Sample records for strong finite-source effect

  1. Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 1. Strong motions

    USGS Publications Warehouse

    Graves, R.W.; Wald, D.J.

    2001-01-01

    We develop a methodology to perform finite fault source inversions from strong motion data using Green's functions (GFs) calculated for a three-dimensional (3-D) velocity structure. The 3-D GFs are calculated numerically by inserting body forces at each of the strong motion sites and then recording the resulting strains along the target fault surface. Using reciprocity, these GFs can be recombined to represent the ground motion at each site for any (heterogeneous) slip distribution on the fault. The reciprocal formulation significantly reduces the required number of 3-D finite difference computations to at most 3NS, where NS is the number of strong motion sites used in the inversion. Using controlled numerical resolution tests, we have examined the relative importance of accurate GFs for finite fault source inversions which rely on near-source ground motions. These experiments use both 1-D and 3-D GFs in inversions for hypothetical rupture models in order (1) to analyze the ability of the 3-D methodology to resolve trade-offs between complex source phenomena and 3-D path effects, (2) to address the sensitivity of the inversion results to uncertainties in the 3-D velocity structure, and (3) to test the adequacy of the 1-D GF method when propagation effects are known to be three-dimensional. We find that given "data" from a prescribed 3-D Earth structure, the use of well-calibrated 3-D GFs in the inversion provides very good resolution of the assumed slip distribution, thus adequately separating source and 3-D propagation effects. In contrast, using a set of inexact 3-D GFs or a set of hybrid 1-D GFs allows only partial recovery of the slip distribution. These findings suggest that in regions of complex geology the use of well-calibrated 3-D GFs has the potential for increased resolution of the rupture process relative to 1-D GFs. However, realizing this full potential requires that the 3-D velocity model and associated GFs should be carefully validated against the true 3-D Earth structure before performing the inverse problem with actual data. Copyright 2001 by the American Geophysical Union.

  2. Deterministic earthquake scenario for the Basel area: Simulating strong motions and site effects for Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    OpršAl, Ivo; FäH, Donat; Mai, P. Martin; Giardini, Domenico

    2005-04-01

    The Basel earthquake of 18 October 1356 is considered one of the most serious earthquakes in Europe in recent centuries (I0 = IX, M ≈ 6.5-6.9). In this paper we present ground motion simulations for earthquake scenarios for the city of Basel and its vicinity. The numerical modeling combines the finite extent pseudodynamic and kinematic source models with complex local structure in a two-step hybrid three-dimensional (3-D) finite difference (FD) method. The synthetic seismograms are accurate in the frequency band 0-2.2 Hz. The 3-D FD is a linear explicit displacement formulation using an irregular rectangular grid including topography. The finite extent rupture model is adjacent to the free surface because the fault has been recognized through trenching on the Reinach fault. We test two source models reminiscent of past earthquakes (the 1999 Athens and the 1989 Loma Prieta earthquake) to represent Mw ≈ 5.9 and Mw ≈ 6.5 events that occur approximately to the south of Basel. To compare the effect of the same wave field arriving at the site from other directions, we considered the same sources placed east and west of the city. The local structural model is determined from the area's recently established P and S wave velocity structure and includes topography. The selected earthquake scenarios show strong ground motion amplification with respect to a bedrock site, which is in contrast to previous 2-D simulations for the same area. In particular, we found that the edge effects from the 3-D structural model depend strongly on the position of the earthquake source within the modeling domain.

  3. An improved radiation metric. [for radiation pressure in strong gravitational fields

    NASA Technical Reports Server (NTRS)

    Noerdlinger, P. D.

    1976-01-01

    An improved radiation metric is obtained in which light rays make a small nonzero angle with the radius, thus representing a source of finite size. Kaufmann's previous solution is criticized. The stabilization of a scatterer near a source of gravitational field and radiation is slightly enhanced for sources of finite size.

  4. Developing a Near Real-time System for Earthquake Slip Distribution Inversion

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen

    2016-04-01

    Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.

  5. Impact of finite temperatures on the transport properties of Gd from first principles

    NASA Astrophysics Data System (ADS)

    Chadova, K.; Mankovsky, S.; Minár, J.; Ebert, H.

    2017-03-01

    Finite-temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems, besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming from the magnetic degrees of freedom must be taken into account. A first-principle scheme which treats all these scattering effects on equal footing was recently suggested within the framework of the multiple scattering formalism. Employing the alloy analogy model treated by means of the CPA, thermal lattice vibrations and spin fluctuations are effectively taken into account. In the present work the temperature dependence of the longitudinal resistivity and the anomalous Hall effect in the strongly correlated metal Gd is considered. The comparison with experiments demonstrates that the proposed numerical scheme does provide an adequate description of the electronic transport at finite temperatures.

  6. Stochastic theory of photon flow in homogeneous and heterogeneous anisotropic biological and artificial material

    NASA Astrophysics Data System (ADS)

    Miller, Steven D.

    1995-05-01

    Standard Monte Carlo methods used in photon diffusion score absorbed photons or statistical weight deposited within voxels comprising a mesh. An alternative approach to a stochastic description is considered for rapid surface flux calculations and finite medias. Matrix elements are assigned to a spatial lattice whose function is to score vector intersections of scattered photons making transitions into either the forward or back solid angle half spaces. These complete matrix elements can be related to the directional fluxes within the lattice space. This model differentiates between ballistic, quasi-ballistic, and highly diffuse photon contributions, and effectively models the subsurface generation of a scattered light flux from a ballistic source. The connection between a path integral and diffusion is illustrated. Flux perturbations can be effectively illustrated for tissue-tumor-tissue and for 3 layer systems with strong absorption in one or more layers. For conditions where the diffusion theory has difficulties such as strong absorption, highly collimated sources, small finite volumes, and subsurface regions, the computation time of the algorithm is rapid with good accuracy and compliments other description of photon diffusion. The model has the potential to do computations relevant to photodynamic therapy (PDT) and analysis of laser beam interaction with tissues.

  7. Comparison of seismic waveform inversion results for the rupture history of a finite fault: application to the 1986 North Palm Springs, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.

    1989-01-01

    The July 8, 1986, North Palm Strings earthquake is used as a basis for comparison of several different approaches to the solution for the rupture history of a finite fault. The inversion of different waveform data is considered; both teleseismic P waveforms and local strong ground motion records. Linear parametrizations for slip amplitude are compared with nonlinear parametrizations for both slip amplitude and rupture time. Inversions using both synthetic and empirical Green's functions are considered. In general, accurate Green's functions are more readily calculable for the teleseismic problem where simple ray theory and flat-layered velocity structures are usually sufficient. However, uncertainties in the variation in t* with frequency most limit the resolution of teleseismic inversions. A set of empirical Green's functions that are well recorded at teleseismic distances could avoid the uncertainties in attenuation. In the inversion of strong motion data, the accurate calculation of propagation path effects other than attenuation effects is the limiting factor in the resolution of source parameters. -from Author

  8. Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caron-Huot, Simon; Gale, Charles

    2010-12-15

    We consider finite-size effects on the radiative energy loss of a fast parton moving in a finite-temperature, strongly interacting medium, using the light-cone path integral formalism put forward by B. G. Zakharov [JETP Lett. 63, 952 (1996); 65, 615 (1997)]. We present a convenient reformulation of the problem that makes possible its exact numerical analysis. This is done by introducing the concept of a radiation rate in the presence of finite-size effects. This effectively extends the finite-temperature approach of Arnold, Moore, and Yaffe [J. High Energy Phys. 11 (2001) 057; 12 (2001) 009; 06 (2001) 030] (AMY) to include interferencemore » between vacuum and medium radiation. We compare results with those obtained in the regime considered by AMY, with those obtained at leading order in an opacity expansion, and with those obtained deep in the Landau-Pomeranchuk-Migdal regime.« less

  9. Investigation of the Statistics of Pure Tone Sound Power Injection from Low Frequency, Finite Sized Sources in a Reverberant Room

    NASA Technical Reports Server (NTRS)

    Smith, Wayne Farrior

    1973-01-01

    The effect of finite source size on the power statistics in a reverberant room for pure tone excitation was investigated. Theoretical results indicate that the standard deviation of low frequency, pure tone finite sources is always less than that predicted by point source theory and considerably less when the source dimension approaches one-half an acoustic wavelength or greater. A supporting experimental study was conducted utilizing an eight inch loudspeaker and a 30 inch loudspeaker at eleven source positions. The resulting standard deviation of sound power output of the smaller speaker is in excellent agreement with both the derived finite source theory and existing point source theory, if the theoretical data is adjusted to account for experimental incomplete spatial averaging. However, the standard deviation of sound power output of the larger speaker is measurably lower than point source theory indicates, but is in good agreement with the finite source theory.

  10. New solution decomposition and minimization schemes for Poisson-Boltzmann equation in calculation of biomolecular electrostatics

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan

    2014-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.

  11. Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.

    PubMed

    Ehrhardt, Loïc; Cheinet, Sylvain; Juvé, Daniel; Blanc-Benon, Philippe

    2013-04-01

    Sound propagation outdoors is strongly affected by atmospheric turbulence. Under strongly perturbed conditions or long propagation paths, the sound fluctuations reach their asymptotic behavior, e.g., the intensity variance progressively saturates. The present study evaluates the ability of a numerical propagation model based on the finite-difference time-domain solving of the linearized Euler equations in quantitatively reproducing the wave statistics under strong and saturated intensity fluctuations. It is the continuation of a previous study where weak intensity fluctuations were considered. The numerical propagation model is presented and tested with two-dimensional harmonic sound propagation over long paths and strong atmospheric perturbations. The results are compared to quantitative theoretical or numerical predictions available on the wave statistics, including the log-amplitude variance and the probability density functions of the complex acoustic pressure. The match is excellent for the evaluated source frequencies and all sound fluctuations strengths. Hence, this model captures these many aspects of strong atmospheric turbulence effects on sound propagation. Finally, the model results for the intensity probability density function are compared with a standard fit by a generalized gamma function.

  12. High-Harmonic Generation in Solids with and without Topological Edge States

    NASA Astrophysics Data System (ADS)

    Bauer, Dieter; Hansen, Kenneth K.

    2018-04-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.

  13. Strong Ground Motion Prediction By Composite Source Model

    NASA Astrophysics Data System (ADS)

    Burjanek, J.; Irikura, K.; Zahradnik, J.

