times, show that the crossover point

  11. Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    Kjerfve, Björn; Ribeiro, Cesar H. A.; Dias, Gilberto T. M.; Filippo, Alessandro M.; Da Silva Quaresma, Valéria

    1997-11-01

    Baía de Guanabara is a 384 km 2 eutrophic coastal bay in Brazil, impacted by the polluted discharge from the Rio de Janeiro metropolitan area. The structurally controlled bay has a central channel with a depth of 30 m and a sandy bottom near the entrance, reflecting wave and tidal forcing. In contrast, the bay-averaged water depth is 5.7 m and the bottom sediments are mostly muds as a result of the Holocene transgression and rapid fluvial sedimentation, accelerated by channelization of rivers and deforestation. An extensive sand bank is located seaward of the bay entrance and a flood-oriented sand wave system indicates sand transport into the bay. The mean freshwater discharge measures 100±59 m 3 s -1 and is greatest in the rainy austral summer in December and January. Tides are mixed mainly semidiurnal with a range of 0.7 m, and peak spring tidal currents reach 0.5 m s -1 inside the bay and 1.6 m s -1 near the bay entrance. The passage of northward propagating polar fronts results in regular strong southwesterly winds and heavy wave forcing. The bay has mean salinities from 21.0 to 34.5‰ with an average of 29.5±4.8‰. The vertical salinity stratification, Δs/s, varies from 0.06 to 0.21 and is relatively weak and inversely proportional to rms tidal currents. The residual circulation is characterized by both gravitational circulation and transverse residual tidal circulation, measuring 800 and 400 m 3 s -1 respectively. The renewal time of 50% of the bay water volume is 11.4 days. Untreated sewage runoff enters the bay from the west, resulting in locally poor water quality, where the near-bottom mean dissolved oxygen measures only 3.1 mg 1 -1 and results in anoxic bottom muds. The worst water quality is indicated by average fecal coliform of 1140 counts ml -1 and excessive ammonia and phosphate loading. The average chlorophyll concentration in this region responds to the nutrient loading and exceeds 130 μg 1 -1 although 57 μg 1 -1 is the overall mean for the bay. The atomic N:P ratio measures 14 for the bay as a whole.

  12. Variability of the internal tide on the southern Monterey Bay continental shelf and associated bottom boundary layer sediment transport

    USGS Publications Warehouse

    Rosenberger, Kurt; Storlazzi, Curt; Cheriton, Olivia

    2016-01-01

    A 6-month deployment of instrumentation from April to October 2012 in 90 m water depth near the outer edge of the mid-shelf mud belt in southern Monterey Bay, California, reveals the importance regional upwelling on water column density structure, potentially accounting for the majority of the variability in internal tidal energy flux across the shelf. Observations consisted of time-series measurements of water-column currents, temperature and salinity, and near-bed currents and suspended matter. The internal tide accounted for 15–25% of the water-column current variance and the barotropic tide accounted for up to 35%. The subtidal flow showed remarkably little shear and was dominated by the 7–14 day band, which is associated with relaxations in the dominant equatorward winds typical of coastal California in the spring and summer. Upwelling and relaxation events resulted in strong near-bed flows and accounted for almost half of the current stress on the seafloor (not accounting for wave orbital velocities), and may have driven along-shelf geostrophic flow during steady state conditions. Several elevated suspended particulate matter (SPM) events occurred within 3 m of the bed and were generally associated with higher, long-period surface waves. However, these peaks in SPM did not coincide with the predicted resuspension events from the modeled combined wave–current shear stress, indicating that the observed SPM at our site was most likely resuspended elsewhere and advected along-isobath. Sediment flux was almost equal in magnitude in the alongshore and cross-shore directions. Instances of wave–current shear stress that exceeded the threshold of resuspension for the silty-clays common at these water depths only occurred when near-bed orbital velocities due to long-period surface waves coincided with vigorous near-bed currents associated with the internal tide or upwelling/relaxation events. Thus upwelling/relaxation dynamics are primarily responsible for variability in the internal tide, as well as transport of near-bottom sediment in the mid-self mud belt during the relatively quiescent summer months.

  13. Selenium, selected inorganic elements, and organochlorine pesticides in bottom material and biota from the Colorado River delta

    USGS Publications Warehouse

    Garcia-Hernandez, J.; King, K.A.; Velasco, A.L.; Shumilin, E.; Mora, M.A.; Glenn, E.P.

    2001-01-01

    Concentrations of selenium (Se) in bottom material ranged from 0.6 to 5.0 μg g−1, and from 0.5 to 18.3 μg g−1in biota; 23% of samples exceeded the toxic threshold. Concentrations of DDE in biota exceeded the toxic threshold in 30% of the samples. Greater concentrations of selenium in biota were found at sites with strongly reducing conditions, no output, alternating periods of drying and flooding or dredging activities, and at sites that received water directly from the Colorado River. The smallest Se concentrations in biota were found at sites where an outflow and exposure or physical disturbance of the bottom material were uncommon.

  14. Estimating hydrodynamic roughness in a wave-dominated environment with a high-resolution acoustic Doppler profiler

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.; Wilson, D.J.; Chisholm, T.A.; Gelfenbaum, G.R.

    2005-01-01

    Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u*c and apparent bottom roughness z0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness kB was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u*c converged with values determined from the data. The resulting kB values ranged over 3 orders of magnitude (10-1 to 10-4 m) and varied inversely with wave orbital diameter. This range of kB influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from kB and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment. Copyright 2005 by the American Geophysical Union.

  15. Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.

    2014-12-01

    Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).

  16. Current- and lattice-matched tandem solar cell

    DOEpatents

    Olson, J.M.

    1985-10-21

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

  17. Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions Under Waves, Currents, and Combined Flows

    DTIC Science & Technology

    2015-12-01

    little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct observations made under...where there is little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct...INTERIM REPORT Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions under Waves , Currents, and

  18. A Flavorful Factoring of the Strong CP Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Howe, Kiel

    Motivated by the intimate connection between the strong CP problem and the flavor structure of the Standard Model, we present a flavor model that revives and extends the classicmore » $${m_u=0}$$ solution to the strong CP problem. QCD is embedded into a $$SU(3)_1\\times SU(3)_2 \\times SU(3)_3$$ gauge group, with each generation of quarks charged under the respective $SU(3)$. The non-zero value of the up-quark Yukawa coupling (along with the strange quark and bottom-quark Yukawas) is generated by contributions from small instantons at a new scale $$M \\gg \\Lambda_{QCD}$$. The Higgsing of $$SU(3)^3\\to SU(3)_c$$ allows dimension-5 operators that generate the Standard Model flavor structure and can be completed in a simple renormalizable theory. The smallness of the third generation mixing angles can naturally emerge in this picture, and is connected to the smallness of threshold corrections to $$\\bar\\theta$$. Remarkably, $$\\bar\\theta$$ is essentially fixed by the measured quark masses and mixings, and is estimated to be close to the current experimental bound and well within reach of the next generation of neutron and proton EDM experiments.« less

  19. Study on wind wave variability by inhomogeneous currents in the closed seas

    NASA Astrophysics Data System (ADS)

    Bakhanov, Victor V.; Bogatov, Nikolai A.; Ermoshkin, Aleksei V.; Ivanov, Andrei Yu.; Kemarskaya, Olga N.; Titov, Victor I.

    2012-09-01

    Complex experiments were performed in the north-eastern part of the Black Sea and in the south-eastern part of the White Sea to study variability of the current fields and other characteristics of the sea, wind waves, and parameters of the near-surface atmospheric layer. Measurements were carried out from the onboard of the scientific research vessels by optical, radar and acoustic sensors. The heterogeneity of bottom topography in Black Sea had quasi-one-dimensional character. The case of the two-dimensionally heterogeneous relief of the bottom was investigated in the White Sea. The peculiarity of these experiments was simultaneous measurements from onboard of vessel synchronously with acquisitions of synthetic aperture radar (SAR) images of the Envisat and TerraSAR-X satellites. We have detected for the case of the quasi-one-dimensionally heterogeneous current a difference between the sea surface roughness above the shelf zone and the roughness at the deep bottom. We found that the inhomogeneities of the bottom topography can manifest as a change not only in the amplitude of different characteristics of surface wave and atmospheric near-water layer, but also in their frequency spectrum. In White Sea the special features of the flow of the powerful tidal current (up to 1 m/s) around the secluded underwater elevation and the spatial structure of surface anomalies in the field of these two-dimensional-heterogeneous currents are analyzed. The numerical simulation of the wind wave transformation in the field of two-dimensional- heterogeneous flows is carried out. The qualitative agreement of the calculation results with the experimental data is shown.

  20. Jovian Temperatures--Highest Resolution

    NASA Image and Video Library

    1997-09-24

    This image, bottom panel, from NASA Galileo orbiter indicates the forces powering Jovian winds, and differentiates between areas of strongest upwelling and downwelling winds in the upper part of the atmosphere where winds are strong.

  1. The observation of underwater frazil ice formation and upward sediment transport in an Arctic polynya in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Ito, M.; Ohshima, K. I.; Fukamachi, Y.; Simizu, D.; Mahoney, A. R.; Eicken, H.

    2016-12-01

    Sea ice is a great contributor to energy- and salt-budget, dense water formation and bio-related material cycle in the polar ocean. In coastal polynya, the ice production becomes maximum when open water is maintained owing to underwater frazil ice formation associated with supercooling. In addition, an interaction between frazil ice and re-suspended sediment can be a major process of sediment incorporation into sea ice. Although these process have been reported from laboratory experiments and numerical simulations, in-situ observations have been limited because the under-ice observation is logistically challenging and detection methods of frazil ice and sedimentary particles have not been well established. Since 2009, mooring observations with ADCPs, Ice-Profiling Sonars and C-T recorders have been continuously carried out off Barrow in the Chukchi Sea, through a collaboration between Hokkaido University and University of Alaska Fairbanks. Recently, some in-situ measurements reported the possibility that an ADCP can detect frazil ice and re-suspended sediment using acoustic backscatter strength data. Thus, we analyzed the ADCP data in the Chukchi Sea, focusing on underwater frazil ice formation and upward sediment transport. In winter, polynyas were formed episodically around the observational sites several times by offshore-ward strong winds of > 10 m/s. During these polynya events, surface-intensified signals were detected throughout the water column at two sites with water depths of 40 - 50 m simultaneously. In these cases, potential supercooling occurred and signals were particularly enhanced at timings of in-situ supercooling. Thus, we interpreted these signals as those of frazil ice. On the other hand, bottom-intensified signals originating from re-suspended sediment were detected throughout the water column just after frazil ice was detected. These signals were associated with strong ocean currents of 1 m/s. Thus, sedimentary particles are likely dispersed from the ocean bottom by the strong currents and subsequently brought up to the ocean surface under turbulent mixing conditions. We estimated the fall velocity of sedimentary particles as 0.4 mm/s based on the vertical profiles of the ADCP backscatter strength. This fall velocity corresponds to that of the particle diameter of 20 μm.

  2. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing

    PubMed Central

    Peng, Di; Yang, Lixia; Cai, Tao; Liu, Yingzheng; Zhao, Xiaofeng; Yao, Zhiqi

    2016-01-01

    Yttria-stabilized zirconia (YSZ)-based thermal barrier coating (TBC) has been integrated with thermographic phosphors through air plasma spray (APS) for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm) on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm); a photo-multiplier tube (PMT) and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature. PMID:27690037

  3. Variability in Ocean Color Associated with Phytoplankton and Terrigenous Matter: Time Series Measurements and Algorithm Development at the FRONT Site on the New England Continental Shelf. Chapter 12

    NASA Technical Reports Server (NTRS)

    Morrison, John R.; Sosik, Heidi M.

    2003-01-01

    Fronts in the coastal ocean describe areas of strong horizontal gradients in both physical and biological properties associated with tidal mixing and freshwater estuarine output (e.g. Simpson, 1981 and O Donnell, 1993). Related gradients in optically important constituents mean that fronts can be observed from space as changes in ocean color as well as sea surface temperature (e.g., Dupouy et al., 1986). This research program is designed to determine which processes and optically important constituents must be considered to explain ocean color variations associated with coastal fronts on the New England continental shelf, in particular the National Ocean Partnership Program (NOPP) Front Resolving Observational Network with Telemetry (FRONT) site. This site is located at the mouth of Long Island sound and was selected after the analysis of 12 years of AVHRR data showed the region to be an area of strong frontal activity (Ullman and Cornillon, 1999). FRONT consists of a network of modem nodes that link bottom mounted Acoustic Doppler Current Profilers (ADCPs) and profiling arrays. At the center of the network is the Autonomous Vertically Profiling Plankton Observatory (AVPPO) (Thwaites et al. 1998). The AVPPO consists of buoyant sampling vehicle and a trawl-resistant bottom-mounted enclosure, which holds a winch, the vehicle (when not sampling), batteries, and controller. Three sampling systems are present on the vehicle, a video plankton recorder, a CTD with accessory sensors, and a suite of bio-optical sensors including Satlantic OCI-200 and OCR-200 spectral radiometers and a WetLabs ac-9 dual path absorption and attenuation meter. At preprogrammed times the vehicle is released, floats to the surface, and is then winched back into the enclosure with power and data connection maintained through the winch cable. Communication to shore is possible through a bottom cable and nearby surface telemetry buoy, equipped with a mobile modem, giving the capability for near-real time data transmission and interactive sampling control.

  4. Bottom shear stress and salinity distribution in a windy Mediterranean lagoon

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Roux, Bernard; Kuznetsov, Konstantin

    2017-04-01

    This work concerns the wind influence on bottom shear stress and salinity levels in a Mediterranean semi-enclosed coastal lagoon (Etang de Berre), with respect to a replanting program of Zostera noltii. The MARS3D numerical model is used to analyze the 3D current, salinity and temperature distribution induced by three meteorological, oceanic and anthropogenic forcings in this lagoon. The numerical model has been carefully validated by comparison with daily observations of the vertical salinity and temperature profiles at three mooring stations, for one year. Then, two modelling scenarios are considered. The first scenario (scen.#1), starting with an homogeneous salinity of S=20 PSU and without wind forcing, studies a stratification process under the influence of a periodic seawater inflow and a strong freshwater inflow from an hydropower plant (250 m3/s). Then, in the second scenario (scen.#2), we study how a strong wind of 80 km/h can mix the haline stratification obtained at the end of scen.#1. The most interesting results concern four nearshore replanting areas ; two are situated on the eastern side of EB and two on the western side. The results of scen.#2 show that all these areas are subject to a downwind coastal jet. Concerning bottom salinity, the destratification process is very beneficial; it always remains greater than 12 PSU for a N-NW wind of 80 km/h and a hydropower runoff of 250 m3/s. Special attention is devoted to the bottom shear stress (BSS) for different values of the bottom roughness parameter (for gravels, sands and silts), and to the bottom salinity. BSS presents a maximum near the shoreline and decreases along transects perpendicular to the shoreline. There exists a zone, parallel to the shoreline, where BSS presents a minimum (close to zero). When comparing the BSS value at the four replanting areas with the critical value, BSScr, at which the sediment mobility would occur, we see that for the smaller roughness values (ranging from z0=3.5 e-4 mm, to 3.5 e-2 mm) BSS largely surpasses this critical value. For a N-NW wind speed of 40 km/h (which is blowing for around 100 days per year), BSS still largely surpasses BSScr - at least for the silt sediments (ranging from z0=3.5 e-4 mm, to 3.5 e-3 mm). This confirms the possibility that the coastal jet could generate sediment mobility which could have a negative impact for SAV replanting. Acknowledgements We acknowledge financial supports by the French Water Agency (Agence de l'Eau-RMC - convention N 2010-0042) and by the Regional Council (Conseil Regional Provence-Alpes-Cote d'Azur): Projet HYDROSYS - Subvention N2008-11944CA and the French Ministry of Foreign Affairs (ARCUS-Russia program). We also acknowledge PhD grants received from the French Ministry of Higher Education and Research (Direction des Relations Europeennes et Internationales et de la Cooperation: reseau formation-recherche Franco-Russe). Part of this research is also a contribution to the grant of Russian Foundation for Basic Research (RFBR) N16-35-00526.

  5. Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters.

    PubMed

    Yin, Kedong; Harrison, Paul J

    2007-06-01

    This study presents water quality parameters such as nutrients, phytoplankton biomass and dissolved oxygen based on 11 years of water quality data in Victoria Harbor and examined how the Pearl River estuary discharge in summer and year round sewage discharge influenced these parameters. Nutrients in Victoria Harbor were strongly influenced by both the Pearl River and sewage effluent, as indicated by the high NO(3) inputs from the Pearl River in summer and higher NH(4) and PO(4) in Victoria Harbor than both its sides. N:P ratios were low in the dry season, but increased to >16:1 in the wet season, suggesting that P is potentially the most limiting nutrient in this area during the critical period in the summer. Although there were generally high nutrients, the phytoplankton biomass was not as high as one would expect in Victoria Harbor. In fact, there were high concentrations of chl near the bottom well below the photic zone. Salinity near the bottom was lower in Victoria Harbor than at the two entrances to Victoria Harbor, suggesting strong vertical mixing within Victoria Harbor. Therefore, strong vertical mixing and horizontal advection appear to play an important role in significantly reducing eutrophication impacts in Victoria Harbor. Consequently, dissolved oxygen near the bottom was low in summer, but only occasionally dipped to 2 mgL(-1) despite the high organic loading from sewage effluent.

  6. Influence of bottom ash of palm oil on compressive strength of concrete

    NASA Astrophysics Data System (ADS)

    Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad

    2017-11-01

    The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.

  7. Velocity and bottom-stress measurements in the bottom boundary layer, outer Norton Sound, Alaska.

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.; Wiberg, P.

    1982-01-01

    We have used long-term measurements of near-bottom velocities at four heights above the sea floor in Norton Sound, Alaska, to compute hourly values of shear velocity u., roughness and bottom-drag coefficient. Maximum sediment resuspension and transport, predicted for periods when the computed value of u. exceeds a critical level, occur during peak tidal currents associated with spring tides. The fortnightly variation in u. is correlated with a distinct nepheloid layer that intensifies and thickens during spring tides and diminishes and thins during neap tides. The passage of a storm near the end of the experiment caused significantly higher u. values than those found during fair weather.-from Authros

  8. A smoothed particle hydrodynamics (SPH) study on polydisperse sediment from technical activities on seabed

    NASA Astrophysics Data System (ADS)

    Tran-Duc, Thien; Phan-Thien, Nhan; Khoo, Boo Cheong

    2018-02-01

    Technical activities to collect poly-metallic nodules on a seabed are likely to disturb the top-layer sediment and re-suspend it into the ambient ocean water. The transport of the re-suspended polydisperse-sized sediment is a process in which particles' size variation leads to a difference in their settling velocities; and thus the polydispersity in sizes of sediment has to be taken into account in the modeling process. The sediment transport within a window of 12 km is simulated and analyzed numerically in this study. The sediment characteristic and the ocean current data taken from the Peru Basin, Pacific Ocean, are used in the simulations. More than 50% of the re-suspended sediment are found to return to the bottom after 24 h. The sediment concentration in the ambient ocean water does not exceed 3.5 kg/m3 during the observed period. The deposition rate steadily increases and reaches 70% of the sediment re-suspension rate after 24 h. The sediment plume created by the activities comprises mainly very fine sediment particles (clays and silts), whereas coarser particles (sands) are found in abundance in the deposited sediment within 1 km from the source location. It is also found that the deposition process of the re-suspended sediment is changed remarkably as the current velocity increases from 0.05 m/s (medium current) to 0.1 m/s (strong current). The strong sediment deposition trend is also observed as the sediment source moves continuously over a region due to the sediment scattering effect.

  9. Ontogenetic behavior and dispersal of Sacramento River white sturgeon, Acipenser transmontanus, with a note on body color

    USGS Publications Warehouse

    Kynard, B.; Parker, E.

    2005-01-01

    We studied Sacramento River white sturgeon, Acipenser transmontanus, in the laboratory to develop a conceptual model of ontogenetic behavior and provide insight into probable behavior of wild sturgeon. After hatching, free embryos initiated a low intensity, brief downstream dispersal during which fish swam near the bottom and were photonegative. The weak, short dispersal style and behavior of white sturgeon free embryos contrasts greatly with the intense, long dispersal style and behavior (photopositive and swimming far above the bottom) of dispersing free embryos of other sturgeon species. If spawned eggs are concentrated within a few kilometers downstream of a spawning site, the adaptive significance of the free embryo dispersal is likely to move fish away from the egg deposition site to avoid predation and reduce fish density prior to feeding. Larvae foraged on the open bottom, swam <1 m above the bottom, aggregated, but did not disperse. Early juveniles initiated a strong dispersal with fish strongly vigorously swimming downstream. Duration of the juvenile dispersal is unknown, but the strong swimming likely disperses fish many kilometers. Recruitment failure in white sturgeon populations may be a mis-match between the innate fish dispersal and post-dispersal rearing habitat, which is now highly altered by damming and reservoirs. Sacramento River white sturgeon has a two-step downstream dispersal by the free embryo and juvenile life intervals. Diel activity of all life intervals peaked at night, whether fish were dispersing or foraging. Nocturnal behavior is likely a response to predation, which occurs during both activities. An intense black-tail body color was present on foraging larvae, but was weak or absent on the two life intervals that disperse. Black-tail color may be an adaptation for avoiding predation, signaling among aggregated larvae, or both, but not for dispersal. ?? Springer 2005.

  10. Identification of bedforms in lower cook inlet, Alaska

    USGS Publications Warehouse

    Bouma, A.H.; Rappeport, M.L.; Orlando, R.C.; Hampton, M.A.

    1980-01-01

    The seafloor of the central part of lower Cook Inlet, Alaska, is characterized by the presence of different sizes and types of bedforms. The bedforms in the sandy sediments include straight-crested to sinuous to lunate ripples, small, medium, and large sand waves, sand ridges, sand ribbons, and sand patches. In addition, rocky and pebbly seafloor has been identified. The water depth ranges from 25 to 120 m, and surface currents average 3.8 kt (2 m/s). Bottom currents have been measured at as much as 42 cm/s at 1 m above bottom. Underwater television observations have shown that the rate of sand transport is lower than expected because small amounts of clay and organic matter appear to inhibit remobilization. Only during the last 1 to 2 h of ebb and flood stages of spring tides, and during storms, does significant transport occur. Comparison of data from high-resolution seismic profiling systems, side-scan sonar, bottom television and camera, and bottom sampling shows that bottom and bedform interpretations based solely on sonographs can be in error. Measuring the length of 'acoustic shadows' on sonographs to obtain bedform heights gives dimensions that are too large by factors of 3-7. Bottom television investigations revealed that the troughs between small sand waves are flat and carpeted by shell fragments. Such coarse material has a high acoustic reflectance that is not related to slope or height and can lead to false interpretations on bedform dimensions. Our observations have shown that small sand waves commonly superimposed on larger ones are slightly higher than those present on flat hard bottom but are still less than calculated from acoustic shadows. Where the bottom is rather smooth or contains elevations small enough to be masked by bathymetric 'noise' caused by the pitching of the vessel, sonographs typically show either small sand waves, sand ribbons, sand patches, rocks, or smooth bottom. The smooth-bottom category can vary widely from ripples to gravelly or shelly or to small rocks with biological overgrowth as verified by television observations. Our observations have clearly demonstrated the need for an integrated multi-scale observation and sampling program in order to classify the bottom characteristics and to provide quantitative data for transport calculations. ?? 1980.

  11. Bottom Up Succession Planning Works Better.

    ERIC Educational Resources Information Center

    Stevens, Paul

    The majority of current succession planning practices reflect the viewpoint of only a linear career direction for ambitious people. They are based on the premise that competent people have and want only one career direction--an upwardly mobile one. In today's work force, however, a "bottom-up" process works better in succession planning. This…

  12. Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan.

    PubMed

    Fan, Cheng-Wei; Kao, Shuh-Ji

    2008-04-15

    The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.

  13. Coherency Between Volume Transport in the Antarctic Circumpolar Current and Southern Hemisphere Winds

    NASA Astrophysics Data System (ADS)

    Makowski, Jessica; Chambers, Don; Bonin, Jennifer

    2013-04-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). The OBP observations from the Gravity Recovery and Climate Experiment (GRACE) will be used to calculate transport along the 150°E longitude choke point, between Antarctica and Australia. We will examine whether zonally averaged wind stress, wind stress curl, or local zonal winds are more coherent with zonal mass transport variability. Preliminary studies suggest that seasonal variation in transport across 150°E is more correlated with winds along and north of the northern front of the ACC: the Sub Tropical front (STF). It also appears that interannual variations in transport along 150°E are related to wind variations south of the STF and centered south of the Sub Antarctic Front (SAF). We have observed a strong anti-correlation across the SAF, in the Indian Ocean, which suggests wind stress curl may also be responsible for transport variations. Preliminary results will be presented.

  14. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  15. Ship Shoal as a prospective borrow site for barrier island restoration, coastal south-central Louisiana, Usa: Numerical wave modeling and field measurements of hydrodynamics and sediment transport

    USGS Publications Warehouse

    Stone, G.W.; Pepper, D.A.; Xu, Jie; Zhang, X.

    2004-01-01

    Ship Shoal, a transgressive sand body located at the 10 m isobath off south-central Louisiana, is deemed a potential sand source for restoration along the rapidly eroding Isles Dernieres barrier chain and possibly other sites in Louisiana. Through numerical wave modeling we evaluate the potential response of mining Ship Shoal on the wave field. During severe and strong storms, waves break seaward of the western flank of Ship Shoal. Therefore, removal of Ship Shoal (approximately 1.1 billion m3) causes a maximum increase of the significant wave height by 90%-100% and 40%-50% over the shoal and directly adjacent to the lee of the complex for two strong storm scenarios. During weak storms and fair weather conditions, waves do not break over Ship Shoal. The degree of increase in significant wave height due to shoal removal is considerably smaller, only 10%-20% on the west part of the shoal. Within the context of increasing nearshore wave energy levels, removal of the shoal is not significant enough to cause increased erosion along the Isles Dernieres. Wave approach direction exerts significant control on the wave climate leeward of Ship Shoal for stronger storms, but not weak storms or fairweather. Instrumentation deployed at the shoal allowed comparison of measured wave heights with numerically derived wave heights using STWAVE. Correlation coefficients are high in virtually all comparisons indicating the capability of the model to simulate wave behavior satisfactorily at the shoal. Directional waves, currents and sediment transport were measured during winter storms associated with frontal passages using three bottom-mounted arrays deployed on the seaward and landward sides of Ship Shoal (November, 1998-January, 1999). Episodic increases in wave height, mean and oscillatory current speed, shear velocity, and sediment transport rates, associated with recurrent cold front passages, were measured. Dissipation mechanisms included both breaking and bottom friction due to variable depths across the shoal crest and variable wave amplitudes during storms and fair-weather. Arctic surge fronts were associated with southerly storm waves, and southwesterly to westerly currents and sediment transport. Migrating cyclonic fronts generated northerly swell that transformed into southerly sea, and currents and sediment transport that were southeasterly overall. Waves were 36% higher and 9% longer on the seaward side of the shoal, whereas mean currents were 10% stronger landward, where they were directed onshore, in contrast to the offshore site, where seaward currents predominated. Sediment transport initiated by cold fronts was generally directed southeasterly to southwesterly at the offshore site, and southerly to westerly at the nearshore site. The data suggest that both cold fronts and the shoal, exert significant influences on regional hydrodynamics and sediment transport.

  16. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  17. Crew Earth Observations (CEO) taken during Expedition 8

    NASA Image and Video Library

    2004-04-16

    ISS008-E-21752 (16 April 2004) --- This image featuring Istanbul, Turkey was photographed by an Expedition 8 crewmember on the International Space Station (ISS). This metropolis of 15 million occupies both sides of the entrance to the narrow, 20-mile long Bosporus Strait connecting the Mediterranean and Sea of Marmara (south) to the Black Sea (north). When this image was taken, strong currents carried turbid coastal waters from the Black Sea through the Strait and into the Sea of Marmara. The rugged uplands to the north of the city are forested and contain vital reservoirs. Note Ataturk airport southwest of the city near the bottom of the image, the picturesque Prince Islands in the Sea of Marmara, and the sinuous waterway and harbor on the western shore known as the Golden Horn.

  18. SAR imaging and hydrodynamic analysis of ocean bottom topographic waves

    NASA Astrophysics Data System (ADS)

    Zheng, Quanan; Li, Li; Guo, Xiaogang; Ge, Yong; Zhu, Dayong; Li, Chunyan

    2006-09-01

    The satellite synthetic aperture radar (SAR) images display wave-like patterns of the ocean bottom topographic features at the south outlet of Taiwan Strait (TS). Field measurements indicate that the most TS water body is vertically stratified. However, SAR imaging models available were developed for homogeneous waters. Hence explaining SAR imaging mechanisms of bottom features in a stratified ocean is beyond the scope of those models. In order to explore these mechanisms and to determine the quantitative relations between the SAR imagery and the bottom features, a two-dimensional, three-layer ocean model with sinusoidal bottom topographic features is developed. Analytical solutions and inferences of the momentum equations of the ocean model lead to the following conditions. (1) In the lower layer, the topography-induced waves (topographic waves hereafter) exist in the form of stationary waves, which satisfy a lower boundary resonance condition σ = kC0, here σ is an angular frequency of the stationary waves, k is a wavenumber of bottom topographic corrugation, and C0 is a background current speed. (2) As internal waves, the topographic waves may propagate vertically to the upper layer with an unchanged wavenumber k, if a frequency relation N3 < σ < N2 is satisfied, here N2 and N3 are the Brunt-Wäisälä frequencies of middle layer and upper layer, respectively. (3) The topographic waves are extremely amplified if an upper layer resonance condition is satisfied. The SAR image of topographic waves is derived on the basis of current-modulated small wave spectra. The results indicate that the topographic waves on SAR images have the same wavelength of bottom topographic corrugation, and the imagery brightness peaks are either inphase or antiphase with respect to the topographic corrugation, depending on a sign of a coupling factor. These theoretical predictions are verified by field observations. The results of this study provide a physical basis for quantitative interpretation of SAR images of bottom topographic waves in the stratified ocean.

  19. Renewed circulation scheme of the Baltic Sea - based on the 40-year simulation with GETM.

    NASA Astrophysics Data System (ADS)

    Maljutenko, Ilja; Raudsepp, Urmas

    2015-04-01

    The general circulation of the Baltic Sea has been characterized as cyclonic in all sub-basins based on numerous measurements and model simulations. From the long-term hydrodynamical simulation our model results have verified the general cyclonic circulation in the Baltic Proper and in the Gulf of Bothnia, but the Gulf of Finland and the Gulf of Riga have shown tendency to anticyclonic circulation. We have applied the General Estuarine Transport Model ( GETM ) for the period of 1966 - 2006 with a 1 nautical mile horizontal resolution and density adaptive bottom following vertical coordinates to make it possible to simulate horizontal and vertical density gradients with better precision. The atmospheric forcing from dynamically downscaled ERA40-HIRLAM and parametrized lateral boundary conditions are applied. Model simulation show close agreement with measurements conducted in the main monitoring stations in the BS during the simulation period. The geostrophic adjustment of density driven currents along with the upward salinity flux due to entrainment could explain the anticyclonic circulation and strong coastal current. Mean vertical velocities show that upward and downward movements are forming closed vertical circulation loops along the bottom slope of the Baltic Proper and the Gulf of Bothnia. The model has also reproduced patchy vertical movement across the BS with some distinctive areas of upward advective fluxes in the GoF along the thalweg. The distinctive areas of deepwater upwelling are also evident in the Gdansk Basin, western Gotland Basin, northern Gotland Basin and in the northen part of the Bothnia Sea.

  20. Discrepancies and Uncertainties in Bottom-up Gridded Inventories of Livestock Methane Emissions for the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Hristov, A. N.; Harper, M.; Meinen, R.; Day, R.; Lopes, J.; Ott, T.; Venkatesh, A.

    2017-12-01

    In this analysis we used a spatially-explicit, bottom-up approach, based on animal inventories, feed intake, and feed intake-based emission factors to estimate county-level enteric (cattle) and manure (cattle, swine, and poultry) livestock methane emissions for the contiguous United States. Combined enteric and manure emissions were highest for counties in California's Central Valley. Overall, this analysis yielded total livestock methane emissions (8,916 Gg/yr; lower and upper bounds of 6,423 and 11,840 Gg/yr, respectively) for 2012 that are comparable to the current USEPA estimates for 2012 (9,295 Gg/yr) and to estimates from the global gridded Emission Database for Global Atmospheric Research (EDGAR) inventory (8,728 Gg/yr), used previously in a number of top-down studies. However, the spatial distribution of emissions developed in this analysis differed significantly from that of EDGAR. As an example, methane emissions from livestock in Texas and California (highest contributors to the national total) in this study were 36% lesser and 100% greater, respectively, than estimates by EDGAR. Thespatial distribution of emissions in gridded inventories (e.g., EDGAR) likely strongly impacts the conclusions of top-down approaches that use them, especially in the source attribution of resulting (posterior) emissions, and hence conclusions from such studies should be interpreted with caution.

  1. Excessive response-repetition costs under task switching: how response inhibition amplifies response conflict.

    PubMed

    Grzyb, Kai Robin; Hübner, Ronald

    2013-01-01

    The size of response-repetition (RR) costs, which are usually observed on task-switch trials, strongly varies between conditions with univalent and bivalent stimuli. To test whether top-down or bottom-up processes can account for this effect, we assessed in Experiment 1 baselines for univalent and bivalent stimulus conditions (i.e., for stimuli that are associated with either 1 or 2 tasks). Experiment 2 examined whether the proportion of these stimulus types affects RR costs. As the size of RR costs was independent of proportion, a top-down explanation could be excluded. However, there was an increase in RR costs if the current stimulus induced a response conflict. To account for this effect, we proposed an amplification of response conflict account. It assumes that the basic mechanism that leads to RR costs amplifies response conflict, which, in turn, increases RR costs. Experiment 3 confirmed this bottom-up explanation by showing that the increase in RR costs varies with previous-trial congruency, which is known to affect RR costs. Experiment 4 showed that the increase can also be found with univalent stimuli that induce response conflict. Altogether, the results are in line with a response inhibition account of RR costs. Implications for alternative accounts are also discussed. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  2. Central Metabolic Pathways of Hyperthermophiles: Important Clues on how Metabolism Gives Rise to Life

    NASA Astrophysics Data System (ADS)

    Ronimus, R. S.; Morgan, H. W.

    2004-06-01

    Vital clues on life's origins within the galaxy exist here on present day Earth. Life is currently divided into the three domains Bacteria, Archaea and Eukarya based on the phylogeny of small ribosomal subunit RNA (16S/18S) gene sequences. The domains are presumed to share a ``last universal common ancestor'' (LUCA). Hyperthermophilic bacteria and archaea, which are able to thrive at 80^{circ}C or higher, dominate the bottom of the tree of life and are thus suggested to be the least evolved, or most ``ancient''. Geochemical data indicates that life first appeared on Earth approximately 3.8 billion years ago in a hot environment. Due to these considerations, hyperthermophiles represent the most appropriate microorganisms to investigate the origins of metabolism. The central biochemical pathway of gluconeogenesis/glycolysis (the Embden-Meyerhof pathway) which produces six carbon sugars from three carbon compounds is present in all organisms and can provide important hints concerning the early development of metabolism. Significantly, there are a number of striking deviations from the textbook canonical reaction sequence that are found, particularly in hyperthermophilic archaea. In this paper the phylogenetic istribution of enzymes of the pathway is detailed; overall, the distribution pattern provides strong evidence for the pathway to have developed from the bottom-up.

