Singlet-paired coupled cluster theory for open shells
NASA Astrophysics Data System (ADS)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-06-01
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior formore » strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.« less
Ideal gas behavior of a strongly coupled complex (dusty) plasma.
Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry
2013-07-05
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
Aspects of Superconformal Field Theories
NASA Astrophysics Data System (ADS)
Gadde, Abhijit
Recently, a lot of progress has been made towards understanding the strongly coupled supersymmetric quantum gauge theories. The problem of strong coupling for SU(N) gauge theories can be formulated in two separate regimes of interest, one at finite N and the other at large N in 't Hooft limit. In the first case electric/magnetic duality also called S-duality and in the second, AdS/CFT duality map the strongly coupled problem to a weakly coupled one. Both of the dualities have been well understood in the maximally supersymmetric 4 d gauge theory, the N = 4 super Yang-Mills. In this thesis, as a natural next step, we focus on the strong coupling behavior in N = 2 supersymmetric gauge theories.
Experimental determination of the effective strong coupling constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandre Deur; Volker Burkert; Jian-Ping Chen
2007-07-01
We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.
Control of strong light-matter coupling using the capacitance of metamaterial nanocavities
Benz, Alexander; Campione, Salvatore; Klem, John Frederick; ...
2015-01-27
Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. The resulting collocation and interaction often leads to strong coupling. We present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. As a result, the system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.
Spectral Analysis of Two Coupled Diatomic Rotor Molecules
Crogman, Horace T.; Harter, William G.
2014-01-01
In a previous article the theory of frame transformation relation between Body Oriented Angular (BOA) states and Lab Weakly Coupled states (LWC) was developed to investigate simple rotor–rotor interactions. By analyzing the quantum spectrum for two coupled diatomic molecules and comparing it with spectrum and probability distribution of simple models, evidence was found that, as we move from a LWC state to a strongly coupled state, a single rotor emerges in the strong limit. In the low coupling, the spectrum was quadratic which indicates the degree of floppiness in the rotor–rotor system. However in the high coupling behavior it was found that the spectrum was linear which corresponds to a rotor deep in a well. PMID:25353181
Kondo peak splitting and Kondo dip in single molecular magnet junctions
NASA Astrophysics Data System (ADS)
Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang
2016-01-01
Many factors containing bias, spin-orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin-orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campostrini, M.; Pelissetto, A.; Rossi, P.
1996-09-01
The critical behavior of two-dimensional (2D) O({ital N}) {sigma} models with {ital N}{le}2 on square, triangular, and honeycomb lattices is investigated by an analysis of the strong-coupling expansion of the two-point fundamental Green{close_quote}s function {ital G}({ital x}), calculated up to 21st order on the square lattice, 15th order on the triangular lattice, and 30th order on the honeycomb lattice. For {ital N}{lt}2 the critical behavior is of power-law type, and the exponents {gamma} and {nu} extracted from our strong-coupling analysis confirm exact results derived assuming universality with solvable solid-on-solid models. At {ital N}=2, i.e., for the 2D {ital XY} model,more » the results from all lattices considered are consistent with the Kosterlitz-Thouless exponential approach to criticality, characterized by an exponent {sigma}=1/2, and with universality. The value {sigma}=1/2 is confirmed within an uncertainty of few percent. The prediction {eta}=1/4 is also roughly verified. For various values of {ital N}{le}2, we determine some ratios of amplitudes concerning the two-point function {ital G}({ital x}) in the critical limit of the symmetric phase. This analysis shows that the low-momentum behavior of {ital G}({ital x}) in the critical region is essentially Gaussian at all values of {ital N}{le}2. Exact results for the long-distance behavior of {ital G}({ital x}) when {ital N}=1 (Ising model in the strong-coupling phase) confirm this statement. {copyright} {ital 1996 The American Physical Society.}« less
Energy Exchange in Driven Open Quantum Systems at Strong Coupling
NASA Astrophysics Data System (ADS)
Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich
2016-06-01
The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .
Fischer, Melanie S; Baucom, Donald H; Cohen, Matthew J
2016-09-01
Cognitive-behavioral couple therapy (CBCT) is an approach to assisting couples that has strong empirical support for alleviating relationship distress. This paper provides a review of the empirical status of CBCT along with behavioral couple therapy (BCT), as well as the evidence for recent applications of CBCT principles to couple-based interventions for individual psychopathology and medical conditions. Several meta-analyses and major reviews have confirmed the efficacy of BCT and CBCT across trials in the United States, Europe, and Australia, and there is little evidence to support differential effectiveness of various forms of couple therapy derived from behavioral principles. A much smaller number of effectiveness studies have shown that successful implementation in community settings is possible, although effect sizes tend to be somewhat lower than those evidenced in randomized controlled trials. Adapted for individual problems, cognitive-behavioral couple-based interventions appear to be at least as effective as individual cognitive behavioral therapy (CBT) across a variety of psychological disorders, and often more effective, especially when partners are substantially involved in treatment. In addition, couple-based interventions tend to have the unique added benefit of improving relationship functioning. Findings on couple-based interventions for medical conditions are more varied and more complex to interpret given the greater range of target outcomes (psychological, relational, and medical variables). © 2016 Family Process Institute.
Kopystynska, Olena; Paschall, Katherine W; Barnett, Melissa A; Curran, Melissa A
2017-10-01
We examined the relations between interparental conflict (destructive and constructive), parenting behaviors (harshness and supportiveness) and children's emotional insecurity in early childhood when children were approximately 36 months of age. The sample consisted of low-income unmarried couples who were expectant/new parents who participated in the national Building Strong Families project. Interparental conflict was assessed through parents' reported perception of the other parent's conflict behavior. Parenting behaviors were measured through observational data, and children's emotional insecurity was based on parents' reports. Using latent profile analysis, three goals were addressed: (a) concordance or discord of mothers' and fathers' conflict behaviors, (b) the relation between couples' conflict behaviors and parenting, and (c) the association between couples' conflict behaviors and child emotional insecurity. Our findings revealed 4 profiles of couples that share similar characteristics, which in turn were differentially linked to aspects of parenting and child development. Further, results indicated that the vast majority of low-income unmarried couples engage in constructive conflict management behaviors. These findings highlight the need to consider the family unit when designing interventions or providing counseling. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes
NASA Astrophysics Data System (ADS)
Zhu, Yifu
1992-05-01
We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.
A Coupling Analysis Approach to Capture Unexpected Behaviors in Ares 1
NASA Astrophysics Data System (ADS)
Kis, David
Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process. Preliminary corrections ensure no unanticipated behaviors arise during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can effect solid rocket motors in adverse ways. Within the Ares 1 rocket, unexpected vibrations deemed potentially harmful to future crew were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. This research proposes the use of a coupling strength analysis during the design and development phase to identify potential unanticipated behaviors such as thrust oscillation. Once these behaviors and couplings are identified then a value function, based on research in Value Driven Design, is proposed to evaluate mitigation strategies and their impact on system value. The results from this study showcase a strong coupling interaction from structural displacement back onto the fluid flow of the Ares 1 that was previously deemed inconsequential. These findings show that the use of a coupling strength analysis can aid engineers and managers in identifying unanticipated behaviors and then rank order their importance based on the impact they have on value.
Resonance-enhanced optical forces between coupled photonic crystal slabs.
Liu, Victor; Povinelli, Michelle; Fan, Shanhui
2009-11-23
The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.
Flocking particles in a non-Newtonian shear thickening fluid
NASA Astrophysics Data System (ADS)
Mucha, Piotr B.; Peszek, Jan; Pokorný, Milan
2018-06-01
We prove the existence of strong solutions to the Cucker–Smale flocking model coupled with an incompressible viscous non-Newtonian fluid with the stress tensor of a power–law structure for . The fluid part of the system admits strong solutions while the solutions to the CS part are weak. The coupling is performed through a drag force on a periodic spatial domain . Additionally, we construct a Lyapunov functional determining the large time behavior of solutions to the system.
Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Nandkishore, Rahul M.
2017-09-01
In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.
Using nonequilibrium dynamics to probe competing orders in a Mott-Peierls system
Wang, Y.; Moritz, B.; Chen, C. -C.; ...
2016-02-24
Competition between ordered phases, and their associated phase transitions, are significant in the study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization. Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an approach for characterizing the underlying bosonic modes. The results from this analysis for different electronic momenta show an uneven softeningmore » due to a stronger coupling near k F. As a result, this behavior reflects the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic susceptibilities when multiple phases compete for the ground state of the system.« less
Discovery of an unconventional charge density wave at the surface of K 0.9Mo 6O 17
Mou, Daixiang; Sapkota, Aashish; Kung, H. -H.; ...
2016-05-13
In this study, we use angle resolved photoemission spectroscopy, Raman spectroscopy, low energy electron diffraction, and x-ray scattering to reveal an unusual electronically mediated charge density wave (CDW) in K 0.9Mo 6O 17. Not only does K 0.9Mo 6O 17 lack signatures of electron-phonon coupling, but it also hosts an extraordinary surface CDW, with T S_CDW = 220 K nearly twice that of the bulk CDW, T B_CDW = 115 K. While the bulk CDW has a BCS-like gap of 12 meV, the surface gap is 10 times larger and well in the strong coupling regime. Strong coupling behavior combinedmore » with the absence of signatures of strong electron-phonon coupling indicates that the CDW is likely mediated by electronic interactions enhanced by low dimensionality.« less
Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics
NASA Astrophysics Data System (ADS)
Wang, Chen; Ren, Jie; Cao, Jianshu
2017-02-01
To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.
Thermal coupling of conjugate ionospheres and the tilt of the earth's magnetic field
NASA Technical Reports Server (NTRS)
Richards, P. G.; Torr, D. G.
1986-01-01
The effect of thermal coupling and the tilt of the earth's magnetic field on interhemispheric coupling is investigated, and, due to a longitudinal displacement in the conjugate points, it is found that the tilt significantly effects the upward flow of H(+) flux such that the maximum upward flux can occur several hours before local sunrise. Heating from the conjugate atmosphere, which accompanies solar illumination in one hemisphere, produces electron temperatures 1000 K higher in the dark than in the sunlit hemisphere, and the morning upward H(+) fluxes in the dark ionosphere are as large as the daytime fluxes. A strong symmetry is also noted in the overall behavior of the H(+) fluxes due to the differing day lengths at the conjugate points, which are separated by 15 deg in latitude. Electron temperatures in the conjugate hemispheres are found to be strongly coupled above the F region peaks, though in the vicinity of the peaks near 250 km, the coupling is weak during the day and strong during the night.
Two particle model for studying the effects of space-charge force on strong head-tail instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.
In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, Upsilon. The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Manymore » simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. Lastly, this mode coupling/decoupling behavior creates the stopband structures.« less
Two particle model for studying the effects of space-charge force on strong head-tail instabilities
Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.
2016-01-19
In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, Upsilon. The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Manymore » simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. Lastly, this mode coupling/decoupling behavior creates the stopband structures.« less
Collective coherence in nearest neighbor coupled metamaterials: A metasurface ruler equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ningning; Zhang, Weili, E-mail: weili.zhang@okstate.edu; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg
The collective coherent interactions in a meta-atom lattice are the key to myriad applications and functionalities offered by metasurfaces. We demonstrate a collective coherent response of the nearest neighbor coupled split-ring resonators whose resonance shift decays exponentially in the strong near-field coupled regime. This occurs due to the dominant magnetic coupling between the nearest neighbors which leads to the decay of the electromagnetic near fields. Based on the size scaling behavior of the different periodicity metasurfaces, we identified a collective coherent metasurface ruler equation. From the coherent behavior, we also show that the near-field coupling in a metasurface lattice existsmore » even when the periodicity exceeds the resonator size. The identification of a universal coherence in metasurfaces and their scaling behavior would enable the design of novel metadevices whose spectral tuning response based on near-field effects could be calibrated across microwave, terahertz, infrared, and the optical parts of the electromagnetic spectrum.« less
Son preference in Pakistan: an analysis of intentions vs. behavior.
De Tray, D
1984-01-01
The study assesses the extent to which the very strong expressed preference for sons in Pakistan influences couples' actual fertility behavior. Several fertility measures and estimation techniques were used to determine whether subsequent fertility behavior is influenced by the sex composition of previous births. Khan and Sirageldin's work on sex preference and desires for additional children in Pakistan were reviewed, followed by consideration of several methods of testing the relationship between sex of children and subsequent fertility and presentation of the results of several other tests of the hypothesis that sex composition of children affects actual fertility behavior. The Khan and Sirageldin (1977) results can be translated into a stopping rule which states that the higher the proportion of boys in a family, the less likely a couple is to go on to have another child. This finding, based on intentions, conflicts with the results based on actual behavior presented here. The Khan and Sirageldin results were extended by assessing the extent to which couples translated their very strong expressed preferences for sons into actual behavior. This extension was based on a sample of women, most of whom have completed fertility (all were aged 35 or older) and all of whom had at least 1 live birth. No overall relationship was found between the sex composition of children and subsequent fertility behavior. At least 2 explanations are possible for this inconsistency between intentions and behavior with each having a different implication for population policy and for the future of population growth in general. The first explanation is that in traditional societies such as Pakistan couples are unable to control their fertility adequately. The policy implications of this view suggest family planning and contraceptive distribution programs aimed at reducing the cost of achieving whatever desired family size couples want. Another explanation is that although parents indicate that they want more boys than girls, their actions do not reflect this preference because of the dominating influence of overall desires for numbers of children regardless of the sex of those children. In other words, couples may prefer boy to girl children, but they would still rather have many girl children than few or no children at all. This explanation is consistent with theoretical findings. The results suggest that with regard to actual behavior, Pakistani preferences for having children may dominate preferences for children of a certain type.
Yao, Chenggui; Zhan, Meng; Shuai, Jianwei; Ma, Jun; Kurths, Jürgen
2017-12-01
It has been generally believed that both time delay and network structure could play a crucial role in determining collective dynamical behaviors in complex systems. In this work, we study the influence of coupling strength, time delay, and network topology on synchronization behavior in delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the coupling strength for complete synchronization in such networks strongly depends on the time delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity was numerically tested in several typical regular networks, such as different locally and globally coupled ones as well as in several complex networks, such as small-world and scale-free networks. Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is of key importance for the complete synchronization.
Damping of hard excitations in strongly coupled $$ \\mathcal{N} $$ = 4 plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuini, John F.; Uhlemann, Christoph F.; Yaffe, Laurence G.
2016-12-13
The damping of high momentum excitations in strongly coupled maximally supersymmetric Yang-Mills plasma is studied. Previous calculations of the asymptotic behavior of the quasinormal mode spectrum are extended and clarified. We con rm that subleading corrections to the lightlike dispersion relation ω(q) = |q| have a universal |q| -1/3 form. Sufficiently narrow, weak planar shocks may be viewed as coherent superpositions of short wavelength quasinormal modes. The attenuation and evolution in profile of narrow planar shocks are examined as an application of our results.
Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet.
Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J; Ares, Natalia; Thompson, Amber L; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J; Lancaster, Tom; Ardavan, Arzhang; Briggs, G Andrew D; Leek, Peter J; Laird, Edward A
2017-10-06
Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.
Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet
NASA Astrophysics Data System (ADS)
Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.
2017-10-01
Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.
Quantum synchronization of chaotic oscillator behaviors among coupled BEC-optomechanical systems
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2017-03-01
We consider and theoretically analyze a Bose-Einstein condensate (BEC) trapped inside an optomechanical system consisting of single-mode optical cavity with a moving end mirror. The BEC is formally analogous to a mirror driven by radiation pressure with strong nonlinear coupling. Such a nonlinear enhancement can make the oscillator display chaotic behavior. By establishing proper oscillator couplings, we find that this chaotic motion can be synchronized with other oscillators, even an oscillator network. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our results provide a promising platform for the quantum signal transmission and quantum logic control, and they are of potential applications in quantum information processing and quantum networks.
Emotional prosody processing in autism spectrum disorder
Kliemann, Dorit; Dziobek, Isabel; Heekeren, Hauke R.
2017-01-01
Abstract Individuals with Autism Spectrum Disorder (ASD) are characterized by severe deficits in social communication, whereby the nature of their impairments in emotional prosody processing have yet to be specified. Here, we investigated emotional prosody processing in individuals with ASD and controls with novel, lifelike behavioral and neuroimaging paradigms. Compared to controls, individuals with ASD showed reduced emotional prosody recognition accuracy on a behavioral task. On the neural level, individuals with ASD displayed reduced activity of the STS, insula and amygdala for complex vs basic emotions compared to controls. Moreover, the coupling between the STS and amygdala for complex vs basic emotions was reduced in the ASD group. Finally, groups differed with respect to the relationship between brain activity and behavioral performance. Brain activity during emotional prosody processing was more strongly related to prosody recognition accuracy in ASD participants. In contrast, the coupling between STS and anterior cingulate cortex (ACC) activity predicted behavioral task performance more strongly in the control group. These results provide evidence for aberrant emotional prosody processing of individuals with ASD. They suggest that the differences in the relationship between the neural and behavioral level of individuals with ASD may account for their observed deficits in social communication. PMID:27531389
Three-temperature plasma shock solutions with gray radiation diffusion
Johnson, Bryan M.; Klein, Richard I.
2016-04-19
Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Kim, Sung; Hwang, Sung Won; Kim, Chang Oh; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Kang, Soo Seok; Hwang, Euyheon; Choi, Suk-Ho; El-Gohary, Sherif H.; Byun, Kyung Min
2018-02-01
Recently, we have demonstrated that excitation of plasmon-polaritons in a mechanically-derived graphene sheet on the top of a ZnO semiconductor considerably enhances its light emission efficiency. If this scheme is also applied to device structures, it is then expected that the energy efficiency of light-emitting diodes (LEDs) increases substantially and the commercial potential will be enormous. Here, we report that the plasmon-induced light coupling amplifies emitted light by ˜1.6 times in doped large-area chemical-vapor-deposition-grown graphene, which is useful for practical applications. This coupling behavior also appears in GaN-based LEDs. With AuCl3-doped graphene on Ga-doped ZnO films that is used as transparent conducting electrodes for the LEDs, the average electroluminescence intensity is 1.2-1.7 times enhanced depending on the injection current. The chemical doping of graphene may produce the inhomogeneity in charge densities (i.e., electron/hole puddles) or roughness, which can play a role as grating couplers, resulting in such strong plasmon-enhanced light amplification. Based on theoretical calculations, the plasmon-coupled behavior is rigorously explained and a method of controlling its resonance condition is proposed.
Three-temperature plasma shock solutions with gray radiation diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Bryan M.; Klein, Richard I.
Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less
Vibrational resonances in biological systems at microwave frequencies.
Adair, Robert K
2002-03-01
Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.
Shang, Qiuyu; Zhang, Shuai; Liu, Zhen; Chen, Jie; Yang, Pengfei; Li, Chun; Li, Wei; Zhang, Yanfeng; Xiong, Qihua; Liu, Xinfeng; Zhang, Qing
2018-06-13
Manipulating strong light-matter interaction in semiconductor microcavities is crucial for developing high-performance exciton polariton devices with great potential in next-generation all-solid state quantum technologies. In this work, we report surface plasmon enhanced strong exciton-photon interaction in CH 3 NH 3 PbBr 3 perovskite nanowires. Characteristic anticrossing behaviors, indicating a Rabi splitting energy up to ∼564 meV, are observed near exciton resonance in hybrid perovskite nanowire/SiO 2 /Ag cavity at room temperature. The exciton-photon coupling strength is enhanced by ∼35% on average, which is mainly attributed to surface plasmon induced localized excitation field redistribution. Further, systematic studies on SiO 2 thickness and nanowire dimension dependence of exciton-photon interaction are presented. These results provide new avenues to achieve extremely high coupling strengths and push forward the development of electrically pumped and ultralow threshold small lasers.
Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity.
Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa
2016-02-03
Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature <140 K and large negative polariton-exciton offset (<-133 meV) conditions. In addition, the corresponding lasing behaviors, such as threshold energy, linewidth, phase diagram, and angular dispersion are verified. The results afford a basis from which to understand the complicated lasing mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton.
Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.
Udalov, O G; Beloborodov, I S
2017-05-04
We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.
NASA Astrophysics Data System (ADS)
Pokharel, G.; May, A. F.; Parker, D. S.; Calder, S.; Ehlers, G.; Huq, A.; Kimber, S. A. J.; Arachchige, H. Suriya; Poudel, L.; McGuire, M. A.; Mandrus, D.; Christianson, A. D.
2018-04-01
The physical properties of the spinel LiGaCr4S8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. These results indicate strong magnetoelastic coupling in LiGaCr4S8 .
Signatures for strongly coupled Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Shuryak, Edward
2006-11-01
Dramatic changes had occurred with our understanding of Quark-Gluon Plasma, which is now believed to be rather strongly coupled, sQGP for short. Hydrodynamical behavior is seen experimentally, even for rather small systems (rather peripheral collisions). From elliptic flow the interest is shifting to even more sophysticated observable, the conical flow, created by quenched jets. The exact structure of sQGP remains unknown, at the moment the best picture seem to be a liquid made partly of binary bound states. As we discuss at the end, those can be possibly seen in the dilepton spectra, as "new vector mesons" above Tc.
Optical bistability in a single-sided cavity coupled to a quantum channel
NASA Astrophysics Data System (ADS)
Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.
2018-06-01
In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.
NASA Astrophysics Data System (ADS)
Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining
2018-05-01
The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.
Supportive behaviors in adolescent romantic relationships moderate adrenocortical attunement.
Ha, Thao; Yeung, Ellen Wanheung; Rogers, Adam A; Poulsen, Franklin O; Kornienko, Olga; Granger, Douglas A
2016-12-01
This study investigated dyadic adrenocortical attunement within adolescent romantic relationships. An ethnically diverse sample (42% Latino) of adolescent heterosexual dating couples (N=91 dyads, Mage=16.5 years, SD=0.99) donated eight saliva samples (later assayed for cortisol) over the course of a 3-h laboratory session. Supportive behaviors were coded during a conflict and jealousy interaction task from video recordings, and participants completed pre-and-post task questionnaires. Parallel process latent growth models revealed a strong positive association between the couples' cortisol intercept, indicating that couples show attunement in initial levels of cortisol. Further, observed supportive behavior moderated the strength of the association between dyadic cortisol slopes. The results imply that low levels of supportive behavior predicted stronger adrenocortical attunement in the change in cortisol levels over time between adolescent romantic partners. These findings indicate that even early romantic relationships exhibit coordination of physiological activity. Findings raise the possibility that adrenocortical attunement may be a dyadic pathway through which the proximal social context of early romantic relationships is translated into risk or resilience in health and behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of switching behavior of exchange-coupled nanomagnets by transverse magnetization metrology
NASA Astrophysics Data System (ADS)
Dey, Himadri S.; Csaba, Gyorgy; Bernstein, Gary H.; Porod, Wolfgang
2017-05-01
We investigate the static switching modes of nanomagnets patterned from antiferromagnetically exchange-coupled magnetic multilayers, and compare them to nanomagnets having only dipole coupling between the ferromagnetic layers. Vibrating sample magnetometry experiments, supported by micromagnetic simulations, reveal two distinct switching mechanisms between the exchange-coupled and only dipole-coupled nanomagnets. The exchange-coupled nanomagnets exhibit gradual switching of the layers, dictated by the strong antiferromagnetic exchange coupling present between the layers. However, the layers of the only dipole-coupled nanomagnets show abrupt nucleation/growth type switching. A comprehensive understanding of the switching modes of such layered and patterned systems can add new insight into the reversal mechanisms of similar systems employed for spintronic and magneto-logic device applications.
Weakly and strongly coupled Belousov-Zhabotinsky patterns.
Weiss, Stephan; Deegan, Robert D
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Weakly and strongly coupled Belousov-Zhabotinsky patterns
NASA Astrophysics Data System (ADS)
Weiss, Stephan; Deegan, Robert D.
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruverman, Alexei; Tsymbal, Evgeny Y.; Eom, Chang-Beom
2017-05-03
This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modelingmore » of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.« less
The couple that smokes together: Dyadic marijuana use and relationship functioning during conflict.
Crane, Cory A; Testa, Maria; Schlauch, Robert C; Leonard, Kenneth E
2016-09-01
Self-reported marijuana use has been associated with poor relationship functioning and decreased stability over time. The present study examined the behavioral interactions of couples with concordant and discordant patterns of marijuana use during conflict, using individual self-reports and observation by independent coders. Heavy drinking community couples (N = 149) participated in a conflict resolution paradigm. Interactions were recorded and coded by naïve coders. Approximately 30% of the sample reported past year marijuana use. Actor-Partner Interdependence Models and analysis of covariance (ANCOVA) were used to evaluate the individual and interactive effects of dyadic marijuana use on maladaptive relationship functioning. A Robust Actor × Partner Marijuana Use interaction was detected for a range of behavioral outcomes, assessed by both self-report and direct observation, including relationship satisfaction, anger experience, patterns of demand and withdrawal during conflict, constructive behaviors, and overall relationship quality. Specifically, couples in which both partners used or abstained from marijuana displayed more adaptive relationship functioning across indicators relative to couples in which only 1 partner identified as a marijuana user. This pattern was particularly strong for couples in which the female partner used marijuana and the male partner did not. Couples with discordant, rather than concordant, marijuana use displayed distinct conflict resolution behaviors that were consistent with the long-term negative relationship outcomes that have been observed in previous studies. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Intensity noise coupling in soliton fiber oscillators.
Wan, Chenchen; Schibli, Thomas R; Li, Peng; Bevilacqua, Carlo; Ruehl, Axel; Hartl, Ingmar
2017-12-15
We present an experimental and numerical study on the spectrally resolved pump-to-output intensity noise coupling in soliton fiber oscillators. In our study, we observe a strong pump noise coupling to the Kelly sidebands, while the coupling to the soliton pulse is damped. This behavior is observed in erbium-doped as well as holmium-doped fiber oscillators and confirmed by numerical modeling. It can be seen as a general feature of laser oscillators in which soliton pulse formation is dominant. We show that spectral blocking of the Kelly sidebands outside the laser cavity can improve the intensity noise performance of the laser dramatically.
Many-body dynamics of chemically propelled nanomotors
NASA Astrophysics Data System (ADS)
Colberg, Peter H.; Kapral, Raymond
2017-08-01
The collective behavior of chemically propelled sphere-dimer motors made from linked catalytic and noncatalytic spheres in a quasi-two-dimensional confined geometry is studied using a coarse-grained microscopic dynamical model. Chemical reactions at the catalytic spheres that convert fuel to product generate forces that couple to solvent degrees of freedom as a consequence of momentum conservation in the microscopic dynamics. The collective behavior of the many-body system is influenced by direct intermolecular interactions among the motors, chemotactic effects due to chemical gradients, hydrodynamic coupling, and thermal noise. Segregation into high and low density phases and globally homogeneous states with strong fluctuations are investigated as functions of the motor characteristics. Factors contributing to this behavior are discussed in the context of active Brownian models.
Close partner as sculptor of the ideal self: behavioral affirmation and the Michelangelo phenomenon.
Drigotas, S M; Rusbult, C E; Wieselquist, J; Whitton, S W
1999-08-01
This work incorporates concepts from the behavioral confirmation tradition, self tradition, and interdependence tradition to identify an interpersonal process termed the Michelangelo phenomenon. The Michelangelo phenomenon describes the means by which the self is shaped by a close partner's perceptions and behavior. Specifically, self movement toward the ideal self is described as a product of partner affirmation, or the degree to which a partner's perceptions of the self and behavior toward the self are congruent with the self's ideal. The results of 4 studies revealed strong associations between perceived partner affirmation and self movement toward the ideal self, using a variety of participant populations and measurement methods. In addition, perceived partner affirmation--particularly perceived partner behavioral affirmation--was strongly associated with quality of couple functioning and stability in ongoing relationships.
NASA Astrophysics Data System (ADS)
Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.
2015-08-01
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.
Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J
2015-08-12
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokharel, G.; May, A. F.; Parker, D. S.
In this paper, the physical properties of the spinel LiGaCr 4S 8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. Finally, these results indicate strong magnetoelastic coupling in LiGaCrmore » 4S 8.« less
Pokharel, G.; May, A. F.; Parker, D. S.; ...
2018-04-30
In this paper, the physical properties of the spinel LiGaCr 4S 8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. Finally, these results indicate strong magnetoelastic coupling in LiGaCrmore » 4S 8.« less
NASA Astrophysics Data System (ADS)
Sharma, Ramkishor; Jagannathan, Sandhya; Seshadri, T. R.; Subramanian, Kandaswamy
2017-10-01
Models of inflationary magnetogenesis with a coupling to the electromagnetic action of the form f2Fμ νFμ ν , are known to suffer from several problems. These include the strong coupling problem, the backreaction problem and also strong constraints due to the Schwinger effect. We propose a model which resolves all these issues. In our model, the coupling function, f , grows during inflation and transits to a decaying phase post-inflation. This evolutionary behavior is chosen so as to avoid the problem of strong coupling. By assuming a suitable power-law form of the coupling function, we can also neglect backreaction effects during inflation. To avoid backreaction post-inflation, we find that the reheating temperature is restricted to be below ≈1.7 ×104 GeV . The magnetic energy spectrum is predicted to be nonhelical and generically blue. The estimated present day magnetic field strength and the corresponding coherence length taking reheating at the QCD epoch (150 MeV) are 1.4 ×10-12 G and 6.1 ×10-4 Mpc , respectively. This is obtained after taking account of nonlinear processing over and above the flux-freezing evolution after reheating. If we consider also the possibility of a nonhelical inverse transfer, as indicated in direct numerical simulations, the coherence length and the magnetic field strength are even larger. In all cases mentioned above, the magnetic fields generated in our models satisfy the γ -ray bound below a certain reheating temperature.
NASA Astrophysics Data System (ADS)
Jamshidi-Ghaleh, Kazem; Ebrahimi-hamed, Zahra; Sahrai, Mostafa
2017-10-01
This paper investigates the behavior of linear and nonlinear optical susceptibility of an open four-level molecular system, under two-step excitation based on electromagnetically induced transparency (EIT). The system was irradiated with a weak probe field and strong coupling field. It is shown that the use of a strong coupling field in the triplet states of an alkali-metal dimer can change the spin-orbit interaction (SOI). The optical response of the system can then be modified in a controllable way. The electromagnetically induced transparency transforms into electromagnetically induced absorption (EIA) in the presence of a coupling field. Changing the sign of the dispersion, this region is associated with switching subluminal and superluminal propagation. Furthermore, for the proper value of the coupling field, the controllable parameters, enhanced Kerr nonlinearity with reduced linear absorption, can be obtained under a weak probe field. With this approach, SOI can be controlled by changing only one of the controllable parameters, using triplet-triplet strong coupling with different spin state. Therefore, the desired region of the spectra can be obtained, in contrast to the other four-level system, in which at least two strong fields are used to change optical properties. This mechanism can be suitable in molecular systems or semiconductors to be used in optical bistability and fast all-optical switching devices.
NASA Astrophysics Data System (ADS)
Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.
2018-02-01
Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.
Detecting chameleons through Casimir force measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine
2007-12-15
The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field.more » As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models.« less
Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity
Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa
2016-01-01
Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature <140 K and large negative polariton-exciton offset (<−133 meV) conditions. In addition, the corresponding lasing behaviors, such as threshold energy, linewidth, phase diagram, and angular dispersion are verified. The results afford a basis from which to understand the complicated lasing mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton. PMID:26838665
Strong spin-lattice coupling in CrSiTe 3
Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; ...
2015-03-19
CrSiTe 3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe 3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of themore » phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. In conclusion, the Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Lastly, spin-lattice coupling constants are also extracted.« less
NASA Astrophysics Data System (ADS)
Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo
2013-09-01
We study the Holstein-Hubbard model at half filling to explore ordered phases including superconductivity (SC), antiferromagnetism (AF), and charge order (CO) in situations where the electron-electron and electron-phonon interactions are strong (comparable to the electronic bandwidth). The model is solved in the dynamical mean-field approximation with a continuous-time quantum Monte Carlo impurity solver. We determine the superconducting transition temperature Tc and the SC order parameter and show that the phonon-induced retardation or the strong Coulomb interaction leads to a significant reduction and shift of the Tc dome against the effective electron-electron interaction Ueff given by the Hubbard U reduced by the phonon-mediated attraction in the static limit. This behavior is analyzed by comparison to an effective static model in the polaron representation with a renormalized bandwidth. In addition, we discuss the superconducting gap Δ and 2Δ/Tc to reveal the effect of the retardation and the Coulomb interaction. We also determine the finite-temperature phase diagram including AF and CO. In the moderate-coupling regime, there is a hysteretic region of AF and CO around Ueff=0, while the two phases are separated by a paramagnetic metal in the weak-coupling regime and a paramagnetic insulator in the strong-coupling regime.
Noise switching at a dynamical critical point in a cavity-conductor hybrid
NASA Astrophysics Data System (ADS)
Armour, Andrew D.; Kubala, Björn; Ankerhold, Joachim
2017-12-01
Coupling a mesoscopic conductor to a microwave cavity can lead to fascinating feedback effects which generate strong correlations between the dynamics of photons and charges. We explore the connection between cavity dynamics and charge transport in a model system consisting of a voltage-biased Josephson junction embedded in a high-Q cavity, focusing on the behavior as the system is tuned through a dynamical critical point. On one side of the critical point the noise is strongly suppressed, signaling the existence of a regime of highly coherent transport, but on the other side it switches abruptly to a much larger value. Using a semiclassical approach we show that this behavior arises because of the strongly nonlinear cavity drive generated by the Cooper pairs. We also uncover an equivalence between charge and photonic current noise in the system which opens up a route to detecting the critical behavior through straightforward microwave measurements.
Fast-forward Langevin dynamics with momentum flips
NASA Astrophysics Data System (ADS)
Hijazi, Mahdi; Wilkins, David M.; Ceriotti, Michele
2018-05-01
Stochastic thermostats based on the Langevin equation, in which a system is coupled to an external heat bath, are popular methods for temperature control in molecular dynamics simulations due to their ergodicity and their ease of implementation. Traditionally, these thermostats suffer from sluggish behavior in the limit of high friction, unlike thermostats of the Nosé-Hoover family whose performance degrades more gently in the strong coupling regime. We propose a simple and easy-to-implement modification to the integration scheme of the Langevin algorithm that addresses the fundamental source of the overdamped behavior of high-friction Langevin dynamics: if the action of the thermostat causes the momentum of a particle to change direction, it is flipped back. This fast-forward Langevin equation preserves the momentum distribution and so guarantees the correct equilibrium sampling. It mimics the quadratic behavior of Nosé-Hoover thermostats and displays similarly good performance in the strong coupling limit. We test the efficiency of this scheme by applying it to a 1-dimensional harmonic oscillator, as well as to water and Lennard-Jones polymers. The sampling efficiency of the fast-forward Langevin equation thermostat, measured by the correlation time of relevant system variables, is at least as good as the traditional Langevin thermostat, and in the overdamped regime, the fast-forward thermostat performs much better, improving the efficiency by an order of magnitude at the highest frictions we considered.
Magnetocapacitance without magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Catalan, G.
2006-03-01
The existence of a magnetodielectric (magnetocapacitance) effect is often used as a test for multiferroic behavior in new material systems. However, strong magnetodielectric effects can also be achieved through a combination of magnetoresistance and the Maxwell-Wagner effect, unrelated to true magnetoelectric coupling. The fact that this resistive magnetocapacitance does not require multiferroic materials may be advantageous for practical applications. Conversely, however, it also implies that magnetocapacitance per se is not sufficient to establish that a material is multiferroic.
Escuer, Albert; Vicente, Ramon; Kumar, Sujit B.; Solans, Xavier; Font-Bardía, Mercé; Caneschi, Andrea
1996-05-22
The trinuclear complex (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)] was obtained by reaction of basic solutions of nickel(II), Medpt (bis(3aminopropyl)methylamine) and thiocyanate ligand with atmospheric CO(2) or by simple reaction with carbonate anion. (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)] crystallizes in the triclinic system, space group P&onemacr;, with a = 12.107(5) Å, b = 12.535(7) Å, c = 16.169(9) Å, alpha = 102.69(5) degrees, beta = 92.91(5) degrees, gamma = 118.01(4) degrees, Z = 2, and R = 0.043. The three nickel atoms are asymmetrically bridged by one pentadentate carbonato ligand, which shows a novel coordination mode. The (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)] compound shows a very strong antiferromagnetic coupling. Fit as irregular triangular arrangement gave J(1) = -88.4, J(2) = -57.7, and J(3) = -9.6 cm(-)(1), which is the strongest AF coupling observed to date for Ni(3) compounds. The magnetic behavior of the carbonato bridge is discussed.
Balagam, Rajesh; Litwin, Douglas B.; Czerwinski, Fabian; Sun, Mingzhai; Kaplan, Heidi B.; Shaevitz, Joshua W.; Igoshin, Oleg A.
2014-01-01
Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism, which differ in the biophysics of the cell–substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment. PMID:24810164
Fisher, Lawrence; Chesla, Catherine A; Chun, Kevin M; Skaff, Marilyn M; Mullan, Joseph T; Kanter, Richard A; Gardiner, Phillip S
2004-06-01
Family context exerts a strong influence on disease management among patients with chronic disease, but it is not clear which aspects of family life are most influential. This study examined the linkages between patient-appraised couple emotion management (conflict resolution, expressiveness, and respect) and disease management (biological, morale/depression, quality of life, and behavioral) among a relatively understudied group, Chinese American patients with type 2 diabetes. Significant main effects were found between patient-appraised couple emotion management, especially conflict resolution, and the morale component of disease management, but not the biological or behavioral components; both diabetes-specific and general relationship qualities (marital satisfaction) were independently linked to disease management. Acculturation did not qualify the findings. Similarities among ethnic groups in family and disease management relationships may be more common than differences.
Evidence for phononic pairing in extremely overdoped ``pure'' d-wave superconductor Bi2212
NASA Astrophysics Data System (ADS)
He, Yu; Hishimoto, Makoto; Song, Dongjoon; Eisaki, Hiroshi; Shen, Zhi-Xun
2015-03-01
Recent advancement in High Tc cuprate superconductor research has elucidated strong interaction between superconductivity and competing orders. Therefore, the mechanism behind the 'pure' d-wave superconducting behavior becomes the next stepping stone to further the understanding. We have performed photoemission study on extremely overdoped Bi2212 single crystal synthesized via high pressure method. In this regime, we demonstrate the much reduced superconducting gap and the absence of pseudogap. Clear gap shifted bosonic mode coupling is observed throughout the entire Brillouin zone. Via full Eliashberg treatment, we find the electron-phonon coupling strength capable of producing a transition temperature very close to Tc. This strongly implies bosonic contribution to cuprate superconductivity's pairing glue.
Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport
Yoon, Hongkyu; Kang, Qinjun; Valocchi, Albert J.
2015-07-29
Here an important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport,more » which can strongly influence larger-scale properties such as permeability and dispersion.« less
Anomalous phonon behavior in superconducting CaKFe 4 As 4 : An optical study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Run; Dai, Yaomin; Xu, Bing
Here, the temperature dependence of ab-plane optical conductivity of CaKFe 4As 4 has been measured below and above its superconducting transition temperature T c≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T-linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm –1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ 1 ≃ 9 meV and Δ 2 ≃ 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cmmore » –1, we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.« less
Anomalous phonon behavior in superconducting CaKFe 4 As 4 : An optical study
Yang, Run; Dai, Yaomin; Xu, Bing; ...
2017-02-08
Here, the temperature dependence of ab-plane optical conductivity of CaKFe 4As 4 has been measured below and above its superconducting transition temperature T c≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T-linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm –1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ 1 ≃ 9 meV and Δ 2 ≃ 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cmmore » –1, we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.« less
An a 0 resonance in strongly coupled π η , K K ¯ scattering from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.
2016-05-11
Here, we present the first calculation of coupled-channel meson-meson scattering in the isospinmore » $=1$, $G$-parity negative sector, with channels $$\\pi \\eta$$, $$K\\overline{K}$$ and $$\\pi \\eta'$$, in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the $S$-matrix, and find that the $S$-wave features a prominent cusp-like structure in $$\\pi \\eta \\to \\pi \\eta$$ close to $$K\\overline{K}$$ threshold coupled with a rapid turn on of amplitudes leading to the $$K\\overline{K}$$ final-state. This behavior is traced to an $$a_0(980)$$-like resonance, strongly coupled to both $$\\pi \\eta$$ and $$K\\overline{K}$$, which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of $D$-wave scattering suggests a narrow tensor resonance at higher energy.« less
An a 0 resonance in strongly coupled π η , K K ¯ scattering from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.
Here, we present the first calculation of coupled-channel meson-meson scattering in the isospinmore » $=1$, $G$-parity negative sector, with channels $$\\pi \\eta$$, $$K\\overline{K}$$ and $$\\pi \\eta'$$, in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the $S$-matrix, and find that the $S$-wave features a prominent cusp-like structure in $$\\pi \\eta \\to \\pi \\eta$$ close to $$K\\overline{K}$$ threshold coupled with a rapid turn on of amplitudes leading to the $$K\\overline{K}$$ final-state. This behavior is traced to an $$a_0(980)$$-like resonance, strongly coupled to both $$\\pi \\eta$$ and $$K\\overline{K}$$, which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of $D$-wave scattering suggests a narrow tensor resonance at higher energy.« less
Polariton-acoustic-phonon interaction in a semiconductor microcavity
NASA Astrophysics Data System (ADS)
Cassabois, G.; Triques, A. L. C.; Bogani, F.; Delalande, C.; Roussignol, Ph.; Piermarocchi, C.
2000-01-01
The broadening of polariton lines by acoustic phonons is investigated in a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond resolution. A decrease of the polariton-acoustic phonon coupling is clearly observed for the lower polariton branch as one approaches the resonance between exciton and photon states. This behavior cannot be explained in terms of a semiclassical linear dispersion theory but requires a full quantum description of the microcavity in the strong-coupling regime.
Coupled latent differential equation with moderators: simulation and application.
Hu, Yueqin; Boker, Steve; Neale, Michael; Klump, Kelly L
2014-03-01
Latent differential equations (LDE) use differential equations to analyze time series data. Because of the recent development of this technique, some issues critical to running an LDE model remain. In this article, the authors provide solutions to some of these issues and recommend a step-by-step procedure demonstrated on a set of empirical data, which models the interaction between ovarian hormone cycles and emotional eating. Results indicated that emotional eating is self-regulated. For instance, when people do more emotional eating than normal, they will subsequently tend to decrease their emotional eating behavior. In addition, a sudden increase will produce a stronger tendency to decrease than will a slow increase. We also found that emotional eating is coupled with the cycle of the ovarian hormone estradiol, and the peak of emotional eating occurs after the peak of estradiol. The self-reported average level of negative affect moderates the frequency of eating regulation and the coupling strength between eating and estradiol. Thus, people with a higher average level of negative affect tend to fluctuate faster in emotional eating, and their eating behavior is more strongly coupled with the hormone estradiol. Permutation tests on these empirical data supported the reliability of using LDE models to detect self-regulation and a coupling effect between two regulatory behaviors. (c) 2014 APA, all rights reserved.
Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.
2015-01-01
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations. PMID:26267653
Hysteresis behaviors in a ferrimagnetic Ising nanotube with hexagonal core-shell structure
NASA Astrophysics Data System (ADS)
Liu, Ying; Wang, Wei; Lv, Dan; Zhao, Xue-ru; Huang, Te; Wang, Ze-yuan
2018-07-01
Monte Carlo simulation has been employed to study the hysteresis behaviors of a ferrimagnetic mixed-spin (1, 3/2) Ising nanotube with hexagonal core-shell structure. The effects of different single-ion anisotropies, exchange couplings and temperature on the hysteresis loops of the system and sublattices are discussed in detail. Multiple hysteresis loops such as triple loops have been observed in the system under certain physical parameters. It is found that the anisotropy, the exchange coupling and the temperature strongly affect the coercivities and the remanences of the system and the sublattices. Comparing our results with other theoretical and experimental studies, a satisfactory agreement can be achieved qualitatively.
Quench dynamics of the interacting Bose gas in one dimension.
Iyer, Deepak; Andrei, Natan
2012-09-14
We obtain an exact expression for the time evolution of the interacting Bose gas following a quench from a generic initial state using the Yudson representation for integrable systems. We study the time evolution of the density and noise correlation for a small number of bosons and their asymptotic behavior for any number. We show that for any value of the coupling, as long as it is repulsive, the system asymptotes towards a strongly repulsive gas, while for any value of an attractive coupling the long time behavior is dominated by the maximal bound state. This occurs independently of the initial state and can be viewed as an emerging "dynamic universality."
Tracking BO6 Coupling in Perovskite Superlattices to Engineer Magnetic Interface Behavior
NASA Astrophysics Data System (ADS)
Borisevich, Albina; He, Qian; Ghosh, Saurabh; Moon, Eun Ju; May, Steve; Lupini, Andrew; Pantelides, Sokrates
In the past several years, control of BO6 octahedral coupling at ABO3 perovskite interfaces has emerged as a new tool for engineering of interface properties due to its strong coupling to polar and magnetic properties. High resolution data on tilt transitions at interfaces is instrumental for evaluating the validity of existing theoretical models and developing predictive theories. Recently, we have developed a unique method to investigate BO6 rotation patterns in complex oxides with unit cell resolution. Our method involves column shape analysis in ABF-STEM images of the perovskite heterointerfaces taken in specific orientations. This method will allow us to determine local symmetry between adjacent unit cells, revealing the BO6 coupling behavior at heterointerfaces in 3D. This technique was used to characterize structure and predict properties via a combined STEM and DFT study of magnetic superlattice of La(Ca)MnO3/La(Sr)MnO3 with different periodicities, which exhibit a range of electromagnetic coupling behaviors. We will also discuss the prospects for tilted structure determination using electron ptychography. The correlations among the BO6 rotation, domain size, superlattice periodicity and the electromagnetic coupling will be discussed in detail. Research supported by the MSED of the U.S.DOE, and through a user project at ORNL's CNMS, sponsored by the SUFD of the U.S. DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Gilson F. de, E-mail: gilson@otica.ufpb.br; Lorenzo, Orlando di; Chevrollier, Martine
We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complexmore » systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mawrie, Alestin; Ghosh, Tarun Kanti
We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strengthmore » of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.« less
Exciton-plasmon coupling interactions: from principle to applications
NASA Astrophysics Data System (ADS)
Cao, En; Lin, Weihua; Sun, Mengtao; Liang, Wenjie; Song, Yuzhi
2018-01-01
The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd 2Re 2O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harter, J. W.; Zhao, Z. Y.; Yan, J. -Q.
Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd 2Re 2O 7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of themore » multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd 2Re 2O 7 and induces a parity-breaking lattice distortion as a secondary order.« less
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7
NASA Astrophysics Data System (ADS)
Harter, J. W.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Hsieh, D.
2017-04-01
Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd2Re2O7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2Re2O7 and induces a parity-breaking lattice distortion as a secondary order.
NASA Astrophysics Data System (ADS)
Sim, Hasung; Lee, Seongsu; Hong, Kun-Pyo; Jeong, Jaehong; Zhang, J. R.; Kamiyama, T.; Adroja, D. T.; Murray, C. A.; Thompson, S. P.; Iga, F.; Ji, S.; Khomskii, D.; Park, Je-Geun
2016-11-01
Dy B4 has a two-dimensional Shastry-Sutherland (Sh-S) lattice with strong Ising character of the Dy ions. Despite the intrinsic frustrations, it undergoes two successive transitions: a magnetic ordering at TN=20 K and a quadrupole ordering at TQ=12.5 K . From high-resolution neutron and synchrotron x-ray powder diffraction studies, we have obtained full structural information on this material in all phases and demonstrate that structural modifications occurring at quadrupolar transition lead to the lifting of frustrations inherent in the Sh-S model. Our paper thus provides a complete experimental picture of how the intrinsic frustration of the Sh-S lattice can be lifted by the coupling to quadrupole moments. We show that two other factors, i.e., strong spin-orbit coupling and long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in metallic Dy B4 , play an important role in this behavior.
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd 2Re 2O 7
Harter, J. W.; Zhao, Z. Y.; Yan, J. -Q.; ...
2017-04-21
Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd 2Re 2O 7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of themore » multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd 2Re 2O 7 and induces a parity-breaking lattice distortion as a secondary order.« less
Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons
NASA Astrophysics Data System (ADS)
Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.
2018-05-01
We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.
New type of quantum criticality in the pyrochlore iridates
Savary, Lucile; Moon, Eun -Gook; Balents, Leon
2014-11-13
Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons andmore » antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.« less
Kim, T; Chamberlin, R V; Bird, J P
2013-03-13
We demonstrate large (>100%) time-dependent magnetoresistance in nickel-silicide nanowires and develop a thermodynamic model for this behavior. The model describes nonequilibrium heating of localized spins in an increasing magnetic field. We find a strong interaction between spins but no long-range magnetic order. The spins likely come from unpaired dangling bonds in the interfacial layers of the nanowires. The model indicates that although these bonds couple weakly to a thermal bath, they dominate the nanowire resistance.
Limiting Conditions of the "Physical Attractiveness Stereotype": Attributions about Divorce.
ERIC Educational Resources Information Center
Brigham, John C.
1980-01-01
Subjects, reading a profile of a couple filing for divorce, made attributions about responsibility, financial settlement, future behavior, and personality traits. Reasons for divorce, physical attractiveness of husband and wife, and sex of subject were varied. Attractiveness strongly influenced personality ratings. Reason for divorce was related…
NASA Astrophysics Data System (ADS)
Feng, Yan; Lin, Wei; Murillo, M. S.
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Beach Nourishment Dynamics in a Coupled Large-Scale Coastal Change and Economic Optimization Model
NASA Astrophysics Data System (ADS)
McNamara, D. E.; Murray, B.; Smith, M.
2008-12-01
Global climate change is predicted to have significant consequences for shoreline evolution from both sea level rise and changing wave climates. Because many coastal communities actively defend against erosion, changing environmental conditions will influence rates of nourishment. Over large coastal regions, including many towns, the anticipated future rate of nourishment is assumed to be proportional to the expected evolution of the shoreline in the region. This view neglects the possibility of strong coupling between the spatial patterns of nourishment and the distribution of property values within the region. To explore the impact of this coupling, we present a numerical model that incorporates the physical forces of alongshore sediment transport and erosion due to sea level rise as well as the economic forces that drive beach replenishment including the economic benefits of enhanced or maintained beach width and the costs of replenishing. Results are presented for a Carolina-like coastline and show how natural shoreline change rates are altered as the wave climate changes (because of changing storm behaviors). Results also show that the nourishment rate is conserved for varying property value distributions when the nourishment cost is unrelated to past nourishment and, in contrast, increasing nourishment cost as available sand for nourishment is depleted causes strong coupling between the property value distribution and erosion patterns. This strong coupling significantly alters the rate of nourishment and hence the depletion of available sand for nourishing.
Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito
2015-09-07
In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and several theoretical studies have suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with the Franck-Condon active vibrational modes in the resonant condition. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures.more » However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment electronic coupling. In this paper, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongly coupled dimer with an off-resonant vibrational mode. Toward this end, we calculate energy transfer dynamics and 2D electronic spectra of a model dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna-Matthews-Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein-induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the energy transfer dynamics are demonstrated to be dominated by the environment and coupling between the 0 0 vibronic transitions as long as the Huang-Rhys factor of the vibrational mode is small. Finally, the electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics despite contributing to the enhancement of long-lived quantum beating in the 2D spectra.« less
Renormalization of Collective Modes in Large-Scale Neural Dynamics
NASA Astrophysics Data System (ADS)
Moirogiannis, Dimitrios; Piro, Oreste; Magnasco, Marcelo O.
2017-05-01
The bulk of studies of coupled oscillators use, as is appropriate in Physics, a global coupling constant controlling all individual interactions. However, because as the coupling is increased, the number of relevant degrees of freedom also increases, this setting conflates the strength of the coupling with the effective dimensionality of the resulting dynamics. We propose a coupling more appropriate to neural circuitry, where synaptic strengths are under biological, activity-dependent control and where the coupling strength and the dimensionality can be controlled separately. Here we study a set of N→ ∞ strongly- and nonsymmetrically-coupled, dissipative, powered, rotational dynamical systems, and derive the equations of motion of the reduced system for dimensions 2 and 4. Our setting highlights the statistical structure of the eigenvectors of the connectivity matrix as the fundamental determinant of collective behavior, inheriting from this structure symmetries and singularities absent from the original microscopic dynamics.
Observation of Droplet Size Oscillations in a Two Phase Fluid under Shear Flow
NASA Astrophysics Data System (ADS)
Courbin, Laurent; Panizza, Pascal
2004-11-01
It is well known that complex fluids exhibit strong couplings between their microstructure and the flow field. Such couplings may lead to unusual non linear rheological behavior. Because energy is constantly brought to the system, richer dynamic behavior such as non linear oscillatory or chaotic response is expected. We report on the observation of droplet size oscillations at fixed shear rate. At low shear rates, we observe two steady states for which the droplet size results from a balance between capillary and viscous stress. For intermediate shear rates, the droplet size becomes a periodic function of time. We propose a phenomenological model to account for the observed phenomenon and compare numerical results to experimental data.
Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels
NASA Astrophysics Data System (ADS)
Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei
2018-01-01
As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.
Quantum walks of correlated photon pairs in two-dimensional waveguide arrays.
Poulios, Konstantinos; Keil, Robert; Fry, Daniel; Meinecke, Jasmin D A; Matthews, Jonathan C F; Politi, Alberto; Lobino, Mirko; Gräfe, Markus; Heinrich, Matthias; Nolte, Stefan; Szameit, Alexander; O'Brien, Jeremy L
2014-04-11
We demonstrate quantum walks of correlated photons in a two-dimensional network of directly laser written waveguides coupled in a "swiss cross" arrangement. The correlated detection events show high-visibility quantum interference and unique composite behavior: strong correlation and independence of the quantum walkers, between and within the planes of the cross. Violations of a classically defined inequality, for photons injected in the same plane and in orthogonal planes, reveal nonclassical behavior in a nonplanar structure.
Hagglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; ...
2016-01-29
In this study, when optical resonances interact strongly, hybridized modes are formed with mixed properties inherited from the basic modes. Strong coupling therefore tends to equalize properties such as damping and oscillator strength of the spectrally separate resonance modes. This effect is here shown to be very useful for the realization of near-perfect dual-band absorption with ultrathin (~10 nm) layers in a simple geometry. Absorber layers are constructed by atomic layer deposition of the heavy-damping semiconductor tin monosulfide (SnS) onto a two-dimensional gold nanodot array. In combination with a thin (55 nm) SiO 2 spacer layer and a highly reflectivemore » Al film on the back, a semiopen nanocavity is formed. The SnS-coated array supports a localized surface plasmon resonance in the vicinity of the lowest order antisymmetric Fabry–Perot resonance of the nanocavity. Very strong coupling of the two resonances is evident through anticrossing behavior with a minimum peak splitting of 400 meV, amounting to 24% of the plasmon resonance energy. The mode equalization resulting from this strong interaction enables simultaneous optical impedance matching of the system at both resonances and thereby two near-perfect absorption peaks, which together cover a broad spectral range. When paired with the heavy damping from SnS band-to-band transitions, this further enables approximately 60% of normal incident solar photons with energies exceeding the band gap to be absorbed in the 10 nm SnS coating. Thereby, these results establish a distinct relevance of strong coupling phenomena to efficient, nanoscale photovoltaic absorbers and more generally for fulfilling a specific optical condition at multiple spectral positions.« less
NASA Astrophysics Data System (ADS)
Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun
2018-01-01
In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.
Homoclinic snaking in the discrete Swift-Hohenberg equation
NASA Astrophysics Data System (ADS)
Kusdiantara, R.; Susanto, H.
2017-12-01
We consider the discrete Swift-Hohenberg equation with cubic and quintic nonlinearity, obtained from discretizing the spatial derivatives of the Swift-Hohenberg equation using central finite differences. We investigate the discretization effect on the bifurcation behavior, where we identify three regions of the coupling parameter, i.e., strong, weak, and intermediate coupling. Within the regions, the discrete Swift-Hohenberg equation behaves either similarly or differently from the continuum limit. In the intermediate coupling region, multiple Maxwell points can occur for the periodic solutions and may cause irregular snaking and isolas. Numerical continuation is used to obtain and analyze localized and periodic solutions for each case. Theoretical analysis for the snaking and stability of the corresponding solutions is provided in the weak coupling region.
NASA Astrophysics Data System (ADS)
Trocha, Piotr; Weymann, Ireneusz; Barnaś, Józef
2009-10-01
Spin-dependent transport through two coupled single-level quantum dots weakly connected to ferromagnetic leads with collinear magnetizations is considered theoretically. Transport characteristics, including the current, linear and nonlinear conductances, and tunnel magnetoresistance are calculated using the real-time diagrammatic technique in the parallel, serial, and intermediate geometries. The effects due to virtual tunneling processes between the two dots via the leads, associated with off-diagonal coupling matrix elements, are also considered. Negative differential conductance and negative tunnel magnetoresistance have been found in the case of serial and intermediate geometries, while no such behavior has been observed for double quantum dots coupled in parallel. It is also shown that transport characteristics strongly depend on the magnitude of the off-diagonal coupling matrix elements.
NASA Astrophysics Data System (ADS)
Wang, Wei; Coombs, Tim
2018-04-01
We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.
Ericson fluctuations in an open deterministic quantum system: theory meets experiment.
Madroñero, Javier; Buchleitner, Andreas
2005-12-31
We provide numerically exact photoexcitation cross sections of rubidium Rydberg states in crossed, static electric, and magnetic fields, in quantitative agreement with recent experimental results. Their spectral backbone underpins a clear transition towards the Ericson regime, associated with a universal, fluctuating behavior of the cross section of strongly coupled, fragmenting quantum systems.
NASA Astrophysics Data System (ADS)
Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin
2018-05-01
Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.
Spin-orbit coupling and transport in strongly correlated two-dimensional systems
NASA Astrophysics Data System (ADS)
Huang, Jian; Pfeiffer, L. N.; West, K. W.
2017-05-01
Measuring the magnetoresistance (MR) of ultraclean GaAs two-dimensional holes for a large rs range of 20-50, two striking behaviors in relation to the spin-orbit coupling (SOC) emerge in response to strong electron-electron interaction. First, in exact correspondence to the zero-field metal-to-insulator transition (MIT), the sign of the MR switches from being positive in the metallic regime to being negative in the insulating regime when the carrier density crosses the critical density pc of MIT (rs˜39 ). Second, as the SOC-driven correction Δ ρ to the MR decreases with reducing carrier density (or the in-plane wave vector), it exhibits an upturn in the close proximity just above pc where rs is beyond 30, indicating a substantially enhanced SOC effect. This peculiar behavior echoes with a trend of delocalization long suspected for the SOC-interaction interplay. Meanwhile, for p
NASA Astrophysics Data System (ADS)
Li, Shanshan; Zhang, Guoshan; Wang, Jiang; Chen, Yingyuan; Deng, Bin
2018-02-01
This paper proposes that modified two-compartment Pinsky-Rinzel (PR) neural model can be used to develop the simple form of central pattern generator (CPG). The CPG is called as 'half-central oscillator', which constructed by two inhibitory chemical coupled PR neurons with time delay. Some key properties of PR neural model related to CPG are studied and proved to meet the requirements of CPG. Using the simple CPG network, we first study the relationship between rhythmical output and key factors, including ambient noise, sensory feedback signals, morphological character of single neuron as well as the coupling delay time. We demonstrate that, appropriate intensity noise can enhance synchronization between two coupled neurons. Different output rhythm of CPG network can be entrained by sensory feedback signals. We also show that the morphology of single neuron has strong effect on the output rhythm. The phase synchronization indexes decrease with the increase of morphology parameter's difference. Through adjusting coupled delay time, we can get absolutely phase synchronization and antiphase state of CPG. Those results of simulation show the feasibility of PR neural model as a valid CPG as well as the emergent behaviors of the particularly CPG.
Neural representations of kinematic laws of motion: evidence for action-perception coupling.
Dayan, Eran; Casile, Antonino; Levit-Binnun, Nava; Giese, Martin A; Hendler, Talma; Flash, Tamar
2007-12-18
Behavioral and modeling studies have established that curved and drawing human hand movements obey the 2/3 power law, which dictates a strong coupling between movement curvature and velocity. Human motion perception seems to reflect this constraint. The functional MRI study reported here demonstrates that the brain's response to this law of motion is much stronger and more widespread than to other types of motion. Compliance with this law is reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. Hence, these results strongly support the notion of similar neural coding for motion perception and production. These findings suggest that cortical motion representations are optimally tuned to the kinematic and geometrical invariants characterizing biological actions.
NASA Astrophysics Data System (ADS)
Harter, J. W.; Kennes, D. M.; Chu, H.; de la Torre, A.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Millis, A. J.; Hsieh, D.
2018-01-01
We have used a combination of ultrafast coherent phonon spectroscopy, ultrafast thermometry, and time-dependent Landau theory to study the inversion symmetry breaking phase transition at Tc=200 K in the strongly spin-orbit coupled correlated metal Cd2 Re2 O7 . We establish that the structural distortion at Tc is a secondary effect through the absence of any softening of its associated phonon mode, which supports a purely electronically driven mechanism. However, the phonon lifetime exhibits an anomalously strong temperature dependence that decreases linearly to zero near Tc. We show that this behavior naturally explains the spurious appearance of phonon softening in previous Raman spectroscopy experiments and should be a prevalent feature of correlated electron systems with linearly coupled order parameters.
Wagner, Sean R.; Feng, Jiagui; Yoon, Mina; ...
2015-08-25
Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p – d orbital coupling. As a result, this Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transition-metal-incorporated organic molecules on a technologically relevant substrate for silicon-based devices.
Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
NASA Astrophysics Data System (ADS)
Zheng, Da-Chuan; Tong, Ning-Hua
2017-06-01
Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σ z for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω )\\propto {ω }s is found to be universal and independent of the bias ɛ and the coupling strength α (except at the quantum critical point α ={α }{{c}} and ɛ = 0). Our NRG data also show C(ω )\\propto {χ }2{ω }s for a wide range of parameters, including the biased strong coupling regime (\\varepsilon \
NASA Astrophysics Data System (ADS)
Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.
2017-12-01
Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.
Antiferromagnetic Interlayer Exchange Coupling in All-Semiconducting EuS/PbS/EuS Trilayers
NASA Technical Reports Server (NTRS)
Smits, C. J. P.; Filip, A. T.; Swagten, H. J. M.; Koopmans, B.; deJonge, W. J. M.; Chernyshova, M.; Kowalczyk, L.; Grasza, K.; Szczerbakow, A.; Story, T.
2003-01-01
A comprehensive experimental study on the antiferromagnetic interlayer exchange coupling in high quality epitaxial all-semiconducting EuSPbSEuS trilayers is reported. The influence of substrates, the thickness of the non-magnetic PbS spacer layer, and of temperature, was investigated by means of SQUID magnetometry. In trilayers with a PbS thickness between 4 and 12 deg A the low temperature hysteresis loops showed the signature of antiferromagnetic coupling. The value of the interlayer exchange coupling energy was determined by simulating the data with a modified Stoner model, including Zeeman, anisotropy, and exchange coupling energies. An important observation was of a strong dependence of the interlayer exchange coupling energy on temperature, consistent with a power law dependence of the exchange coupling constant on the saturation magnetization of the EuS layers. While no theoretical description is readily available, we conjecture that the observed behavior is due to a dependence of the interlayer exchange coupling energy on the exchange splitting of the EuS conduction band.
Electronic transport properties of intermediately coupled superconductors: PdTe2 and Cu0.04PdTe2
NASA Astrophysics Data System (ADS)
Hooda, M. K.; Yadav, C. S.
2018-01-01
We have investigated the electrical resistivity (1.8-480 K), Seebeck coefficient (2.5-300 K) and thermal conductivity (2.5-300 K) of PdTe2 and 4% Cu intercalated PdTe2 compounds. The electrical resistivity for the compounds shows a Bloch-Gruneisen-type linear temperature (T) dependence for 100 \\text{K}, and Fermi liquid behavior (ρ (T) \\propto T2) for T<50 \\text{K} . Seebeck coefficient data exhibit a strong competition between Normal (N) and Umklapp (U) scattering processes at low T. The low-T, thermal conductivity (κ) of the compounds is strongly dominated by the electronic contribution, and exhibits a rare linear T-dependence below 10 K. However, high-T, κ (T) shows the usual 1/T -dependence, dominated by the U-scattering process. The electron-phonon coupling parameters, estimated from the low-T, specific-heat data and first-principle electronic structure calculations suggest that PdTe2 and Cu0.04PdTe2 are intermediately coupled superconductors.
Viability of strongly coupled scenarios with a light Higgs-like boson.
Pich, Antonio; Rosell, Ignasi; Sanz-Cillero, Juan José
2013-05-03
We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian, implementing the chiral symmetry breaking SU(2)(L) [Symbol: see text]SU(2)(R) → SU(2)(L+R) with Goldstone bosons, gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at the next-to-leading order in terms of a few resonance parameters. The experimentally allowed range forces the vector and axial-vector states to be heavy, with masses above the TeV scale, and suggests that the Higgs-like scalar should have a WW coupling close to the standard model one. Our conclusions are generic and apply to more specific scenarios such as the minimal SO(5)/SO(4) composite Higgs model.
Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures.
Brar, Victor W; Jang, Min Seok; Sherrott, Michelle; Kim, Seyoon; Lopez, Josue J; Kim, Laura B; Choi, Mansoo; Atwater, Harry
2014-07-09
Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequency-wavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm(-1). We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes.
Rouse, Andrew A; Cook, Peter F; Large, Edward W; Reichmuth, Colleen
2016-01-01
Human capacity for entraining movement to external rhythms-i.e., beat keeping-is ubiquitous, but its evolutionary history and neural underpinnings remain a mystery. Recent findings of entrainment to simple and complex rhythms in non-human animals pave the way for a novel comparative approach to assess the origins and mechanisms of rhythmic behavior. The most reliable non-human beat keeper to date is a California sea lion, Ronan, who was trained to match head movements to isochronous repeating stimuli and showed spontaneous generalization of this ability to novel tempos and to the complex rhythms of music. Does Ronan's performance rely on the same neural mechanisms as human rhythmic behavior? In the current study, we presented Ronan with simple rhythmic stimuli at novel tempos. On some trials, we introduced "perturbations," altering either tempo or phase in the middle of a presentation. Ronan quickly adjusted her behavior following all perturbations, recovering her consistent phase and tempo relationships to the stimulus within a few beats. Ronan's performance was consistent with predictions of mathematical models describing coupled oscillation: a model relying solely on phase coupling strongly matched her behavior, and the model was further improved with the addition of period coupling. These findings are the clearest evidence yet for parity in human and non-human beat keeping and support the view that the human ability to perceive and move in time to rhythm may be rooted in broadly conserved neural mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponath, Patrick; O’Hara, Andrew; Cao, Hai-Xia
The growth of Co-substituted BaTiO 3 (BTO) films on Ge(001) substrates by molecular beam epitaxy is demonstrated in this paper. Energy-dispersive x-ray spectroscopy and transmission electron microscopy images confirm the uniform Co distribution. However, no evidence of magnetic ordering is observed in samples grown for Co concentrations between 2% and 40%. Piezoresponse force microscopy measurements show that a 5% Co-substituted BTO sample exhibits ferroelectric behavior. First-principles calculations indicate that while Co atoms couple ferromagnetically in the absence of oxygen vacancies, the occurrence of oxygen vacancies leads to locally antiferromagnetically coupled complexes with relatively strong spin coupling. Finally, the presence ofmore » a significant amount of oxygen vacancies is suggested by x-ray photoelectron spectroscopy measurements.« less
NASA Astrophysics Data System (ADS)
Midha, Tripti; Kolomeisky, Anatoly B.; Gupta, Arvind Kumar
2018-04-01
Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes.
Resonant acoustic propagation and negative density in liquid foams.
Pierre, Juliette; Dollet, Benjamin; Leroy, Valentin
2014-04-11
We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad frequency range (60-600 kHz). Strong dispersion was found, with two nondispersive behaviors, separated by a negative density regime. A new model, based on the coupled displacements of films, liquid channels, and gas in the foam, rationalizes all the experimental findings.
Resonant Acoustic Propagation and Negative Density in Liquid Foams
NASA Astrophysics Data System (ADS)
Pierre, Juliette; Dollet, Benjamin; Leroy, Valentin
2014-04-01
We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad frequency range (60-600 kHz). Strong dispersion was found, with two nondispersive behaviors, separated by a negative density regime. A new model, based on the coupled displacements of films, liquid channels, and gas in the foam, rationalizes all the experimental findings.
Contemporary continuum QCD approaches to excited hadrons
NASA Astrophysics Data System (ADS)
El-Bennich, Bruno; Rojas, Eduardo
2016-03-01
Amongst the bound states produced by the strong interaction, radially excited meson and nucleon states offer an important phenomenological window into the long-range behavior of the coupling constant in Quantum Chromodynamics. We here report on some technical details related to the computation of the bound state's eigenvalue spectrum in the framework of Bethe-Salpeter and Faddeev equations.
Symmetric rotating-wave approximation for the generalized single-mode spin-boson system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Victor V.; Scholes, Gregory D.; Brumer, Paul
2011-10-15
The single-mode spin-boson model exhibits behavior not included in the rotating-wave approximation (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating-wave approximation that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating-wave approximation both off-resonance and at deep-strong coupling. The symmetric rotating-wave approximation allows for the treatment of certain ultra- and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak-coupling regime.more » Additionally, we symmetrize the generalized form of the rotating-wave approximation to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating-wave approximation. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.« less
NASA Astrophysics Data System (ADS)
Koon, Norman C.
1997-04-01
It is shown using full micromagnetic relaxation calculations that exchange bias behavior is predicted for single-crystal ferro/antiferromagnetic layers with a fully compensated interface. The particular example most fully studied has a bcc/bct lattice structure with a fully compensated (110) interface plane. Only bilinear Heisenberg exchange was assumed, with anisotropy only in the antiferromagnet. In spite of the intuitive notion that exchange coupling between a ferromagnet and an antiferromagnet across a fully compensated plane of the antiferromagnet should be zero, we find strong coupling, comparable to the bilinear exchange, with a 90° angle between the ferromagnetic and antiferromagnetic axes of layers far from the interface in absence of an applied field. Even though the 90° coupling has characteristics resembling "biquadratic" exchange, it originates entirely from frustrated bilinear exchange. The development of exchange bias is found to originate from the formation of a domain wall in the antiferromagnet via the strong 90° exchange coupling and pinning of the wall by the magnetocrystalline anisotropy in the antiferromagnet. Because the large demagnetizing factor of the ferromagnet tends to confine its magnetization to the plane, the exchange bias is found to depend mainly on the strength and the symmetry of the in-plane component of anisotropy. Although little effort was made to analyze specific systems, the model reproduces many of the qualitative features observed in real exchange bias systems and gives reasonable semiquantitative estimates for the bias field when exchange and anisotropy values consistent with real systems are used.
Stimulant use patterns and HIV transmission risk among HIV-serodiscordant male couples.
Gamarel, Kristi E; Woolf-King, Sarah E; Carrico, Adam W; Neilands, Torsten B; Johnson, Mallory O
2015-02-01
Substance use is strongly linked to HIV risk, and members of couples can have a powerful influence on each other's health behaviors. We examined whether couple-level patterns of stimulant use were differentially associated with engaging in condomless anal intercourse with primary partners and outside partners. Members of HIV serodiscordant male couples (N = 117 couples, 232 men) completed surveys, and HIV-positive men had blood drawn for viral load. Results revealed that stimulant use by only one partner in the couple was associated with a decrease in the odds of engaging in condomless anal sex with one's primary partner (AOR = 0.09, 95% CI: 0.01, 0.89). When both partners reported stimulant use, the HIV-negative partner had an increase in the odds of condomless sex with outside partners (AOR = 6.68, 95% CI: 1.09, 8.01). Understanding the role of couples' stimulant use patterns in HIV transmission risk is an important area for future research and intervention.
Topological Luttinger liquids from decorated domain walls
NASA Astrophysics Data System (ADS)
Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain
2018-04-01
We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.
Critical Exponents, Scaling Law, Universality and Renormalization Group Flow in Strong Coupling QED
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi
The critical behavior of strongly coupled QED with a chiral-invariant four-fermion interaction (gauged Nambu-Jona-Lasinio model) is investigated through the unquenched Schwinger-Dyson equation including the fermion loop effect at the one-loop level. It is shown that the critical exponents satisfy the (hyper)scaling relations as in the quenched case. However, the respective critical exponent takes the classical mean-field value, and consequently unquenched QED belongs to the same universality class as the zero-charge model. On the other hand, it is pointed out that quenched QED violates not only universality but also weak universality, due to continuously varying critical exponents. Furthermore, the renormalization group flow of constant renormalized charge is given. All the results are consistent with triviality of QED and the gauged Nambu-Jona-Lasinio model in the unquenched case.
Feng, Yulong; Chen, Zhizhong; Jiang, Shuang; Li, Chengcheng; Chen, Yifan; Zhan, Jinglin; Chen, Yiyong; Nie, Jingxin; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Yu, Tongjun; Zhang, Guoyi; Shen, Bo
2018-04-16
We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.
Polaronic behavior in a weak-coupling superconductor.
Swartz, Adrian G; Inoue, Hisashi; Merz, Tyler A; Hikita, Yasuyuki; Raghu, Srinivas; Devereaux, Thomas P; Johnston, Steven; Hwang, Harold Y
2018-02-13
The nature of superconductivity in the dilute semiconductor SrTiO 3 has remained an open question for more than 50 y. The extremely low carrier densities ([Formula: see text]-[Formula: see text] cm -3 ) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen-Cooper-Schrieffer (BCS) and Migdal-Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO 3 , using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimate the doping evolution of the dimensionless electron-phonon interaction strength ([Formula: see text]). Upon cooling below the superconducting transition temperature ([Formula: see text]), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling ([Formula: see text]). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. They further demonstrate that SrTiO 3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron-phonon coupling strength.
Polaronic behavior in a weak-coupling superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, Adrian G.; Inoue, Hisashi; Merz, Tyler A.
We report the nature of superconductivity in the dilute semiconductor SrTiO 3 has remained an open question for more than 50 y. The extremely low carrier densities (10 18–10 20 cm -3) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen–Cooper–Schrieffer (BCS) and Migdal–Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO 3, using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimatemore » the doping evolution of the dimensionless electron–phonon interaction strength (λ). Upon cooling below the superconducting transition temperature (T c), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling (λ BCS≈0.1). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. Finally, they further demonstrate that SrTiO 3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron–phonon coupling strength.« less
Polaronic behavior in a weak-coupling superconductor
Swartz, Adrian G.; Inoue, Hisashi; Merz, Tyler A.; ...
2018-01-30
We report the nature of superconductivity in the dilute semiconductor SrTiO 3 has remained an open question for more than 50 y. The extremely low carrier densities (10 18–10 20 cm -3) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen–Cooper–Schrieffer (BCS) and Migdal–Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO 3, using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimatemore » the doping evolution of the dimensionless electron–phonon interaction strength (λ). Upon cooling below the superconducting transition temperature (T c), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling (λ BCS≈0.1). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. Finally, they further demonstrate that SrTiO 3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron–phonon coupling strength.« less
Magnetic ordering-induced multiferroic behavior in [CH 3NH 3][Co(HCOO) 3] metal-organic framework.
Gomez-Aguirre, Lilian Claudia; Zapf, Vivien S.; Pato-Doldan, Breogan; ...
2015-12-30
Here, we present the first example of magnetic ordering-induced multiferroic behavior in a metal–organic framework magnet. This compound is [CH 3NH 3][Co(HCOO) 3] with a perovskite-like structure. The A-site [CH 3NH 3] + cation strongly distorts the framework, allowing anisotropic magnetic and electric behavior and coupling between them to occur. This material is a spin canted antiferromagnet below 15.9 K with a weak ferromagnetic component attributable to Dzyaloshinskii–Moriya (DM) interactions and experiences a discontinuous hysteretic magnetic-field-induced switching along [010] and a more continuous hysteresis along [101]. Coupling between the magnetic and electric order is resolved when the field is appliedmore » along this [101]: a spin rearrangement occurs at a critical magnetic field in the ac plane that induces a change in the electric polarization along [101] and [10-1]. The electric polarization exhibits an unusual memory effect, as it remembers the direction of the previous two magnetic-field pulses applied. The data are consistent with an inverse-DM mechanism for multiferroic behavior.« less
Theory of anisotropic hybridization-broadened magnetic response in cerium and actinide systems
NASA Astrophysics Data System (ADS)
Hu, Gong-Jia; Cooper, Bernard R.
1993-11-01
Inelastic-neutron-scattering measurements on cerium and plutonium monopnictides, thought to have moderately delocalized f electrons, yield magnetic-excitation spectra with anisotropic dispersion; while reasonably sharp excitations have been observed only for USb and UTe among presumably more-delocalized uranium monopnictides and monochalcogenides. For UTe the broadening as well as the dispersion is quite anisotropic. We have now extended our previous theory for the magnetic behavior of hybridizing partially delocalized f-electron systems to include hybridization-induced relaxation effects in the magnetic response, and this work and results are reported in the present paper. Each partially delocalized f-electron ion is coupled by hybridization to the band sea; and this both leads to a hybridization-mediated anisotropic two-ion interaction giving magnetic ordering and also gives a damping mechanism, via the coupling to the band sea, for the excitations of the magnetically ordered lattice. This coupling also provides a strong renormalization of the magnetic-excitation energies obtained for the ionic lattice coupled by the two-ion interaction. To treat these effects on the magnetic response we have developed a formalism for calculating the dynamic susceptibility based on the projection-operator method developed by Mori and others. We have applied our model and theory to the behavior of CeSb, CeBi, PuSb, UP, UAs, and UTe; and excellent overall agreement with the wide range of unusual experimentally observed anisotropic magnetic-excitation behavior is obtained.
Aeromechanical stability of helicopters with composite rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Air and ground resonance of helicopters with elastically tailored composite rotor blades
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1993-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Evidence of exchange-coupled behavior in chromium-cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Tanbir, Kamar; Sharma, Lalit Kumar; Aakash; Singh, Rakesh Kumar; Choubey, Ravi Kant; Mukherjee, Samrat
2018-06-01
Cr doped cobalt ferrite nanoparticles were synthesized with the generic formula Co1-xCrxFe2O4 (x = 0, 0.05, 0.15, 0.25) through standard chemical co-precipitation method. XRD studies confirmed the pure spinel cubic structure belonging to Fd 3 bar m space group. From the Williamson-Hall plots, crystallite sizes were found to lie within the range (42 ± 1) nm for the different doped samples. The lattice parameter was found to decrease linearly with increase in the concentration of Cr3+ ion. The magnetic behavior of the samples was determined by M-H studies at 300 K, field cooled (5 T) at 5 K and temperature dependent studies. The M-H at 300 K show soft magnetic behavior whereas the M-H plots at 5 K predict the existence of in-homogeneity of the exchange interactions due to strong exchange coupling between the spins at the core and the surface of the nanoparticles.
Generation of helical magnetic field in a viable scenario of inflationary magnetogenesis
NASA Astrophysics Data System (ADS)
Sharma, Ramkishor; Subramanian, Kandaswamy; Seshadri, T. R.
2018-04-01
We study the generation of helical magnetic fields in a model of inflationary magnetogenesis which is free from the strong coupling and backreaction problems. To generate helical magnetic fields, we add an f2F˜μ νFμ ν term to the Lagrangian of the Ratra model. The strong coupling and backreaction problems are avoided if we take a particular behavior of coupling function f , in which f increases during inflation and decreases postinflation to reheating. The generated magnetic field is fully helical and has a blue spectrum, d ρB/d ln k ∝k4. This spectrum is obtained when coupling function f ∝a2 during inflation. The scale of reheating in our model has to be lower than 4000 GeV to avoid backreaction postinflation. The generated magnetic field spectrum satisfies the γ -ray bound for all the possible scales of reheating. The comoving magnetic field strength and its correlation length are ˜4 ×10-11 G and 70 kpc respectively, if reheating takes place at 100 GeV. For reheating at the QCD scales of 150 MeV, the field strength increases to ˜ nano gauss, with coherence scale of 0.6 Mpc.
High resolution study of magnetic ordering at absolute zero.
Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G
2004-05-07
High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.
Strong coupling of collection of emitters on hyperbolic meta-material
NASA Astrophysics Data System (ADS)
Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.
2018-04-01
Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.
Dielectric and phonon properties of the multiferroic ferrimagnet Cu{sub 2}OSeO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolova, I. N., E-mail: inaapos@abv.bg
2014-02-14
We propose a microscopic model in order to study the multiferroic properties of Cu{sub 2}OSeO{sub 3} taking into account the ferrimagnetic interaction, frustration, linear magnetoelectric (ME) coupling, and anharmonic spin-phonon interaction. We have shown that the dielectric constant and the phonon energy and damping have a kink near the magnetic phase transition T{sub C} = 58 K which disappears with increasing of an external magnetic field. This behavior is an evidence for a strong ME coupling and in qualitative agreement with the experimental data.
Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schluck, F.; Lehmann, G.; Müller, C.
Short laser pulse amplification via stimulated Brillouin backscattering in plasma is considered. Previous work distinguishes between the weakly and strongly coupled regime and treats them separately. It is shown here that such a separation is not generally applicable because strong and weak coupling interaction regimes are entwined with each other. An initially weakly coupled amplification scenario may dynamically transform into strong coupling. This happens when the local seed amplitude grows and thus triggers the strongly driven plasma response. On the other hand, when in a strong coupling scenario, the pump pulse gets depleted, and its amplitude might drop below themore » strong coupling threshold. This may cause significant changes in the final seed pulse shape. Furthermore, experimentally used pump pulses are typically Gaussian-shaped. The intensity threshold for strong coupling may only be exceeded around the maximum and not in the wings of the pulse. Also here, a description valid in both strong and weak coupling regimes is required. We propose such a unified treatment which allows us, in particular, to study the dynamic transition between weak and strong coupling. Consequences for the pulse forms of the amplified seed are discussed.« less
Many-body and spin-orbit aspects of the alternating current phenomena
NASA Astrophysics Data System (ADS)
Glenn, Rachel M.
The thesis reports on research in the general field of light interaction with matter. According to the topics addressed, it can be naturally divided into two parts: Part I, many-body aspects of the Rabi oscillations which a two-level systems undergoes under a strong resonant drive; and Part II, absorption of the ac field between the spectrum branches of two-dimensional fermions that are split by the combined action of Zeeman and spin-orbit (SO) fields. The focus of Part I is the following many-body effects that modify the conventional Rabi oscillations: Chapter 1, coupling of a two-level system to a single vibrational mode of the environment. Chapter 2, correlated Rabi oscillations in two electron-hole systems coupled by tunneling with strong electron-hole attraction. In Chapter 1, a new effect of Rabi-vibronic resonance is uncovered. If the frequency of the Rabi oscillations, OR, is close to the frequency o0 of the vibrational mode, the oscillations acquire a collective character. It is demonstrated that the actual frequency of the collective oscillations exhibits a bistable behavior as a function of OR - o0. The main finding in Chapter 2 is, that the Fourier spectrum of the Rabi oscillations in two coupled electron-hole systems undergoes a strong transformation with increasing O R. For OR smaller than the tunneling frequency, the spectrum is dominated by a low-frequency (<< OR ) component and contains two additional weaker lines; conventional Rabi oscillations are restored only as OR exceeds the electron-hole attraction strength. The highlight of Part II is a finding that, while the spectrum of absorption between either Zeeman-split branches or SO-split branches is close to a delta-peak, in the presence of both, it transforms into a broad line with singular behavior at the edges. In particular, when the magnitudes of Zeeman and SO are equal, absorption of very low (much smaller than the splitting) frequencies become possible. The shape of the absorption spectrum is highly anisotropic with respect to the exciting field. This peculiar behavior of the absorption is also studied in wire geometry, where the interplay between two couplings (Zeeman and spin-orbit splitting) affects the shape of numerous absorption peaks.
Short Ballistic Josephson Coupling in Planar Graphene Junctions with Inhomogeneous Carrier Doping
NASA Astrophysics Data System (ADS)
Park, Jinho; Lee, Jae Hyeong; Lee, Gil-Ho; Takane, Yositake; Imura, Ken-Ichiro; Taniguchi, Takashi; Watanabe, Kenji; Lee, Hu-Jong
2018-02-01
We report on short ballistic (SB) Josephson coupling in junctions embedded in a planar heterostructure of graphene. Ballistic Josephson coupling is confirmed by the Fabry-Perot-type interference of the junction critical current Ic . The product of Ic and the normal-state junction resistance RN , normalized by the zero-temperature gap energy Δ0 of the superconducting electrodes, turns out to be exceptionally large close to 2, an indication of strong Josephson coupling in the SB junction limit. However, Ic shows a temperature dependence that is inconsistent with the conventional short-junction-like behavior based on the standard Kulik-Omel'yanchuk prediction. We argue that this feature stems from the effects of inhomogeneous carrier doping in graphene near the superconducting contacts, although the junction is in fact in the short-junction limit.