    2003-12-01

    A composite source model, incorporating different sized subevents, provides a possible description of complex rupture processes during earthquakes. The number of subevents with characteristic dimension greater than R is proportional to R-2. The subevents do not overlap with each other, and the sum of their areas equals to the area of the target event (e.g. mainshock). The subevents are distributed randomly over the fault. Each subevent is modeled either as a finite or point source, differences between these choices are shown. The final slip and duration of each subevent is related to its characteristic dimension, using constant stress-drop scaling. Absolute value of subevents' stress drop is free parameter. The synthetic Green's functions are calculated by the discrete-wavenumber method in a 1D horizontally layered crustal model. An estimation of subevents' stress drop is based on fitting empirical attenuation relations for PGA and PGV, as they represent robust information on strong ground motion caused by earthquakes, including both path and source effect. We use the 2000 M6.6 Western Tottori, Japan, earthquake as validation event, providing comparison between predicted and observed waveforms.

  14. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head.

    PubMed

    Haueisen, J; Ramon, C; Eiselt, M; Brauer, H; Nowak, H

    1997-08-01

    Modeling in magnetoencephalography (MEG) and electroencephalography (EEG) requires knowledge of the in vivo tissue resistivities of the head. The aim of this paper is to examine the influence of tissue resistivity changes on the neuromagnetic field and the electric scalp potential. A high-resolution finite element method (FEM) model (452,162 elements, 2-mm resolution) of the human head with 13 different tissue types is employed for this purpose. Our main finding was that the magnetic fields are sensitive to changes in the tissue resistivity in the vicinity of the source. In comparison, the electric surface potentials are sensitive to changes in the tissue resistivity in the vicinity of the source and in the vicinity of the position of the electrodes. The magnitude (strength) of magnetic fields and electric surface potentials is strongly influenced by tissue resistivity changes, while the topography is not as strongly influenced. Therefore, an accurate modeling of magnetic field and electric potential strength requires accurate knowledge of tissue resistivities, while for source localization procedures this knowledge might not be a necessity.

  15. Finite elements numerical codes as primary tool to improve beam optics in NIO1

    NASA Astrophysics Data System (ADS)

    Baltador, C.; Cavenago, M.; Veltri, P.; Serianni, G.

    2017-08-01

    The RF negative ion source NIO1, built at Consorzio RFX in Padua (Italy), is aimed to investigate general issues on ion source physics in view of the full-size ITER injector MITICA as well as DEMO relevant solutions, like energy recovery and alternative neutralization systems, crucial for neutral beam injectors in future fusion experiments. NIO1 has been designed to produce 9 H-beamlets (in a 3x3 pattern) of 15mA each and 60keV, using a three electrodes system downstream the plasma source. At the moment the source is at its early operational stage and only operation at low power and low beam energy is possible. In particular, NIO1 presents a too strong set of SmCo co-extraction electron suppression magnets (CESM) in the extraction grid (EG) that will be replaced by a weaker set of Ferrite magnets. A completely new set of magnets will be also designed and mounted on the new EG that will be installed next year, replacing the present one. In this paper, the finite element code OPERA 3D is used to investigate the effects of the three sets of magnets on beamlet optics. A comparison of numerical results with measurements will be provided where possible.

  16. Analysis of Mid-Latitude Plasma Density Irregularities in the Presence of Finite Larmor Radius Effects

    NASA Astrophysics Data System (ADS)

    Sotnikov, V. I.; Kim, T. C.; Mishin, E. V.; Kil, H.; Kwak, Y. S.; Paraschiv, I.

    2017-12-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At mid-latitudes the source of F-region Field Aligned Irregularities (FAI) is yet to be determined. They can be created in enhanced subauroral flow channels (SAI/SUBS), where strong gradients of electric field, density and plasma temperature are present. Another important source of FAI is connected with Medium-scale travelling ionospheric disturbances (MSTIDs). Related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. This approach allows to resolve density irregularities on the meter scale. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code will be used to analyze competition between interchange and Kelvin-Helmholtz instabilities in the mid-latitude region. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ data obtained during the 2016 Daejeon (Korea) and MU (Japan) radar campaign and data collected simultaneously by the Swarm satellites passed over Korea and Japan. PA approved #: 88ABW-2017-3641

  17. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    NASA Astrophysics Data System (ADS)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  18. Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method

    NASA Astrophysics Data System (ADS)

    Iritani, T.; HAL QCD Collaboration

    We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can be clarified by a few low-lying eigenfunctions and eigenvalues on the finite volume derived from the HAL QCD potential, which implies that the ground state saturation of $\\Xi\\Xi$($^1$S$_0$) requires $t \\sim 10$ fm in the direct method for the smeared source on $(4.3 \\ \\mathrm{fm})^3$ lattice, while the HAL QCD method does not suffer from such a problem.

  19. Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms

    NASA Astrophysics Data System (ADS)

    Huang, Juntao; Shu, Chi-Wang

    2018-05-01

    In this paper, we develop bound-preserving modified exponential Runge-Kutta (RK) discontinuous Galerkin (DG) schemes to solve scalar hyperbolic equations with stiff source terms by extending the idea in Zhang and Shu [43]. Exponential strong stability preserving (SSP) high order time discretizations are constructed and then modified to overcome the stiffness and preserve the bound of the numerical solutions. It is also straightforward to extend the method to two dimensions on rectangular and triangular meshes. Even though we only discuss the bound-preserving limiter for DG schemes, it can also be applied to high order finite volume schemes, such as weighted essentially non-oscillatory (WENO) finite volume schemes as well.

  20. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.

    PubMed

    Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe

    2016-04-01

    Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.

  1. Weak Gravitational Lensing of Finite Beams.

    PubMed

    Fleury, Pierre; Larena, Julien; Uzan, Jean-Philippe

    2017-11-10

    The standard theory of weak gravitational lensing relies on the infinitesimal light beam approximation. In this context, images are distorted by convergence and shear, the respective sources of which unphysically depend on the resolution of the distribution of matter-the so-called Ricci-Weyl problem. In this Letter, we propose a strong-lensing-inspired formalism to describe the lensing of finite beams. We address the Ricci-Weyl problem by showing explicitly that convergence is caused by the matter enclosed by the beam, regardless of its distribution. Furthermore, shear turns out to be systematically enhanced by the finiteness of the beam. This implies, in particular, that the Kaiser-Squires relation between shear and convergence is violated, which could have profound consequences on the interpretation of weak-lensing surveys.

  2. Ultrafast strong broadband light source generated in nanoscale plasmonic Au-AAO-Al structures

    NASA Astrophysics Data System (ADS)

    Han, Junbo; Yao, Linhua; Ma, Zongwei

    we demonstrate an ultrafast strong broadband photoluminescence (PL) from Au-AAO-Al composite under low excitation power intensity of 3.8 34.5 GW /cm2. The emission wavelength is in the range of 450-1050 nm and the lifetime is under sub-nanosecond. Comparative studies of PL in Au-AAO-Al with different Au rod length and Au-AAO without Al coupling layer, together with the finite difference time domain (FDTD) calculations, present that the fast PL originates from the surface plasmon enhanced supercontinuum generation (SCG) in AAO membrane. The observations indicate that strong SCG could be realized in nanoscale plasmonic structures, which have promise applications in the minimization and integration of ultrafast lighting sources in photonic devices. National Natural Scientific Foundation of China (11404124).

  3. Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2016-04-01

    The Navier-Stokes equations are solved using a finite-difference, time-domain (FDTD) approach for axi-symmetric environmental models, allowing three-dimensional acoustic propagation to be simulated using a two-dimensional Cylindrical coordinate system. A method to stabilize the FDTD algorithm in a viscous medium at atmospheric densities characteristic of the lower thermosphere is described. The stabilization scheme slightly alters the governing equations but results in quantifiable dispersion characteristics. It is shown that this method leaves sound speeds and attenuation unchanged at frequencies that are well resolved by the temporal sampling rate but strongly attenuates higher frequencies. Numerical experiments are performed to assess the effect of source strength on the amplitudes and spectral content of signals recorded at ground level at a range of distances from the source. It is shown that the source amplitudes have a stronger effect on a signal's dominant frequency than on its amplitude. Applying the stabilized code to infrasound propagation through realistic atmospheric profiles shows that nonlinear propagation alters the spectral content of low amplitude thermospheric signals, demonstrating that nonlinear effects are significant for all detectable thermospheric returns.

  4. Experimental investigation of outdoor propagation of finite-amplitude noise. [aircraft noise

    NASA Technical Reports Server (NTRS)

    Webster, D. A.; Blackstock, D. T.

    1978-01-01

    The outdoor propagation of finite amplitude acoustic waves was investigated using a conventional electroacoustic transmitter which was mounted on the ground and pointed upward in order to avoid ground reflection effects. The propagation path was parallel to a radio tower 85 m tall, whose elevator carried the receiving microphone. The observations and conclusions are as follows: (1) At the higher source levels nonlinear propagation distortion caused a strong generation of high frequency noise over the propagation path. For example, at 70 m for a frequency 2-3 octaves above the source noise band, the measured noise was up to 30 dB higher than the linear theory prediction. (2) The generation occurred in both the nearfield and the farfield of the transmitter. (3) At no measurement point was small-signal behavior established for the high requency noise. Calculations support the contention that the nonlinearity generated high frequency noise never becomes small-signal in its behavior, regardless of distance. (4) When measured spectra are scaled in frequency and level to make them comparable with spectra of actual jet noise, they are found to be well within the jet noise range. It is therefore entirely possible that nonlinear distortion affects jet noise.

  5. The finite ground plane effect on the microstrip antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1983-01-01

    The uniform geometrical theory of diffraction (GTD) is employed for calculating the edge diffracted fields from the finite ground plane of a microstrip antenna. The source field from the radiating patch is calculated by two different methods: the slot theory and the modal expansion theory. Many numerical and measured results are presented to demonstrate the accuracy of the calculations and the finite ground plane edge effect.

  6. Localization in finite vibroimpact chains: Discrete breathers and multibreathers.

    PubMed

    Grinberg, Itay; Gendelman, Oleg V

    2016-09-01

    We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.

  7. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waluga, Christian, E-mail: waluga@ma.tum.de; Wohlmuth, Barbara; Rüde, Ulrich

    2016-01-15

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilizedmore » linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.« less

  8. Database for earthquake strong motion studies in Italy

    USGS Publications Warehouse

    Scasserra, G.; Stewart, J.P.; Kayen, R.E.; Lanzo, G.