  3. Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hebbeln, D.; Wienberg, C.; Wintersteller, P.; Freiwald, A.; Becker, M.; Beuck, L.; Dullo, C.; Eberli, G. P.; Glogowski, S.; Matos, L.; Forster, N.; Reyes-Bonilla, H.; Taviani, M.

    2014-04-01

    With an extension of > 40 km2 the recently discovered Campeche cold-water coral province located at the northeastern rim of the Campeche Bank in the southern Gulf of Mexico belongs to the largest coherent cold-water coral areas discovered so far. The Campeche province consists of numerous 20-40 m-high elongated coral mounds that are developed in intermediate water depths of 500 to 600 m. The mounds are colonized by a vivid cold-water coral ecosystem that covers the upper flanks and summits. The rich coral community is dominated by the framework-building Scleractinia Enallopsammia profunda and Lophelia pertusa, while the associated benthic megafauna shows a rather scarce occurrence. The recent environmental setting is characterized by a high surface water production caused by a local upwelling center and a dynamic bottom-water regime comprising vigorous bottom currents, obvious temporal variability, and strong density contrasts, which all together provide optimal conditions for the growth of cold-water corals. This setting - potentially supported by the diel vertical migration of zooplankton in the Campeche area - controls the delivering of food particles to the corals. The Campeche cold-water coral province is, thus, an excellent example highlighting the importance of the oceanographic setting in securing the food supply for the development of large and vivid cold-water coral ecosystems.

  4. Population Dynamics of an Insect Herbivore over 32 Years are Driven by Precipitation and Host-Plant Effects: Testing Model Predictions.

    PubMed

    Price, Peter W; Hunter, Mark D

    2015-06-01

    The interaction between the arroyo willow, Salix lasiolepis Bentham, and its specialist herbivore, the arroyo willow stem-galling sawfly, Euura lasiolepis Smith (Hymenoptera: Tenthredinidae), was studied for 32 yr in Flagstaff, AZ, emphasizing a mechanistic understanding of insect population dynamics. Long-term weather records were evaluated to provide a climatic context for this study. Previously, predictive models of sawfly dynamics were developed from estimates of sawfly gall density made between 1981 and 2002; one model each for drier and wetter sites. Predictor variables in these models included winter precipitation and the Palmer Drought Severity Index, which impact the willow growth, with strong bottom-up effects on sawflies. We now evaluate original model predictions of sawfly population dynamics using new data (from 2003-2012). Additionally, willow resources were evaluated in 1986 and in 2012, using as criteria clone area, shoot density, and shoot length. The dry site model accounted for 40% of gall population density variation between 2003 and 2012 (69% over the 32 yr), providing strong support for the bottom-up, mechanistic hypothesis that water supply to willow hosts impacts sawfly populations. The current drying trend stressed willow clones: in drier sites, willow resources declined and gall density decreased by 98%. The wet site model accounted for 23% of variation in gall population density between 2003 and 2012 (48% over 30 yr), consistent with less water limitation. Nonetheless, gall populations were reduced by 72%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The nepheloid bottom layer and water masses at the shelf break of the western Ross Sea

    NASA Astrophysics Data System (ADS)

    Capello, Marco; Budillon, Giorgio; Cutroneo, Laura; Tucci, Sergio

    2009-06-01

    In the austral summers of 2000/2001 and 2002/2003 the Italian CLIMA Project carried out two oceanographic cruises along the northwestern margin of the Ross Sea, where the Antarctic Bottom Water forms. Here there is an interaction between the water masses on the sea floor of the outer shelf and slope with a consequent evolution of benthic nepheloid layers and an increase in total particulate matter. We observed three different situations: (a) the presence of triads (bottom structures characterized by a concomitant jump in turbidity, temperature, and salinity data) and high re-suspension phenomena related to the presence of the Circumpolar Deep Water and its mixing with cold, salty shelf waters associated with gravity currents; (b) the absence of triads with high re-suspension, implying that when the gravity currents are no longer active the benthic nepheloid layer may persist until the suspended particles settle to the sea floor, suggesting that the turbidity data can be used to study recent gravity current events; and (c) the absence of turbidity and sediment re-suspension phenomena supports the theory that a steady situation had been re-established and the current interaction no longer occurred or had finished sometime before.

  6. Geologic implications and potential hazards of scour depressions on bering shelf, Alaska

    USGS Publications Warehouse

    Larsen, M.C.; Nelson, H.; Thor, D.R.

    1979-01-01

    Flat-bottomed depression 50-150 m in diameter and 60-80 cm deep occur in the floor of Norton Sound, Bering Sea. These large erosional bedforms and associated current ripples are found in areas where sediment grain size is 0.063-0.044 mm (4-4.5 ??), speeds of bottom currents are greatest (20-30 cm/s mean speeds under nonstorm conditions, 70 cm/s during typical storms), circulation of water is constricted by major topographic shoals (kilometers in scale), and small-scale topographic disruptions, such as ice gouges, occur locally on slopes of shoals. These local obstructions on shoals appear to disrupt currents, causing separation of flow and generating eddies that produce large-scale scour. Offshore artificial structures also may disrupt bottom currents in these same areas and have the potential to generate turbulence and induce extensive scour in the area of disrupted flow. The size and character of natural scour depressions in areas of ice gouging suggest that large-scale regions of scour may develop from enlargement of local scour sites around pilings, platforms, or pipelines. Consequently, loss of substrate support for pipelines and gravity structures is possible during frequent autumn storms. ?? 1979 Springer-Verlag New York Inc.

  7. Nonlocal impacts of the Loop Current on cross-slope near-bottom flow in the northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Tam; Morey, Steven L.; Dukhovskoy, Dmitry S.; Chassignet, Eric P.

    2015-04-01

    Cross-slope near-bottom motions near De Soto Canyon in the northeastern Gulf of Mexico are analyzed from a multidecadal ocean model simulation to characterize upwelling and downwelling, important mechanisms for exchange between the deep ocean and shelf in the vicinity of the 2010 BP Macondo well oil spill. Across the continental slope, large-scale depression and offshore movement of isopycnals (downwelling) occur more frequently when the Loop Current impinges upon the West Florida Shelf slope farther south. Upwelling and onshore movement of isopycnals occurs with roughly the same likelihood regardless of Loop Current impingement on the slope. The remote influence of Loop Current on the De Soto Canyon region downwelling is a consequence of a high-pressure anomaly that extends along the continental slope emanating from the location of Loop Current impact.

  8. Sediment Transport over a Dredge Pit, Sandy Point Southeast, west flank of the Mississippi River during Summer Upcoast Currents: a Coupled Wave, Current and Sediment Numerical Model

    NASA Astrophysics Data System (ADS)

    Chaichitehrani, N.; Li, C.; Xu, K.; Bentley, S. J.; Miner, M. D.

    2017-12-01

    Sandy Point southeast, an elongated sand resource, was dredged in November 2012 to restore Pelican Island, Louisiana. Hydrodynamics and wave propagation patterns along with fluvial sediments from the Mississippi River influence the sediment and bottom boundary layer dynamics over Sandy Point. A state-of-the-art numerical model, Delft3D, was implemented to investigate current variations and wave transformation on Sandy Point as well as sediment transport pattern. Delft3d FLOW and WAVE modules were coupled and validated using WAVCIS and NDBC data. Sediment transport model was run by introducing both bed and river sediments, consisted of mainly mud and a small fraction of sand. A sediment transport model was evaluated for surface sediment concentration using data derived from satellite images. The model results were used to study sediment dynamics and bottom boundary layer characteristics focused on the Sandy Point area during summer. Two contrasting bathymetric configurations, with and without the Sandy Point dredge pit, were used to conduct an experiment on the sediment and bottom boundary layer dynamics. Preliminary model results showed that the presence of the Sandy Point pit has very limited effect on the hydrodynamics and wave pattern at the pit location. Sediments from the Mississippi River outlets, especially in the vicinity of the pit, get trapped in the pit under the easterly to the northeasterly upcoast current which prevails in August. We also examined the wave-induced sediment reworking and river-borne fluvial sediment over Sandy Point. The effect of wind induced orbital velocity increases the bottom shear stress compared to the time with no waves, relatively small wave heights (lower than 1.5 meters) along the deepest part of the pit (about 20 meters) causes little bottom sediment rework during this period. The results showed that in the summertime, river water is more likely the source of sedimentation in the pit.

  9. Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: a history of the local hydrography and global climate, 20 ka to the present

    USGS Publications Warehouse

    Piper, David Z.; Dean, Walter E.

    2002-01-01

    A sediment core from the Cariaco Basin on the Venezuelan continental shelf, which recovered sediment that has been dated back to 20 ka (thousand years ago), was examined for its major-element-oxide and trace-element composition. Cadmium (Cd), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), vanadium (V), and zinc (Zn) can be partitioned between a siliciclastic, terrigenous-derived fraction and two seawater-derived fractions. The two marine fractions are (1) a biogenic fraction represented by nutrient trace elements taken up mostly in the photic zone by phytoplankton, and (2) a hydrogenous fraction that has been derived from bottom water via adsorption and precipitation reactions. This suite of trace elements contrasts with a second suite of trace elements—barium (Ba), cobalt (Co), gallium (Ga), lithium (Li), the rare-earth elements, thorium (Th), yttrium (Y), and several of the major-element oxides—that has had solely a terrigenous source. The partitioning scheme, coupled with bulk sediment accumulation rates measured by others, allows us to determine the accumulation rate of trace elements in each of the three sediment fractions and of the fractions themselves. The current export of organic matter from the photic zone, redox conditions and advection of bottom water, and flux of terrigenous debris into the basin can be used to calculate independently trace-element depositional rates. The calculated rates show excellent agreement with the measured rates of the surface sediment. This agreement supports a model of trace-element accumulation rates in the subsurface sediment that gives a 20-kyr history of upwelling into the photic zone (that is, primary productivity), bottom-water advection and redox, and provenance. Correspondence of extrema in the geochemical signals with global changes in sea level and climate demonstrates the high degree to which the basin hydrography and provenance have responded to the paleoceanographic and paleoclimatic regimes of the last 20 kyr. The accumulation rate of the marine fraction of Mo increased abruptly at about 14.8 ka (calendar years), from less than 0.5 µg cm-2 yr-1 to greater than 4 µg cm-2 yr-1. Its accumulation rate remained high but variable until 8.6 ka, when it decreased sharply to 1 µg cm-2 yr-1. It continued to decrease to 4.0 ka, to its lowest value for the past 15 kyr, before gradually increasing to the present. Between 14.8 ka and 8.6 ka, its accumulation rate exhibited strong maxima at 14.4, 13.0, and 9.9 ka. The oldest maximum corresponds to melt-water pulse IA into the Gulf of Mexico. A relative minimum, centered at about 11.1 ka, corresponds to melt-water pulse IB; a strong maximum occurs in the immediately overlying sediment. The maximum at 13.0 ka corresponds to onset of the Younger Dryas cold event. This pattern to the accumulation rate of Mo (and V) can be interpreted in terms of its deposition from bottom water of the basin, the hydrogenous fraction, under SO42- -reducing conditions, during times of intense bottom-water advection 14.8 ka to 11.1 ka and significantly less intense bottom-water advection 11 ka to the present. The accumulation rate of Cd shows a pattern that is only slightly different from that of Mo, although its deposition was determined largely by the rain rate of organic matter into the bottom water, a biogenic fraction whose deposition was driven by upwelling of nutrient-enriched water into the photic zone. Its accumulation exhibits only moderately high rates, on average, during both melt-water pulses. Its highest rate, and that of upwelling, occurred during the Younger Dryas, and again following melt-water pulse IB. The marine fractions of Cu, Ni, and Zn also have a strong biogenic signal. The siliciclastic terrigenous debris, however, represents the dominant source, and host, of Cu, Ni, and Zn. All four trace elements have a consid-erably weaker hydrogenous signal than biogenic signal. Accumulation rates of the terrigenous fraction, as reflected by accumulation rates of Th and Ga, show strong maxima at 16.2 and 12.7 ka and minima at 14.1 and 11.1 ka. Co, Li, REE, and Y have a similar distribution. The minima occurred during melt-water pulses IA and IB, the maxima during the Younger Dryas and the rise in sea level following the last glacial maximum.

  10. The Bottom Boundary Layer.

    PubMed

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  11. The Bottom Boundary Layer

    NASA Astrophysics Data System (ADS)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  12. Direct Numerical Simulation of Oscillatory Flow Over a Wavy, Rough, and Permeable Bottom

    NASA Astrophysics Data System (ADS)

    Mazzuoli, Marco; Blondeaux, Paolo; Simeonov, Julian; Calantoni, Joseph

    2018-03-01

    The results of a direct numerical simulation of oscillatory flow over a wavy bottom composed of different layers of spherical particles are described. The amplitude of wavy bottom is much smaller in scale than typical bed forms such as sand ripples. The spherical particles are packed in such a way to reproduce a bottom profile observed during an experiment conducted in a laboratory flow tunnel with well-sorted coarse sand. The amplitude and period of the external forcing flow as well as the size of the particles are set equal to the experimental values and the computed velocity field is compared with the measured velocity profiles. The direct numerical simulation allows for the evaluation of quantities, which are difficult to measure in a laboratory experiment (e.g., vorticity, seepage flow velocity, and hydrodynamic force acting on sediment particles). In particular, attention is focused on the coherent vortex structures generated by the vorticity shed by both the spherical particles and the bottom waviness. Results show that the wavy bottom triggers transition to turbulence. Moreover, the forces acting on the spherical particles are computed to investigate the mechanisms through which they are possibly mobilized by the oscillatory flow. It was found that forces capable of mobilizing surface particles are strongly correlated with the particle position above the mean bed elevation and the passage of coherent vortices above them.

  13. The Great Recession and the Social Safety Net

    PubMed Central

    Moffitt, Robert A.

    2016-01-01

    The social safety net responded in significant and favorable ways during the Great Recession. Aggregate per capita expenditures grew significantly, with particularly strong growth in the SNAP, EITC, UI, and Medicaid programs. Distributionally, the increase in transfers was widely shared across demographic groups, including families with and without children, single-parent and two-parent families. Transfers grew as well among families with more employed members and with fewer employed members. However, the increase in transfer amounts was not strongly progressive across income classes within the low-income population, increasingly slightly more for those just below the poverty line and those just above it, compared to those at the bottom of the income distribution. This is mainly the result of the EITC program, which provides greater benefits to those with higher family earnings. The expansions of SNAP and UI benefitted those at the bottom of the income distribution to a greater extent. PMID:27065356

  14. Bottom-up production of meta-atoms for optical magnetism in visible and NIR light

    NASA Astrophysics Data System (ADS)

    Barois, Philippe; Ponsinet, Virginie; Baron, Alexandre; Richetti, Philippe

    2018-02-01

    Many unusual optical properties of metamaterials arise from the magnetic response of engineered structures of sub-wavelength size (meta-atoms) exposed to light. The top-down approach whereby engineered nanostructure of well-defined morphology are engraved on a surface proved to be successful for the generation of strong optical magnetism. It faces however the limitations of high cost and small active area in visible light where nanometre resolution is needed. The bottom-up approach whereby the fabrication metamaterials of large volume or large area results from the combination of nanochemitry and self-assembly techniques may constitute a cost-effective alternative. This approach nevertheless requires the large-scale production of functional building-blocks (meta-atoms) bearing a strong magnetic optical response. We propose in this paper a few tracks that lead to the large scale synthesis of magnetic metamaterials operating in visible or near IR light.

  15. Hydrography and bottom boundary layer dynamics: Influence on inner shelf sediment mobility, Long Bay, North Carolina

    USGS Publications Warehouse

    Davis, L.A.; Leonard, L.A.; Snedden, G.A.

    2008-01-01

    This study examined the hydrography and bottom boundary-layer dynamics of two typical storm events affecting coastal North Carolina (NC); a hurricane and the passages of two small consecutive extratropical storms during November 2005. Two upward-looking 1200-kHz Acoustic Doppler Current Profilers (ADCP) were deployed on the inner shelf in northern Long Bay, NC at water depths of less than 15 m. Both instruments profiled the overlying water column in 0.35 in bins beginning at a height of 1.35 in above the bottom (mab). Simultaneous measurements of wind speed and direction, wave and current parameters, and acoustic backscatter were coupled with output from a bottom boundary layer (bbl) model to describe the hydrography and boundary layer conditions during each event. The bbl model also was used to quantify sediment transport in the boundary layer during each storm. Both study sites exhibited similar temporal variations in wave and current magnitude, however, wave heights during the November event were higher than waves associated with the hurricane. Near-bottom mean and subtidal currents, however, were of greater magnitude during the hurricane. Peak depth-integrated suspended sediment transport during the November event exceeded transport associated with the hurricane by 25-70%. Substantial spatial variations in sediment transport existed throughout both events. During both events, along-shelf sediment transport exceeded across-shelf transport and was related to the magnitude and direction of subtidal currents. Given the variations in sediment type across the bay, complex shoreline configuration, and local bathymetry, the sediment transport rates reported here are very site specific. However, the general hydrography associated with the two storms is representative of conditions across northern Long Bay. Since the beaches in the study area undergo frequent renourishment to counter the effects of beach erosion, the results of this study also are relevant to coastal management decision-making. Specifically, these issues include 1) identification of municipalities that should share the cost for renourishment given the likelihood for significant along-shelf sand movement and 2) appropriate timing of sand placement with respect to local climatology and sea-turtle nesting restrictions.

  16. Wave and Current Observations in a Tidal Inlet Using GPS Drifter Buoys

    DTIC Science & Technology

    2013-03-01

    right panel). ............17  Figure 10.  DWR-G external sensor configuration (left panel). GT-31 GPS receiver is visible on the bottom left. Two GoPro ...receiver is visible on the bottom left. Two GoPro cameras are attached to the top of the buoy. DWR-G internal sensor configuration (right panel

  17. Teacher-Led Professional Development: A Proposal for a Bottom-up Structure Approach

    ERIC Educational Resources Information Center

    Macias, Angela

    2017-01-01

    This article uses current research recommendations for teacher-led professional development as well as qualitative data from a set of grassroots conferences to propose a new model for bottom-up teacher-led professional development. This article argues that by providing a neutral space and recruiting expertise of local experts, a public sphere can…

  18. Molecular engineered conjugated polymer with high thermal conductivity

    PubMed Central

    Song, Bai; Lee, Elizabeth M. Y.; Gleason, Karen K.

    2018-01-01

    Traditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices. Current research has so far been limited to engineering polymers either by strong intramolecular interactions, which enable efficient phonon transport along the polymer chains, or by strong intermolecular interactions, which enable efficient phonon transport between the polymer chains. However, it has not been possible until now to engineer both interactions simultaneously. We report the first realization of high thermal conductivity in the thin film of a conjugated polymer, poly(3-hexylthiophene), via bottom-up oxidative chemical vapor deposition (oCVD), taking advantage of both strong C=C covalent bonding along the extended polymer chain and strong π-π stacking noncovalent interactions between chains. We confirm the presence of both types of interactions by systematic structural characterization, achieving a near–room temperature thermal conductivity of 2.2 W/m·K, which is 10 times higher than that of conventional polymers. With the solvent-free oCVD technique, it is now possible to grow polymer films conformally on a variety of substrates as lightweight, flexible heat conductors that are also electrically insulating and resistant to corrosion. PMID:29670943

  19. Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. 'Murasakizuisho'.

    PubMed

    Shoji, Kazuaki; Momonoi, Kazumi; Tsuji, Tosiaki

    2010-02-01

    Flowers of tulip cv. 'Murasakizuisho' have a purple perianth except for the bottom region, which is blue in color even though it has the same anthocyanin, delphinidin 3-O-rutinoside, as the entire perianth. The development of the blue coloration in the perianth bottom is due to complexation by anthocyanin, flavonol and iron (Fe), as well as a vacuolar iron transporter, TgVit1. Although transient expression of TgVit1 in the purple cells led to a color change to light blue, the coloration of the transformed cells did not coincide with the dark blue color of the cells of the perianth bottom. We thought that another factor is required for the blue coloration of the cells of perianth bottom. To examine the effect of ferritin (FER), an Fe storage protein, on blue color development, we cloned an FER gene (TgFER1) and performed expression analyses. TgFER1 transcripts were found in the cells located in the upper region of the petals along with purple color development by anthocyanin and were not found in the blue cells of the perianth bottom. This gene expression is in contrast to that of TgVit1, expressed only in the cells of the perianth bottom. Co-expression of TgVIT1 and TgFER-RNAi, constructed for suppressing endogenous TgFER1 by RNA interference (RNAi), changed the purple petal cells to a dark blue color similar to that of the natural perianth bottom. These results strongly suggest that TgVit1 expression and TgFER1 suppression are critical for the development of blue color in the perianth bottom.

  20. Evidence of bottom-up limitations in nearshore marine systems based on otolith proxies of fish growth

    USGS Publications Warehouse

    von Biela, Vanessa R.; Kruse, Gordon H.; Mueter, Franz J.; Black, Bryan A.; Douglas, David C.; Helser, Thomas E.; Zimmerman, Christian E.

    2015-01-01

    Fish otolith growth increments were used as indices of annual production at nine nearshore sites within the Alaska Coastal Current (downwelling region) and California Current (upwelling region) systems (~36–60°N). Black rockfish (Sebastes melanops) and kelp greenling (Hexagrammos decagrammus) were identified as useful indicators in pelagic and benthic nearshore food webs, respectively. To examine the support for bottom-up limitations, common oceanographic indices of production [sea surface temperature (SST), upwelling, and chlorophyll-a concentration] during summer (April–September) were compared to spatial and temporal differences in fish growth using linear mixed models. The relationship between pelagic black rockfish growth and SST was positive in the cooler Alaska Coastal Current and negative in the warmer California Current. These contrasting growth responses to SST among current systems are consistent with the optimal stability window hypothesis in which pelagic production is maximized at intermediate levels of water column stability. Increased growth rates of black rockfish were associated with higher chlorophyll concentrations in the California Current only, but black rockfish growth was unrelated to the upwelling index in either current system. Benthic kelp greenling growth rates were positively associated with warmer temperatures and relaxation of downwelling (upwelling index near zero) in the Alaska Coastal Current, while none of the oceanographic indices were related to their growth in the California Current. Overall, our results are consistent with bottom-up forcing of nearshore marine ecosystems—light and nutrients constrain primary production in pelagic food webs, and temperature constrains benthic food webs.

  1. Effects of beach morphology and waves on onshore larval transport

    NASA Astrophysics Data System (ADS)

    Fujimura, A.; Reniers, A.; Paris, C. B.; Shanks, A.; MacMahan, J.; Morgan, S.

    2015-12-01

    Larvae of intertidal species grow offshore, and migrate back to the shore when they are ready to settle on their adult substrates. In order to reach the habitat, they must cross the surf zone, which is characterized as a semi-permeable barrier. This is accomplished through physical forcing (i.e., waves and current) as well as their own behavior. Two possible scenarios of onshore larval transport are proposed: Negatively buoyant larvae stay in the bottom boundary layer because of turbulence-dependent sinking behavior, and are carried toward the shore by streaming of the bottom boundary layer; positively buoyant larvae move to the shore during onshore wind events, and sink to the bottom once they encounter high turbulence (i.e., surf zone edge), where they are carried by the bottom current toward the shore (Fujimura et al. 2014). Our biophysical Lagrangian particle tracking model helps to explain how beach morphology and wave conditions affect larval distribution patterns and abundance. Model results and field observations show that larval abundance in the surf zone is higher at mildly sloped, rip-channeled beaches than at steep pocket beaches. Beach attributes are broken up to examine which and how beach configuration factors affect larval abundance. Modeling with alongshore uniform beaches with variable slopes reveal that larval populations in the surf zone are negatively correlated with beach steepness. Alongshore variability enhances onshore larval transport because of increased cross-shore water exchange by rip currents. Wave groups produce transient rip currents and enhance cross-shore exchange. Effects of other wave components, such as wave height and breaking wave rollers are also considered.

  2. Dynamics of sediments along with their core properties in the Monastir-Bekalta coastline (Tunisia, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Khiari, Nouha; Atoui, Abdelfattah; Khalil, Nadia; Charef, Abdelkrim; Aleya, Lotfi

    2017-10-01

    The authors report on two campaigns of high-resolution samplings along the shores of Monastir Bay in Tunisia: the first being a study of sediment dynamics, grain size and mineral composition in surface sediment, and the second, eight months later, using four sediment cores to study grain-size distribution in bottom sediments. Particle size analysis of superficial sediment shows that the sand in shallow depths is characterized by S-shaped curves, indicating a certain degree of agitation, possible transport by rip currents near the bottom and hyperbolic curves illustrating heterogeneity of sand stock. The sediments settle in a relatively calm environment. Along the bay shore (from 0 to 2 m depth), the bottom is covered by medium sand. Sediment transport is noted along the coast; from north to south and from south to north, caused by longshore drift and a rip current in the middle of the bay. These two currents are generated by wind and swell, especially by north to northeast waves which transport the finest sediment. Particle size analysis of bottom sediment indicates a mean grain size ranging from coarse to very fine sands while vertical distribution of grain size tends to decrease from surface to depth. The increase in particle size of sediment cores may be due to the coexistence of terrigenous inputs along with the sedimentary transit parallel to the coast due to the effect of longshore drift. Mineralogical analysis shows that Monastir's coastal sands and bottom sediment are composed of quartz, calcite, magnesium calcite, aragonite and hematite. The existence of a low energy zone with potential to accumulate pollutants indicates that managerial action is necessary to help preserve Monastir Bay.

  3. Present and past Gulf Stream variability in a cold-water coral area off Cape Lookout, West Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Pedersen, A.; Duineveld, G.; Seidenkrantz, M.; Fischel, A.; Matos, L.; Bane, J. M.; Frank, N.; Hebbeln, D.; Ross, S.

    2012-12-01

    Cold-water coral mounds are common on the SE slope of the US from Florida to Cape Hatteras between depths of 400-600 m. All coral areas lie in the vicinity of the Gulf Stream, which is characterized by strong currents transporting relatively warm water northwards. Thus far little is known about the recent and past environmental conditions inside the cold-water coral habitats on the SE US slope and particularly the effect of changing patterns of the Gulf Stream. Near Cape Lookout, which is the northern most cold-water coral area on the SE US slope, cold-water corals have formed mounds up to 60 m high with a tear drop shape, which are oriented in a SSW-NNE direction. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. Two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Furthermore, a 3.6 m long piston core was collected in 2010 during a cruise with the R.V. Pelagia. This pistoncore was used to determine the changes of current strength through time, using foraminiferal counts, stable oxygen and carbon isotopes on foraminifera, XRF and magnetic susceptibility measurements. Cold-water coral fragments were dated with U/Th and foraminifera from the same depth interval were dated with C14. Bottom landers have recorded a number of events that are characterized by of peaks in temperature and salinity, coinciding with increased flow and turbidity. The current during these events was directed to the NNE. During some of these events temperature rose up to 9 degrees in one day. The temporary replacement of the colder bottom water by warm (and saline) water in combination with the strong currents to the NNE point at Gulfstream water moving over the deployment site as was confirmed by satellite images. The instantaneous increases in of the turbidity at the onset of warm events when the current speed increases, likely represent local erosion of the seafloor and of the coral mounds. Based on the foraminifera data three zones could be observed in the piston core (13000-10000 years, 10000-7200 years and 7200-4700 years. All zones show the gradual onshore movement of the Gulf Stream, which can be related to a rapid rise in sea-level after the last deglaciation. This movement has gradually widened the band of the Gulfstream thereby compressing the surface and deeper water masses. Current speed in the area are generally strong but weakened during periods of fresh water outflow in the North Atlantic, which weakened the thermohaline circulation. This was especially clear in zone 2 around 8200 years, due to a melt water pulse of lake Agassiz and Ojibway. Data presented here show that the Gulf Stream influenced cold-water coral growth and mound formation at the SE Us margin at present as well as in the past.

  4. Measurement of tidal and residual currents in the Strait of Hormuz

    NASA Astrophysics Data System (ADS)

    Azizpour, Jafar; Siadatmousavi, Seyed Mostafa; Chegini, Vahid

    2016-09-01

    Quantifying the current in the Strait of Hormuz (SH) is vital for understanding the circulation in the Persian Gulf. To measure the current in the strait, four subsurface moorings were deployed at four different stations close to SH from early November 2012 to the end of January 2013. Tidal current were dominant in the SH. The tides in the SH were complex partially standing waves and the dominant pattern varied from being primarily semi-diurnal to diurnal. The phase difference between tidal constituents of current and sea level elevation time series was used as an index to show the partially progressive wave pattern inside the study area. At mooring positions 3 and 4, located to the left of SH, the phase differences were close to 160° and 100°, respectively. It indicates partially progressive waves in opposite direction at these stations. K1 and M2 were the two main constituents at all stations inside the study area. At surface, the magnitude of semi-major axis of ellipses for M2 constituent was larger than corresponding value for K1 whereas at the bottom layer, the opposite pattern was observed. The M2 rotary coefficients at mooring 1 illustrated that current vector at the bottom layer rotated in opposite direction compared to current vectors at the middle and surface layers. The rotation was counterclockwise in the bottom layer, while it was clockwise in the surface and middle layers.

  5. Evidence of strong ocean heating during glacial periods

    NASA Astrophysics Data System (ADS)

    Zimov, S. A.; Zimov, N.

    2013-12-01

    Numerous hypotheses have addressed glacial-interglacial climatic dynamics, but none of them explain the sharp 25C temperature increase in Greenland in the last deglaciation (Cuffey et al. 1995; Dahl-Jensen et al. 1998). These robust data were obtained through analyzing the temperature profile in the Greenland ice sheet where cold from the last glaciation is preserved in the depth of the glacial sheet. We suggest that during glaciations the ocean accumulated energy: interior ocean water heated up to ~20-30C and during deglaciation this energy is released. In the analogy with reconstructing the ice sheet temperature profiles, the most reliable proof of ocean interior warming during the last glaciation is the heat flux profiles in the bottom sediments. In the final reports based on temperature measurements conducted during the DSDP (Deep Sea Drilling Project) it is stated that heat flux in the bottom sediments doesn't vary with depth and consequently there were no substantial temperature changes in the ocean interior during the last glacial cycle, and heat flux on the surface of the ocean bottom is the geothermal heat flux (Erickson et al., 1975, Hyndman et al., 1987). However, we have critically investigated data in all initial reports of all deep sea drilling projects and have noticed that all temperature data show that heat flow decreases strongly with depth (a minimum of 40 mW/m2), i.e. most of the heat flux detected on the surface of the ocean floor is not the geothermal heat flux but remaining heat that bottom sediments release. Sharp shifts in heat flow are seen within boreholes at depths crossing gas hydrate bottom. All this means that during the last glacial period interior water temperature was on 25-30C degrees warmer. Conversely, in isolated seas heat flow in the sediments shows little change with depth.

  6. Coaxial test fixture

    DOEpatents

    Praeg, Walter F.

    1986-01-01

    An assembly is provided for testing one or more contact material samples in a vacuum environment. The samples are positioned as an inner conductive cylinder assembly which is mounted for reciprocal vertical motion as well as deflection from a vertical axis. An outer conductive cylinder is coaxially positioned around the inner cylinder and test specimen to provide a vacuum enclosure therefor. A power source needed to drive test currents through the test specimens is connected to the bottom of each conductive cylinder, through two specially formed conductive plates. The plates are similar in form, having a plurality of equal resistance current paths connecting the power source to a central connecting ring. The connecting rings are secured to the bottom of the inner conductive assembly and the outer cylinder, respectively. A hydraulic actuator is also connected to the bottom of the inner conductor assembly to adjust the pressure applied to the test specimens during testing. The test assembly controls magnetic forces such that the current distribution through the test samples is symmetrical and that contact pressure is not reduced or otherwise disturbed.

  7. Uranium Stable Isotopes: A Proxy For Productivity Or Ocean Oxygenation?

    NASA Astrophysics Data System (ADS)

    Severmann, S.

    2015-12-01

    Uranium elemental abundances in sediments have traditionally been used to reconstruct primary productivity and carbon flux in the ocean. 238U/235U isotope compositions, in contrast, are currently understood to reflect the extent of bottom water anoxia in the ocean. A review of our current understanding of authigenic U enrichment mechanism into reducing sediments suggests that a revision of this interpretation is warranted. Specifically, the current interpretation of U isotope effects in suboxic vs. anoxic deposits has not taken into account the well-documented linear relationship with organic C burial rates. Although organic C rain rates (i.e., surface productivity) and bottom water oxygenation are clearly related, distinction between these two environmental controls is conceptually important as it relates to the mechanism of enhanced C burial and ultimately the strength of the biological pump. Here we will review new and existing data to test the hypothesis that the isotope composition of authigenic U in reducing sediments are best described by their relationship with parameters related to organic carbon delivery and burial, rather than bottom water oxygen concentration.

  8. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.

    PubMed

    Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun

    2015-09-01

    Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions.

  9. Bottom-up and top-down triggers of diversification: A new look at the evolutionary ecology of scavenging amphipods in the deep sea

    NASA Astrophysics Data System (ADS)

    Havermans, Charlotte; Smetacek, Victor

    2018-05-01

    The initial, anthropocentric view of the deep ocean was that of a hostile environment inhabited by organisms rendered lethargic by constant high pressure, low temperature and sparse food supply, hence evolving slowly. This conceptual framework of a spatially and temporally homogeneous, connected, strongly bottom-up controlled habitat implied a strong constraint on, or poor incentive for, speciation. Hence, the discovery in the late 1960s of high species diversity of abyssal benthic invertebrates came as a surprise. Since then, the slow-motion view of deep-sea ecology and evolution has speeded up and diversified in the light of increasing evidence accumulating from in situ visual observations complemented by molecular and other tools. The emerging picture is that of a much livelier, highly diversified and more complex deep-sea fauna than previously assumed. In this review we examine the consequences of the incoming information for developing a broader view of evolutionary ecology in the deep sea, and for scavenging amphipods in particular. We revisit the food supply to the deep-sea floor and hypothesize that the dead bodies of animals, ranging from zooplankton to large fish are likely to be a more important source of food than their friable faeces. Camera observations of baited traps indicate that amphipod carrion-feeders arrive within hours at the bait which continues to draw new individuals for days to months later, presumably by scent trails in tidal currents. We explore the different stages of food acquisition upon which natural selection may have acted, from detection to ingestion, and discuss the possibility of a broader range of food acquisition strategies, including predation and specializations. Although currently neglected in deep-sea ecology, top-down factors are likely to play a more important role in the evolution of deep-sea organisms. Predation on amphipods at baits by bathyal and abyssal fishes, and large predatory crustaceans in the hadal zone, is often observed. Finally, we develop hypotheses regarding the effects of past, present and imminent anthropogenic activities on scavenger biomass and how these can be tested with the most modern tools.

  10. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    PubMed

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O'Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world's first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5-2.4 m/s in a depth range of 25-30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.

  11. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    PubMed Central

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O’Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences. PMID:27560657

  12. Some Applications of Holography to Study Strongly Correlated Systems

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Neha

    2018-04-01

    In this work, we study the transport coefficients of strongly coupled condensed matter systems using gauge/gravity duality (holography). We consider examples from the real world and evaluate the conductivities from their gravity duals. Adopting the bottom-up approach of holography, we obtain the frequency response of the conductivity for (1+1)-dimensional systems. We also evaluate the DC conductivities for non-relativistic condensed matter systems with hyperscaling violating geometry.

  13. Foraminifer- and diatom-based paleoceanographic study of Holocene sediments from the Sabrina Coast, East Antarctica

    NASA Astrophysics Data System (ADS)

    Vadman, K. J.; Shevenell, A.; Leventer, A.; Domack, E. W.; Huber, B. A.; Orsi, A. H.; Gulick, S. P. S.