Self-organization of atoms coupled to a chiral reservoir
NASA Astrophysics Data System (ADS)
Eldredge, Zachary; Solano, Pablo; Chang, Darrick; Gorshkov, Alexey V.
2016-11-01
Tightly confined modes of light, as in optical nanofibers or photonic crystal waveguides, can lead to large optical coupling in atomic systems, which mediates long-range interactions between atoms. These one-dimensional systems can naturally possess couplings that are asymmetric between modes propagating in different directions. Strong long-range interaction among atoms via these modes can drive them to a self-organized periodic distribution. In this paper, we examine the self-organizing behavior of atoms in one dimension coupled to a chiral reservoir. We determine the solution to the equations of motion in different parameter regimes, relative to both the detuning of the pump laser that initializes the atomic dipole-dipole interactions and the degree of reservoir chirality. In addition, we calculate possible experimental signatures such as reflectivity from self-organized atoms and motional sidebands.
Gestural coupling and social cognition: Möbius Syndrome as a case study
Krueger, Joel; Michael, John
2012-01-01
Social cognition researchers have become increasingly interested in the ways that behavioral, physiological, and neural coupling facilitate social interaction and interpersonal understanding. We distinguish two ways of conceptualizing the role of such coupling processes in social cognition: strong and moderate interactionism. According to strong interactionism (SI), low-level coupling processes are alternatives to higher-level individual cognitive processes; the former at least sometimes render the latter superfluous. Moderate interactionism (MI) on the other hand, is an integrative approach. Its guiding assumption is that higher-level cognitive processes are likely to have been shaped by the need to coordinate, modulate, and extract information from low-level coupling processes. In this paper, we present a case study on Möbius Syndrome (MS) in order to contrast SI and MI. We show how MS—a form of congenital bilateral facial paralysis—can be a fruitful source of insight for research exploring the relation between high-level cognition and low-level coupling. Lacking a capacity for facial expression, individuals with MS are deprived of a primary channel for gestural coupling. According to SI, they lack an essential enabling feature for social interaction and interpersonal understanding more generally and thus ought to exhibit severe deficits in these areas. We challenge SI's prediction and show how MS cases offer compelling reasons for instead adopting MI's pluralistic model of social interaction and interpersonal understanding. We conclude that investigations of coupling processes within social interaction should inform rather than marginalize or eliminate investigation of higher-level individual cognition. PMID:22514529
NASA Technical Reports Server (NTRS)
Bieniek, Ronald J.
1996-01-01
Collision-induced transitions can significantly affect molecular vibrational-rotational populations and energy transfer in atmospheres and gaseous systems. This, in turn. can strongly influence convective heat transfer through dissociation and recombination of diatomics. and radiative heat transfer due to strong vibrational coupling. It is necessary to know state-to-state rates to predict engine performance and aerothermodynamic behavior of hypersonic flows, to analyze diagnostic radiative data obtained from experimental test facilities, and to design heat shields and other thermal protective systems. Furthermore, transfer rates between vibrational and translational modes can strongly influence energy flow in various 'disturbed' environments, particularly where the vibrational and translational temperatures are not equilibrated.
Xiao, Cong; Li, Dingping
2016-06-15
Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.
NASA Astrophysics Data System (ADS)
Xiao, Cong; Li, Dingping
2016-06-01
Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.
A single molecule rectifier with strong push-pull coupling
NASA Astrophysics Data System (ADS)
Saraiva-Souza, Aldilene; Macedo de Souza, Fabricio; Aleixo, Vicente F. P.; Girão, Eduardo Costa; Filho, Josué Mendes; Meunier, Vincent; Sumpter, Bobby G.; Souza Filho, Antônio Gomes; Del Nero, Jordan
2008-11-01
We theoretically investigate the electronic charge transport in a molecular system composed of a donor group (dinitrobenzene) coupled to an acceptor group (dihydrophenazine) via a polyenic chain (unsaturated carbon bridge). Ab initio calculations based on the Hartree-Fock approximations are performed to investigate the distribution of electron states over the molecule in the presence of an external electric field. For small bridge lengths (n =0-3) we find a homogeneous distribution of the frontier molecular orbitals, while for n >3 a strong localization of the lowest unoccupied molecular orbital is found. The localized orbitals in between the donor and acceptor groups act as conduction channels when an external electric field is applied. We also calculate the rectification behavior of this system by evaluating the charge accumulated in the donor and acceptor groups as a function of the external electric field. Finally, we propose a phenomenological model based on nonequilibrium Green's function to rationalize the ab initio findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weymann, Ireneusz, E-mail: weymann@amu.edu.pl
2015-05-07
We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition frommore » the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo
In this study, when optical resonances interact strongly, hybridized modes are formed with mixed properties inherited from the basic modes. Strong coupling therefore tends to equalize properties such as damping and oscillator strength of the spectrally separate resonance modes. This effect is here shown to be very useful for the realization of near-perfect dual-band absorption with ultrathin (~10 nm) layers in a simple geometry. Absorber layers are constructed by atomic layer deposition of the heavy-damping semiconductor tin monosulfide (SnS) onto a two-dimensional gold nanodot array. In combination with a thin (55 nm) SiO 2 spacer layer and a highly reflectivemore » Al film on the back, a semiopen nanocavity is formed. The SnS-coated array supports a localized surface plasmon resonance in the vicinity of the lowest order antisymmetric Fabry–Perot resonance of the nanocavity. Very strong coupling of the two resonances is evident through anticrossing behavior with a minimum peak splitting of 400 meV, amounting to 24% of the plasmon resonance energy. The mode equalization resulting from this strong interaction enables simultaneous optical impedance matching of the system at both resonances and thereby two near-perfect absorption peaks, which together cover a broad spectral range. When paired with the heavy damping from SnS band-to-band transitions, this further enables approximately 60% of normal incident solar photons with energies exceeding the band gap to be absorbed in the 10 nm SnS coating. Thereby, these results establish a distinct relevance of strong coupling phenomena to efficient, nanoscale photovoltaic absorbers and more generally for fulfilling a specific optical condition at multiple spectral positions.« less
Chimera states in two-dimensional networks of locally coupled oscillators
NASA Astrophysics Data System (ADS)
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.
Chimera states in two-dimensional networks of locally coupled oscillators.
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.
The effects of global awareness on the spreading of epidemics in multiplex networks
NASA Astrophysics Data System (ADS)
Zang, Haijuan
2018-02-01
It is increasingly recognized that understanding the complex interplay patterns between epidemic spreading and human behavioral is a key component of successful infection control efforts. In particular, individuals can obtain the information about epidemics and respond by altering their behaviors, which can affect the spreading dynamics as well. Besides, because the existence of herd-like behaviors, individuals are very easy to be influenced by the global awareness information. Here, in this paper, we propose a global awareness controlled spreading model (GACS) to explore the interplay between the coupled dynamical processes. Using the global microscopic Markov chain approach, we obtain the analytical results for the epidemic thresholds, which shows a high accuracy by comparison with lots of Monte Carlo simulations. Furthermore, considering other classical models used to describe the coupled dynamical processes, including the local awareness controlled contagion spreading (LACS) model, Susceptible-Infected-Susceptible-Unaware-Aware-Unaware (SIS-UAU) model and the single layer occasion, we make a detailed comparisons between the GACS with them. Although the comparisons and results depend on the parameters each model has, the GACS model always shows a strong restrain effects on epidemic spreading process. Our results give us a better understanding of the coupled dynamical processes and highlights the importance of considering the spreading of global awareness in the control of epidemics.
Nonmonotonic fluctuation spectra of membranes pinned or tethered discretely to a substrate.
Merath, Rolf-Jürgen; Seifert, Udo
2006-01-01
The thermal fluctuation spectrum of a fluid membrane coupled harmonically to a solid support by an array of tethers is calculated. For strong tethers, this spectrum exhibits nonmonotonic, anisotropic behavior with a relative maximum at a wavelength about twice the tether distance. The root-mean-square displacement is evaluated to estimate typical membrane displacements. Possible applications cover pillar-supported or polymer-tethered membranes.
Chemical (knight) shift distortions of quadrupole-split deuteron powder spectra in solids
NASA Astrophysics Data System (ADS)
Torgeson, D. R.; Schoenberger, R. J.; Barnes, R. G.
In strong magnetic fields (e.g., 8 Tesla) anisotropy of the shift tensor (chemical or Knight shift) can alter the spacings of the features of quadrupole-split deuteron spectra of polycrystalline samples. Analysis of powder spectra yields both correct quadrupole coupling and symmetry parameters and all the components of the shift tensor. Synthetic and experimental examples are given to illustrate such behavior.
Zhong, X; Cao, J C
2009-07-22
We study the combined effects of quantum electronic interference and Coulomb interaction on electron transport through near-degenerate molecular states with strong electron-vibration interaction. It is found that quantum electronic interference strongly affects the current and its noise properties. In particular, destructive interference induces pronounced negative differential conductances (NDCs) accompanying the vibrational excited states, and such NDC characters are not related to asymmetric tunnel coupling and are robust to the damping of a thermal bath. In a certain transport regime, the non-equilibrium vibration distribution even shows a peculiar sub-Poissonian behavior, which is enhanced by quantum electronic interference.
NASA Astrophysics Data System (ADS)
Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang
2018-04-01
Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.
Mixed protonic and electronic conductors hybrid oxide synaptic transistors
NASA Astrophysics Data System (ADS)
Fu, Yang Ming; Zhu, Li Qiang; Wen, Juan; Xiao, Hui; Liu, Rui
2017-05-01
Mixed ionic and electronic conductor hybrid devices have attracted widespread attention in the field of brain-inspired neuromorphic systems. Here, mixed protonic and electronic conductor (MPEC) hybrid indium-tungsten-oxide (IWO) synaptic transistors gated by nanogranular phosphorosilicate glass (PSG) based electrolytes were obtained. Unique field-configurable proton self-modulation behaviors were observed on the MPEC hybrid transistor with extremely strong interfacial electric-double-layer effects. Temporally coupled synaptic plasticities were demonstrated on the MPEC hybrid IWO synaptic transistor, including depolarization/hyperpolarization, synaptic facilitation and depression, facilitation-stead/depression-stead behaviors, spiking rate dependent plasticity, and high-pass/low-pass synaptic filtering behaviors. MPEC hybrid synaptic transistors may find potential applications in neuron-inspired platforms.
A G protein-coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior.
Lear, Bridget C; Merrill, C Elaine; Lin, Jui-Ming; Schroeder, Analyne; Zhang, Luoying; Allada, Ravi
2005-10-20
The neuropeptide Pigment-Dispersing Factor (PDF) plays a critical role in mediating circadian control of behavior in Drosophila. Here we identify mutants (groom-of-PDF; gop) that display phase-advanced evening activity and poor free-running rhythmicity, phenocopying pdf mutants. In gop mutants, a spontaneous retrotransposon disrupts a coding exon of a G protein-coupled receptor, CG13758. Disruption of the receptor is accompanied by phase-advanced oscillations of the core clock protein PERIOD. Moreover, effects on circadian timing induced by perturbation of PDF neurons require gop. Yet PDF oscillations themselves remain robust in gop mutants, suggesting that GOP acts downstream of PDF. gop is expressed most strongly in the dorsal brain in regions that lie in proximity to PDF-containing nerve terminals. Taken together, these studies implicate GOP as a PDF receptor in Drosophila.
Dynamical critical exponent of the Jaynes-Cummings-Hubbard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohenadler, M.; Aichhorn, M.; Schmidt, S.
2011-10-15
An array of high-Q electromagnetic resonators coupled to qubits gives rise to the Jaynes-Cummings-Hubbard model describing a superfluid to Mott-insulator transition of lattice polaritons. From mean-field and strong-coupling expansions, the critical properties of the model are expected to be identical to the scalar Bose-Hubbard model. A recent Monte Carlo study of the superfluid density on the square lattice suggested that this does not hold for the fixed-density transition through the Mott lobe tip. Instead, mean-field behavior with a dynamical critical exponent z=2 was found. We perform large-scale quantum Monte Carlo simulations to investigate the critical behavior of the superfluid densitymore » and the compressibility. We find z=1 at the tip of the insulating lobe. Hence the transition falls in the three-dimensional XY universality class, analogous to the Bose-Hubbard model.« less
Extreme fluctuations in stochastic network coordination with time delays
NASA Astrophysics Data System (ADS)
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
Design principles for wave plate metasurfaces using plasmonic L-shaped nanoantennas
NASA Astrophysics Data System (ADS)
Tahir, Asad A.; Schulz, Sebastian A.; De Leon, Israel; Boyd, Robert W.
2017-03-01
Plasmonic L-shaped antennas are an important building block of metasurfaces and have been used to fabricate ultra-thin wave plates. In this work we present principles that can be used to design wave plates at a wavelength of choice and for diverse application requirements using arrays of L-shaped plasmonic antennas. We derive these design principles by studying the behavior of the vast parameter space of these antenna arrays. We show that there are two distinct regimes: a weak inter-particle coupling and a strong inter-particle coupling regime. We describe the behavior of the antenna array in each regime with regards to wave plate functionality, without resorting to approximate theoretical models. Our work is the first to explain these design principles and serves as a guide for designing wave plates for specific application requirements using plasmonic L-shaped antenna arrays.
NASA Astrophysics Data System (ADS)
Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.
2015-04-01
In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.
Buckling of paramagnetic chains in soft gels
NASA Astrophysics Data System (ADS)
Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.
We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.
Illustrated study of the semiholographic nonperturbative framework
NASA Astrophysics Data System (ADS)
Banerjee, Souvik; Gaddam, Nava; Mukhopadhyay, Ayan
2017-03-01
Semiholography has been proposed as an effective nonperturbative framework which can consistently combine perturbative and nonperturbative effects for theories like QCD. It is postulated that the strongly coupled nonperturbative sector has a holographic dual in the form of a classical gravity theory in the large N limit, and the perturbative fields determine the gravitational boundary conditions. In this work, we pursue a fundamental derivation of this framework particularly showing how perturbative physics by itself can determine the holographic dual of the infrared, and also the interactions between the perturbative and the holographic sectors. We firstly demonstrate that the interactions between the two sectors can be constrained through the existence of a conserved local energy-momentum tensor for the full system up to hard-soft coupling constants. As an illustration, we set up a biholographic toy theory where both the UV and IR sectors are strongly coupled and holographic with distinct classical gravity duals. In this construction, the requirement that an appropriate gluing can cure the singularities (geodetic incompleteness) of the respective geometries leads us to determine the parameters of the IR theory and the hard-soft couplings in terms of those of the UV theory. The high energy scale behavior of the hard-soft couplings is state-independent but their runnings turn out to be state-dependent. We discuss how our approach can be adapted to the construction of the semiholographic framework for QCD.
Quantum Optical Transistor and Other Devices Based on Nanostructures
NASA Astrophysics Data System (ADS)
Li, Jin-Jin; Zhu, Ka-Di
Laser and strong coupling can coexist in a single quantum dot (QD) coupled to nanostructures. This provides an important clue toward the realization of quantum optical devices, such as quantum optical transistor, slow light device, fast light device, or light storage device. In contrast to conventional electronic transistor, a quantum optical transistor uses photons as signal carriers rather than electrons, which has a faster and more powerful transfer efficiency. Under the radiation of a strong pump laser, a signal laser can be amplified or attenuated via passing through a single quantum dot coupled to a photonic crystal (PC) nanocavity system. Such a switching and amplifying behavior can really implement the quantum optical transistor. By simply turning on or off the input pump laser, the amplified or attenuated signal laser can be obtained immediately. Based on this transistor, we further propose a method to measure the vacuum Rabi splitting of exciton in all-optical domain. Besides, we study the light propagation in a coupled QD and nanomechanical resonator (NR) system. We demonstrate that it is possible to achieve the slow light, fast light, and quantum memory for light on demand, which is based on the mechanically induced coherent population oscillation (MICPO) and exciton polaritons. These QD devices offer a route toward the use of all-optical technique to investigate the coupled QD systems and will make contributions to quantum internets and quantum computers.
NASA Astrophysics Data System (ADS)
Grünberg, P.; Demokritov, S.; Fuss, A.; Vohl, M.; Wolf, J. A.
1991-04-01
Layered Fe/Cr structures are known to display antiferromagnetic-type interlayer coupling and a new magnetoresistance (MR) effect due to antiparallel magnetization alignment. The strength of the coupling is found to be similar in multilayered structures and in double layers. The oscillatory behavior of the coupling, previously found by Parkin, More, and Roche [Phys. Rev. Lett. 64, 2304 (1990)] on sputtered polycrystalline samples, is here confirmed for epitaxial samples, obtained by thermal evaporation. The new MR effect is interpreted as due to a spin-dependent scattering of the electrons at the Fe-Cr interfaces. The investigations have been extended to Fe/V, Fe/Mn, Fe/Cu, Co/Au, Co/Cr, and Co/Cu structures where the antiparallel alignment of the ferromagnetic layers is obtained via hysteresis effects. A MR effect due to antiparallel alignment, which is strong for Co/Au and Co/Cu but weak in the other cases, has been found.
Understanding the double peaked El Niño in coupled GCMs
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Wittenberg, Andrew T.; Brown, Jaclyn N.; Marsland, Simon J.; Holbrook, Neil J.
2017-03-01
Coupled general circulation models (CGCMs) simulate a diverse range of El Niño-Southern Oscillation behaviors. "Double peaked" El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.
Unraveling the Nature of Magnetism of the 5 d4 Double Perovskite Ba2 YIrO6
NASA Astrophysics Data System (ADS)
Fuchs, S.; Dey, T.; Aslan-Cansever, G.; Maljuk, A.; Wurmehl, S.; Büchner, B.; Kataev, V.
2018-06-01
We report electron spin resonance (ESR) spectroscopy results on the double perovskite Ba2 YIrO6 . On general grounds, this material is expected to be nonmagnetic due to the strong coupling of the spin and orbital momenta of Ir5 + (5 d4 ) ions. However, controversial experimental reports on either strong antiferromagnetism with static order at low temperatures or just a weakly paramagnetic behavior have triggered a discussion on the breakdown of the generally accepted scenario of the strongly spin-orbit coupled ground states in the 5 d4 iridates and the emergence of a novel exotic magnetic state. Our data evidence that the magnetism of the studied material is solely due to a few percent of Ir4 + and Ir6 + magnetic defects while the regular Ir5 + sites remain nonmagnetic. Remarkably, the defect Ir6 + species manifest magnetic correlations in the ESR spectra at T ≲20 K , suggesting a long-range character of superexchange in the double perovskites as proposed by recent theories.
NASA Astrophysics Data System (ADS)
Doisneau, François; Arienti, Marco; Oefelein, Joseph C.
2017-01-01
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier-Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barelymore » influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.« less
Strong coupling effects in hybrid plexitonic systems
NASA Astrophysics Data System (ADS)
Melnikau, Dzmitry; Esteban, Ruben; Govyadinov, Alexander A.; Savateeva, Diana; Simon, Thomas; Sánchez-Iglesias, Ana; Grzelczak, Marek; Schmidt, Mikolaj K.; Urban, Alexander S.; Liz-Marzán, Luis M.; Feldmann, Jochen; Aizpurua, Javier; Rakovich, Yury P.
2017-08-01
We investigated the interactions between localized plasmons in gold nanorods and excitons in J-aggregates and were able to track an anticrossing behavior of the hybridized modes both in the extinction and in the photoluminescence spectra of this hybrid system. We identified the nonlinear optical behavior of this system by transient absorption spectroscopy. Finally using magnetic circular dichroism spectroscopy we showed that nonmagnetic organic molecules exhibit magnetooptical response due to binding to a plasmonic nanoparticles. In our experiments we also studied the effect of detuning as well as the effect of off- and on resonance excitation on the hybrid states
Process-independent strong running coupling
Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; ...
2017-09-25
Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less
Process-independent strong running coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis
Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less
Contradictory nature of Co doping in ferroelectric BaTi O 3
Ponath, Patrick; O’Hara, Andrew; Cao, Hai-Xia; ...
2016-11-11
The growth of Co-substituted BaTiO 3 (BTO) films on Ge(001) substrates by molecular beam epitaxy is demonstrated in this paper. Energy-dispersive x-ray spectroscopy and transmission electron microscopy images confirm the uniform Co distribution. However, no evidence of magnetic ordering is observed in samples grown for Co concentrations between 2% and 40%. Piezoresponse force microscopy measurements show that a 5% Co-substituted BTO sample exhibits ferroelectric behavior. First-principles calculations indicate that while Co atoms couple ferromagnetically in the absence of oxygen vacancies, the occurrence of oxygen vacancies leads to locally antiferromagnetically coupled complexes with relatively strong spin coupling. Finally, the presence ofmore » a significant amount of oxygen vacancies is suggested by x-ray photoelectron spectroscopy measurements.« less
Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model
NASA Astrophysics Data System (ADS)
Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.
2010-08-01
The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.
Zhang, Luoying; Lear, Bridget C; Seluzicki, Adam; Allada, Ravi
2009-12-15
Circadian clocks in the brain are organized as coupled oscillators that integrate seasonal cues such as light and temperature to time daily behaviors. In Drosophila, the PIGMENT DISPERSING FACTOR (PDF) neuropeptide-expressing morning (M) and non-PDF evening (E) cells are coupled cell groups important for morning and evening behavior, respectively. Depending on day length, either M cells (short days) or E cells (long days) dictate both the morning and the evening phase, a phenomenon that we term network hierarchy. To examine the role of PDF in light-dark conditions, we examined flies lacking both the PDF receptor (PDFR) and the circadian photoreceptor CRYPTOCHROME (CRY). We found that subsets of E cells exhibit molecular oscillations antiphase to those of wild-type flies, single cry mutants, or single Pdfr mutants, demonstrating a potent role for PDF in light-mediated entrainment, specifically in the absence of CRY. Moreover, we find that the evening behavioral phase is more strongly reset by PDF(+) M cells in the absence of CRY. On the basis of our findings, we propose that CRY can gate PDF signaling to determine behavioral phase and network hierarchy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru
We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homogeneous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attractive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semielliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and B before quadratic and quartic terms of the order parameter, as wellmore » as on the specific heat discontinuity at the superconducting transition, is of a universal nature at any strength of the attractive interaction and is related only to the general widening of the conduction band by disorder. In general, disorder growth increases the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the superconducting transition temperature T{sub c}, is also controlled only by disorder widening of the conduction band (density of states).« less
Hammond, Matthew D; Overall, Nickola C
2013-12-01
Hostile sexism (HS) expresses attitudes that characterize women who challenge men's power as manipulative and subversive. Does endorsing HS negatively bias perceptions of women's behavior and, in turn, create animosity within intimate relationships? Committed heterosexual couples reported on their own behavior and perceptions of their partner's behavior five times across a year (Study 1) and daily for 3 weeks (Study 2). Men who more strongly endorsed HS perceived their partner's behavior as more negative than was justified by their partner's reports. Furthermore, more negative perceptions of the partner's behavior mediated the links between men's HS and feeling more manipulated by their partners, behaving more negatively toward their partners, and lower relationship quality. This indicates that men who endorse HS behave more negatively toward intimate partners and experience lower relationship satisfaction because their antagonistic attitudes toward women in general permeate the way they perceive those partners.
Suonpaa, Juhani
2005-01-01
The present study addresses previously neglected research areas among couples with normal drinking habits, namely control attempts and encouragement of drinking. In this study, semistructured interviews were conducted in 2001 with 27 individuals living in steady couple relationships in Helsinki. Forms of active social control of drinking were classified into four categories and were investigated on the dimensions of indirect-direct and mild-strong. Further analysis suggests that the form of control reflects the degree of individualization in relationships, at least when drinking is concerned. Later, the exploration of encouragement of drinking shows that the culturally crucial feature of the qualified drinker is the preservation of one's own will. Then, it is concluded that in a couple relationship, social control and encouragement of drinking are, above all, complementary. Finally, the significance of drinking's social control is not restricted to alcohol use only, and it is surprisingly great in couple relationships, especially in preventing deviant drinking behavior. Several factors are presented that contribute to the increase of social control's importance.
NASA Astrophysics Data System (ADS)
Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.
2014-01-01
Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.
Analyzing energy-water exchange dynamics in the Thar desert
NASA Astrophysics Data System (ADS)
Raja, P.; Singh, Nilendu; Srinivas, C. V.; Singhal, Mohit; Chauhan, Pankaj; Singh, Maharaj; Sinha, N. K.
2017-07-01
Regions of strong land-atmosphere coupling will be more susceptible to the hydrological impacts in the intensifying hydrological cycle. In this study, micrometeorological experiments were performed to examine the land-atmosphere coupling strength over a heat low region (Thar desert, NW India), known to influence the Indian summer monsoon (ISM). Within the vortex of Thar desert heat low, energy-water exchange and coupling behavior were studied for 4 consecutive years (2011-2014) based on sub-hourly measurements of radiative-convective flux, state parameters and sub-surface thermal profiles using lead-lag analysis between various E-W balance components. Results indicated a strong (0.11-0.35) but variable monsoon season (July-September) land-atmosphere coupling events. Coupling strength declined with time, becomes negative beyond 10-day lag. Evapotranspiration (LE) influences rainfall at the monthly time-scale (20-40 days). Highly correlated monthly rainfall and LE anomalies (r = 0.55, P < 0.001) suggested a large precipitation memory linked to the local land surface state. Sensible heating (SH) during March and April are more strongly (r = 0.6-0.7) correlated to ISM rainfall than heating during May or June (r = 0.16-0.36). Analyses show strong and weak couplings among net radiation (Rn)-vapour pressure deficit (VPD), LE-VPD and Rn-LE switching between energy-limited to water-limited conditions. Consistently, +ve and -ve residual energy [(dE) = (Rn - G) - (SH + LE)] were associated with regional wet and dry spells respectively with a lead of 10-40 days. Dew deposition (18.8-37.9 mm) was found an important component in the annual surface water balance. Strong association of variation of LE and rainfall was found during monsoon at local-scale and with regional-scale LE (MERRA 2D) but with a lag which was more prominent at local-scale than at regional-scale. Higher pre-monsoon LE at local-scale as compared to low and monotonous variation in regional-scale LE led to hypothesize that excess energy and water vapour brought through advection caused by pre-monsoon rainfall might have been recycled through rainfall to compensate for early part of monsoon rainfall at local-scale. However, long-term measurements and isotope analysis would be able to strengthen this hypothesis. This study would fill the key gaps in the global flux studies and improve understanding on local E-W exchange pathways, responses and feedbacks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, I. L.; Nascimento, V. P.; Passamani, E. C.
2013-05-28
Magnetic properties of sputtered NiFe/IrMn/Co trilayers grown on different seed layers (Cu or Ta) deposited on Si (100) substrates were investigated by magnetometry and ferromagnetic resonance measurements. Exchange bias effect and magnetic spring behavior have been studied by changing the IrMn thickness. As shown by X-ray diffraction, Ta and Cu seed layers provoke different degrees of (111) fcc-texture that directly affect the exchange bias and indirectly modify the exchange spring coupling behavior. Increasing the IrMn thickness, it was observed that the coupling angle between the Co and NiFe ferromagnetic layers increases for the Cu seed system, but it reduces formore » the Ta case. The results were explained considering (i) different anisotropies of the Co and IrMn layers induced by the different degree of the (111) texture and (ii) the distinct exchange bias set at the NiFe/IrMn and IrMn/Co interfaces in both systems. The NiFe and Co interlayer coupling angle is strongly correlated with both exchange bias and exchange magnetic spring phenomena. It was also shown that the highest exchange bias field occurs when an unstressed L1{sub 2} IrMn structure is stabilized.« less
Zhou, Y C; Lu, Benzhuo; Huber, Gary A; Holst, Michael J; McCammon, J Andrew
2008-01-17
The Poisson-Nernst-Planck (PNP) equation provides a continuum description of electrostatic-driven diffusion and is used here to model the diffusion and reaction of acetylcholine (ACh) with acetylcholinesterase (AChE) enzymes. This study focuses on the effects of ion and substrate concentrations on the reaction rate and rate coefficient. To this end, the PNP equations are numerically solved with a hybrid finite element and boundary element method at a wide range of ion and substrate concentrations, and the results are compared with the partially coupled Smoluchowski-Poisson-Boltzmann model. The reaction rate is found to depend strongly on the concentrations of both the substrate and ions; this is explained by the competition between the intersubstrate repulsion and the ionic screening effects. The reaction rate coefficient is independent of the substrate concentration only at very high ion concentrations, whereas at low ion concentrations the behavior of the rate depends strongly on the substrate concentration. Moreover, at physiological ion concentrations, variations in substrate concentration significantly affect the transient behavior of the reaction. Our results offer a reliable estimate of reaction rates at various conditions and imply that the concentrations of charged substrates must be coupled with the electrostatic computation to provide a more realistic description of neurotransmission and other electrodiffusion and reaction processes.
Investigation of the coupling of the momentum distribution of a BEC with its collective of modes
NASA Astrophysics Data System (ADS)
Henn, Emanuel; Tavares, Pedro; Fritsch, Amilson; Vivanco, Franklin; Telles, Gustavo; Bagnato, Vanderlei
In our group we have a strong research line on quantum turbulence and the general investigation of Bose-Einstein condensates (BEC) subjected to oscillatory excitations. Inside this research line we investigate first the behavior of the normal modes of the BEC under this excitation and observe a non-linear behavior in the amplitude of the quadrupolar mode. Also, inside this same procedure of investigation we study the momentum distribution of a BEC to understand if it is possible to extract Kolmogorov like excitation spectra which would point to a turbulent state of matter. The condensate is perturbed, and we let it evolve in-trap after which we perform standard time-of- flight absorption imaging. The momentum distribution is extracted and analyzed as a function of the in-trap free evolution time for a 2D projected cloud. We show that the momentum distribution has its features varying periodically with the same frequency as the quadrupolar mode displayed by the atomic gas hinting at a strong coupling of both. The main consequence of that one cannot be assertive about the quantitative features of the extract spectrum of momentum and we can only rely on its qualitative features. Financial Support: FAPESP, CNPq.
Noise-enhanced coupling between two oscillators with long-term plasticity
NASA Astrophysics Data System (ADS)
Lücken, Leonhard; Popovych, Oleksandr V.; Tass, Peter A.; Yanchuk, Serhiy
2016-03-01
Spike timing-dependent plasticity is a fundamental adaptation mechanism of the nervous system. It induces structural changes of synaptic connectivity by regulation of coupling strengths between individual cells depending on their spiking behavior. As a biophysical process its functioning is constantly subjected to natural fluctuations. We study theoretically the influence of noise on a microscopic level by considering only two coupled neurons. Adopting a phase description for the neurons we derive a two-dimensional system which describes the averaged dynamics of the coupling strengths. We show that a multistability of several coupling configurations is possible, where some configurations are not found in systems without noise. Intriguingly, it is possible that a strong bidirectional coupling, which is not present in the noise-free situation, can be stabilized by the noise. This means that increased noise, which is normally expected to desynchronize the neurons, can be the reason for an antagonistic response of the system, which organizes itself into a state of stronger coupling and counteracts the impact of noise. This mechanism, as well as a high potential for multistability, is also demonstrated numerically for a coupled pair of Hodgkin-Huxley neurons.
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Littlewood, David John; Silling, Stewart A.; Mitchell, John A.
Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling,"more » completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for dramatically improved consistency at domain boundaries, and an enhancement to the meshfree discretization applied to peridynamic models that removes irregularities at the limit of the nonlocal length scale and dramatically improves conver- gence behavior. Finally, a novel approach for modeling ductile failure has been developed, moti- vated by the desire to apply coupled local-nonlocal models to a wide variety of materials, including ductile metals, which have received minimal attention in the peridynamic literature. Software im- plementation of the partial-stress coupling strategy, the position-aware peridynamic constitutive models, and the strategies for improving the convergence behavior of peridynamic models was completed within the Peridigm and Albany codes, developed at Sandia National Laboratories and made publicly available under the open-source 3-clause BSD license.« less
Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero-Bilayers.
Luong, Dinh Hoa; Lee, Hyun Seok; Neupane, Guru Prakash; Roy, Shrawan; Ghimire, Ganesh; Lee, Jin Hee; Vu, Quoc An; Lee, Young Hee
2017-09-01
Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe 2 /MoS 2 hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ren, Y.; Wang, Y.; He, X. D.; Adeyeye, A. O.
2018-04-01
We present two different types of magnetization reversal behaviors for the identically-configured Co/Pd multilayers with rounded-rectangular nanodots and nanorings for various edge-to-edge distances (s), by using focused magneto-optic Kerr measurements and magnetic force microscopy measurements. For the nanodots with a fixed outer diameter of d = 580 nm, the switching field Hsw and switching field distribution (SFD) are almost invariant with respect to s. However, the Hsw and SFD for the nanodot arrays could be easily modulated by varying d, which is ascribed to the size effect. In contrast, the Hsw and SFD are strongly dependent on s for the nanorings. Compared to the strongly coupled magnetic moments of the closely-packed nanorings, the magnetostatic interaction among nanodots is negligible, which should be responsible for the observed different magnetization reversal behaviors.
NASA Astrophysics Data System (ADS)
Wu, Jun-Chi; Peng, Xu; Guo, Yu-Qiao; Zhou, Hao-Dong; Zhao, Ji-Yin; Ruan, Ke-Qin; Chu, Wang-Sheng; Wu, Changzheng
2018-06-01
Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.
Adhesion, friction, and wear behavior of clean metal-ceramic couples
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1995-01-01
When a clean metal is brought into contact with a clean, harder ceramic in ultrahigh vacuum, strong bonds form between the two materials. The interfacial bond strength between the metal and ceramic surfaces in sliding contact is generally greater than the cohesive bond strength in the metal. Thus, fracture of the cohesive bonds in the metal results when shearing occurs. These strong interfacial bonds and the shearing fracture in the metal are the main causes of the observed wear behavior and the transfer of the metal to the ceramic. In the literature, the surface energy (bond energy) per unit area of the metal is shown to be related to the degree of interfacial bond strength per unit area. Because the two materials of a metal-ceramic couple have markedly different ductilities, contact can cause considerable plastic deformation of the softer metal. It is the ductility of the metal, then, that determines the real area of contact. In general, the less ductile the metal, the smaller the real area of contact. The coefficient of friction for clean surfaces of metal-ceramic couples correlates with the metals total surface energy in the real area of contact gamma A (which is the product of the surface energy per unit area of the metal gamma and the real area of contact (A)). The coefficient of friction increases as gamma A increases. Furthermore, gamma A is associated with the wear and transfer of the metal at the metal-ceramic interface: the higher the value of gamma A, the greater the wear and transfer of the metal.
Knobloch-Fedders, Lynne M.; Caska-Wallace, Catherine; Smith, Timothy W.; Renshaw, Keith
2016-01-01
This study evaluated interpersonal behavior differences among male military service members with and without PTSD and their female partners. Couples (N = 64) completed a 17-minute videotaped conflict discussion, and their interaction behavior was coded using the circumplex-based Structural Analysis of Social Behavior model (SASB; Benjamin, 1979; 1987; 2000). Within couples, the behavior of partners was very similar. Compared to military couples without PTSD, couples with PTSD displayed more interpersonal hostility and control. Couples with PTSD also exhibited more sulking, blaming, and controlling behavior, and less affirming and connecting behavior, than couples without PTSD. Results advance our understanding of the relational impacts of PTSD on military service members and their partners, and underscore the value of couple-based interventions for PTSD in the context of relationship distress. PMID:28270334
Remnants of semiclassical bistability in the few-photon regime of cavity QED.
Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo
2011-11-21
Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Delignières, Didier; Marmelat, Vivien
2014-01-01
In this paper, we analyze empirical data, accounting for coordination processes between complex systems (bimanual coordination, interpersonal coordination, and synchronization with a fractal metronome), by using a recently proposed method: detrended cross-correlation analysis (DCCA). This work is motivated by the strong anticipation hypothesis, which supposes that coordination between complex systems is not achieved on the basis of local adaptations (i.e., correction, predictions), but results from a more global matching of complexity properties. Indeed, recent experiments have evidenced a very close correlation between the scaling properties of the series produced by two coordinated systems, despite a quite weak local synchronization. We hypothesized that strong anticipation should result in the presence of long-range cross-correlations between the series produced by the two systems. Results allow a detailed analysis of the effects of coordination on the fluctuations of the series produced by the two systems. In the long term, series tend to present similar scaling properties, with clear evidence of long-range cross-correlation. Short-term results strongly depend on the nature of the task. Simulation studies allow disentangling the respective effects of noise and short-term coupling processes on DCCA results, and suggest that the matching of long-term fluctuations could be the result of short-term coupling processes.
Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates
NASA Astrophysics Data System (ADS)
Kimchi, Itamar
In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.
Plasmon enhanced heterogeneous electron transfer with continuous band energy model
NASA Astrophysics Data System (ADS)
Zhao, Dandan; Niu, Lu; Wang, Luxia
2017-08-01
Photoinduced charge injection from a perylene dye molecule into the conduction band of a TiO2 system decorated by a metal nanoparticles (MNP) is studied theoretically. Utilizing the density matrix theory the charge transfer dynamics is analyzed. The continuous behavior of the TiO2 conduction band is accounted for by a Legendre polynomials expansion. The simulations consider optical excitation of the dye molecule coupled to the MNP and the subsequent electron injection into the TiO2 semiconductor. Due to the energy transfer coupling between the molecule and the MNP optical excitation and subsequent charge injection into semiconductor is strongly enhanced. The respective enhancement factor can reach values larger than 103. Effects of pulse duration, coupling strength and energetic resonances are also analyzed. The whole approach offers an efficient way to increase charge injection in dye-sensitized solar cells.
Ross, Jaclyn M.; Girard, Jeffrey M.; Wright, Aidan G.C.; Beeney, Joseph E.; Scott, Lori N.; Hallquist, Michael N.; Lazarus, Sophie A.; Stepp, Stephanie D.; Pilkonis, Paul A.
2016-01-01
Relationships are among the most salient factors affecting happiness and wellbeing for individuals and families. Relationship science has identified the study of dyadic behavioral patterns between couple members during conflict as an important window in to relational functioning with both short-term and long-term consequences. Several methods have been developed for the momentary assessment of behavior during interpersonal transactions. Among these, the most popular is the Specific Affect Coding System (SPAFF), which organizes social behavior into a set of discrete behavioral constructs. This study examines the interpersonal meaning of the SPAFF codes through the lens of interpersonal theory, which uses the fundamental dimensions of Dominance and Affiliation to organize interpersonal behavior. A sample of 67 couples completed a conflict task, which was video recorded and coded using SPAFF and a method for rating momentary interpersonal behavior, the Continuous Assessment of Interpersonal Dynamics (CAID). Actor partner interdependence models in a multilevel structural equation modeling framework were used to study the covariation of SPAFF codes and CAID ratings. Results showed that a number of SPAFF codes had clear interpersonal signatures, but many did not. Additionally, actor and partner effects for the same codes were strongly consistent with interpersonal theory’s principle of complementarity. Thus, findings reveal points of convergence and divergence in the two systems and provide support for central tenets of interpersonal theory. Future directions based on these initial findings are discussed. PMID:27148786
Ross, Jaclyn M; Girard, Jeffrey M; Wright, Aidan G C; Beeney, Joseph E; Scott, Lori N; Hallquist, Michael N; Lazarus, Sophie A; Stepp, Stephanie D; Pilkonis, Paul A
2017-02-01
Relationships are among the most salient factors affecting happiness and wellbeing for individuals and families. Relationship science has identified the study of dyadic behavioral patterns between couple members during conflict as an important window in to relational functioning with both short-term and long-term consequences. Several methods have been developed for the momentary assessment of behavior during interpersonal transactions. Among these, the most popular is the Specific Affect Coding System (SPAFF), which organizes social behavior into a set of discrete behavioral constructs. This study examines the interpersonal meaning of the SPAFF codes through the lens of interpersonal theory, which uses the fundamental dimensions of Dominance and Affiliation to organize interpersonal behavior. A sample of 67 couples completed a conflict task, which was video recorded and coded using SPAFF and a method for rating momentary interpersonal behavior, the Continuous Assessment of Interpersonal Dynamics (CAID). Actor partner interdependence models in a multilevel structural equation modeling framework were used to study the covariation of SPAFF codes and CAID ratings. Results showed that a number of SPAFF codes had clear interpersonal signatures, but many did not. Additionally, actor and partner effects for the same codes were strongly consistent with interpersonal theory's principle of complementarity. Thus, findings reveal points of convergence and divergence in the 2 systems and provide support for central tenets of interpersonal theory. Future directions based on these initial findings are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin
Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin; ...
2016-09-30
Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less
ERIC Educational Resources Information Center
Christensen, Andrew; Atkins, David C.; Berns, Sara; Wheeler, Jennifer; Baucom, Donald H.; Simpson, Lorelei E.
2004-01-01
A randomized clinical trial compared the effects of traditional behavioral couple therapy (TBCT) and integrative behavioral couple therapy (IBCT) on 134 seriously and chronically distressed married couples, stratified into moderately and severely distressed groups. Couples in IBCT made steady improvements in satisfaction throughout the course of…
Kantardjiev, Alexander A
2015-04-05
A cluster of strongly interacting ionization groups in protein molecules with irregular ionization behavior is suggestive for specific structure-function relationship. However, their computational treatment is unconventional (e.g., lack of convergence in naive self-consistent iterative algorithm). The stringent evaluation requires evaluation of Boltzmann averaged statistical mechanics sums and electrostatic energy estimation for each microstate. irGPU: Irregular strong interactions in proteins--a GPU solver is novel solution to a versatile problem in protein biophysics--atypical protonation behavior of coupled groups. The computational severity of the problem is alleviated by parallelization (via GPU kernels) which is applied for the electrostatic interaction evaluation (including explicit electrostatics via the fast multipole method) as well as statistical mechanics sums (partition function) estimation. Special attention is given to the ease of the service and encapsulation of theoretical details without sacrificing rigor of computational procedures. irGPU is not just a solution-in-principle but a promising practical application with potential to entice community into deeper understanding of principles governing biomolecule mechanisms. © 2015 Wiley Periodicals, Inc.
Spatio-temporal error growth in the multi-scale Lorenz'96 model
NASA Astrophysics Data System (ADS)
Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.
2010-07-01
The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.