    2009-01-01

    We describe an Italian database of strong ground motion recordings and databanks delineating conditions at the instrument sites and characteristics of the seismic sources. The strong motion database consists of 247 corrected recordings from 89 earthquakes and 101 recording stations. Uncorrected recordings were drawn from public web sites and processed on a record-by-record basis using a procedure utilized in the Next-Generation Attenuation (NGA) project to remove instrument resonances, minimize noise effects through low- and high-pass filtering, and baseline correction. The number of available uncorrected recordings was reduced by 52% (mostly because of s-triggers) to arrive at the 247 recordings in the database. The site databank includes for every recording site the surface geology, a measurement or estimate of average shear wave velocity in the upper 30 m (Vs30), and information on instrument housing. Of the 89 sites, 39 have on-site velocity measurements (17 of which were performed as part of this study using SASW techniques). For remaining sites, we estimate Vs30 based on measurements on similar geologic conditions where available. Where no local velocity measurements are available, correlations with surface geology are used. Source parameters are drawn from databanks maintained (and recently updated) by Istituto Nazionale di Geofisica e Vulcanologia and include hypocenter location and magnitude for small events (M< ??? 5.5) and finite source parameters for larger events. ?? 2009 A.S. Elnashai & N.N. Ambraseys.

  9. The MV model of the color glass condensate for a finite number of sources including Coulomb interactions

    DOE PAGES

    McLerran, Larry; Skokov, Vladimir V.

    2016-09-19

    We modify the McLerran–Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran–Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this study we provide a basic formulation of the problem on a lattice.

  10. Impedance loading and radiation of finite aperture multipole sources in fluid filled boreholes

    NASA Astrophysics Data System (ADS)

    Geerits, Tim W.; Kranz, Burkhard

    2017-04-01

    In the exploration of oil and gas finite aperture multipole borehole acoustic sources are commonly used to excite borehole modes in a fluid-filled borehole surrounded by a (poro-) elastic formation. Due to the mutual interaction of the constituent sources and their immediate proximity to the formation it has been unclear how and to what extent these effects influence radiator performance. We present a theory, based on the equivalent surface source formulation for fluid-solid systems that incorporates these 'loading' effects and allows for swift computation of the multipole source dimensionless impedance, the associated radiator motion and the resulting radiated wave field in borehole fluid and formation. Dimensionless impedance results are verified through a comparison with finite element modeling results in the cases of a logging while drilling tool submersed in an unbounded fluid and a logging while drilling tool submersed in a fluid filled borehole surrounded by a fast and a slow formation. In all these cases we consider a monopole, dipole and quadrupole excitation, as these cases are relevant to many borehole acoustic applications. Overall, we obtain a very good agreement.

  11. Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013, China

    NASA Astrophysics Data System (ADS)

    Zhu, Gengshang; Zhang, Zhenguo; Wen, Jian; Zhang, Wei; Chen, Xiaofei

    2013-08-01

    The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic hazard, we simulated the strong ground motions from a representative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy concentrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the mountain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.

  12. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  13. Estimation and applicability of attenuation characteristics for source parameters and scaling relations in the Garhwal Kumaun Himalaya region, India

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh; Paul, Ajay; Kumar, Arjun; Kumar, Parveen; Sundriyal, Y. P.

    2018-06-01

    Source parameters of the small to moderate earthquakes are significant for understanding the dynamic rupture process, the scaling relations of the earthquakes and for assessment of seismic hazard potential of a region. In this study, the source parameters were determined for 58 small to moderate size earthquakes (3.0 ≤ Mw ≤ 5.0) occurred during 2007-2015 in the Garhwal-Kumaun region. The estimated shear wave quality factor (Qβ(f)) values for each station at different frequencies have been applied to eliminate any bias in the determination of source parameters. The Qβ(f) values have been estimated by using coda wave normalization method in the frequency range 1.5-16 Hz. A frequency-dependent S wave quality factor relation is obtained as Qβ(f) = (152.9 ± 7) f(0.82±0.005) by fitting a power-law frequency dependence model for the estimated values over the whole study region. The spectral (low-frequency spectral level and corner frequency) and source (static stress drop, seismic moment, apparent stress and radiated energy) parameters are obtained assuming ω-2 source model. The displacement spectra are corrected for estimated frequency-dependent attenuation, site effect using spectral decay parameter "Kappa". The frequency resolution limit was resolved by quantifying the bias in corner frequencies, stress drop and radiated energy estimates due to finite-bandwidth effect. The data of the region shows shallow focused earthquakes with low stress drop. The estimation of Zúñiga parameter (ε) suggests the partial stress drop mechanism in the region. The observed low stress drop and apparent stress can be explained by partial stress drop and low effective stress model. Presence of subsurface fluid at seismogenic depth certainly manipulates the dynamics of the region. However, the limited event selection may strongly bias the scaling relation even after taking as much as possible precaution in considering effects of finite bandwidth, attenuation and site corrections. Although, the scaling can be improved further with the integration of large dataset of microearthquakes and use of a stable and robust approach.

  14. Life, the Universe, and Nothing: Life and Death in an Ever-expanding Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Lawrence M.; Starkman, Glenn D.

    2000-03-01

    Current evidence suggests that the cosmological constant is not zero, or that we live in an open universe. We examine the implications for the future under these assumptions, and find that they are striking. If the universe is cosmological constant-dominated, our ability to probe the evolution of large-scale structure will decrease with time; presently observable distant sources will disappear on a timescale comparable to the period of stellar burning. Moreover, while the universe might expand forever, the integrated conscious lifetime of any civilization will be finite, although it can be astronomically long. We argue that this latter result is farmore » more general. In the absence of possible exotic and uncertain strong gravitational effects, the total information recoverable by any civilization over the entire history of our universe is finite. Assuming that consciousness has a physical computational basis, and therefore is ultimately governed by quantum mechanics, life cannot be eternal. (c) 2000 The American Astronomical Society.« less

  15. Finite volume effects on the electric polarizability of neutral hadrons in lattice QCD

    NASA Astrophysics Data System (ADS)

    Lujan, M.; Alexandru, A.; Freeman, W.; Lee, F. X.

    2016-10-01

    We study the finite volume effects on the electric polarizability for the neutron, neutral pion, and neutral kaon using eight dynamically generated two-flavor nHYP-clover ensembles at two different pion masses: 306(1) and 227(2) MeV. An infinite volume extrapolation is performed for each hadron at both pion masses. For the neutral kaon, finite volume effects are relatively mild. The dependence on the quark mass is also mild, and a reliable chiral extrapolation can be performed along with the infinite volume extrapolation. Our result is αK0 phys=0.356 (74 )(46 )×10-4 fm3 . In contrast, for neutron, the electric polarizability depends strongly on the volume. After removing the finite volume corrections, our neutron polarizability results are in good agreement with chiral perturbation theory. For the connected part of the neutral pion polarizability, the negative trend persists, and it is not due to finite volume effects but likely sea quark charging effects.

  16. Finite amplitude transverse oscillations of a magnetic rope

    NASA Astrophysics Data System (ADS)

    Kolotkov, Dmitrii Y.; Nisticò, Giuseppe; Rowlands, George; Nakariakov, Valery M.

    2018-07-01

    The effects of finite amplitudes on the transverse oscillations of a quiescent prominence represented by a magnetic rope are investigated in terms of the model proposed by Kolotkov et al. (2016). We consider a weakly nonlinear case governed by a quadratic nonlinearity, and also analyse the fully nonlinear equations of motion. We treat the prominence as a massive line current located above the photosphere and interacting with the magnetised dipped environment via the Lorentz force. In this concept the magnetic dip is produced by two external current sources located at the photosphere. Finite amplitude horizontal and vertical oscillations are found to be strongly coupled between each other. The coupling is more efficient for larger amplitudes and smaller attack angles between the direction of the driver and the horizontal axis. Spatial structure of oscillations is represented by Lissajous-like curves with the limit cycle of a hourglass shape, appearing in the resonant case, when the frequency of the vertical mode is twice the horizontal mode frequency. A metastable equilibrium of the prominence is revealed, which is stable for small amplitude displacements, and becomes horizontally unstable, when the amplitude exceeds a threshold value. The maximum oscillation amplitudes are also analytically derived and analysed. Typical oscillation periods are determined by the oscillation amplitude, prominence current, its mass and position above the photosphere, and the parameters of the magnetic dip. The main new effects of the finite amplitude are the coupling of the horizontally and vertically polarised transverse oscillations (i.e. the lack of a simple, elliptically polarised regime) and the presence of metastable equilibria of prominences.

  17. Novel Quantum Phases at Interfaces

    DTIC Science & Technology

    2014-12-12

    89.085122 Mehdi Kargarian, Gregory A. Fiete. Multiorbital effects on thermoelectric properties of strongly correlated materials , Physical Review B...Multi-orbital Effects on Thermoelectric Properties of Strongly Correlated Materials , ArXiv e-prints (08 2013) Joseph Maciejko, Victor Chua...Lei Wang , Gregory A. Fiete. Finite- size and interaction effects on topological phase transitions via numerically exact quantum Monte Carlo

  18. Finite-key security analysis of quantum key distribution with imperfect light sources

    DOE PAGES

    Mizutani, Akihiro; Curty, Marcos; Lim, Charles Ci Wen; ...

    2015-09-09

    In recent years, the gap between theory and practice in quantum key distribution (QKD) has been significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the resulting secure key rates are often overly dependent on the quality of state preparation. This is especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki et al proposed a QKD protocol based on the so-called 'rejected data analysis', and showed that its security in the limit of infinitelymore » long keys is almost independent of any encoding flaw in the qubit space, being this protocol compatible with the decoy state method. Here, as a step towards practical QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light sources and show that the bounds are also efficient in the presence of high channel loss. Our results strongly suggest the feasibility of long distance provably secure communication with imperfect light sources.« less

  19. Toward Broadband Source Modeling for the Himalayan Collision Zone

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.

    2017-12-01

    The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.

  20. Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity

    NASA Astrophysics Data System (ADS)

    Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.

    2018-05-01

    We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.