    2015-12-01

    Cruise NBP14-02 conducted the first interdisciplinary oceanographic survey of the continental shelf adjacent to the Totten Glacier-Moscow University Ice Shelf system on the Sabrina Coast, East Antarctica. Hydrographic data indicate that this system is presently influenced by subsurface (>350 m) intrusion of relatively warm (>0°C) modified Circumpolar Deep Water (mCDW) via a cross-shelf trough. To assess the late Quaternary influence of mCDW, we collected marine sediment cores at two locations, each of which recovered a complete 10-13 m sequence of glacial diamict and Holocene laminated diatom ooze/mud. Chronology is constrained by 210Pb and species-specific foraminifer-based AMS 14C dates. Foraminifer CaCO3 is most abundant in surface sediments (0-0.2 mcd) and from 1.5 to 5 mcd. Planktic foraminifer, Neogloboquadrina pachyderma(s), dominates surface sediments and diatom muds downcore, but is less abundant in diatom oozes. Benthic foraminifer species, Bulimina aculeata, which prefers hemipelagic environments and bottom waters >0°C, dominates the living benthic assemblage. The fossil benthic assemblage is characterized by Trifarina angulosa, associated with oxygenated bottom waters and strong bottom currents, suggesting that this assemblage may record past changes in the shoreward flow of ocean currents and the location of oceanic frontal zones. T. angulosa presence in oozes of mat-forming diatom species associated with oceanic fronts, supports this interpretation. Modern benthic and planktic δ18O suggest a well-mixed water column. Below 1.5 mcd, foraminifer isotopes and diatom assemblages indicate surface stratification and increased biogenic productivity, suggesting that modern environmental conditions, including mCDW inflow, existed episodically during the Holocene. Paired T. angulosa δ18O and Mg/Ca analyses will provide additional information on past mCDW influence on this climatically sensitive region at the outlet of the extensive (287,000 km2) Aurora Subglacial Basin, which holds a 2-4.5 km thick volume of ice equivalent to >5 m of eustatic sea level rise.

  14. Hybrid Dye-Sensitized Solar Cells Consisting of Double Titania Layers for Harvesting Light with Wide Range of Wavelengths

    NASA Astrophysics Data System (ADS)

    Sadamasu, Kengo; Inoue, Takafumi; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi

    2011-02-01

    We report a hybrid dye-sensitized solar cell consisting of double titania layers (top and bottom layers) stained with two dyes. A top layer fabricated on a glass was mechanically pressed with a bottom layer fabricated on a glass cloth. The glass cloth acts as a supporter of a porous titania layer as well as a holder of electrolyte. The incident photon to current efficiency (IPCE) curve had two peaks corresponding to those of the two dyes, which demonstrates that electrons are collected from both the top and bottom layers.

  15. Brief notes on habitat geology and clay pipe habitat on Stellwagen Bank

    USGS Publications Warehouse

    Valentine, Page C.; Dorsey, Eleanor M.; Pederson, Judith

    1998-01-01

    In our studies of sea floor habitats, my colleagues and I use both biological and geological approaches. We call our studies “habitat geology,” a term coined by a biologist friend of mine. We view it as the study of sea floor materials and biological and geological processes that influence where species live. Some of the factors that we consider are the following:composition of the sea bed, which ranges from mud to sand, gravel, bedrock, and shell beds;shape and steepness of the bottom;roughness of the bottom, which is enhanced by the presence of cobbles, boulders, sand waves and ripples, burrows into the bottom, and species that extend above the bottom;bottom currents generated by storm waves and tides, which can move sediment and expose or cover habitats; andthe way in which the sea bed is utilized by species.In addition, we take into account the impact of sea bed disturbance by bottom fishing trawls and dredges. Habitats characterized by attached and burrowing species that protrude above the sea bed appear to be most vulnerable to disturbance.

  16. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  17. Screening and Crystallization Plates for Manual and High-throughput Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Thorne, Robert E. (Inventor); Berejnov, Viatcheslav (Inventor); Kalinin, Yevgeniy (Inventor)

    2010-01-01

    In one embodiment, a crystallization and screening plate comprises a plurality of cells open at a top and a bottom, a frame that defines the cells in the plate, and at least two films. The first film seals a top of the plate and the second film seals a bottom of the plate. At least one of the films is patterned to strongly pin the contact lines of drops dispensed onto it, fixing their position and shape. The present invention also includes methods and other devices for manual and high-throughput protein crystal growth.

  18. Two-loop virtual top-quark effect on Higgs-boson decay to bottom quarks.

    PubMed

    Butenschön, Mathias; Fugel, Frank; Kniehl, Bernd A

    2007-02-16

    In most of the mass range encompassed by the limits from the direct search and the electroweak precision tests, the Higgs boson of the standard model preferably decays to bottom quarks. We present, in analytic form, the dominant two-loop electroweak correction, of O(GF2mt4), to the partial width of this decay. It amplifies the familiar enhancement due to the O(GFmt2) one-loop correction by about +16% and thus more than compensates the screening by about -8% through strong-interaction effects of order O(alphasGFmt2).

  19. Wave-Current Conditions and Navigation Safety at an Inlet Entrance

    DTIC Science & Technology

    2015-06-26

    effects of physical processes. Wave simulations with refraction, shoaling, and breaking provide estimates of wave-related parameters of interest to...summer and winter months and to better understand the cause- effect relationship between navigability conditions at Tillamook Inlet and characteristics of...the Coriolis force, wind stress, wave stress, bottom stress, vegetation flow drag, bottom friction, wave roller, and turbulent diffusion. Governing

  20. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.

    PubMed

    Frank, Scott D; Odom, Robert I; Collis, Jon M

    2013-03-01

    Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.

  1. A time-dependent, three-dimensional model of the Delaware Bay and River system. Part 2: Three-dimensional flow fields and residual circulation

    NASA Astrophysics Data System (ADS)

    Galperin, Boris; Mellor, George L.

    1990-09-01

    The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.

  2. Ocean Bottom Pressure Variation Associated with the Large Meander of the Kuroshio South of Japan in 2004-2005

    NASA Astrophysics Data System (ADS)

    Nagano, A.; Hasegawa, T.; Matsumoto, H.; Ariyoshi, K.

    2016-02-01

    The Kuroshio, the western boundary current of the North Pacific subtropical gyre, takes a stable meandering path off the southern coast of Japan, called the large meander (LM), on interannual to decadal timescales. The LM of the Kuroshio formed in July 2004 associated with the intensified anticyclonic recirculation gyre south of the Kuroshio, and gradually decayed in the latter half of 2005. The variations of the Kuroshio and the southern recirculating currents may be related to deep currents, which are expected to be associated with bottom pressure (BP) variation. In order to examine the variation of BP associated with the variations of the sea surface currents, we analyzed data of eleven pressure sensors equipped to inverted echo sounders deployed from July 2004 to October 2006. An abrupt enhancement of BP is found on the continental slope off Shikoku, lagging a few months behind an elevation of sea surface height (SSH) due to the onshore shift of the recirculation gyre associated with the LM formation. Subsequently, BP beneath the recirculation gyre dwindles, leading the gradual depression of SSH due to the decay of the LM. The relationship between BP and SSH may suggest that the occurrence and decay of the LM depend on the extension of the recirculation gyre current down to the ocean bottom.

  3. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Drake, David E.; Cacchione, David A.

    1994-08-01

    Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the SMITH [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient γ 0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of γ 0 as low as 5 × 10 -5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with γ 0 ≈ 0.002. The effects of limiting availability and employing a higher γ 0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed.

  4. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions

    USGS Publications Warehouse

    Wiberg, P.L.; Drake, D.E.; Cacchione, D.A.

    1994-01-01

    Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the Smith [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient ??0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of ??0 as low as 5 ?? 10-5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with ??0 ??? 0.002. The effects of limiting availability and employing a higher ??0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed. ?? 1994.

  5. Combined Wave and Current Bottom Boundary Layers: A Review

    DTIC Science & Technology

    2016-03-01

    18 3.2 Wave and currents at arbitrary angles ....................................................................... 19 3.3 Eddy viscosity ...closure ................................................................................................. 22 3.3.1 Eddy viscosity for stratified fluids...23 3.3.2 Time-dependent eddy viscosities

  6. On the dense water spreading off the Ross Sea shelf (Southern Ocean)

    NASA Astrophysics Data System (ADS)

    Budillon, G.; Gremes Cordero, S.; Salusti, E.

    2002-07-01

    In this study, current meter and hydrological data obtained during the X Italian Expedition in the Ross Sea (CLIMA Project) are analyzed. Our data show a nice agreement with previous data referring to the water masses present in this area and their dynamics. Here, they are used to further analyze the mixing and deepening processes of Deep Ice Shelf Water (DISW) over the northern shelf break of the Ross Sea. In more detail, our work is focused on the elementary mechanisms that are the most efficient in removing dense water from the shelf: either classical mixing effects or density currents that interact with some topographic irregularity in order to drop to deeper levels, or also the variability of the Antarctic Circumpolar Current (ACC) which, in its meandering, can push the dense water off the shelf, thus interrupting its geostrophic flow. We also discuss in detail the (partial) evidence of dramatic interactions of the dense water with bottom particulate, of geological or biological origin, thus generating impulsive or quasi-steady density-turbidity currents. This complex interaction allows one to consider bottom particular and dense water as a unique self-interacting system. In synthesis, this is a first tentative analysis of the effect of bottom particulate on the dense water dynamics in the Ross Sea.

  7. A Study of Baroclinic Instability Induced Convergence Near the Bottom Using Water Age Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Hetland, Robert D.

    2018-03-01

    Baroclinic instability of lateral density gradients gives way to lateral buoyancy transport, which often results in convergence of buoyancy transport. Along a sloping bottom, the induced convergence can force upward extension of bottom water. Eddy transport induced convergence at the bottom and the consequent suspended layers of bottom properties are investigated using a three-dimensional idealized model. Motivated by the distinct characteristics of intrusions over the Texas-Louisiana shelf, a series of configurations are performed with the purpose of identifying parameter impacts on the intensity of eddy transport. This study uses the "horizontal slope Burger number" as the predominant parameter; the parameter is functioned with SH=SRi-1/2=δ/Ri to identify formation of baroclinic instability, where S is the slope Burger number, δ is the slope parameter, and Ri is the Richardson number, previously shown to be the parameter that predicts the intensity of baroclinic instability on the shelf. Intrusion spreads into the interior abutting a layer that is characterized by degraded vertical stratification; a thickening in the bottom boundary layer colocates with the intrusion, which usually thins at either edge of the intrusion because of a density barrier in association with concentrated isopycnals. The intensity of convergence degrades and bottom tracer fluxes reduce linearly with increased SH on logarithmic scales, and the characteristics of bottom boundary layer behavior and the reversal in alongshore current tend to vanish.

  8. Effects of tides on the cross-isobath movement of the low-salinity plume in the western Yellow and East China Seas in winter

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Hirose, Naoki; Yuan, Dongliang; Moon, Jae-Hong; Pan, Xishan

    2017-07-01

    Offshore extension of the fresh Subei coast water is identified in winter based on in site salinity observation data in this and previous studies. A high-resolution regional ocean circulation model is used to investigate the cross-isobath movement of low salinity-water over the Yellow and East China Seas, and it has reproduced the salinity distribution observed in the winter of 2014-2015 successfully. The model suggests that the low-salinity water is basically degenerated back to the eastern coast of China in winter because of strong northeasterly wind. However, a part of the low-salinity water extends offshore in the southeast direction across the 20-50 m isobaths over the Yangtze Bank, which cannot be explained by either the northerly winter monsoon or the Changjiang discharge. Numerical experiments suggest that the cross-isobath transport of the soluble substances is highly attributed to the tidal residual current, flowing southeastward across 20-50 m isobaths over the whole Yangtze Bank. The results of controlled experiments also indicate that the bottom shear of the tidal current, rather than the tidal mixing, plays a significant role in the cross-isobath current during winter.

  9. Diphoton production in association with two bottom jets

    NASA Astrophysics Data System (ADS)

    Fäh, Daniel; Greiner, Nicolas

    2017-11-01

    We study the production of a photon pair in association with two bottom jets at the LHC. This process constitutes an important background to double Higgs production with the subsequent decay of the two Higgs bosons into a pair of photons and b-quarks respectively. We calculate this process at next-to-leading order accuracy in QCD and find that QCD corrections lead to a substantial increase of the production cross section due to new channels opening up at next-to-leading order and their inclusion is therefore inevitable for a reliable prediction. Furthermore, the approximation of massless b-quarks is scrutinized by calculating the process with both massless and massive b-quarks. We find that the massive bottom quark leads to a substantial reduction of the cross section where the biggest effect is, however, due to the use of a four-flavor PDF set and the corresponding smaller values for the strong coupling constant.

  10. A Record-High Ocean Bottom Pressure in the South Pacific Observed by GRACE

    NASA Technical Reports Server (NTRS)

    Boening, Carmen; Lee, Tong; Zlotnicki, Victor

    2011-01-01

    In late 2009 to early 2010, the Gravity Recovery and Climate Experiment (GRACE) satellite pair observed a record increase in ocean bottom pressure (OBP) over a large mid-latitude region of the South East Pacific. Its magnitude is substantially larger than other oceanic events in the Southern Hemisphere found in the entire GRACE data records (2003-2010) on multi-month time scales. The OBP data help to understand the nature of a similar signal in sea surface height (SSH) anomaly observed by altimetry: the SSH increase is mainly due to mass convergence. Analysis of the barotropic vorticity equation using scatterometer data, atmospheric reanalysis product, and GRACE and altimeter an atmospheric reanalysis product observations suggests that the observed OBP/SSH signal was primarily caused by wind stress curl associated with a strong and persistent anticyclone in late 2009 in combination with effects of planetary vorticity gradient, bottom topography, and friction

  11. Earth observations taken from shuttle orbiter Discovery on STS-70 mission

    NASA Image and Video Library

    1995-07-21

    STS070-717-011 (13-22 JULY 1995) --- Volcanic landscapes with a thin dusting of snow appear in this near-vertical view of the dry, high spine of the Andes Mountains at around 28 degrees south latitude. Strong westerly winds (from left) have blown the snow off the highest volcanic peaks (center and bottom): many of these peaks rise higher than 20,000 feet. A small, dry lake appears top right, the white color derived from salts. The border between Argentina and Chile winds from volcano to volcano and passes just left of the small blue lake (left center). Black lava flows can be detected bottom right. The larger area of brown-pink rocks (bottom rock) is also an area of volcanic rocks, of a type known as ash flow tuffs which are violently extruded, often in volumes measured in cubic kilometers.

  12. Disentangling the Importance of Psychological Predispositions and Social Constructions in the Organization of American Political Ideology.

    PubMed

    Verhulst, Brad; Hatemi, Peter K; Eaves, Lindon J

    2012-06-01

    Ideological preferences within the American electorate are contingent on both the environmental conditions that provide the content of the contemporary political debate and internal predispositions that motivate people to hold liberal or conservative policy preferences. In this article we apply Jost, Federico, and Napier's (2009) top-down/bottom-up theory of political attitude formation to a genetically informative population sample. In doing so, we further develop the theory by operationalizing the top-down pathway to be a function of the social environment and the bottom-up pathway as a latent set of genetic factors. By merging insights from psychology, behavioral genetics, and political science, we find strong support for the top-down/bottom-up framework that segregates the two independent pathways in the formation of political attitudes and identifies a different pattern of relationships between political attitudes at each level of analysis.

  13. Effects of predation by sea ducks on clam abundance in soft-bottom intertidal habitats

    USGS Publications Warehouse

    Lewis, Tyler; Esler, Daniel N.; Boyd, W. Sean

    2007-01-01

    Recent studies have documented strong, top-down predation effects of sea ducks on mussel populations in rocky intertidal communities. However, the impact of these gregarious predators in soft-bottom communities has been largely unexplored. We evaluated effects of predation by wintering surf scoters Melanitta perspicillata and white-winged scoters M. fusca on clam populations in soft-bottom intertidal habitats of the Strait of Georgia, British Columbia. Specifically, we documented spatial and temporal variation in clam density (clams m–2), scoter diet composition, and the consequences of scoter predation on clam abundance. Of the 3 most numerous clams, Manila clams Venerupis philippinarum and varnish clams Nuttallia obscurata were the primary prey items of both scoter species, while clams of the genus Macoma were rarely consumed by scoters. Between scoter arrival in the fall and departure in the spring, Manila clams decreased in density at most sample sites, while varnish clam densities did not change or declined slightly. Our estimates of numbers of clams consumed by scoters accounted for most of the observed declines in combined abundance of Manila and varnish clams, despite the presence of numerous other vertebrate and invertebrate species known to consume clams. For Macoma spp., we detected an over-winter increase in density, presumably due to growth of clams too small to be retained by our sieve (<5 mm) during fall sampling, in addition to the lack of predation pressure by scoters. These results illustrate the strong predation potential of scoters in soft-bottom intertidal habitats, as well as their potentially important role in shaping community structure.

  14. Living (Rose Bengal stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Mojtahid, M.; Gooday, A. J.; Jorissen, F. J.; Kitazato, H.

    2015-02-01

    Rose Bengal stained foraminiferal assemblages were analysed along a five-station bathymetric transect across the core and the lower part of the oxygen minimum zone (OMZ) on the Indian margin of the Arabian Sea. Sediment cores were collected using the manned submersible Shinkai 6500 during RV Yokosuka cruise YK08-11 in the post-monsoon season (October 2008) at water depths ranging from 535 to 2000 m, along a gradient from almost anoxic to well-oxygenated (0.3 to 108 μM) bottom waters. Stained foraminiferal densities were very high in the OMZ core (535 m) and decreased with depth. The faunas were dominated (40-80%) by non-calcareous taxa at all stations. These were mainly species of Reophax and Lagenammina but also included delicate monothalamous taxa (organic-walled "allogromiids", agglutinated saccamminids, psammosphaerids and tubular forms). These new data from the Indian margin are compared to previous studies from the Murray Ridge, the Pakistan margin and the Oman margin. The fact that similar species were found at sites with comparable bottom-water oxygen concentrations but with very different surface water productivity suggests that, within the strongly developed Arabian Sea OMZ, bottom-water oxygen concentration, and not the organic flux to the sea floor, is the main factor controlling the species composition of the foraminiferal communities. Several foraminiferal species (e.g. Praeglobobulimina sp. 1, Ammodiscus sp. 1, Bolivina aff. dilatata) were confined to the core of the OMZ and are presently known only from the Arabian Sea. Because of their association with extremely low-oxygen concentration, these species may prove to be good indicators of past OMZ variability in the Arabian Sea.

  15. Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom

    NASA Astrophysics Data System (ADS)

    La Rocca, Michele; Adduce, Claudia; Sciortino, Giampiero; Pinzon, Allen Bateman

    2008-10-01

    The dynamics of a three-dimensional gravity current is investigated by both laboratory experiments and numerical simulations. The experiments take place in a rectangular tank, which is divided into two square reservoirs with a wall containing a sliding gate of width b. The two reservoirs are filled to the same height H, one with salt water and the other with fresh water. The gravity current starts its evolution as soon as the sliding gate is manually opened. Experiments are conducted with either smooth or rough surface on the bottom of the tank. The bottom roughness is created by gluing sediment material of different diameters to the surface. Five diameter values for the surface roughness and two salinity conditions for the fluid are investigated. The mathematical model is based on shallow-water theory together with the single-layer approximation, so that the model is strictly hyperbolic and can be put into conservative form. Consequently, a finite-volume-based numerical algorithm can be applied. The Godunov formulation is used together with Roe's approximate Riemann solver. Comparisons between the numerical and experimental results show satisfactory agreement. The behavior of the gravity current is quite unusual and cannot be interpreted using the usual model framework adopted for two-dimensional and axisymmetric gravity currents. Two main phases are apparent in the gravity current evolution; during the first phase the front velocity increases, and during the second phase the front velocity decreases and the dimensionless results, relative to the different densities, collapse onto the same curve. A systematic discrepancy is seen between the numerical and experimental results, mainly during the first phase of the gravity current evolution. This discrepancy is attributed to the limits of the mathematical formulation, in particular, the neglect of entrainment in the mathematical model. An interesting result arises from the influence of the bottom surface roughness; it both reduces the front velocity during the second phase of motion and attenuates the differences between the experimental and numerical front velocities during the first phase of motion.

  16. The Earnings Ladder. Who's at the Bottom? Who's at the Top? Statistical Brief.

    ERIC Educational Resources Information Center

    Bureau of the Census (DOC), Washington, DC. Economics and Statistics Administration.

    Data collected by the March Current Population Survey were used to identify which groups of year-round, full-time civilian workers aged 16 and older were most likely to be at the top and bottom of the earnings ladder. Women, young workers, less-educated individuals, and Hispanics were most likely to earn less than $13,091 (1992 constant dollars),…

  17. A modern vs. Permian black shale - the hydrography, primary productivity, and water-column chemistry of deposition

    USGS Publications Warehouse

    Piper, D.Z.; Perkins, R.B.

    2004-01-01

    The sediment currently accumulating in the Cariaco Basin, on the continental shelf of Venezuela, has an elevated organic-carbon content of approximately 5%; is accumulating under O2-depleted bottom-water conditions (SO42- reduction); is composed dominantly of foraminiferal calcite, diatomaceous silica, clay, and silt; and is dark greenish gray in color. Upon lithification, it will become a black shale. Recent studies have established the hydrography of the basin and the level of primary productivity and bottom-water redox conditions. These properties are used to model accumulation rates of Cd, Cr, Cu, Mo, Ni, V, and Zn on the seafloor. The model rates agree closely with measured rates for the uppermost surface sediment.The model is applied to the Meade Peak Phosphatic Shale Member of the Phosphoria Formation, a phosphate deposit of Permian age in the northwest United States. It too has all of the requisite properties of a black shale. Although the deposit is a world-class phosphorite, it is composed mostly of phosphatic mudstone and siltstone, chert, limestone, and dolomite. It has organic-carbon concentrations of up to 15%, is strongly enriched in several trace elements above a terrigenous contribution and is black. The trace-element accumulation defines a mean primary productivity in the photic zone of the Phosphoria Basin as moderate, at 500 g m-2 year-1 organic carbon, comparable to primary productivity in the Cariaco Basin. The source of nutrient-enriched water that was imported into the Phosphoria Basin, upwelled into the photic zone, and supported primary productivity was an O2 minimum zone of the open ocean. The depth range over which the water was imported would have been between approximately 100 and 600 m. The mean residence time of bottom water in the basin was approximately 4 years vs. 100 years in the Cariaco Basin. The bottom water was O2 depleted, but it was denitrifying, or NO3- reducing, rather than SO42- reducing. Published by Elsevier B.V.

  18. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  19. Climate changes in south western Iberia and Mediterranean Outflow variations during two contrasting cycles of the last 1 Myrs: MIS 31-MIS 30 and MIS 12-MIS 11

    NASA Astrophysics Data System (ADS)

    Sánchez Goñi, M. F.; Llave, E.; Oliveira, D.; Naughton, F.; Desprat, S.; Ducassou, E.; Hodell, D. A.; Hernández-Molina, F. J.

    2016-01-01

    Grain size analysis and physical properties of Sites U1388, U1389 and U1390 collected in the Contourite Depositional System of the Gulf of Cádiz during the Integrated Ocean Drilling Program (IODP) Expedition 339 "Mediterranean Outflow" reveal relative changes in bottom current strength, a tracer of the dynamics of the Mediterranean Outflow Water (MOW), before and after the Middle Pleistocene Transition (MPT). The comparison of MOW behavior with climate changes identified by the pollen analysis and δ18O benthic foraminifera measurements of Site U1385, the Shackleton Site, collected in the south western Iberian margin shows that the interval MIS 31-MIS 30, ~ 1.1-1.05 million years ago (Ma), before the MPT, was marked by wetter climate and weaker bottom current than the interval MIS 12-MIS 11 (0.47-0.39 Ma), after the MPT. Similarly, the increase in fine particles from these glacials to interglacials and in coarse fraction from interglacials to glacials was coeval with forest and semi-desert expansions, respectively, indicating the lowering/enhancement of MOW strength during periods of regional increase/decrease of moisture. While these findings may not necessarily apply to all glacial/interglacial cycles, they nonetheless serve as excellent supporting examples of the hypothesis that aridification can serve as a good tracer for MOW intensity. The strongest regional aridity during MIS 12 coincides with a remarkable increase of coarse grain size deposition and distribution that we interpret as a maximum in MOW strength. This MOW intensification may have pre-conditioned the North Atlantic by increasing salinity, thereby triggering the strong resumption of the Meridional Overturning Circulation that could contribute to the great warmth that characterizes the MIS 11c super-interglacial.

  20. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    PubMed

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  1. Anchor ice, seabed freezing, and sediment dynamics in shallow arctic seas

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.; Barnes, P.W.

    1987-01-01

    Diving investigations confirm previous circumstantial evidence of seafloor freezing and anchor ice accretion during freeze-up storms in the Alaskan Beaufort Sea. These related bottom types were found to be continuous from shore to 2 m depth and spotty to 4.5 m depth. The concretelike nature of frozen bottom, where present, should prohibit sediment transport by any conceivable wave or current regime during the freezing storm. But elsewhere, anchor ice lifts coarse material off the bottom and incorporates it into the ice canopy, thereby leading to significant ice rafting of shallow shelf sediment and likely sediment loss to the deep sea. -from Authors

  2. Sediment transport in Norton Sound, Alaska

    USGS Publications Warehouse

    Drake, D.E.; Cacchione, D.A.; Muench, R.D.; Nelson, C.H.

    1980-01-01

    The Yukon River, the largest single source of Bering Sea sediment, delivers >95% of its sediment load at the southwest corner of Norton Sound during the ice-free months of late May through October. During this period, surface winds in the northern Bering Sea area are generally light from the south and southwest, and surface waves are not significant. Although wind stress may cause some transport of low-density turbid surface water into the head of Norton Sound, the most significant transport of Yukon River suspended matter occurs within advective currents flowing north across the outer part of the sound. The thickest accumulations of modern Yukon silt and very fine sand occur beneath this persistent current. We monitored temporal variations in bottom currents, pressure, and suspended-matter concentrations within this major transport pathway for 80 days in the summer of 1977 using a Geological Processes Bottom Environmental (GEOPROBE) tripod system. The record reveals two distinctive periods of bottom flow and sediment transport: an initial 59 days (July 8-September 5) of fair-weather conditions, characterized by tidally dominated currents and relatively low, stable suspended-matter concentrations; and a 21-day period (September 5-September 26) during which several storms traversed the northern Bering Sea, mean suspended-matter concentrations near the bottom increased by a factor of five, and the earlier tidal dominance was overshadowed by wind-driven and oscillatory wave-generated currents. Friction velocities (u*) at the GEOPROBE site were generally subcritical during the initial fair-weather period. In contrast, the 21-day stormy period was characterized by u* values that exceeded the critical level of 1.3 cm/s more than 60% of the time. The GEPROBE data suggest that the very fine sand constituting about 50% of the sediment on the outer part of the Yukon prodelta is transported during a few late-summer and fall storms each year. A conservative estimate shows that suspended-matter transport during the storms in September 1977 was equal to four months of fair-weather transport. ?? 1980.

  3. Current-induced switching in CoGa/L10 MnGa/(CoGa)/Pt structure with different thicknesses

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K. Z.; Mizukami, S.

    2018-06-01

    In this paper, we present the results of our study into current-induced spin-orbit torque (SOT) switching in perpendicularly magnetized CoGa/MnGa/Pt trilayers with different thicknesses of MnGa and Pt. The SOT switching was observed for all films that undergo Joule heating. We also investigate SOT switching in the bottom (CoGa)/MnGa/top(CoGa/Pt) films with different top layers. Although both the bottom and top layers contribute to the SOT, the relative magnitudes of the switching current densities JC in the top and bottom layers indicate that the SOT is dominant in the top layer. The JC as a function of thickness is discussed in terms of the magnetic properties and resistivity. Experimental data suggested that the MnGa thickness dependence of JC may originate from the perpendicular magnetic anisotropy thickness product Kueff t value. On the other hand, JC as a function of the Pt thickness shows weak dependence. This may be attributed to the slight change of spin-Hall angle θSH value with different thicknesses of Pt, when we assumed that the SOT switching is primarily due to the spin-Hall effect.

  4. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands

    USGS Publications Warehouse

    Kenyon, Neil H.; Akhmetzhanov, A.M.; Twichell, D.C.

    2002-01-01

    Extensive fields of large barchan-like sand waves and longitudinal sand ribbons have been mapped by deep-towed SeaMARC IA sidescan sonar on part of the middle and lower Mississippi Fan that lies in about 3200 m of water. The area is beneath the strongly flowing Loop Current. The bedforms have not been adequately sampled but probably consist of winnowed siliciclastic-foraminiferal sands. The size (about 200 m from wingtip to wingtip) and shape of the large barchans is consistent with a previously observed peak current speed of 30 cm/s, measured 25 m above the seabed. The types of small-scale bedforms and the scoured surfaces of chemical crusts, seen on nearby bottom photographs, indicate that near-bed currents in excess of 30 cm/s may sometimes occur. At the time of the survey the sand transport direction was to the northwest, in the opposite direction to the Loop Current but consistent with there being a deep boundary current along the foot of the Florida Escarpment. Some reworking of the underlying sandy turbidites and debris flow deposits is apparent on the sidescan sonar records. Reworking by deep-sea currents, resulting in erosion and in deposits characterised by coarsening upwards structures and cross-bedding, is a process that has been proposed for sand found in cores in shallower parts of the Gulf of Mexico. This process is more widespread than hitherto supposed. 

  5. Automatic Polyp Detection via A Novel Unified Bottom-up and Top-down Saliency Approach.

    PubMed

    Yuan, Yixuan; Li, Dengwang; Meng, Max Q-H

    2017-07-31

    In this paper, we propose a novel automatic computer-aided method to detect polyps for colonoscopy videos. To find the perceptually and semantically meaningful salient polyp regions, we first segment images into multilevel superpixels. Each level corresponds to different sizes of superpixels. Rather than adopting hand-designed features to describe these superpixels in images, we employ sparse autoencoder (SAE) to learn discriminative features in an unsupervised way. Then a novel unified bottom-up and top-down saliency method is proposed to detect polyps. In the first stage, we propose a weak bottom-up (WBU) saliency map by fusing the contrast based saliency and object-center based saliency together. The contrast based saliency map highlights image parts that show different appearances compared with surrounding areas while the object-center based saliency map emphasizes the center of the salient object. In the second stage, a strong classifier with Multiple Kernel Boosting (MKB) is learned to calculate the strong top-down (STD) saliency map based on samples directly from the obtained multi-level WBU saliency maps. We finally integrate these two stage saliency maps from all levels together to highlight polyps. Experiment results achieve 0.818 recall for saliency calculation, validating the effectiveness of our method. Extensive experiments on public polyp datasets demonstrate that the proposed saliency algorithm performs favorably against state-of-the-art saliency methods to detect polyps.

  6. Aluminium recovery from waste incineration bottom ash, and its oxidation level.

    PubMed

    Biganzoli, Laura; Grosso, Mario

    2013-09-01

    The recovery of aluminium (Al) scraps from waste incineration bottom ash is becoming a common practice in waste management. However, during the incineration process, Al in the waste undergoes oxidation processes that reduce its recycling potential. This article investigates the behaviour of Al scraps in the furnace of two selected grate-fired waste-to-energy plants and the amount recoverable from the bottom ash. About 21-23% of the Al fed to the furnace with the residual waste was recovered and potentially recycled from the bottom ash. Out of this amount, 76-87% was found in the bottom ash fraction above 5 mm and thus can be recovered with standard eddy current separation technology. These values depend on the characteristics and the mechanical strength of the Al items in the residual waste. Considering Al packaging materials, about 81% of the Al in cans can be recovered from the bottom ash as an ingot, but this amount decreases to 51% for trays, 27% for a mix of aluminium and poly-laminated foils and 47% for paper-laminated foils. This shows that the recovery of Al from the incineration residues increases proportionally to the thickness of the packaging.

  7. Bounding the error on bottom estimation for multi-angle swath bathymetry sonar

    NASA Astrophysics Data System (ADS)

    Mullins, Geoff K.; Bird, John S.

    2005-04-01

    With the recent introduction of multi-angle swath bathymetry (MASB) sonar to the commercial marketplace (e.g., Benthos Inc., C3D sonar, 2004), additions must be made to the current sonar lexicon. The correct interpretation of measurements made with MASB sonar, which uses filled transducer arrays to compute angle-of-arrival information (AOA) from backscattered signal, is essential not only for mapping, but for applications such as statistical bottom classification. In this paper it is shown that aside from uncorrelated channel to channel noise, there exists a tradeoff between effects that govern the error bounds on bottom estimation for surfaces having shallow grazing angle and surfaces distributed along a radial arc centered at the transducer. In the first case, as the bottom aligns with the radial direction to the receiver, footprint shift and shallow grazing angle effects dominate the uncertainty in physical bottom position (surface aligns along a single AOA). Alternatively, if signal from a radial arc arrives, a single AOA is usually estimated (not necessarily at the average location of the surface). Through theoretical treatment, simulation, and field measurements, the aforementioned factors affecting MASB bottom mapping are examined. [Work supported by NSERC.

  8. Multi-year Current Observations on the Shelf Slope off Cape Hatteras, NC

    NASA Astrophysics Data System (ADS)

    Muglia, M.

    2017-12-01

    As part of an observing and modeling effort by the North Carolina Renewable Ocean Energy Program to determine if the Gulf Stream is a viable marine hydrokinetic energy resource for the state, upper continental slope current measurements were made over a period of nearly four years off of Cape Hatteras, NC. Velocity profiles were measured by a near-bottom, upward-looking, 150-kHz Acoustic Doppler Current Profiler deployed at a depth of 230-260 m. The mooring was sited at the location where water from the Gulf Stream, Middle Atlantic Bight, South Atlantic Bight, and Slope Sea all converge. Measured tidal amplitudes here are 2 m. These observations are used to consider the temporal variability and vertical structure of the currents at this location at tidal to interannual periods at this complex location. Concurrent near-bottom water mass properties are considered.

  9. Tide-related variability of TAG hydrothermal activity observed by deep-sea monitoring system and OBSH

    NASA Astrophysics Data System (ADS)

    Fujioka, Kantaro; Kobayashi, Kazuo; Kato, Kazuhiro; Aoki, Misumi; Mitsuzawa, Kyohiko; Kinoshita, Masataka; Nishizawa, Azusa

    1997-12-01

    Hydrothermal activities were monitored by an ocean bottom seismometer with hydrophone (OBSH) and a composite measuring system (Manatee) including CTD, current meter, transmission meter and cameras at a small depression on the TAG hydrothermal mound in the Mid-Atlantic Ridge. Low-frequency pressure pulses detected by the hydrophone with semi-diurnal periodicity seem to correspond to cycles of hydrothermal upflow from a small and short-lived smoker vent close to the observing site. The peaks of pressure pulses are synchronous with the maximum gradient of areal strain decrease due to tidal load release. Microearthquakes with very near epicenters occur sporadically and do not appear to be directly correlatable to hydrothermal venting. Temporal variations in bottom water temperature also have semi-diurnal periodicity but are more complicated than the pressure events. Temperatures may be affected both by upwelling of hot water and by lateral flow of the bottom current changing its directions with ocean tide.

  10. WATERSHED LANDSCAPE INDICATORS OF ESTUARINE BENTHIC CONDITION

    EPA Science Inventory

    Do land use/cover characteristics of watersheds associated with small estuaries exhibit a strong enough signal to make landscape metrics useful for identifying degraded bottom communities? We tested this idea with 58 pairs of small estuaries (<260 km2) and watersheds in the U.S. ...