Stabilizing effect of driving and dissipation on quantum metastable states
NASA Astrophysics Data System (ADS)
Valenti, Davide; Carollo, Angelo; Spagnolo, Bernardo
2018-04-01
We investigate how the combined effects of strong Ohmic dissipation and monochromatic driving affect the stability of a quantum system with a metastable state. We find that, by increasing the coupling with the environment, the escape time makes a transition from a regime in which it is substantially controlled by the driving, displaying resonant peaks and dips, to a regime of frequency-independent escape time with a peak followed by a steep falloff. The escape time from the metastable state has a nonmonotonic behavior as a function of the thermal-bath coupling, the temperature, and the frequency of the driving. The quantum noise-enhanced stability phenomenon is observed in the investigated system.
Metallization and superconductivity in Ca-intercalated bilayer MoS2
NASA Astrophysics Data System (ADS)
Szczȱśniak, R.; Durajski, A. P.; Jarosik, M. W.
2017-12-01
A two-dimensional molybdenum disulfide (MoS2) has attracted significant interest recently due to its outstanding physical, chemical and optoelectronic properties. In this paper, using the first-principles calculations, the dynamical stability, electronic structure and superconducting properties of Ca-intercalated bilayer MoS2 are investigated. The calculated electron-phonon coupling constant implies that the stable form of investigated system is a strong-coupling superconductor (λ = 1.05) with a low value of critical temperature (TC = 13.3 K). Moreover, results obtained within the framework of the isotropic Migdal-Eliashberg formalism proved that Ca-intercalated bilayer MoS2 exhibits behavior that goes beyond the scope of the conventional BCS theory.
Anomalous Faraday effect of a system with extraordinary optical transmittance.
Khanikaev, Alexander B; Baryshev, Alexander V; Fedyanin, Andrey A; Granovsky, Alexander B; Inoue, Mitsuteru
2007-05-28
It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.
Tools for Detecting Causality in Space Systems
NASA Astrophysics Data System (ADS)
Johnson, J.; Wing, S.
2017-12-01
Complex systems such as the solar and magnetospheric envivonment often exhibit patterns of behavior that suggest underlying organizing principles. Causality is a key organizing principle that is particularly difficult to establish in strongly coupled nonlinear systems, but essential for understanding and modeling the behavior of systems. While traditional methods of time-series analysis can identify linear correlations, they do not adequately quantify the distinction between causal and coincidental dependence. We discuss tools for detecting causality including: granger causality, transfer entropy, conditional redundancy, and convergent cross maps. The tools are illustrated by applications to magnetospheric and solar physics including radiation belt, Dst (a magnetospheric state variable), substorm, and solar cycle dynamics.
NASA Astrophysics Data System (ADS)
Heinrich, B.; From, M.; Cochran, J. F.; Kowalewski, M.; Atlan, D.; Celinski, Z.; Myrtle, K.
1995-02-01
The exchange coupling has been studied in structures which consist of two ferromagnetic layers separated by non-ferromagnetic spacers (trilayers). The exchange coupling was measured using FMR and BLS techniques in the temperature range 77-400 K. Two systems were investigated: (a) Fe whisker/Cr/Fe(001) and (b) Fe/Cr/Fe(001). The oscillatory thickness dependence of the exchange coupling through a spin-density wave Cr spacer will be discussed and compared with recent data obtained by other groups. Cu interlayers were deposited either in a pure form, or a single monolayer of {Cu}/{Fe} alloy ('loose spins') was inserted between two pure bcc Cu(001) layers. Several such 'loose spin' structures were engineered to test the behavior of 'loose spin' structures. It was found that the presence of Fe impurity atoms has a strong tendency to decrease the direct bilinear exchange coupling. The contribution of 'loose spins' to the exchange coupling can be made significant, and even dominant, by a suitable choice of the RKKY coupling energy between the 'loose spins' and the surrounding ferromagnetic layers.
Non-Markovian continuous-time quantum walks on lattices with dynamical noise
NASA Astrophysics Data System (ADS)
Benedetti, Claudia; Buscemi, Fabrizio; Bordone, Paolo; Paris, Matteo G. A.
2016-04-01
We address the dynamics of continuous-time quantum walks on one-dimensional disordered lattices inducing dynamical noise in the system. Noise is described as time-dependent fluctuations of the tunneling amplitudes between adjacent sites, and attention is focused on non-Gaussian telegraph noise, going beyond the usual assumption of fast Gaussian noise. We observe the emergence of two different dynamical behaviors for the walker, corresponding to two opposite noise regimes: slow noise (i.e., strong coupling with the environment) confines the walker into few lattice nodes, while fast noise (weak coupling) induces a transition between quantum and classical diffusion over the lattice. A phase transition between the two dynamical regimes may be observed by tuning the ratio between the autocorrelation time of the noise and the coupling between the walker and the external environment generating the noise. We also address the non-Markovianity of the quantum map by assessing its memory effects, as well as evaluating the information backflow to the system. Our results suggest that the non-Markovian character of the evolution is linked to the dynamical behavior in the slow noise regime, and that fast noise induces a Markovian dynamics for the walker.
NASA Astrophysics Data System (ADS)
Ma, Ji; Chen, Kezheng
2016-05-01
In this study, room-temperature spin-glass behaviors were observed in flake-like oriented attached hematite (α-Fe2O3) and iron phosphate hydroxide hydrate (Fe5(PO4)4(OH)3·2H2O) single crystals. Remarkably, their coercivity (HC) values were found to be almost invariable at various given temperatures from 5 to 300 K. The spin topographic map in these flakes was assumed as superparamagnetic (SPM) "islands" isolated by spin glass (SG)-like "bridges". A spin-glass model was then proposed to demonstrate the spin frustration within these "bridges", which were formed by the staggered atomic planes in the uneven surfaces belonging to different attached nanoparticles. Under the spatial limitation and coupling shield of these "bridges", the SPM "islands" were found to be collectively frozen to form a superspin glass (SSG) state below 80 K in weak applied magnetic fields; whereas, when strong magnetic fields were applied, the magnetic coupling of these "islands" would become superferromagnetic (SFM) through tunneling superexchange, so that, these SFM spins could antiferromagnetically couple with the SG-like "bridges" to yield pronounced exchange bias (EB) effect.
Jets in a strongly coupled anisotropic plasma
NASA Astrophysics Data System (ADS)
Fadafan, Kazem Bitaghsir; Morad, Razieh
2018-01-01
In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N=4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma.
Epsilon-near-zero modes for tailored light-matter interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Liu, Sheng; Benz, Alexander
Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximizemore » the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. As a result, this design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.« less
Sato, T; Tanaka, Y; Nakayama, K; Souma, S; Takahashi, T; Sasaki, S; Ren, Z; Taskin, A A; Segawa, Kouji; Ando, Yoichi
2013-05-17
We have performed angle-resolved photoemission spectroscopy on the strongly spin-orbit coupled low-carrier density superconductor Sn(1-x)In(x)Te (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity, as recently reported for this compound based on point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state, indicating that this material is a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-noninverted superconductor possessing a similar Fermi surface structure, Pb(1-x)Tl(x)Te, suggests that the anomalous behavior in the superconducting state of Sn(1-x)In(x)Te is related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.
Epsilon-near-zero modes for tailored light-matter interaction
Campione, Salvatore; Liu, Sheng; Benz, Alexander; ...
2015-10-20
Epsilon-near-zero (ENZ) modes arising from condensed-matter excitations such as phonons and plasmons are a new path for tailoring light-matter interactions at the nanoscale. Complex spectral shaping can be achieved by creating such modes in nanoscale semiconductor layers and controlling their interaction with multiple, distinct, dipole resonant systems. Examples of this behavior are presented at midinfrared frequencies for ENZ modes that are strongly coupled to metamaterial resonators and simultaneously strongly coupled to semiconductor phonons or quantum-well intersubband transitions (ISTs), resulting in double- and triple-polariton branches in transmission spectra. For the double-polariton branch case, we find that the best strategy to maximizemore » the Rabi splitting is to use a combination of a doped layer supporting an ENZ feature and a layer supporting ISTs, with overlapping ENZ and IST frequencies. As a result, this design flexibility renders this platform attractive for low-voltage tunable filters, light-emitting diodes, and efficient nonlinear composite materials.« less
Ellenor, Christopher W; Stang, Pascal P; Etezadi-Amoli, Maryam; Pauly, John M; Scott, Greig C
2015-03-01
The concept of a "radiofrequency safety prescreen" is investigated, wherein dangerous interactions between radiofrequency fields used in MRI, and conductive implants in patients are detected through impedance changes in the radiofrequency coil. The behavior of coupled oscillators is reviewed, and the resulting, observable impedance changes are discussed. A birdcage coil is loaded with a static head phantom and a wire phantom with a wire close to its resonant length, the shape, position, and orientation of which can be changed. Interactions are probed with a current sensor and network analyzer. Impedance spectra show dramatic, unmistakable splitting in cases of strong coupling, and strong correlation is observed between induced current and scattering parameters. The feasibility of a new, low-power prescreening technique has been demonstrated in a simple phantom experiment, which can unambiguously detect resonant interactions between an implanted wire and an imaging coil. A new technique has also been presented which can detect parallel transmit null modes for the wire. © 2014 Wiley Periodicals, Inc.
Synchronizability of nonidentical weakly dissipative systems
NASA Astrophysics Data System (ADS)
Sendiña-Nadal, Irene; Letellier, Christophe
2017-10-01
Synchronization is a very generic process commonly observed in a large variety of dynamical systems which, however, has been rarely addressed in systems with low dissipation. Using the Rössler, the Lorenz 84, and the Sprott A systems as paradigmatic examples of strongly, weakly, and non-dissipative chaotic systems, respectively, we show that a parameter or frequency mismatch between two coupled such systems does not affect the synchronizability and the underlying structure of the joint attractor in the same way. By computing the Shannon entropy associated with the corresponding recurrence plots, we were able to characterize how two coupled nonidentical chaotic oscillators organize their dynamics in different dissipation regimes. While for strongly dissipative systems, the resulting dynamics exhibits a Shannon entropy value compatible with the one having an average parameter mismatch, for weak dissipation synchronization dynamics corresponds to a more complex behavior with higher values of the Shannon entropy. In comparison, conservative dynamics leads to a less rich picture, providing either similar chaotic dynamics or oversimplified periodic ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Akihito, E-mail: kato@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp
2015-08-14
We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) andmore » between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.« less
Quenched bond randomness: Superfluidity in porous media and the strong violation of universality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falicov, A.; Berker, A.N.
1997-04-01
The effects of quenched bond randomness are most readily studied with superfluidity immersed in a porous medium. A lattice model for {sup 3}He-{sup 4}He mixtures and incomplete {sup 4}He fillings in aerogel yields the signature effect of bond randomness, namely the conversion of symmetry-breaking first-order phase transitions into second-order phase transitions, the A-line reaching zero temperature, and the elimination of non-symmetry-breaking first-order phase transitions. The model recognizes the importance of the connected nature of aerogel randomness and thereby yields superfluidity at very low {sup 4}He concentrations, a phase separation entirely within the superfluid phase, and the order-parameter contrast between mixturesmore » and incomplete fillings, all in agreement with experiments. The special properties of the helium mixture/aerogel system are distinctly linked to the aerogel properties of connectivity, randomness, and tenuousness, via the additional study of a regularized {open_quote}jungle-gym{close_quotes} aerogel. Renormalization-group calculations indicate that a strong violation of the empirical universality principle of critical phenomena occurs under quenched bond randomness. It is argued that helium/aerogel critical properties reflect this violation and further experiments are suggested. Renormalization-group analysis also shows that, adjoiningly to the strong universality violation (which hinges on the occurrence or non-occurrence of asymptotic strong coupling-strong randomness under resealing), there is a new {open_quotes}hyperuniversality{close_quotes} at phase transitions with asymptotic strong coupling-strong randomness behavior, for example assigning the same critical exponents to random-bond tricriticality and random-field criticality.« less
NASA Astrophysics Data System (ADS)
Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru
2017-10-01
Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.
NASA Astrophysics Data System (ADS)
Afeyan, Bedros; Meezan, N.; MacLaren, S.; Hammer, J.; Montgomery, D.; Heebner, J.
2015-11-01
We will show theoretical results on the behavior of SBS in the strong damping regime and CBET in mid-Z plasmas (around 20) where ion Landau damping and collisional damping are both higher order effects and strong coupling is dominant in laser hot spots and near Mach -1 surfaces in appropriately tuned pairs of crossing beams. The spatially dependent frequency shits that ensue and the reductions in growth rate allow the control of LPI even downstream beyond the crossing volumes. Multiple successive crossings between O(100) beams can be used to change the space-time intensity distributions of lasers used entirely differently in direct and indirect drive geometries. In the former case, due to the existence of many angles, a statistical Sqrt(N) gain is expected. with randomly phased beams via STUD pulses. On the other hand, for indirect drive, with 2-4 cone angles to contend with, turning off interactions by staggering crossing beam spikes, achieved with STUD pulses, is a key deterministic element for the success of the plan. Changing the speckle statistics at will and with fine control is a grand challenge of this set of techniques.
Kekenes-Huskey, Peter M.; Eun, Changsun; McCammon, J. A.
2015-01-01
Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion “barriers” arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, the spatial organization of diffusion barriers arising from intracellular structures, non-specific crowders, and specific-binders (buffers) strongly controls the temporal and spatial reaction kinetics. In this study, we use two prototypical biochemical reactions, a Goodwin oscillator, and a reaction with a periodic source/sink term to examine how a diffusion barrier that partitions substrates controls reaction behavior. Namely, we examine how conditions representative of a densely packed cytosol, including reduced accessible volume fraction, non-specific interactions, and buffers, impede diffusion over nanometer length-scales. We find that diffusion barriers can modulate the frequencies and amplitudes of coupled diffusion-influenced reaction networks, as well as give rise to “compartments” of decoupled reactant populations. These effects appear to be intensified in the presence of buffers localized to the diffusion barrier. These findings have strong implications for the role of the cellular environment in tuning the dynamics of signaling pathways. PMID:26342355
Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung
2016-05-17
We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.
Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung
2016-01-01
We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling. PMID:27184469
Clinical processes in behavioral couples therapy.
Fischer, Daniel J; Fink, Brandi C
2014-03-01
Behavioral couples therapy is a broad term for couples therapies that use behavioral techniques based on principles of operant conditioning, such as reinforcement. Behavioral shaping and rehearsal and acceptance are clinical processes found across contemporary behavioral couples therapies. These clinical processes are useful for assessment and case formulation, as well as teaching couples new methods of conflict resolution. Although these clinical processes assist therapists in achieving efficient and effective therapeutic change with distressed couples by rapidly stemming couples' corrosive affective exchanges, they also address the thoughts, emotions, and issues of trust and intimacy that are important aspects of the human experience in the context of a couple. Vignettes are provided to illustrate the clinical processes described. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Modeling the formation of strong couples in high temperature liquid
NASA Astrophysics Data System (ADS)
Yaghmaee, M. S.; Shokri, B.
2007-07-01
The study of atomic/molecular level interactions in the liquid state of materials not only helps us to understand the extreme behavior of such complex liquid phases (different from what we observe from ideal systems), but also helps us to analyze and design the advanced materials. For this reason, the model of an ideally associated mixture has been applied to describe the equilibrium state on the example of an Fe-rich corner of the quaternary Fe-Al-N-B system. This model is able to formulate and analyze the state of liquid systems, which are rich in one component and which also have other components that develop strong interactions among each other, leading to the formation of some couples in the system. These couples could be as small as a two-atom structure (such as simple compounds in a metallic system), but they could also become larger up to nanoscale due to higher stoichiometric morphologies that form nanoscale clusters. The solubility of AlN, BN, and N2 gases in the liquid phase of the ternary Fe-Al-N and Fe-B-N systems has been calculated and fitted to experimental results. There is a deviation between our calculated boundary curves fitted with experimental result and those extrapolated curves from the concept of solubility product, which may only be attributed to the misleading concept of solubility product that ignores couple formation in the liquid. Applying this model to the Fe-Al-N-B liquid system, we found that at relatively low boron content (i.e., 20-30ppm) and soluble aluminum content exceeding 250ppm, more than 90% of the steel making practice with nitrogen content (i.e., maximum of 120ppm) is complexed into AlN and BN couples at temperatures falling in the range of 1823-1923K. The model describing the liquid quaternary Fe-Al-N-B system provides us a tool to determine the equilibrium quantity of the considered constituents (free atoms and couples) formed in the liquid, as a function of macroscopic composition and temperature. This algorithm can be used generally for high temperature multicomponent liquid systems, which have the tendency to form strong couples or nanoclusters.
Intermediate-coupling theory of the spin polaron in the {ital t}-{ital J} model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barentzen, H.
1996-03-01
The spin polaron in the {ital t-J} model, i.e., a hole dressed by a cloud of virtual magnons of the antiferromagnetic spin background, is treated within the framework of intermediate-coupling theory. The original {ital t}-{ital J} model is first reformulated in terms of spinless fermions and bosons by means of the generalized Dyson-Maleev representation (DMR). The latter may be regarded as the natural extension of the ordinary DMR of pure (undoped) spin systems to the case where holes are present, and is similar to the one originally proposed by Schmitt-Rink, Varma, and Ruckenstein. The reformulated {ital t}-{ital J} model, whichmore » is reminiscent of the Fr{umlt o}hlich Hamiltonian, is then subjected to a series of unitary transformations, analogous to those employed by Lee, Low, and Pines in their treatment of the Fr{umlt o}hlich polaron. Our approach yields an approximate quasiparticle energy {ital E}({ital k}{bold )} as well as the corresponding eigenvector. To explore the range of validity of our theory, the analytic expressions are then further analyzed for intermediate ({ital J}/{ital t}=0.4) and strong ({ital J}/{ital t}=0.08) coupling, where special attention is paid to the quasiparticle bandwidth {ital W}. The intermediate-coupling result for {ital E}({ital k}{bold )} is in excellent agreement with the dispersion curve recently obtained by Dagotto and co-workers by means of a Green function Monte Carlo method. Even in the strong-coupling range the bandshape remains qualitatively correct. The bandwidth {ital W} is rather accurate for weak coupling ({ital J}/{ital t}{approx_gt}3), and still reasonable in the intermediate range 0.4{approx_lt}{ital J}/{ital t}{le}3, where it deviates from the correct values by some 10-20%. Our theory fails, however, to describe the proper behavior of {ital W} in the strong-coupling regime. This shows that the limitations of our approach manifest themselves in the bandwidths rather than in the shapes of the dispersion curves.« less
Perception of partner sexual history: Effects on safe-sex intentions.
Cornelius, Talea; Kershaw, Trace
2017-07-01
Sexual intercourse is a dyadic activity, and intentions to engage in safe sex vary across partners. Because pregnant and newly parenting adolescents and young adults are at high risk for sexually transmitted infections (STIs), it is important to understand sexual decision-making in this population. This cross-sectional study examined how participants' own risk behavior and their partners' risk behavior influence perceptions of partner risk, and the impact of risk perceptions on condom use intentions and monogamy intentions in 296 pregnant adolescent and young adult couples (MAgeFemale = 18.71 years; MAgeMale = 21.33 years). Participants' behavior and their partners' behavior both related to increased perceptions of partner risk. Male participants' perceptions were more strongly influenced by female partners' behavior than participants' own behavior. Perceiving a partner as having a history of more risk behaviors trended toward a negative relationship with condom use intentions and monogamy intentions. For females, more previous sex partners related negatively to condom use intentions and positively to monogamy intentions. Having a male partner with more previous sex partners related positively to condom use intentions and monogamy intentions. Perceptions of partner risk did not significantly relate to condom use intentions and monogamy intentions, however, trends suggest that risk perception could reflect similarity bias and ongoing risk engagement. Differences in partner perception by gender suggest that females may communicate more openly about risks. Interventions to reduce STI transmission in couples should work to interrupt trajectories of risky behavior and enhance risk communication. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hanada, Masanori; Miwa, Akitsugu; Nishimura, Jun; Takeuchi, Shingo
2009-05-08
In the string-gauge duality it is important to understand how the space-time geometry is encoded in gauge theory observables. We address this issue in the case of the D0-brane system at finite temperature T. Based on the duality, the temporal Wilson loop W in gauge theory is expected to contain the information of the Schwarzschild radius RSch of the dual black hole geometry as log(W)=RSch/(2pialpha'T). This translates to the power-law behavior log(W)=1.89(T/lambda 1/3)-3/5, where lambda is the 't Hooft coupling constant. We calculate the Wilson loop on the gauge theory side in the strongly coupled regime by performing Monte Carlo simulations of supersymmetric matrix quantum mechanics with 16 supercharges. The results reproduce the expected power-law behavior up to a constant shift, which is explainable as alpha' corrections on the gravity side. Our conclusion also demonstrates manifestly the fuzzball picture of black holes.
Affective processing in positive schizotypy: Loose control of social-emotional information.
Papousek, Ilona; Weiss, Elisabeth M; Mosbacher, Jochen A; Reiser, Eva M; Schulter, Günter; Fink, Andreas
2014-10-30
Behavioral studies suggested heightened impact of emotionally laden perceptual input in schizophrenia spectrum disorders, in particular in patients with prominent positive symptoms. De-coupling of prefrontal and posterior cortices during stimulus processing, which is related to loosening of control of the prefrontal cortex over incoming affectively laden information, may underlie this abnormality. Pre-selected groups of individuals with low versus high positive schizotypy (lower and upper quartile of a large screening sample) were tested. During exposure to auditory displays of strong emotions (anger, sadness, cheerfulness), individuals with elevated levels of positive schizotypal symptoms showed lesser prefrontal-posterior coupling (EEG coherence) than their symptom-free counterparts (right hemisphere). This applied to negative emotions in particular and was most pronounced during confrontation with anger. The findings indicate a link between positive symptoms and a heightened impact particularly of threatening emotionally laden stimuli which might lead to exacerbation of positive symptoms and inappropriate behavior in interpersonal situations. Copyright © 2014 Elsevier Inc. All rights reserved.
A conceptual review on action-perception coupling in the musicians’ brain: what is it good for?
Novembre, Giacomo; Keller, Peter E.
2014-01-01
Experience with a sensorimotor task, such as practicing a piano piece, leads to strong coupling of sensory (visual or auditory) and motor cortices. Here we review behavioral and neurophysiological (M/EEG, TMS and fMRI) research exploring this topic using the brain of musicians as a model system. Our review focuses on a recent body of evidence suggesting that this form of coupling might have (at least) two cognitive functions. First, it leads to the generation of equivalent predictions (concerning both when and what event is more likely to occur) during both perception and production of music. Second, it underpins the common coding of perception and action that supports the integration of the motor output of multiple musicians’ in the context of joint musical tasks. Essentially, training-based coupling of perception and action might scaffold the human ability to represent complex (structured) actions and to entrain multiple agents—via reciprocal prediction and adaptation—in the pursuit of shared goals. PMID:25191246
Competing phases and orbital-selective behaviors in the two-orbital Hubbard-Holstein model
NASA Astrophysics Data System (ADS)
Li, Shaozhi; Khatami, Ehsan; Johnston, Steven
2017-03-01
We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in the two-orbital Hubbard-Holstein model at half-filling using the dynamical mean-field theory. We find that the e-ph interaction, even at weak couplings, strongly modifies the phase diagram of this model and introduces an orbital-selective Peierls insulating phase (OSPI) that is analogous to the widely studied orbital-selective Mott phase (OSMP). At small e-e and e-ph couplings, we find a competition between the OSMP and the OSPI, while at large couplings, a competition occurs between Mott and charge-density-wave (CDW) insulating phases. We further demonstrate that the Hund's coupling influences the OSPI transition by lowering the energy associated with the CDW. Our results explicitly show that one must be cautious when neglecting the e-ph interaction in multiorbital systems, where multiple electronic interactions create states that are readily influenced by perturbing interactions.
Ladd, Benjamin O.; McCrady, Barbara S.
2016-01-01
The current study aimed to examine whether classification of couples in which one partner has an alcohol problem is similar to that reported in the general couples literature. Typologies of couples seeking Alcohol Behavioral Couple Therapy (ABCT) were developed via hierarchical cluster analysis using behavioral codes of couple interactions during their first ABCT session. Four couples types based on in-session behavior were established reliably, labeled Avoider, Validator, Hostile, and Ambivalent-Detached. These couple types resembled couples types found in previous research. Couple type was associated with baseline relationship satisfaction, but not alcohol use. Results suggest heterogeneity in couples with alcohol problems presenting to treatment; further study is needed to investigate the function of alcohol within these different types. PMID:25808432
Classical and quantum stability in putative landscapes
Dine, Michael
2017-01-18
Landscape analyses often assume the existence of large numbers of fields, N, with all of the many couplings among these fields (subject to constraints such as local supersymmetry) selected independently and randomly from simple (say Gaussian) distributions. We point out that unitarity and perturbativity place significant constraints on behavior of couplings with N, eliminating otherwise puzzling results. In would-be flux compactifications of string theory, we point out that in order that there be large numbers of light fields, the compactification radii must scale as a positive power of N; scaling of couplings with N may also be necessary for perturbativity.more » We show that in some simple string theory settings with large numbers of fields, for fixed R and string coupling, one can bound certain sums of squares of couplings by order one numbers. This may argue for strong correlations, possibly calling into question the assumption of uncorrelated distributions. Finally, we consider implications of these considerations for classical and quantum stability of states without supersymmetry, with low energy supersymmetry arising from tuning of parameters, and with dynamical breaking of supersymmetry.« less
Classical and quantum stability in putative landscapes
NASA Astrophysics Data System (ADS)
Dine, Michael
2017-01-01
Landscape analyses often assume the existence of large numbers of fields, N , with all of the many couplings among these fields (subject to constraints such as local supersymmetry) selected independently and randomly from simple (say Gaussian) distributions. We point out that unitarity and perturbativity place significant constraints on behavior of couplings with N , eliminating otherwise puzzling results. In would-be flux compactifications of string theory, we point out that in order that there be large numbers of light fields, the compactification radii must scale as a positive power of N ; scaling of couplings with N may also be necessary for perturbativity. We show that in some simple string theory settings with large numbers of fields, for fixed R and string coupling, one can bound certain sums of squares of couplings by order one numbers. This may argue for strong correlations, possibly calling into question the assumption of uncorrelated distributions. We consider implications of these considerations for classical and quantum stability of states without supersymmetry, with low energy supersymmetry arising from tuning of parameters, and with dynamical breaking of supersymmetry.
Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model with Attraction
NASA Astrophysics Data System (ADS)
Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.
2017-12-01
We study disorder effects upon the temperature behavior of the upper critical magnetic field in an attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attraction potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of H c2( T), especially at low temperatures. In BEC limit and in the region of BCS-BEC crossover H c2( T), dependence becomes practically linear. Disordering also leads to the general growth of H c2( T). In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point and to the increase of H c2( T) in the low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of H c2( T) at low temperatures, so that the H c2( T) dependence becomes concave. In BCS-BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to T c . However, in the low temperature region H c2 ( T may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase H c2 ( T = 0) also making H c2( T) dependence concave.
Systematics of the K X-Ray Multiplicity for Transitional Nuclei with A~=200
NASA Astrophysics Data System (ADS)
Karwowski, H. J.; Vigdor, S. E.; Jacobs, W. W.; Throwe, T. G.; Wark, D. L.; Kailas, S.; Singh, P. P.; Soga, F.; Ward, T. E.; Wiggins, J.
1981-11-01
Measurements of the multiplicity of K x rays accompanying (Li,xn) reactions to residual nuclei with Z~80 exhibit plateaus of high and constant multiplicity for neutron numbers between 110 and 120, with rapid falloff for both smaller and larger N. A proposed explanation for this systematic behavior assumes that strongly coupled, high-K rotational bands are a much more general feature of this transitional mass region than existing data indicate.
Ladd, Benjamin O; McCrady, Barbara S
2016-01-01
This study aimed to examine whether classification of couples in which one partner has an alcohol problem is similar to that reported in the general couples literature. Typologies of couples seeking alcohol behavioral couple therapy (ABCT) were developed via hierarchical cluster analysis using behavioral codes of couple interactions during their first ABCT session. Four couples types based on in-session behavior were established reliably, labeled avoider, validator, hostile, and ambivalent-detached. These couple types resembled couples types found in previous research. Couple type was associated with baseline relationship satisfaction, but not alcohol use. Results suggest heterogeneity in couples with alcohol problems presenting to treatment; further study is needed to investigate the function of alcohol within these different types. © 2015 American Association for Marriage and Family Therapy.
Emotion-induced loss aversion and striatal-amygdala coupling in low-anxious individuals
Charpentier, Caroline J.; Martino, Benedetto De; Sim, Alena L.; Sharot, Tali; Roiser, Jonathan P.
2016-01-01
Adapting behavior to changes in the environment is a crucial ability for survival but such adaptation varies widely across individuals. Here, we asked how humans alter their economic decision-making in response to emotional cues, and whether this is related to trait anxiety. Developing an emotional decision-making task for functional magnetic resonance imaging, in which gambling decisions were preceded by emotional and non-emotional primes, we assessed emotional influences on loss aversion, the tendency to overweigh potential monetary losses relative to gains. Our behavioral results revealed that only low-anxious individuals exhibited increased loss aversion under emotional conditions. This emotional modulation of decision-making was accompanied by a corresponding emotion-elicited increase in amygdala-striatal functional connectivity, which correlated with the behavioral effect across participants. Consistent with prior reports of ‘neural loss aversion’, both amygdala and ventral striatum tracked losses more strongly than gains, and amygdala loss aversion signals were exaggerated by emotion, suggesting a potential role for this structure in integrating value and emotion cues. Increased loss aversion and striatal-amygdala coupling induced by emotional cues may reflect the engagement of adaptive harm-avoidance mechanisms in low-anxious individuals, possibly promoting resilience to psychopathology. PMID:26589451
NASA Astrophysics Data System (ADS)
Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.
2011-07-01
The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.
Thermal behavior of Charmonium in the vector channel from QCD sum rules
NASA Astrophysics Data System (ADS)
Dominguez, C. A.; Loewe, M.; Rojas, J. C.; Zhang, Y.
2010-11-01
The thermal evolution of the hadronic parameters of charmonium in the vector channel, i.e. the J/Ψ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold are analyzed in the framework of thermal Hilbert moment QCD sum rules. The continuum threshold s0 has the same behavior as in all other hadronic channels, i.e. it decreases with increasing temperature until the PQCD threshold s0 = 4mQ2 is reached at T≃1.22Tc (mQ is the charm quark mass). The other hadronic parameters behave in a very different way from those of light-light and heavy-light quark systems. The J/Ψ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to T≃1.04Tc beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant beginning to increase monotonically around T≃Tc. This behavior of the total width and of the leptonic decay constant is a strong indication that the J/Ψ resonance might survive beyond the critical temperature for deconfinement, in agreement with some recent lattice QCD results.
NASA Astrophysics Data System (ADS)
Coenen, Toon; Schoen, David T.; Brenny, Benjamin J. M.; Polman, Albert; Brongersma, Mark L.
2016-05-01
We systematically investigate the plasmonic "dolmen" geometry and its constituent elements using electron energy-loss spectroscopy and cathodoluminescence spectroscopy. In particular, we study the effects of the particle size and spacing on the resonant behavior and interparticle coupling. Because we apply both techniques on the same structures we can directly compare the results and investigate the radiative versus nonradiative character of the different modes. We find that the cathodoluminescence response is significantly lower than the electron energy-loss response for higher-energy modes because strong absorption reduces the scattering efficiency in this regime. Furthermore, we show that the overall resonant response roughly scales with size as expected for plasmonic structures but that the transverse resonant modes do become more dominant in larger structures due to a relative reduction in Ohmic dissipation. Using EELS and CL we can rigorously study coupling between the elements and show that the coupling diminishes for larger spacings.
Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases
NASA Astrophysics Data System (ADS)
Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.
2018-03-01
The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.
Universality from disorder in the random-bond Blume-Capel model
NASA Astrophysics Data System (ADS)
Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.
2018-04-01
Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.
Two dimensional fluid simulation in capacitively coupled silane discharges
NASA Astrophysics Data System (ADS)
Song, Yuan-Hong; Liu, Xiang-Mei; Wang, Yan; Wang, You-Nian
2011-10-01
A two-dimensional (2D) self-consistent fluid model is developed to describe the formation, subsequent growth, transport and charging mechanisms of nanoparticles in a capacitively coupled silane plasma. In this discharge process, large anions are produced by a series of chemical reactions of anions with silane molecules, while the lower limit of the initial nanoparticles are taken as large anions to directly link the coagulation module with the nucleation module. The influences of source parameters on the electron density, electron temperature, nanoparticle uniformity, and deposition rate, are carefully studied. Moreover, the behavior of silicon plasma mixed with SiH4, N2 and O2 in a pulse modulated capacitively coupled plasma has been also investigated. Results showed a strong dependence of the electron density and electron temperature on the duty cycle and the modulated frequency. Supported by NSFC (No.10775025 and No. 10805008), INSTSP (Grant No: 2011ZX02403-001), and PNCETU (NCET-08-0073).
Searching for Supersolidity in Ultracold Atomic Bose Condensates with Rashba Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Liao, Renyuan
2018-04-01
We developed a functional integral formulation for the stripe phase of spinor Bose-Einstein condensates with Rashba spin-orbit coupling. The excitation spectrum is found to exhibit double gapless band structures, identified to be two Goldstone modes resulting from spontaneously broken internal gauge symmetry and translational invariance symmetry. The sound velocities display anisotropic behavior with the lower branch vanishing in the direction perpendicular to the stripe in the x -y plane. At the transition point between the plane-wave phase and the stripe phase, physical quantities such as fluctuation correction to the ground-state energy and quantum depletion of the condensates exhibit discontinuity, characteristic of the first-order phase transition. Despite strong quantum fluctuations induced by Rashba spin-orbit coupling, we show that the supersolid phase is stable against quantum depletion. Finally, we extend our formulation to finite temperatures to account for interactions between excitations.
Mutual 3:1 subharmonic synchronization in a micromachined silicon disk resonator
NASA Astrophysics Data System (ADS)
Taheri-Tehrani, Parsa; Guerrieri, Andrea; Defoort, Martial; Frangi, Attilio; Horsley, David A.
2017-10-01
We demonstrate synchronization between two intrinsically coupled oscillators that are created from two distinct vibration modes of a single micromachined disk resonator. The modes have a 3:1 subharmonic frequency relationship and cubic, non-dissipative electromechanical coupling between the modes enables their two frequencies to synchronize. Our experimental implementation allows the frequency of the lower frequency oscillator to be independently controlled from that of the higher frequency oscillator, enabling study of the synchronization dynamics. We find close quantitative agreement between the experimental behavior and an analytical coupled-oscillator model as a function of the energy in the two oscillators. We demonstrate that the synchronization range increases when the lower frequency oscillator is strongly driven and when the higher frequency oscillator is weakly driven. This result suggests that synchronization can be applied to the frequency-selective detection of weak signals and other mechanical signal processing functions.
The effect of side motion in the dynamics of interacting molecular motors
NASA Astrophysics Data System (ADS)
Midha, Tripti; Gupta, Arvind Kumar; Kolomeisky, Anatoly B.
2017-07-01
To mimic the collective motion of interacting molecular motors, we propose and discuss an open two-lane symmetrically coupled interactive TASEP model that incorporates interaction in the thermodynamically consistent fashion. We study the effect of both repulsive and attractive interaction on the system’s dynamical properties using various cluster mean field analysis and extensive Monte Carlo simulations. The interactions bring correlations into the system, which were found to be reduced due to the side motion of particles. We produce the steady-state phase diagrams for symmetrically split interaction strength. The behavior of the maximal particle current with respect to the interaction energy E is analyzed for different coupling rates and interaction splittings. The results suggest that for strong coupling and large splittings, the maximal flow of the motors occurs at a weak attractive interaction strength which matches with the known experimental results on kinesin motor protein.
Behavior Analysis of Forgiveness in Couples Therapy
ERIC Educational Resources Information Center
Cordova, James; Cautilli, Joseph; Simon, Corrina; Sabag, Robin Axelrod
2006-01-01
Behavioral couples' therapy has a long history of success with couples and is an empirically validated treatment for marital discord (Task Force on Promotion and Dissemination of Psychological Procedures, 1995). However, only about 50% of all couples in treatment experience long-term change (2 years). One of the founders of behavioral couples'…
Strong Coupling Corrections in Quantum Thermodynamics
NASA Astrophysics Data System (ADS)
Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.
2018-03-01
Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.
Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas
2017-01-25
Beaumont, TX (4/16). “Studying Strongly Coupled Systems with Ultracold Plasmas," Department of Physics and Astronomy Colloquium, University of South...Alabama, Mobile, AL (11/15). “Collective Modes and Correlations in Strongly Coupled Ultracold Plasmas," Department of Physics and Astronomy
Thomaes, Sander; Bushman, Brad J; de Castro, Bram Orobio; Reijntjes, Albert
2012-01-01
When people reflect on their important values, they may become more attuned to the needs of others. Two longitudinal field experiments examined whether a subtle value-affirmation manipulation can initiate relatively enduring increases in young adolescents' prosocial feelings (Study 1; Mage = 12.9) and prosocial behaviors (Study 2; Mage = 12.9). Participants completed a brief writing exercise that affirmed the values they deemed either most important (value-affirmation group) or unimportant (control group). As predicted, the value affirmation, coupled with a booster affirmation 6 weeks later, caused increases in prosocial feelings and behaviors over the 3-month study period. Antisocial students who were value-affirmed showed especially strong increases in prosocial behavior. These results suggest that "gentle passions" can be aroused in youth by cost- and time-efficient means. The practical utility of value affirmations will need to be evaluated in future work.
Correlation between social proximity and mobility similarity.
Fan, Chao; Liu, Yiding; Huang, Junming; Rong, Zhihai; Zhou, Tao
2017-09-20
Human behaviors exhibit ubiquitous correlations in many aspects, such as individual and collective levels, temporal and spatial dimensions, content, social and geographical layers. With rich Internet data of online behaviors becoming available, it attracts academic interests to explore human mobility similarity from the perspective of social network proximity. Existent analysis shows a strong correlation between online social proximity and offline mobility similarity, namely, mobile records between friends are significantly more similar than between strangers, and those between friends with common neighbors are even more similar. We argue the importance of the number and diversity of common friends, with a counter intuitive finding that the number of common friends has no positive impact on mobility similarity while the diversity plays a key role, disagreeing with previous studies. Our analysis provides a novel view for better understanding the coupling between human online and offline behaviors, and will help model and predict human behaviors based on social proximity.
Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R
2007-04-06
Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.
Magnetic anisotropy on the single crystal UNi4B probed by 11B NMR
NASA Astrophysics Data System (ADS)
Kishimoto, Yasuki; Matsuno, Haruki; Kotegawa, Hisashi; Tou, Hideki; Saito, Hiraku; Amitsuka, Hiroshi; Homma, Yoshiya; Nakamura, Ai; Li, Dexin; Honda, Fuminori; Aoki, Dai
2018-05-01
We have performed a susceptibility M / H and 11B NMR measurements to investigate the static magnetic anisotropy of a single crystal UNi4B. The Knight shift 11K and the hyperfine coupling constant Ahf evaluated by 11K- M / H plot show anisotropic behavior between H ∥ [ 11 2 bar 0 ] and H ∥ [ 0001 ] , reflecting the bulk susceptibility. The evaluated transferred term Atr of Ahf for H ∥ [ 11 2 bar 0 ] is much larger than the one for H ∥ [ 0001 ] . The strong hybridization in the [0001]-plane due to a itinerant 5f-electron is strongly associated with the unique magnetic structure in this compound.
Attractive Hubbard model with disorder and the generalized Anderson theorem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A., E-mail: strigina@iep.uran.ru; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru
Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flatmore » densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T{sub c} for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T{sub c} (in the weak-coupling region) or significantly increase T{sub c} (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band.« less
El Nino-southern oscillation: A coupled response to the greenhouse effect?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, De-Zheng
The purpose of this article to elucidate the link between the El Nino-Southern Oscillation (ENSO) and radiative forcing (of which the greenhouse effect is a major part). A unified theory for the tropical Pacific climate is developed by considering the response of the coupled ocean-atmosphere to a changing radiative forcing. The hypothesis is that both the zonal surface sea temperature (SST) gradients and ENSO are a coupled response to the strong radiative heating or the tropical warmth. Owing to ocean-atmosphere interaction, the stronger the radiative heating, the larger the zonal SST gradients. When the SST gradients exceed a critical value,more » however, the ocean-atmosphere interaction in the cold-tongue region is too strong for the coupled system to hold steady. Consequently, the coupled system enters an oscillatory state. These coupled dynamics are examined in a simple mathematical model whose behavior is consistent with the hypothesis. With a linear temperature profile throughout the depth of subsurface ocean, the model predicts that both the magnitude and period of the oscillation increase with increases in radiative forcing or the greenhouse effect. The increase in the magnitude of the oscillation largely comes from an enhancement of the magnitude of the cold anomalies, while the increase in the period mostly comes from a prolonged duration of the warm events. With a profile in which the lapse rate decreases with depth, the sensitivity is more moderate. The simplicity of the model prevents a quantitative simulation of the sensitivity of ENSO to increases in the greenhouse effect, but qualitatively the model results support the empirical interpretation of the prolonged duration of the 1990-1995 ENSO event. 5 refs., 7 figs.« less
Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R
2018-02-22
Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).
Shear viscosities of photons in strongly coupled plasmas
Yang, Di-Lun; Müller, Berndt
2016-07-18
We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N=4 super Yang–Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Hiew, Danika N; Halford, W Kim; van de Vijver, Fons J R; Liu, Shuang
2016-03-01
The current study compared Chinese, Western, and intercultural Chinese-Western couples' communication and examined how culture moderates the association of communication with relationship satisfaction. We coded the communication of 33 Western couples, 36 Chinese couples, and 54 intercultural Chinese-Western couples when discussing a relationship problem and when reminiscing about positive relationship events. Couples with Chinese female partners showed fewer positive behaviors and more negative behaviors (as classified in existing Western coding systems) than couples with Western female partners. The male partner's culture had few associations with couples' rates of communication behavior. Relationship satisfaction was associated with low rates of negative behaviors and high rates of most of the positive behaviors across cultural groups, and these associations were more evident in problem discussions than positive reminiscences. (c) 2016 APA, all rights reserved).