  1. A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Mróz, Przemek; Ryu, Y.-H.; Skowron, J.; Udalski, A.; Gould, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Pawlak, M.; Ulaczyk, K.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Jung, Y. K.; Han, C.; Hwang, K.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration

    2018-03-01

    Current microlensing surveys are sensitive to free-floating planets down to Earth-mass objects. All published microlensing events attributed to unbound planets were identified based on their short timescale (below two days), but lacked an angular Einstein radius measurement (and hence lacked a significant constraint on the lens mass). Here, we present the discovery of a Neptune-mass free-floating planet candidate in the ultrashort (t E = 0.320 ± 0.003 days) microlensing event OGLE-2016-BLG-1540. The event exhibited strong finite-source effects, which allowed us to measure its angular Einstein radius of θ E = 9.2 ± 0.5 μas. There remains, however, a degeneracy between the lens mass and distance. The combination of the source proper motion and source-lens relative proper motion measurements favors a Neptune-mass lens located in the Galactic disk. However, we cannot rule out that the lens is a Saturn-mass object belonging to the bulge population. We exclude stellar companions up to ∼15 au.

  2. Chiral crossover transition in a finite volume

    NASA Astrophysics Data System (ADS)

    Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi

    2018-02-01

    Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)

  3. Test method for telescopes using a point source at a finite distance

    NASA Technical Reports Server (NTRS)

    Griner, D. B.; Zissa, D. E.; Korsch, D.

    1985-01-01

    A test method for telescopes that makes use of a focused ring formed by an annular aperture when using a point source at a finite distance is evaluated theoretically and experimentally. The results show that the concept can be applied to near-normal, as well as grazing incidence. It is particularly suited for X-ray telescopes because of their intrinsically narrow annular apertures, and because of the largely reduced diffraction effects.

  4. Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David

    2015-02-01

    Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.

  5. A fault slip model of the 2016 Meinong, Taiwan, earthquake from near-source strong motion and high-rate GPS waveforms

    NASA Astrophysics Data System (ADS)

    Rau, Ruey-Juin; Wen, Yi-Ying; Tseng, Po-Ching; Chen, Wei-Cheng; Cheu, Chi-Yu; Hsieh, Min-Che; Ching, Kuo-En

    2017-04-01

    The 6 February 2016 MW 6.5 Meinong earthquake (03:57:26.1 local time) occurred at about 30 km ESE of the Tainan city with a focal depth of 14.6 km. It is a mid-crust moderate-sized event, however, produced widespread strong shaking in the 30-km-away Tainan city and caused about 10 buildings collapsed and 117 death. Furthermore, the earthquake created a 20 x 10 km2 dome-shaped structure with a maximum uplift of 13 cm in between the epicenter and the Tainan city. We collected 81 50-Hz GPS and 130 strong motion data recorded within 60 km epicentral distances. High-rate GPS data are processed with GIPSY 6.4 and the calculated GPS displacement wavefield record section shows 40-60 cm Peak Ground Displacement (PGD) concentrated at 25-30 km WNW of the epicenter. The large PGDs correspond to 65-85 cm/sec PGV, which are significantly larger than the near-fault ground motion collected from moderate-sized earthquakes occurred worldwide. To investigate the source properties of the causative fault, considering the azimuthal coverage and data quality, we selected waveform data from 10 50-Hz GPS stations and 10 free-field 200-Hz strong motion stations to invert for the finite source parameters using the non-negative least squares approach. A bandpass filter of 0.05-0.5 Hz is applied to both high-rate GPS data and strong motion data, with sampling rate of 0.1 sec. The fault plane parameters (strike 281 degrees, dip 24 degrees) derived from Global Centroid Moment Tensor (CMT) are used in the finite fault inversion. The results of our joint GPS and strong motion data inversion indicates two major slip patches. The first large-slip patch occurred just below the hypocenter propagating westward at a 15-25 km depth range. The second high-slip patch appeared at 5-10 km depth slipping westward under the western side of the erected structure shown by InSAR image. These two large-slip patches appeared to devoid of aftershock seismicity, which concentrated mainly at the low-slip zones.

  6. The influence of the self-consistent mode structure on the Coriolis pinch effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Camenen, Y.; Casson, F. J.

    This paper discusses the effect of the mode structure on the Coriolis pinch effect [A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. It is shown that the Coriolis drift effect can be compensated for by a finite parallel wave vector, resulting in a reduced momentum pinch velocity. Gyrokinetic simulations in full toroidal geometry reveal that parallel dynamics effectively removes the Coriolis pinch for the case of adiabatic electrons, while the compensation due to the parallel dynamics is incomplete for the case of kinetic electrons, resulting in a finite pinch velocity. The finite flux inmore » the case of kinetic electrons is interpreted to be related to the electron trapping, which prevents a strong asymmetry in the electrostatic potential with respect to the low field side position. The physics picture developed here leads to the discovery and explanation of two unexpected effects: First the pinch velocity scales with the trapped particle fraction (root of the inverse aspect ratio), and second there is no strong collisionality dependence. The latter is related to the role of the trapped electrons, which retain some symmetry in the eigenmode, but play no role in the perturbed parallel velocity.« less

  7. Finite Element modelling of deformation induced by interacting volcanic sources

    NASA Astrophysics Data System (ADS)

    Pascal, Karen; Neuberg, Jürgen; Rivalta, Eleonora

    2010-05-01

    The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system comprises more than one source, the assumption of homogeneity in the half-space is violated and several sources are combined, their respective deformation field being summed. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying their relative position. Furthermore we considered the impact of topography, loading, and magma compressibility. To quantify the discrepancies and compare the various models, we calculated the difference between analytical and numerical maximum horizontal or vertical surface displacements.We will demonstrate that for certain conditions combining analytical sources can cause an error of up to 20%. References: McTigue, D. F. (1987), Elastic Stress and Deformation Near a Finite Spherical Magma Body: Resolution of the Point Source Paradox, J. Geophys. Res. 92, 12931-12940. Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull Earthquake Res Inst, Univ Tokyo 36, 99-134. Okada, Y. (1992), Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Bulletin of the Seismological Society of America 82(2), 1018-1040.

  8. Comparison of strong-motion spectra with teleseismic spectra for three magnitude 8 subduction-zone earthquakes

    NASA Astrophysics Data System (ADS)

    Houston, Heidi; Kanamori, Hiroo

    1990-08-01

    A comparison of strong-motion spectra and teleseismic spectra was made for three Mw 7.8 to 8.0 earthquakes: the 1985 Michoacan (Mexico) earthquake, the 1985 Valparaiso (Chile) earthquake, and the 1983 Akita-Oki (Japan) earthquake. The decay of spectral amplitude with the distance from the station was determined, considering different measures of distance from a finite fault, and it was found to be different for these three events. The results can be used to establish empirical relations between the observed spectra and the half-space responses depending on the distance and the site condition, making it possible to estimate strong motions from source spectra determined from teleseismic records.

  9. Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1994-01-01

    In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The effectiveness of the correction factor in providing improvements to the computed solution is demonstrated in this paper.

  10. Effects of finite ground plane on the radiation characteristics of a circular patch antenna

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arun K.

    1990-02-01

    An analytical technique to determine the effects of finite ground plane on the radiation characteristics of a microstrip antenna is presented. The induced currents on the ground plane and on the upper surface of the patch are determined from the discontinuity of the near field produced by the equivalent magnetic current source on the physical aperture of the patch. The radiated fields contributed by the induced current on the ground plane and the equivalent sources on the physical aperture yield the radiation pattern of the antenna. Radiation patterns of the circular patch with finite ground plane size are computed and compared with the experimental data, and the agreement is found to be good. The radiation pattern, directive gain, and input impedance are found to vary widely with the ground plane size.

  11. An analytic treatment of gravitational microlensing for sources of finite size at large optical depths

    NASA Technical Reports Server (NTRS)

    Deguchi, Shuji; Watson, William D.

    1988-01-01

    Statistical methods are developed for gravitational lensing in order to obtain analytic expressions for the average surface brightness that include the effects of microlensing by stellar (or other compact) masses within the lensing galaxy. The primary advance here is in utilizing a Markoff technique to obtain expressions that are valid for sources of finite size when the surface density of mass in the lensing galaxy is large. The finite size of the source is probably the key consideration for the occurrence of microlensing by individual stars. For the intensity from a particular location, the parameter which governs the importance of microlensing is determined. Statistical methods are also formulated to assess the time variation of the surface brightness due to the random motion of the masses that cause the microlensing.

  12. Effect of Free Jet on Refraction and Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Georgiadis, Nicholas J.; Bridges, James E.; Dippold, Vance F., III

    2005-01-01

    This article investigates the role of a free jet on the sound radiated from a jet. In particular, the role of an infinite wind tunnel, which simulates the forward flight condition, is compared to that of a finite wind tunnel. The second configuration is usually used in experiments, where the microphones are located in a static ambient medium far outside the free jet. To study the effect of the free jet on noise, both propagation and source strength need to be addressed. In this work, the exact Green's function in a locally parallel flow is derived for a simulated flight case. Numerical examples are presented that show a reduction in the magnitude of the Green's function in the aft arc and an increase in the forward arc for the simulated flight condition. The effect of finite wind tunnel on refraction is sensitive to the source location and is most pronounced in the aft arc. A Reynolds-averaged Navier-Stokes solution (RANS) yields the required mean flow and turbulence scales that are used in the jet mixing noise spectrum calculations. In addition to the sound/flow interaction, the separate effect of source strength and elongation of the noise-generating region of the jet in a forward flight is studied. Comparisons are made with experiments for the static and finite tunnel cases. Finally, the standard free-jet shear corrections that convert the finite wind tunnel measurements to an ideal wind tunnel arrangement are evaluated.