  11. Effect of geometry variations on lee-surface vortex-induced heating for flat-bottom three-dimensional bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.

    1973-01-01

    Studies have shown that vortices can produce relatively severe heating on the leeward surfaces of conceptual hypersonic vehicles and that surface geometry can strongly influence this vortex-induced heating. Results which show the effects of systematic geometry variations on the vortex-induced lee-surface heating on simple flat-bottom three-dimensional bodies at angles of attack of 20 deg and 40 deg are presented. The tests were conducted at a free-stream Mach number of 6 and at a Reynolds number of 1.71 x 10 to the 7th power per meter.

  12. Emergent spacetime according to effective field theory: From top-down and bottom-up

    NASA Astrophysics Data System (ADS)

    Crowther, Karen

    2013-08-01

    The framework of effective field theory (EFT) is a natural one in which to understand the claim that the spacetime of general relativity (GR) is an emergent low-energy phenomenon. I argue for a pragmatic understanding of EFT, given that the appropriate conception of emergence it suggests is necessarily epistemological in a sense. Analogue models of spacetime are examples of the top-down approach to EFT. They offer concrete illustrations of spacetime emergent within an EFT, and lure us toward a strong analogy between condensed matter physics and GR. I argue that we should be wary of this strong analogy, not least because the pragmatic view of EFT places limits on how much we can legitimately draw from it. On the other hand, programs that treat GR as an EFT and calculate quantum corrections are an example of the bottom-up approach and are explicitly pragmatic in character. I explore what we may learn about the nature of emergent spacetime by comparing these two approaches.

  13. Distribution and trajectories of floating and benthic marine macrolitter in the south-eastern North Sea.

    PubMed

    Gutow, Lars; Ricker, Marcel; Holstein, Jan M; Dannheim, Jennifer; Stanev, Emil V; Wolff, Jörg-Olaf

    2018-06-01

    In coastal waters the identification of sources, trajectories and deposition sites of marine litter is often hampered by the complex oceanography of shallow shelf seas. We conducted a multi-annual survey on litter at the sea surface and on the seafloor in the south-eastern North Sea. Bottom trawling was identified as a major source of marine litter. Oceanographic modelling revealed that the distribution of floating litter in the North Sea is largely determined by the site of origin of floating objects whereas the trajectories are strongly influenced by wind drag. Methods adopted from species distribution modelling indicated that resuspension of benthic litter and near-bottom transport processes strongly influence the distribution of litter on the seafloor. Major sink regions for floating marine litter were identified at the west coast of Denmark and in the Skagerrak. Our results may support the development of strategies to reduce the pollution of the North Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Paleoenvironmental History of Long Island Sound, CT, USA

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Thomas, E.; Lugolobi, F.; Buchholtz Ten Brink, M. R.

    2002-12-01

    Western Long Island Sound (LIS) is an urban estuary heavily impacted by waste water effluents from CT and New York city. The estuary has suffered seasonal hypoxia since the 1970s, and in 1999 lobsters suffered > 90% mortality. We used short sediment cores that cover the last several 100 years to reconstruct the temperature/salinity history of LIS, as well as its history of hypoxic episodes. We measured oxygen and carbon isotopic compositions and Mg/Ca and Sr/Ca in calcite tests of the benthic foraminifer Elphidium excavatum, collected alive (Rose Bengal stained) in grab samples and in core samples, as proxies for bottom water temperature and salinity. The level of bottom water oxygenation is derived from the carbon isotope values in foraminiferal calcite, after correction for paleosalinity. The strong seasonal temperature fluctuation in Long Island Sound bottom waters (about 20oC) and the long livespan of the foraminifer make precise paleotemperature estimates difficult. The oxygen isotope data (in vivo effect 1.1 o/_{oo} of the foraminiferal tests were recalculated at constant mean-annual water temperature (12.5^{o}C) into paleosalinities, ranging between 18 and 33 ^{o}/oo. The oxygen and carbon isotope ratios of river water, Long Island Sound water and dissolved inorganic carbon were used to construct a mixing model for the Sound. From calculated paleosalinities and the modern mixing model we derived expected carbon isotope ratios, which were subtracted from the observed values. We argue that the residuals (excess carbon isotope values) are proportional to the amount of organic carbon that was oxidized in these waters, and as such represent a proxy for paleohypoxia. Data from nine cores show no long term trends in salinity over the last 1000 years, but show more pronounced variations over the last 100 years. Several low salinity events could be correlated with wet climate periods documented in Southern New England. The excess carbon isotope values were between 0 and -1 o/_{oo} for most of the last millennium but became much more negative in the mid 18^{th} to 19^{th} century, with strong variability in the 20^{th} century. The low salinity events of the last 100 years correlate strongly with strongly negative excess carbon isotope values, suggesting a linkage between the wet periods and oxidation of organic matter on the bottom of the Sound (algal blooms, warm periods?). This linkage between low salinity events and strongly negative excess carbon isotope values did not occur prior to 1900 AD. More detailed dating (^{210}Pb, ^{137}$Cs) will improve the time resolution and correlation between cores of the various documented events.

  15. Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt

    USGS Publications Warehouse

    Ravat, D.; Salem, A.; Abdelaziz, A.M.S.; Elawadi, E.; Morgan, P.

    2011-01-01

    Over 50 magnetic bottom depths derived from spectra of magnetic anomalies in Eastern Egypt along the Red Sea margin show variable magnetic bottoms ranging from 10 to 34. km. The deep magnetic bottoms correspond more closely to the Moho depth in the region, and not the depth of 580??C, which lies significantly deeper on the steady state geotherms. These results support the idea of Wasilewski and coworkers that the Moho is a magnetic boundary in continental regions. Reduced-to-pole magnetic highs correspond to areas of Younger Granites that were emplaced toward the end of the Precambrian. Other crystalline Precambrian units formed earlier during the closure of ocean basins are not strongly magnetic. In the north, magnetic bottoms are shallow (10-15. km) in regions with a high proportion of these Younger Granites. In the south, the shoaling of the magnetic bottom associated with the Younger Granites appears to be restricted to the Aswan and Ras Banas regions. Complexity in the variation of magnetic bottom depths may arise due to a combination of factors: i) regions of Younger (Precambrian) Granites with high magnetite content in the upper crust, leaving behind low Curie temperature titanomagnetite components in the middle and lower crust, ii) rise in the depth of 580??C isotherm where the crust may have been heated due to initiation of intense magmatism at the time of the Red Sea rifting (~. 20. Ma), and iii) the contrast of the above two factors with respect to the neighboring regions where the Moho and/or Curie temperature truncates lithospheric ferromagnetism. Estimates of fractal and centroid magnetic bottoms in the oceanic regions of the Red Sea are significantly below the Moho in places suggesting that oceanic uppermost mantle may be serpentinized to the depth of 15-30 km in those regions. ?? 2011 Elsevier B.V.

  16. Processing and evaluation of riverine waveforms acquired by an experimental bathymetric LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2010-12-01

    Accurate mapping of fluvial environments with airborne bathymetric LiDAR is challenged not only by environmental characteristics but also the development and application of software routines to post-process the recorded laser waveforms. During a bathymetric LiDAR survey, the transmission of the green-wavelength laser pulses through the water column is influenced by a number of factors including turbidity, the presence of organic material, and the reflectivity of the streambed. For backscattered laser pulses returned from the river bottom and digitized by the LiDAR detector, post-processing software is needed to interpret and identify distinct inflections in the reflected waveform. Relevant features of this energy signal include the air-water interface, volume reflection from the water column itself, and, ideally, a strong return from the bottom. We discuss our efforts to acquire, analyze, and interpret riverine surveys using the USGS Experimental Advanced Airborne Research LiDAR (EAARL) in a variety of fluvial environments. Initial processing of data collected in the Trinity River, California, using the EAARL Airborne Lidar Processing Software (ALPS) highlighted the difficulty of retrieving a distinct bottom signal in deep pools. Examination of laser waveforms from these pools indicated that weak bottom reflections were often neglected by a trailing edge algorithm used by ALPS to process shallow riverine waveforms. For the Trinity waveforms, this algorithm had a tendency to identify earlier inflections as the bottom, resulting in a shallow bias. Similarly, an EAARL survey along the upper Colorado River, Colorado, also revealed the inadequacy of the trailing edge algorithm for detecting weak bottom reflections. We developed an alternative waveform processing routine by exporting digitized laser waveforms from ALPS, computing the local extrema, and fitting Gaussian curves to the convolved backscatter. Our field data indicate that these techniques improved the definition of pool areas dominated by weak bottom reflections. These processing techniques are also being tested for EAARL surveys collected along the Platte and Klamath Rivers where environmental conditions have resulted in suppressed or convolved bottom reflections.

  17. Mapping of sea bottom topography

    NASA Technical Reports Server (NTRS)

    Calkoen, C. J.; Wensink, G. J.; Hesselmans, G. H. F. M.

    1992-01-01

    Under suitable conditions the bottom topography of shallow seas is visible in remote sensing radar imagery. Two experiments were performed to establish which remote sensing technique or combination yields optimal imaging of bottom topography and which hydro-meteorological conditions are favorable. A further goal is to gain experience with these techniques. Two experiments were performed over an area in the North Sea near the measuring platform Meetpost Noordwijk (MPN). The bottom topography in the test area is dominated by sand waves. The crests of the sand waves are perpendicular to the coast line and the dominating (tidal-)current direction. A 4x4 sq km wide section of the test area was studied in more detail. The first experiment was undertaken on 16 Aug. 1989. During the experiment the following remote sensing instruments were used: Landsat-Thematic Mapper, and NASA/JPL Airborne Imaging Radar (AIR). The hydro-meteorological conditions; current, wind, wave, and air and water temperature were monitored by MPN, a ship of Rijkswaterstaat (the OCTANS), and a pitch-and-roll WAVEC-buoy. The second experiment took place on 12 July 1992. During this experiment data were collected with the NASA/JPL polarimetric synthetic aperture radar (SAR), and a five-band helicopter-borne scatterometer. Again the hydro-meteorological conditions were monitored at MPN and the OCTANS. Furthermore, interferometric radar data were collected.

  18. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    USGS Publications Warehouse

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2017-01-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity–temperature–depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5–8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  19. FROM LANDSCAPE ECOLOGY OF WATERSHEDS TO BENTHIC ECOLOGY OF ESTUARIES

    EPA Science Inventory

    Do land use/cover characteristics of watersheds associated with small estuaries (<260 km2) have a strong enough signal to make landscape metrics useful for finding impaired bottom communities? We tested this idea with 58 pairs of small estuaries and watersheds from Delaware Bay t...

  20. Instrumenting free-swimming dolphins echolocating in open water.

    PubMed

    Martin, Stephen W; Phillips, Michael; Bauer, Eric J; Moore, Patrick W; Houser, Dorian S

    2005-04-01

    Dolphins within the Navy Marine Mammal Program use echolocation to effectively locate underwater mines. They currently outperform manmade systems at similar tasks, particularly in cluttered environments and on buried targets. In hopes of improving manmade mine-hunting sonar systems, two instrumentation packages were developed to monitor free-swimming dolphin motion and echolocation during open-water target detection tasks. The biosonar measurement tool (BMT) is carried by a dolphin and monitors underwater position and attitude while simultaneously recording echolocation clicks and returning echoes through high-gain binaural receivers. The instrumented mine simulator (IMS) is a modified bottom target that monitors echolocation signals arriving at the target during ensonification. Dolphin subjects were trained to carry the BMT in open-bay bottom-object target searches in which the IMS could serve as a bottom object. The instrumentation provides detailed data that reveal hereto-unavailable information on the search strategies of free-swimming dolphins conducting open-water, bottom-object search tasks with echolocation.

  1. Acoustic tracking of woodhead seabed drifters

    NASA Technical Reports Server (NTRS)

    Mayhue, R. J.; Lovelady, R. W.

    1977-01-01

    An investigation was conducted to determine the feasibility of tracking Woodhead seabed drifters that were instrumented with miniature acoustic transmitters having a range in water in excess of 1.0 n.mi. A trial cruise at the entrance of Delaware Bay, with the R.V. Annandale as the sonar-tracking vessel, verified acoustic communications and positioning of the bottom drifters. A demonstration cruise with the R.V. Annandale was also performed in the New York Bight to attempt to collect information on bottom water movement near the sewage-sluge dump site. Results from the tracking mission in the New York Bight suggested that bottom water currents were negligible near the dump site during the time interval from November 7-12, 1975, and that shipboard sonar tracking of acoustic Woodhead seabed drifters could provide useful Lagragian information on bottom water movement caused by tidal and other nonstorm effects.

  2. Instrumenting free-swimming dolphins echolocating in open water

    NASA Astrophysics Data System (ADS)

    Martin, Stephen W.; Phillips, Michael; Bauer, Eric J.; Moore, Patrick W.; Houser, Dorian S.

    2005-04-01

    Dolphins within the Navy Marine Mammal Program use echolocation to effectively locate underwater mines. They currently outperform manmade systems at similar tasks, particularly in cluttered environments and on buried targets. In hopes of improving manmade mine-hunting sonar systems, two instrumentation packages were developed to monitor free-swimming dolphin motion and echolocation during open-water target detection tasks. The biosonar measurement tool (BMT) is carried by a dolphin and monitors underwater position and attitude while simultaneously recording echolocation clicks and returning echoes through high-gain binaural receivers. The instrumented mine simulator (IMS) is a modified bottom target that monitors echolocation signals arriving at the target during ensonification. Dolphin subjects were trained to carry the BMT in open-bay bottom-object target searches in which the IMS could serve as a bottom object. The instrumentation provides detailed data that reveal hereto-unavailable information on the search strategies of free-swimming dolphins conducting open-water, bottom-object search tasks with echolocation. .

  3. First Observation of the Earth's Permanent Free Oscillations on Ocean Bottom Seismometers

    NASA Astrophysics Data System (ADS)

    Deen, M.; Wielandt, E.; Stutzmann, E.; Crawford, W.; Barruol, G.; Sigloch, K.

    2017-11-01

    The Earth's hum is the permanent free oscillations of the Earth recorded in the absence of earthquakes, at periods above 30 s. We present the first observations of its fundamental spheroidal eigenmodes on broadband ocean bottom seismometers (OBSs) in the Indian Ocean. At the ocean bottom, the effects of ocean infragravity waves (compliance) and seafloor currents (tilt) overshadow the hum. In our experiment, data are also affected by electronic glitches. We remove these signals from the seismic trace by subtracting average glitch signals; performing a linear regression; and using frequency-dependent response functions between pressure, horizontal, and vertical seismic components. This reduces the long period noise on the OBS to the level of a good land station. Finally, by windowing the autocorrelation to include only the direct arrival, the first and second orbits around the Earth, and by calculating its Fourier transform, we clearly observe the eigenmodes at the ocean bottom.

  4. The role of vigorous current systems in the Southeast Indian Ocean in redistributing deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Adriana; Müller, Dietmar; Hogg, Andrew; Spence, Paul

    2017-04-01

    Understanding the transport of modern deep-sea sediment is critical for accurate models of climate-ocean history and the widespread use of the sedimentological record as a proxy for productivity where the connection between biogenic seafloor lithologies and sea-surface is tenuous. The Southern Ocean, where diatoms contribute the bulk of pelagic material to the seafloor forming an extensive belt of diatom ooze, is an exemplar. However, most of the key studies on large-scale sediment reworking in the Southern Ocean were conducted in the 1970s when relatively little was known about the oceanography of this region. At this time even our knowledge of the bathymetry and tectonic fabric, which underpin the distribution of deep-sea currents, were fairly general. The record of widespread regional disconformities in the abyssal plains of the Southern Ocean is well-established and indicates extensive erosion of deep-sea sediments throughout the Quaternary. Here we combine a high-resolution numerical model of bottom currents with sedimentological data to constrain the redistribution of sediment across the abyssal plains and adjacent mid-ocean ridges in the Southern Ocean. We use the global ocean-sea ice model (GFDL-MOM01) to simulate ocean circulation at a resolution that results in realistic velocities throughout the water column, and is ideal for estimating interaction between time-dependent bottom currents and ocean bathymetry. 230Th-normalized vertical sediment rain rates for 63 sites in the Southeast Indian Ocean, combined with satellite data-derived surface productivity, demonstrate that a wide belt of fast sedimentation rates (> 5.5 cm/kyr) along the Southeast Indian Ridge (SEIR) occurs in a region of low surface productivity bounded by two major disconformity fields associated with the Kerguelen Plateau to the east and the Macquarie Ridge to the west. Our ocean circulation model illustrates that the disconformity fields occur in regions of intense bottom current activity where current speeds reach 0.2 m/s and are favorable for generating intense nepheloid layers. These currents transport sediment towards and along the SEIR and through leaky fracture zones to regions where bottom currents speeds drop to < 0.03 m/s and fine particles settle out of suspension. We suggest that the anomalously high sedimentation rates along an 8,000 km-long segment of the SEIR represent a giant Pliocene-Holocene succession of contourite drifts. It is a major extension of the much smaller contourite east of Kerguelen and has accumulated since 3-5 Ma based on the age of the oldest crust underlying the deposit. These inferred contourite drifts provide exceptionally valuable drilling targets for high-resolution climatic investigations of the Southern Ocean. Understanding and quantifying the link between bottom current activity and sediment transport is critical for paleooceanographic and palaeoclimatic reconstructions and for understanding the history of current flow. Dutkiewicz, A., Müller, R.D., Hogg, A. McC., and Spence, P., 2016, Vigorous deep-sea currents cause global anomaly in sediment accumulation in the Southern Ocean, Geology, 44, 663-666, DOI: 10.1130/G38143.1

  5. Stress Coupling Relationship between Mantle Convection and Seismogenic Layer in Southeastern Tibetan Plateau and its Geodynamic Implications

    NASA Astrophysics Data System (ADS)

    Qiang, H.

    2015-12-01

    The lithospheric stress states and interlayer coupling interaction is of great significant in studying plate driven mechanism and seismogenic environment. The coupling relationship between mantle convection generated drag stress in the lithospheric base and seismogenic layer stress in the crust represents the lithospheric mechanical coupling intensity level. We calculate the lithospheric bottom mantle convection stress field of the southeastern Tibetan Plateau using 11~36 spherical harmonic coefficients of gravity model EGM2008. Meanwhile we collect and organize the focal mechanism of 1131 earthquakes that occurred from 2000 to now in Sichuan-Yunnan region. The current seismogenic layer stress and stress field before Lushan earthquake are calculated by the damping regional stress tensor inversion. We further analyze the correlation between the two kinds of stress fields, then discuss the relation between mechanics coupling situation and strong earthquakes in different regions. The results show that: (1) Most of Sichuan-Yunnan region is located in the coupling and decoupling intermediate zone. Coupling zones distribute on the basis of block, the eastern South China block has strong coupling, and the coupling phenomenon also exists in parts of the northern Tibet block, Balyanlkalla block in the northwest and southwest Yunnan block. The decoupling mainly occurs in Songpan-Ganzi block, connecting with the strong coupling South China block and Longmenshan fault zone is their boundary. (2) We have analyzed seismogenic mechanism, then proposed the border zone of strong and weak coupling relation between mantle convection stress and seismogenic layer stress exists high seismic risk. The current coupling situation shows that Longmenshan fault zone is still in the large varying gradient area of coupling intensity level, it has conditions to accumulate energy and develop earthquakes. Other dangerous areas are: Mingjiang, Xianshuihe, Anninghe, Zemuhe, the Red River, Nantinghe fault zone and their neighboring areas.

  6. thin film capacitors

    NASA Astrophysics Data System (ADS)

    Bodeux, Romain; Gervais, Monique; Wolfman, Jérôme; Gervais, François

    2014-09-01

    CaCu3Ti4O12 (CCTO) thin films were grown by pulsed laser deposition on Pt and La0.9Sr1.1NiO4 (LSNO) bottom electrodes. The electrical characteristics of the CCTO/Pt and CCTO/LSNO Schottky junctions have been analyzed by impedance spectroscopy, capacitance-voltage (C-V) and current-voltage (I-V) measurements as a function of frequency (40 Hz-1 MHz) and temperature (300-475 K). Similar results were obtained for the two Schottky diodes. The conduction mechanism through the Schottky junctions was described using a thermionic emission model and the electrical parameters were determined. The strong deviation from the ideal I-V characteristics and the increase in capacitance at low frequency for -0.5 V bias are in agreement with the presence of traps near the interfaces. Results point toward the important effect of defects generated at the interface by deposition of CCTO.

  7. Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2013-04-01

    Remote sensing of the ionosphere bottom using long wave radio signal propagation is a still going strong and inexpensive method for continuous monitoring purposes. We present a propagation model describing the time development of solar flare effects. Based on monitored amplitude and phase data from VLF/LF transmitters gained at a mid-latitude site during the currently increasing solar cycle no. 24 a parameterized electron density profile is calculated as a function of time and fed into propagation calculations using the LWPC (Long Wave Propagation Capability). The model allows to include lower ionosphere recombination and attachment coefficients, as well as to identify the relevant forcing X-ray wavelength band, and is intended to be a small step forward to a better understanding of the solar-lower ionosphere interaction mechanisms within a consistent framework.

  8. Improved Subcell Model for the Prediction of Braided Composite Response

    NASA Technical Reports Server (NTRS)

    Cater, Christopher R.; Xinran, Xiao; Goldberg, Robert K.; Kohlman, Lee W.

    2013-01-01

    In this work, the modeling of triaxially braided composites was explored through a semi-analytical discretization. Four unique subcells, each approximated by a "mosaic" stacking of unidirectional composite plies, were modeled through the use of layered-shell elements within the explicit finite element code LS-DYNA. Two subcell discretizations were investigated: a model explicitly capturing pure matrix regions, and a novel model which absorbed pure matrix pockets into neighboring tow plies. The in-plane stiffness properties of both models, computed using bottom-up micromechanics, correlated well to experimental data. The absorbed matrix model, however, was found to best capture out-of- plane flexural properties by comparing numerical simulations of the out-of-plane displacements from single-ply tension tests to experimental full field data. This strong correlation of out-of-plane characteristics supports the current modeling approach as a viable candidate for future work involving impact simulations.

  9. Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS:Cu-polyvinyl butyral composite and silver nanowires

    NASA Astrophysics Data System (ADS)

    Jun, Sungwoo; Kim, Youngmin; Ju, Byeong-Kwon; Kim, Jong-Woong

    2018-01-01

    A multifunctional alternate current electroluminescent device (ACEL) was achieved by compositing ZnS:Cu particles in polyvinyl butyral (PVB) with two layers of percolated silver nanowire (AgNW) electrodes. The strong hydrogen bonding interactions and entanglement of PVB chains considerably strengthened the PVB, and thus, the cured mixture of ZnS:Cu particles and freestanding PVB required no additional support. The device was fabricated by embedding AgNWs on both sides of the ZnS:Cu-PVB composite film using an inverted layer process and intense-pulsed-light treatment. The strong affinity of PVB to the polyvinyl pyrrolidone (PVP) layer, which capped the AgNWs, mechanically stabilized the device to such an extent that it could resist 10,000 bending cycles under a curvature radius of 500 μm. Using AgNW networks in both the top and bottom electrodes made a double-sided light-emitting device that could be applied to wearable lightings or flexible digital signage. The capacitance formed in the device sensitively varied with the applied bending and unfolding, thus demonstrating that the device can also be used as a deformation sensor.

  10. Beyond Hammers and Nails: Mitigating and Verifying Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Gurney, Kevin Robert

    2013-05-01

    One of the biggest challenges to future international agreements on climate change is an independent, science-driven method of verifying reductions in greenhouse gas emissions (GHG) [Niederberger and Kimble, 2011]. The scientific community has thus far emphasized atmospheric measurements to assess changes in emissions. An alternative is direct measurement or estimation of fluxes at the source. Given the many challenges facing the approach that uses "top-down" atmospheric measurements and recent advances in "bottom-up" estimation methods, I challenge the current doctrine, which has the atmospheric measurement approach "validating" bottom-up, "good-faith" emissions estimation [Balter, 2012] or which holds that the use of bottom-up estimation is like "dieting without weighing oneself" [Nisbet and Weiss, 2010].

  11. Flows of Antarctic bottom water through fractures in the southern part of the North Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Morozov, E. G.; Tarakanov, R. Yu.; Makarenko, N. I.

    2015-11-01

    We study the flows of bottom waters of the Antarctic origin in deep fracture zones of the southern part of the North Mid-Atlantic Ridge. In the autumn of 2014, an expedition onboard the RV Akademik Sergey Vavilov carried out measurements of current velocities and thermohaline properties of bottom water in several quasi-zonal fractures in the southern part of the Northern Mid-Atlantic Ridge, which connect the deep basins of the West and East Atlantic, the Vema Fracture Zone (FZ) (10°50' N) and a group of sub-equatorial fractures: Doldrums (8°15' N), Vernadsky (7°40' N), and a nameless fracture at 7°30' N. The estimates of bottom water (θ < 2.0°C) transport through this group based on measurements from 2014 are approximately 0.28 Sv (1 Sv = 106 m3/s), which is close to 25% of the transport estimate through the Vema FZ (1.20 Sv) obtained in the same expedition. The coldest bottom water temperatures among the investigated fractures were recorded in the Vema FZ.

  12. Currents and Mixing in the San Lorenzo Overflow, Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Rosas-Villegas, Froylán.; López, Manuel; Candela, Julio

    2018-02-01

    The main properties of the San Lorenzo (SL) overflow are studied, using data from two nonsimultaneous ADCP moorings (located at the sill, and 5 km downstream), as well as CTD and LADCP profiles. Strong tidal currents at the sill modulate the overflow, which is not shut down during the neaps. At the downstream site, the largest flood currents are associated with colder water advected from the sill, flowing downslope, and creating an asymmetry in the semidiurnal tidal cycle. The overflow introduces a significant fortnightly harmonic at the downstream site, and delays the M2 tidal currents for more than an hour with respect to the currents at the sill. The overflow mixes with the overlying water by entrainment during its supercritical stage, reaching near-bottom velocities as high as 1.5 ms-1 and an estimated mean transport of 0.11 Sv; almost twice that estimated at the sill for the same period of the year. Estimated Froude numbers during spring tides suggest the development of an internal hydraulic jump. After relaxation of the maximum downstream currents, high-frequency temperature fluctuations, likely linked to upstream traveling waves, are consistently observed. Direct estimations of the turbulent dissipation rates were used to compute diapycnal diffusivity (Kρ) profiles. Mean estimates of Kρ, as high as 5.5 × 10-2 m2s-1, show that shear at the interface is the most significant source of cross-isopycnal mixing along the SL overflow during ebb tides.

  13. Weld braze technique

    DOEpatents

    Kanne, Jr., William R.; Kelker, Jr., John W.; Alexander, Robert J.

    1982-01-01

    High-strength metal joints are formed by a combined weld-braze technique. A hollow cylindrical metal member is forced into an undersized counterbore in another metal member with a suitable braze metal disposed along the bottom of the counterbore. Force and current applied to the members in an evacuated chamber results in the concurrent formation of the weld along the sides of the counterbore and a braze along the bottom of the counterbore in one continuous operation.

  14. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    NASA Astrophysics Data System (ADS)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  15. 3 CFR 8361 - Proclamation 8361 of April 14, 2009. Pan American Day and Pan American Week, 2009

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., strong democratic governance, and clean energy. Robust, bottom-up economic growth benefits all citizens... and enduring democratic governance strengthens and defines relations in the region and should... climate challenges. The region has already witnessed great leadership in the development and deployment of...

  16. Numerical Modelling of circulation and internal tides on the Crozet plateau in support of the IMS/CTBTO hydroacoustic installation HA04

    NASA Astrophysics Data System (ADS)

    Lyard, Florent Henri; Zampolli, Mario; Marsaleix, Patrick

    2014-05-01

    Hydrophone stations of the Comprehensive Nuclear-Test-Ban Organisation (CTBTO) International Monitoring System (IMS), with the exception of one in Australia, comprise two triplets of submerged moored hydrophones, one North and one South of the island from which the respective system is deployed. Triplet distances vary approximately between 50 - 100 km kilometres from the island, with each triplet connected to the receiving shore equipment by fibre-optic submarine data cables. Once deployed, the systems relay underwater acoustic waveforms in the band 1 - 100 Hz in real time to Vienna via a shore based satellite link. The design life of hydroacoustic stations is at least 20 years, without need for any maintenance of the underwater system. The re-establishment of hydrophone monitoring station HA04 at Crozet (French Southern and Antarctic Territories) in the South-Western Indian Ocean is currently being investigated. The highly dynamic ocean environment at Crozet is governed by strong winds and generally high sea states at the surface, local circulation emanating from the sub-Antarctic front (SAF) and the Agulhas return current (ARC), moderate surface tides and strong internal tides. Deploying the submarine cables and triplets in such an environment requires careful evaluation of all risks and in particular the minimization of the exposure of the deployed system to excessively strong currents. This issue has been addressed by two studies which are briefly introduced here. In the first study, a linear spectral model was used to study and characterize the barotropic tide-driven currents on the Crozet plateau in three spatial dimensions. The M2 semi-diurnal component was shown to dominate in the area, driving sizeable internal tides. The estimate was quantitatively and spatially refined in the second study, in which a time stepping model was used taking into account the local ocean climatology and stratification, as well as the interplay between the seasonally varying local circulation and the internal tides. The numerical result showed a counter-clockwise circulation around Ile de la Possession and Ile de l'Est (Crozet Islands), with a strong component in the South. Internal waves propagating downslope in the near-bottom layers can be particularly intense South of the two islands, while the regions to the North appear to be more calm. The results from the studies are compared to a set of limited current measurements acquired during a survey campaign in 1998.

  17. Diurnal tidal currents attributed to free baroclinic coastal-trapped waves on the Pacific shelf off the southeastern coast of Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Kuroda, Hiroshi; Kusaka, Akira; Isoda, Yutaka; Honda, Satoshi; Ito, Sayaka; Onitsuka, Toshihiro

    2018-04-01

    To understand the properties of tides and tidal currents on the Pacific shelf off the southeastern coast of Hokkaido, Japan, we analyzed time series of 9 current meters that were moored on the shelf for 1 month to 2 years. Diurnal tidal currents such as the K1 and O1 constituents were more dominant than semi-diurnal ones by an order of magnitude. The diurnal tidal currents clearly propagated westward along the coast with a typical phase velocity of 2 m s-1 and wavelength of 200 km. Moreover, the shape and phase of the diurnal currents measured by a bottom-mounted ADCP were vertically homogeneous, except in the vicinity of the bottom boundary layer. These features were very consistent with theoretically estimated properties of free baroclinic coastal-trapped waves of the first mode. An annual (semi-annual) variation was apparent for the phase (amplitude) of the O1 tidal current, which was correlated with density stratification (intensity of an along-shelf current called the Coastal Oyashio). These possible causes are discussed in terms of the propagation and generation of coastal-trapped waves.

  18. An analytical model of capped turbulent oscillatory bottom boundary layers

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2010-03-01

    An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.

  19. A biophysical model of Lake Erie walleye (Sander vitreus) explains interannual variations in recruitment

    USGS Publications Warehouse

    Zhao, Yingming; Jones, Michael L.; Shuter, Brian J.; Roseman, Edward F.

    2009-01-01

    We used a three-dimensional coupled hydrodynamic-ecological model to investigate how lake currents can affect walleye (Sander vitreus) recruitment in western Lake Erie. Four years were selected based on a fall recruitment index: two high recruitment years (i.e., 1996 and 1999) and two low recruitment years (i.e., 1995 and 1998). During the low recruitment years, the model predicted that (i) walleye spawning grounds experienced destructive bottom currents capable of dislodging eggs from suitable habitats (reefs) to unsuitable habitats (i.e., muddy bottom), and (ii) the majority of newly hatched larvae were transported away from the known suitable nursery grounds at the start of their first feeding. Conversely, during two high recruitment years, predicted bottom currents at the spawning grounds were relatively weak, and the predicted movement of newly hatched larvae was toward suitable nursery grounds. Thus, low disturbance-based egg mortality and a temporal and spatial match between walleye first feeding larvae and their food resources were predicted for the two high recruitment years, and high egg mortality plus a mismatch of larvae with their food resources was predicted for the two low recruitment years. In general, mild westerly or southwesterly winds during the spawning-nursery period should favour walleye recruitment in the lake.

  20. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    PubMed Central

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-01-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260

  1. Selective spatial attention modulates bottom-up informational masking of speech

    PubMed Central

    Carlile, Simon; Corkhill, Caitlin

    2015-01-01

    To hear out a conversation against other talkers listeners overcome energetic and informational masking. Largely attributed to top-down processes, information masking has also been demonstrated using unintelligible speech and amplitude-modulated maskers suggesting bottom-up processes. We examined the role of speech-like amplitude modulations in information masking using a spatial masking release paradigm. Separating a target talker from two masker talkers produced a 20 dB improvement in speech reception threshold; 40% of which was attributed to a release from informational masking. When across frequency temporal modulations in the masker talkers are decorrelated the speech is unintelligible, although the within frequency modulation characteristics remains identical. Used as a masker as above, the information masking accounted for 37% of the spatial unmasking seen with this masker. This unintelligible and highly differentiable masker is unlikely to involve top-down processes. These data provides strong evidence of bottom-up masking involving speech-like, within-frequency modulations and that this, presumably low level process, can be modulated by selective spatial attention. PMID:25727100

  2. Selective spatial attention modulates bottom-up informational masking of speech.

    PubMed

    Carlile, Simon; Corkhill, Caitlin

    2015-03-02

    To hear out a conversation against other talkers listeners overcome energetic and informational masking. Largely attributed to top-down processes, information masking has also been demonstrated using unintelligible speech and amplitude-modulated maskers suggesting bottom-up processes. We examined the role of speech-like amplitude modulations in information masking using a spatial masking release paradigm. Separating a target talker from two masker talkers produced a 20 dB improvement in speech reception threshold; 40% of which was attributed to a release from informational masking. When across frequency temporal modulations in the masker talkers are decorrelated the speech is unintelligible, although the within frequency modulation characteristics remains identical. Used as a masker as above, the information masking accounted for 37% of the spatial unmasking seen with this masker. This unintelligible and highly differentiable masker is unlikely to involve top-down processes. These data provides strong evidence of bottom-up masking involving speech-like, within-frequency modulations and that this, presumably low level process, can be modulated by selective spatial attention.

  3. Effects of currents and tides on fine-scale use of marine bird habitats in a Southeast Alaska hotspot

    USGS Publications Warehouse

    Drew, Gary S.; Piatt, John F.; Hill, David J.

    2013-01-01

    Areas with high species richness have become focal points in the establishment of marine protected areas, but an understanding of the factors that support this diversity is still incomplete. In coastal areas, tidal currents—modulated by bathymetry and manifested in variable speeds—are a dominant physical feature of the environment. However, difficulties resolving tidally affected currents and depths at fine spatial-temporal scales have limited our ability to understand their influence the distribution of marine birds. We used a hydrographic model of the water mass in Glacier Bay, Alaska to link depths and current velocities with the locations of 15 common marine bird species observed during fine-scale boat-based surveys of the bay conducted during June of four consecutive years (2000-2003). Marine birds that forage on the bottom tended to occupy shallow habitats with slow-moving currents; mid-water foragers used habitats with intermediate depths and current speeds; and surface-foraging species tended to use habitats with fast-moving, deep waters. Within foraging groups there was variability among species in their use of habitats. While species obligated to foraging near bottom were constrained to use similar types of habitat, species in the mid-water foraging group were associated with a wider range of marine habitat characteristics. Species also showed varying levels of site use depending on tide stage. The dramatic variability in bottom topography—especially the presence of numerous sills, islands, headlands and channels—and large tidal ranges in Glacier Bay create a wide range of current-affected fine-scale foraging habitats that may contribute to the high diversity of marine bird species found there.