Strong coupling-like phenomenon in single metallic nanoparticle embedded in molecular J-aggregates
NASA Astrophysics Data System (ADS)
Feng, Xin; Wang, Chen; Ma, Hongjing; Chen, Yuanyuan; Duan, Gaoyan; Zhang, Pengfei; Song, Gang
2018-02-01
Strong coupling-like phenomenon between plasmonic cavities and emitters provides a new way to realize the quantum-like effect controlling at microscale/nanoscale. We investigate the strong coupling-like phenomenon in the structure of single metallic nanoparticle embedded in molecular J-aggregates by the classical simulation method and show that the size of the metallic nanoparticle and the oscillator strength of molecular J-aggregates impact the strong coupling-like phenomenon. The strong coupling-like phenomenon is induced by the interactions between two dipoles formed by the metallic nanoparticle and molecular J-aggregates or the interactions between the dipole generated from molecular J-aggregates and the quadrupole generated from the metallic nanoparticle. The strong coupling-like phenomenon appears evidently with the increase in oscillator strength of molecular J-aggregates. The detuning energy linearly decreases with the increase in radius of the metallic nanoparticle. Our structure has potential applications in quantum networks, quantum key distributions and so on.
System-level musings about system-level science (Invited)
NASA Astrophysics Data System (ADS)
Liu, W.
2009-12-01
In teleology, a system has a purpose. In physics, a system has a tendency. For example, a mechanical system has a tendency to lower its potential energy. A thermodynamic system has a tendency to increase its entropy. Therefore, if geospace is seen as a system, what is its tendency? Surprisingly or not, there is no simple answer to this question. Or, to flip the statement, the answer is complex, or complexity. We can understand generally why complexity arises, as the geospace boundary is open to influences from the solar wind and Earth’s atmosphere and components of the system couple to each other in a myriad of ways to make the systemic behavior highly nonlinear. But this still begs the question: What is the system-level approach to geospace science? A reductionist view might assert that as our understanding of a component or subsystem progresses to a certain point, we can couple some together to understand the system on a higher level. However, in practice, a subsystem can almost never been observed in isolation with others. Even if such is possible, there is no guarantee that the subsystem behavior will not change when coupled to others. Hence, there is no guarantee that a subsystem, such as the ring current, has an innate and intrinsic behavior like a hydrogen atom. An absolutist conclusion from this logic can be sobering, as one would have to trace a flash of aurora to the nucleosynthesis in the solar core. The practical answer, however, is more promising; it is a mix of the common sense we call reductionism and awareness that, especially when strongly coupled, subsystems can experience behavioral changes, breakdowns, and catastrophes. If the stock answer to the systemic tendency of geospace is complexity, the objective of the system-level approach to geospace science is to define, measure, and understand this complexity. I will use the example of magnetotail dynamics to illuminate some key points in this talk.
On the interface between perturbative and nonperturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.
2016-04-04
The QCD running couplingmore » $$\\alpha_s(Q^2)$$ sets the strength of the interactions of quarks and gluons as a function of the momentum transfer $Q$. The $Q^2$ dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-$Q^2$ analytic behavior of the strong coupling $$\\alpha_s(Q^2)$$. The high-$Q^2$ dependence of the coupling $$\\alpha_s(Q^2)$$ is specified by perturbative QCD and its renormalization group equation. The matching of the high and low $Q^2$ regimes of $$\\alpha_s(Q^2)$$ then determines the scale $$Q_0$$ which sets the interface between perturbative and nonperturbative hadron dynamics. The value of $$Q_0$$ can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of $$Q_0$$ and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the $$\\bar{MS}$$, $$g_1$$, $MOM$ and $V$ renormalization schemes. Our results show that the discrepancies on the value of $$\\alpha_s$$ at large distance seen in the literature can be explained by different choices of renormalization schemes. Lastly, we also provide the formulae to compute $$\\alpha_s(Q^2)$$ over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.« less
NASA Astrophysics Data System (ADS)
Bronsch, Wibke; Moldt, Thomas; Boie, Larissa; Gahl, Cornelius; Weinelt, Martin
2017-12-01
Self-assembled monolayers of azobenzene-functionalized alkanethiolates form molecular ensembles with preferential orientation and significant excitonic coupling among the azobenzene chromophores. We have studied their optical switching with differential reflectance and two-photon-photoemission spectroscopy tuning the excitation wavelength through the excitonically broadened S2 absorption band. While the effective isomerization cross-section increases towards shorter wavelengths, the fraction of cis molecules in the photostationary state decreases. We attribute this observation to the absorption of the cis isomer in the SAM. The photoisomerization in the SAM thereby follows the behavior of non-interacting chromophores in solution, despite the formation of H-aggregates. Our study thus reveals that photoswitching occurs via localized excitations while strongly excitonically coupled, delocalized states do not contribute significantly.
Equilibrium properties and phase diagram of two-dimensional Yukawa systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, P.; Donko, Z.; Kutasi, K.
Properties of two-dimensional strongly coupled Yukawa systems are explored through molecular dynamics simulations. An effective coupling coefficient {gamma}{sup *} for the liquid phase is introduced on the basis of the constancy of the first peak amplitude of the pair-correlation functions. Thermodynamic quantities are calculated from the pair-correlation function. The solid-liquid transition of the system is investigated through the analysis of the bond-angular order parameter. The static structure function satisfies consistency relation, attesting to the reliability of the computational method. The response is shown to be governed by the correlational part of the inverse compressibility. An analysis of the velocity autocorrelationmore » demonstrates that this latter also exhibits a universal behavior.« less
Giant self-biased magnetoelectric coupling in co-fired textured layered composites
NASA Astrophysics Data System (ADS)
Yan, Yongke; Zhou, Yuan; Priya, Shashank
2013-02-01
Co-fired magnetostrictive/piezoelectric/magnetostrictive laminate structure with silver inner electrode was synthesized and characterized. We demonstrate integration of textured piezoelectric microstructure with the cost-effective low-temperature co-fired layered structure to achieve strong magnetoelectric coupling. Using the co-fired composite, a strategy was developed based upon the hysteretic response of nickel-copper-zinc ferrite magnetostrictive materials to achieve peak magnetoelectric response at zero DC bias, referred as self-biased magnetoelectric response. Fundamental understanding of self-bias phenomenon in composites with single phase magnetic material was investigated by quantifying the magnetization and piezomagnetic changes with applied DC field. We delineate the contribution arising from the interfacial strain and inherent magnetic hysteretic behavior of copper modified nickel-zinc ferrite towards self-bias response.
Di Stefano, Carlos A.; Malamud, G.; Kuranz, C. C.; ...
2015-10-19
Here, we present experiments observing Richtmyer–Meshkov mode coupling and bubble competition in a system arising from well-characterized initial conditions and driven by a strong (Mach ~ 8) shock. These measurements and the analysis method developed to interpret them provide an important step toward the possibility of observing self-similarity under such conditions, as well as a general platform for performing and analyzing hydrodynamic instability experiments. A key feature of these experiments is that the shock is sustained sufficiently long that this nonlinear behavior occurs without decay of the shock velocity or other hydrodynamic properties of the system, which facilitates analysis andmore » allows the results to be used in the study of analytic models.« less
Collective modes of a two-dimensional spin-1/2 Fermi gas in a harmonic trap
NASA Astrophysics Data System (ADS)
Baur, Stefan K.; Vogt, Enrico; Köhl, Michael; Bruun, Georg M.
2013-04-01
We derive analytical expressions for the frequency and damping of the lowest collective modes of a two-dimensional Fermi gas using kinetic theory. For strong coupling, we furthermore show that pairing correlations overcompensate the effects of Pauli blocking on the collision rate for a large range of temperatures, resulting in a rate which is larger than that of a classical gas. Our results agree well with experimental data, and they recover the observed crossover from collisionless to hydrodynamic behavior with increasing coupling for the quadruple mode. Finally, we show that a trap anisotropy within the experimental bounds results in a damping of the breathing mode which is comparable to what is observed, even for a scale-invariant system.
Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime
2016-12-01
We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.
Thermodynamically self-consistent theory for the Blume-Capel model.
Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G
2001-04-01
We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.
NASA Astrophysics Data System (ADS)
Chen, Xu-Min; Wang, Chen; Sun, Ke-Wei
2018-02-01
We investigate nonequilibrium energy transfer in a single-site Bose-Hubbard model coupled to two thermal baths. By including a quantum kinetic equation combined with full counting statistics, we investigate the steady state energy flux and noise power. The influence of the nonlinear Bose-Hubbard interaction on the transfer behaviors is analyzed, and the nonmonotonic features are clearly exhibited. Particularly, in the strong on-site repulsion limit, the results become identical with the nonequilibrium spin-boson model. We also extend the quantum kinetic equation to study the geometric-phase-induced energy pump. An interesting reversal behavior is unraveled by enhancing the Bose-Hubbard repulsion strength.
Single-particle properties of the Hubbard model in a novel three-pole approximation
NASA Astrophysics Data System (ADS)
Di Ciolo, Andrea; Avella, Adolfo
2018-05-01
We study the 2D Hubbard model using the Composite Operator Method within a novel three-pole approximation. Motivated by the long-standing experimental puzzle of the single-particle properties of the underdoped cuprates, we include in the operatorial basis, together with the usual Hubbard operators, a field describing the electronic transitions dressed by the nearest-neighbor spin fluctuations, which play a crucial role in the unconventional behavior of the Fermi surface and of the electronic dispersion. Then, we adopt this approximation to study the single-particle properties in the strong coupling regime and find an unexpected behavior of the van Hove singularity that can be seen as a precursor of a pseudogap regime.
Strongly Coupled Nanotube Electromechanical Resonators.
Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping
2016-09-14
Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Saikat; Bansal, Dipanshu; Delaire, Olivier; Perrodin, Didier; Bourret-Courchesne, Edith; Singh, David J.; Lindsay, Lucas
2017-09-01
Strongly anharmonic phonon properties of CuCl are investigated with inelastic neutron-scattering measurements and first-principles simulations. An unusual quasiparticle spectral peak emerges in the phonon density of states with increasing temperature, in both simulations and measurements, emanating from exceptionally strong coupling between conventional phonon modes. Associated with this strong anharmonicity, the lattice thermal conductivity of CuCl is extremely low and exhibits anomalous, nonmonotonic pressure dependence. We show how this behavior arises from the structure of the phonon dispersions augmenting the phase space available for anharmonic three-phonon scattering processes, and contrast this mechanism with common arguments based on negative Grüneisen parameters. These results demonstrate the importance of considering intrinsic phonon-dispersion structure toward understanding scattering processes and designing new ultralow thermal conductivity materials.
NASA Astrophysics Data System (ADS)
Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm
2013-05-01
Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.
NASA Astrophysics Data System (ADS)
Cobo-Lopez, Sergio; Saeed Bahramy, Mohammad; Arita, Ryotaro; Akbari, Alireza; Eremin, Ilya
2018-04-01
We develop the realistic minimal electronic model for recently discovered BiS2 superconductors including the spin–orbit (SO) coupling based on the first-principles band structure calculations. Due to strong SO coupling, characteristic for the Bi-based systems, the tight-binding low-energy model necessarily includes p x , p y , and p z orbitals. We analyze a potential Cooper-pairing instability from purely repulsive interaction for the moderate electronic correlations using the so-called leading angular harmonics approximation. For small and intermediate doping concentrations we find the dominant instabilities to be {d}{x2-{y}2}-wave, and s ±-wave symmetries, respectively. At the same time, in the absence of the sizable spin fluctuations the intra and interband Coulomb repulsions are of the same strength, which yield the strongly anisotropic behavior of the superconducting gaps on the Fermi surface. This agrees with recent angle resolved photoemission spectroscopy findings. In addition, we find that the Fermi surface topology for BiS2 layered systems at large electron doping can resemble the doped iron-based pnictide superconductors with electron and hole Fermi surfaces maintaining sufficient nesting between them. This could provide further boost to increase T c in these systems.
NASA Astrophysics Data System (ADS)
Hu, Anzi; Freericks, J. K.; Maśka, M. M.; Williams, C. J.
2011-04-01
We discuss the application of a strong-coupling expansion (perturbation theory in the hopping) for studying light-Fermi-heavy-Bose (like K40-Rb87) mixtures in optical lattices. We use the strong-coupling method to evaluate the efficiency for preforming molecules, the entropy per particle, and the thermal fluctuations. We show that within the strong interaction regime (and at high temperature), the strong-coupling expansion is an economical way to study this problem. In some cases, it remains valid even down to low temperatures. Because the computational effort is minimal, the strong-coupling approach allows us to work with much larger system sizes, where boundary effects can be eliminated, which is particularly important at higher temperatures. Since the strong-coupling approach is so efficient and accurate, it allows one to rapidly scan through parameter space in order to optimize the preforming of molecules on a lattice (by choosing the lattice depth and interspecies attraction). Based on the strong-coupling calculations, we test the thermometry scheme based on the fluctuation-dissipation theorem and find the scheme gives accurate temperature estimation even at very low temperature. We believe this approach and the calculation results will be useful in the design of the next generation of experiments and will hopefully lead to the ability to form dipolar matter in the quantum degenerate regime.
Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.
Kim, S C; Yang, S-R Eric
2015-10-01
We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.
NASA Astrophysics Data System (ADS)
Liu, Quan; Yu, FengZhen; Li, ZhiHong; Xiong, Juan; Chen, JianJun; Yi, Ming
2018-07-01
Based on the model describing two coupled synthetic clock cells, the synchronization dynamics under stochastic noise are explored. As extrinsic noise from signal is the predominant form of noise for all gene promoters, we investigate the effects of extrinsic noise original from signal molecule by evaluating the order parameters. It is found that strong noise is beneficial for the synchronization of loose-coupling system, while it destroys the synchronization of tight-coupling system. The underlying mechanisms of these two opposite effects are clarified numerically and theoretically. Our research illustrates that (i) when the coupling strength is small, the noise mainly adjusts the period difference of two cells and the system becomes regular. Theoretical study reveals that the mean effect of noise is like to be influx while signal flow is efflux under such a situation. (ii) With the increment of coupling strength, the cells have the same frequency. It is obvious that the noise mainly changes the phase difference between the two cells and destroys the synchronization of the system. (iii) We also demonstrate that, under certain moderate noise intensities, the noise can induce the synchronization order to be the worst. This nonlinear behavior only can be observed in a very narrow region of coupling strength.
Double perovskites with strong spin-orbit coupling
NASA Astrophysics Data System (ADS)
Cook, Ashley M.
We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally account for the neutron data as well as the measured frustration parameters of these materials, while the uniaxial Ising anisotropy does not. Our findings highlight how even seemingly conventional magnetic orders in oxide materials containing heavy transition metal ions may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling. Motivated by experiments on the double perovskites La2ZnIrO 6 and La2MgIrO6, we lastly study the magnetism of spin-orbit coupled jeff =1/2 iridium moments on the three-dimensional, geometrically frustrated, facecentered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear AII type antiferromagnetism, stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures.
Monte Carlo study of exact {ital S}-matrix duality in nonsimply laced affine Toda theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beccaria, M.
The ({ital g}{sub 2}{sup (1)},{ital d}{sub 4}{sup (3)}) pair of nonsimply laced affine Toda theories is studied from the point of view of nonperturbative duality. The classical spectrum of each member is composed of two massive scalar particles. The exact {ital S}-matrix prediction for the dual behavior of the coupling-dependent mass ratio is found to be in strong agreement with Monte Carlo data. {copyright} {ital 1996 The American Physical Society.}
Traders' behavioral coupling and market phase transition
NASA Astrophysics Data System (ADS)
Ma, Rong; Zhang, Yin; Li, Honggang
2017-11-01
Traditional economic theory is based on the assumption that traders are completely independent and rational; however, trading behavior in the real market is often coupled by various factors. This paper discusses behavioral coupling based on the stock index in the stock market, focusing on the convergence of traders' behavior, its effect on the correlation of stock returns and market volatility. We find that the behavioral consensus in the stock market, the correlation degree of stock returns, and the market volatility all exhibit significant phase transitions with stronger coupling.
Stepp, N.; Turvey, M. T.
2009-01-01
We examine Dubois's (2003) distinction between weak anticipation and strong anticipation. Anticipation is weak if it arises from a model of the system via internal simulations. Anticipation is strong if it arises from the system itself via lawful regularities embedded in the system's ordinary mode of functioning. The assumption of weak anticipation dominates cognitive science and neuroscience and in particular the study of perception and action. The assumption of strong anticipation, however, seems to be required by anticipation's ubiquity. It is, for example, characteristic of homeostatic processes at the level of the organism, organs, and cells. We develop the formal distinction between strong and weak anticipation by elaboration of anticipating synchronization, a phenomenon arising from time delays in appropriately coupled dynamical systems. The elaboration is conducted in respect to (a) strictly physical systems, (b) the defining features of circadian rhythms, often viewed as paradigmatic of biological behavior based in internal models, (c) Pavlovian learning, and (d) forward models in motor control. We identify the common thread of strongly anticipatory systems and argue for its significance in furthering understanding of notions such as “internal”, “model” and “prediction”. PMID:20191086
Acoustic metamaterials with synergetic coupling
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Huang, Meng; Wu, Jiu Hui
2017-12-01
In this paper, we propose a general design concept for acoustic metamaterials that introduces a ubiquitous synergetic behavior into the design procedure, in which the structure of the design is driven by its functional requirements. Since the physical properties of the widely used, resonant-type metamaterials are mainly determined by the eigenmodes of the structure, we first introduce the design concept through the modal displacement distributions on two typical plate-type structures. Next, by employing broadband sound attenuations that involve both the insulation and absorption as the typical targets, two synergetic coupling behaviors are systematically revealed among the dense resonant modes and multi-cell. Furthermore, through plate-type multiple-cell structures assembled from nine oscillators, the design is shown to realize strong broadband attenuations with either the average sound transmission loss (STL) below 2000 Hz higher than 40 dB or the absorption approximately 0.99 in the range of 400-700 Hz wherein the average absorption below 800 Hz remains higher than 0.8. Finally, two multi-cell plate-type samples are fabricated and then used experimentally to measure the STLs in support of the proposed synergetic coupling design method. Both the computational and experimental results demonstrate that the proposed synergetic design concept could effectively initiate a design for metamaterials that offer a new degree of freedom for broadband sound attenuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burckel, David Bruce; Adomanis, Bryan M.; Sinclair, Michael B.
2017-01-08
This paper investigates three-dimensional cut wire pair (CWP) behavior in vertically oriented meta-atoms. We first analyze CWP metamaterial inclusions using full-wave electromagnetic simulations. The scattering behavior of the vertical CWP differs substantially from that of the planar version of the same structure. In particular, we show that the vertical CWP supports a magnetic resonance that is solely excited by the incident magnetic field. This is in stark contrast to the bianisotropic resonant excitation of in-plane CWPs. We further show that this CWP behavior can occur in other vertical metamaterial resonators, such as back-to-back linear dipoles and back-to-back split ring resonatorsmore » (SRRs), due to the strong coupling between the closely spaced metallic elements in the back-to-back configuration. In the case of SRRs, the vertical CWP mode (unexplored in previous literature) can be excited with a magnetic field that is parallel to both SRR loops, and exists in addition to the familiar fundamental resonances of the individual SRRs. In order to fully describe the scattering behavior from such dense arrays of three-dimensional structures, coupling effects between the close-packed inclusions must be included. Here, the new flexibility afforded by using vertical resonators allows us to controllably create purely electric inclusions, purely magnetic inclusions, as well as bianisotropic inclusions, and vastly increases the degrees of freedom for the design of metafilms.« less
Marital conflict in older adults: endocrinological and immunological correlates.
Kiecolt-Glaser, J K; Glaser, R; Cacioppo, J T; MacCallum, R C; Snydersmith, M; Kim, C; Malarkey, W B
1997-01-01
To assess endocrinological and immunological correlates of marital conflict and marital satisfaction, 31 older couples (mean age 67 years) who had been married an average of 42 years were studied. Couples were admitted to the Clinical Research Center and a catheter was placed in each subject's arm. Blood was drawn on entry for immunological assays; for hormone analyses, five blood samples were drawn during a 30-minute conflict discussion and a 15-minute recovery session. The conflict session was recorded on videotapes that were later coded for problem-solving behaviors using the Marital Interaction Coding System (MICS). Among wives, escalation of negative behavior during conflict and marital satisfaction showed strong relationships to endocrine changes, accounting for 16% to 21% of the variance in the rates of change of cortisol, adrenocorticotropic hormone (ACTH), and norepinephrine (but not epinephrine). In contrast, husbands' endocrine data did not show significant relationships with negative behavior or marital quality. Both men and women who showed relatively poorer immunological responses across three functional assays (the blastogenic response to two T-cell mitogens and antibody titers to latent Epstein-Barr virus) displayed more negative behavior during conflict; they also characterized their usual marital disagreements as more negative than individuals who showed better immune responses across assays. Abrasive marital interactions may have physiological consequences even among older adults in long-term marriages.
Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime
NASA Astrophysics Data System (ADS)
Moores, Bradley A.; Sletten, Lucas R.; Viennot, Jeremie J.; Lehnert, K. W.
2018-06-01
We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 μ m long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.
Bilayer synergetic coupling double negative acoustic metasurface and cloak.
Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui
2018-04-12
In this paper, we propose a bilayer plate-type lightweight double negative metasurface based on a new synergetic coupling design concept, by which the perfect absorption, double negative bands, free manipulation of phase shifts with a 2π span and acoustic cloak can be successively realized. Firstly, the synergetic behavior between resonant and anti-resonant plates is presented to construct a bilayer unit in which each component respectively provides a pre-defined function in realizing the perfect absorption. Based on this bilayer structure, a double negative band with simultaneously negative effective mass density and bulk modulus is obtained, which, as a metasurface, can obtain continuous phase shifts almost completely covering a 2π range, thus facilitating the design of a three-dimensional (3D) acoustic cloak. In addition, based on this strong sound absorption concept, a two-dimensional (2D) omnidirectional broadband acoustical dark skin, covering between 800 to 6000 Hz, is also demonstrated through the proposed bilayer plate-type structure form. The proposed design concepts and metasurfaces have widespread potential application values in strong sound attenuation, filtering, superlens, imaging, cloak, and extraordinary wave steering, in which the attributes of strong absorption, double negative parameters or continuous phase shifts with full 2π span are required to realize the expected extraordinary physical features.
Unusual subauroral neutral wind disturbances during geomagnetic storms
NASA Astrophysics Data System (ADS)
Zhang, S.; Erickson, P. J.; Holt, J. M.
2016-12-01
Under the influence of geomagnetic storms, general circulation of the global thermosphere undergoes substantial changes that vary with latitudes. High latitude heating processes establish pressure gradients both vertically and horizontally. The equatorward wind surge and the associated westward wind enhancement are a typical disturbance wind characteristic that affacts ionosphere and thermosphere dynamics at mid-, low, and equatorial latitudes. At subauroral latitudes, however, new observations of neutral wind disturbances show some "abnormal" (unusual) behaviors in responding to complicated ion-neutral coupling processes. During the 2015 St. Patrick's Day great geomagnetic storm, incoherent scatter radar measurements at Millstone Hill show the following salient variations: (1) oscillating meridional wind disturbances with the Traveling Atmosphere Disturbance (TAD) feature; (2) vertical wind signature; (3) pre-mindnight poleward wind surges. The latter two variations appear to be associated with strong ion-neutral interaction developed during the subauroral polarization streams (SAPS) presence. Strong frictional heating caused by the relative velocity between the ions with SAPS speed and the neutrals leads to appreciable thermospheric upperwelling. Strong westward ion drifts shown as SAPS also enhance the wseward neutral flow, which subsequently causes a poleward component of the meridional wind due to the Coriolis force. This paper will present these observations of the wind and discuss ion-neutral coupling effects associated with SAPS.
Sevier, Mia; Atkins, David C; Doss, Brian D; Christensen, Andrew
2015-01-01
Observed positive and negative spouse behavior during sessions of Traditional (TBCT) and Integrative Behavioral Couples Therapy (IBCT) were compared for couples with successful outcomes and their unsuccessful counterparts. One hundred and thirty-four married chronically and seriously distressed couples (on average in their forties and 80% Caucasian) were randomly assigned to TBCT or IBCT. Trained observers made ratings of 1224 segments from approximately 956 sessions sampled from the course of up to 26 sessions. Multilevel modeling was used to examine change over time. TBCT treatment responders demonstrated a boost-drop pattern, increasing in constructive behaviors early (more positive behaviors and less negative behaviors) but decreasing later. IBCT responders demonstrated an opposite, drop-boost pattern, decreasing in constructive behaviors early and increasing later. Patterns were significant for positive behaviors (p < .05) and approached significance for negative behaviors (p = .05). In both treatments, nonresponders showed a significant pattern of decline in positive and increase in negative behaviors over time, although a trend (p = .05) indicates that TBCT nonresponders initially declined in negative behaviors. This study helps clarify the different process of change in two behavioral couple therapies, which may assist in treatment development and provide a guide for therapists in considering behavioral markers of change during treatment. © 2013 American Association for Marriage and Family Therapy.
Temporality of couple conflict and relationship perceptions.
Johnson, Matthew D; Horne, Rebecca M; Hardy, Nathan R; Anderson, Jared R
2018-05-03
Using 5 waves of longitudinal survey data gathered from 3,405 couples, the present study investigates the temporal associations between self-reported couple conflict (frequency and each partner's constructive and withdrawing behaviors) and relationship perceptions (satisfaction and perceived instability). Autoregressive cross-lagged model results revealed couple conflict consistently predicted future relationship perceptions: More frequent conflict and withdrawing behaviors and fewer constructive behaviors foretold reduced satisfaction and conflict frequency and withdrawal heightened perceived instability. Relationship perceptions also shaped future conflict, but in surprising ways: Perceptions of instability were linked with less frequent conflict, and male partner instability predicted fewer withdrawing behaviors for female partners. Higher satisfaction from male partners also predicted more frequent and less constructive conflict behavior in the future. These findings illustrate complex bidirectional linkages between relationship perceptions and couple conflict behaviors in the development of couple relations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Ferroelectric self-assembled molecular materials showing both rectifying and switchable conductivity
Gorbunov, Andrey V.; Garcia Iglesias, Miguel; Guilleme, Julia; Cornelissen, Tim D.; Roelofs, W. S. Christian; Torres, Tomas; González-Rodríguez, David; Meijer, E. W.; Kemerink, Martijn
2017-01-01
Advanced molecular materials that combine two or more physical properties are typically constructed by combining different molecules, each being responsible for one of the properties required. Ideally, single molecules could take care of this combined functionality, provided they are self-assembled correctly and endowed with different functional subunits whose strong electronic coupling may lead to the emergence of unprecedented and exciting properties. We present a class of disc-like semiconducting organic molecules that are functionalized with strong dipolar side groups. Supramolecular organization of these materials provides long-range polar order that supports collective ferroelectric behavior of the side groups as well as charge transport through the stacked semiconducting cores. The ferroelectric polarization in these supramolecular polymers is found to couple to the charge transport and leads to a bulk conductivity that is both switchable and rectifying. An intuitive model is developed and found to quantitatively reproduce the experimental observations. In a larger perspective, these results highlight the possibility of modulating material properties using the large electric fields associated with ferroelectric polarization. PMID:28975150
Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram
2014-12-01
Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.
Ellenor, Christopher W; Stang, Pascal P; Etezadi-Amoli, Maryam; Pauly, John M; Scott, Greig C
2015-01-01
Purpose The concept of a “radiofrequency safety prescreen” is investigated, wherein dangerous interactions between radiofrequency fields used in MRI, and conductive implants in patients are detected through impedance changes in the radiofrequency coil. Theory The behavior of coupled oscillators is reviewed, and the resulting, observable impedance changes are discussed. Methods A birdcage coil is loaded with a static head phantom and a wire phantom with a wire close to its resonant length, the shape, position, and orientation of which can be changed. Interactions are probed with a current sensor and network analyzer. Results Impedance spectra show dramatic, unmistakable splitting in cases of strong coupling, and strong correlation is observed between induced current and scattering parameters. Conclusions The feasibility of a new, low-power prescreening technique has been demonstrated in a simple phantom experiment, which can unambiguously detect resonant interactions between an implanted wire and an imaging coil. A new technique has also been presented which can detect parallel transmit null modes for the wire. Magn Reson Med 73:1328–1339, 2015. © 2014 Wiley Periodicals, Inc. PMID:24623586
NASA Astrophysics Data System (ADS)
Castillo, Andrés; Delgado, Rafael L.; Dobado, Antonio; Llanes-Estrada, Felipe J.
2017-07-01
By considering a non-linear electroweak chiral Lagrangian, including the Higgs, coupled to heavy quarks, and the equivalence theorem, we compute the one-loop scattering amplitudes W^+W^-→ t\\bar{t}, ZZ→ t\\bar{t} and hh→ t\\bar{t} (in the regime M_t^2/v^2≪ √{s}M_t/v^2≪ s/v^2 and to NLO in the effective theory). We calculate the scalar partial-wave helicity amplitudes which allow us to check unitarity at the perturbative level in both M_t/v and s/ v. As with growing energy perturbative unitarity deteriorates, we also introduce a new unitarization method with the right analytical behavior on the complex s-plane and that can support poles on the second Riemann sheet to describe resonances in terms of the Lagrangian couplings. Thus we have achieved a consistent phenomenological description of any resonant t\\bar{t} production that may be enhanced by a possible strongly interacting electroweak symmetry breaking sector.
Strongly coupled stress waves in heterogeneous plates.
NASA Technical Reports Server (NTRS)
Wang, A. S. D.; Chou, P. C.; Rose, J. L.
1972-01-01
Consideration of coupled stress waves generated by an impulsive load applied at one end of a semiinfinite plate. For the field equations governing the one-dimensional coupled waves a hyperbolic system of equations is obtained in which a strong coupling in the second derivatives exists. The method of characteristics described by Chou and Mortimer (1967) is extended to cover the case of strong coupling, and a study is made of the transient stress waves in a semiinfinite plate subjected to an initial step input. Coupled discontinuity fronts are found to propagate at different velocities. The normal plate stress and the bending moment at different time regimes are illustrated by graphs.
Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.
Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J
2015-10-14
Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.
Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, L.; Im, J.; DeGottardi, W.
Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less
Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2
Fang, L.; Im, J.; DeGottardi, W.; ...
2016-10-12
Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less
NASA Astrophysics Data System (ADS)
Keller, Janine; Scalari, Giacomo; Maissen, Curdin; Paravicini-Bagliani, Gian Lorenzo; Haase, Johannes; Failla, Michele; Myronov, Maksym; Leadley, David R.; Lloyd-Hughes, James; Faist, Jérôme
2017-02-01
We study the ultra-strong coupling (USC) of Landau level transitions in strained Germanium quantum wells (sGe QW) to THz metasurfaces. The spin-splitting of the heavy-hole cyclotron resonance in sGe QWs due to the Rashba spin-orbit interaction in magnetic field offers an excellent platform to investigate ultra-strong coupling to a non-parabolic system. THz split ring resonators can be tuned to coincide with the single cyclotron transition (around 0.4 THz and a magnetic field of 1.5 T) or the spin-resolved transitions of the sGe QWs (at 1.3 THz and 4.5 T). Coupling to the single cyclotron yields a normalized USC rate of 25%, resulting from fitting with a Hopfield-like Hamiltonian model. Coupling to two or three cyclotron resonances in sGe QWs lead to the observation of multiple polaritons branches, one polariton branch for each oscillator involved in the system. An adaption of the theory allows to also describe this multiple-oscillator system and to determine the coupling strengths. The different Rabi-splittings for the multiple cyclotrons coupling to the same resonator mode relate to the underlying differences in the material. Furthermore, the visibility of an additional transition, possibly a light hole transition with very low carrier density, is strongly enhanced due to the coupling to the LC-resonance with a normalized strong coupling ratio of 4.7%. Future perspectives include controlling spin-flip transitions in USC and studying the impact of non-parabolicity on the ultra-strong coupling physics.
Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.
Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi
2014-06-11
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.
Self-consistency tests of large-scale dynamics parameterizations for single-column modeling
Edman, Jacob P.; Romps, David M.
2015-03-18
Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less
Significance of beating observed in earthquake responses of buildings
Çelebi, Mehmet; Ghahari, S. F.; Taciroglu, E.
2016-01-01
The beating phenomenon observed in the recorded responses of a tall building in Japan and another in the U.S. are examined in this paper. Beating is a periodic vibrational behavior caused by distinctive coupling between translational and torsional modes that typically have close frequencies. Beating is prominent in the prolonged resonant responses of lightly damped structures. Resonances caused by site effects also contribute to accentuating the beating effect. Spectral analyses and system identification techniques are used herein to quantify the periods and amplitudes of the beating effects from the strong motion recordings of the two buildings. Quantification of beating effects is a first step towards determining remedial actions to improve resilient building performance to strong earthquake induced shaking.
Electron scale magnetic reconnection in the turbulent magnetosheath: Kinetic PIC simulation study
NASA Astrophysics Data System (ADS)
Sharma, P.; Shay, M. A.; Drake, J. F.; Phan, T.; Haggerty, C. C.; TenBarge, J. M.; Cassak, P.; Swisdak, M.
2017-12-01
Recent MMS observations have revealed electron scale reconnection in the turbulent magnetosheath. Surprisingly, although one of the reconnection events is associated with a very strong guide field, the ions show no coupling to the reconnection dynamics. We first review the MMS observations. Then, using kinetic PIC simulations with similar plasma conditions, we study reconnection at electron scales and show that the reconnection exhibits whistler-like dynamics similar to the case of anti-parallel reconnection rather than the kinetic Alfven wave dynamics that is often associated with reconnection with a strong guide field. We study the factors controlling this behavior and discuss the implications for reconnection and turbulence at electron scales in both the magnetosheath and solar wind.
Ghoshal, Gourab; Muñuzuri, Alberto P; Pérez-Mercader, Juan
2016-01-12
Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.
Resonances in coupled πK, ηK scattering from lattice QCD
Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; ...
2015-03-10
Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may bemore » related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.« less
NASA Astrophysics Data System (ADS)
Ghoshal, Gourab; Muñuzuri, Alberto P.; Pérez-Mercader, Juan
2016-01-01
Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.
Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition
NASA Astrophysics Data System (ADS)
Sergelius, Philip; Lee, Ji Hyun; Fruchart, Olivier; Shaker Salem, Mohamed; Allende, Sebastian; Alejandro Escobar, Roberto; Gooth, Johannes; Zierold, Robert; Toussaint, Jean-Christophe; Schneider, Sebastian; Pohl, Darius; Rellinghaus, Bernd; Martin, Sylvain; Garcia, Javier; Reith, Heiko; Spende, Anne; Toimil-Molares, Maria-Eugenia; Altbir, Dora; Cowburn, Russel; Görlitz, Detlef; Nielsch, Kornelius
2017-02-01
Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm-5 μm) and diameter (25-45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.
Measuring System Value in the Ares 1 Rocket Using an Uncertainty-Based Coupling Analysis Approach
NASA Astrophysics Data System (ADS)
Wenger, Christopher
Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process to ensure no unanticipated behaviors or unintended consequences arise in the system during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can affect the health and safety of any crew onboard. Within the Ares 1 rocket, larger than anticipated vibrations were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. Upon investigation engineers found the root cause to be the structure of the rockets feedback onto fluid flow within the engine. The goal of this paper is to showcase a coupling strength analysis from the field of Multidisciplinary Design Optimization to identify the major impacts that caused the Thrust Oscillation event in the Ares 1. Once identified an uncertainty analysis of the coupled system using an uncertainty based optimization technique is used to identify the likelihood of occurrence for these strong or weak interactions to take place.
Low energy determination of the QCD strong coupling constant on the lattice
Maezawa, Yu; Petreczky, Peter
2016-09-28
Here we present a determination of the strong coupling constant from lattice QCD using the moments of pseudo-scalar charmonium correlators calculated using highly improved staggerered quark action. We obtain a value α s( μ = mc) = 0.3397(56), which is the lowest energy determination of the strong coupling constant so far.
2014-01-01
This paper reports baseline behavioral and biological data collected from a cohort of 535 African American HIV serodiscordant couples enrolled in the Eban study across four urban metro areas. Data were collected on (1) the prevalence of risky sexual behaviors that occur within a couple and with concurrent sexual partners, (2) the STD prevalence for each member of the couple and (3) the correlates of STDs in the male partner as well as in the female partner. Presentation of the sociodemographic characterization and HIV risk behavior profiles of African American HIV serodiscordant couples represents an important initial description of a hidden, vulnerable population. Future research should be conducted with diverse samples of African American couples (i.e., younger couples, non-stable couples) to explore other potential correlates of STD prevalence. PMID:20499152
Reward and vocal production: song-associated place preference in songbirds.
Riters, Lauren V; Stevenson, Sharon A
2012-05-15
Vocal production is crucial for successful social interactions in multiple species. Reward can strongly influence behavior; however, the extent to which reward systems influence vocal behavior is unknown. In songbirds, singing occurs in different contexts. It can be spontaneous and undirected (e.g., song produced alone or as part of a large flock) or directed towards a conspecific (e.g., song used to attract a mate or influence a competitor). In this study, we developed a conditioned place preference paradigm to measure reward associated with different types of singing behavior in two songbird species. Both male zebra finches and European starlings developed a preference for a chamber associated with production of undirected song, suggesting that the production of undirected song is tightly coupled to intrinsic reward. In contrast, neither starlings nor zebra finches developed a place preference in association with directed song; however, male starlings singing directed song that failed to attract a female developed a place aversion. Unsuccessful contact calling behavior was also associated with a place aversion. These findings suggest that directed vocal behavior is not tightly linked to intrinsic reward but may be externally reinforced by social interactions. Data across two species thus support the hypothesis that the production of undirected but not directed song is tightly coupled to intrinsic reward. This study is the first to identify song-associated reward and suggests that reward associated with vocal production differs depending upon the context in which communication occurs. The findings have implications for understanding what motivates animals to engage in social behaviors and ways in which distinct reward mechanisms function to direct socially appropriate behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.
Graph partitions and cluster synchronization in networks of oscillators
Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio
2017-01-01
Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454
Improved Swimming Performance in Hydrodynamically- coupled Airfoils
NASA Astrophysics Data System (ADS)
Heydari, Sina; Shelley, Michael J.; Kanso, Eva
2017-11-01
Collective motion is a widespread phenomenon in the animal kingdom from fish schools to bird flocks. Half of the known fish species are thought to exhibit schooling behavior during some phase of their life cycle. Schooling likely occurs to serve multiple purposes, including foraging for resources and protection from predators. Growing experimental and theoretical evidence supports the hypothesis that fish can benefit from the hydrodynamic interactions with their neighbors, but it is unclear whether this requires particular configurations or regulations. Here, we propose a physics-based approach that account for hydrodynamic interactions among swimmers based on the vortex sheet model. The benefit of this model is that it is scalable to a large number of swimmers. We start by examining the case of two swimmers, heaving plates, moving in parallel and in tandem. We find that for the same heaving amplitude and frequency, the coupled-swimmers move faster and more efficiently. This increase in velocity depends strongly on the configuration and separation distance between the swimmers. Our results are consistent with recent experimental findings on heaving airfoils and underline the role of fluid dynamic interactions in the collective behavior of swimmers.
Crossover behavior of the thermal conductance and Kramers’ transition rate theory
Velizhanin, Kirill A.; Sahu, Subin; Chien, Chih -Chun; ...
2015-12-04
Kramers’ theory frames chemical reaction rates in solution as reactants overcoming a barrier in the presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the rate at which the solution can restore equilibrium after a subset of reactants have surmounted the barrier to become products. For strong coupling, there are always sufficiently energetic reactants. However, the solution returns many of the intermediate states back to the reactants before the product fully forms. Here, we demonstrate that the thermal conductance displays an analogous physical response to the friction and noise that drive themore » heat current through a material or structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. Finally, not only does this shed new light on Kramers’ classic turnover problem, this result is significant for the design of devices for thermal management and other applications, as well as the proper simulation of transport at the nanoscale.« less
Ahmadivand, Arash; Karabiyik, Mustafa; Pala, Nezih
2015-05-01
In this study, we investigated numerically the plasmon response of a dimer configuration composed of a couple of split and concentric Au nanoshells in a complex orientation. We showed that an isolated composition of two concentric split nanoshells could be tailored to support strong plasmon resonant modes in the visible wavelengths. After determining the accurate geometric dimensions for the presented antisymmetric nanostructure, we designed a dimer array that shows complex behavior during exposure to different incident polarizations. We verified that the examined dimer was able to support destructive interference between dark and bright plasmon modes, which resulted in a pronounced Fano-like dip. Observation of a Fano minimum in such a simple molecular orientation of subwavelength particles opens new avenues for employing this structure in designing various practical plasmonic devices. Depositing the final dimer in a strong coupling condition on a semiconductor metasurface and measuring the effective refractive index at certain wavelengths, we demonstrate that each one of dimer units can be considered a meta-atom due to the high aspect ratio in the geometric parameters. Using this method, by extending the number of dimers periodically and illuminating the structure, we examined the isotropic, polarization-dependent, and transmission behavior of the metamaterial configuration. Using numerical methods and calculating the effective refractive indices, we computed and sketched corresponding figure of merit over the transmission window, where the maximum value obtained was 42.3 for Si and 54.6 for gallium phosphide (GaP) substrates.
NASA Astrophysics Data System (ADS)
Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi
2016-07-01
Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.
Optically induced strong intermodal coupling in mechanical resonators at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, R.; Okamoto, H.; Yamaguchi, H.
Strong parametric mode coupling in mechanical resonators is demonstrated at room temperature by using the photothermal effect in thin membrane structures. Thanks to the large stress modulation by laser irradiation, the coupling rate of the mechanical modes, defined as half of the mode splitting, reaches 2.94 kHz, which is an order of magnitude larger than electrically induced mode coupling. This large coupling rate exceeds the damping rates of the mechanical resonators and results in the strong coupling regime, which is a signature of coherent mode interaction. Room-temperature coherent mode coupling will enable us to manipulate mechanical motion at practical operation temperaturesmore » and provides a wide variety of applications of integrated mechanical systems.« less
Probing the superconducting gap symmetry of α - PdBi 2 : A penetration depth study
Mitra, S.; Okawa, K.; Kunniniyil Sudheesh, S.; ...
2017-04-27
Inmore » this paper, we report measurements of the in-plane London penetration depth λ in single crystals of the α - PdBi 2 superconductor—the α-phase counterpart of the putative topological superconductor β - PdBi 2 , down to 0.35 K using a high-resolution tunnel-diode-based technique. Both λ and superfluid density ρ s exhibit an exponential behavior for T ≤ 0.35T c, with Δ(0) /k BT c ~ 2.0, ΔC/γT c ~ 2.0, and λ(0) ~ 140 nm, showing that α - PdBi 2 is a moderately coupling, fully gapped superconductor. Finally, the values of Δ(0) and ΔC/γT c are consistent with each other via strong-coupling corrections.« less
Probing the superconducting gap symmetry of α - PdBi 2 : A penetration depth study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, S.; Okawa, K.; Kunniniyil Sudheesh, S.