  13. Site correction of stochastic simulation in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Lun Huang, Cong; Wen, Kuo Liang; Huang, Jyun Yan

    2014-05-01

    Peak ground acceleration (PGA) of a disastrous earthquake, is concerned both in civil engineering and seismology study. Presently, the ground motion prediction equation is widely used for PGA estimation study by engineers. However, the local site effect is another important factor participates in strong motion prediction. For example, in 1985 the Mexico City, 400km far from the epicenter, suffered massive damage due to the seismic wave amplification from the local alluvial layers. (Anderson et al., 1986) In past studies, the use of stochastic method had been done and showed well performance on the simulation of ground-motion at rock site (Beresnev and Atkinson, 1998a ; Roumelioti and Beresnev, 2003). In this study, the site correction was conducted by the empirical transfer function compared with the rock site response from stochastic point-source (Boore, 2005) and finite-fault (Boore, 2009) methods. The error between the simulated and observed Fourier spectrum and PGA are calculated. Further we compared the estimated PGA to the result calculated from ground motion prediction equation. The earthquake data used in this study is recorded by Taiwan Strong Motion Instrumentation Program (TSMIP) from 1991 to 2012; the study area is located at south-western Taiwan. The empirical transfer function was generated by calculating the spectrum ratio between alluvial site and rock site (Borcheret, 1970). Due to the lack of reference rock site station in this area, the rock site ground motion was generated through stochastic point-source model instead. Several target events were then chosen for stochastic point-source simulating to the halfspace. Then, the empirical transfer function for each station was multiplied to the simulated halfspace response. Finally, we focused on two target events: the 1999 Chi-Chi earthquake (Mw=7.6) and the 2010 Jiashian earthquake (Mw=6.4). Considering the large event may contain with complex rupture mechanism, the asperity and delay time for each sub-fault is to be concerned. Both the stochastic point-source and the finite-fault model were used to check the result of our correction.

  14. Finite-Length Line Source Superposition Model (FLLSSM)

    NASA Astrophysics Data System (ADS)

    1980-03-01

    A linearized thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high level waste or spent fuel assemblies were represented as finite length line sources in a continuous media. The combined effects of multiple canisters in a representative storage pattern were established at selected points of interest by superposition of the temperature rises calculated for each canister. The methodology is outlined and the computer code FLLSSM which performs required numerical integrations and superposition operations is described.

  15. Fluid-structure interaction and aerodynamics damping; Proceedings of the Tenth Biennial Conference on Mechanical Vibration and Noise, Cincinnati, OH, September 10-13, 1985

    NASA Astrophysics Data System (ADS)

    Dowell, E. H.; Au-Yang, M. K.

    1985-09-01

    The response of a two-layer elastic coating to pressure disturbances from a turbulent boundary layer is considered along with the application of the finite element method in the calculation of transmission loss of flat and curved panels, the application of various solution techniques to the calculation of transonic flutter boundaries, and noise transmission of double wall composite shells. Other topics explored are related to chaotic behavior of a simple single-degree-of-freedom system, the entrainment of self-sustained flow oscillations, the effects of strong shock loading on coupled bending-torssion flutter of tuned and mistuned cascades, and turbulent buffeting of a multispan tube bundle. Attention is given to the dynamics of heat exchangers U-bend tubes with flat bar supports, a review of flow induced vibration of two circular cylinders in crossflow, the avoidance of leakage flow-induced vibration by a tube-in-tube slip joint, random load from multiple sources and its assessment, and wake-induced vibration of a conductor in the wake of another via a 3-D finite element method.

  16. Helium-like magnesium embedded in strongly coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Sukhamoy

    2016-05-06

    In recent days, with the advent of the x-ray free electron laser (FEL) with Linac coherent light source (LCLS) and the Orion laser, experimental studies on atomic systems within strongly coupled plasma environment with remarkable improvement in accuracy as compared to earlier experiments have become possible. In these kinds of experiments, hydrogen-like and helium-like spectral lines are used for determination of plasma parameters such as temperature, density. Accurate theoretical calculations are, therefore, necessary for such kind of studies within a dense plasma environment. In this work, ab initio calculations are carried out in the framework of the Rayleigh-Ritz variation principlemore » to estimate the ground state energy of helium-like magnesium within strongly coupled plasma environment. Explicitly correlated wave functions in Hylleraas coordinates have been used to incorporate the effect of electron correlation. The ion-sphere model potential that confines the central positive ion in a finite domain filled with plasma electrons has been adopted to mimic the strongly coupled plasma environment. Thermodynamic pressure ’felt’ by the ion in the ground states due to the confinement inside the ion spheres is also estimated.« less

  17. Effects of sources on time-domain finite difference models.

    PubMed

    Botts, Jonathan; Savioja, Lauri

    2014-07-01

    Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed.

  18. Simulated ground motion in Santa Clara Valley, California, and vicinity from M≥6.7 scenario earthquakes

    USGS Publications Warehouse

    Harmsen, Stephen C.; Hartzell, Stephen

    2008-01-01

    Models of the Santa Clara Valley (SCV) 3D velocity structure and 3D finite-difference software are used to predict ground motions from scenario earthquakes on the San Andreas (SAF), Monte Vista/Shannon, South Hayward, and Calaveras faults. Twenty different scenario ruptures are considered that explore different source models with alternative hypocenters, fault dimensions, and rupture velocities and three different velocity models. Ground motion from the full wave field up to 1 Hz is exhibited as maps of peak horizontal velocity and pseudospectral acceleration at periods of 1, 3, and 5 sec. Basin edge effects and amplification in sedimentary basins of the SCV are observed that exhibit effects from shallow sediments with relatively low shear-wave velocity (330 m/sec). Scenario earthquakes have been simulated for events with the following magnitudes: (1) M 6.8–7.4 Calaveras sources, (2) M 6.7–6.9 South Hayward sources, (3) M 6.7 Monte Vista/Shannon sources, and (4) M 7.1–7.2 Peninsula segment of the SAF sources. Ground motions are strongly influenced by source parameters such as rupture velocity, rise time, maximum depth of rupture, hypocenter, and source directivity. Cenozoic basins also exert a strong influence on ground motion. For example, the Evergreen Basin on the northeastern side of the SCV is especially responsive to 3–5-sec energy from most scenario earthquakes. The Cupertino Basin on the southwestern edge of the SCV tends to be highly excited by many Peninsula and Monte Vista fault scenarios. Sites over the interior of the Evergreen Basin can have long-duration coda that reflect the trapping of seismic energy within this basin. Plausible scenarios produce predominantly 5-sec wave trains with greater than 30 cm/sec sustained ground-motion amplitude with greater than 30 sec duration within the Evergreen Basin.

  19. Use of source distributions for evaluating theoretical aerodynamics of thin finite wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Evvard, John C

    1950-01-01

    A series of publications on the source-distribution methods for evaluating the aerodynamics of thin wings at supersonic speeds is summarized, extended, and unified. Included in the first part are the deviations of: (a) the linearized partial-differential equation for unsteady flow at a substantially constant Mach number. b) The source-distribution solution for the perturbation-velocity potential that satisfies the boundary conditions of tangential flow at the surface and in the plane of the wing; and (c) the integral equation for determining the strength and the location of sources to describe the interaction effects (as represented by upwash) of the bottom and top wing surfaces through the region between the finite wing boundary and the foremost Mach wave. The second part deals with steady-state thin-wing problems. The third part of the report approximates the integral equation for unsteady upwash and includes a solution of approximate equation. Expressions are then derived to evaluate the load distributions for time-dependent finite-wing motions.

  20. Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II

    NASA Astrophysics Data System (ADS)

    Smith, D.; Boese, M.; Heaton, T. H.

    2015-12-01

    Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.

  1. Quantum corrections to the gravitational potentials of a point source due to conformal fields in de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröb, Markus B.; Verdaguer, Enric, E-mail: mfroeb@itp.uni-leipzig.de, E-mail: enric.verdaguer@ub.edu

    We derive the leading quantum corrections to the gravitational potentials in a de Sitter background, due to the vacuum polarization from loops of conformal fields. Our results are valid for arbitrary conformal theories, even strongly interacting ones, and are expressed using the coefficients b and b' appearing in the trace anomaly. Apart from the de Sitter generalization of the known flat-space results, we find two additional contributions: one which depends on the finite coefficients of terms quadratic in the curvature appearing in the renormalized effective action, and one which grows logarithmically with physical distance. While the first contribution corresponds tomore » a rescaling of the effective mass, the second contribution leads to a faster fall-off of the Newton potential at large distances, and is potentially measurable.« less

  2. An Analytical Model of Joule Heating in Piezoresistive Microcantilevers

    PubMed Central

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever. PMID:22163433

  3. An analytical model of joule heating in piezoresistive microcantilevers.

    PubMed

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  4. Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method.

    PubMed

    Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu

    2016-07-01

    We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.

  5. Site correction of a high-frequency strong-ground-motion simulation based on an empirical transfer function

    NASA Astrophysics Data System (ADS)

    Huang, Jyun-Yan; Wen, Kuo-Liang; Lin, Che-Min; Kuo, Chun-Hsiang; Chen, Chun-Te; Chang, Shuen-Chiang

    2017-05-01

    In this study, an empirical transfer function (ETF), which is the spectrum difference in Fourier amplitude spectra between observed strong ground motion and synthetic motion obtained by a stochastic point-source simulation technique, is constructed for the Taipei Basin, Taiwan. The basis stochastic point-source simulations can be treated as reference rock site conditions in order to consider site effects. The parameters of the stochastic point-source approach related to source and path effects are collected from previous well-verified studies. A database of shallow, small-magnitude earthquakes is selected to construct the ETFs so that the point-source approach for synthetic motions might be more widely applicable. The high-frequency synthetic motion obtained from the ETF procedure is site-corrected in the strong site-response area of the Taipei Basin. The site-response characteristics of the ETF show similar responses as in previous studies, which indicates that the base synthetic model is suitable for the reference rock conditions in the Taipei Basin. The dominant frequency contour corresponds to the shape of the bottom of the geological basement (the top of the Tertiary period), which is the Sungshan formation. Two clear high-amplification areas are identified in the deepest region of the Sungshan formation, as shown by an amplification contour of 0.5 Hz. Meanwhile, a high-amplification area was shifted to the basin's edge, as shown by an amplification contour of 2.0 Hz. Three target earthquakes with different kinds of source conditions, including shallow small-magnitude events, shallow and relatively large-magnitude events, and deep small-magnitude events relative to the ETF database, are tested to verify site correction. The results indicate that ETF-based site correction is effective for shallow earthquakes, even those with higher magnitudes, but is not suitable for deep earthquakes. Finally, one of the most significant shallow large-magnitude earthquakes (the 1999 Chi-Chi earthquake in Taiwan) is verified in this study. A finite fault stochastic simulation technique is applied, owing to the complexity of the fault rupture process for the Chi-Chi earthquake, and the ETF-based site-correction function is multiplied to obtain a precise simulation of high-frequency (up to 10 Hz) strong motions. The high-frequency prediction has good agreement in both time and frequency domain in this study, and the prediction level is the same as that predicted by the site-corrected ground motion prediction equation.