  4. Wind-driven export of Weddell Sea slope water

    NASA Astrophysics Data System (ADS)

    Meijers, A. J. S.; Meredith, M. P.; Abrahamsen, E. P.; Morales Maqueda, M. A.; Jones, D. C.; Naveira Garabato, A. C.

    2016-10-01

    The export of waters from the Weddell Gyre to lower latitudes is an integral component of the southern subpolar contribution to the three-dimensional oceanic circulation. Here we use more than 20 years of repeat hydrographic data on the continental slope on the northern tip of the Antarctic Peninsula and 5 years of bottom lander data on the slope at 1000 m to show the intermittent presence of a relatively cold, fresh, westward flowing current. This is often bottom-intensified between 600 and 2000 dbar with velocities of over 20 cm s-1, transporting an average of 1.5 ± 1.5 Sv. By comparison with hydrography on the continental slope within the Weddell Sea and modeled tracer release experiments we show that this slope current is an extension of the Antarctic Slope Current that has crossed the South Scotia Ridge west of Orkney Plateau. On monthly to interannual time scales the density of the slope current is negatively correlated (r > 0.6 with a significance of over 95%) with eastward wind stress over the northern Weddell Sea, but lagging it by 6-13 months. This relationship holds in both the high temporal resolution bottom lander time series and the 20+ year annual hydrographic occupations and agrees with Weddell Sea export variability observed further east. We compare several alternative hypotheses for this wind stress/export relationship and find that it is most consistent with wind-driven acceleration of the gyre boundary current, possibly modulated by eddy dynamics, and represents a mechanism by which climatic perturbations can be rapidly transmitted as fluctuations in the supply of intermediate-level waters to lower latitudes.

  5. The Death of Two Eddies, Against the Shelf

    NASA Astrophysics Data System (ADS)

    Zavala-Trujillo, B.; Badan, A.; Rivas, D.; Ochoa, J.; Sheinbaum, J.; Candela, J.

    2007-05-01

    A set of five moorings deployed in front of the coast of Tamaulipas, western Gulf of Mexico, provided fourteen months (from August 2004 to November 2005) of surface to bottom observations of currents and temperature that document the processes associated with the collision and dissipation of two warm mesoscale eddies with the continental slope. Two Loop Current eddies (Titanic and Ulysses) were identified reaching the study area during the observation period. On September 2004, the two southernmost 2000-m moorings show that temperature and salinity increases throughout the entire water column, related to eddy Titanic; similarily; on April 2005, eddy Ulysses caused a strong increase of temperature in the 3500-m mooring. The velocity field suggests three different régimes: a coastal region, the continental slope currents, and the abyssal circulation. Over the slope, three different layers can be identified: a surface layer (above 500 m depth), influenced by eddies and transients, a deep layer (under de 1900 m) with a persistent southerly current and a transition layer (from 500 to 1900 m) that separates them. The variance ellipses at ~ 700 m at the 3500-m mooring have no a predominant orientation of the mayor axis. At the northernmost 2000-m mooring, the axis of maximum variation is oriented with the bathymetry, but at the southernmost 2000-m mooring it is perpendicular to the coast. The spectral characteristics of the measurements are also discussed.

  6. Internal and forced eddy variability in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.

    2009-04-01

    Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.

  7. Observations and simulations of the bottom nepheloid layer in the Lafourche Trough, Louisiana Continental Shelf

    NASA Astrophysics Data System (ADS)

    Jolliff, J.; Jarosz, E.; Penko, A.; Smith, T.

    2017-12-01

    The "Lafourche Trough" is a mud/silt -dominated, elongate seafloor depression located between transgressive sandy shoals approximately 50 km south of Cocodrie, Louisiana. These irregular bathymetric features are relicts of the abandoned Lafourche delta complex that still have an impact upon coupled sediment-hydrodynamic processes occurring today. Repeated optical and physical oceanographic surveys conducted during the spring of 2015 and winter 2017 reveal persistent bottom nepheloid layers (BNLs) characterized by extreme optical turbidity (beam attenuation 10 m-1, 532 nm). The manifestation and persistence of cohesive sediment BNLs in this area appears to result from a complex interplay between tidal currents, bathymetry, and frontal dynamics along the edge of the Mississippi River plume. Numerical experiments were performed using the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS), an integrated air-sea-wave operational forecasting tool, that includes a simplified numerical sediment resuspension and transport scheme in order to simulate the nepheloid layer observations through the trough. The model results suggest that the wave-current bottom boundary layer is a critical factor in BNL development, and thusly, without wave model integration into COAMPS the system struggles to replicate the observations. Future modeling work will need to explore the potential suppression of physical mixing due to density perturbations along the BNL to fluid mud continuum within the bottom boundary layer.

  8. Dilute Nitrides For 4-And 6- Junction Space Solar Cells

    NASA Astrophysics Data System (ADS)

    Essig, S.; Stammler, E.; Ronsch, S.; Oliva, E.; Schachtner, M.; Siefer, G.; Bett, A. W.; Dimroth, F.

    2011-10-01

    According to simulations the efficiency of conventional, lattice-matched GaInP/GaInAs/Ge triple-junction space solar cells can be strongly increased by the incorporation of additional junctions. In this way the existing excess current of the Germanium bottom cell can be reduced and the voltage of the stack can be increased. In particular, the use of 1.0 eV materials like GaInNAs opens the door for solar cells with significantly improved conversion efficiency. We have investigated the material properties of GaInNAs grown by metal organic vapour phase epitaxy (MOVPE) and its impact on the quantum efficiency of solar cells. Furthermore we have developed a GaInNAs subcell with a bandgap energy of 1.0 eV and integrated it into a GaInP/GaInAs/GaInNAs/Ge 4-junction and a AlGaInP/GaInP/AlGaInAs/GaInAs/GaInNAs/Ge 6- junction space solar cell. The material quality of the dilute nitride junction limits the current density of these devices to 9.3 mA/cm2 (AM0). This is not sufficient for a 4-junction cell but may lead to current matched 6- junction devices in the future.

  9. Physical stress modifies top-down and bottom-up forcing on plant growth and reproduction in a coastal ecosystem.

    PubMed

    Daleo, Pedro; Alberti, Juan; Bruschetti, Carlos Martin; Pascual, Jesos; Iribarne, Oscar; Silliman, Brian R

    2015-08-01

    Bottom-up and top-down effects act together to exert strong control over plant growth and reproduction, but how physical stress modifies those interactive forces remains unclear. Even though empirical evidence is scarce, theory predicts that the importance of both top-down- and bottom-up forces may decrease as physical stress increases. Here, we experimentally evaluate in the field the separate and interactive effect of salinity, nutrient availability, and crab herbivory on plant above- and belowground biomass, as well as on sexual and clonal reproduction in the salt marsh plant Spartina densiflora. Results show that the outcome of the interaction between nutrient availability and herbivory is highly context dependent, not only varying with the abiotic context (i.e., with or without increased salinity stress), but also with the dependent variable considered. Contrary to theoretical predictions, our results show that, consistently across different measured variables, salinity stress did not cancel bottom-up (i.e., nutrients) or top-down (i.e., consumers) control, but has additive effects. Our results support emerging theory by highlighting that, under many conditions, physical stress can act additively with, or even stimulate, consumer control, especially in cases where the physical stress is only experienced by basal levels of the trophic chain. Abiotic stress, as well as bottom-up and top-down factors, can affect salt marsh structure and function not only by affecting biomass production but also by having other indirect effects, such as changing patterns in plant biomass allocation and reproduction.

  10. Observations of The Dense Storfjord Plume Using A Ctd-mounted Adp

    NASA Astrophysics Data System (ADS)

    Fer, I.; Skogseth, R.; Haugan, P. M.

    Observations were made of the outflow of the dense bottom water plume from Stor- fjord (110 km long and 190 m deep at maximum depth) in the Svalbard Archipelago, using a CTD mounted ADP at densely spaced hydrographic stations during May 28 - June 2, 2001. Due to heavy ice inside the fjord, measurements were made from about 70 km downstream of a 115 m deep sill (7645 N) and onward. The dense bottom water generated by strong winter cooling, enhanced ice formation, and the consequent brine rejection drains into and fills the depressions of the fjord and cascades following the bathymetry. Data acquired by ADP allow for examination of the velocity structure associated with the plume as close as 1 m to the bottom with 1 m resolution in the vertical. The plume water was observed to have salinities within 34.9 - 35.1 psu with temperatures close to the freezing point temperature. The plume has a thickness of 51 +/- 20 m, and a density difference of 0.14 +/- 0.03 kg m-3 from the ambient wa- ters. The velocity profiles yield the most well-defined two-layered structure near the sloping sides with a mean plume speed of 0.15 +/- 0.04 m s-1, relative to the ambient waters. Mean overall Richardson number, estimated using these profiles, are within the range of 2 to 4. The plume is less distinct with respect to the velocity profile when it reaches the plane, Storfjordrenna, after cascading about 50 m in vertical. The width of the plume increases from about 8 km to 25 km along its path of 105 km leading to an entrainment rate of 5x10-4, when the plume thickness and speed are assumed constant. The values compare well with those obtained from moorings in the same region in the past, as well as those obtained from laboratory experiments of turbulent gravity currents flowing down a slope.

  11. Processes affecting suspended sediment transport in the mid-field plume region of the Rhine River, Netherlands.

    NASA Astrophysics Data System (ADS)

    Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.

    2016-02-01

    This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.

  12. Global Compilation of Marine Varve Records

    NASA Astrophysics Data System (ADS)

    Schimmelmann, A.; Lange, C.; Schieber, J.; Francus, P.; Ojala, A.; Zolitschka, B.

    2016-02-01

    Marine varves contain highly resolved records of geochemical and other paleoceanographic and paleoenvironmental proxies with annual to seasonal resolution. We present a global compilation of marine varved sedimentary records throughout the Holocene and Quaternary covering more than 50 sites worldwide. Marine varve deposition and preservation typically depend on environmental and sedimentological principles, such as a sufficiently high sedimentation rate, severe depletion of dissolved oxygen in bottom water to exclude bioturbation by macrobenthos, and a seasonally varying sedimentary input to yield a recognizable rhythmic varve pattern. Additional oceanographic factors may include the strength and depth range of the Oxygen Minimum Zone (OMZ) and regional anthropogenic eutrophication. Modern to Quaternary marine varves are not only found in those parts of the open ocean that comply with these principles, but also in fjords, embayments and estuaries with thermohaline density stratification, and nearshore `saline lakes' with strong hydrologic connections to ocean water. Marine varves have also been postulated in pre-Quaternary rocks. In the case of non-evaporitic laminations in fine-grained ancient marine rocks, laminations may not be varves but instead may have multiple alternative origins such as event beds or formation via bottom currents that transported and sorted silt-sized particles, clay floccules, and organic-mineral aggregates in the form of migrating bedload ripples. Modern marine ecosystems on continental shelves and slopes, in coastal zones and in estuaries are susceptible to stress by various factors that may result in oxygen-depletion in bottom waters. Sensitive laminated sites may play the important role of a `canary in the coal mine' where monitoring the character and geographical extent of laminations/varves serves as a diagnostic tool to judge environmental trends. Analyses of modern varve records will gain importance for simultaneously providing high-resolution and longer-term perspectives. Especially in regions with limited resources or at remote sites, the comparatively low cost of high-resolution sediment analyses for environmental monitoring is an essential advantage over continuous monitoring of oceanographic conditions in the water column.

  13. Heinrich-type glacial surges in a low-order dynamical climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbitsky, M.; Saltzman, B.

    1994-07-01

    Recent studies suggest the occurrence of sporadic episodes during which the ice streams that discharge ice sheets become enormously active, producing large numbers of icebergs (reflected in North Atlantic sea cores as {open_quotes}Heinrich events{close_quotes}) and possibly causing the partial collapse of the ice sheets. To simulate the mechanism of implied internal thermo-hydrodynamical instability in the context of a more general paleoclimate dynamics model (PDM), a new sliding-catastrophe function that can account for ice-sheet surges in terms of the thickness, density, viscosity, heat-capacity. and heat-conductivity of ice is introduced. Analysis suggests these events might be of three possible kinds: the firstmore » occurs in periods of glacial maximum when temperature conditions on the ice surface are extremely cold, but internal friction within bottom boundary layer is also at its maximum and is strong enough to melt ice and cause its surge. The second may happen during an interglacial, when the ice thickness is small but relatively warm climate conditions on the upper surface of ice can be easily advected with the flow of ice to the bottom where even a small additional heating due to friction may cause melting. The third and, perhaps, most interesting type is one that may occur during ice sheet growth: in this period particles of ice reaching the bottom {open_quotes}remember{close_quotes} the warm temperature conditions of the previous interglacial and additional heating due to increasing friction associated with the growing ice sheet may again cause melting. This third introduces the interesting possibility that earlier CO{sub 2} concentrations may be as important for the present-day climate as its current value. According to our model the climate system seems more vulnerable to surges during the penultimate interglacial period than in present one contributing to an explanation of the recent results of the Greenland Ice Core Project. 18 refs., 3 figs., 1 tab.« less

  14. Particle dynamics in the Eastern Mediterranean Sea: A synthesis based on light transmission, PMC, and POC archives (1991 2001)

    NASA Astrophysics Data System (ADS)

    Karageorgis, Aristomenis P.; Gardner, Wilford D.; Georgopoulos, Dimitris; Mishonov, Alexey V.; Krasakopoulou, Evangelia; Anagnostou, Christos

    2008-02-01

    During the last two decades light transmission (LT) data have been collected routinely in the Eastern Mediterranean Sea, within the framework of several research projects. A procedure was developed to obtain beam attenuation coefficient due to particles ( cp) at 660-670 nm adjusted for variations in mid-depth 'clear' water and instrumental drifts. Data from 3146 stations occupied between 1991 and 2001 were converted to a common format for the analysis of particulate matter (PM) temporal and spatial distribution patterns. The data were separated into 'wet' (December-May) and 'dry' (June-November) periods. The horizontal distribution of beam cp at various depths revealed clearly higher values in the surface nepheloid layer (SNL) in the vicinity of river mouths during the 'wet' period, whilst the increase was negligible during the 'dry' period. In contrast, the bottom nepheloid layer (BNL; 1-10 m above bottom) appeared to be turbid throughout the year, particularly on the continental shelves receiving riverine discharge. This feature is attributed to resuspension and advection of recently deposited bottom sediments due to waves and currents. However, the Eastern Mediterranean as a whole is impoverished in PM in the water column, particularly at depths >200 m. The behavior of surface-water cp revealed a strong relationship to mesoscale dynamic features. Cyclonic eddies, which upwell nutrient-rich waters toward the surface, favor primary production, which was identified as elevated beam cp values. Beam cp was correlated with PM concentration (PMC) and particulate organic carbon (POC) concentration obtained by bottle sampling. Although there were regional differences in the correlations, no significant seasonal variations were observed. Two generic equations were generated that can be used for a first-order estimate of PMC and POC from historical LT measurements conducted in the area, provided that data are handled according to the proposed methodology.

  15. Near-surface enrichment of zooplankton over a shallow back reef: implications for coral reef food webs

    NASA Astrophysics Data System (ADS)

    Alldredge, A. L.; King, J. M.

    2009-12-01

    Zooplankton were 3-8 times more abundant during the day near the surface than elsewhere in the water column over a 1-2.4 m deep back reef in Moorea, French Polynesia. Zooplankton were also significantly more abundant near the surface at night although gradients were most pronounced under moonlight. Zooplankton in a unidirectional current became concentrated near the surface within 2 m of departing a well-mixed trough immediately behind the reef crest, indicating that upward swimming behavior, rather than near-bottom depletion by reef planktivores, was the proximal cause of these gradients. Zooplankton were highly enriched near the surface before and after a full lunar eclipse but distributed evenly throughout the water column during the eclipse itself supporting light as a proximal cue for the upward swimming behavior of many taxa. This is the first investigation of the vertical distribution of zooplankton over a shallow back reef typical of island barrier reef systems common around the world. Previous studies on deeper fringing reefs found zooplankton depletion near the bottom but no enrichment aloft. In Moorea, where seawater is continuously recirculated out the lagoon and back across the reef crest onto the back reef, selection for upward swimming behavior may be especially strong, because the surface serves both as a refuge from predation and an optimum location for retention within the reef system. Planktivorous fish and corals that can forage or grow even marginally higher in the water column might have a substantial competitive advantage over those nearer the bottom on shallow reefs. Zooplankton abundance varied more over a few tens of centimeters vertical distance than it did between seasons or even between day and night indicating that great care must be taken to accurately assess the availability of zooplankton as food on shallow reefs.

  16. Tidal and residual currents measured by an acoustic doppler current profiler at the west end of Carquinez Strait, San Francisco Bay, California, March to November 1988

    USGS Publications Warehouse

    Burau, J.R.; Simpson, M.R.; Cheng, R.T.

    1993-01-01

    Water-velocity profiles were collected at the west end of Carquinez Strait, San Francisco Bay, California, from March to November 1988, using an acoustic Doppler current profiler (ADCP). These data are a series of 10-minute-averaged water velocities collected at 1-meter vertical intervals (bins) in the 16.8-meter water column, beginning 2.1 meters above the estuary bed. To examine the vertical structure of the horizontal water velocities, the data are separated into individual time-series by bin and then used for time-series plots, harmonic analysis, and for input to digital filters. Three-dimensional graphic renditions of the filtered data are also used in the analysis. Harmonic analysis of the time-series data from each bin indicates that the dominant (12.42 hour or M2) partial tidal currents reverse direction near the bottom, on average, 20 minutes sooner than M2 partial tidal currents near the surface. Residual (nontidal) currents derived from the filtered data indicate that currents near the bottom are pre- dominantly up-estuary during the neap tides and down-estuary during the more energetic spring tides.

  17. Flexible bottom-gate graphene transistors on Parylene C substrate and the effect of current annealing

    PubMed Central

    Kim, Hyungsoo; Bong, Jihye; Mikael, Solomon; Kim, Tong June; Williams, Justin C.; Ma, Zhenqiang

    2016-01-01

    Flexible graphene transistors built on a biocompatible Parylene C substrate would enable active circuitry to be integrated into flexible implantable biomedical devices. An annealing method to improve the performance of a flexible transistor without damaging the flexible substrate is also desirable. Here, we present a fabrication method of a flexible graphene transistor with a bottom-gate coplanar structure on a Parylene C substrate. Also, a current annealing method and its effect on the device performance have been studied. The localized heat generated by the current annealing method improves the drain current, which is attributed to the decreased contact resistance between graphene and S/D electrodes. A maximum current annealing power in the Parylene C-based graphene transistor has been extracted to provide a guideline for an appropriate current annealing. The fabricated flexible graphene transistor shows a field-effect mobility, maximum transconductance, and a Ion/Ioff ratio of 533.5 cm2/V s, 58.1 μS, and 1.76, respectively. The low temperature process and the current annealing method presented here would be useful to fabricate two-dimensional materials-based flexible electronics. PMID:27795570

  18. A spatial framework for representing nearshore ecosystems

    NASA Astrophysics Data System (ADS)

    Gregr, Edward J.; Lessard, Joanne; Harper, John

    2013-08-01

    The shallow, coastal regions of the world's oceans are highly productive ecosystems providing important habitat for commercial, forage, endangered, and iconic species. Given the diversity of ecosystem services produced or supported by this ecosystem, a better understanding of its structure and function is central to developing an ecosystem-based approach to management. However this region - termed the ‘white strip' by marine geologists because of the general lack of high-resolution bathymetric data - is dynamic, highly variable, and difficult to access making data collection challenging and expensive. Since substrate is a key indicator of habitat in this important ecosystem, our objective was to create a continuous substrate map from the best available bottom type data. Such data are critical to assessments of species distributions and anthropogenic risk. Using the Strait of Georgia in coastal British Columbia, Canada, as a case study, we demonstrate how such a map can be created from a diversity of sources. Our approach is simple, quantitative, and transparent making it amenable to iterative improvement as data quality and availability improve. We evaluated the ecological performance of our bottom patches using observed shellfish distributions. We found that observations of geoduck clam, an infaunal species, and red urchins, a species preferentially associated with hard bottom, were strongly and significantly associated with our soft and hard patches respectively. Our description of bottom patches also corresponded well with a more traditional, morphological classification of a portion of the study area. To provide subsequent analyses (such as habitat models) with some confidence in the defined bottom type values, we developed a corresponding confidence surface based on the agreement of, and distance between observations. Our continuous map of nearshore bottom patches thus provides a spatial framework to which other types of data, both abiotic (e.g., energy) and biotic, can be attached. As more data are associated with the bottom patches, we anticipate they will become increasingly useful for representing and developing species-habitat relationships, ultimately leading to a comprehensive representation of the nearshore ecosystem.

  19. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    USGS Publications Warehouse

    Warrick, J.A.; Xu, Jie; Noble, M.A.; Lee, H.J.

    2008-01-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (???5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (???1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  20. Bottom currents and sediment waves on a shallow carbonate shelf, Northern Carnarvon Basin, Australia

    NASA Astrophysics Data System (ADS)

    Belde, Johannes; Reuning, Lars; Back, Stefan

    2017-04-01

    The modern seafloor of the Australian Northwest Shelf between Exmouth and Dampier was analyzed for large scale sedimentary bedforms on 3D seismic reflection data. The Carnarvon MegaSurvey of Petroleum Geo-Services (PGS), a merged dataset of multiple industrial 3D seismic reflection surveys with a total size of 49,717 km2, offers an extensive view of the continental shelf, slope and rise of the Northern Carnarvon Basin. Over the shelf two fields of large scale sediment waves were observed in water depths between 55-130 m, where the seafloor may be influenced by different processes including internal waves, tides and storms. Based on the dimensions and orientations of the sediment waves the dominant direction and approximate strength of local bottom currents could be estimated. Information on local sediment grain-size distribution was provided by the auSEABED database allowing a classification of the observed sediment waves into sand- or mudwaves. The first sediment wave field is positioned northwest of the Montebello Islands where the shelf is comparatively narrow and local sediment is mainly sand-sized. It most likely formed by increased bottom currents induced by the diversion of tidal flows around the islands. The second sediment wave field is located north of the Serrurier and Bessieres Islands within a local seafloor depression. Local sediments are poorly sorted, containing significant amounts of mud and gravel in addition to the mainly sand-sized grains. The coarser sediment fraction could have been reworked to sandwaves by cyclone-induced bottom currents. Alternatively, the finer sediment fraction could form mudwaves shaped by less energetic along-slope oriented currents in the topographic depression. The sediment waves consist partially of carbonate grains such as ooids and peloids that formed in shallow water during initial stages of the post glacial sea-level rise. These stranded carbonate grains thus formed in a different environment than the sediment waves in which they were redeposited. In fossil examples of similar high-energy ramp systems this possible out-of-equilibrium relationship between grains and bedforms has to be taken into account for the interpretation of the depositional environment.

  1. Sediment size fractionation and focusing in the equatorial Pacific: Effect on 230Th normalization and paleoflux measurements

    NASA Astrophysics Data System (ADS)

    Lyle, Mitchell; Marcantonio, Franco; Moore, Willard S.; Murray, Richard W.; Huh, Chih-An; Finney, Bruce P.; Murray, David W.; Mix, Alan C.

    2014-07-01

    We use flux, dissolution, and excess 230Th data from the Joint Global Ocean Flux Study and Manganese Nodule Project equatorial Pacific study Site C to assess the extent of sediment focusing in the equatorial Pacific. Measured mass accumulation rates (MAR) from sediment cores were compared to reconstructed MAR by multiplying the particulate rain caught in sediment traps by the 230Th focusing factor and subtracting measured dissolution. CaCO3 MAR is severely overestimated when the 230Th focusing factor correction is large but is estimated correctly when the focusing factor is small. In contrast, Al fluxes in the sediment fine fraction are well matched when the focusing correction is used. Since CaCO3 is primarily a coarse sediment component, we propose that there is significant sorting of fine and coarse sediments during lateral sediment transport by weak currents. Because CaCO3 does not move with 230Th, normalization typically overcorrects the CaCO3 MAR; and because CaCO3 is 80% of the total sediment, 230Th normalization overestimates lateral sediment flux. Fluxes of 230Th in particulate rain caught in sediment traps agree with the water column production-sorption model, except within 500 m of the bottom. Near the bottom, 230Th flux measurements are as much as 3 times higher than model predictions. There is also evidence for lateral near-bottom 230Th transport in the bottom nepheloid layer since 230Th fluxes caught by near-bottom sediment traps are higher than predicted by resuspension of surface sediments alone. Resuspension and nepheloid layer transport under weak currents need to be better understood in order to use 230Th within a quantitative model of lateral sediment transport.

  2. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it; Gorla, Leopoldo; Nessi, Simone

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determinemore » a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.« less

  3. Characterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf

    USGS Publications Warehouse

    Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.

    2013-01-01

    Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.

  4. Influence of the hydrodynamic conditions on the accessibility of Aristeus antennatus and other demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amores, Angel; Rueda, Lucía; Monserrat, Sebastià; Guijarro, Beatriz; Pasqual, Catalina; Massutí, Enric

    2014-10-01

    Monthly catches per unit of effort (CPUE) of adult red shrimp (Aristeus antennatus), reported in the deep water bottom trawl fishery developed on the Sóller fishing ground off northern Mallorca (Western Mediterranean), and the mean ocean surface vorticity in the surrounding areas are compared between 2000 and 2010. A good correlation is found between the rises in the surrounding surface vorticity and the drops in the CPUE of the adult red shrimp. This correlation could be explained by assuming that most of the surface vorticity episodes could reach the bottom, increasing the seabed velocities and producing sediment resuspension, which could affect the near bottom water turbidity. A. antennatus would respond to this increased turbidity disappearing from the fishing grounds, probably moving downwards to the deeper waters. This massive displacement of red shrimp specimens away from the fishing grounds would consequently decrease their accessibility to fishing exploitation. Similar although more intense responses have been observed during the downslope shelf dense water current episodes that occurred in a submarine canyon, northeast of the Iberian peninsula. The proposed mechanism suggesting how the surface vorticity observed can affect the bottom sediments is investigated using a year-long moored near-bottom current meter and a sediment trap moored near the fishing grounds. The relationship between vorticity and catches is also explored for fish species (Galeus melastomus, Micromesistius poutassou, Phycis blennoides) and other crustacean (Geryon longipes and Nephrops norvegicus), considered as by-catch of the deep water fishery in the area. Results appear to support the suggestion that the water turbidity generated by the vorticity episodes is significant enough to affect the dynamics of the demersal species.

  5. The influence of groundwater currents on diffusion processes in a lake bottom: an old report reviewed

    NASA Astrophysics Data System (ADS)

    Volker, A.; van der Molen, W. H.

    1991-09-01

    An internal report by the senior author, brought out in 1942, is presented and reviewed with the intention to show the historical developments made around 1940. The diffusion process from a clayey and saline lake bottom towards fresh supernatant water proved to be influenced by slow upward or downward groundwater currents. The deviations from the expected diffusion profiles, as observed during the period 1936-1938, could be used to find the velocities of such currents, even if they are as low as 10 mm year -1. There were areas where water from the underlying Pleistocene aquifier discharged into the lake, and elsewhere lake water infiltrated to recharge the aquifier. The conclusions of the study were in accordance with the geohydrology of the area as existed at that time. The theoretical formulation was originally not in closed form, but it is shown to be equivalent to a recent analytical solution.

  6. Living (Rose-Bengal-stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Caulle, C.; Mojtahid, M.; Gooday, A. J.; Jorissen, F. J.; Kitazato, H.

    2015-08-01

    Rose-Bengal-stained foraminiferal assemblages (> 150 μm) were analysed along a five-station bathymetric transect across the core and the lower part of the oxygen minimum zone (OMZ) on the Indian margin of the Arabian Sea. Sediment cores were collected using the manned submersible Shinkai 6500 during the RV Yokosuka cruise YK08-11 in the post-monsoon season (October 2008) at water depths ranging from 535 to 2000 m, along a gradient from almost anoxic to well-oxygenated (0.3 to 108 μM) bottom waters. Stained benthic foraminifera were investigated from two different size fractions (150-300 μm and > 300 μm). Stained foraminiferal densities were very high in the core of the OMZ (at 535 and 649 m) and decreased at deeper sites. The faunas (> 150 μm) were dominated (40-80 %) by non-calcareous taxa at all stations. These were mainly species of Reophax and Lagenammina but also included delicate monothalamous taxa (organic-walled "allogromiids", agglutinated saccamminids, psammosphaerids and tubular forms). These new data from the Indian margin are compared to previous studies from the Murray Ridge, the Pakistan margin and the Oman margin. The fact that similar species were found at sites with comparable bottom-water oxygen concentrations but with very different surface water productivity suggests that, within the strongly developed Arabian Sea OMZ, bottom-water oxygen concentration, and not the organic flux to the sea floor, is the main factor controlling the species composition of the foraminiferal communities. Several foraminiferal species (e.g. Praeglobobulimina sp. 1, Ammodiscus sp. 1, Bolivina aff. dilatata) were confined to the core of the OMZ. These species are presently known only from the Arabian Sea. Because of their association with extremely low oxygen concentrations, these species may be good markers for very low oxygen concentrations, and could be used to reconstruct past OMZ variability in the Arabian Sea.

  7. Influence of marine current on vertical migration of Pb in marine bay

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Hong, Ai; Danfeng, Yang; Huijuan, Zhao; Dongfang, Yang

    2018-02-01

    This paper analyzed that vertical migration of Pb contents waters in Jiaozhou Bay, and revealed the influence of marine current on vertical migration process. Results showed that Pb contents in bottom waters of Jiaozhou Bay in April and July 1988 were 1.49-18.53 μg L-1 and 12.68/-27.64 μg L-1, respectively. The pollution level of Pb in bottom waters was moderate to heavy, and were showing temporal variations and spatial heterogeneity. The vertical migration process of Pb in April 1988 included a drifting process from the southwest to the north by means of the marine current was rapid in this region. The vertical migration process of Pb in July 1988 in the open waters included no drifting process since the flow rate of marine current was relative low in this region. The vertical migration process of Pb was jointly determined by vertical water’s effect, source input and water exchange, and the influence of marine current on the vertical migration of Pb in marine bay was significant.

  8. Plugs or flood-makers? The unstable landslide dams of eastern Oregon

    Treesearch

    E.B. Safran; J.E. O' Connor; L.L. Ely; P.K. House; Gordon Grant; K. Harrity; K. Croall; E. Jones

    2015-01-01

    Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects...

  9. Boy, Am I Tired!! Sleep....Why You Need It!

    ERIC Educational Resources Information Center

    Olivieri, Chrystyne

    2016-01-01

    Sleep is essential to a healthy human being. It is among the basic necessities of life, located at the bottom of Maslow's Hierarchy of Need. It is a dynamic activity, necessary to maintain mood, memory and cognitive performance. Sleep disorders are strongly associated with the development of acute and chronic medical conditions. This article…

  10. Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface

    NASA Astrophysics Data System (ADS)

    Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung

    2018-04-01

    We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.

  11. Neural mechanisms mediating contingent capture of attention by affective stimuli

    PubMed Central

    Reeck, Crystal; LaBar, Kevin S.; Egner, Tobias

    2013-01-01

    Attention is attracted exogenously by physically salient stimuli, but this effect can be dampened by endogenous attention settings, a phenomenon called “contingent capture”. Emotionally salient stimuli are also thought to exert a strong exogenous influence on attention, especially in anxious individuals, but whether and how top-down attention can ameliorate bottom-up capture by affective stimuli is currently unknown. Here, we paired a novel spatial cueing task with functional magnetic resonance imaging (fMRI) in order to investigate contingent capture as a function of the affective salience of bottom-up cues (face stimuli) and individual differences in trait anxiety. In the absence of top-down cues, exogenous stimuli validly cueing targets facilitated attention in low anxious participants, regardless of affective salience. However, while high anxious participants exhibited similar facilitation following neutral exogenous cues, this facilitation was completely absent following affectively negative exogenous cues. Critically, these effects were contingent on endogenous attentional settings, such that explicit top-down cues presented prior to the appearance of exogenous stimuli removed anxious individuals’ sensitivity to affectively salient stimuli. FMRI analyses revealed a network of brain regions underlying this variability in affective contingent capture across individuals, including the fusiform face area (FFA), posterior ventrolateral frontal cortex, and supplementary motor area. Importantly, activation in the posterior ventrolateral frontal cortex and the supplementary motor area fully mediated the effects observed in FFA, demonstrating a critical role for these frontal regions in mediating attentional orienting and interference resolution processes when engaged by affectively salient stimuli. PMID:22360642

  12. Numerical Simulation of Slag Eye Formation and Slag Entrapment in a Bottom-Blown Argon-Stirred Ladle

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tang, Haiyan; Yang, Shufeng; Wang, Minghui; Li, Jingshe; Liu, Qing; Liu, Jianhui

    2018-06-01

    A transient mathematical model is developed for simulating the bubble-steel-slag-top gas four-phase flow in a bottom-blown argon-stirred ladle with a 70-ton capacity. The Lagrangian discrete phase model (DPM) is used for describing the moving behavior of bubbles in the steel and slag. To observe the formation process of slag eye, the volume of fluid (VOF) model is used to track the interfaces between three incompressible phases: metal/slag, metal/gas, and slag/gas. The complex multiphase turbulent flow induced by bubble-liquid interactions is solved by a large eddy simulation (LES) model. Slag eye area and slag droplet dispersion are investigated under different gas flow rates. The results show that the movement of bubbles, formation and collapse of slag eye, volatility of steel/slag interface and behavior of slag entrapment can be properly predicted in the current model. When the gas flow rate is 300 L/min, the circulation driven by the bubble plume will stir the entire ladle adequately and form a slag eye of the right size. At the same time, it will not cause strong erosion to the ladle wall, and the fluctuation of the interface is of adequate intensity, which will be helpful for improving the desulfurization efficiency; the slag entrapment behavior can also be decreased. Interestingly, with the motion of liquid steel circulation, the collision and coalescence of dispersed slag droplets occur during the floating process in the vicinity of the wall.

  13. Using marine reserves to manage impact of bottom trawl fisheries requires consideration of benthic food-web interactions.

    PubMed

    van Denderen, P Daniël; Rijnsdorp, Adriaan D; van Kooten, Tobias

    2016-10-01

    Marine protected areas (MPAs) are widely used to protect exploited fish species as well as to conserve marine habitats and their biodiversity. They have also become a popular management tool for bottom trawl fisheries, a common fishing technique on continental shelves worldwide. The effects of bottom trawling go far beyond the impact on target species, as trawls also affect other components of the benthic ecosystem and the seabed itself. This means that for bottom trawl fisheries, MPAs can potentially be used not only to conserve target species but also to reduce impact of these side effects of the fishery. However, predicting the protective effects of MPAs is complicated because the side effects of trawling potentially alter the food-web interactions between target and non-target species. These changes in predatory and competitive interactions among fish and benthic invertebrates may have important ramifications for MPAs as tools to manage or mitigate the effects of bottom trawling. Yet, in current theory regarding the functioning of MPAs in relation to bottom trawl fisheries, such predatory and competitive interactions between species are generally not taken into account. In this study, we discuss how food-web interactions that are potentially affected by bottom trawling may alter the effectiveness of MPAs to protect (1) biodiversity and marine habitats, (2) fish populations, (3) fisheries yield, and (4) trophic structure of the community. We make the case that in order to be applicable for bottom trawl fisheries, guidelines for the implementation of MPAs must consider their potential food-web effects, at the risk of failing management. © 2016 by the Ecological Society of America.