Inmore » this paper, we report measurements of the in-plane London penetration depth λ in single crystals of the α - PdBi 2 superconductor—the α-phase counterpart of the putative topological superconductor β - PdBi 2 , down to 0.35 K using a high-resolution tunnel-diode-based technique. Both λ and superfluid density ρ s exhibit an exponential behavior for T ≤ 0.35T c, with Δ(0) /k BT c ~ 2.0, ΔC/γT c ~ 2.0, and λ(0) ~ 140 nm, showing that α - PdBi 2 is a moderately coupling, fully gapped superconductor. Finally, the values of Δ(0) and ΔC/γT c are consistent with each other via strong-coupling corrections.« less
Forced magnetohydrodynamic turbulence in a uniform external magnetic field
NASA Technical Reports Server (NTRS)
Hossain, M.; Vahala, G.; Montgomery, D.
1985-01-01
Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx, ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.
An efficient approach to suppress the negative role of contrarian oscillators in synchronization
NASA Astrophysics Data System (ADS)
Zhang, Xiyun; Ruan, Zhongyuan; Liu, Zonghua
2013-09-01
It has been found that contrarian oscillators usually take a negative role in the collective behaviors formed by conformist oscillators. However, experiments revealed that it is also possible to achieve a strong coherence even when there are contrarians in the system such as neuron networks with both excitable and inhibitory neurons. To understand the underlying mechanism of this abnormal phenomenon, we here consider a complex network of coupled Kuramoto oscillators with mixed positive and negative couplings and present an efficient approach, i.e., tit-for-tat strategy, to suppress the negative role of contrarian oscillators in synchronization and thus increase the order parameter of synchronization. Two classes of contrarian oscillators are numerically studied and a brief theoretical analysis is provided to explain the numerical results.
Forced MHD turbulence in a uniform external magnetic field
NASA Technical Reports Server (NTRS)
Hossain, M.; Vahala, G.; Montgomery, D.
1985-01-01
Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx' ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.
Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.
Moores, Bradley A; Sletten, Lucas R; Viennot, Jeremie J; Lehnert, K W
2018-06-01
We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 μm long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.
Mixed Emotions: An Incentive Motivational Model of Sexual Deviance.
Smid, Wineke J; Wever, Edwin C
2018-05-01
Sexual offending behavior is a complex and multifaceted phenomenon. Most existing etiological models describe sexual offending behavior as a variant of offending behavior and mostly include factors referring to disinhibition and sexual deviance. In this article, we argue that there is additional value in describing sexual offending behavior as sexual behavior in terms of an incentive model of sexual motivation. The model describes sexual arousal as an emotion, triggered by a competent stimulus signaling potential reward, and comparable to other emotions coupled with strong bodily reactions. Consequently, we describe sexual offending behavior in terms of this new model with emphasis on the development of deviant sexual interests and preferences. Summarized, the model states that because sexual arousal itself is an emotion, there is a bidirectional relationship between sexual self-regulation and emotional self-regulation. Not only can sex be used to regulate emotional states (i.e., sexual coping), emotions can also be used, consciously or automatically, to regulate sexual arousal (i.e., sexual deviance). Preliminary support for the model is drawn from studies in the field of sex offender research as well as sexology and motivation research.
Emotion-induced loss aversion and striatal-amygdala coupling in low-anxious individuals.
Charpentier, Caroline J; De Martino, Benedetto; Sim, Alena L; Sharot, Tali; Roiser, Jonathan P
2016-04-01
Adapting behavior to changes in the environment is a crucial ability for survival but such adaptation varies widely across individuals. Here, we asked how humans alter their economic decision-making in response to emotional cues, and whether this is related to trait anxiety. Developing an emotional decision-making task for functional magnetic resonance imaging, in which gambling decisions were preceded by emotional and non-emotional primes, we assessed emotional influences on loss aversion, the tendency to overweigh potential monetary losses relative to gains. Our behavioral results revealed that only low-anxious individuals exhibited increased loss aversion under emotional conditions. This emotional modulation of decision-making was accompanied by a corresponding emotion-elicited increase in amygdala-striatal functional connectivity, which correlated with the behavioral effect across participants. Consistent with prior reports of 'neural loss aversion', both amygdala and ventral striatum tracked losses more strongly than gains, and amygdala loss aversion signals were exaggerated by emotion, suggesting a potential role for this structure in integrating value and emotion cues. Increased loss aversion and striatal-amygdala coupling induced by emotional cues may reflect the engagement of adaptive harm-avoidance mechanisms in low-anxious individuals, possibly promoting resilience to psychopathology. © The Author (2015). Published by Oxford University Press.
Abbasi, Mohammad
2018-04-01
The nonlinear vibration behavior of a Tapping mode atomic force microscopy (TM-AFM) microcantilever under acoustic excitation force has been modeled and investigated. In dynamic AFM, the tip-surface interactions are strongly nonlinear, rapidly changing and hysteretic. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained using the modified couple stress theory. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping ratio are derived utilizing perturbation method. The effect of tip connection position on the vibration behavior of the microcantilever are also analyzed. The results show that nonlinear frequency is size dependent. According to the results, an increase in the equilibrium separation between the tip and the sample surface reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping ratio is negligible. The results also indicate that both the change in the distance between tip and cantilever free end and the reduction of tip radius have significant effects on the accuracy and sensitivity of the TM-AFM in the measurement of surface forces. The hysteretic behavior has been observed in the near resonance frequency response due to softening and hardening of the forced vibration response. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characteristics and allowed behaviors of gay male couples' sexual agreements.
Mitchell, Jason W
2014-01-01
Research has shown that gay male couples' sexual agreements may affect their risk for HIV. Few U.S. studies have collected dyadic data nationally from gay male couples to assess what sexual behaviors they allow to occur by agreement type and the sequence of when certain behaviors occur within their relationships. In our cross-sectional study, dyadic data from a convenience sample of 361 male couples were collected electronically throughout the United States by using paid Facebook ads. Findings revealed that couples discussed their HIV status before having unprotected anal intercourse (UAI) but established their agreement some time after having UAI. About half of the couples (N = 207) concurred about having an agreement. Among these couples, 58% concurred about explicitly discussing their agreement, 84% concurred about having the same type of agreement, and 54% had both men adhering to it. A variety of sexual behaviors were endorsed and varied by agreement type. Concordance about aspects of couples' agreements varied, suggesting the need to engage couples to be more explicit and detailed when establishing and communicating about their agreements. The allowed behaviors and primary reasons for establishing and breaking sexual agreements further highlight the need to bolster HIV prevention for gay male couples.
Canu, Will H; Tabor, Lindsey S; Michael, Kurt D; Bazzini, Doris G; Elmore, Alexis L
2014-10-01
Attention-deficit/hyperactivity disorder (ADHD) has previously been associated with less satisfaction and success in romantic relationships. This study compares conflict resolution and problem-solving behaviors in young adult romantic couples either having one partner with ADHD combined type (C-couples), having one partner identified with ADHD inattentive type (IA-couples), or in which neither partner has an ADHD diagnosis (nondiagnosed [ND] couples). Self-reports of current and childhood ADHD symptoms corroborated diagnostic status and speaker and listener behaviors, coded via the Rapid Couples Interaction Scoring System (Gottman, 1996), were the primary dependent variables. Analyses revealed greater negativity and less positivity in C-couples' behavior during a conflict resolution task, relative to IA and ND couples, and this corresponded with couples' relational satisfaction. IA-couples emitted relational behavior that was largely similar to ND couples. Findings support that relational impairment exists in C-couples, and to some degree, contrast with previous research suggesting that individuals with predominant inattention experience greater social impairment in adulthood than those with other types of ADHD. © 2013 American Association for Marriage and Family Therapy.
Stanley, Scott M.; Allen, Elizabeth S.; Markman, Howard J.; Rhoades, Galena K.; Prentice, Donnella L.
2010-01-01
Findings from a large, randomized controlled trial of couple education are presented in this brief report. Married Army couples were assigned to either PREP for Strong Bonds (n = 248) delivered by Army chaplains or to a no-treatment control group (n = 228). One year after the intervention, couples who received PREP for Strong Bonds had 1/3 the rate of divorce of the control group. Specifically, 6.20% of the control group divorced while 2.03% of the intervention group divorced. These findings suggest that couple education can reduce the risk of divorce, at least in the short run with military couples. PMID:20634994
Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy.
Hsieh, Cho-Shuen; Okuno, Masanari; Hunger, Johannes; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa
2014-07-28
Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface--whereas in bulk water the coupling is homogeneous. For strongly hydrogen-bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near-surface region. For weakly hydrogen-bonded OH groups that absorb around 3500 cm(-1), which are assigned to the outermost, yet hydrogen-bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen-bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.
Atlas is a high current ({approximately} 30 MA peak, with a current risetime {approximately} 4.5 {micro}sec), high energy (E{sub stored} = 24 MJ, E{sub load} = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression ({rho}/{rho}{sub 0} > 5, P > 10 Mbar), high magnetic fields ({approximately} 2,000 T), high strain and strain rates ({var_epsilon} > 200%, d{var_epsilon}/dt {approximately} 10{sup 4} to 10{sup 6} s{sup {minus}1}), hydrodynamicmore » instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold ({approximately} 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of {approximately} 1.1 times solid, achieve ion and electron temperatures of {approximately} 10 eV, and pressures of {approximately} 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are being planned on an existing pulsed power facility at LANL and will be completed before the start of operation of Atlas.« less
On-chip RF-to-optical transducer (Conference Presentation)
NASA Astrophysics Data System (ADS)
Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S.
2016-04-01
Recent advances in the fabrication of nano- and micromechanical elements enable the realization of high-quality mechanical resonators with masses so small that the forces from optical photons can have a significant impact on their motion. This facilitates a strong interaction between mechanical motion and light, or phonons and photons. This interaction is the corner stone of the field of optomechanics and allows, for example, for ultrasensitive detection and manipulation of mechanical motion using laser light. Remarkably, today these techniques can be extended into the quantum regime, in which fundamental fluctuations of light and mechanics govern the system's behavior. Micromechanical elements can also interact strongly with other physical systems, which is the central aspect of many micro-electro-mechanical based sensors. Micromechanical elements can therefore act as a bridge between these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical interferometer. The coupling was mediated by a mechanical oscillator forming a mechanically compliant capacitor biased with a DC voltage. The latter enhances the electromechanical interaction all the way to the strong coupling regime. That scheme allowed optical detection of electronic signals with effective noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication techniques. We will furthermore present ongoing work to couple our transducer to an RF or microwave antenna, for low-noise detection of electromagnetic signals, including sensitive measurements of magnetic fields in an MRI detector. Suppression of thermomechanical noise is a key feature of electro-optomechanical transducers, and, more generally, hybrid systems involving mechanical degrees of freedom. We have shown that engineering of the phononic density of states allows improved isolation of the relevant mechanical modes from their thermal bath [2], enabling coherence times sufficient to realize quantum-coherent optomechanical coupling. This proves the potential of the employed platform for complex transducers all the way into the quantum regime. References: [1] Bagci et al, Nature 507, 81-85, (06 March 2014) [2] Tsaturyan, et al., Optics Express, Vol. 22, Issue 6, pp. 6810-6821 (2014)
Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.
Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M; Kos, Dean; Carnegie, Cloudy; Deacon, Will; de Pury, Alex Casalis; Große, Christoph; de Nijs, Bart; Mertens, Jan; Tartakovskii, Alexander I; Baumberg, Jeremy J
2017-11-03
Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 10 4 , while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.
Engelken, Rainer; Farkhooi, Farzad; Hansel, David; van Vreeswijk, Carl; Wolf, Fred
2016-01-01
Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF) neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.
State and Parameter Estimation for a Coupled Ocean--Atmosphere Model
NASA Astrophysics Data System (ADS)
Ghil, M.; Kondrashov, D.; Sun, C.
2006-12-01
The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.
NASA Astrophysics Data System (ADS)
Yang, Dongzheng; Huang, Jing; Zuo, Junxiang; Hu, Xixi; Xie, Daiqian
2018-05-01
A full-dimensional ab initio potential energy surface for the H2-HF van der Waals complex was constructed by employing the coupled-cluster singles and doubles with noniterative inclusion of connected triples with augmented correlation-consistent polarised valence quadruple-zeta basis set plus bond functions. Using the improved coupled-states approximation including the nearest neighbor Coriolis couplings, we calculated the state-to-state scattering dynamics for pure rotational and ro-vibrational energy transfer processes. For pure rotational energy transfer, our results showed a different dynamical behavior for para-H2 and ortho-H2 in collision with hydrogen fluoride (HF), which is consistent with the previous study. Interestingly, some strong resonant peaks were presented in the cross sections for ro-vibrational energy transfer. In addition, the calculated vibrational-resolved rate constant is in agreement with the experimental results reported by Bott et al. These dynamics data can be further applied to the numerical simulation of HF chemical lasers.
Quantum Quench of the Sachdev-Ye-Kitaev Model
NASA Astrophysics Data System (ADS)
Steinberg, Julia; Eberlein, Andreas; Sachdev, Subir
The Sachdev-Ye-Kitaev model is a single site model containing N flavors of fermions with random infinite range interactions. It is exactly solvable in the large N limit and has an emergent reparameterization symmetry in time at low temperatures and strong coupling. This leads to many interesting properties such as locally critical behavior in correlation functions and the saturation of the chaos bound proposed .We start with the generalized Sachdev-Ye-Kitaev with quadratic and quartic interactions. This Hamiltonian has the form of a 0+1d Fermi liquid and contains long-lived quasiparticles at all values of the quadratic coupling. We quench the system into a locally critical state without quasiparticles by turning off the quadratic coupling at some initial time. We numerically study the spectral function at intermediate and long times and determine the timescale in which the system loses memory of the quasiparticles. J.S. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE1144152.
The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire
NASA Astrophysics Data System (ADS)
Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat
2015-08-01
A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.
Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof
2016-10-04
We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gallistel, C.R; King, Adam Philip; Gottlieb, Daniel; Balci, Fuat; Papachristos, Efstathios B; Szalecki, Matthew; Carbone, Kimberly S
2007-01-01
Experimentally naive mice matched the proportions of their temporal investments (visit durations) in two feeding hoppers to the proportions of the food income (pellets per unit session time) derived from them in three experiments that varied the coupling between the behavioral investment and food income, from no coupling to strict coupling. Matching was observed from the outset; it did not improve with training. When the numbers of pellets received were proportional to time invested, investment was unstable, swinging abruptly from sustained, almost complete investment in one hopper, to sustained, almost complete investment in the other—in the absence of appropriate local fluctuations in returns (pellets obtained per time invested). The abruptness of the swings strongly constrains possible models. We suggest that matching reflects an innate (unconditioned) program that matches the ratio of expected visit durations to the ratio between the current estimates of expected incomes. A model that processes the income stream looking for changes in the income and generates discontinuous income estimates when a change is detected is shown to account for salient features of the data. PMID:17465311
Gallistel, C R; King, Adam Philip; Gottlieb, Daniel; Balci, Fuat; Papachristos, Efstathios B; Szalecki, Matthew; Carbone, Kimberly S
2007-03-01
Experimentally naive mice matched the proportions of their temporal investments (visit durations) in two feeding hoppers to the proportions of the food income (pellets per unit session time) derived from them in three experiments that varied the coupling between the behavioral investment and food income, from no coupling to strict coupling. Matching was observed from the outset; it did not improve with training. When the numbers of pellets received were proportional to time invested, investment was unstable, swinging abruptly from sustained, almost complete investment in one hopper, to sustained, almost complete investment in the other-in the absence of appropriate local fluctuations in returns (pellets obtained per time invested). The abruptness of the swings strongly constrains possible models. We suggest that matching reflects an innate (unconditioned) program that matches the ratio of expected visit durations to the ratio between the current estimates of expected incomes. A model that processes the income stream looking for changes in the income and generates discontinuous income estimates when a change is detected is shown to account for salient features of the data.
Analog quantum simulation of generalized Dicke models in trapped ions
NASA Astrophysics Data System (ADS)
Aedo, Ibai; Lamata, Lucas
2018-04-01
We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.
Pérez-Jiménez, David; Seal, David W; Serrano-García, Irma
2009-01-01
Although HIV prevention interventions for women are efficacious, long-term behavior change maintenance within power-imbalanced heterosexual relationships has been difficult. To explore the feasibility, content, and format of an HIV intervention for Latino couples, the authors conducted 13 focus groups with HIV/AIDS researchers, service providers, and heterosexual men and women in Puerto Rico, the Dominican Republic, and Mexico. Reasons that participants thought that men should be involved in prevention efforts included promotion of shared responsibility, creation of a safe environment for open conversation about sex, and increased sexual negotiation skills. Perceived barriers to men's involvement included cultural taboos, sexual conservatism associated with Catholicism and machismo, and power-imbalanced relationships. Participants stressed the need for recruitment of men within naturally occurring settings or by influential community leaders. Participants indicated that couples-level interventions would be successful if they used strong coed facilitators, included both unigender and mixed-gender discussion opportunities, and addressed personally meaningful topics. Implications of these findings are discussed.
Pérez-Jiménez, David; Seal, David W.; Serrano-García, Irma
2012-01-01
Although HIV prevention interventions for women are efficacious, long-term behavior change maintenance within power-imbalanced heterosexual relationships has been difficult. To explore the feasibility, content, and format of an HIV intervention for Latino couples, the authors conducted 13 focus groups with HIV/AIDS researchers, service providers, and heterosexual men and women in Puerto Rico, the Dominican Republic, and Mexico. Reasons that participants thought that men should be involved in prevention efforts included promotion of shared responsibility, creation of a safe environment for open conversation about sex, and increased sexual negotiation skills. Perceived barriers to men’s involvement included cultural taboos, sexual conservatism associated with Catholicism and machismo, and power-imbalanced relationships. Participants stressed the need for recruitment of men within naturally occurring settings or by influential community leaders. Participants indicated that couples-level interventions would be successful if they used strong coed facilitators, included both unigender and mixed-gender discussion opportunities, and addressed personally meaningful topics. Implications of these findings are discussed. PMID:19209976
Who are the Gatekeepers? Predictors of Maternal Gatekeeping
Schoppe-Sullivan, Sarah J.; Altenburger, Lauren E.; Lee, Meghan A.; Bower, Daniel J.; Kamp Dush, Claire M.
2016-01-01
SYNOPSIS Objective The goal of this study was to identify determinants of maternal gatekeeping at the transition to parenthood. Design Participants included 182 different-gender dual-earner couples. During pregnancy, expectant parents completed questionnaires regarding their psychological functioning, attitudes, and expectations, and at 3 months postpartum questionnaires regarding maternal gatekeeping behavior and gate closing attitudes. Results SEM analyses revealed that mothers were more likely to close the gate to fathers when mothers held greater perfectionistic expectations for fathers’ parenting, had poorer psychological functioning, perceived their romantic relationship as less stable, and had higher levels of parenting self-efficacy. In contrast, fathers with lower parenting self-efficacy appeared to elicit greater maternal gate closing behavior. Mothers who engaged in greater gate opening behavior were more religious. Conclusions Maternal gatekeeping may be more strongly associated with maternal expectations and psychological functioning than with maternal traditional gender attitudes. Fathers’ characteristics are less predictive of maternal gatekeeping than mothers’ characteristics. PMID:27366115
Who are the Gatekeepers? Predictors of Maternal Gatekeeping.
Schoppe-Sullivan, Sarah J; Altenburger, Lauren E; Lee, Meghan A; Bower, Daniel J; Kamp Dush, Claire M
The goal of this study was to identify determinants of maternal gatekeeping at the transition to parenthood. Participants included 182 different-gender dual-earner couples. During pregnancy, expectant parents completed questionnaires regarding their psychological functioning, attitudes, and expectations, and at 3 months postpartum questionnaires regarding maternal gatekeeping behavior and gate closing attitudes. SEM analyses revealed that mothers were more likely to close the gate to fathers when mothers held greater perfectionistic expectations for fathers' parenting, had poorer psychological functioning, perceived their romantic relationship as less stable, and had higher levels of parenting self-efficacy. In contrast, fathers with lower parenting self-efficacy appeared to elicit greater maternal gate closing behavior. Mothers who engaged in greater gate opening behavior were more religious. Maternal gatekeeping may be more strongly associated with maternal expectations and psychological functioning than with maternal traditional gender attitudes. Fathers' characteristics are less predictive of maternal gatekeeping than mothers' characteristics.
Crankshaw, Tamaryn L.; Matthews, Lynn T.; Giddy, Janet; Kaida, Angela; Ware, Norma C.; Smit, Jennifer A.; Bangsberg, David R.
2013-01-01
Integrated reproductive health services for people living with HIV must address their fertility intentions. For HIV-serodiscordant couples who want to conceive, attempted conception confers a substantial risk of HIV transmission to the uninfected partner. Behavioral and pharmacologic strategies may reduce HIV transmission risk among HIV-serodiscordant couples who seek to conceive. In order to develop effective pharmaco-behavioral programs, it is important to understand and address the contexts surrounding reproductive decision-making; perceived periconception HIV transmission risk; and periconception risk behaviors. We present a conceptual framework to describe the dynamics involved in periconception HIV risk behaviors in a South African setting. We adapt the Information-Motivation-Behavioral Skill Model of HIV Preventative Behavior to address the structural, individual and couple-level determinants of safer conception behavior. The framework is intended to identify factors that influence periconception HIV risk behavior among serodiscordant couples, and therefore to guide design and implementation of integrated and effective HIV, reproductive health and family planning services that support reproductive decision-making. PMID:23177680
Enhancing interfacial magnetization with a ferroelectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Tricia L.; Herklotz, Andreas; Lauter, Valeria
Ferroelectric control of interfacial magnetism has attracted much attention. However, the coupling of these two functionalities has not been understood well at the atomic scale. The lack of scientific progress is mainly due to the limited characterization methods by which the interface’s magnetic properties can be probed at an atomic level. In this paper, we use polarized neutron reflectometry to probe the evolution of the magnetic moment at interfaces in ferroelectric/strongly correlated oxide [PbZr 0.2Ti 0.8O 3/La 0.8Sr 0.2MnO 3(PZT/LSMO)] heterostructures. We find that the magnetization at the surfaces and interfaces of our LSMO films without PZT are always deterioratedmore » and such magnetic deterioration can be greatly improved by interfacing with a strongly polar PZT film. Magnetoelectric coupling of magnetism and ferroelectric polarization was observed within a couple of nanometers of the interface via an increase in the LSMO surface magnetization to 4.0μ B/f.u., a value nearly 70% higher than the surface magnetization of our LSMO film without interfacing with a ferroelectric layer. We attribute this behavior to hole depletion driven by the ferroelectric polarization. Finally, these compelling results not only probe the presence of nanoscale magnetic suppression and its control by ferroelectrics, but also emphasize the importance of utilizing probing techniques that can distinguish between bulk and interfacial phenomena.« less
Enhancing interfacial magnetization with a ferroelectric
Meyer, Tricia L.; Herklotz, Andreas; Lauter, Valeria; ...
2016-11-21
Ferroelectric control of interfacial magnetism has attracted much attention. However, the coupling of these two functionalities has not been understood well at the atomic scale. The lack of scientific progress is mainly due to the limited characterization methods by which the interface’s magnetic properties can be probed at an atomic level. In this paper, we use polarized neutron reflectometry to probe the evolution of the magnetic moment at interfaces in ferroelectric/strongly correlated oxide [PbZr 0.2Ti 0.8O 3/La 0.8Sr 0.2MnO 3(PZT/LSMO)] heterostructures. We find that the magnetization at the surfaces and interfaces of our LSMO films without PZT are always deterioratedmore » and such magnetic deterioration can be greatly improved by interfacing with a strongly polar PZT film. Magnetoelectric coupling of magnetism and ferroelectric polarization was observed within a couple of nanometers of the interface via an increase in the LSMO surface magnetization to 4.0μ B/f.u., a value nearly 70% higher than the surface magnetization of our LSMO film without interfacing with a ferroelectric layer. We attribute this behavior to hole depletion driven by the ferroelectric polarization. Finally, these compelling results not only probe the presence of nanoscale magnetic suppression and its control by ferroelectrics, but also emphasize the importance of utilizing probing techniques that can distinguish between bulk and interfacial phenomena.« less
Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates
Zengin, Gülis; Johansson, Göran; Johansson, Peter; Antosiewicz, Tomasz J.; Käll, Mikael; Shegai, Timur
2013-01-01
We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon – exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed “transparency dips” correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature. PMID:24166360
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, J.; Chaudhary, S.; Majumdar, P.
We report a study on potential multiferroic characteristics of Yttrium Iron Garnet (YIG). The emergence of ferroelectricity in YIG is in debate but we provide evidence for strong magneto-electric coupling above room temperature from dielectric constant measurement with and without magnetic field. We find that the apparent pseudo-ferroelectric crossover temperature in YIG varies with frequency. For higher frequency the transition shifts towards higher temperature. This is indicative of relaxor behavior. We have also measured the dielectric constant in the presence of external magnetic field at high temperature that confirms interdependence of magnetic and dielectric properties.
Processing of monolayer materials via interfacial reactions
Sutter, Peter Werner; Sutter, Eli Anguelova
2014-05-20
A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.
Differences in Gay Male Couples' Use of Drugs and Alcohol With Sex by Relationship HIV Status.
Mitchell, Jason W
2016-07-01
Prior studies with men who have sex with men have documented a strong association between substance use with sex and risk for acquisition of HIV. However, few studies have been conducted about gay male couples' use of substances with sex, despite the fact that between one third and two thirds of men who have sex with men acquire HIV from their relationship partners. The present study sought to (1) describe whether one or both partners in the male couple uses substances with sex-by substance type-within and/or outside of their relationship, and (2) assess whether differences exist in those who use substances with sex within and outside the relationship by the couples' HIV status. Dyadic data for this analysis were collected in the United States from a nation-wide cross-sectional Internet study about male couples' relationships and behaviors. Couple-level descriptive and comparative analyses were employed with 361 male couples. Except for alcohol, most couples did not use substances with sex. Of those who did, rates of who used it with sex and substance type within the relationship varied; most couples only had one partner who used substances with sex outside the relationship. Significantly higher proportions of concordantly HIV-negative and HIV-positive couples had both partners who used substances (all types) with sex within their relationship over discordant couples. Most couples had one partner who used outside the relationship; only marijuana and erectile dysfunction medication use with sex significantly differed by couples' HIV status. Findings indicate the need to conduct additional research for prevention development. © The Author(s) 2014.
Psychotherapy for Infertility: A Cognitive-Behavioral Approach for Couples.
ERIC Educational Resources Information Center
Myers, Lisa B.; Wark, Linda
1996-01-01
Describes a cognitive-behavioral model for treating couples' negative reactions to infertility. After a discussion of why the cognitive-behavioral approach can competently address the goals of couples coping with infertility, three phases of treatment are outlined: assessment, therapy, and closure. Areas for assessment include spouses, marital…
Marital Conflict Behaviors and Implications for Divorce over 16 Years.
Birditt, Kira S; Brown, Edna; Orbuch, Terri L; McIlvane, Jessica M
2010-10-01
This study examined self-reported marital conflict behaviors and their implications for divorce. Husbands and wives ( N = 373 couples; 47% White American, 53% Black American) reported conflict behaviors in years 1, 3, 7, and 16 of their marriages. Individual behaviors (e.g., destructive behaviors) and patterns of behaviors between partners (e.g., withdrawal-constructive) in Year 1 predicted higher divorce rates. Wives' destructive and withdrawal behaviors decreased over time, whereas husbands' conflict behaviors remained stable. Husbands reported more constructive and less destructive behaviors than wives and Black American couples reported more withdrawal than White American couples. Findings support behavioral theories of marriage demonstrating that conflict behaviors predict divorce and accommodation theories indicating that conflict behaviors become less negative over time.
Regge meets collinear in strongly-coupled N=4 super Yang-Mills
NASA Astrophysics Data System (ADS)
Sprenger, Martin
2017-01-01
We revisit the calculation of the six-gluon remainder function in planar N=4 super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in [1], which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.
Experimental measurement of self-diffusion in a strongly coupled plasma
Strickler, Trevor S.; Langin, Thomas K.; McQuillen, Paul; ...
2016-05-17
Here, we present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short time scales compared to the inverse collision rate. The measured average velocity of a tagged population of ions is shown to be equivalent to the ion-velocity autocorrelation function. We thus gain access to fundamental aspects of the single-particle dynamics in strongly coupled plasmas and to the ion self-diffusion constant under conditions where experimental measurements have been lacking. Nonexponential decay towards equilibrium of the average velocity heralds non-Markovian dynamics that are not predicted by traditional descriptions of weakly coupled plasmas.more » This demonstrates the utility of ultracold neutral plasmas for studying the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.« less
Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings
2015-08-24
applications of property-designed quantum liquids. Specifically the following was achieved: 1. Strong-coupling between quantum-well excitons and cavity...designed quantum liquids. Specifically the following was achieved: 1. Strong-coupling between quantum-well excitons and cavity photons was demonstrated...J., Brodbeck, S., Zhang, B., Wang, Z., Worschech, L., Deng, H., Kamp, M., Schneider, C. & Höfling, S. “Magneto- exciton -polariton condensation in a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devereaux, T. P.; Shvaika, A. M.; Wu, K.
The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong,more » impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.« less
Devereaux, T. P.; Shvaika, A. M.; Wu, K.; ...
2016-10-25
The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong,more » impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.« less
Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang
2010-07-01
Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect.
Intermittency in generalized NLS equation with focusing six-wave interactions
NASA Astrophysics Data System (ADS)
Agafontsev, D. S.; Zakharov, V. E.
2015-10-01
We study numerically the statistics of waves for generalized one-dimensional Nonlinear Schrödinger (NLS) equation that takes into account focusing six-wave interactions, dumping and pumping terms. We demonstrate the universal behavior of this system for the region of parameters when six-wave interactions term affects significantly only the largest waves. In particular, in the statistically steady state of this system the probability density function (PDF) of wave amplitudes turns out to be strongly non-Rayleigh one for large waves, with characteristic "fat tail" decaying with amplitude | Ψ | close to ∝ exp (- γ | Ψ |), where γ > 0 is constant. The corresponding non-Rayleigh addition to the PDF indicates strong intermittency, vanishes in the absence of six-wave interactions, and increases with six-wave coupling coefficient.
Critical behavior and correlations on scale-free small-world networks: Application to network design
NASA Astrophysics Data System (ADS)
Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.
2011-06-01
We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.
NASA Astrophysics Data System (ADS)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-09-01
We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale Λ and hadron masses. One can also identify a specific scale Q0 which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including lattice QCD, the Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating their conflicting predictions, we discuss the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances in this difficult area, but also to suggest what could be an optimal definition of αs(Q2) in order to bring better unity to the subject.
Hernando, Victoria; del Romero, Jorge; García, Soledad; Rodríguez, Carmen; del Amo, Julia; Castilla, Jesús
2009-10-01
To assess the effect of an HIV counseling and testing program targeting steady heterosexual serodiscordant couples. We studied 564 couples who attended a sexually transmitted infections/HIV clinic in Madrid in the period 1989 to 2007 and participated in couples counseling and testing. Sociodemographic, epidemiologic, clinical, and behavioral information of both partners was obtained before testing the nonindex partner. Sexual practices reported in the first (preintervention) and second visit were compared, as well those reported in 4 additional visits. Among the 399 couples who returned for a second visit (71%), the median number of sexual risk practices in the previous 6 months decreased (26.9-0; P <0.001) and the percentage of couples who had not engaged in sexual risk behavior increased (46.1-66.7; P <0.001). This reduction was maintained by the 143 couples who had 4 return visits. The diagnosis of HIV-infection in the index case previous to entering the program was associated with a lower frequency of sexual risk behavior. Independent predictors of postintervention risky sexual behavior included preintervention sexual risk behavior (odds ratio [OR]: 2.8, 95% confidence interval: 1.7-4.4), index case aged over 35 (OR: 2.0, 1.2-3.3), and a recent pregnancy (OR: 3.1, 1.6-6.3). The incidence of HIV seroconversion was 3.9 per 1000 couple-years (1.4-9.7). The diagnosis of HIV-infection and counseling appears to provide complementary reductions in sexual risk behaviors among serodiscordant steady heterosexual couples at follow-up, but the risk of transmission was not totally eliminated.
Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states
NASA Astrophysics Data System (ADS)
Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.
2017-09-01
The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.
Cranford, James A.; Floyd, Frank J.; Schulenberg, John E.; Zucker, Robert A.
2011-01-01
This longitudinal study tested the hypothesis that marital interactions mediate the associations between wives’ and husbands’ lifetime alcoholism status and their subsequent marital adjustment. Participants were 105 couples from the Michigan Longitudinal Study (MLS), an ongoing multimethod investigation of substance use in a community-based sample of alcoholics, nonalcoholics, and their families. At baseline (T1), husbands and wives completed a series of diagnostic measures and lifetime DSM-IV diagnosis of alcohol use disorder (AUD) was assessed. Couples completed a problem-solving marital interaction task 3 years later at T2, which was coded for the ratio of positive to negative behaviors (P/N) was calculated. Couples also completed the Dyadic Adjustment Scale (DAS; Spanier, 1976) at T4 (9 years after T1 and 6 years after T2). Moderate to strong positive correlations were observed between husbands’ and wives’ lifetime AUD, P/N ratio, and dyadic adjustment. Based on an Actor-Partner Independence Model (APIM) framework, results from structural equation modeling showed that husbands’ lifetime AUD was negatively associated with wives’ P/N ratio at the 3 year point, but was not related to their own or their wives’ marital adjustment 9 years from baseline. However, wives’ lifetime AUD had direct negative associations with their own and their husband’s marital satisfaction 9 years later, and wives’ P/N ratio was positively related to their own and their husband’s marital satisfaction 6 years later. Results indicate that marital adjustment in alcoholic couples may be driven more by the wives’ than the husbands’ AUD and marital behavior. PMID:21133510
NASA Astrophysics Data System (ADS)
Oravova, Lucie; Zhang, Zhiying; Church, Nathan; Harrison, Richard J.; Howard, Christopher J.; Carpenter, Michael A.
2013-03-01
Hematite, Fe2O3, provides in principle a model system for multiferroic (ferromagnetic/ferroelastic) behavior at low levels of strain coupling. The elastic and anelastic behavior associated with magnetic phase transitions in a natural polycrystalline sample have therefore been studied by resonant ultrasound spectroscopy (RUS) in the temperature range from 11 to 1072 K. Small changes in softening and attenuation are interpreted in terms of weak but significant coupling of symmetry-breaking and non-symmetry-breaking strains with magnetic order parameters in the structural sequence R\\overline{3}c{1}^{\\prime}\\rightarrow C 2/c\\rightarrow R\\overline{3}c. The R\\overline{3}c{1}^{\\prime}\\rightarrow C 2/c transition at TN = 946 ± 1 K is an example of a multiferroic transition which has both ferromagnetic (from canting of antiferromagnetically ordered spin moments) and ferroelastic (rhombohedral → monoclinic) character. By analogy with the improper ferroelastic transition in Pb3(PO4)2, W and W‧ ferroelastic twin walls which are also 60° and 120° magnetic domain walls should develop. These have been tentatively identified from microstructures reported in the literature. The very low attenuation in the stability field of the C2/c structure in the polycrystalline sample used in the present study, in comparison with the strong acoustic dissipation reported for single crystal samples, implies, however, that the individual grains each consist of a single ferroelastic domain or that the twin walls are strongly pinned by grain boundaries. This absence of attenuation allows an intrinsic loss mechanism associated with the transition point to be seen and interpreted in terms of local coupling of shear strains with fluctuations which have relaxation times in the vicinity of ˜10-8 s. The first order C 2/c\\rightarrow R\\overline{3}c (Morin) transition occurs through a temperature interval of coexisting phases but the absence of an acoustic loss peak suggests that the relaxation time for interface motion is short in comparison with the time scale of the applied stress (at ˜0.1-1 MHz). Below the Morin transition a pattern of attenuation which resembles that seen below ferroelastic transitions has been found, even though the ideal low temperature structure cannot contain ferroelastic twins. This loss behavior is tentatively ascribed to the presence of local ferromagnetically ordered defect regions which are coupled locally to shear strains.
Inflationary magneto-(non)genesis, increasing kinetic couplings, and the strong coupling problem
NASA Astrophysics Data System (ADS)
Bazrafshan Moghaddam, Hossein; McDonough, Evan; Namba, Ryo; Brandenberger, Robert H.
2018-05-01
We study the generation of magnetic fields during inflation making use of a coupling of the inflaton and moduli fields to electromagnetism via the photon kinetic term, and assuming that the coupling is an increasing function of time. We demonstrate that the strong coupling problem of inflationary magnetogenesis can be avoided by incorporating the destabilization of moduli fields after inflation. The magnetic field always dominates over the electric one, and thus the severe constraints on the latter from backreaction, which are the demanding obstacles in the case of a decreasing coupling function, do not apply to the current scenario. However, we show that this loophole to the strong coupling problem comes at a price: the normalization of the amplitude of magnetic fields is determined by this coupling term and is therefore suppressed by a large factor after the moduli destabilization completes. From this we conclude that there is no self-consistent and generic realization of primordial magnetogenesis producing scale-invariant fields in the case of an increasing kinetic coupling.
Julien, Danielle; Chartrand, Elise; Simard, Marie-Claude; Bouthillier, Donald; Bégin, Jean
2003-09-01
Data from 42 heterosexual, 46 gay male, and 33 lesbian couples were used to assess the contribution of conflict and support discussions to relationship quality. Couples completed questionnaires, and videotaped discussions were coded for levels of negative and positive behaviors. Correlations showed that behaviors were associated with relationship quality in the expected directions. Hierarchical linear modeling analyses assessed the unique contributions of individual and dyadic behaviors to the variability of relationship quality. The findings indicated that, beyond the contribution of individual negative behaviors in the conflict task, the variables of dyadic positive behaviors in the conflict task, individual positive behaviors in the support task, and perceived help accounted for unexplained variance in relationship quality. There were no differences between types of couples on levels of behaviors or on their contributions to relationship quality.
Impact of saturation on the polariton renormalization in III-nitride based planar microcavities
NASA Astrophysics Data System (ADS)
Rossbach, Georg; Levrat, Jacques; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas
2013-10-01
It has been widely observed that an increasing carrier density in a strongly coupled semiconductor microcavity (MC) alters the dispersion of cavity polaritons, below and above the condensation threshold. The interacting nature of cavity polaritons stems from their excitonic fraction being intrinsically subject to Coulomb interactions and the Pauli-blocking principle at high carrier densities. By means of injection-dependent photoluminescence studies performed nonresonantly on a GaN-based MC at various temperatures, it is shown that already below the condensation threshold saturation effects generally dominate over any energy variation in the excitonic resonance. This observation is in sharp contrast to the usually assumed picture in strongly coupled semiconductor MCs, where the impact of saturation is widely neglected. These experimental findings are confirmed by tracking the exciton emission properties of the bare MC active medium and those of a high-quality single GaN quantum well up to the Mott density. The systematic investigation of renormalization up to the polariton condensation threshold as a function of lattice temperature and exciton-cavity photon detuning is strongly hampered by photonic disorder. However, when overcoming the latter by averaging over a larger spot size, a behavior in agreement with a saturation-dominated polariton renormalization is revealed. Finally, a comparison with other inorganic material systems suggests that for correctly reproducing polariton renormalization, exciton saturation effects should be taken into account systematically.
Religiosity and Sexual Involvement Within Adolescent Romantic Couples
LeJeune, Brenna C.; Zimet, Gregory D.; Azzouz, Faouzi; Fortenberry, J. Dennis
2011-01-01
The impact of religiosity in adolescent romantic partnerships on sexual behavior was assessed. Data were obtained from the National Longitudinal Study of Adolescent Health reciprocated couples database using religious- and relationship-oriented variables to predict sexual involvement in 374 couples (748 participants). We found that individual- and couple-based religiosity impacted sexual behavior. These findings provide evidence for dyad religiosity as a component involved in the expression of sexual behavior in romantic relationships. The current results highlight the importance of incorporating a broad social perspective in order to understand the expression of adolescent sexual behavior. PMID:21735321
Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport
NASA Astrophysics Data System (ADS)
Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.
2016-12-01
Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between scales and inter-compared. Comparisons are drawn in terms of velocity distributions, solute transport behavior, algorithm-induced numerical error and computing cost. The intercomparison work provides support for confidence in a variety of hybrid multiscale methods and motivates further development and applications.
NASA Astrophysics Data System (ADS)
Storti, Mario A.; Nigro, Norberto M.; Paz, Rodrigo R.; Dalcín, Lisandro D.
2009-03-01
In this paper some results on the convergence of the Gauss-Seidel iteration when solving fluid/structure interaction problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the influence of the partitioned strong coupling on stability is discussed.
Ultrafast control of strong light-matter coupling
NASA Astrophysics Data System (ADS)
Lange, Christoph; Cancellieri, Emiliano; Panna, Dmitry; Whittaker, David M.; Steger, Mark; Snoke, David W.; Pfeiffer, Loren N.; West, Kenneth W.; Hayat, Alex
2018-01-01
We dynamically modulate strong light-matter coupling in a GaAs/AlGaAs microcavity using intense ultrashort laser pulses tuned below the interband exciton energy, which induce a transient Stark shift of the cavity polaritons. For 225-fs pulses, shorter than the cavity Rabi cycle period of 1000 fs, this shift decouples excitons and cavity photons for the duration of the pulse, interrupting the periodic energy exchange between photonic and electronic states. For 1500-fs pulses, longer than the Rabi cycle period, however, the Stark shift does not affect the strong coupling. The two regimes are marked by distinctly different line shapes in ultrafast reflectivity measurements—regardless of the Stark field intensity. The crossover marks the transition from adiabatic to diabatic switching of strong light-matter coupling.