  6. Finite Moment Tensors of Southern California Earthquakes

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.; Chen, P.; Zhao, L.

    2003-12-01

    We have developed procedures for inverting broadband waveforms for the finite moment tensors (FMTs) of regional earthquakes. The FMT is defined in terms of second-order polynomial moments of the source space-time function and provides the lowest order representation of a finite fault rupture; it removes the fault-plane ambiguity of the centroid moment tensor (CMT) and yields several additional parameters of seismological interest: the characteristic length L{c}, width W{c}, and duration T{c} of the faulting, as well as the directivity vector {v}{d} of the fault slip. To formulate the inverse problem, we follow and extend the methods of McGuire et al. [2001, 2002], who have successfully recovered the second-order moments of large earthquakes using low-frequency teleseismic data. We express the Fourier spectra of a synthetic point-source waveform in its exponential (Rytov) form and represent the observed waveform relative to the synthetic in terms two frequency-dependent differential times, a phase delay δ τ {p}(ω ) and an amplitude-reduction time δ τ {q}(ω ), which we measure using Gee and Jordan's [1992] isolation-filter technique. We numerically calculate the FMT partial derivatives in terms of second-order spatiotemporal gradients, which allows us to use 3D finite-difference seismograms as our isolation filters. We have applied our methodology to a set of small to medium-sized earthquakes in Southern California. The errors in anelastic structure introduced perturbations larger than the signal level caused by finite source effect. We have therefore employed a joint inversion technique that recovers the CMT parameters of the aftershocks, as well as the CMT and FMT parameters of the mainshock, under the assumption that the source finiteness of the aftershocks can be ignored. The joint system of equations relating the δ τ {p} and δ τ {q} data to the source parameters of the mainshock-aftershock cluster is denuisanced for path anomalies in both observables; this projection operation effectively corrects the mainshock data for path-related amplitude anomalies in a way similar to, but more flexible than, empirical Green function (EGF) techniques.

  7. Point source moving above a finite impedance reflecting plane - Experiment and theory

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Liu, C. H.

    1978-01-01

    A widely used experimental version of the acoustic monopole consists of an acoustic driver of restricted opening forced by a discrete frequency oscillator. To investigate the effects of forward motion on this source, it was mounted above an automobile and driven over an asphalt surface at constant speed past a microphone array. The shapes of the received signal were compared to results computed from an analysis of a fluctuating-mass-type point source moving above a finite impedance reflecting plane. Good agreement was found between experiment and theory when a complex normal impedance representative of a fairly hard acoustic surface was used in the analysis.

  8. Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 2. Combining seismic and geodetic data

    USGS Publications Warehouse

    Wald, D.J.; Graves, R.W.

    2001-01-01

    Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.

  9. Characterizing directional variations in long-period ground motion amplifications in the Kanto Basin, Japan

    NASA Astrophysics Data System (ADS)

    Mukai, Y.; Furumura, T.; Maeda, T.

    2017-12-01

    In the Kanto Basin (including Tokyo in Japan), the long-period (T=3-10 s) ground motions are strongly developed when large earthquakes occur nearby. The amplitude of the long-period ground motion in the basin varies strongly among earthquakes; it is tremendous from the earthquakes in Niigata (northwest of Kanto), but is several times weaker from the earthquakes in Tohoku (north of Kanto). In this study, we examined the cause of such azimuthal-dependent amplitude variation for the 2004 Niigata Chuetsu (M6.8) and the 2011 Fukushima Hamadori (M7.0) earthquake based on numerical simulations of seismic wave propagation by the finite-difference method. We first examined the non-isotropic source-radiation effect of these events. By performing numerical simulations for different strike angles of these source faults, significant variation in amplitude of the long-period ground motions were observed in Tokyo for both the events. Among tested strike angles, the source of the 2004 event (strike = 212 deg.) produced the largest long-period ground motion due to strong radiation of surface wave towards the Kanto Basin, while the 2011 event (strike = 132 deg.) produced the least. The minimum-to-maximum ratio of their amplitudes with respect to strike angle is about 2 and 1.3, respectively. These investigations suggest the source radiation effect considerably contributes to the variations of the long-period ground motions. We then examined the effect of the 3D structure of the Kanto Basin on the generation of the long-period ground motion. For the 2004 event, we found that the long-period signal first arrives at the central Tokyo from the western edge of the Kanto Basin. Then, later signals containing both the Rayleigh and Love waves were amplified dramatically due to the localized low-velocity structure to the northwestern part of the basin. On the other hand, in the case of the 2011 event, the seismic waves propagating towards the basin were dissipated significantly as it travels over the ridge structure of the basement in the northern part of the basin, where the seismic wave speed is faster than the surroundings. Therefore, the large variation of the long-period ground motion among earthquakes occurs due to the combined effects of source radiation and propagation properties in the 3D heterogeneous structure of the Kanto Basin.

  10. Fast Computation of Ground Motion Shaking Map base on the Modified Stochastic Finite Fault Modeling

    NASA Astrophysics Data System (ADS)

    Shen, W.; Zhong, Q.; Shi, B.

    2012-12-01

    Rapidly regional MMI mapping soon after a moderate-large earthquake is crucial to loss estimation, emergency services and planning of emergency action by the government. In fact, many countries show different degrees of attention on the technology of rapid estimation of MMI , and this technology has made significant progress in earthquake-prone countries. In recent years, numerical modeling of strong ground motion has been well developed with the advances of computation technology and earthquake science. The computational simulation of strong ground motion caused by earthquake faulting has become an efficient way to estimate the regional MMI distribution soon after earthquake. In China, due to the lack of strong motion observation in network sparse or even completely missing areas, the development of strong ground motion simulation method has become an important means of quantitative estimation of strong motion intensity. In many of the simulation models, stochastic finite fault model is preferred to rapid MMI estimating for its time-effectiveness and accuracy. In finite fault model, a large fault is divided into N subfaults, and each subfault is considered as a small point source. The ground motions contributed by each subfault are calculated by the stochastic point source method which is developed by Boore, and then summed at the observation point to obtain the ground motion from the entire fault with a proper time delay. Further, Motazedian and Atkinson proposed the concept of Dynamic Corner Frequency, with the new approach, the total radiated energy from the fault and the total seismic moment are conserved independent of subfault size over a wide range of subfault sizes. In current study, the program EXSIM developed by Motazedian and Atkinson has been modified for local or regional computations of strong motion parameters such as PGA, PGV and PGD, which are essential for MMI estimating. To make the results more reasonable, we consider the impact of V30 for the ground shaking intensity, and the results of the comparisons between the simulated and observed MMI for the 2004 Mw 6.0 Parkfield earthquake, the 2008 Mw 7.9Wenchuan earthquake and the 1976 Mw 7.6Tangshan earthquake is fairly well. Take Parkfield earthquake as example, the simulative result reflect the directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulative data is in good agreement with the network data and NGA (Next Generation Attenuation). The consumed time depends on the number of the subfaults and the number of the grid point. For the 2004 Mw 6.0 Parkfield earthquake, the grid size we calculated is 2.5° × 2.5°, the grid space is 0.025°, and the total time consumed is about 1.3hours. For the 2008 Mw 7.9 Wenchuan earthquake, the grid size calculated is 10° × 10°, the grid space is 0.05°, the total number of grid point is more than 40,000, and the total time consumed is about 7.5 hours. For t the 1976 Mw 7.6 Tangshan earthquake, the grid size we calculated is 4° × 6°, the grid space is 0.05°, and the total time consumed is about 2.1 hours. The CPU we used is 3.40GHz, and such computational time could further reduce by using GPU computing technique and other parallel computing technique. This is also our next focus.

  11. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  12. Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan; Wardell, Barry

    2017-04-01

    If a small "particle" of mass μ M (with μ ≪1 ) orbits a black hole of mass M , the leading-order radiation-reaction effect is an O (μ2) "self-force" acting on the particle, with a corresponding O (μ ) "self-acceleration" of the particle away from a geodesic. Such "extreme-mass-ratio inspiral" systems are likely to be important gravitational-wave sources for future space-based gravitational-wave detectors. Here we consider the "toy model" problem of computing the self-force for a scalar-field particle on a bound eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-Detweiler effective-source regularization with a 4th-order puncture field, followed by an ei m ϕ ("m -mode") Fourier decomposition and a separate time-domain numerical evolution in 2 +1 dimensions for each m . We introduce a finite worldtube that surrounds the particle worldline and define our evolution equations in a piecewise manner so that the effective source is only used within the worldtube. Viewed as a spatial region, the worldtube moves to follow the particle's orbital motion. We use slices of constant Boyer-Lindquist time in the region of the particle's motion, deformed to be asymptotically hyperboloidal and compactified near the horizon and J+ . Our numerical evolution uses Berger-Oliger mesh refinement with 4th-order finite differencing in space and time. Our computational scheme allows computation for highly eccentric orbits and should be generalizable to orbital evolution in the future. Our present implementation is restricted to equatorial geodesic orbits, but this restriction is not fundamental. We present numerical results for a number of test cases with orbital eccentricities as high as 0.98. In some cases we find large oscillations ("wiggles") in the self-force on the outgoing leg of the orbit shortly after periastron passage; these appear to be caused by the passage of the orbit through the strong-field region close to the background Kerr black hole.

  13. Source analysis using regional empirical Green's functions: The 2008 Wells, Nevada, earthquake

    USGS Publications Warehouse

    Mendoza, C.; Hartzell, S.

    2009-01-01

    We invert three-component, regional broadband waveforms recorded for the 21 February 2008 Wells, Nevada, earthquake using a finite-fault methodology that prescribes subfault responses using eight MW∼4 aftershocks as empirical Green's functions (EGFs) distributed within a 20-km by 21.6-km fault area. The inversion identifies a seismic moment of 6.2 x 1024 dyne-cm (5.8 MW) with slip concentrated in a compact 6.5-km by 4-km region updip from the hypocenter. The peak slip within this localized area is 88 cm and the stress drop is 72 bars, which is higher than expected for Basin and Range normal faults in the western United States. The EGF approach yields excellent fits to the complex regional waveforms, accounting for strong variations in wave propagation and site effects. This suggests that the procedure is useful for studying moderate-size earthquakes with limited teleseismic or strong-motion data and for examining uncertainties in slip models obtained using theoretical Green's functions.

  14. Development of an upwind, finite-volume code with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1994-01-01

    Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.