  14. Wave-current interactions in megatidal environment

    NASA Astrophysics Data System (ADS)

    Bennis, A. C.; Pascal, B. D. B.; Feddy, A.; Garnier, V.; Accenti, M.; Dumas, F.; Ardhuin, F.

    2016-12-01

    The strongest tidal current in western Europe (up to 12 knots) occurs in Raz Blanchard (Normandy, France). High winds occur over six months which generate energetic wave conditions with breaking waves, hence the name of `Blanchard'. However, few studies have been conducted on the wave effects on the tidal current at this location because of the lack of measurements. Studies are now required to aid the creation of tidal farms. For this purpose, the 3D fully-coupled model MARS-WW3 is used with three nested ranks which are forced at boundaries by wave spectra from HOMERE database (Boudière et al., 2013) and by sea level from the French Navy (SHOM). The model is tested against ADCP data of IRSN at three locations near Raz Blanchard. Time series of current velocity and of mean sea level are consistent with ADCP data. A rephasing by waves of the tidal current is observed in comparison with simulations without waves, which fits the ADCP data. A strong dependence of the tidal current on bottom roughness is shown as well as the necessity to take into account its spatial heterogeneity. The simulated mean sea level is close to the measured one while it was underestimated for high tide in simulations without wave effects. The vertical shape of the tidal current is especially modified near the surface by waves as expected. Depending on the tidal cycle and wave direction, acceleration or deceleration of the surface current due to waves is observed. Lastly, several hydrodynamical scenarios for Raz Blanchard are carried out for different tidal and wave conditions pending the HYD2M'17 data (ADCP, ADV, drifting wave buoys, HF and VHF and X-Band radars). First results show the impacts of refractive, shoaling and blocking effects on the flood and ebb currents.

  15. Instrument packages to study long-term sediment transport processes in a shallow bay

    USGS Publications Warehouse

    Strahle, William J.; Martini, Marinna A.; Davis, Ray E.

    1994-01-01

    Pressure and near-surface and near-bottom measurements of current, temperature, salinity and light transmission were required in Mobile Bay, a 3 m deep estuary on the Gulf of Mexico. This environment presented several obstacles to obtaining long term observations. Boat traffic, soft estuary bottom, heavy biofouling, rapid sample rates and large data storage were overcome by using instrumentation techniques that are applicable to other estuary systems. Nearly two years of continuous data was collected.

  16. Development of Bottom Oil Recovery Systems. Revised

    DTIC Science & Technology

    2014-02-01

    designed a recovery system based on dredging technology. It could handle harsh wind /wave conditions but has significant logistical requirements, due...Knots m/s Meter(s) per second M/T Motor tanker M/V Motor vessel m Meter or meters m2 Square meters m3 Cubic meters MBTA Migratory Bird ...usable for some bottom types. Wind 30 kts (45-kt gusts) Wave 0-2m (0-5ft) Current 0-2 kts Lightning ɝmiles Minimum depth of about 9m (30 ft

  17. Bottom-Up Tri-gate Transistors and Submicrosecond Photodetectors from Guided CdS Nanowalls.

    PubMed

    Xu, Jinyou; Oksenberg, Eitan; Popovitz-Biro, Ronit; Rechav, Katya; Joselevich, Ernesto

    2017-11-08

    Tri-gate transistors offer better performance than planar transistors by exerting additional gate control over a channel from two lateral sides of semiconductor nanowalls (or "fins"). Here we report the bottom-up assembly of aligned CdS nanowalls by a simultaneous combination of horizontal catalytic vapor-liquid-solid growth and vertical facet-selective noncatalytic vapor-solid growth and their parallel integration into tri-gate transistors and photodetectors at wafer scale (cm 2 ) without postgrowth transfer or alignment steps. These tri-gate transistors act as enhancement-mode transistors with an on/off current ratio on the order of 10 8 , 4 orders of magnitude higher than the best results ever reported for planar enhancement-mode CdS transistors. The response time of the photodetector is reduced to the submicrosecond level, 1 order of magnitude shorter than the best results ever reported for photodetectors made of bottom-up semiconductor nanostructures. Guided semiconductor nanowalls open new opportunities for high-performance 3D nanodevices assembled from the bottom up.

  18. Bottom water production variability in the Ross Sea slope during the Late Pleistocene-Holocene as revealed by benthic foraminifera and sediment geochemistry

    NASA Astrophysics Data System (ADS)

    Langone, Leonardo; Asioli, Alessandra; Tateo, Fabio; Giglio, Federico; Ridente, Domenico; Summa, Vito; Carraro, Anna; Luigia Giannossi, Maria; Piva, Andrea; Trincardi, Fabio

    2010-05-01

    The Antarctic area produces bottom waters that ventilate the vast majority of the deep basins in the rest of the world ocean. The rate of formation in the source area and the strength of these cold bottom waters are key factors affecting the Global Thermohaline Circulation during modern and past climate conditions. The western Ross Sea is considered a formation site for a particularly salty variety of AABW as well as an important area of off-shelf transfer of water as plumes entraining in Lower CDW and as rapid downhill cascades. The results here presented were obtained within the frame of the PNRA project 4.8. Among the goals of the project, the main is to detect a qualitative signal of possible changes in the rate of bottom water production during the Late Pleistocene-Holocene by integrating data on foraminifera assemblages with sediment geochemistry (bulk mineralogy, Total Organic Carbon, biogenic silica, C and N stable isotopes) and IRD. A gravity core was collected at 2377m water depth off Drygalski Basin on the slope adjacent the western continental shelf of the Ross Sea, along the pathway of bottom water spreading. The chronology is based on the best fitting of twelve control points selected among twenty-two 14C AMS datings performed on the bulk organic carbon and 210Pb excess data. The trend of the parameters allows the following observations: 1) two main intervals (15-10 and 7.5-6 cab kyr BP) mark a subsequent enhanced nutrient supply. Indeed, δ15N variations depend on the utilization degree of nitrates, in turn reflecting productivity/nutrient supply changes. The concurrent increase of OC and biogenic silica suggests an increase of the nutrient availability. As the Upper CDW is a water mass rich in nutrients we interpret these intervals as characterized by a higher efficiency in the Upper CDW upwelling; 2) around 7.5-7kyr BP (part of the Middle Holocene Climatic Optimum) the IRD content drops, suggesting the reduction of iceberg production or a change of the iceberg path. Within this general context, an oscillatory trend is present from 15 kyr BP to present time. Two hypotheses are proposed: a) minima in foraminifera concentrations reflect relatively stronger dissolution, weaker bottom currents (minima in dry density) and lower nutrient supply (lighter values of δ15N). These intervals may reflect a lower rate of bottom water formation; the intervals corresponding to maxima in foraminifers concentration should indicate better preservation, higher benthic productivity and/or better oxygenation at bottom, stronger bottom currents (maxima in dry density) and relatively higher nutrient supply reflecting a relatively higher rate of bottom water formation. b) alternatively, minima in foraminifers, corresponding to minima in %OC and to reversal of 14C (relative increase of older carbon), reflect dilution in the sediment because of rapid accumulation of fine sediment re-suspended at the shelf edge by the cascading currents. Therefore, the minima represent higher rate of bottom water formation. The comparison of the D/H ratio in ice-cores from the Ross Sea sector with the core AS05-10 record indicates that the foraminifers minima always correspond to colder condition. This scenario also correlates to the record reported in literature on the slope off Wilkes-Adelie Land. At last, a condensed/hiatus interval at ca. 3.5-4 kyr BP does not seems to mark a major change in the general pattern of our variables, apart from biogenic silica and sheets silicates showing an increase of the oscillation amplitude. Nevertheless, this feature is coeval to the base of the Neoglacial and it is time-equivalent to the beginning of major changes in the Antarctic environment.

  19. Wind-Flow Patterns in the Grand Canyon as Revealed by Doppler Lidar.

    NASA Astrophysics Data System (ADS)

    Banta, Robert M.; Darby, Lisa S.; Kaufmann, Pirmin; Levinson, David H.; Zhu, Cui-Juan

    1999-08-01

    Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in the canyon was in the opposite direction from the flow above the canyon rim; 2) under strong, gusty flow from the southwest, the flow inside and above the canyon was from a similar direction and coupled; and 3) under light large-scale ambient flow, the lidar found evidence of local, thermally forced up- and down-canyon winds in the bottom of the canyon.On the days with flow reversal in the canyon, the strongest in-canyon flow response was found for days with northwesterly flow and a strong inversion at the canyon rim. The aerosol backscatter profiles were well mixed within the canyon but poorly mixed across the rim because of the inversion. The gusty southwest flow days showed strong evidence of vertical mixing across the rim both in the momentum and in the aerosol backscatter profiles, as one would expect in turbulent flow. The days with light ambient flow showed poor vertical mixing even inside the canyon, where the jet of down-canyon flow in the bottom of the canyon at night was often either cleaner or dirtier than the air in the upper portions of the canyon. In a case study presented, the light ambient flow regime ended with an intrusion of polluted, gusty, southwesterly flow. The polluted, high-backscatter air took several hours to mix into the upper parts of the canyon. An example is also given of high-backscatter air in the upper portions of the canyon being mixed rapidly down into a jet of cleaner air in the bottom of the canyon in just a few minutes.

  20. Bottom-water observations in the Vema fracture zone

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.; Biscaye, Pierre E.; Jacobs, Stanley S.

    1983-03-01

    The Vema fracture zone trough, at 11°N between 41° and 45°E, is open to the west at the 5000-m level but is silled at the 4650-m level on the east where it intersects the axis of the Mid-Atlantic Ridge. The trough is filled with Antarctic Bottom Water (AABW) with a potential temperature of 1.32°C and salinity of 34.82 ppt. The bottom water is thermally well mixed in a nearly homogeneous layer about 700 m thick. The great thickness of this bottom layer, as compared with the bottom-water structure of the western Atlantic basin, may result from enhanced mixing induced by topographic constriction at the west end of the fracture zone trough. A benthic thermocline, with potential temperature gradients of about 1.2 mdeg m-1, is associated with an abrupt increase in turbidity with depth at about 1200 m above bottom. A transitional layer of more moderate temperature gradients, about 0.4 mdeg m-1, lies between the benthic thermocline above and the AABW below. The AABW layer whose depth-averaged suspended paniculate concentrations range from 8 to 19 μg L-1, is consistently higher in turbidity than the overlying waters. At the eastern end of the trough, 140 m below sill depth, very low northeastward current velocities, with maximums of 3 cm s-1, were recorded for an 11-day period.

  1. Effects of Cross-Shelf Physical Forcing on Satellite Bio-Optical Properties

    NASA Astrophysics Data System (ADS)

    Ladner, S. D.; Teague, W. J.; Mitchell, D. A.; Goode, W. A.; Gould, R. W.; Arnone, R. A.

    2005-05-01

    Our goal is to determine the effects of cross-shelf physical forcing on the optical properties in the northern Gulf of Mexico using in situ optical profiles and surface ocean color satellite images from SeaWiFS. The Naval Research Laboratory at Stennis Space Center is conducting an extensive monitoring program in the Northeast Gulf of Mexico west of the Desoto Canyon. During the Slope to Shelf Energetics and Exchange Dynamics (SEED) project, 14 bottom mounted Acoustic Doppler Current Profilers (ADCP's) were deployed from May-December 2004 along the shelf break at depths ranging from 60 to 1000 meters to improve understanding of cross-shelf exchange processes. Analysis of the May current data indicate abnormal events, including 30 cm/s off-shelf currents throughout the water column and a 3° Celsius elevation in bottom temperature. Coincident optical profiles were collected in May (absorption, scattering coefficients) and are compared with currents and physical properties (temperature, salinity). Similar subsurface abnormalities with stronger currents occurred in September during the passing of Hurricane Ivan over the mooring sites. We will show a time series of near-surface current speeds and their effect on the surface-satellite optical properties over the entire SEED sampling exercise.

  2. Teachers and Teaching: Current Issues.

    ERIC Educational Resources Information Center

    Hart, J. R.

    Nine chapters address current issues in teaching, focusing on: (1) "Teacher Quality and Quantity" (James B. Stedman); (2) "Progress Through the Teacher Pipeline" (Robin R. Henke, Xianglei Chen, Sonya Geis, and Paula Knepper); (3) "Raising the Achievement of Low-Performing Students: What High Schools Can Do" (Gene Bottoms); (4) "Knowledge and…

  3. One-step fabrication of nanostructure-covered microstructures using selective aluminum anodization based on non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho

    2016-06-01

    This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.

  4. Building a Digital Library from the Ground Up: an Examination of Emergent Information Resources in the Machine Learning Community

    NASA Astrophysics Data System (ADS)

    Cunningham, Sally Jo

    The current crop of digital libraries for the computing community are strongly grounded in the conventional library paradigm: they provide indexes to support searching of collections of research papers. As such, these digital libraries are relatively impoverished; the present computing digital libraries omit many of the documents and resources that are currently available to computing researchers, and offer few browsing structures. These computing digital libraries were built 'top down': the resources and collection contents are forced to fit an existing digital library architecture. A 'bottom up' approach to digital library development would begin with an investigation of a community's information needs and available documents, and then design a library to organize those documents in such a way as to fulfill the community's needs. The 'home grown', informal information resources developed by and for the machine learning community are examined as a case study, to determine the types of information and document organizations 'native' to this group of researchers. The insights gained in this type of case study can be used to inform construction of a digital library tailored to this community.

  5. Study on the dielectric properties of Al2O3/TiO2 sub-nanometric laminates: effect of the bottom electrode and the total thickness

    NASA Astrophysics Data System (ADS)

    Ben Elbahri, M.; Kahouli, A.; Mercey, B.; Lebedev, O.; Donner, W.; Lüders, U.

    2018-02-01

    Dielectrics based on amorphous sub-nanometric laminates of TiO2 and Al2O3 are subject to elevated dielectric losses and leakage currents, in large parts due to the extremely thin individual layer thickness chosen for the creation of the Maxwell-Wagner relaxation and therefore the high apparent dielectric constants. The optimization of performances of the laminate itself being strongly limited by this contradiction concerning its internal structure, we will show in this study that modifications of the dielectric stack of capacitors based on these sub-nanometric laminates can positively influence the dielectric losses and the leakage, as for example the nature of the electrodes, the introduction of thick insulating layers at the laminate/electrode interfaces and the modification of the total laminate thickness. The optimization of the dielectric stack leads to the demonstration of a capacitor with an apparent dielectric constant of 90, combined with low dielectric loss (tan δ) of 7 · 10-2 and with leakage currents smaller than 1  ×  10-6 A cm-2 at 10 MV m-1.

  6. Effects of the bottom boundary condition in numerical investigations of dense water cascading on a slope

    NASA Astrophysics Data System (ADS)

    Berntsen, Jarle; Alendal, Guttorm; Avlesen, Helge; Thiem, Øyvind

    2018-05-01

    The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a substantial artificial blocking effect when using no-slip.

  7. Use of New Commercial, Off-the-Shelf, High-Definition Structure Scanning Fathometer/Depth Finder For Coastal Current Survey Operations

    NASA Astrophysics Data System (ADS)

    Roggenstein, E. B.; Gray, G.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (COOPS) manages three national observing system programs. These are the National Water level Observation Network (NWLON) (210 stations), the 23 NOAA/Physical Oceanographic Real-Time Systems (PORTS), and National Currents Observing Program (NCOP) (approximately 70 deployments/year). In support of its mission COOPS operates and maintains a number of small boats. During vessel operations, side-scan sonar data are at times needed to provide information about bottom structure for future work in the area. For example, potential hazards, obstructions, or bottom morphology features that have not been identified on localized charts for a given area could be used to inform decisions on planned installations. Side-scan sonar capability is also important when attempting to reacquire bottom mounts that fail to surface at the conclusion of a current meter survey. Structure mapping and side-scan capabilities have been added to recent consumer-level, commercial, off-the-shelf fathometers, generally intended for recreational, commercial fishing, and diving applications. We are proposing to investigate these systems' viability for meeting survey requirements. We assess their ability to provide a flexible alternative to research/commercial oceanographic level side-scan system at a significant cost savings. Such systems could provide important information to support scientific missions that require qualitative seafloor imagery.

  8. Modeling waves and circulation in Lake Pontchartrain, Louisiana

    USGS Publications Warehouse

    Signell, Richard P.; List, Jeffrey H.

    1997-01-01

    The U.S. Geological Survey is conducting a study of storm-driven sediment resuspension and transport in Lake Pontchartrain, Louisiana. Two critical processes related to sediment transport in the lake are (1) the resuspension of sediments due to wind-generated storm waves and (2) the movement of resuspended material by lake currents during storm wind events. The potential for sediment resuspension is being studied with the wave prediction model which simulates local generation of waves by wind and shallow-water effects on waves (refraction, shoaling, bottom friction, and breaking). Long-term wind measurements are then used to determine the regional "climate" of bottom orbital velocity (showing the spatial and temporal variability of wave-induced currents at the bottom). The circulation of the lake is being studied with a three-dimensional hydrodynamic model. Results of the modeling effort indicate that remote forcing due to water levels in Mississippi Sound dominate the circulation near the passes in the eastern end of the lake, while local wind forcing dominates water movement in the western end. During typical storms with winds from the north-northeast or the south-southeast, currents along the south coast near New Orleans generally transport material westward, while material in the central region moves against the wind. When periods of sustained winds are followed by a drop in coastal sea level, a large amount of suspended sediment can be flushed from the lake.

  9. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  10. Generation of realistic tsunami waves using a bottom-tilting wave maker

    NASA Astrophysics Data System (ADS)

    Park, Yong Sung; Hwang, Jin Hwan

    2016-11-01

    Tsunamis have caused more than 260,000 human losses and 250 billion in damage worldwide in the last ten years. Observations made during 2011 Japan Tohoku Tsunami revealed that the commonly used waves (solitary waves) to model tsunamis are at least an order-of-magnitude shorter than the real tsunamis, which calls for re-evaluation of the current understanding of tsunamis. To prompt the required paradigm shift, a new wave generator, namely the bottom-tilting wave generator, has been developed at the University of Dundee. The wave tank is fitted with an adjustable slope and a bottom flap hinged at the beginning of the slope. By moving the bottom flap up and down, we can generate very long waves. Here we will report characteristics of waves generated by simple bottom motions, either moving it upward or downward from an initial displacement ending it being horizontal. Two parameters, namely the initial displacement of the bottom and the speed of the motion, determine characteristics of the generated waves. Wave amplitudes scale well with the volume flux of the displaced water. On the other hand, due to combined effects of nonlinearity and dispersion, wavelengths show more complicated relationship with the two bottom motion parameters. We will also demonstrate that by combining simple up and down motions, it is possible to generate waves resembling the one measured during 2011 tsunami. YSP acknowledges financial support from the Royal Society of Edinburgh through the Royal Society of Edinburgh and Scottish Government Personal Research Fellowship Co-Funded by the Marie-Curie Actions.

  11. The freshwater transport and dynamics of the western Maine coastal current

    USGS Publications Warehouse

    Geyer, W.R.; Signell, R.P.; Fong, D.A.; Wang, Jingyuan; Anderson, D.M.; Keafer, B.A.

    2004-01-01

    Observations in the Gulf of Maine, USA, were used to characterize the freshwater transport, temporal variability and dynamics of the western Maine coastal current. These observations included moored measurements, multiple hydrographic surveys, and drifter releases during April–July of 1993 and 1994. There is a strong seasonal signal in salinity and along-shore velocity of the coastal current, caused by the freshwater inputs of the rivers entering the western Gulf. Surface salinity within the coastal current during the spring freshet is typically 2 psu below ambient, and along-shore currents in the surface layer are directed southwestward at speeds of 0.10–0.20 m s−1, occasionally reaching 0.50 m s−1. The plume thickness is typically 10–20 m in water depths of 50–100 m, thus it is well isolated from the bottom over most of its areal extent. The along-coast freshwater transport within the plume varies considerably due to variations in wind stress, but on time scales of weeks to months it follows the variations of riverine input, with a time lag consistent with the advective velocity. Less than half of the transport of the coastal current is explained by the baroclinic gradient; the barotropic forcing associated with the larger-scale dynamics of the Gulf of Maine accounts for about 60% of the transport. The volume of freshwater transport in the coastal current exceeds the local riverine input of fresh water by 30%, suggesting a significant contribution of freshwater transport from the St. John River, 500 km northeastward. The measurements within the western Maine coastal current, however, indicate a significant decrease in the baroclinic transport of fresh water along the coast, with an e-folding scale of approximately 200 km.

  12. New insights into submarine geomorphology and depositional processes along the George V Land continental slope and upper rise (East Antarctica)

    NASA Astrophysics Data System (ADS)

    de Santis, Laura

    2010-05-01

    Swath bathymetry collected by the Italian Antarctic Program (PNRA), in the offshore of the George Vth Land, document evidence of cascading, cold and dense bottom currents, inside continental slope canyons, and suggest an active role of the sea floor morphology on modern and ancient process. The continental slope is incised by canyons locally heading to the shelf edge and bounding sedimentary ridges of Miocene age(ref1,2). Erosion by bottom water masses, up to present times, exhumed or prevented the burial of such relict sedimentary ridges originated by glacial processes. Dense shelf water is formed by coastal polynyas and is exported over the shelf break to produce Antarctic Bottom Water (AABW)(ref3,4). This locally formed AABW (often referred to as Adélie Land Bottom Water) is detected by CTD and mooring measurements up to about 3200 m of depth, in the Jussieu canyon and further to the west(ref5). The speed of the ALBW is enough to transport fine sand and silt from shallow to deep water. Evidence for exporting sediment off the shelf via bottom water, through the Holocene, is inferred by sedimentological and geophysical studies(ref6,7). Morphologic and geological data in the slope and rise confirm that the Jussieu canyon is a main conduit of high energetic bottom current, in present times as well as in the past(ref1,7). Coarse grain material and turbidites (up to 1 meter thick) were sampled from the canyon levees at 2500 and 3000 meters of water depth(ref1). At a depth of 2600 m, the Jussieu canyon converges with two canyons into a single branch, showing a meandering trend, up to about 3200 m of water depth. The asymmetry of the meandering section and the internal geometry of its levees are typical expressions of differential erosion and deposition from downslope flows. Sediment waves characterise the western flank of the Wega Channel, at depth of 2400-2800 meters, to the east of the Jussieu canyon(ref1). The waves are composed by fine grained sediments whose source is identified in the George V Land rocks and in the continental shelf(ref8). The waves formed under the action of weak and constant, downslope bottom current, since MIS 11(ref9,10), documenting the occurrence of shelf originated bottom current also in this channel. No significant component of shelf-originated, bottom water is detected at the head of the WEGA channel. The current that originated the sediment wave field in the WEGA channel must then be fed by the ALBW flowing inside the Jussieu branches in the upper slope, deviated to the east. This process likely happens at water depth of about 2600, where the continental slope decreases its steepness and the branches of the upper Jussieu canyon converge into the single meandering channel-levee, in the lower rise. This abrupt morphologic bend likely forces part of the cascading water mass confined inside the canyons to thickens and to overspill the flanks and to flow down the WEGA channel, until it reaches equilibrium with its surroundings. ref1: Harris, Brancolini, Bindoff, De Santis (eds.), Deep-Sea Research II (2003),volume50,n.8-9. ref2: Caburlotto A. et al. (2006), Quaternary Science Reviews, 25,3029-3049. ref3: Rintoul S.R. (1998). AGU, Antarctic Research Series 75,51-171. ref4: Williams G.D. et al. (2008), Journal of Geophysical Research, Volume113,C04039. ref5: Williams G.D. et al. (2010), Journal of Geophysical Research, in-press. ref6: Harris PT et al. (2001) Marine Geology 179, 1-8. ref7: Escutia C. et al. (2000) Journal of Sedimentary Research 70 (1), 84-93. ref8: Damiani D. et al. (2006) Marine Geology 226, 281- 295 ref9: Caburlotto A. et al. (2009). International Journal of Earth Science, in-press. ref10: Macrì P. et al. (2005). Physics of the Earth and Planetary Interiors 151 (2005) 223-242

  13. 2 - 4 million years of sedimentary processes in the Labrador Sea: implication for North Atlantic stratigraphy

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Saint-Ange, F.; Campbell, C.; Piper, D. J.

    2012-12-01

    Marine sedimentary records from the western North Atlantic show that a significant portion of sediment deposited since the Pliocene originated from the Canadian Shield. In the Labrador Sea, previous studies have shown that bottom currents .strongly influenced sedimentation during the Pliocene, while during the Quaternary, intensification of turbidity current flows related to meltwater events were a dominant factor in supplying sediment to the basin and in the development of the North Atlantic Mid-Ocean Channel (NAMOC). Despite understanding this general pattern of sediment flux, details regarding the transfer of sediment from the Labrador Shelf to deep water and from the Labrador Sea to the North Atlantic remain poorly understood. Our study focuses on sedimentary processes occurring along the Labrador margin since the Pliocene and their consequences on the margin architecture, connection to the NAMOC, and role in sediment flux from the Labrador basin to the Sohm Abyssal Plain. Piston core and high resolution seismic data reveal that during the Pliocene to mid Pleistocene, widespread slope failures led to mass transport deposition along the entire Labrador continental slope. After the mid Pleistocene, sedimentation along the margin was dominated by the combined effects of glaciation and active bottom currents. On the shelf, prograded sedimentary wedges filled troughs and agraded till sheets form intervening banks. On the slope, stacked glaciogenic fans developed seaward of transverse troughs between 400 and 2800 mbsl. On the lower slope, seismic data show thick sediment drifts capped by glacio-marine mud. This unit is draped by well stratified sediment and marks a switch from a contourite dominated regime to a turbidite dominated regime. This shift occurred around 0.5 - 0.8 ka and correlates to the intensification of glaciations. Late Pleistocene sediments on the upper slope consist of stratified sediments related to proglacial plume fall-out. Coarse grained sediments, other than ice rafted detritus, by-passed the upper and middle slope and were transported to the lower slope and deep ocean. Seismic profiles and multibeam data along the Labrador Slope show a complex network of channels, with wide flat-bottomed channels off Saglek Bank to narrow channels off Cartwright Bank. The channels merge around 3000 mbsl to form single wide (~20 km) channels that eventually intersect, or flow parallel to the NAMOC. Rapid development of the NAMOC from the mid to late Pleistocene affected depositional patterns for sediment sourced from the Labrador margin. Downslope-transported sediment from the Labrador margin mostly tends to fill the basin or feed into NAMOC through tributary systems, whereas sediments derived from Hudson Strait feed the NAMOC and eventually the Sohm Abyssal plain. Sediment transported southward by the Western Boundary Undercurrent and Labrador Current likely reflect input along the margin, from Hudson Strait to Orphan Basin. Turbidite spill-over deposits are observed onlapping the continental margin of Labrador and Newfoundland as far south as Newfoundland Ridge.

  14. Observations of Tidal Straining Within Two Different Ocean Environments in the East China Sea: Stratification and Near-Bottom Turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Wei, Hao; Zhao, Liang

    2017-11-01

    Tidal straining describes the straining effect induced by the vertical shear of oscillatory tidal currents that act on horizontal density gradients. It tends to create tidal periodic stratification and modulate the turbulence in the bottom boundary layer (BBL). Here, we present observations of current, hydrology and turbulence obtained at two mooring stations that are characterized by two typical hydrological environments in the East China Sea (ECS). One is located adjacent to the Changjiang River's mouth, and the other is located over a sloping shelf which is far from the freshwater sources. Tidal straining induces a semidiurnal switching between stable and unstable stratification at both stations. Near-bottom high-frequency velocity measurements further reveal that the dissipation rate of turbulent kinetic energy (TKE) is highly elevated during periods when unstable stratification occurs. A comparison between the TKE dissipation rate (ɛ) and the shear production (P) further reveals that the near-bottom mixing is locally shear-induced most of the time except during the unstable stratification period. Within this period, the magnitude of dissipation exceeds the expected value based on the law of the wall by an order of magnitude. The buoyancy flux that calculated by the balance method is too small to compensate for the existing discrepancy between the dissipation and shear production. Another plausible candidate is the advection of TKE, which may play an important role in the TKE budget during the unstable stratification period.

  15. Multivariate sexual selection on male tegmina in wild populations of sagebrush crickets, Cyphoderris strepitans (Orthoptera: Haglidae).

    PubMed

    Ower, G D; Hunt, J; Sakaluk, S K

    2017-02-01

    Although the strength and form of sexual selection on song in male crickets have been studied extensively, few studies have examined selection on the morphological structures that underlie variation in males' song, particularly in wild populations. Geometric morphometric techniques were used to measure sexual selection on the shape, size and symmetry of both top and bottom tegmina in wild populations of sagebrush crickets, a species in which nuptial feeding by females imposes an unambiguous phenotypic marker on males. The size of the tegmina negatively covaried with song dominant frequency and positively covaried with song pulse duration. Sexual selection was more intense on the bottom tegmen, conceivably because it interacts more freely with the subtegminal airspace, which may play a role in song amplification. An expanded coastal/subcostal region was one of the phenotypes strongly favoured by disruptive selection on the bottom tegmen, an adaptation that may form a more effective seal with the thorax to prevent noise cancellation. Directional selection also favoured increased symmetry in tegminal shape. Assuming more symmetrical males are better able to buffer against developmental noise, the song produced by these males may make them more attractive to females. Despite the strong stabilizing selection documented previously on the dominant frequency of the song, stabilizing selection on the resonator that regulates dominant frequency was surprisingly absent. Nonetheless, wing morphology had an important influence on song structure and appears to be subject to significant linear and nonlinear sexual selection through female mate choice. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  16. Circulation in the region of the Reykjanes Ridge in June-July 2015

    NASA Astrophysics Data System (ADS)

    Tillys, Petit; Herle, Mercier; Virginie, Thierry

    2017-04-01

    The Reykjanes Ridge is a major topographic feature of the North-Atlantic Ocean lying south of Iceland that strongly influences the pathways of the upper and lower limbs of the meridional overturning cell. The circulation in the vicinity of the Reykjanes Ridge is anticyclonic and characterized by a southwestward flow (the East Reykjanes Ridge Current, ERRC) along the eastern flank and a northeastward flow (the Irminger Current, IC) along the western flank. Even if it is admitted that the ERRC feeds the IC through a cross-ridge flow, details and magnitude of this circulation remain unclear. In this study, the circulation in the region of the Reykjanes Ridge was investigated based on ADCP and CTDO2 measurements carried out from the R/V Thalassa during the RREX cruise, which provided a snapshot of the water mass distribution and circulation during summer 2015. One hydrographic section followed the top of the Reykjanes Ridge between Iceland and 50˚ N and three other sections were carried out perpendicularly to the ridge at 62˚ N, 58.5˚ N and 56˚ N. Geostrophic transports were estimated by combining ADCP and hydrographic data. Those observations were used to provide an estimate of the circulation around the Ridge and to discuss the meridional evolutions of the ERRC and IC transports along the Ridge and their connection to the cross-Ridge flows. The section along the top of the Reykjanes Ridge allowed us to describe the cross ridge exchanges. A westward flow crossed the Ridge between Iceland and 53˚ N. Its top to bottom integrated transport was estimated at 17.7 Sv. Two main passages were identified for the westward crossing. A first passage is located near 57˚ N (Bight Fracture Zone, BFZ) in agreement with previous studies. More surprisingly, a second passage is located near 59˚ N. The top-to-bottom transports of those two main flows were estimated at 6.5 and 8 Sv respectively. The IC and ERRC top-to-bottom integrated transports were maximum at 58.5˚ N and estimated at 24.7 Sv and 17.6 Sv respectively. At 58.5˚ N, the IC was composed of two baroclinic branches while the ERRC was composed of one barotropic branch. The analysis also suggested that the IC was partly fed by the subpolar branch of the North Atlantic Current characterized by relatively low salinity and temperature. This subpolar branch would directly feed the IC without entering in the Iceland Basin. The northward increase in salinity and temperature of the IC core between 56˚ N and 62˚ N highlights the entrainment in the IC of saltier and warmer subtropical waters coming from the eastern side of the Ridge.

  17. Chemical constituents in sediment in Lake Pontchartrain and in street mud and canal sediment in New Orleans, Louisiana, following Hurricanes Katrina and Rita, 2005

    USGS Publications Warehouse

    Van Metre, Peter C.; Wilson, Jennifer T.; Horowitz, Arthur J.; Skrobialowski, Stanley C.; Foreman, William T.; Fuller, Christopher C.; Burkhardt, Mark R.; Elrick, Kent A.; Mahler, Barbara J.; Smith, James J.; Zaugg, Steven D.

    2007-01-01

    Samples of street mud, suspended and bottom sediment in canals discharging to Lake Ponchartrain, and suspended and bottom sediment in the lake were collected and analyzed for chemical constituents to help evaluate the effects of Hurricanes Katrina and Rita and the subsequent unwatering of New Orleans, Louisiana. The approach used for sampling and analysis of chemical data for the study is presented herein. Radionuclides, major and trace elements, and numerous organic compounds in sediment were analyzed. The organic compounds include organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, urban waste indicator compounds, and current-use pesticides. Methods for the analysis of urban waste indicator compounds and current-use pesticides in sediment were developed only recently.

  18. Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier.

    PubMed

    Ahn, Chiyui; Fong, Scott W; Kim, Yongsung; Lee, Seunghyun; Sood, Aditya; Neumann, Christopher M; Asheghi, Mehdi; Goodson, Kenneth E; Pop, Eric; Wong, H-S Philip

    2015-10-14

    Phase-change memory (PCM) is an important class of data storage, yet lowering the programming current of individual devices is known to be a significant challenge. Here we improve the energy-efficiency of PCM by placing a graphene layer at the interface between the phase-change material, Ge2Sb2Te5 (GST), and the bottom electrode (W) heater. Graphene-PCM (G-PCM) devices have ∼40% lower RESET current compared to control devices without the graphene. This is attributed to the graphene as an added interfacial thermal resistance which helps confine the generated heat inside the active PCM volume. The G-PCM achieves programming up to 10(5) cycles, and the graphene could further enhance the PCM endurance by limiting atomic migration or material segregation at the bottom electrode interface.

  19. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  20. Spatial variability of surface-sediment porewater pH and related water-column characteristics in deep waters of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Shao, Changgao; Sui, Yi; Tang, Danling; Legendre, Louis

    2016-12-01

    This study analyzes the pH of surface-sediment porewater (i.e. 2-3 cm below the water-sediment interface), and concentrations of CaCO3 and organic carbon (OC) in 1192 sediment cores from the northern South China Sea, in water depths ranging from 137 to 3702 m. This is the first study in the literature to analyze the large-scale spatial variability of deep-water surface-sediment pH over a large ocean basin. The data showed strong spatial variations in pH. The lowest pH values (<7.3) were observed south of Hainan Island, an area that is affected by summer upwelling and freshwater runoff from the Pearl and Red Rivers. Moderately low pH values (generally 7.3-7.5) occurred in two other areas: a submarine canyon, where sediments originated partly from the Pearl River and correspond to a paleo-delta front during the last glacial period; and southwest of Taiwan Island, where waters are affected by the northern branch of the Kuroshio intrusion current (KIC) and runoff from Taiwan rivers. The surface sediments with the highest pH (⩾7.5, and up to 8.3) were located in a fourth area, which corresponded to the western branch of the KIC where sediments have been intensively eroded by bottom currents. The pH of surface-sediment porewater was significantly linearly related to water depth, bottom-water temperature, and CaCO3 concentration (p < 0.05 for the whole sampling area). This study shows that the pH of surface-sediment porewater can be sensitive to characteristics of the overlying water column, and suggests that it will respond to global warming as changes in surface-ocean temperature and pH progressively reach deeper waters.

  1. Reconstructing initial Mediterranean Outflow from Benthic Foraminifera

    NASA Astrophysics Data System (ADS)

    Garcia Gallardo, A.; Grunert, P.; Voelker, A. H. L.; Mendes, I.; Piller, W. E.