Gattuso, Hugo; Besancenot, Vanessa; Grandemange, Stéphanie; Marazzi, Marco; Monari, Antonio
2016-01-01
We report a molecular modeling study, coupled with spectroscopy experiments, on the behavior of two well known organic dyes, nile blue and nile red, when interacting with B-DNA. In particular, we evidence the presence of two competitive binding modes, for both drugs. However their subsequent photophysical behavior is different and only nile blue is able to induce DNA photosensitization via an electron transfer mechanism. Most notably, even in the case of nile blue, its sensitization capabilities strongly depend on the environment resulting in a single active binding mode: the minor groove. Fluorescence spectroscopy confirms the presence of competitive interaction modes for both sensitizers, while the sensitization via electron transfer, is possible only in the case of nile blue. PMID:27329409
Strong coupling of a single electron in silicon to a microwave photon
NASA Astrophysics Data System (ADS)
Mi, Xiao; Cady, Jeffrey; Zajac, David; Petta, Jason
We demonstrate a hybrid circuit quantum electrodynamics (cQED) architecture in which a single electron in a Si/SiGe double quantum dot is dipole-coupled to the electric field of microwave photons in a superconducting cavity. Vacuum Rabi splitting is observed in the cavity transmission when the transition energy of the single-electron charge qubit matches that of a cavity photon, demonstrating that our device is in the strong coupling regime. The achievement of strong coupling is largely facilitated by an exceptionally low charge decoherence rate of 5 MHz and paves the way toward a wide range of cQED experiments with quantum dots, such as non-local qubit interactions, strong spin-cavity coupling and single photon generation . Research sponsored by ARO Grant No. W911NF-15-1-0149, the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4535, and the NSF (DMR-1409556 and DMR-1420541).
Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikhzada, Ahmad
As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials,more » particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.« less
Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
Press, David; Götzinger, Stephan; Reitzenstein, Stephan; Hofmann, Carolin; Löffler, Andreas; Kamp, Martin; Forchel, Alfred; Yamamoto, Yoshihisa
2007-03-16
We observe antibunching in the photons emitted from a strongly coupled single quantum dot and pillar microcavity in resonance. When the quantum dot was spectrally detuned from the cavity mode, the cavity emission remained antibunched, and also anticorrelated from the quantum dot emission. Resonant pumping of the selected quantum dot via an excited state enabled these observations by eliminating the background emitters that are usually coupled to the cavity. This device demonstrates an on-demand single-photon source operating in the strong coupling regime, with a Purcell factor of 61+/-7 and quantum efficiency of 97%.
K-chameleon and the coincidence problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Hao; Cai Ronggen; Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080
2005-02-15
In this paper we present a hybrid model of k-essence and chameleon, named as k-chameleon. In this model, due to the chameleon mechanism, the directly strong coupling between the k-chameleon field and matters (cold dark matters and baryons) is allowed. In the radiation-dominated epoch, the interaction between the k-chameleon field and background matters can be neglected; the behavior of the k-chameleon therefore is the same as that of the ordinary k-essence. After the onset of matter domination, the strong coupling between the k-chameleon and matters dramatically changes the result of the ordinary k-essence. We find that during the matter-dominated epoch,more » only two kinds of attractors may exist: one is the familiar K attractor and the other is a completely new, dubbed C attractor. Once the Universe is attracted into the C attractor, the fraction energy densities of the k-chameleon {omega}{sub {phi}} and dust matter {omega}{sub m} are fixed and comparable, and the Universe will undergo a power-law accelerated expansion. One can adjust the model so that the K attractor does not appear. Thus, the k-chameleon model provides a natural solution to the cosmological coincidence problem.« less
Falling films on flexible inclines
NASA Astrophysics Data System (ADS)
Matar, O. K.; Craster, R. V.; Kumar, S.
2007-11-01
The nonlinear stability and dynamic behavior of falling fluid films is studied for flow over a flexible substrate. We use asymptotic methods to deduce governing equations valid in various limits. Long-wave theory is used to derive Benney-like coupled equations for the film thickness and substrate deflection. Weakly nonlinear equations are then derived from these equations that, in the limit of large wall damping and/or large wall tension, reduce to the Kuramoto-Sivashinsky equation. These models break down when inertia becomes more significant, so we also use a long-wave approximation in conjunction with integral theory to derive three strongly coupled nonlinear evolution equations for the film thickness, substrate deflection, and film volumetric flow rate valid at higher Reynolds numbers. These equations, accounting for inertia, capillary, viscous, wall tension, and damping effects, are solved over a wide range of parameters. Our results suggest that decreasing wall damping and/or wall tension can promote the development of chaos in the weakly nonlinear regime and lead to severe substrate deformations in the strongly nonlinear regime; these can give rise to situations in which the free surface and underlying substrate come into contact in finite time.
Couple Conflict and Rope-a-Dope.
ERIC Educational Resources Information Center
Downing, Jerry; Harrison, Tom
1993-01-01
Draws analogy between Muhammad Ali's boxing technique of "rope-a-dope" and behavioral patterns frequently occurring in couple conflicts. Presents basics of Ali's technique as similar to fighting patterns of many couples. Suggests that this behavior may lead to physical violence. Describes use of analogy in working with couples. Presents strategies…
Yield stress in amorphous solids: A mode-coupling-theory analysis
NASA Astrophysics Data System (ADS)
Ikeda, Atsushi; Berthier, Ludovic
2013-11-01
The yield stress is a defining feature of amorphous materials which is difficult to analyze theoretically, because it stems from the strongly nonlinear response of an arrested solid to an applied deformation. Mode-coupling theory predicts the flow curves of materials undergoing a glass transition and thus offers predictions for the yield stress of amorphous solids. We use this approach to analyze several classes of disordered solids, using simple models of hard-sphere glasses, soft glasses, and metallic glasses for which the mode-coupling predictions can be directly compared to the outcome of numerical measurements. The theory correctly describes the emergence of a yield stress of entropic nature in hard-sphere glasses, and its rapid growth as density approaches random close packing at qualitative level. By contrast, the emergence of solid behavior in soft and metallic glasses, which originates from direct particle interactions is not well described by the theory. We show that similar shortcomings arise in the description of the caging dynamics of the glass phase at rest. We discuss the range of applicability of mode-coupling theory to understand the yield stress and nonlinear rheology of amorphous materials.
Spectral filtering using active metasurfaces compatible with narrow bandgap III-V infrared detectors
Wolf, Omri; Campione, Salvatore; Kim, Jin; ...
2016-01-01
Narrow-bandgap semiconductors such as alloys of InAsAlSb and their heterostructures are considered promising candidates for next generation infrared photodetectors and devices. The prospect of actively tuning the spectral responsivity of these detectors at the pixel level is very appealing. In principle, this could be achieved with a tunable metasurface fabricated monolithically on the detector pixel. Here, we present first steps towards that goal using a complementary metasurface strongly coupled to an epsilon-near-zero (ENZ) mode operating in the long-wave region of the infrared spectrum. We fabricate such a coupled system using the same epitaxial layers used for infrared pixels in amore » focal plane array and demonstrate the existence of ENZ modes in high mobility layers of InAsSb. We confirm that the coupling strength between the ENZ mode and the metasurface depends on the ENZ layer thickness and demonstrate a transmission modulation on the order of 25%. Lastly, we further show numerically the expected tunable spectral behavior of such coupled system under reverse and forward bias, which could be used in future electrically tunable detectors.« less
Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets
NASA Astrophysics Data System (ADS)
Shimahara, Hiroshi
2018-04-01
We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.
Competing magnetic ground states and their coupling to the crystal lattice in CuFe 2Ge 2
May, Andrew F.; Calder, Stuart; Parker, David S.; ...
2016-10-14
Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe 2Ge 2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. The temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K. Powder neutron diffraction confirms antiferromagnetic ordering below T N ≈ 175 K, and an incommensuratemore » spin density wave is observed below ≈125 K. Coupled with the small refined moments (0.5–1 μB/Fe), this provides a picture of itinerant magnetism in CuFe 2Ge 2. Furthermore, the neutron diffraction data reveal a coexistence of two magnetic phases that further highlights the near-degeneracy of various magnetic states. Our results demonstrate that the ground state in CuFe 2Ge 2 can be easily manipulated by external forces, making it of particular interest for doping, pressure, and further theoretical studies.« less
NASA Astrophysics Data System (ADS)
Johnston, Clifford T.; Swanson, Basil I.
1985-03-01
The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.
Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl
A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturingmore » is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.« less
Pandey, S N; Vishal, Vikram
2017-12-06
3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.
Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling.
Thomas, Reshmi; Thomas, Anoop; Pullanchery, Saranya; Joseph, Linta; Somasundaran, Sanoop Mambully; Swathi, Rotti Srinivasamurthy; Gray, Stephen K; Thomas, K George
2018-01-23
Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.
Chen, Mo; Liu, Chao; Xian, Hao
2015-10-10
High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.
NASA Astrophysics Data System (ADS)
Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.
2017-12-01
A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.
NASA Astrophysics Data System (ADS)
Liu, Yizhou; Cohen, Ryan D.; Martin, Gary E.; Williamson, R. Thomas
2018-06-01
Accurate measurement of residual dipolar couplings (RDCs) requires an appropriate degree of alignment in order to optimize data quality. An overly weak alignment yields very small anisotropic data that are susceptible to measurement errors, whereas an overly strong alignment introduces extensive anisotropic effects that severely degrade spectral quality. The ideal alignment amplitude also depends on the specific pulse sequence used for the coupling measurement. In this work, we introduce a practical strategy for the accurate measurement of one-bond 13C-1H RDCs up to a range of ca. -300 to +300 Hz, corresponding to an alignment that is an order of magnitude stronger than typically employed for small molecule structural elucidation. This strong alignment was generated in the mesophase of the commercially available poly-γ-(benzyl-L-glutamate) polymer. The total coupling was measured by the simple and well-studied heteronuclear two-dimensional J-resolved experiment, which performs well in the presence of strong anisotropic effects. In order to unequivocally determine the sign of the total coupling and resolve ambiguities in assigning total couplings in the CH2 group, coupling measurements were conducted at an isotropic condition plus two anisotropic conditions of different alignment amplitudes. Most RDCs could be readily extracted from these measurements whereas more complicated spectral effects resulting from strong homonuclear coupling could be interpreted either theoretically or by simulation. Importantly, measurement of these very large RDCs actually offers significantly improved data quality and utility for the structure determination of small organic molecules.
Coupling strength assumption in statistical energy analysis
Lafont, T.; Totaro, N.
2017-01-01
This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature. PMID:28484335
A model for interpretation of brine-dependent spontaneous imbibition experiments
NASA Astrophysics Data System (ADS)
Evje, S.; Hiorth, A.
2011-12-01
Previous experimental results for spontaneous imbibition experiments in the context of chalk cores have revealed a rather puzzling behavior: the oil recovery curves, both the shape as well as the steady state level which is reached, depend strongly on the brine composition. In particular, it has been demonstrated that Mg,SO42-, and Ca 2+ play a central role in this physico-chemical system. A good theoretical understanding of these experimental results, in terms of mathematical models that can suggest possible explanations of the lab experiments as well as predict behavior not yet tested in the lab, seems to still be lacking. The purpose of this paper is to try to shed light on some important modeling aspects. The model we propose is an extended version of the classical Buckley-Leverett (BL) equation for two-phase spontaneous imbibition where the water saturation equation has been coupled to a system of reaction-diffusion (RD) equations describing water-rock chemistry relevant for chalk core plugs. As far as water-rock chemistry is concerned we focus in this work on the combined effect of transport and dissolution/precipitation of calcite, magnesite, and anhydrite. The line we pursue is to couple changes of the wetting state, expressed in terms of the relative permeability and capillary pressure functions, to the water-rock chemistry behavior. More precisely, we build into the model the mechanism that the rock surface will become more water-wet at the places where dissolution of calcite takes place. In particular, we illustrate and analyze how different compositions of the imbibing brine then lead to different water-rock interaction scenarios which in turn gives qualitative and quantitative differences in the solution of the saturation equation describing spontaneous imbibition. Comparison with relevant experimental behavior is included as well as illustration of some possible interesting and non-trivial characteristic features of the model reflecting the nonlinear coupling mechanisms between the RD model for the water-rock chemistry and the BL equation for the water-oil transport.
Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas
NASA Astrophysics Data System (ADS)
Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.
2017-10-01
We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.
2015-11-01
Memorandum Simulation of Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes... Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...TYPE Technical Report 3. DATES COVERED (From - To) Dec 2013 – July 2015 4. TITLE AND SUBTITLE Simulation of Weld Mechanical Behavior to Include
2015-11-01
Memorandum Simulation of Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes... Weld Mechanical Behavior to Include Welding -Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...TYPE Technical Report 3. DATES COVERED (From - To) Dec 2013 – July 2015 4. TITLE AND SUBTITLE Simulation of Weld Mechanical Behavior to Include
NASA Astrophysics Data System (ADS)
Pal, P.; Ghosh, A.
2016-07-01
In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi
1998-06-01
We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling region U>>t, t' [t (t'), nearest- (next-nearest-) neighbor hopping; U, on-site Coulomb repulsion]. In the uniform case, with the help of the conformal field theory prediction, we numerically determine a phase boundary t'c(U/t) between the spin-fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size systems and a value of the central charge are also examined. The critical phenomenological aspect of the spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin gap (i.e., the Cross-Fisher scaling law) are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, P.; Ghosh, A., E-mail: sspag@iacs.res.in
2016-07-28
In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamicsmore » of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.« less
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Yarmohammadi, Mohsen; Kazzaz, Houshang Araghi
2017-10-01
We studied how the strain, induced exchange field and extrinsic Rashba spin-orbit coupling (RSOC) enhance the electronic band structure (EBS) and electronic heat capacity (EHC) of ferromagnetic silicene in presence of external electric field (EF) by using the Kane-Mele Hamiltonian, Dirac cone approximation and the Green's function approach. Particular attention is paid to investigate the EHC of spin-up and spin-down bands at Dirac K and K‧ points. We have varied the EF, strain, exchange field and RSOC to tune the energy of inter-band transitions and consequently EHC, leading to very promising features for future applications. Evaluation of EF exhibits three phases: Topological insulator (TI), valley-spin polarized metal (VSPM) and band insulator (BI) at given aforementioned parameters. As a new finding, we have found a quantum anomalous Hall phase in BI regime at strong RSOCs. Interestingly, the effective mass of carriers changes with strain, resulting in EHC behaviors. Here, exchange field has the same behavior with EF. Finally, we have confirmed the reported and expected symmetry results for both Dirac points and spins with the study of valley-dependent EHC.
Dramatic pressure-sensitive ion conduction in conical nanopores.
Jubin, Laetitia; Poggioli, Anthony; Siria, Alessandro; Bocquet, Lydéric
2018-04-17
Ion transporters in Nature exhibit a wealth of complex transport properties such as voltage gating, activation, and mechanosensitive behavior. When combined, such processes result in advanced ionic machines achieving active ion transport, high selectivity, or signal processing. On the artificial side, there has been much recent progress in the design and study of transport in ionic channels, but mimicking the advanced functionalities of ion transporters remains as yet out of reach. A prerequisite is the development of ionic responses sensitive to external stimuli. In the present work, we report a counterintuitive and highly nonlinear coupling between electric and pressure-driven transport in a conical nanopore, manifesting as a strong pressure dependence of the ionic conductance. This result is at odds with standard linear response theory and is akin to a mechanical transistor functionality. We fully rationalize this behavior on the basis of the coupled electrohydrodynamics in the conical pore by extending the Poisson-Nernst-Planck-Stokes framework. The model is shown to capture the subtle mechanical balance occurring within an extended spatially charged zone in the nanopore. The pronounced sensitivity to mechanical forcing offers leads in tuning ion transport by mechanical stimuli. The results presented here provide a promising avenue for the design of tailored membrane functionalities.
Brambleby, J.; Goddard, P. A.; Singleton, John; ...
2017-01-05
We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states andmore » highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.« less
Electronic behavior of highly correlated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, A.
1988-10-01
This thesis addresses the question of the strongly interacting many-body problem: that is, systems where the interparticle correlations are so strong as to defy perturbative approaches. These subtle correlations occur in narrow band materials, such as the lanthanides and actinides, wherein the f-electrons are so localized that a variety of new phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As well, one has the alloying problem, where local interactions are paramount in determining the overall behavior. The technique employed in dealing with these systems is the Small Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms,more » coupled with periodic boundary conditions, is solved exactly. This is tantamount to solving a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical overhead is further reduced by employing the full space group and spin symmetries. By its very nature, the Small Cluster method is well able to handle short-range interactions, as well as the combinatorial complexity of the many-body problem, on an equal footing. The nature of long-range order and phase transition behavior cannot be incorporated, but sometimes clues as to their origin can be discerned. The calculations presented include: a two-band Anderson model for an intermediate-valence system, wherein photoemission and fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, such as copper-silver-gold; and a Hubbard model for a heavy- fermion system, wherein Fermi surface, transport, magnetic and superconducting properties are discussed. 148 refs., 31 figs., 24 tabs.« less
Coherent Vortices in Strongly Coupled Liquids
NASA Astrophysics Data System (ADS)
Ashwin, J.; Ganesh, R.
2011-04-01
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
The status of the strong coupling from tau decays in 2016
NASA Astrophysics Data System (ADS)
Boito, Diogo; Golterman, Maarten; Maltman, Kim; Peris, Santiago
2017-06-01
While the idea of using the operator product expansion (OPE) to extract the strong coupling from hadronic τ decay data is not new, there is an ongoing controversy over how to include quark-hadron ;duality violations; (i.e., resonance effects) which are not described by the OPE. One approach attempts to suppress duality violations enough that they might become negligible, but pays the price of an uncontrolled OPE truncation. We critically examine a recent analysis using this approach and show that it fails to properly account for non-perturbative effects, making the resulting determination of the strong coupling unreliable. In a different approach duality violations are taken into account with a model, avoiding the OPE truncation. This second approach provides a self-consistent determination of the strong coupling from τ decays.
Effects of Coulomb Coupling on the Stopping Power of Plasmas
NASA Astrophysics Data System (ADS)
Bernstein, David; Daligault, Jerome; Baalrud, Scott
2017-10-01
Stopping power of charged particles in plasma is important for a detailed understanding of particle and energy transport in plasmas, such as those found in fusion applications. Although stopping power is rather well understood for weakly coupled plasmas, this is less the case for strongly coupled plasmas. In order to shed light on the effects of strong Coulomb coupling, we have conducted detailed molecular dynamics simulations of the stopping power of a One-Component Plasma (OCP) across a wide range of conditions. The OCP allows first-principle computations that are not possible with more complex models, enabling rigorous tests of analytical theories. The molecular dynamics simulations were compared to two analytical theories that attempt to extend traditional weakly-coupled theories into the strong coupling regime. The first is based on the binary approximation, which accounts for strong coupling via an effective scattering cross section derived from the effective potential theory. The second is based on the dielectric function formulation with the inclusion of a local field corrections. Work supported by LANL LDRD project 20150520ER and ir Force Office of Scientific Research under Award Number FA9550-16-1-0221.
Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.
Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V
2017-10-03
The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.
NASA Astrophysics Data System (ADS)
Wu, G.; Moresi, L. N.
2017-12-01
Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the differential subduction and isostatic differences along strike are the major cause of complex trench behavior and tectonic variations in the overriding plate. Finally, our models must be placed in a reference frame outside our modeled domain when used in global scale.
Padmanabha, H; Soto, E; Mosquera, M; Lord, C C; Lounibos, L P
2010-08-01
Understanding linkages between household behavior and Aedes aegypti (L.) larval ecology is essential for community-based dengue mitigation. Here we associate water storage behaviors with the rate of A. aegypti pupal production in three dengue-endemic Colombian cities with different mean temperatures. Qualitative, semi-structured interviews and pupal counts were conducted over a 7-15-day period in 235 households containing a water storage vessel infested with larvae. Emptying vessels more often than every 7 days strongly reduced pupal production in all three cities. Emptying every 7-15 days reduced production by a similar magnitude as emptying <7 days in Armenia (21.9 degrees C), has a threefold smaller reduction as compared to <7 days in Bucaramanga (23.9 degrees C), and did not reduce production in Barranquilla (29.0 degrees C). Lidding vessels reduced mosquito production and was most feasible in Barranquilla because of container structure. Vessel emptying strongly correlated with usage in Barranquilla, where many households stored water in case of interruptions in piped service rather than for regular use. In the cooler cities, >90% of households regularly used stored water for washing clothes, generating a weaker correlation between emptying and usage. Emptying was less frequent in the households surveyed in the dry season in all three cities. These results show that A. aegypti production and human behaviors are coupled in a temperature-dependent manner. In addition to biological effects on aquatic stages, climate change may impact A. aegypti production through human behavioral adaptations. Vector control programs should account for geographic variation in temperature and water usage behaviors in designing targeted interventions.
ERIC Educational Resources Information Center
Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenbrand, Reva
2008-01-01
The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths:…
Characteristics and allowed behaviors of gay male couples’ sexual agreements
Mitchell, Jason W.
2015-01-01
Research has shown that gay male couples’ sexual agreements may affect their risk for HIV. Few U.S. studies have collected dyadic data nationally from gay male couples to assess what sexual behaviors they allow to occur by agreement type and the sequence of when certain behaviors occur within their relationships. In our cross-sectional study, dyadic data from a convenience sample of 361 male couples were collected electronically throughout the U.S. by using paid Facebook ads. Findings from our study revealed that couples discussed their HIV status before having UAI, but established their agreement some time after having UAI. About half of the couples (N = 207) concurred about having an agreement. Among these couples, 58% concurred about explicitly discussing their agreement, 84% concurred about having the same type of agreement, and 54% had both men adhering to it. A variety of sexual behaviors were endorsed and varied by agreement type. Concordance about aspects of couples’ agreements varied, suggesting the need to engage couples to be more explicit and detailed when establishing and communicating about their agreements. The allowed behaviors and primary reasons for establishing and breaking sexual agreements further highlight the need to bolster HIV prevention for gay male couples. PMID:23514544
Project CONVERGE: Impacts of local oceanographic processes on Adélie penguin foraging ecology
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Bernard, K. S.; Fraser, W.; Oliver, M. J.; Statscewich, H.; Patterson-Fraser, D.; Winsor, P.; Cimino, M. A.; Miles, T. N.
2016-02-01
During the austral summer of 2014-2015, project CONVERGE deployed a multi-platform network to sample the Adélie penguin foraging hotspot associated with Palmer Deep Canyon along the Western Antarctic Peninsula. The focus of CONVERGE was to assess the impact of prey-concentrating ocean circulation dynamics on Adélie penguin foraging behavior. Food web links between phytoplankton and zooplankton abundance and penguin behavior were examined to better understand the within-season variability in Adélie foraging ecology. Since the High Frequency Radar (HFR) network installation in November 2014, the radial component current data from each of the three sites were combined to provide a high resolution (0.5 km) surface velocity maps. These hourly maps have revealed an incredibly dynamic system with strong fronts and frequent eddies extending across the Palmer Deep foraging area. A coordinated fleet of underwater gliders were used in concert with the HFR fields to sample the hydrography and phytoplankton distributions associated with convergent and divergent features. Three gliders mapped the along and across canyon variability of the hydrography, chlorophyll fluorescence and acoustic backscatter in the context of the observed surface currents and simultaneous penguin tracks. This presentation will highlight these synchronized measures of the food web in the context of the observed HFR fronts and eddies. The location and persistence of these features coupled with ecological sampling through the food web offer an unprecedented view of the Palmer Deep ecosystem. Specific examples will highlight how the vertical structure of the water column beneath the surface features stack the primary and secondary producers relative to observed penguin foraging behavior. The coupling from the physics through the food web as observed by our multi-platform network gives strong evidence for the critical role that distribution patterns of lower trophic levels have on Adélie foraging.
Weak and strong coupling equilibration in nonabelian gauge theories
NASA Astrophysics Data System (ADS)
Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; van der Schee, Wilke; Zhu, Yan
2016-04-01
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer
2013-01-01
Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging. PMID:23962025
Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer
NASA Astrophysics Data System (ADS)
Atabaev, Timur Sh; Kim, Hyung-Kook; Hwang, Yoon-Hwae
2013-08-01
Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging.
NASA Astrophysics Data System (ADS)
Liu, Yan; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Ling, Langsheng; Tong, Wei; Qu, Zhe; Cao, Gang; Zhang, Yuheng; Tian, Mingliang
2017-04-01
The magnetic structure in the strongly correlated ruthenate S r4R u3O10 has been debated for a long time and still remains elusive. Here, we perform a systematically planar Hall effect study on a single-crystalline S r4R u3O10 nanostripe with a thickness of less than 100 nm. Large sharp switching behavior is observed in the planar Hall resistance, unambiguously indicating a strong anisotropic in-plane ferromagnetic order in the nanostripe, which is in contrast to the bulk system. Temperature-dependent evolution of the in-plane magnetism reveals that the in-plane spin order transforms from a single-domain state below a Curie temperature TC into a multidomain state below a critical temperature TM, probably due to the inherent strong spin-orbit coupling driven reconfiguration of spins between the c axis and the a b plane.
Interfacial magnetism and exchange coupling in BiFeO3-CuO nanocomposite.
Chakrabarti, Kaushik; Sarkar, Babusona; Ashok, Vishal Dev; Das, Kajari; Chaudhuri, Sheli Sinha; De, S K
2013-12-20
Ferromagnetic BiFeO3 nanocrystals of average size 9 nm were used to form a composite with antiferromagnetic CuO nanosheets, with the composition (x)BiFeO3/(100-x)CuO, x = 0, 20, 40, 50, 60, 80 and 100. The dispersion of BiFeO3 nanocrystals into the CuO matrix was confirmed by x-ray diffraction and transmission electron microscopy. The ferromagnetic ordering as observed in pure BiFeO3 occurs mainly due to the reduction in the particle size as compared to the wavelength (62 nm) of the spiral modulated spin structure of the bulk BiFeO3. Surface spin disorder of BiFeO3 nanocrystals gives rise to an exponential behavior of magnetization with temperature. Strong magnetic exchange coupling between the BiFeO3 nanocrystal and the CuO matrix induces an interfacial superparamagnetic phase with a blocking temperature of about 80 K. Zero field and field cooled magnetizations are analyzed by a ferromagnetic core and disordered spin shell model. The temperature dependence of the calculated saturation magnetization exhibits three magnetic contributions in three temperature regimes. The BiFeO3/CuO nanocomposites reveal an exchange bias effect below 170 K. The maximum exchange bias field HEB is 1841 Oe for x = 50 at 5 K under field cooling of 50 kOe. The exchange bias coupling results in an increase of coercivity of 1934 Oe at 5 K. Blocked spins within an interfacial region give rise to a remarkable exchange bias effect in the nanocomposite due to strong magnetic exchange coupling between the BiFeO3 nanocrystals and the CuO nanosheets.
Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schluck, F.; Lehmann, G.; Spatschek, K. H.
Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less
Gourévitch, Boris; Kay, Leslie M; Martin, Claire
2010-05-01
The hippocampus and olfactory regions are anatomically close, and both play a major role in memory formation. However, the way they interact during odor processing is still unclear. In both areas, strong oscillations of the local field potential (LFP) can be recorded, and are modulated by behavior. In particular, in the olfactory system, the beta rhythm (15-35 Hz) is associated with cognitive processing of an olfactory stimulus. Using LFP recordings in the olfactory bulb and dorsal and ventral hippocampus during performance of an olfactory go/no-go task in rats, we previously showed that beta oscillations are also present in the hippocampus, coherent with those in the olfactory bulb, during odor sampling. In this study, we provide further insight into information transfer in the olfacto-hippocampal network by using directional coherence (DCOH estimate), a method based on the temporal relation between two or more signals in the frequency domain. In the theta band (6-12 Hz), coherence between the olfactory bulb (OB) and the hippocampus (HPC) is weak and can be both in the feedback and feedforward directions. However, at this frequency, modulation of the coupling between the dorsal and ventral hippocampus is seen during stimulus expectation versus odor processing. In the beta frequency band (15-35 Hz), analysis showed a strong unidirectional coupling from the OB to dorsal and ventral HPC, indicating that, during odor processing, beta oscillations in the hippocampus are driven by the olfactory bulb.
Numerical Simulations of Free Surface Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema
2003-11-01
We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.
Experimental signatures of the inverted phase in InAs/GaSb coupled quantum wells
NASA Astrophysics Data System (ADS)
Karalic, Matija; Mueller, Susanne; Mittag, Christopher; Pakrouski, Kiryl; Wu, QuanSheng; Soluyanov, Alexey A.; Troyer, Matthias; Tschirky, Thomas; Wegscheider, Werner; Ensslin, Klaus; Ihn, Thomas
2016-12-01
Transport measurements are performed on InAs/GaSb double quantum wells at zero and finite magnetic fields applied parallel and perpendicular to the quantum wells. We investigate a sample in the inverted regime where electrons and holes coexist, and compare it with another sample in the noninverted semiconducting regime. The activated behavior in conjunction with a strong suppression of the resistance peak at the charge neutrality point in a parallel magnetic field attest to the topological hybridization gap between electron and hole bands in the inverted sample. We observe an unconventional Landau level spectrum with energy gaps modulated by the magnetic field applied perpendicular to the quantum wells. This is caused by a strong spin-orbit interaction provided jointly by the InAs and the GaSb quantum wells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Thomas J.; Klein, Stephen A.; Ma, Hsi -Yen
Several independent measurements of warm-season soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of land-atmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operatedmore » in both a free-running mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its free-running counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. Lastly, these results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.« less
Phillips, Thomas J.; Klein, Stephen A.; Ma, Hsi -Yen; ...
2017-10-13
Several independent measurements of warm-season soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of land-atmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operatedmore » in both a free-running mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its free-running counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. Lastly, these results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.« less
Paraelectric-antiferroelectric phase transition in achiral liquid crystals
NASA Astrophysics Data System (ADS)
Pociecha, Damian; Gorecka, Ewa; Čepič, Mojca; Vaupotič, Nataša; Gomola, Kinga; Mieczkowski, Jozef
2005-12-01
Critical freezing of molecular rotation in an achiral smectic phase, which leads to polar ordering through the second order paraelectric-antiferroelectric (Sm-A→Sm-APA) phase transition is studied theoretically and experimentally. Strong softening of the polar mode in the Sm-A phase and highly intensive dielectric mode in the Sm-APA phase are observed due to weak antiferroelectric interactions in the system. In the Sm-APA phase the dielectric response behaves critically upon biasing by a dc electric field. Such a behavior is found general for the antiferroelectric smectic phase with significant quadrupolar interlayer coupling.
Blasco, Salvador; Cano, Joan; Clares, M Paz; García-Granda, Santiago; Doménech, Antonio; Jiménez, Hermas R; Verdejo, Begoña; Lloret, Francesc; García-España, Enrique
2012-11-05
The crystal structure of a binuclear Mn(III) complex of a scorpiand-like ligand (L) displays an unsupported single oxo bridging ligand with a Mn(III)-O-Mn(III) angle of 174.7°. Magnetic susceptibility measurements indicate strong antiferromagnetic coupling between the two metal centers. DFT calculations have been carried out to understand the magnetic behavior and to analyze the nature of the observed Jahn-Teller distortion. Paramagnetic (1)H NMR has been applied to rationalize the formation and magnetic features of the complexes formed in solution.
Topological Hall Effect from Strong to Weak Coupling
NASA Astrophysics Data System (ADS)
Nakazawa, Kazuki; Bibes, Manuel; Kohno, Hiroshi
2018-03-01
The topological Hall effect (THE) of electrons coupled to a noncoplanar spin texture has been studied so far for the strong- and weak-coupling regimes separately; the former in terms of the Berry phase and the latter by perturbation theory. In this letter, we present a unified treatment in terms of spin gauge field by considering not only the adiabatic (Berry phase) component of the gauge field but also the nonadiabatic component. While only the adiabatic contribution is important in the strong-coupling regime, it is completely canceled by a part of the nonadiabatic contribution in the weak-coupling regime, where the THE is governed by the remaining nonadiabatic terms. We found a new weak-coupling region that cannot be accessed by a simple perturbation theory, where the Hall conductivity is proportional to M, with 2M being the exchange splitting of the electron spectrum.
NASA Astrophysics Data System (ADS)
Skoropata, E.; Su, T. T.; Ouyang, H.; Freeland, J. W.; van Lierop, J.
2017-07-01
γ -Fe2O3 particles, surface modified with NiO crystallites, form a unique nanocomposite that points to how to tune strong interfacial exchange coupling. We find that Ni2 + migrates into the octahedral sites of the γ -Fe2O3 nanoparticle surface, and this NiFe2O4 -like layer permits effective magnetic coupling of Ni and Fe sites that strengthens the interface exchange. A large increase in coercivity coinciding with a loss of exchange bias is achieved by this strong interfacial coupling that results in a Ni2 + moment reversal in the NiO with the γ -Fe2O3 . This work reveals the importance of intermixing in, and possibility to use, such an exchange coupling regime to alter substantially the coercivity and hence control an important property of exchange-coupled nanocomposite magnets.
ERIC Educational Resources Information Center
Christensen, Andrew; Atkins, David C.; Baucom, Brian; Yi, Jean
2010-01-01
Objective: To follow distressed married couples for 5 years after their participation in a randomized clinical trial. Method: A total of 134 chronically and seriously distressed married couples were randomly assigned to approximately 8 months of either traditional behavioral couple therapy (TBCT; Jacobson & Margolin, 1979) or integrative…
Greater emotional arousal predicts poorer long-term memory of communication skills in couples.
Baucom, Brian R; Weusthoff, Sarah; Atkins, David C; Hahlweg, Kurt
2012-06-01
Many studies have examined the importance of learning skills in behaviorally based couple interventions but none have examined predictors of long-term memory for skills. Associations between emotional arousal and long-term recall of communication skills delivered to couples during a behaviorally based relationship distress prevention program were examined in a sample of 49 German couples. Fundamental frequency (f(0)), a vocal measure of encoded emotional arousal, was measured during pre-treatment couple conflict. Higher levels of f(0) were linked to fewer skills remembered 11 years after completing the program, and women remembered more skills than men. Implications of results for behaviorally based couple interventions are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.
2013-12-01
Intertidal coastal environments are prone to changes induced by sea level rise, increases in storminess, and anthropogenic disturbances. It is unclear how changes in external drivers may affect the dynamics of low energy coastal environments because their response is non-linear, and characterized by many thresholds and discontinuities. As such, process-based modeling of the ecogeomorphic processes underlying the dynamics of these ecosystems is useful, not only to predict their change through time, but also to generate new hypotheses and research questions. Here, a three-point dynamic model was developed to investigate how internal and external processes affect the behavior of coupled marsh mudflat systems. The model directly incorporates ecogeomorphological feedbacks between wind waves, salt marsh vegetation, allochthonous sediment loading, tidal flat vegetation and sea level rise. The model was applied to examine potential trajectories of salt marshes on the Eastern seaboard of the United States, including those in the Plum Island Ecosystems (PIE), Virginia Coast Reserve (VCR) and Georgia Coastal Ecosystems (GCE) long term ecological research (LTER) sites. While these sites are undergoing similar rates of relative sea level rise (RSLR), they have distinct differences in site specific environmental drivers including tides, wind waves, allochthonous sediment supply and the presence or absence of seagrass. These differences lead to the emergence of altered behaviors in the coupled salt marsh-tidal flat system. For marsh systems without seagrass or significant riverine sediment supply, conditions similar to those at PIE, results indicated that horizontal and vertical marsh evolution respond in opposing ways to wave induced processes. Marsh horizontal retreat is triggered by large mudflats and strong winds, whereas small mudflats and weak winds reduce the sediment supply to the salt marsh, decreasing its capability to keep pace with sea level rise. Marsh expansion and an eventual lateral equilibrium are possible only with large allochthonous sediment supply. Once marshes expanded, marsh retreat can be prevented by a sediment supply smaller than the one that filled the basin. At the GCE, the Altamaha River allows for enhanced allochthonous supply directly to the salt marsh platform, reducing the importance of waves on the tidal flat. As a result, infilling or retreat become the prevalent behaviors. For the VCR, the presence of seagrass decreases near bed shear stresses and sediment flux to the salt marsh platform, however, seagrass also reduces the wave energy acting on the boundary of the marsh reducing boundary erosion. Results indicate that the reduction in wave power allows for seagrass to provide a strong stabilizing affect on the coupled salt marsh tidal flat system, but as external sediment supply increases and light conditions decline the system reverts to that of a bare tidal flat. Across all systems and with current rates of sea level rise, retreat is a more likely marsh loss modality than drowning.
Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; ...
2015-09-08
In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less
Remote control of the dissociative ionization of H2 based on electron-H2 + entanglement
NASA Astrophysics Data System (ADS)
Wang, Jun-Ping; He, Feng
2018-04-01
The single ionization of H2 in strong laser fields creates the correlated electron-H2 + pair. Based on such a correlation, we conceive a strategy to control the energy spectra of the freed electron or dissociative fragments by simulating the time-dependent Schrödinger equation. Two attosecond pulses in a train produce the replica of electron-H2 + pairs, which are to be steered by a time-delayed phase-stabilized (mid)infrared laser pulse. By controlling the behavior of the freed electron, the dissociation of H2 + can be controlled even though there is no direct laser-H2 + coupling. On the other hand, the photoelectron energy spectra can be manipulated via laser-H2 + coupling. This study demonstrates the entanglement of molecular quantum wave packets, and affords a route to remotely control molecular dissociative ionization.
Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells.
Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel
2018-01-26
We study the exciton gas-liquid transition in GaAs/AlGaAs coupled quantum wells. Below a critical temperature, T_{C}=4.8 K, and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T≲1.1 K, similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1≲T<4.8 K. Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T
Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells
NASA Astrophysics Data System (ADS)
Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel
2018-01-01
We study the exciton gas-liquid transition in GaAs /AlGaAs coupled quantum wells. Below a critical temperature, TC=4.8 K , and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T ≲1.1 K , similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1 ≲T <4.8 K . Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, D.L.; Cuneo, M.E.; McKay, P.F.
We present results from initial experiments with a high impedance applied-B extraction diode on the SABRE ten stage linear induction accelerator (6.7 MV, 300 kA). We have demonstrated efficient coupling of power from the accelerator through an extended MITL (Magnetically Insulated Transmission Line) into a high intensity ion beam. Both MITL electron flow in the diode region and ion diode behavior, including ion source turn-on, virtual cathode formation and evolution, enhancement delay, and ion coupling efficiency, are strongly influenced by the geometry of the diode insulating magnetic field. For our present diode electrode geometry, electrons from the diode feed stronglymore » influence the evolution of the virtual cathode. Both experimental data and particle-in-cell numerical simulations show that uniform insulation of these feed electrons is required for uniform ion emission and efficient diode operation.« less
Bontempi, Nicolò; Vassalini, Irene; Danesi, Stefano; Ferroni, Matteo; Donarelli, Maurizio; Colombi, Paolo; Alessandri, Ivano
2018-05-03
Silicon is one of the most interesting candidates for plasmon-free surface-enhaced Raman scattering (SERS), because of its high-refractive index and thermal stability. However, here we demonstrate that the alleged thermal stability of silicon nanoshells irradiated by conventional Raman laser cannot be taken for granted. We investigated the opto-thermal behavior of SiO 2 /Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (λ = 532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that, in the case of strong opto-thermal coupling, the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.
Low-Dimensional Models for Physiological Systems: Nonlinear Coupling of Gas and Liquid Flows
NASA Astrophysics Data System (ADS)
Staples, A. E.; Oran, E. S.; Boris, J. P.; Kailasanath, K.
2006-11-01
Current computational models of biological organisms focus on the details of a specific component of the organism. For example, very detailed models of the human heart, an aorta, a vein, or part of the respiratory or digestive system, are considered either independently from the rest of the body, or as interacting simply with other systems and components in the body. In actual biological organisms, these components and systems are strongly coupled and interact in complex, nonlinear ways leading to complicated global behavior. Here we describe a low-order computational model of two physiological systems, based loosely on a circulatory and respiratory system. Each system is represented as a one-dimensional fluid system with an interconnected series of mass sources, pumps, valves, and other network components, as appropriate, representing different physical organs and system components. Preliminary results from a first version of this model system are presented.
Critical behavior of the extended Hubbard model with bond dimerization
NASA Astrophysics Data System (ADS)
Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.; Fehske, Holger
2018-05-01
Exploiting the matrix-product-state based density-matrix renormalization group (DMRG) technique we study the one-dimensional extended (U-V) Hubbard model with explicit bond dimerization in the half-filled band sector. In particular we investigate the nature of the quantum phase transition, taking place with growing ratio V / U between the symmetry-protected-topological and charge-density-wave insulating states. The (weak-coupling) critical line of continuous Ising transitions with central charge c = 1 / 2 terminates at a tricritical point belonging to the universality class of the dilute Ising model with c = 7 / 10 . We demonstrate that our DMRG data perfectly match with (tricritical) Ising exponents, e.g., for the order parameter β = 1 / 8 (1/24) and correlation length ν = 1 (5/9). Beyond the tricritical Ising point, in the strong-coupling regime, the quantum phase transition becomes first order.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei
2018-05-01
The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Qinghu; Department of Physics, Zhejiang University, Hangzhou 310027; Yang Yuan
2010-11-15
Entanglement evolution of two independent Jaynes-Cummings atoms without the rotating-wave approximation (RWA) is studied by a numerically exact approach. Previous results based on the RWA are essentially modified in the strong-coupling regime (g{>=}0.1), which has been reached in the recent experiments on the flux qubit coupled to the LC resonator. For the initial Bell state with anticorrelated spins, entanglement sudden death (ESD) is absent in the RWA but does appear in the present numerical calculation without the RWA. Aperiodic entanglement evolution in the strong-coupling regime is observed. The strong atom-cavity coupling facilitates the ESD. The sign of the detuning playsmore » an essential role in the entanglement evolution for strong coupling, which is irrelevant in the RWA. Analytical results based on an unitary transformation are also given, which could not modify the RWA picture essentially. It is suggested that the activation of the photons may be the origin of ESD in this system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensen, Matthias; Heilpern, Tal; Gray, Stephen K.
Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance linemore » width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.« less
NASA Astrophysics Data System (ADS)
Bonizzoni, Claudio; Ghirri, Alberto; Affronte, Marco
Hybrid spin-photons quantum bits can be obtained under strong coupling regime between microwave photons and a spin ensemble, where coherent exchange of photons is realized. Molecular spins systems, thanks to their tailorable magnetic properties, are retained promising candidates for hybrid qubits. We present an experimental study of the coupling regimes between a high critical temperature YBCO superconducting resonator and different molecular spin ensembles. Three mononuclear compounds, (PPh4)2[Cu(mnt)2], [ErPc2]-TBA+ , Dy(trensal) and two organic radicals, DPPH and PyBTM, are studied. Strong coupling is found in radicals thanks to exchange narrowing. Possible strategies to achieve strong coupling with mononuclear compounds are discussed, and several hints in the design of molecular spins are given.