  15. Three-dimensional finite element modelling of muscle forces during mastication.

    PubMed

    Röhrle, Oliver; Pullan, Andrew J

    2007-01-01

    This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.

  16. Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.

  17. Finite element analysis of inviscid subsonic boattail flow

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  18. Two Universality Classes for the Many-Body Localization Transition

    NASA Astrophysics Data System (ADS)

    Khemani, Vedika; Sheng, D. N.; Huse, David A.

    2017-08-01

    We provide a systematic comparison of the many-body localization (MBL) transition in spin chains with nonrandom quasiperiodic versus random fields. We find evidence suggesting that these belong to two separate universality classes: the first dominated by "intrinsic" intrasample randomness, and the second dominated by external intersample quenched randomness. We show that the effects of intersample quenched randomness are strongly growing, but not yet dominant, at the system sizes probed by exact-diagonalization studies on random models. Thus, the observed finite-size critical scaling collapses in such studies appear to be in a preasymptotic regime near the nonrandom universality class, but showing signs of the initial crossover towards the external-randomness-dominated universality class. Our results provide an explanation for why exact-diagonalization studies on random models see an apparent scaling near the transition while also obtaining finite-size scaling exponents that strongly violate Harris-Chayes bounds that apply to disorder-driven transitions. We also show that the MBL phase is more stable for the quasiperiodic model as compared to the random one, and the transition in the quasiperiodic model suffers less from certain finite-size effects.

  19. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Ji, C.; Helmberger, D. V.

    2004-12-01

    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the timing at most stations. This means that regional waveform data can be used to help locate and establish source complexities for future events.

  20. Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method

    NASA Astrophysics Data System (ADS)

    Song, Liangfeng; Wu, Mingxin; Wang, Jinting; Xu, Yanjie

    2016-09-01

    This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.

  1. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  2. Nature of magnetization and lateral spin-orbit interaction in gated semiconductor nanowires.

    PubMed

    Karlsson, H; Yakimenko, I I; Berggren, K-F

    2018-05-31

    Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin-orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree-Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.

  3. Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Karlsson, H.; Yakimenko, I. I.; Berggren, K.-F.

    2018-05-01

    Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin–orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree–Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.

  4. Effect of dislocation pile-up on size-dependent yield strength in finite single-crystal micro-samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp; Zhang, Xu

    2015-07-07

    Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources andmore » pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.« less

  5. Probing axions with neutron star inspirals and other stellar processes

    NASA Astrophysics Data System (ADS)

    Hook, Anson; Huang, Junwu

    2018-06-01

    In certain models of a QCD axion, finite density corrections to the axion potential can result in the axion being sourced by large dense objects. There are a variety of ways to test this phenomenon, but perhaps the most surprising effect is that the axion can mediate forces between neutron stars that can be as strong as gravity. These forces can be attractive or repulsive and their presence can be detected by Advanced LIGO observations of neutron star inspirals. By a numerical coincidence, axion forces between neutron stars with gravitational strength naturally have an associated length scale of tens of kilometers or longer, similar to that of a neutron star. Future observations of neutron star mergers in Advanced LIGO can probe many orders of magnitude of axion parameter space. Because the axion is only sourced by large dense objects, the axion force evades fifth force constraints. We also outline several other ways to probe this phenomenon using electromagnetic signals associated with compact objects.

  6. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  7. Propagation and radiation of sound from flanged circular ducts with circumferentially varying wall admittances. I Semi-infinite ducts. II - Finite ducts with sources

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1984-01-01

    Sound propagation in infinite, semiinfinite, and finite circular ducts with circumferentially varying wall admittances is investigated analytically. The infinite case is considered, and an example demonstrates the effects of wall-admittance distribution on dispersion characteristics and mode shapes. An exact solution is obtained for the semiinfinite case, a circular duct with a flanged opening: sidelobe suppression and circumferential-mode energy scattering leading to radiated-field asymmetry are found. A finite duct system with specified hard-walled pressure sources is examined in detail, evaluating reflection coefficients, transmission losses, and radiated-field directivity. Graphs and diagrams are provided, and the implications of the results obtained for the design of aircraft-turbofan inlet liners are discussed.

  8. Numerical simulation analysis on Wenchuan seismic strong motion in Hanyuan region

    NASA Astrophysics Data System (ADS)

    Chen, X.; Gao, M.; Guo, J.; Li, Z.; Li, T.

    2015-12-01

    69227 deaths, 374643 injured, 17923 people missing, direct economic losses 845.1 billion, and a large number houses collapse were caused by Wenchuan Ms8 earthquake in Sichuan Province on May 12, 2008, how to reproduce characteristics of its strong ground motion and predict its intensity distribution, which have important role to mitigate disaster of similar giant earthquake in the future. Taking Yunnan-Sichuan Province, Wenchuan town, Chengdu city, Chengdu basin and its vicinity as the research area, on the basis of the available three-dimensional velocity structure model and newly topography data results from ChinaArray of Institute of Geophysics, China Earthquake Administration, 2 type complex source rupture process models with the global and local source parameters are established, we simulated the seismic wave propagation of Wenchuan Ms8 earthquake throughout the whole three-dimensional region by the GMS discrete grid finite-difference techniques with Cerjan absorbing boundary conditions, and obtained the seismic intensity distribution in this region through analyzing 50×50 stations data (simulated ground motion output station). The simulated results indicated that: (1)Simulated Wenchuan earthquake ground motion (PGA) response and the main characteristics of the response spectrum are very similar to those of the real Wenchuan earthquake records. (2)Wenchuan earthquake ground motion (PGA) and the response spectra of the Plain are much greater than that of the left Mountain area because of the low velocity of the shallow surface media and the basin effect of the Chengdu basin structure. Simultaneously, (3) the source rupture process (inversion) with far-field P-wave, GPS data and InSAR information and the Longmenshan Front Fault (source rupture process) are taken into consideration in GMS numerical simulation, significantly different waveform and frequency component of the ground motion are obtained, though the strong motion waveform is distinct asymmetric, which should be much more real. It indicated that the Longmenshan Front Fault may be also involved in seismic activity during the long time(several minutes) Wenchuan earthquake process. (4) Simulated earthquake records in Hanyuan region are indeed very strong, which reveals source mechanism is one reason of Hanyuan intensity abnormaly.

  9. Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Liang, Ching-Ping; Lai, Keng-Hsin

    2012-08-01

    SummaryMulti-species advective-dispersive transport equations sequentially coupled with first-order decay reactions are widely used to describe the transport and fate of the decay chain contaminants such as radionuclide, chlorinated solvents, and nitrogen. Although researchers attempted to present various types of methods for analytically solving this transport equation system, the currently available solutions are mostly limited to an infinite or a semi-infinite domain. A generalized analytical solution for the coupled multi-species transport problem in a finite domain associated with an arbitrary time-dependent source boundary is not available in the published literature. In this study, we first derive generalized analytical solutions for this transport problem in a finite domain involving arbitrary number of species subject to an arbitrary time-dependent source boundary. Subsequently, we adopt these derived generalized analytical solutions to obtain explicit analytical solutions for a special-case transport scenario involving an exponentially decaying Bateman type time-dependent source boundary. We test the derived special-case solutions against the previously published coupled 4-species transport solution and the corresponding numerical solution with coupled 10-species transport to conduct the solution verification. Finally, we compare the new analytical solutions derived for a finite domain against the published analytical solutions derived for a semi-infinite domain to illustrate the effect of the exit boundary condition on coupled multi-species transport with an exponential decaying source boundary. The results show noticeable discrepancies between the breakthrough curves of all the species in the immediate vicinity of the exit boundary obtained from the analytical solutions for a finite domain and a semi-infinite domain for the dispersion-dominated condition.

  10. Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer

    NASA Astrophysics Data System (ADS)

    Wu, Yun-jie; Li, Guo-fei

    2018-01-01

    Based on sliding mode extended state observer (SMESO) technique, an adaptive disturbance compensation finite control set optimal control (FCS-OC) strategy is proposed for permanent magnet synchronous motor (PMSM) system driven by voltage source inverter (VSI). So as to improve robustness of finite control set optimal control strategy, a SMESO is proposed to estimate the output-effect disturbance. The estimated value is fed back to finite control set optimal controller for implementing disturbance compensation. It is indicated through theoretical analysis that the designed SMESO could converge in finite time. The simulation results illustrate that the proposed adaptive disturbance compensation FCS-OC possesses better dynamical response behavior in the presence of disturbance.

  11. A Theorem and its Application to Finite Tampers

    DOE R&D Accomplishments Database

    Feynman, R. P.

    1946-08-15

    A theorem is derived which is useful in the analysis of neutron problems in which all neutrons have the same velocity. It is applied to determine extrapolated end-points, the asymptotic amplitude from a point source, and the neutron density at the surface of a medium. Formulas fro the effect of finite tampers are derived by its aid, and their accuracy discussed.

  12. Quantum Monte Carlo calculations of two neutrons in finite volume

    DOE PAGES

    Klos, P.; Lynn, J. E.; Tews, I.; ...

    2016-11-18

    Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground state and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field theory interactions. We compare the results against exact diagonalizations and present a detailed analysis of the finite-volume effects, whose understanding is crucial formore » determining observables from the calculated energies. Finally, using the Lüscher formula, we extract the low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes.« less

  13. Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics

    PubMed Central

    2018-01-01

    Molecular dynamics simulations were performed for the prediction of the finite-size effects of Maxwell-Stefan diffusion coefficients of molecular mixtures and a wide variety of binary Lennard–Jones systems. A strong dependency of computed diffusivities on the system size was observed. Computed diffusivities were found to increase with the number of molecules. We propose a correction for the extrapolation of Maxwell–Stefan diffusion coefficients to the thermodynamic limit, based on the study by Yeh and Hummer (J. Phys. Chem. B, 2004, 108, 15873−15879). The proposed correction is a function of the viscosity of the system, the size of the simulation box, and the thermodynamic factor, which is a measure for the nonideality of the mixture. Verification is carried out for more than 200 distinct binary Lennard–Jones systems, as well as 9 binary systems of methanol, water, ethanol, acetone, methylamine, and carbon tetrachloride. Significant deviations between finite-size Maxwell–Stefan diffusivities and the corresponding diffusivities at the thermodynamic limit were found for mixtures close to demixing. In these cases, the finite-size correction can be even larger than the simulated (finite-size) Maxwell–Stefan diffusivity. Our results show that considering these finite-size effects is crucial and that the suggested correction allows for reliable computations. PMID:29664633

  14. A guide to differences between stochastic point-source and stochastic finite-fault simulations

    USGS Publications Warehouse

    Atkinson, G.M.; Assatourians, K.; Boore, D.M.; Campbell, K.; Motazedian, D.