    2016-12-01

    The onset of Mediterranean Outflow Water (MOW) takes place after the opening of the Gibraltar Strait (5.33 Ma). Its impact on oceanography and climate in the present is widely studied but its role in the early Pliocene is not well explored yet. Quantitative analysis of benthic foraminifera has been performed on sediment samples from the lower part of IODP Hole U1387C (IODP Expedition 339) in order to reconstruct paleoenvironmental changes during the late Miocene-early Pliocene. Micropaleontological records reveal a shift from reduced oxygenation in the late Miocene to a better ventilated setting during the early Pliocene likely related to the first evidence of Mediterranean-Atlantic exchange. Increased abundances of the functional benthic foraminiferal "elevated epifauna" group have been directly related to MOW in the Gulf of Cadiz since they are adapted to settle on substrates above the sediment surface to catch food particles from strong bottom currents (Schönfeld, 2002). In our study, the elevated epifauna is represented by Planulina ariminensis, Cibicides lobatulus and C. refulgens. However, our early Pliocene records reveal that peak abundances of C. lobatulus and C. refulgens are well correlated with allochthonous shelf taxa and grain-size maxima, suggesting downslope transport to deeper settings. To clarify this issue, stable isotope analyses (δ18O, δ13C) have been performed on shells of shelf dwellers, deep water taxa and elevated epifauna from Pliocene and present-day samples from the Iberian Margin. Preliminary results indicate that some elevated epifaunal elements have a broad bathymetric range and are not always autochthonous to deeper settings. In the early Pliocene Gulf of Cadiz, characterized by frequent turbidite deposition, P. ariminensis would thus remain the only reliable indicator of MOW. Schönfeld, J., 2002. A new benthic foraminiferal proxy for near-bottom current velocities in the Gulf of cadiz, Northeastern Atlantic Ocean. Deep-Sea Res I 49:1853-1875.

  2. Geometrical effects on western intensification of wind-driven ocean currents: The rotated-channel Stommel model, coastal orientation, and curvature

    NASA Astrophysics Data System (ADS)

    Boyd, John P.; Sanjaya, Edwin

    2014-03-01

    We revisit early models of steady western boundary currents [Gulf Stream, Kuroshio, etc.] to explore the role of irregular coastlines on jets, both to advance the research frontier and to illuminate for education. In the framework of a steady-state, quasigeostrophic model with viscosity, bottom friction and nonlinearity, we prove that rotating a straight coastline, initially parallel to the meridians, significantly thickens the western boundary layer. We analyze an infinitely long, straight channel with arbitrary orientation and bottom friction using an exact solution and singular perturbation theory, and show that the model, though simpler than Stommel's, nevertheless captures both the western boundary jet (“Gulf Stream”) and the “orientation effect”. In the rest of the article, we restrict attention to the Stommel flow (that is, linear and inviscid except for bottom friction) and apply matched asymptotic expansions, radial basis function, Fourier-Chebyshev and Chebyshev-Chebyshev pseudospectral methods to explore the effects of coastal geometry in a variety of non-rectangular domains bounded by a circle, parabolas and squircles. Although our oceans are unabashedly idealized, the narrow spikes, broad jets and stationary points vividly illustrate the power and complexity of coastal control of western boundary layers.

  3. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  4. The Tense Situation of Slavic: Past, Present, Future.

    ERIC Educational Resources Information Center

    Cooper, Henry R., Jr.

    1998-01-01

    Discusses the challenges and difficulties of Slavic languages, a field that is notoriously cyclical and is currently at the bottom of a cycle. The article chronicles the history of Slavic studies in relation to political developments since World War II, draws parallels between current trends in Slavic and other modern language programs, and sees…

  5. Influence of boundary conditions on the hydrodynamic forces of an oscillating sphere

    NASA Astrophysics Data System (ADS)

    Mirauda, Domenica; Negri, Marco; Martinelli, Luca; Malavasi, Stefano

    2018-06-01

    The design of submerged structures in sea currents presents certain problems that are not only connected to the shape of the obstacle but also to the number of acting forces as well as the correct modelling of the structures dynamic response. Currently, the common approach is that of integrated numerical modelling, which considers the contribution of both current and structure. The reliability of such an approach is better verified with experimental tests performed on models of simple geometry. On the basis of these considerations, the present work analyses the hydrodynamic forces acting on a sphere, which is characterised by a low mass ratio and damping. The sphere is immersed in a free surface flow and can oscillate along the streamwise and transverse flow direction. It is located at three different positions inside the current: close to the channel bottom, near the free surface and in the middle, and equally distant from both the bottom and free surface. The obtained results for different boundaries and flow kinematic conditions show a relevant influence of the free surface on the hydrodynamic forces along both the streamwise and transverse flow directions.

  6. External view of Zarya and Zvezda taken during the STS-106 mission

    NASA Image and Video Library

    2000-09-11

    S106-E-5116 (11 September 2000) --- This view of the International Space Station (ISS) was taken while it was docked with the Space Shuttle Atlantis and shows parts of all but one of the current components. From the top are the Progress supply vehicle, the Zvezda service module, and the Zarya functional cargo block (FGB). The Unity, now linked to the docking system of the Atlantis in the cargo bay, is out of view at bottom. A multicolored layer signals a sunset or sunrise on Earth at bottom left.

  7. Using a 1200 kHz workhorse ADCP with mode 12 to measure near bottom mean currents

    USGS Publications Warehouse

    Martini, M.; ,

    2003-01-01

    Using high frequency Acoustic Doppler Current (ADCP) profiling technology, it is possible to make high-resolution measurements of mean current profiles within a few meters of the seabed. In coastal applications, mean current speeds may be 10 cm/s or less, and oscillatory wave currents may exceed 100 cm/s during storm events. To resolve mean flows of 10 cm/s or less under these conditions, accuracies of 1 cm/s or better are desirable.

  8. Assessing the Gap Between Top-down and Bottom-up Measured Methane Emissions in Indianapolis, IN.

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Lamb, B. K.; Cambaliza, M. O. L.; Shepson, P. B.; Stirm, B. H.; Salmon, O. E.; Lavoie, T. N.; Lauvaux, T.; Ferrara, T.; Howard, T.; Edburg, S. L.; Whetstone, J. R.

    2014-12-01

    Releases of methane (CH4) from the natural gas supply chain in the United States account for approximately 30% of the total US CH4 emissions. However, there continues to be large questions regarding the accuracy of current emission inventories for methane emissions from natural gas usage. In this paper, we describe results from top-down and bottom-up measurements of methane emissions from the large isolated city of Indianapolis. The top-down results are based on aircraft mass balance and tower based inverse modeling methods, while the bottom-up results are based on direct component sampling at metering and regulating stations, surface enclosure measurements of surveyed pipeline leaks, and tracer/modeling methods for other urban sources. Mobile mapping of methane urban concentrations was also used to identify significant sources and to show an urban-wide low level enhancement of methane levels. The residual difference between top-down and bottom-up measured emissions is large and cannot be fully explained in terms of the uncertainties in top-down and bottom-up emission measurements and estimates. Thus, the residual appears to be, at least partly, attributed to a significant wide-spread diffusive source. Analyses are included to estimate the size and nature of this diffusive source.

  9. Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash.

    PubMed

    Rosenkranz, Theresa; Kidd, Petra; Puschenreiter, Markus

    2018-03-01

    Waste incineration bottom ash is considered a secondary resource for valuable trace elements (TE), which is currently neglected in most European countries. Phytomining could potentially recover valuable TE from such waste materials but is still at an exploratory stage with many challenges. The use of bioaugmentation to improve plant growth and TE accumulation of metal-tolerant high biomass plants growing on waste incineration bottom ash was evaluated. Bacterial strains that were previously isolated from rhizosphere, roots and contaminated soil were selected according to their plant growth promoting characteristics and tolerance to the bottom ash substrate. Those selected bacterial strains were tested for their beneficial effects on Nicotiana tabacum and Salix smithiana with regards to phytomining. The rhizobacterial strain Rhodococcus erythropolis P30 enhanced the shoot dry weight of N. tabacum by on average 57% compared to the control plants. Several bacterial inoculants enhanced biomass production and the nutritional status of S. smithiana. Moreover, those bacterial strains previously described to enhance biomass production of N. tabacum and members of the Salicaceae on TE-contaminated soils, also enhanced biomass production of these species on bottom ash. However, bacterial inoculants could not enhance trace element accumulation in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. High resolution mapping of hydrothermal plumes in the Mariana back-arc relate seafloor sources to above-bottom plumes

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Resing, J. A.; Chadwick, W. W., Jr.; Merle, S. G.; Kaiser, C. L.

    2016-12-01

    The Mariana backarc spreading center between 12.9°-18°N was systematically explored for hydrothermal activity in Nov-Dec 2015 (R/V Falkor cruise FK151121) by conducting long distance along-axis CTD tows (vertical range was 20-600 meters above bottom (mab)) followed by higher resolution, horizontal grid AUV Sentry surveys at 70 mab in some of the areas where plumes were found. In those areas, the combination of along-axis CTD tows and near-bottom AUV surveys provides a nearly 3-dimensional view of the above-bottom plume relative to the seafloor morphology and potential sources. In addition, photo surveys were run at 5 mab at two of the sites. At 15.4°N, strong ORP anomalies (ΔE=-39 mv) with weak to absent optical signals were aligned with a new (<3yr) lava flow, suggesting widespread diffuse venting was associated with still-cooling lava to create a broad, optically weak plume that extended to 500 mab. About 10 km north of the new lava flow (15.5°N) there were fewer, but more distinct instances where temperature, particle, and OPR anomalies were co-located at 70 mab, providing information for the likely locations where more focused, higher temperature venting generated an optically intense (dNTU=0.032) above-bottom plume (to 500 mab over the axial high). The plume over the backarc segment high at 17.0°N exhibited a significant optical anomaly (dNTU=0.023) with a very strong ORP anomaly (ΔE=-88 mv) that extended only 1.5 km along-axis. The near-bottom survey showed a broad area ( 3km2) with robust temperature, particle, and ORP signals. Directed by this information, and the high resolution bathymetry acquired from the AUV survey, several active chimneys (one being 30 m tall with temperatures up to 340°C) were found during NOAA Okeanos Explorer ROV dives in May 2016. At 18°N, anomalies seen in the 11 km2 AUV survey were generally located along the axis of the spreading center and, with one exception, were limited to areas of previously-known (1987) venting. The plume in the water column over the Burke vent site was defined by both particle (dNTU=0.010) and ORP (ΔE=-11 mv) anomalies from 400-800 mab, but only ORP signals 120-400 mab. ORP signals were seen over the other sites without any optical anomalies; the much lower rise heights (200-400 mab) suggest only lower temperature, diffuse venting persists at these sites.

  11. The Cosmonaut Sea Wedge

    USGS Publications Warehouse

    Solli, K.; Kuvaas, B.; Kristoffersen, Y.; Leitchenkov, G.; Guseva, J.; Gandyukhin, V.

    2007-01-01

    A set of multi-channel seismic profiles (~15000 km) acquired by Russia, Norway and Australia has been used to investigate the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge below the upper part of the continental rise. The wedge, herein termed the Cosmonaut Sea Wedge, is positioned stratigraphically underneath the inferred glaciomarine section and extends for at least 1200 km along the continental margin and from 80 to about 250 km seaward or to the north. Lateral variations in the growth pattern of the wedge indicate several overlapping depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits suggests that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems.

  12. Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors

    NASA Astrophysics Data System (ADS)

    Buragohain, P.; Richter, C.; Schenk, T.; Lu, H.; Mikolajick, T.; Schroeder, U.; Gruverman, A.

    2018-05-01

    Visualization of domain structure evolution under an electrical bias has been carried out in ferroelectric La:HfO2 capacitors by a combination of Piezoresponse Force Microscopy (PFM) and pulse switching techniques to study the nanoscopic mechanism of polarization reversal and the wake-up process. It has been directly shown that the main mechanism behind the transformation of the polarization hysteretic behavior and an increase in the remanent polarization value upon the alternating current cycling is electrically induced domain de-pinning. PFM imaging and local spectroscopy revealed asymmetric switching in the La:HfO2 capacitors due to a significant imprint likely caused by the different boundary conditions at the top and bottom interfaces. Domain switching kinetics can be well-described by the nucleation limited switching model characterized by a broad distribution of the local switching times. It has been found that the domain velocity varies significantly throughout the switching process indicating strong interaction with structural defects.

  13. Formation of localized sand patterns downstream from a vertical cylinder under steady flows: Experimental and theoretical study.

    PubMed

    Auzerais, Anthony; Jarno, Armelle; Ezersky, Alexander; Marin, François

    2016-11-01

    The generation of localized, spatially periodic patterns on a sandy bottom is experimentally and theoretically studied. Tests are performed in a hydrodynamic flume where patterns are produced downstream from a vertical cylinder under a steady current. It is found that patterns appear as a result of a subcritical instability of the water-sand bottom interface. A dependence of the area shape occupied by the patterns on the flow velocity and the cylinder diameter is investigated. It is shown that the patterns' characteristics can be explained using the Swift-Hohenberg equation. Numerical simulations point out that for a correct description of the patterns, an additional term which takes into account the impact of vortices on the sandy bottom in the wake of a cylinder must be added in the Swift-Hohenberg equation.

  14. pCO2 Observations from a Vertical Profiler on the upper continental slope off Vancouver Island: Physical controls on biogeochemical processes.

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.

    2016-02-01

    We analyse two six month sets of data collected from a vertical profiler on Ocean Networks Canada's NEPTUNE observatory over the summer and early fall of 2012 and 2014. The profiler is in 400 m of water on the upper slope of the continental shelf. The site is away from direct influence of canyons, but is in a region of strong internal tide generation. Both seasonally varying semidiurnal internal tidal currents and diurnal shelf waves are observed. The near surface mean flow is weak and seasonally alternates between the California and Alaskan Currents. Mid-depth waters are influenced by the poleward flowing Californian undercurrent and the deep waters by seasonally varying wind-driven Ekman transport. The profiling package consists of a CTD, an oxygen optode, a pCO2 sensor, Chlorophyll fluorometer/turbidity, CDOM and is co-located with an upward-looking bottom-mounted 75kHz ADCP that measures currents to 30 m below sea surface. With these first deep-sea profiled time series measurements of pCO2, we endeavor to model how the local physical dynamics exert control over the variability of water properties over the slope and shelf and what the variability of the non-conservative tracers of pCO2 and O2 can tell us about the biogeochemistry of the region.

  15. Acoustic streaming, fluid mixing, and particle transport by a Gaussian ultrasound beam in a cylindrical container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Jeffrey S., E-mail: jeffm@cems.uvm.edu; Wu, Junru

    A computational study is reported of the acoustic streaming flow field generated by a Gaussian ultrasound beam propagating normally toward the end wall of a cylindrical container. Particular focus is given to examining the effectiveness of the acoustic streaming flow for fluid mixing within the container, for deposition of particles in suspension onto the bottom surface, and for particle suspension from the bottom surface back into the flow field. The flow field is assumed to be axisymmetric with the ultrasound transducer oriented parallel to the cylinder axis and normal to the bottom surface of the container, which we refer tomore » as the impingement surface. Reflection of the sound from the impingement surface and sound absorption within the material at the container bottom are both accounted for in the computation. The computation also accounts for thermal buoyancy force due to ultrasonic heating of the impingement surface, but over the time period considered in the current simulations, the flow is found to be dominated by the acoustic streaming force, with only moderate effect of buoyancy force.« less

  16. Acoustic streaming, fluid mixing, and particle transport by a Gaussian ultrasound beam in a cylindrical container

    NASA Astrophysics Data System (ADS)

    Marshall, Jeffrey S.; Wu, Junru

    2015-10-01

    A computational study is reported of the acoustic streaming flow field generated by a Gaussian ultrasound beam propagating normally toward the end wall of a cylindrical container. Particular focus is given to examining the effectiveness of the acoustic streaming flow for fluid mixing within the container, for deposition of particles in suspension onto the bottom surface, and for particle suspension from the bottom surface back into the flow field. The flow field is assumed to be axisymmetric with the ultrasound transducer oriented parallel to the cylinder axis and normal to the bottom surface of the container, which we refer to as the impingement surface. Reflection of the sound from the impingement surface and sound absorption within the material at the container bottom are both accounted for in the computation. The computation also accounts for thermal buoyancy force due to ultrasonic heating of the impingement surface, but over the time period considered in the current simulations, the flow is found to be dominated by the acoustic streaming force, with only moderate effect of buoyancy force.

  17. Component processes in voluntary task switching.

    PubMed

    Demanet, Jelle; Liefooghe, Baptist

    2014-05-01

    The present study investigated the involvement of bottom-up and top-down control in task-switching situations in which tasks are selected on a voluntary basis. We tested for indices of both types of control in the reduction in switch cost that is observed when more time is available before executing a task. Participants had to indicate their task choice overtly prior to the actual task execution, and two time intervals were manipulated: the interval between the task-execution response of the previous trial and task-indication response of the current trial and the interval between task-indication response and task-execution response of a particular trial. In Experiment 1, the length of these intervals was manipulated orthogonally, and indices for top-down and bottom-up control were observed. Concerned with the validity of these results, Experiments 2-3 additionally discouraged participants from preparing the upcoming task before their task-indication response. Indices for bottom-up control remained, but not for top-down control. The characteristics of top-down and bottom-up control in voluntary task switching and task switching in general are discussed.

  18. The ESASSI-08 cruise in the South Scotia Ridge region: Water masses, currents, and the ASF

    NASA Astrophysics Data System (ADS)

    Palmer, M.; Gomis, D.; Flexas, M. M.; Jordà, G.; Orsi, A. H.

    2009-04-01

    The ESASSI-08 oceanographic cruise carried out in January 2008 was the major milestone of ESASSI, the Spanish component of SASSI (a core project of the International Polar Year devoted to study the shelf-slope exchanges in different locations of Antarctica). The specific objectives of ESASSI, the sampling strategy and the overall distribution of the main variables across the 11 sections covered by the cruise are presented in a poster. Here we focus on three specific issues: i) the observation of strong tidal currents over some of the sampled slopes; ii) the path of the Antarctic Slope Front (ASF) over the SSR; and iii) the outflow of dense, ventilated water from the Weddell Sea into the South Scotia Sea. The main results are: i) Strong tidal currents with a significant diurnal component were observed over the southern slope of the SSR. Three tidal models are compared with the observations and used to de-tide ADCP currents. ii) The signature of the ASF is clearly detected on the southern slopes of the SSR (on the Weddell Sea flank). Over the northern slopes (the Scotia Sea flank), however, only weak signatures of frontal structures are observed; an in-depth biochemical analysis will be required to link the structures observed over the two flanks of the SSR. What seems clear is that the ASF does not extend further than Elephant Island, since southwestward of that island the shelf and the slope are fully occupied by Circumpolar Deep Water (CDW) from the Antarctic Circumpolar Current. iii) The shallower component of Weddell Sea Deep Water (Upper WSDW) flows over the SSR and pours into the Scotia Sea except to the east of Elephant Island, where the channels are less than 1500 m deep. The densest component of WSDW (Lower WSDW) is observed at both flanks of the SSR, but again a more detailed analysis of biochemical data will be required to prove a direct flux of this water mass across the SSR. Weddell Sea Bottom Water (WSBW) is not observed in any of the sampled sections.

  19. Generation and distribution of PAHs in the process of medical waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying, E-mail: echochen327@163.com; National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029; Zhao, Rongzhi

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs)more » during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.« less

  20. Anoxic monimolimnia: Nutrients devious feeders or bombs ready to explode?

    NASA Astrophysics Data System (ADS)

    Gianni, Areti; Zacharias, Ierotheos

    2015-04-01

    Coastal regions are under strong human influence and its environmental impact is reflected into their water quality. Oligotrophic estuaries and coastal systems have changed in mesotrophic and/or eutrophic, shown an increase in toxic algal blooms, hypoxic/anoxic events, and massive mortalities of many aquatic and benthic organisms. In strongly stratified and productive water basins, bottom water dissolved oxygen is depleted due to the excessive organic matter decomposition in these depths. Distribution and recycling of nutrients in their water column is inextricably dependent on oxygenation and redox conditions. Bottom water anoxia accelerates PO43-, NH4+ and H2S recycling and accumulation from organic matter decomposition. The anoxic, H2S, PO43- and NH4+ rich bottom water constitutes a toxic layer, threatening the balance of the entire ecosystem. In permanently stratified water basins, storm events could result in stratification destruction and water column total mixing. The turnover brings large amounts of H2S to the surface resulting in low levels of oxygen and massive fish kills. PO43- and NH4+ are released to the interface and surface waters promoting algal blooms. Μore organic matter is produced fueling anoxia. The arising question is, whether the balance of an anoxic water ecosystem is under the threat of its hypolimnetic nutrient and sulfide load, only in the case of storm events and water column total mixing. In polymictic water basins it is clear that the accumulated, in the bottom layer, nutrients will supply surface waters, after the pycnocline overturn. Besides this mechanism of basins' water quality degradation is nowadays recognized as one of the biggest obstacles in eutrophic environments management and restoration efforts. The role of internal load, in permanently stratified water basins, is not so clear. In the present study the impact of storm events on water column stability and bottom water anoxia of meromictic coastal basins, is investigated. The importance of internal load is emerged, presenting the disturbance on the main nutrients, dissolved oxygen, hydrogen sulfide and chlorophyll distribution, caused by the total water column mixing. Additionally, the relationship between temporal nutrients variations in surface layers, of permanent anoxic coastal basins with a) changes on the physicochemical characteristics of their water column, b) changes on the bottom water phosphorus and nitrogen concentration and c) their effect on the basin's primary productivity, is sought. In order to achieve the objectives of this study, two different sets of Aitoliko basin's (western Greece) data were used. The first one includes measurements of physicochemical parameters, nutrients, chlorophyll and hydrogen sulfide, four days after a storm event and the consequent anoxic crisis in Aitoliko basin on 4th of December 2008. The second one contains respective data obtained from a biennial (May 2006-May 2008) basin's monitoring. The changes in the physical, chemical and biological characteristics, of Aitoliko basin water column, after its total mixing, highlighted the importance of the accumulated nutrients and sulfides in the bottom layer. In addition, turned out that bottom layer can supply with nutrients the surface waters, even during periods of high water column stratification. Small scale, subtle, changes in physicochemical and hydrological basin's characteristics promoted this supply, affecting both quantitative and qualitative the ecosystem's primary productivity and shifting its quality character.

  1. Effect of Changes in Living Conditions on Well-Being: A Prospective Top-Down Bottom-Up Model

    ERIC Educational Resources Information Center

    Nakazato, Naoki; Schimmack, Ulrich; Oishi, Shigehiro

    2011-01-01

    Using the German Socio-Economic Panel, we examined life-satisfaction and housing satisfaction before and after moving (N = 3,658 participants from 2,162 households) with univariate and bivariate two-intercept two-slope latent growth models. The main findings were (a) a strong and persistent increase in average levels of housing satisfaction, (b)…

  2. Climate-mediated changes in marine ecosystem regulation during El Niño.

    PubMed

    Lindegren, Martin; Checkley, David M; Koslow, Julian A; Goericke, Ralf; Ohman, Mark D

    2018-02-01

    The degree to which ecosystems are regulated through bottom-up, top-down, or direct physical processes represents a long-standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom-up and top-down forcing has been shown to vary over spatio-temporal scales, often linked to highly variable and heterogeneously distributed environmental conditions. Ecosystem dynamics in the Northeast Pacific have been suggested to be predominately bottom-up regulated. However, it remains unknown to what extent top-down regulation occurs, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down, and physical forcing during changing climate conditions on ecosystem regulation in the Southern California Current System (SCCS) using a generalized food web model. This statistical approach is based on nonlinear threshold models and a long-term data set (~60 years) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom-up control to be the primary mode of ecosystem regulation. However, our results also demonstrate an alternative mode of regulation represented by interacting bottom-up and top-down forcing, analogous to wasp-waist dynamics, but occurring across multiple trophic levels and only during periods of reduced bottom-up forcing (i.e., weak upwelling, low nutrient concentrations, and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases of the Pacific Decadal Oscillation (PDO), as well as highlight potential concerns for marine and fisheries management by demonstrating increased sensitivity of pelagic fish to exploitation during El Niño. © 2017 John Wiley & Sons Ltd.

  3. Vapor cooled current lead for cryogenic electrical equipment

    DOEpatents

    Vansant, James H.

    1983-01-01

    Apparatus and method are provided for conducting electric current to cryogenic electrical equipment devices. A combination of inner and outer tubes together form a plurality of hollow composite tubes housed in a sheath. Top and bottom block mounting means are fitted to hold the composite tubes and are affixed to the ends of the sheath. This combination forms a current lead. The current lead is attached to a cryogenic device housing a fluid coolant which moves through the current lead, cooling the current lead as the fluid travels.

  4. Remote Estimation of River Discharge and Bathymetry: Sensitivity to Turbulent Dissipation and Bottom Friction

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2016-12-01

    We investigated the fidelity of a hierarchy of inverse models that estimate river bathymetry and discharge using measurements of surface currents and water surface elevation. Our most comprehensive depth inversion was based on the Shiono and Knight (1991) model that considers the depth-averaged along-channel momentum balance between the downstream pressure gradient due to gravity, the bottom drag and the lateral stresses induced by turbulence. The discharge was determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The bottom friction coefficient was assumed to be known or determined by alternative means. We also considered simplifications of the comprehensive inversion model that exclude the lateral mixing term from the momentum balance and assessed the effect of neglecting this term on the depth and discharge estimates for idealized in-bank flow in symmetric trapezoidal channels with width/depth ratio of 40 and different side-wall slopes. For these simple gravity-friction models, we used two different bottom friction parameterizations - a constant Darcy-Weisbach local friction and a depth-dependent friction related to the local depth and a constant Manning (roughness) coefficient. Our results indicated that the Manning gravity-friction model provides accurate estimates of the depth and the discharge that are within 1% of the assumed values for channels with side-wall slopes between 1/2 and 1/17. On the other hand, the constant Darcy-Weisbach friction model underpredicted the true depth and discharge by 7% and 9%, respectively, for the channel with side-wall slope of 1/17. These idealized modeling results suggest that a depth-dependent parameterization of the bottom friction is important for accurate inversion of depth and discharge and that the lateral turbulent mixing is not important. We also tested the comprehensive and the simplified inversion models for the Kootenai River near Bonners Ferry (Idaho) using in situ and remote sensing measurements of surface currents and water surface elevation obtained during a 2010 field experiment.

  5. WHISPERS Project on the easternmost slope of the Ross Sea (Antarctica): preliminary results.

    NASA Astrophysics Data System (ADS)

    Olivo, E.; De Santis, L.; Bergamasco, A.; Colleoni, F.; Gales, J. A.; Florindo-Lopez, C.; Kim, S.; Kovacevic, V.; Rebesco, M.

    2017-12-01

    The advance and retreat of the West Antarctic Ice Sheet from the outer continental shelf and the oceanic circulation are the main causes of the depositional processes on the Ross Sea continental slope, at present time and during the most of the Cenozoic. Currently the Antarctic Bottom Water formation is directly linked to the relatively warm Circumpolar Deep Water that, encroaching the continental shelf, mixes with the colder Ross Sea Bottom Water. Detailed multibeam and geological surveys useful to locate and characterize peculiar morphological structures on the bottom are essential to study how the glacial and oceanographic processes interact with the seabed sediments. In the framework of the PNRA-WHISPERS project (XXXIIth Italian Antarctic expedition - January/March 2017), new multibeam bathymetric, sub-bottom chirp, were acquired from the easternmost margin of the Ross Sea, on the southeastern side of the Hayes Bank, usually covered by sea ice. We observed on the upper slope erosional features (incised gullies of likely glacial meltwater origin). A broad scar in the upper slope is characterized by an elongated SSW-NNE ridge (10 km long, 850-1200 m water depth, 2 km wide), that may be a remnants of previous glacial or debris flow deposits, eroded by meltwater outwash discharge at the beginning of grounding ice retreat and by RSBW cascading along the slope, as documented by Expandable Bathy-Thermograph and Acoustic Depth Current Profile data. Sub-bottom chirp profiles crossing this ridge show a very low amplitude reflective sea bed, supporting the hypothesis of its soft sediment nature, in good agreement with a very low acoustic velocity obtained by multichannel seismic data reprocessing. The occurrence of internal stratification on 2D multichannel seismic profiles would discount a gas-fluids related mud volcano origin. No sediment cores were collected, due to bad sea conditions and limited ship time, further data collection would be needed to fully understand the origin of such depositional feature and its relation with slope glacial and oceanographic processes.

  6. Ocean-Science Mission Needs: Real-Time AUV Data for Command, Control, and Model Inputs

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.; Costello, D. K.; Warrior, H.; Langebrake, L. C.; Hou, W.; Patten, J. T.; Kaltenbacher, E.

    2001-01-01

    Predictive models for tides, hydrodynamics, and bio-optical properties affecting the visibility and buoyancy of coastal waters are needed to evaluate the safety of personnel and equipment engaged in maritime operations under potentially hazardous conditions. Predicted currents can be markedly different for two-layer systems affected by terrestrial runoff than for well-mixed conditions because the layering decouples the surface and bottom Ekman layers and rectifies the current response to oscillatory upwelling-and downwelling-favorable winds. Standard ocean models (e.g. Princeton Ocean Model) require initial-and boundary data on the physical and optical properties of the multilayered water column to provide accurate simulations of heat budgets and circulation. Two observational systems are designed to measure vertically structured conditions on the West Florida Shelf (WFS): a tethered buoy network and an autonomous underwater vehicle (AUV) observational system. The AUV system is described with a focus on the observational systems that challenge or limit the communications command and control network for various types of measurement programs. These include vertical oscillatory missions on shelf transects to observe the optical and hydrographic properties of the water column, and bottom-following missions for measuring the bottom albedo. Models of light propagation, absorption, and conversion to heat as well as determination of the buoyancy terms for physical models require these measurements. High data rates associated with video bottom imagery are the most challenging for the real-time, command and control communications system, but they are met through a combination of loss-less and lossy data-compression methods, depending upon the data-rate of the radio links.

  7. Waste incineration, Part I: Technology.

    PubMed

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  8. Ecological hierarchies and self-organisation - Pattern analysis, modelling and process integration across scales

    USGS Publications Warehouse

    Reuter, H.; Jopp, F.; Blanco-Moreno, J. M.; Damgaard, C.; Matsinos, Y.; DeAngelis, D.L.

    2010-01-01

    A continuing discussion in applied and theoretical ecology focuses on the relationship of different organisational levels and on how ecological systems interact across scales. We address principal approaches to cope with complex across-level issues in ecology by applying elements of hierarchy theory and the theory of complex adaptive systems. A top-down approach, often characterised by the use of statistical techniques, can be applied to analyse large-scale dynamics and identify constraints exerted on lower levels. Current developments are illustrated with examples from the analysis of within-community spatial patterns and large-scale vegetation patterns. A bottom-up approach allows one to elucidate how interactions of individuals shape dynamics at higher levels in a self-organisation process; e.g., population development and community composition. This may be facilitated by various modelling tools, which provide the distinction between focal levels and resulting properties. For instance, resilience in grassland communities has been analysed with a cellular automaton approach, and the driving forces in rodent population oscillations have been identified with an agent-based model. Both modelling tools illustrate the principles of analysing higher level processes by representing the interactions of basic components.The focus of most ecological investigations on either top-down or bottom-up approaches may not be appropriate, if strong cross-scale relationships predominate. Here, we propose an 'across-scale-approach', closely interweaving the inherent potentials of both approaches. This combination of analytical and synthesising approaches will enable ecologists to establish a more coherent access to cross-level interactions in ecological systems. ?? 2010 Gesellschaft f??r ??kologie.

  9. Morphology and processes associated with the accumulation of the fine-grained sediment deposit on the southern New England shelf

    USGS Publications Warehouse

    Twichell, David C.; McClennen, Charles E.; Butman, Bradford

    1981-01-01

    A 13,000 km2 area of the southern New England Continental Shelf which is covered by anomalously fine-grained sediment has been surveyed by means of high-resolution, seismic-reflection and side-scan sonar techniques to map its morphology and structure, and a near-bottom instrument system contributed to understanding present activity of the deposit. Seismic-reflection profiles show that the fine-grained deposit, which is as much as 13 m thick, has accumulated during the last transgression because it rests on a reflector that is geomorphically similar to and continuous with the Holocene transgressive sand sheet still exposed on the shelf to the west. The ridge and swale topography comprising the sand sheet on the shelf off New Jersey and Long Island are relict in origin as these same features are found buried under the fine sediment deposit. Southwestward migrating megaripples observed on the sonographs in the eastern part of the deposit are evidence that sediment is still actively accumulating in this area. In the western part of the deposit, where surface sediment is composed of silt plus clay, evidence of present sediment mobility consists of changes in the near-bottom, suspended-matter concentrations primarily associated with storms. Nantucket Shoals and Georges Bank are thought to be the sources for the fine-textured sediment. Storms and strong tidal currents in these shoal areas may still erode available fine-grained material, which then is transported westward by the mean drift to the southern New England Shelf, where a comparatively tranquil environment permits deposition of the fine material.

  10. Attenuating reaches and the regional flood response of an urbanizing drainage basin

    NASA Astrophysics Data System (ADS)

    Turner-Gillespie, Daniel F.; Smith, James A.; Bates, Paul D.

    The Charlotte, North Carolina metropolitan area has experienced extensive urban and suburban growth and sharply increasing trends in the magnitude and frequency of flooding. The hydraulics and hydrology of flood response in the region are examined through a combination of numerical modeling studies and diagnostic analyses of paired discharge observations from upstream-downstream gaging stations. The regional flood response is shown to strongly reflect urbanization effects, which increase flood peaks and decrease response times, and geologically controlled attenuating reaches, which decrease flood peaks and increase lag times. Attenuating reaches are characterized by systematic changes in valley bottom geometry and longitudinal profile. The morphology of the fluvial system is controlled by the bedrock geology, with pronounced changes occurring at or near contacts between intrusive igneous and metamorphic rocks. Analyses of wave celerity and flood peak attenuation over a range of discharge values for an 8.3 km valley bottom section of Little Sugar Creek are consistent with Knight and Shiono's characterization of the variation of flood wave velocity from in-channel conditions to valley bottom full conditions. The cumulative effect of variation in longitudinal profile, expansions and contractions of the valley bottom, floodplain roughness and sub-basin flood response is investigated using a two-dimensional, depth-averaged, finite element hydrodynamic model coupled with a distributed hydrologic model. For a 10.1 km stream reach of Briar Creek, with drainage area ranging from 13 km 2 at the upstream end of the reach to 49 km 2 at the downstream end, it is shown that flood response reflects a complex interplay of hydrologic and hydraulic processes on hillslopes and valley bottoms.

  11. Characteristics of Air Core and Surface Velocity for Water Flow in a Vortex Sediment-Extraction Chamber Measured by Using Photo Images and PTV Technique.