NASA Astrophysics Data System (ADS)
Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Liakhov, Yuriy F.; Tomchuk, Anastasiya V.; Haftel, Michael; Pinchuk, Anatoliy O.
2017-10-01
Effects of plasmonic coupling between metal nanoparticles and thin metal films separated by thin dielectric film-spacers have been studied by means of light extinction in three-layer planar Au NPs monolayer/dielectric (shellac) film/Al film nanostructure. The influence of coupling on the spectral characteristics of the Au NPs SPR extinction peak has been analyzed with spacer thickness, varied from 3 to 200 nm. The main observed features are a strong red shift (160 nm), and non-monotonical behavior of the magnitude and width of Au NPs SPR, as the spacer thickness decreased. The appearance of an intensive gap mode peak was observed at a spacer thickness smaller than approximately 30 nm, caused by the hybridization of the Au NPs SPR mode and gap mode in the presence of the Al film. Additionally, the appreciable enhancement (5.6 times) of light extinction by the Au NPs monolayer in the presence of Al film has been observed. A certain value of dielectric spacer thickness (70 nm) exists at which such enhancement is maximal.
Ising-like patterns of spatial synchrony in population biology
NASA Astrophysics Data System (ADS)
Noble, Andrew; Hastings, Alan; Machta, Jon
2014-03-01
Systems of coupled dynamical oscillators can undergo a phase transition between synchronous and asynchronous phases. In the case of coupled map lattices, the spontaneous symmetry breaking of a temporal-phase order parameter is known to exhibit Ising-like critical behavior. Here, we investigate a noisy coupled map motivated by the study of spatial synchrony in ecological populations far from the extinction threshold. Ising-like patterns of criticality, as well as spinodal decomposition and homogeneous nucleation, emerge from the nonlinear interactions of environmental fluctuations in habitat quality, local density-dependence in reproduction, and dispersal. In the mean-field limit, the correspondence to the Ising model is exact: the fixed points of our dynamical system are given by the equation of state for Weiss mean-field theory under an appropriate mapping of parameters. We have strong evidence that a quantitative correspondence persists, both near and far from the critical point, in the presence of fluctuations. Our results provide a formal connection between equilibrium statistical physics and population biology. This work is supported by the National Science Foundation under Grant No. 1344187.
Two-level system in spin baths: Non-adiabatic dynamics and heat transport
NASA Astrophysics Data System (ADS)
Segal, Dvira
2014-04-01
We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.
Molecular aspect ratio and anchoring strength effects in a confined Gay-Berne liquid crystal
NASA Astrophysics Data System (ADS)
Cañeda-Guzmán, E.; Moreno-Razo, J. A.; Díaz-Herrera, E.; Sambriski, E. J.
2014-04-01
Phase diagrams for Gay-Berne (GB) fluids were obtained from molecular dynamics simulations for GB(2, 5, 1, 2) (i.e. short mesogens) and GB(3, 5, 1, 2) (i.e. long mesogens), which yield isotropic, nematic, and smectic-B phases. The long-mesogen fluid also yields the smectic-A phase. Ordered phases of the long-mesogen fluid form at higher temperatures and lower densities when compared to those of the short-mesogen fluid. The effect of confinement under weak and strong substrate couplings in slab geometry was investigated. Compared to the bulk, the isotropic-nematic transition does not shift in temprature significantly for the weakly coupled substrate in either mesogen fluid. However, the strongly coupled substrate shifts the transition to lower temperature. Confinement induces marked stratification in the short-mesogen fluid. This effect diminishes with distance from the substrate, yielding bulk-like behaviour in the slab central region. Fluid stratification is very weak for the long-mesogen fluid, but the strongly coupled substrate induces 'smectisation', an ordering effect that decays with distance. Orientation of the fluid on the substrate depends on the mesogen. There is no preferred orientation in a plane parallel to the substrate for the weakly coupled case. In the strongly coupled case, the mesogen orientation mimics that of adjacent fluid layers. Planar anchoring is observed with a broad distribution of orientations in the weakly coupled case. In the strongly coupled case, the distribution leans toward planar orientations for the short-mesogen fluid, while a marginal preference for tilting persists in the long-mesogen fluid.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics.
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-10-07
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.
Synergetic Organization in Speech Rhythm
NASA Astrophysics Data System (ADS)
Cummins, Fred
The Speech Cycling Task is a novel experimental paradigm developed together with Robert Port and Keiichi Tajima at Indiana University. In a task of this sort, subjects repeat a phrase containing multiple prominent, or stressed, syllables in time with an auditory metronome, which can be simple or complex. A phase-based collective variable is defined in the acoustic speech signal. This paper reports on two experiments using speech cycling which together reveal many of the hallmarks of hierarchically coupled oscillatory processes. The first experiment requires subjects to place the final stressed syllable of a small phrase at specified phases within the overall Phrase Repetition Cycle (PRC). It is clearly demonstrated that only three patterns, characterized by phases around 1/3, 1/2 or 2/3 are reliably produced, and these points are attractors for other target phases. The system is thus multistable, and the attractors correspond to stable couplings between the metrical foot and the PRC. A second experiment examines the behavior of these attractors at increased rates. Faster rates lead to mode jumps between attractors. Previous experiments have also illustrated hysteresis as the system moves from one mode to the next. The dynamical organization is particularly interesting from a modeling point of view, as there is no single part of the speech production system which cycles at the level of either the metrical foot or the phrase repetition cycle. That is, there is no continuous kinematic observable in the system. Nonetheless, there is strong evidence that the oscopic behavior of the entire production system is correctly described as hierarchically coupled oscillators. There are many parallels between this organization and the forms of inter-limb coupling observed in locomotion and rhythmic manual tasks.
Does alcohol involvement increase the severity of intimate partner violence?
McKinney, Christy M; Caetano, Raul; Rodriguez, Lori A; Okoro, Ngozi
2010-04-01
Most studies that have examined alcohol use immediately prior to intimate partner violence (IPV) have been limited to male-to-female partner violence (MFPV) and are subject to a number of methodological limitations. We add new information concerning the relationship between alcohol involvement and severity of IPV, MFPV, and female-to-male partner violence (FMPV). We analyzed data from a 1995 U.S. national population-based survey of couples > or = 18 years old. We examined 436 couples who reported IPV and had information on alcohol involvement with IPV. We measured IPV using a revised Conflict Tactics Scale, Form R that asked respondents about 11 violent behaviors in the past year. Respondents were classified into mutually exclusive categories as having experienced mild only or mild + severe ("severe") IPV, MFPV or FMPV. Respondents were also asked if they or their partner were drinking at the time the violent behavior occurred and were classified as exposed to IPV with or without alcohol involvement. We estimated proportions, odds ratios, 95% confidence intervals, and p-values of the proposed associations, accounting for the complex survey design. Overall, 30.2% of couples who reported IPV reported alcohol involved IPV; 69.8% reported no alcohol involvement. In adjusted analyses, those reporting severe (vs. mild only) IPV were more than twice as likely to report alcohol involvement. In adjusted analyses, those reporting severe (vs. mild) MFPV or FMPV were more likely to report female but not male alcohol involvement. Though estimates were positive and strong, most confidence intervals were compatible with a wide range of estimates including no association. Our findings suggest alcohol involvement of either or both in the couple increases the risk of severe IPV. Our findings also suggest female alcohol use may play an important role in determining the severity of IPV, MFPV or FMPV.
Coupled Thermo-Hydro-Mechanical Numerical Framework for Simulating Unconventional Formations
NASA Astrophysics Data System (ADS)
Garipov, T. T.; White, J. A.; Lapene, A.; Tchelepi, H.
2016-12-01
Unconventional deposits are found in all world oil provinces. Modeling these systems is challenging, however, due to complex thermo-hydro-mechanical processes that govern their behavior. As a motivating example, we consider in situ thermal processing of oil shale deposits. When oil shale is heated to sufficient temperatures, kerogen can be converted to oil and gas products over a relatively short timespan. This phase change dramatically impact both the mechanical and hydrologic properties of the rock, leading to strongly coupled THMC interactions. Here, we present a numerical framework for simulating tightly-coupled chemistry, geomechanics, and multiphase flow within a reservoir simulator (the AD-GPRS General Purpose Research Simulator). We model changes in constitutive behavior of the rock using a thermoplasticity model that accounts for microstructural evolution. The multi-component, multiphase flow and transport processes of both mass and heat are modeled at the macroscopic (e.g., Darcy) scale. The phase compositions and properties are described by a cubic equation of state; Arrhenius-type chemical reactions are used to represent kerogen conversion. The system of partial differential equations is discretized using a combination of finite-volumes and finite-elements, respectively, for the flow and mechanics problems. Fully implicit and sequentially implicit method are used to solve resulting nonlinear problem. The proposed framework is verified against available analytical and numerical benchmark cases. We demonstrate the efficiency, performance, and capabilities of the proposed simulation framework by analyzing near well deformation in an oil shale formation.
Vectorial magnetometry with the magneto-optic Kerr effect applied to Co/Cu/Co trilayer structures
NASA Astrophysics Data System (ADS)
Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.
1993-05-01
We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal magneto-optic Kerr effect measurements. This arrangement differs from the usual procedures in that the same optical geometry is used but the magnet geometry altered. This leads to two magneto-optic signals which are directly comparable in magnitude thereby giving the in-plane magnetization vector directly. We show that it is of great value to study both in-plane magnetization vector components when studying coupled structures where significant anisotropies are also present. We discuss simulations which show that it is possible to accurately determine the coupling strength in such structures by examining the behavior of the component of magnetization perpendicular to the applied field in the vicinity of the hard in-plane anisotropy axis. We illustrate this technique by examining the magnetization and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 Å and 27 Å) trilayer structures prepared by molecular beam epitaxy, in which coherent rotation of the magnetization vector is observed when the magnetic field B is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers, while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths.
NASA Astrophysics Data System (ADS)
Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer
2018-05-01
In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.
ADHD and Depression Symptoms in Parent Couples Predict Response to Child ADHD and ODD Behavior.
Wymbs, Brian T; Dawson, Anne E; Egan, Theresa E; Sacchetti, Gina M; Tams, Sean T; Wymbs, Frances A
2017-04-01
Parents of children with attention-deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) often have elevated ADHD and depressive symptoms, both of which increase the risk of ineffective parenting and interparental discord. However, little is known about whether child ADHD/ODD behavior and parent ADHD or depressive symptoms uniquely or synergistically predict the quality of parenting and interparental communication during triadic (mother-father-child) interactions. Ninety parent couples, including 51 who have children diagnosed with ADHD, were randomly assigned to interact with a 9-12 year-old confederate child (84 % male) exhibiting either ADHD/ODD-like behavior or typical behavior. Parents reported their own ADHD and depressive symptoms, and parents and observers rated the quality of parenting and interparental communication during the interaction. Actor-partner interdependence modeling indicated that child ADHD/ODD behavior predicted less positive and more negative parenting and communication, independent of adult ADHD and depressive symptoms. Parent couples including two parents with elevated ADHD communicated more positively while managing children exhibiting ADHD/ODD behavior than couples managing children behaving typically or couples with only one parent with elevated ADHD symptoms. Couples including one parent with, and one parent without, elevated ADHD or depressive symptoms parented less positively and more negatively, and communicated more negatively, when managing children exhibiting ADHD/ODD behavior than when managing children behaving typically. Taken together, depending on the similarity of ADHD and depressive symptom levels in parent couples, adults managing children exhibiting ADHD/ODD behavior may parent or communicate positively or negatively. Findings highlight the need to consider the psychopathology of both parents when treating children with ADHD in two-parent homes.
Shock structures in a strongly coupled self-gravitating opposite-polarity dust plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, A. A.; Schlickeiser, R.
2016-03-15
A strongly coupled, self-gravitating, opposite-polarity dust plasma (containing strongly coupled inertial positive and negative dust fluids, and inertialess weakly coupled ions) is considered. The generalized hydrodynamic model and the reductive perturbation method are employed to examine the possibility for the formation of the dust-acoustic (DA) shock structures in such an opposite-polarity dust plasma. It has been shown that the strong correlation among charged dust is a source of dissipation and is responsible for the formation of the DA shock structures in such the opposite-polarity dust plasma medium. The parametric regimes for the existence of the DA shock structures (associated withmore » electrostatic and gravitational potentials) and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component, self-gravitational field, and strong correlation among charged dust. The implications of our results in different space plasma environments and laboratory plasma devices are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Junker, Philipp; Hackl, Klaus
2016-09-01
Numerical simulations are a powerful tool to analyze the complex thermo-mechanically coupled material behavior of shape memory alloys during product engineering. The benefit of the simulations strongly depends on the quality of the underlying material model. In this contribution, we discuss a variational approach which is based solely on energetic considerations and demonstrate that unique calibration of such a model is sufficient to predict the material behavior at varying ambient temperature. In the beginning, we recall the necessary equations of the material model and explain the fundamental idea. Afterwards, we focus on the numerical implementation and provide all information that is needed for programing. Then, we show two different ways to calibrate the model and discuss the results. Furthermore, we show how this model is used during real-life industrial product engineering.
Transport of inertial anisotropic particles under surface gravity waves
NASA Astrophysics Data System (ADS)
Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas
2016-11-01
The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.
Neural mechanisms and personality correlates of the sunk cost effect
Fujino, Junya; Fujimoto, Shinsuke; Kodaka, Fumitoshi; Camerer, Colin F.; Kawada, Ryosaku; Tsurumi, Kosuke; Tei, Shisei; Isobe, Masanori; Miyata, Jun; Sugihara, Genichi; Yamada, Makiko; Fukuyama, Hidenao; Murai, Toshiya; Takahashi, Hidehiko
2016-01-01
The sunk cost effect, an interesting and well-known maladaptive behavior, is pervasive in real life, and thus has been studied in various disciplines, including economics, psychology, organizational behavior, politics, and biology. However, the neural mechanisms underlying the sunk cost effect have not been clearly established, nor have their association with differences in individual susceptibility to the effect. Using functional magnetic resonance imaging, we investigated neural responses induced by sunk costs along with measures of core human personality. We found that individuals who tend to adhere to social rules and regulations (who are high in measured agreeableness and conscientiousness) are more susceptible to the sunk cost effect. Furthermore, this behavioral observation was strongly mediated by insula activity during sunk cost decision-making. Tight coupling between the insula and lateral prefrontal cortex was also observed during decision-making under sunk costs. Our findings reveal how individual differences can affect decision-making under sunk costs, thereby contributing to a better understanding of the psychological and neural mechanisms of the sunk cost effect. PMID:27611212
Weak and strong coupling equilibration in nonabelian gauge theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul
2016-04-06
In this study, we present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of themore » system.« less
Strong coupling of a single electron in silicon to a microwave photon
NASA Astrophysics Data System (ADS)
Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.
2017-01-01
Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.
Meyer, Jess M; Percheski, Christine
2017-01-01
Previous research finds that marriage is associated with better health and lower mortality, and one of the mechanisms underlying this association is health-related selection out of marriage. Using longitudinal survey data from 2,348 couples from the Fragile Families and Child Wellbeing Study, we examine whether certain health behaviors-smoking and binge drinking-are associated with risk of union dissolution among couples with young children. We use discrete time hazard models to test whether associations between health behaviors and union dissolution differ between married and cohabiting parents. We find no statistically significant association between binge drinking and union dissolution for either cohabiting or married couples. Parental smoking, however, is associated with union dissolution. On average, married and cohabiting couples in which both parents smoke have a higher risk of union dissolution than couples in which neither parent smokes. Additionally, father's smoking (in couples in which the mother does not smoke) is associated with union dissolution, but only for married couples. These findings illustrate the importance of considering the health behaviors of both partners and provide further evidence of differences in union dissolution dynamics between married and cohabiting couples.
Delavande, Adeline; Wagner, Zachary; Sood, Neeraj
2016-01-01
A significant proportion of HIV-positive adults in sub-Saharan Africa are in serodiscordant relationships. Identification of such serodiscordant couples through couple HIV testing and counseling (HTC) is thought to promote safe sexual behavior and reduce the probability of within couple seroconversion. However, it is possible HTC benefits are not sustained over time and therefore repeated HTC may be more effective at preventing seroconversion than one time HTC. We tested this theory in Zomba, Malawi by randomly assigning 170 serodiscordant couples to receive repeated HTC and 167 serodiscordant couples to receive one time HTC upon study enrollment (control group). We used linear probability models and probit model with couple fixed effects to assess the impact of the intervention on risky sexual behavior. At one-year follow-up, we found that couples that received repeated HTC reported significantly more condom use. However, we found no difference in rate of seroconversion between groups, nor did we find differences in subjective expectations about seroconversion or false beliefs about HIV, two expected pathways of behavior change. We conclude that repeated HTC may promote safe sexual behavior, but this result should be interpreted with caution, as it is inconsistent with the result from biological and subjective outcomes. PMID:27158553
Delavande, Adeline; Wagner, Zachary; Sood, Neeraj
2016-03-01
A significant proportion of HIV-positive adults in sub-Saharan Africa are in serodiscordant relationships. Identification of such serodiscordant couples through couple HIV testing and counseling (HTC) is thought to promote safe sexual behavior and reduce the probability of within couple seroconversion. However, it is possible HTC benefits are not sustained over time and therefore repeated HTC may be more effective at preventing seroconversion than one time HTC. We tested this theory in Zomba, Malawi by randomly assigning 170 serodiscordant couples to receive repeated HTC and 167 serodiscordant couples to receive one time HTC upon study enrollment (control group). We used linear probability models and probit model with couple fixed effects to assess the impact of the intervention on risky sexual behavior. At one-year follow-up, we found that couples that received repeated HTC reported significantly more condom use. However, we found no difference in rate of seroconversion between groups, nor did we find differences in subjective expectations about seroconversion or false beliefs about HIV, two expected pathways of behavior change. We conclude that repeated HTC may promote safe sexual behavior, but this result should be interpreted with caution, as it is inconsistent with the result from biological and subjective outcomes.
The Numerical Simulation of Coupling Behavior of Soil with Chemical Pollutant Effects
NASA Astrophysics Data System (ADS)
Liu, Z. J.; Li, X. K.; Tang, L. Q.
2010-05-01
The coupling behavior of clay plays a role in the integrity of clay barriers used in landfills. The clay barriers are subjected to mechanical and thermal effects coupled with hydraulic behavior, also, if the leachates become in contact with the clay liner, chemical effects may lead to some drastic changes in the properties of the clay. A numerical method to simulate the coupling behavior of soil with chemical pollutant effects is presented. Within the framework of Gens-Alonso model describing the constitutive behavior of unsaturated clay presented in reference[1], basing on the work of Wu[2] and Hueckel[3], a constitutive model describing the chemo-thermo-hydro-mechanical(CTHM) coupling behavior of clays in contact with a single organic contaminant is presented. The thermical softening and chemical softening is considered in the presented model. The strain arising in the material due to chemical and thermical effects can be decomposed into two parts: elastic expansion and plastic compaction. The chemical effects are described in terms of the mass concentration of the contaminant. The increases in temperature and contaminant concentration cause decreases of the pre-consolidation pressure and the cohesion. The mechanisms are called thermical softening and chemical softening. The presented coupled CTHM constitutive model has been integrated into the coupled thermo-hydro-mechanical mathematical model including contaminant transport in porous media. To solve the equilibrium equations, the grogram of finite element methods is developed with a stagger algorithm. The mechanisms taking place due to the coupling behaviour of the clay with a single contaminant solute are analysed with the presented numerical method.
Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model
NASA Astrophysics Data System (ADS)
Gnanaseelan, C.; Deshpande, Aditi
2018-03-01
The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels the connection between equatorial Indian Ocean circulation and evolution and strengthening of IOD.
Instability of Longitudinal Wave in Magnetized Strongly Coupled Dusty Plasma
NASA Astrophysics Data System (ADS)
Xie, Bai-Song
2003-12-01
Instability of longitudinal wave in magnetized strongly coupled dusty plasmas is investigated. The dust charging relaxation is taken into account. It is found that there exists threshold of interdust distance for the instability of wave, which is determined significantly by the dust charging relaxation, the coupling parameter of high correlation of dust as well the strength of magnetic field.
Using network technology for studying the ionosphere
NASA Astrophysics Data System (ADS)
Yasyukevich, Yury; Zhivetiev, Ilya
2015-09-01
One of the key problems of ionosphere physics is the coupling between different ionospheric regions. We apply networks technology for studying the coupling of changing ionospheric dynamics in different regions. We used data from global ionosphere maps (GIM) of total electron content (TEC) produced by CODE for 2005-2010. Distribution of cross-correlation function maxima of TEC variations is not simple. This distribution allows us to reveal two levels of ionosphere coupling: "strong" (r>0.9) and "weak" (r>0.72). The ionosphere of the Arctic region upper 50° magnetic latitude is characterized by a "strong" coupling. In the Southern hemisphere, a similar region is bigger. "Weak" coupling is typical for the whole Southern hemisphere. In North America there is an area where TEC dynamics is "strongly" correlated inside and is not correlated with other ionospheric regions.
NASA Astrophysics Data System (ADS)
Bosman, Sal J.; Gely, Mario F.; Singh, Vibhor; Bruno, Alessandro; Bothner, Daniel; Steele, Gary A.
In circuit QED, multi-mode extensions of the quantum Rabi model suffer from divergence problems. Here, we spectroscopically study multi-mode ultra-strong coupling using a transmon circuit architecture, which provides no clear guidelines on how many modes play a role in the dynamics of the system. As our transmon qubit, we employ a suspended island above the voltage anti-node of a λ / 4 coplanar microwave resonator, thereby realising a circuit where 88% of the qubit capacitance is formed by a vacuum-gap capacitor with the center conductor of the resonator. We measure vacuum Rabi splitting over multiple modes up to 2 GHz, reaching coupling ratios of g / ω = 0 . 18 , well within the ultra-strong coupling regime. We observe a qubit-mediated mode coupling, measurable up to the fifth mode at 38 GHz. Using a novel analytical quantum circuit model of this architecture, which includes all modes without introducing divergencies, we are able to fit the full spectrum and extract a vacuum fluctuations induced Bloch-Siegert shift of up to 62 MHz. This circuit architecture expands the versatility of the transmon technology platform and opens many possibilities in multi-mode physics in the ultra-strong coupling regime.
Conroy, Amy A.; McGrath, Nuala; van Rooyen, Heidi; Hosegood, Victoria; Johnson, Mallory O.; Fritz, Katherine; Marr, Alexander; Ngubane, Thulani; Darbes, Lynae A.
2016-01-01
Introduction Power imbalances within sexual relationships have significant implications for HIV prevention in sub-Saharan Africa. Little is known about how power influences the quality of a relationship, which could be an important pathway leading to healthy behavior around HIV/AIDS. Methods This paper uses data from 448 heterosexual couples (896 individuals) in rural KwaZulu-Natal, South Africa who completed baseline surveys from 2012–2014 as part of a couples-based HIV intervention trial. Using an actor-partner interdependence perspective, we assessed: (1) how both partners’ perceptions of power influences their own (i.e., actor effect) and their partner’s reports of relationship quality (i.e., partner effect); and (2) whether these associations differed by gender. We examined three constructs related to power (female power, male equitable gender norms, and shared power) and four domains of relationship quality (intimacy, trust, mutually constructive communication, and conflict). Results For actor effects, shared power was strongly and consistently associated with higher relationship quality across all four domains. The effect of shared power on trust, mutually constructive communication, and conflict were stronger for men than women. The findings for female power and male equitable gender norms were more mixed. Female power was positively associated with women’s reports of trust and mutually constructive communication, but negatively associated with intimacy. Male equitable gender norms were positively associated with men’s reports of mutually constructive communication. For partner effects, male equitable gender norms were positively associated with women’s reports of intimacy and negatively associated with women’s reports of conflict. Conclusions Research and health interventions aiming to improving HIV-related behaviors should consider sources of shared power within couples and potential leverage points for empowerment at the couple level. Efforts solely focused on empowering women should also take the dyadic environment and men’s perspectives into account to ensure positive relationship outcomes. PMID:26859436
Conroy, Amy A; McGrath, Nuala; van Rooyen, Heidi; Hosegood, Victoria; Johnson, Mallory O; Fritz, Katherine; Marr, Alexander; Ngubane, Thulani; Darbes, Lynae A
2016-03-01
Power imbalances within sexual relationships have significant implications for HIV prevention in sub-Saharan Africa. Little is known about how power influences the quality of a relationship, which could be an important pathway leading to healthy behavior around HIV/AIDS. This paper uses data from 448 heterosexual couples (896 individuals) in rural KwaZulu-Natal, South Africa who completed baseline surveys from 2012 to 2014 as part of a couples-based HIV intervention trial. Using an actor-partner interdependence perspective, we assessed: (1) how both partners' perceptions of power influences their own (i.e., actor effect) and their partner's reports of relationship quality (i.e., partner effect); and (2) whether these associations differed by gender. We examined three constructs related to power (female power, male equitable gender norms, and shared power) and four domains of relationship quality (intimacy, trust, mutually constructive communication, and conflict). For actor effects, shared power was strongly and consistently associated with higher relationship quality across all four domains. The effect of shared power on trust, mutually constructive communication, and conflict were stronger for men than women. The findings for female power and male equitable gender norms were more mixed. Female power was positively associated with women's reports of trust and mutually constructive communication, but negatively associated with intimacy. Male equitable gender norms were positively associated with men's reports of mutually constructive communication. For partner effects, male equitable gender norms were positively associated with women's reports of intimacy and negatively associated with women's reports of conflict. Research and health interventions aiming to improving HIV-related behaviors should consider sources of shared power within couples and potential leverage points for empowerment at the couple level. Efforts solely focused on empowering women should also take the dyadic environment and men's perspectives into account to ensure positive relationship outcomes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
A CFD/CSD Interaction Methodology for Aircraft Wings
NASA Technical Reports Server (NTRS)
Bhardwaj, Manoj K.
1997-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).
Multi-disciplinary coupling effects for integrated design of propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.
Coop Gordon, Kristina; Roberson, Patricia N E; Hughes, Jessica A; Khaddouma, Alexander M; Swamy, Geeta K; Noonan, Devon; Gonzalez, Alicia M; Fish, Laura; Pollak, Kathryn I
2018-03-30
Many couples tend to report steadily decreasing relationship quality following the birth of a child. However, little is known about the postpartum period for Latino couples, a rapidly growing ethnic group who are notably underserved by mental and physical health caregivers in the United States. Thus, this study investigated whether a brief couples' intervention focused on helping couples support each other while increasing healthy behaviors might improve dyadic functioning postpartum. This study presents secondary analyses of data regarding couple functioning from a larger randomized controlled trial with 348 Latino couples to promote smoking cessation. Portions of the intervention taught the couple communication and problem-solving skills to increase healthy behavior. Couples participated in four face-to-face assessments across 1 year starting at the end of the first trimester. Latent growth curve analyses revealed that the treatment group reported an increase in relationship satisfaction and constructive communication after the intervention, which diminished by 1-year follow-up, returning couples to their baseline levels of satisfaction. Results suggest that incorporating a brief couple intervention as part of a larger health intervention for Latinos may prevent postpartum decreases in relationship satisfaction. © 2018 Family Process Institute.
Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback
NASA Astrophysics Data System (ADS)
You, Xiang; Li, Zongyang; Li, Yongmin
2017-12-01
A scheme to achieve strong quantum squeezing of a mechanical resonator in a membrane-in-the-middle optomechanical system is developed. To this end, simultaneous linear and nonlinear coupling between the mechanical resonator and the cavity modes is applied. A two-tone driving light field, comprising unequal red-detuned and blue-detuned sidebands, helps in generating a coherent feedback force through the linear coupling with the membrane resonator. Another driving light field with its amplitude modulated at twice the mechanical frequency drives the mechanical parametric amplification through a second-order coupling with the resonator. The combined effect produces strong quantum squeezing of the mechanical state. The proposed scheme is quite robust to excess second-order coupling observed in coherent feedback operations and can suppress the fluctuations in the mechanical quadrature to far below the zero point and achieve strong squeezing (greater than 10 dB) for realistic parameters.
Room temperature strong light-matter coupling in three dimensional terahertz meta-atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulillo, B., E-mail: bruno.paulillo@u-psud.fr; Manceau, J.-M., E-mail: jean-michel.manceau@u-psud.fr; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr
2016-03-07
We demonstrate strong light-matter coupling in three dimensional terahertz meta-atoms at room temperature. The intersubband transition of semiconductor quantum wells with a parabolic energy potential is strongly coupled to the confined circuital mode of three-dimensional split-ring metal-semiconductor-metal resonators that have an extreme sub-wavelength volume (λ/10). The frequency of these lumped-element resonators is controlled by the size and shape of the external antenna, while the interaction volume remains constant. This allows the resonance frequency to be swept across the intersubband transition and the anti-crossing characteristic of the strong light-matter coupling regime to be observed. The Rabi splitting, which is twice themore » Rabi frequency (2Ω{sub Rabi}), amounts to 20% of the bare transition at room temperature, and it increases to 28% at low-temperature.« less
Beck, Lindsey A.; Pietromonaco, Paula R.; DeBuse, Casey J.; Powers, Sally I.; Sayer, Aline G.
2014-01-01
This research investigated how spouses’ attachment styles jointly contributed to their stress responses. Newlywed couples discussed relationship conflicts. Salivary cortisol indexed physiological stress; observer-rated behaviors indexed behavioral stress; self-reported distress indexed psychological stress. Multilevel modeling tested predictions that couples including one anxious and one avoidant partner or two anxious partners would show distinctive stress responses. As predicted, couples with anxious wives and avoidant husbands showed physiological reactivity in anticipation of conflict: Both spouses showed sharp increases in cortisol, followed by rapid declines. These couples also showed distinctive behaviors during conflict: Anxious wives had difficulty recognizing avoidant husbands’ distress, and avoidant husbands had difficulty approaching anxious wives for support. Contrary to predictions, couples including two anxious partners did not show distinctive stress responses. Findings suggest that the fit between partners’ attachment styles can improve understanding of relationships by specifying conditions under which partners’ attachment characteristics jointly influence individual and relationship outcomes. PMID:23773048
Weak polyelectrolyte complexation driven by associative charging.
Rathee, Vikramjit S; Zervoudakis, Aristotle J; Sidky, Hythem; Sikora, Benjamin J; Whitmer, Jonathan K
2018-03-21
Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.
Weak polyelectrolyte complexation driven by associative charging
NASA Astrophysics Data System (ADS)
Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.
2018-03-01
Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.
Dating and substance use in adolescent peer networks: a replication and extension.
Kreager, Derek A; Haynie, Dana L; Hopfer, Suellen
2013-03-01
The current report examined associations between romantic partner, peer and individual substance use behaviors in a sample of American adolescents. The report used two waves of data (8th and 9th grades) from the Partnerships to Enhance Resilience (PROSPER) intervention project and focused on dating couples and their friends in 54 sampled school-cohorts. Hierarchical logistic regression models examined the associations between friend, partner and friend-of-partner substance use and daters' future drinking and smoking. Surveys administered in rural Pennsylvania and Iowa secondary schools. A total of 744 dating couples. Student participants completed questionnaires that assessed substance use, background characteristics and dating and friend nominations. Friend, partner and friend-of-partner substance use were assessed at each wave directly from respective reports. Consistent with a bridging hypothesis, friends-of-partner drinking had a strong and independent association with subsequent drunkenness (b = 1.40, P < 0.01) and drinking (b = 0.82, P < 0.01) among daters, and these associations did not vary by gender. A similar association was not observed for smoking, where partner (b = 0.77, P < 0.01) and direct friends (b = 1.19, P < 0.05) smoking showed strong and significant associations with future smoking, but friends-of-partner smoking did not (b = -0.44, P > 0.10). Romantic partner and peer behaviors have substantially different associations with adolescent drinking and smoking. Intervention efforts aimed at reducing teenage smoking should be aimed at proximal peer and romantic relationships, whereas interventions of teenage drinking should also include the wider circle of indirect friends. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.
Darling, Nancy; Clarke, Sara A
2009-08-01
Fifty-three college-aged same- and mixed-sex romantic couples (83% White, 63% female, mean age, 20.8) engaged in a video recall task in which they rated their own and their partners' behaviors and emotions. Females reported feeling more connected to partners and reported fewer negative behaviors than males. Females with male partners reported the highest feelings of connection and the fewest negative behaviors. Males with male partners reported the lowest connection and most negative behaviors. Behavioral mirroring and empathic accuracy did not vary by sex of the actor or of their partner. Partners' self-reported connection and negative behaviors were similar and they accurately perceived each others' average behavioral and emotional states. The data showed little evidence that partners' behaviors mirrored one another temporally across time segments, however. Results suggest that college-aged same and mixed-sex romantic couples show greater similarities than differences in functioning.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures.
Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E W; Wu, Mingzhong; Yu, Haiming
2018-05-25
We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.
Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures
NASA Astrophysics Data System (ADS)
Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E. W.; Wu, Mingzhong; Yu, Haiming
2018-05-01
We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.
Holographic Floquet states I: a strongly coupled Weyl semimetal
NASA Astrophysics Data System (ADS)
Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi
2017-05-01
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N = 2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a "holographic Floquet state". In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm's law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the "periodic thermodynamic" concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Professional Identity and Coping Behaviors in Dual-Career Couples
ERIC Educational Resources Information Center
Bird, Gloria W.; Schnurman-Crook, Abrina
2005-01-01
This qualitative study of 15 dual-career couples examines the connection between partners' professional identity and coping behaviors implemented in response to work and family stressors. The analysis provided evidence that dual-career couples enact professional and family identities that rely on being competent and responsible in both work and…
Dyadic Processes in Early Marriage: Attributions, Behavior, and Marital Quality
ERIC Educational Resources Information Center
Durtschi, Jared A.; Fincham, Frank D.; Cui, Ming; Lorenz, Frederick O.; Conger, Rand D.
2011-01-01
Marital processes in early marriage are important for understanding couples' future marital quality. Spouses' attributions about a partner's behavior have been linked to marital quality, yet the mechanisms underlying this association remain largely unknown. When we used couple data from the Family Transitions Project (N = 280 couples) across the…
NASA Astrophysics Data System (ADS)
Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.
2016-10-01
It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.
Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime
NASA Astrophysics Data System (ADS)
Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying
2018-03-01
Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.
Interactive coupling of electronic and optical man-made devices to biological systems
NASA Astrophysics Data System (ADS)
Ozden, Ilker
Fireflies blink synchronously, lasers are "mode-locked" for amplification, cardiac pacemaker cells maintain a steady heartbeat, and crickets chirps get in step. These are examples of coupled oscillators. Coupled non-linear limit-cycle oscillator models are used extensively to provide information about the collective behavior of many physical and biological systems. Depending on the system parameters, namely, the coupling coefficient and the time delay in the coupling, these coupled limit-cycle oscillator exhibit several interesting phenomena; they either synchronize to a common frequency, or oscillate completely independent of each other, or drag each other to a standstill i.e., show "amplitude death". Many neuronal systems exhibit synchronized limit-cycle oscillations in network of electrically coupled cells. The inferior olivary (IO) neuron is an example of such a system. The inferior olive has been widely studied by neuroscientists as it exhibits spontaneous oscillations in its membrane potential, typically in the range of 1--10 Hz. Located in the medulla, the inferior olive is believed to form the neural basis for precise timing and learning in motor circuits by making strong synaptic connections onto Purkinjee cells in the cerebellum. In this thesis work, we report on work, which focuses on the implementation and study of coupling of a biological circuit, which is the inferior olivary system, with a man-made electronic oscillator, the so-called Chua's circuit. We were able to study the interaction between the two oscillators over a wide range coupling conditions. With increasing coupling strength, the oscillators become phase-locked, or synchronized, but with a phase relationship which is either in- or out-of-phase depending on the detailed adjustment in the coupling. Finally, the coupled system reaches the conditions for amplitude death, a rather fundamental result given that the interaction has taken place between purely biological and man-made circuit elements.
NASA Astrophysics Data System (ADS)
Correa Mora, Francisco
We model surface deformation recorded by GPS stations along the Pacific coasts of Mexico and Central America to estimate the magnitude of and variations in frictional locking (coupling) along the subduction interface, toward a better understanding of seismic hazard in these earthquake-prone regions. The first chapter describes my primary analysis technique, namely 3-dimensional finite element modeling to simulate subduction and bounded-variable inversions that optimize the fit to the GPS velocity field. This chapter focuses on and describes interseismic coupling of the Oaxaca segment of the Mexican subduction zone and introduces an analysis of transient slip events that occur in this region. Our results indicate that coupling is strong within the rupture zone of the 1978 Ms=7.8 Oaxaca earthquake, making this region a potential source of a future large earthquake. However, we also find evidence for significant variations in coupling on the subduction interface over distances of only tens of kilometers, decreasing toward the outer edges of the 1978 rupture zone. In the second chapter, we study in more detail some of the slow slip events that have been recorded over a broad area of southern Mexico, with emphasis on their space-time behavior. Our modeling indicates that transient deformation beneath southern Mexico is focused in two distinct slip patches mostly located downdip from seismogenic areas beneath Guerrero and Oaxaca. Contrary to conclusions reached in one previous study, we find no evidence for a spatial or temporal correlation between transient slip that occurs in these two widely separated source regions. Finally, chapter three extends the modeling techniques to new GPS data in Central America, where subduction coupling is weak or zero and the upper plate deformation is much more complex than in Mexico. Cocos-Caribbean plate convergence beneath El Salvador and Nicaragua is accompanied by subduction and trench-parallel motion of the forearc. Our GPS velocity field is best fit by a model with strongly locked faults in the volcanic arc and a weakly coupled subduction interface. In this region, seismic hazards associated with subduction are therefore low, but are high for crustal faults, in agreement with records of historic seismicity.
Itinerant electrons in the Coulomb phase
NASA Astrophysics Data System (ADS)
Jaubert, L. D. C.; Piatecki, Swann; Haque, Masudul; Moessner, R.
2012-02-01
We study the interplay between magnetic frustration and itinerant electrons. For example, how does the coupling to mobile charges modify the properties of a spin liquid, and does the underlying frustration favor insulating or conducting states? Supported by Monte Carlo simulations, our goal is in particular to provide an analytical picture of the mechanisms involved. The models under consideration exhibit Coulomb phases in two and three dimensions, where the itinerant electrons are coupled to the localized spins via double exchange interactions. Because of the Hund coupling, magnetic loops naturally emerge from the Coulomb phase and serve as conducting channels for the mobile electrons, leading to doping-dependent rearrangements of the loop ensemble in order to minimize the electronic kinetic energy. At low electron density ρ, the double exchange coupling mainly tends to segment the very long loops winding around the system into smaller ones while it gradually lifts the extensive degeneracy of the Coulomb phase with increasing ρ. For higher doping, the results are strongly lattice dependent, displaying loop crystals with a given loop length for some specific values of ρ. By varying ρ, they can melt into different mixtures of these loop crystals, recovering extensive degeneracy in the process. Finally, we contrast this to the qualitatively different behavior of analogous models on kagome or triangular lattices.
Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; ...
2016-09-01
In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and tomore » interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.« less
Palii, Andrei V; Reu, Oleg S; Ostrovsky, Sergei M; Klokishner, Sophia I; Tsukerblat, Boris S; Hilfiger, Matthew; Shatruk, Michael; Prosvirin, Andrey; Dunbar, Kim R
2009-06-25
This article is a part of our efforts to control the magnetic anisotropy in cyanide-based exchange-coupled systems with the eventual goal to obtain single-molecule magnets with higher blocking temperatures. We give the theoretical interpretation of the magnetic properties of the new pentanuclear complex {[Ni(II)(tmphen)(2)](3)[Os(III)(CN)(6)](2)} x 6 CH(3)CN (Ni(II)(3)Os(III)(2) cluster). Because the system contains the heavy Os(III) ions, spin-orbit coupling considerably exceeds the contributions from the low-symmetry crystal field and exchange coupling. The magnetic properties of the Ni(II)(3)Os(III)(2) cluster are described in the framework of a highly anisotropic pseudo-spin Hamiltonian that corresponds to the limit of strong spin-orbital coupling and takes into account the complex molecular structure. The model provides a good fit to the experimental data and allows the conclusion that the trigonal axis of the bipyramidal Ni(II)(3)Os(III)(2) cluster is a hard axis of magnetization. This explains the fact that in contrast with the isostructural trigonal bipyramidal Mn(III)(2)Mn(II)(3) cluster, the Ni(II)(3)Os(III)(2) system does not exhibit the single-molecule magnetic behavior.
Strong spin-orbit effects in transition metal oxides with tetrahedral coordination
NASA Astrophysics Data System (ADS)
Forte, Filomena; Guerra, Delia; Autieri, Carmine; Romano, Alfonso; Noce, Canio; Avella, Adolfo
2018-05-01
To prove that spin-orbit coupling can play a relevant role in determining the magnetic structure of transition metal oxides with tetrahedral coordination, we investigate the d1 Mott insulator KOsO4, combining density functional theory calculations and the exact diagonalization approach. We find that the interplay between crystal field, strong spin-orbit coupling, electronic correlations and structural distortions brings the system towards an antiferromagnetic phase, characterized by a non-vanishing orbital angular momentum and anisotropy among the in-plane and the out-of-plane antiferromagnetic correlations. We also show that, due to the peculiar interplay between spin-orbit coupling, Hund's coupling and hopping connectivity the system is on the verge of developing short range ferromagnetic correlations marked by strong directionality.
Strong coupling of a single electron in silicon to a microwave photon.
Mi, X; Cady, J V; Zajac, D M; Deelman, P W; Petta, J R
2017-01-13
Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Wang, Chen; Chen, Xu-Min; Sun, Ke-Wei; Ren, Jie
2018-05-01
We investigate the nonequilibrium quantum heat transfer in a quantum thermal transistor, constructed by a triangle-coupled spin-boson system in a three-terminal setup. By exploiting the nonequilibrium noninteracting blip approximation approach combined with full counting statistics, we obtain the steady-state thermal transport, such as heat currents. We identify the giant heat amplification feature in a strong coupling regime, which results from the negative differential thermal conductance with respect to the gate temperature. Analysis shows that the strong coupling between the gate qubit and corresponding gate thermal bath plays the crucial role in exhibiting these far-from-equilibrium features. These results would have potential implications in designing efficient quantum thermal transistors in the future.
Transport Signatures of Quasiparticle Poisoning in a Majorana Island.
Albrecht, S M; Hansen, E B; Higginbotham, A P; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Danon, J; Flensberg, K; Marcus, C M
2017-03-31
We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (∼1 μs) and sets a bound for a weakly coupled island (>10 μs). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. When converted from gate voltage to energy units, fluctuations are consistent with previous measurements.