    NASA Astrophysics Data System (ADS)

    Yao, Hou Chang; Chyan Deng, Jan; Chao, Hsu Yu; Chih Yuan, Yang

    2017-04-01

    A vortex sediment-extraction chamber, consisted of cylindrical chamber, inflow system, bottom orifice and overflow weir, is used to separate sediment from sediment-laden water flow. A tangential inflow is introduced into a cylindrical chamber with a bottom orifice; thus, a strong vortex flow is produced there. Under actions of gravity and centrifugal force, heavier sediment particles are forced to move towards the bottom orifice, and relatively clear water flows over through the top overflow weir. The flow field in the cylindrical chamber consists of forced vortex and free vortex. When the bottom orifice is opened during the sediment-extraction process, an air core appears and changes with different settings. In this study, the air core and water surface velocity in the cylindrical chamber were measured by using a photo image process and particle tracking velocimetry (PTV), as well as numerically simulated by using a commercial software, Flow-3D.Laboratory experiments were conducted in a vortex chamber, having height of 130 cm and diameter of 48 cm. Five kinds of bottom orifice size from 1.0 cm to 3.0 cm and four kinds of inflow water discharge from 1,300cm3/s to 1,700 cm3/s were used while the inflow pipe of 3 cm in diameter was kept the same for all experiments. The characteristics of the air core and water surface velocity, and the inflow and outflow ratios under different experimental arrangements were observed and discussed so as to provide a better design and application for a vortex sediment-extraction chamber in the future.

  12. Trace-element budgets in the Ohio/Sunbury shales of Kentucky: Constraints on ocean circulation and primary productivity in the Devonian-Mississippian Appalachian Basin

    USGS Publications Warehouse

    Perkins, R.B.; Piper, D.Z.; Mason, C.E.

    2008-01-01

    The hydrography of the Appalachian Basin in late Devonian-early Mississippian time is modeled based on the geochemistry of black shales and constrained by others' paleogeographic reconstructions. The model supports a robust exchange of basin bottom water with the open ocean, with residence times of less than forty years during deposition of the Cleveland Shale Member of the Ohio Shale. This is counter to previous interpretations of these carbon-rich units having accumulated under a stratified and stagnant water column, i.e., with a strongly restricted bottom bottom-water circulation. A robust circulation of bottom waters is further consistent with the palaeoclimatology, whereby eastern trade-winds drove upwelling and arid conditions limited terrestrial inputs of siliciclastic sediment, fresh waters, and riverine nutrients. The model suggests that primary productivity was high (~ 2??g C m- 2 d- 1), although no higher than in select locations in the ocean today. The flux of organic carbon settling through the water column and its deposition on the sea floor was similar to fluxes found in modern marine environments. Calculations based on the average accumulation rate of the marine fraction of Ni suggest the flux of organic carbon settling out of the water column was approximately 9% of primary productivity, versus an accumulation rate (burial) of organic carbon of 0.5% of primary productivity. Trace-element ratios of V:Mo and Cr:Mo in the marine sediment fraction indicate that bottom waters shifted from predominantly anoxic (sulfate reducing) during deposition of the Huron Shale Member of the Ohio Shale to predominantly suboxic (nitrate reducing) during deposition of the Cleveland Shale Member and the Sunbury Shale, but with anoxic conditions occurring intermittently throughout this period. ?? 2008 Elsevier B.V.

  13. Fluxes of metals to a manganese nodule: Radiochemical, chemical, structural, and mineralogical studies

    USGS Publications Warehouse

    Moore, W.S.; Ku, T.-L.; Macdougall, J.D.; Burns, V.M.; Burns, R.; Dymond, J.; Lyle, M.W.; Piper, D.Z.

    1981-01-01

    Fluxes of metals to the top and bottom surfaces of a manganese nodule were determined by combining radiochemical (230Th, 231Pa, 232Th, 238U, 234U) and detailed chemical data. The top of the nodule had been growing in its collected orientation at 4.7 mm Myr-1 for at least 0.5 Myr and accreting Mn at 200 ??g cm-2 kyr-1. The bottom of the nodule had been growing in its collected orientation at about 12 mm Myr-1 for at least 0.3 Myr and accreting Mn at about 700 ??g cm-2 yr-1. Although the top of the nodule was enriched in iron relative to the bottom, the nodule had been accreting Fe 50% faster on the bottom. 232Th was also accumulating more rapidly in the bottom despite a 20-fold enrichment of 230Th on the top. The distribution of alpha-emitting nuclides calculated from detailed radiochemical measurements matched closely the pattern revealed by 109-day exposures of alpha-sensitive film to the nodule. However, the shape and slope of the total alpha profile with depth into the nodule was affected strongly by 226Ra and 222Rn migrations making the alpha-track technique alone an inadequate method of measuring nodule growth rates. Diffusion of radium in the nodule may have been affected by diagenetic reactions which produce barite, phillipsite and todorokite within 1 mm of the nodule surface; however, our sampling interval was too broad to document the effect. We have not been able to resolve the importance of nodule diagenesis on the gross chemistry of the nodule. ?? 1981.

  14. Developing a Comprehensive and Comparative Questionnaire for Measuring Personality in Chimpanzees Using a Simultaneous Top-Down/Bottom-Up Design

    PubMed Central

    Freeman, Hani D.; Brosnan, Sarah F.; Hopper, Lydia M.; Lambeth, Susan P.; Schapiro, Steven J.; Gosling, Samuel D.

    2013-01-01

    One effective method for measuring personality in primates is to use personality trait ratings to distill the experience of people familiar with the individual animals. Previous rating instruments were created using either top-down or bottom-up approaches. Top-down approaches, which essentially adapt instruments originally designed for use with another species, can unfortunately lead to the inclusion of traits irrelevant to chimpanzees or fail to include all relevant aspects of chimpanzee personality. Conversely, because bottom-up approaches derive traits specifically for chimpanzees, their unique items may impede comparisons with findings in other studies and other species. To address the limitations of each approach, we developed a new personality rating scale using a combined top-down/bottom-up design. Seventeen raters rated 99 chimpanzees on the new 41-item scale, with all but one item being rated reliably. Principal components analysis, using both varimax and direct oblimin rotations, identified six broad factors. Strong evidence was found for five of the factors (Reactivity/Undependability, Dominance, Openness, Extraversion, and Agreeableness). A sixth factor (Methodical) was offered provisionally until more data are collected. We validated the factors against behavioral data collected independently on the chimpanzees. The five factors demonstrated good evidence for convergent and predictive validity, thereby underscoring the robustness of the factors. Our combined top-down/ bottom-up approach provides the most extensive data to date to support the universal existence of these five personality factors in chimpanzees. This framework, which facilitates cross-species comparisons, can also play a vital role in understanding the evolution of personality and can assist with husbandry and welfare efforts. PMID:23733359

  15. Sediment characteristics and sedimentation rates in Lake Michie, Durham County, North Carolina, 1990-92

    USGS Publications Warehouse

    Weaver, J.C.

    1994-01-01

    A reservoir sedimentation study was conducted at 508-acre Lake Michie, a municipal water-supply reservoir in northeastern Durham County, North Carolina, during 1990-92. The effects of sedimentation in Lake Michie were investigated, and current and historical rates of sedimentation were evaluated. Particle-size distributions of lake-bottom sediment indicate that, overall, Lake Michie is rich in silt and clay. Nearly all sand is deposited in the upstream region of the lake, and its percentage in the sediment decreases to less than 2 percent in the lower half of the lake. The average specific weight of lake-bottom sediment in Lake Michie is 73.6 pounds per cubic foot. The dry-weight percentage of total organic carbon in lake-bottom sediment ranges from 1.1 to 3.8 percent. Corresponding carbon-nitrogen ratios range form 8.6 to 17.6. Correlation of the total organic carbon percentages with carbon-nitrogen ratios indicates that plant and leaf debris are the primary sources of organic material in Lake Michie. Sedimentation rates were computed using comparisons of bathymetric volumes. Comparing the current and previous bathymetric volumes, the net amount of sediment deposited (trapped) in Lake Michie during 1926-92 is estimated to be about 2,541 acre-feet or slightly more than 20 percent of the original storage volume computed in 1935. Currently (1992), the average sedimentation rate is 38 acre-feet per year, down from 45.1 acre-feet per year in 1935. To confirm the evidence that sedimentation rates have decreased at Lake Michie since its construction in 1926, sediment accretion rates were computed using radionuclide profiles of lake-bottom sediment. Sediment accretion rates estimated from radiochemical analyses of Cesium-137 and lead-210 and radionuclides in the lake-bottom sediment indicate that rates were higher in the lake?s early years prior to 1962. Estimated suspended-sediment yields for inflow and outflow sites during 1983-91 indicate a suspended-sediment trap efficiency of 89 percent. An overall trap efficiency for the period of 1983-91 was computed using the capacity-inflow ratio. The use of this ratio indicates that the trap efficiency for Lake Michie is 85 percent. However, the suspended-sediment trap efficiency indicates that the actual overall trap efficiency for Lake Michie was probably greater than 89 percent during this period.

  16. An APC:WNT Counter-Current-Like Mechanism Regulates Cell Division Along the Human Colonic Crypt Axis: A Mechanism That Explains How APC Mutations Induce Proliferative Abnormalities That Drive Colon Cancer Development

    PubMed Central

    Boman, Bruce M.; Fields, Jeremy Z.

    2013-01-01

    APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes. PMID:24224156

  17. The deep meridional overturning circulation in the Indian Ocean inferred from the GECCO synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Köhl, Armin; Stammer, Detlef

    2012-11-01

    The deep time-varying meridional overturning circulation (MOC) in the Indian Ocean in the German “Estimating the Circulation and Climate of the Ocean” consortium efforts (GECCO) ocean synthesis is being investigated. An analysis of the integrated circulation suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200 m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500 m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ substantially from those obtained by inverse box models, which being based on individual hydrographic sections and due to the strong seasonal cycle are susceptible to aliasing. The GECCO solution shows a large seasonal variation in its deep MOC caused by the seasonal reversal of monsoon-related wind stress forcing. The associated seasonal variations of the deep MOC range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across the 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differs before and after 1980. GECCO shows a stable trend for the period 1960-1979 and substantial changes in the upper and bottom layer for the period 1980-2001. By means of an extended EOF analysis, the importance of Ekman dynamics as driving forces of the deep MOC of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contribute to the evolution of the Indian Ocean dipole (IOD) events.

  18. Convective Differentiation of the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Schmalzl, J.; Stemmer, K.

    2007-05-01

    The differentiation of the Earth is likely to be influenced by convective motions within the early mantle. Double- diffusive convection (d.d.c), driven by thermally and compositionally induced density differences is considered as a vital mechanism behind the dynamic differentiation of the early mantle.. We demonstrate that d.d.c can lead to layer formation on a planetary scale in the diffusive regime where composition stabilizes the system whil heat provides the destabilizing force. Choosing initial conditions in which a stable compositional gradient overlies a hot reservoir we mimic the situation of a planet in a phase after core formation. Differently from earlier studies we fixed the temperature rather than the heat flux at the lower boundary, resembling a more realistic condition for the core-mantle boundary. We have carried out extended series of numerical experiments, ranging from 2D calculations in constant viscosity fluids to fully 3D experiments in spherical geometry with strongly temperature dependent viscosity. The buoyancy ratio R and the Lewis number Le are the important dynamical parameters. In all scenarios we could identify a parameter regime where the non-layered initial structure developed into a state consisting of several, mostly two layers. Initially plumes from the bottom boundary homogenize a first layer which subsequently thickens. The bottom layer heats up and then convection is initiated in the top layer. This creates dynamically (i.e. without jump in the material behavior) a stack of separately convecting layers. The bottom layer is significantly thicker than the top layer. Strongly temperature dependent viscosity leads to a more complex evolution The formation of the bottom layer is followed by the generation of several layers on top. Finally the uppermost layer starts to convect. In general, the multilayer structure collapses into a two layer system. We employed a numerical technique, allowing for a diffusion free treatment of the compositional field. In each case a similar evolution has been observed. This indicates that a temporary formation of layered structures in planetary interiors is a typical phenomenon. Moreover, in this scenario, plate tectonics appears only in later stages of the evolution.

  19. Improving ambient noise cross-correlations in the noisy ocean bottom environment of the Juan de Fuca plate

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Ritzwoller, Michael H.

    2017-09-01

    Ambient noise tomography exploits seismic ground motions that propagate coherently over long interstation distances. Such ground motions provide information about the medium of propagation that is recoverable from interstation cross-correlations. Local noise sources, which are particularly strong in ocean bottom environments, corrupt ambient noise cross-correlations and compromise the effectiveness of ambient noise tomography. Based on 62 ocean bottom seismometers (OBSs) located on Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 40 continental stations near the coast of the western United States obtained in 2011 and 2012, we attempt to reduce the effects of local noise on vertical component seismic records across the plate and onto US continent. The goal is to provide better interstation cross-correlations for use in ambient noise tomography and the study of ambient noise directionality. As shown in previous studies, tilt and compliance noise are major sources of noise that contaminate the vertical channels of the OBSs and such noise can be greatly reduced by exploiting information on the horizontal components and the differential pressure gauge records, respectively. We find that ambient noise cross-correlations involving OBSs are of significantly higher signal-to-noise ratio at periods greater than 10 s after reducing these types of noise, particularly in shallow water environments where tilt and compliance noise are especially strong. The reduction of tilt and compliance noise promises to improve the accuracy and spatial extent of ambient noise tomography, allowing measurements based on coherently propagating ambient noise to be made at stations in the shallower parts of the JdF plate and at longer periods than in previous studies. In addition such local noise reduction produces better estimates of the azimuthal content of ambient noise.

  20. Strong Effects of a Shelfbreak Jet on Microbial Enzyme Activities

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Balmonte, J. P.; Ziervogel, K.; Ghobrial, S.; Gawarkiewicz, G.; Arnosti, C.

    2016-02-01

    The activities of extracellular enzymes are critical in initiating microbial cycling of organic carbon, yet the dynamics of heterotrophic enzyme activities in marine environments are still poorly understood. Variations at a given site in rates of activity and the spectrum of organic substrates hydrolyzed may depend upon environmental context. We measured the extracellular enzymatic hydrolysis of 13 high- and low-molecular-weight organic substrates in surface and bottom waters along a closely spaced 4-station transect at 71 W on the North Atlantic continental shelf, in the vicinity of the shelfbreak front. This transect intersects a robust upwelling cell that typically shows high biologic productivity, and is locatable by changes in T/S profiles and chl a concentrations along sharp spatial gradients. At the time of sampling, cold pool waters over the continental shelf were relatively cold, 3.5 Deg. C, compared to 12 Deg. C over the upper continental slope. Satellite thermal imagery indicated that shelf water extended offshore and interacted with a large crest of the Gulf Stream. The surface and bottom waters associated with the upwelling jet were characterized by enzyme activities a factor of 20 more rapid than closer inshore waters, and surface water chl a concentrations that were two to three times higher than the inshore waters. The spectrum of enzyme activities also differed markedly between surface and bottom waters both within the jet and at near-shore stations. Microbial extracellular enzymatic activities were strongly influenced by differences in their environmental context along the continental slope and shelfbreak front. Constraining the factors controlling heterotrophic activity across the diverse marine environment is an important step in understanding microbial controls on carbon cycling.

  1. Effects of ecological engineered oxygenation on the bacterial community structure in an anoxic fjord in western Sweden

    PubMed Central

    Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H

    2015-01-01

    Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l−1.We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event. PMID:25238400

  2. Effects of ecological engineered oxygenation on the bacterial community structure in an anoxic fjord in western Sweden.

    PubMed

    Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H

    2015-03-01

    Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l(-1).We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event.

  3. Recruitment processes in Baltic sprat - A re-evaluation of GLOBEC Germany hypotheses

    NASA Astrophysics Data System (ADS)

    Voss, Rüdiger; Peck, Myron A.; Hinrichsen, Hans-Harald; Clemmesen, Catriona; Baumann, Hannes; Stepputtis, Daniel; Bernreuther, Matthias; Schmidt, Jörn O.; Temming, Axel; Köster, Fritz W.

    2012-12-01

    The GLOBEC Germany program (2002-2007) had the ambitious goal to resolve the processes impacting the recruitment dynamics of Baltic sprat (Sprattus sprattus L.) by examining various factors affecting early life history stages. At the start of the research program, a number of general recruitment hypotheses were formulated, i.e. focusing on (1) predation, (2) food availability, (3) physical parameters, (4) the impact of current systems, and finally (5) the importance of top-down vs bottom-up effects. The present study synthesizes the results of field sampling (2002 and 2003), laboratory experiments, and modeling studies to re-evaluate these hypotheses for the Baltic sprat stock. Recruitment success was quite different in the 2 years investigated. Despite a lower spawning stock biomass in 2003, the total number of recruits was almost 2-fold higher that year compared to 2002. The higher recruitment success in 2003 could be attributed to enhanced survival success during the post-larval/juvenile stage, a life phase that appears to be critical for recruitment dynamics. In the state of the Baltic ecosystem during the period of investigation, we consider bottom-up control (e.g. temperature, prey abundance) to be more important than top-down control (predation mortality). This ranking in importance does not vary seasonally. Prevailing water circulation patterns and the transport dynamics of larval cohorts have a strong influence on sprat recruitment success. Pronounced transport to coastal areas is detrimental for year-class strength particularly at high sprat stock sizes. A suggested mechanism is density-dependant regulation of survival via intra- and inter-specific competition for prey in coastal areas. A documented change in larval vertical migration behavior between the early 1990s and early 2000s increased the transport potential to the coast, strengthening the coupling between inter-annual differences in the magnitude and direction of wind-driven surface currents and year-to-year changes in reproductive success. However, due to the strong linkages and feed-back loops in the Baltic Sea food web, the most robust projections of the future strength of the Baltic sprat stock will need to take into account climate-driven changes in both abiotic (e.g., drift trajectories) and biotic (trophodynamic) factors. Although our understanding of processes affecting pre-recruit (larval) growth and survival has been advanced by the integrated research conducted within the GLOBEC Germany program, key mechanisms potentially affecting life stages outside of the spawning basins remain to be explored including the dynamics of coastal habitats of juveniles and the feeding and overwintering grounds of adults.

  4. Book review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zuschin, M.; Hohenegger, J.; Steininger, F.

    2001-09-01

    Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea- Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea- Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora- Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera- Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.

  5. Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Zuschin, M.; Hohenegger, J.; Steininger, F.

    2001-09-01

    Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea- Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea- Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora- Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera- Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.

  6. Observations of Near-Bottom Currents with Low-Cost SeaHorse Tilt Current Meters

    DTIC Science & Technology

    2009-01-01

    SeaHorse Tilt Current Meters Vitalii A. Sheremet Graduate School of Oceanography University of Rhode Island Narragansett, Rhode Island 02882...Telephone: (401) 874-6939, Fax: (401) 874-6728 Email: vsheremet@gso.uri.edu Grant Number: N00014-09-1-0993 http://www.gso.uri.edu/~sheremet/ SeaHorse ...LONG-TERM GOALS The SeaHorse TCM is a low-cost, easy to use, robust current meter based on the drag principle. Use of a large number of

  7. Observations of Near-Bottom Currents With Low-Cost SeaHorse Tilt Current Meters

    DTIC Science & Technology

    2009-09-30

    SeaHorse Tilt Current Meters Vitalii A. Sheremet Graduate School of Oceanography University of Rhode Island Narragansett, Rhode Island 02882...Telephone: (401) 874-6939, Fax: (401) 874-6728 Email: vsheremet@gso.uri.edu Grant Number: N00014-09-1-0993 http://www.gso.uri.edu/~sheremet/ SeaHorse ...LONG-TERM GOALS The SeaHorse TCM is a low-cost, easy to use, robust current meter based on the drag principle. Use of a large number of

  8. Resources alter the structure and increase stochasticity in bromeliad microfauna communities.

    PubMed

    Petermann, Jana S; Kratina, Pavel; Marino, Nicholas A C; MacDonald, A Andrew M; Srivastava, Diane S

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined.

  9. Resources Alter the Structure and Increase Stochasticity in Bromeliad Microfauna Communities

    PubMed Central

    Petermann, Jana S.; Kratina, Pavel; Marino, Nicholas A. C.; MacDonald, A. Andrew M.; Srivastava, Diane S.

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  10. A Synoptic View of the Ventilation and Circulation of Antarctic Bottom Water from Chlorofluorocarbons and Natural Tracers

    NASA Astrophysics Data System (ADS)

    Purkey, Sarah G.; Smethie, William M.; Gebbie, Geoffrey; Gordon, Arnold L.; Sonnerup, Rolf E.; Warner, Mark J.; Bullister, John L.

    2018-01-01

    Antarctic Bottom Water (AABW) is the coldest, densest, most prolific water mass in the global ocean. AABW forms at several distinct regions along the Antarctic coast and feeds into the bottom limb of the meridional overturning circulation, filling most of the global deep ocean. AABW has warmed, freshened, and declined in volume around the globe in recent decades, which has implications for the global heat and sea level rise budgets. Over the past three decades, the use of tracers, especially time-varying tracers such as chlorofluorocarbons, has been essential to our understanding of the formation, circulation, and variability of AABW. Here, we review three decades of temperature, salinity, and tracer data and analysis that have led to our current knowledge of AABW and how the southern component of deep-ocean ventilation is changing with time.

  11. A Synoptic View of the Ventilation and Circulation of Antarctic Bottom Water from Chlorofluorocarbons and Natural Tracers.

    PubMed

    Purkey, Sarah G; Smethie, William M; Gebbie, Geoffrey; Gordon, Arnold L; Sonnerup, Rolf E; Warner, Mark J; Bullister, John L

    2018-01-03

    Antarctic Bottom Water (AABW) is the coldest, densest, most prolific water mass in the global ocean. AABW forms at several distinct regions along the Antarctic coast and feeds into the bottom limb of the meridional overturning circulation, filling most of the global deep ocean. AABW has warmed, freshened, and declined in volume around the globe in recent decades, which has implications for the global heat and sea level rise budgets. Over the past three decades, the use of tracers, especially time-varying tracers such as chlorofluorocarbons, has been essential to our understanding of the formation, circulation, and variability of AABW. Here, we review three decades of temperature, salinity, and tracer data and analysis that have led to our current knowledge of AABW and how the southern component of deep-ocean ventilation is changing with time.

  12. A new seepage site south of Svalbard? Results from Eurofleets-2 BURSTER cruise

    NASA Astrophysics Data System (ADS)

    Giulia Lucchi, Renata; Morigi, Caterina; Sabbatini, Anna; Mazzini, Adriano; Krueger, Martin; de Vittor, Cinzia; Kovacevic, Vedrana; Deponte, Davide; Stefano, Graziani; Bensi, Manuel; Langone, Leonardo; Eurofleets2-Burster*, Scientific Party Of

    2017-04-01

    The oceanographic and environmental characteristics of the Kveithola Glacial Trough, located south of Svalbard, have been investigated during the Eurofleets2-BURSTER project onboard the German icebreaker Polarstern (expedition PS99-1a, June, 19-20, 2016). The inner part of the glacial trough contains a complex sediment drift that deposited under persistent bottom currents, active in the area after Last Glacial Maximum. Notwithstanding the highly dynamic environment depicted from the morphological and structural characteristics of the Kveithola sediment drift, previous studies indicated the presence of an apparently "stagnant" environment with black anoxic sediments and absence of bottom current related sediment features. We present the preliminary results from the new dataset that includes micropaleontological, geochemical and microbial analyses of multi-core sediments; morphological analyses of sea floor sediments with benthic camera (Ocean Floor Observatory System); acoustic analyses of the sub-bottom record, and oceanographic analyses of CTD-Rosette sampling, all together indicating the possible presence of a new seepage site in the Arctic area south of 75°N Latitude. *Bazzaro, M., Biebow, N., Carbonara, K., Caridi, F., Dominiczak, A., Gamboa Sojo, V.M., Laterza R., Le Gall, C., Musco, M.E., Povea, P., Relitti, F., Ruggiero, L., Rui, L., Sánchez Guillamón, O., Tagliaferro, M., Topchiy, M., Wiberg, D., Zoch, D.

  13. Living (Rose-Bengal-Stained) benthic foraminifera along the Kveithola Trough (NW Barents Sea), environmental implications

    NASA Astrophysics Data System (ADS)

    Sabbatini, Anna; Morigi, Caterina; Lucchi, Renata G.; de Vittor, Cinzia; Bazzano, Matteo

    2017-04-01

    The distribution and composition of benthic foraminiferal fauna in the Kveithola Trough (NW Barents Sea) were studied in three depositional settings identified on the basis of surface depositional structures, sediment types and present ecosystem characteristics. Sediment samples were collected during the CORIBAR cruise (Hanebuth et al., 2013) aimed at drilling glacigenic sediments in a palaeo-ice stream depositional system in the western Barents Sea. In particular, we report the quantitative data of the living benthic foraminiferal density, biodiversity and vertical distribution in three box-core sediment samples (0-10 cm) collected in two inner trough sites, the drift area and the channel/fault area and one outer shelf site. Rose-Bengal-stained foraminiferal assemblages were investigated from two different size fractions (63-150 and >150 micrometres). In the drift area, the living benthic foraminiferal assemblage is characterized by the presence of oxygen-depleted environmental taxa with low foraminiferal density and biodiversity. This area appears a stagnant environment, strongly affected by low-oxygen, stressed environmental conditions in which foraminifera developed a life strategy aimed to increase the efficiency of food utilization and maximum resistance to ecological stress. As a further support to this interpretation, all the sediments recovered in the drift area are rich in organic matter and in Siboglinid-like tubes together with pockmark evidences on the surface of the box-corer. The sedimentation in the channel/fault area is very similar to that described for the drift area, evidencing stressed environmental conditions. Opportunistic species dominate the benthic foraminiferal fauna. The species distribution of the internal trough sites is consistent with the lithology and with data of quantity and biochemical composition (in terms of phytopigment, protein, lipid, carbohydrate and biopolymeric carbon) of the organic matter. Values of biopolymeric carbon are typical of eutrophic setting and the presence of tolerant low oxygen condition species as Nonionellina labradorica, Nonionella iridea and Fursenkoina fusiformis suggests that the sediment is dysoxic. In the inner part of the trough, the presence of Leptohalysis scottii and the decreasing of N. labradorica could indicate the presence of organic carbon input with higher nutritional quality, probably due to the shallower depth of the station (151 m water depth). The site corresponding to the outer shelf is characterized by the presence of diverse and abundant benthic foraminiferal assemblage suggesting a high oxygenated and mesotrophic environment. The sedimentological evidences characterized by clean sand with large-scale ripple-like features suggest the presence of moderately strong, and persistent bottom currents. We notice in all sites the presence of delicate monothalamous taxa (organic-walled allogromiids, agglutinated saccamminids, psammosphaerids and tubular forms). Therefore, preliminary faunal and sedimentological data allow to describe sediments of the Kveithola Drift, deposited under persistent dense bottom currents, appears today as a stagnant environment strongly affected by low-oxygen concentration, possibly chemosynthetic conditions with likely ongoing gas seep activity from pockmarks.

  14. 75 FR 49709 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ...]Pa rms. Due to its high frequency range, NMFS does not consider its acoustic energy would be strong... source levels of the sub-bottom profiler and the high-frequency nature of the multi-beam echo sounder...-frequency side scan sonar, (100-400 kHz or 300-600 kHz): Based on Shell's 2006 90-day report, the source...

  15. A case study of the Santa Ana winds in the San Gabriel mountains

    Treesearch

    Michael A. Fosberg

    1965-01-01

    Santa Ana wind structure varies between the high main ridges, the foothills, and the canyon bottoms. In each of these regions, a typical pattern characterizes the Santa Ana. Strong steady wind, at the high levels are determined almost completely by the large scale weather patterns. lntermediate canyons and ridges are affected by Santa Ana winds only when the foehn is...

  16. Tidal Dynamics and Mixing Over Steep Topography

    DTIC Science & Technology

    1994-06-01

    California continental shelf have been observed at several locations (Huthnance, 1989). Shea and Broenkow (1982) observed large 33 tidally related...enhanced transport inside the canyon (Huthnance, 1989). This type of pressure gradient supports the conceptual model proposed by Shea and Broenkow (1982...predicted an enhanced internal tide up-canyon and near the bottom, verified by observations of strong internal tides by Shea and Broenkow (1982) at

  17. Global compilation of marine varve records

    NASA Astrophysics Data System (ADS)

    Schimmelmann, Arndt; Lange, Carina B.; Schieber, Juergen; Francus, Pierre; Ojala, Antti E. K.; Zolitschka, Bernd

    2017-04-01

    Marine varves contain highly resolved records of geochemical and other paleoceanographic and paleoenvironmental proxies with annual to seasonal resolution. We present a global compilation of marine varved sedimentary records throughout the Holocene and Quaternary covering more than 50 sites worldwide. Marine varve deposition and preservation typically depend on environmental and sedimentological conditions, such as a sufficiently high sedimentation rate, severe depletion of dissolved oxygen in bottom water to exclude bioturbation by macrobenthos, and a seasonally varying sedimentary input to yield a recognizable rhythmic varve pattern. Additional oceanographic factors may include the strength and depth range of the Oxygen Minimum Zone (OMZ) and regional anthropogenic eutrophication. Modern to Quaternary marine varves are not only found in those parts of the open ocean that comply with these conditions, but also in fjords, embayments and estuaries with thermohaline density stratification, and nearshore 'marine lakes' with strong hydrologic connections to ocean water. Marine varves have also been postulated in pre-Quaternary rocks. In the case of non-evaporitic laminations in fine-grained ancient marine rocks, such as banded iron formations and black shales, laminations may not be varves but instead may have multiple alternative origins such as event beds or formation via bottom currents that transported and sorted silt-sized particles, clay floccules, and organic-mineral aggregates in the form of migrating bedload ripples. Modern marine ecosystems on continental shelves and slopes, in coastal zones and in estuaries are susceptible to stress by anthropogenic pressures, for example in the form of eutrophication, enhanced OMZs, and expanding ranges of oxygen-depletion in bottom waters. Sensitive laminated sites may play the important role of a 'canary in the coal mine' where monitoring the character and geographical extent of laminations/varves serves as a diagnostic tool to judge the environmental conditions and longer-term trends of benthic ecosystems. Analyses of modern varve records will gain importance for simultaneously providing high-resolution and longer-term perspectives. Especially in regions with limited resources or at remote sites, the comparatively low cost of high-resolution sediment analyses for environmental monitoring is an essential advantage over continuous monitoring of oceanographic conditions in the water column.

  18. Mixing regime of the residual water basins of the Aral Sea

    NASA Astrophysics Data System (ADS)

    Izhitskiy, Alexander; Zavialov, Peter; Kirillin, Georgiy

    2017-04-01

    The Aral Sea, a terminal salt lake in western Central Asia situated at the border between Uzbekistan and Kazakhstan, was ranked as the fourth largest inland water body in the mid-20th century. However, in the early 1960s, the lake's volume started to decrease rapidly due to severe changes in the Aral's water balance. Thus, the present-day Aral Sea can be considered as a system of separate water bodies with a common origin but very different physical, chemical and biological features. Our previous studies showed that the Large Aral Sea and Lake Tshchebas transformed into hyperhaline water bodies, while the Small Aral Sea was a brackish basin with rather similar to the pre-desiccation environment. On the other hand, the Small Aral Sea and Lake Tshchebas exhibited a mixed vertical structure, whereas the Western Large Aral Sea (especially the Chernyshev Bay) was strongly stratified. The presented study is focused on the seasonal mixing regimes of the residual basins. Isolation of deep waters from the atmosphere together with low rates of photosynthesis produce deep anoxia observed in the Chernyshev Bay and in the Large Aral. The high amount of organic matter provides a rich source of nutrients for anoxic microorganisms favoring methanogenesis in the bottom layer of the basins. In the Small Aral, the water column remains well-oxygenated down to the bottom throughout most of the year and development of anoxia is unlikely. The mixing regimes of the recently formed residual lakes of the former Aral Sea will provide manifold effect on the ongoing development of the aquatic system in the following decades. The study is based on a field data collected during two surveys of Shirshov Institute of Oceanology to the Aral Sea, which took place in October, 2015 and June, 2016. In situ measurements including CTD profiling and water sampling were carried out in the northern extremity of the western Large Aral (the Chernyshev Bay), in Lake Tshchebas, and in the Small Aral Sea. Moreover, two thermistor chains equipped with the dissolved oxygen loggers and bottom current meters were installed in the Chernyshev Bay for the period between two surveys.

  19. Hydrography and circulation of ice-marginal lakes at Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Josberger, E.G.; Shuchman, R.A.; Meadows, G.A.; Savage, S.; Payne, J.

    2006-01-01

    An extensive suite of physical oceanographic, remotely sensed, and water quality measurements, collected from 2001 through 2004 in two ice-marginal lakes at Bering Glacier, Alaska-Berg Lake and Vitus Lake-show that each has a unique circulation controlled by their specific physical forcing within the glacial system. Conductivity profiles from Berg Lake, perched 135 m a.s.l., show no salt in the lake, but the temperature profiles indicate an apparently unstable situation, the 4??C density maximum is located at 10 m depth, not at the bottom of the lake (90 m depth). Subglacial discharge from the Steller Glacier into the bottom of the lake must inject a suspended sediment load sufficient to marginally stabilize the water column throughout the lake. In Vitus Lake, terminus positions derived from satellite imagery show that the glacier terminus rapidly retreated from 1995 to the present resulting in a substantial expansion of the volume of Vitus Lake. Conductivity and temperature profiles from the tidally influenced Vitus Lake show a complex four-layer system with diluted (???50%) seawater in the bottom of the lake. This lake has a complex vertical structure that is the result of convection generated by ice melting in salt water, stratification within the lake, and freshwater entering the lake from beneath the glacier and surface runoff. Four consecutive years, from 2001 to 2004, of these observations in Vitus Lake show little change in the deep temperature and salinity conditions, indicating limited deep water renewal. The combination of the lake level measurements with discharge measurements, through a tidal cycle, by an acoustic Doppler Current Profiler (ADCP) deployed in the Seal River, which drains the entire Bering system, showed a strong tidal influence but no seawater entry into Vitus Lake. The ADCP measurements combined with lake level measurements established a relationship between lake level and discharge, which when integrated over a tidal cycle, gives a tidally averaged discharge ranging from 1310 to 1510 m3 s-1. ?? 2006 Regents of the University of Colorado.

  20. Temperature and Productivity Variability Along the Southwestern Portuguese Margin During the Onset of the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Salgueiro, E.; Voelker, A. H. L.; Abrantes, F. F. G.; Rodrigues, T.; Sierro, F. J.; Hodell, D. A.; Alberto, A.; Freitas, P. S.

    2014-12-01

    The Southwest Portuguese Margin sedimentary record is influenced by the Mediterranean Outflow Water (MOW), with a strong thermohaline signature occurring between 500 and 1500m water depth. Variations of MOW intensity during the Late Quaternary (±750ky) are related to changes in the global climate and in the North Atlantic thermohaline circulation. To validate the sedimentary climate records on the Southwestern Portuguese Margin we performed a regional core-top multi-proxy study (Corg, CaCO3, grain size, foraminifera abundances, stable isotopes) to distinguish the MOW effects in recent sediments. The influence of this high velocity bottom current is marked in sediments by a strong increase of the sand content at both, the upper and lower, MOW boundaries. An increase of fine sediments is due to winnowing by the current, resulting in a drastic change in the accumulation rates of any sand-sized biogenic particle. For this reason, some of the traditional productivity proxies used such as Corg, planktonic and benthic foraminifera total abundances, should not be used at sites under the influence of contour currents. However, we demonstrate that the planktonic foraminifera relative abundances can be used with confidence because they are independent of the action of the MOW. Based on the planktonic foraminifera assemblages in two IODP Sites, U1387 recovered from the MOW influenced Faro Drift, and U1385 recovered at 2578m, we reconstruct the sea surface temperature (SST) and export productivity (Pexp) during the beginning of the Mid-Pleistocene Transition, Marine Isotope Stages 36 and 35. At Site U1387: i) foraminifera-derived SST was compared with biomarkers SST and foraminiferal δ18O data; ii) foraminifera-derived Pexp was compared with the Corg; and iii) the influence of the MOW on the sediments was deducted from the weight percent of the sand fraction, indicating contourite layers, and the benthic foraminiferal δ18O and δ13C data.

Top