    2009-01-01

    Why do stochastic point-source and finite-fault simulation models not agree on the predicted ground motions for moderate earthquakes at large distances? This question was posed by Ken Campbell, who attempted to reproduce the Atkinson and Boore (2006) ground-motion prediction equations for eastern North America using the stochastic point-source program SMSIM (Boore, 2005) in place of the finite-source stochastic program EXSIM (Motazedian and Atkinson, 2005) that was used by Atkinson and Boore (2006) in their model. His comparisons suggested that a higher stress drop is needed in the context of SMSIM to produce an average match, at larger distances, with the model predictions of Atkinson and Boore (2006) based on EXSIM; this is so even for moderate magnitudes, which should be well-represented by a point-source model. Why? The answer to this question is rooted in significant differences between point-source and finite-source stochastic simulation methodologies, specifically as implemented in SMSIM (Boore, 2005) and EXSIM (Motazedian and Atkinson, 2005) to date. Point-source and finite-fault methodologies differ in general in several important ways: (1) the geometry of the source; (2) the definition and application of duration; and (3) the normalization of finite-source subsource summations. Furthermore, the specific implementation of the methods may differ in their details. The purpose of this article is to provide a brief overview of these differences, their origins, and implications. This sets the stage for a more detailed companion article, "Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM," in which Boore (2009) provides modifications and improvements in the implementations of both programs that narrow the gap and result in closer agreement. These issues are important because both SMSIM and EXSIM have been widely used in the development of ground-motion prediction equations and in modeling the parameters that control observed ground motions.

  15. Evaluation of accuracy of synthetic waveforms for subduction-zone earthquakes by using a land-ocean unified 3D structure model

    NASA Astrophysics Data System (ADS)

    Okamoto, Taro; Takenaka, Hiroshi; Nakamura, Takeshi

    2018-06-01

    Seismic wave propagation from shallow subduction-zone earthquakes can be strongly affected by 3D heterogeneous structures, such as oceanic water and sedimentary layers with irregular thicknesses. Synthetic waveforms must incorporate these effects so that they reproduce the characteristics of the observed waveforms properly. In this paper, we evaluate the accuracy of synthetic waveforms for small earthquakes in the source area of the 2011 Tohoku-Oki earthquake ( M JMA 9.0) at the Japan Trench. We compute the synthetic waveforms on the basis of a land-ocean unified 3D structure model using our heterogeneity, oceanic layer, and topography finite-difference method. In estimating the source parameters, we apply the first-motion augmented moment tensor (FAMT) method that we have recently proposed to minimize biases due to inappropriate source parameters. We find that, among several estimates, only the FAMT solutions are located very near the plate interface, which demonstrates the importance of using a 3D model for ensuring the self-consistency of the structure model, source position, and source mechanisms. Using several different filter passbands, we find that the full waveforms with periods longer than about 10 s can be reproduced well, while the degree of waveform fitting becomes worse for periods shorter than about 10 s. At periods around 4 s, the initial body waveforms can be modeled, but the later large-amplitude surface waves are difficult to reproduce correctly. The degree of waveform fitting depends on the source location, with better fittings for deep sources near land. We further examine the 3D sensitivity kernels: for the period of 12.8 s, the kernel shows a symmetric pattern with respect to the straight path between the source and the station, while for the period of 6.1 s, a curved pattern is obtained. Also, the range of the sensitive area becomes shallower for the latter case. Such a 3D spatial pattern cannot be predicted by 1D Earth models and indicates the strong effects of 3D heterogeneity on short-period ( ≲ 10s) waveforms. Thus, it would be necessary to consider such 3D effects when improving the structure and source models.

  16. Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis

    NASA Astrophysics Data System (ADS)

    Royston, Thomas J.; Yazicioglu, Yigit; Loth, Francis

    2003-02-01

    The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the buried sources are formulated and compared with numerical finite element simulations and experimental studies on finite dimension phantom models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium model agree well with numerically obtained ``exact'' half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.

  17. Passive decoy-state quantum key distribution with practical light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curty, Marcos; Ma, Xiongfeng; Qi, Bing

    2010-02-15

    Decoy states have been proven to be a very useful method for significantly enhancing the performance of quantum key distribution systems with practical light sources. Although active modulation of the intensity of the laser pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Typical passive schemes involve parametric down-conversion. More recently, it has been shown that phase-randomized weak coherent pulses (WCP) can also be used for the same purpose [M. Curty et al., Opt. Lett. 34, 3238 (2009).] This proposal requires only linear optics together with a simplemore » threshold photon detector, which shows the practical feasibility of the method. Most importantly, the resulting secret key rate is comparable to the one delivered by an active decoy-state setup with an infinite number of decoy settings. In this article we extend these results, now showing specifically the analysis for other practical scenarios with different light sources and photodetectors. In particular, we consider sources emitting thermal states, phase-randomized WCP, and strong coherent light in combination with several types of photodetectors, like, for instance, threshold photon detectors, photon number resolving detectors, and classical photodetectors. Our analysis includes as well the effect that detection inefficiencies and noise in the form of dark counts shown by current threshold detectors might have on the final secret key rate. Moreover, we provide estimations on the effects that statistical fluctuations due to a finite data size can have in practical implementations.« less

  18. Particle Orbit Analysis in the Finite Beta Plasma of the Large Helical Device using Real Coordinates

    NASA Astrophysics Data System (ADS)

    Seki, Ryousuke; Matsumoto, Yutaka; Suzuki, Yasuhiro; Watanabe, Kiyomasa; Itagaki, Masafumi

    High-energy particles in a finite beta plasma of the Large Helical Device (LHD) are numerically traced in a real coordinate system. We investigate particle orbits by changing the beta value and/or the magnetic field strength. No significant difference is found in the particle orbit classifications between the vacuum magnetic field and the finite beta plasma cases. The deviation of a banana orbit from the flux surfaces strongly depends on the beta value, although the deviation of the orbit of a passing particle is independent of the beta value. In addition, the deviation of the orbit of the passing particle, rather than that of the banana-orbit particles, depends on the magnetic field strength. We also examine the effect of re-entering particles, which repeatedly pass in and out of the last closed flux surface, in the finite beta plasma of the LHD. It is found that the number of re-entering particles in the finite beta plasma is larger than that in the vacuum magnetic field. As a result, the role of reentering particles in the finite beta plasma of the LHD is more important than that in the vacuum magnetic field, and the effect of the charge-exchange reaction on particle confinement in the finite beta plasma is large.

  19. A finite element simulation of sound attenuation in a finite duct with a peripherally variable liner

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1977-01-01

    Using multimodal analysis, a variational finite element method is presented for analyzing sound attenuation in a three-dimensional finite duct with a peripherally variable liner in the absence of flow. A rectangular element, with cubic shaped functions, is employed. Once a small portion of a peripheral liner is removed, the attenuation rate near the frequency where maximum attenuation occurs drops significantly. The positioning of the liner segments affects the attenuation characteristics of the liner. Effects of the duct termination are important in the low frequency ranges. The main effect of peripheral variation of the liner is a broadening of the attenuation characteristics in the midfrequency range. Because of matrix size limitations of the presently available computer program, the eigenvalue equations should be solved out of core in order to handle realistic sources.

  20. Stellar occultation of polarized light from circumstellar electrons. I - Flat envelopes viewed edge on

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Fox, Geoffrey K.

    1989-01-01

    The depolarizing and occultation effects of a finite spherical light source on the polarization of light Thomson-scattered from a flat circumstellar envelope seen edge-on are analyzed. The analysis shows that neglect of the finite size of the light source leads to a gross overestimate of the polarization for a given disk geometry. By including occultation and depolarization, it is found that B-star envelopes are necessarily highly flattened disk-type structures. For a disk viewed edge-on, the effect of occultation reduces the polarization more than the inclusion of the depolarization factor alone. Analysis of a one-dimensional plume leads to a powerful technique that permits the electron density distribution to be explicitly obtained from the polarimetric data.

  1. Seebeck coefficient of one electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durrani, Zahid A. K., E-mail: z.durrani@imperial.ac.uk

    2014-03-07

    The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.

  2. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to supportmore » the design of optimised electrocaloric units and operating conditions.« less

  3. Technique for evaluation of the strong potential Born approximation for electron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sil, N.C.; McGuire, J.H.

    1985-04-01

    A technique is presented for evaluating differential cross sections in the strong potential Born (SPB) approximation. Our final expression is expressed as a finite sum of one-dimensional integrals, expressible as a finite sum of derivatives of hypergeometric functions.

  4. An adaptation method to improve secret key rates of time-frequency QKD in atmospheric turbulence channels

    NASA Astrophysics Data System (ADS)

    Sun, Xiaole; Djordjevic, Ivan B.; Neifeld, Mark A.

    2016-03-01

    Free-space optical (FSO) channels can be characterized by random power fluctuations due to atmospheric turbulence, which is known as scintillation. Weak coherent source based FSO quantum key distribution (QKD) systems suffer from the scintillation effect because during the deep channel fading the expected detection rate drops, which then gives an eavesdropper opportunity to get additional information about protocol by performing photon number splitting (PNS) attack and blocking single-photon pulses without changing QBER. To overcome this problem, in this paper, we study a large-alphabet QKD protocol, which is achieved by using pulse-position modulation (PPM)-like approach that utilizes the time-frequency uncertainty relation of the weak coherent photon state, called here TF-PPM-QKD protocol. We first complete finite size analysis for TF-PPM-QKD protocol to give practical bounds against non-negligible statistical fluctuation due to finite resources in practical implementations. The impact of scintillation under strong atmospheric turbulence regime is studied then. To overcome the secure key rate performance degradation of TF-PPM-QKD caused by scintillation, we propose an adaptation method for compensating the scintillation impact. By changing source intensity according to the channel state information (CSI), obtained by classical channel, the adaptation method improves the performance of QKD system with respect to the secret key rate. The CSI of a time-varying channel can be predicted using stochastic models, such as autoregressive (AR) models. Based on the channel state predictions, we change the source intensity to the optimal value to achieve a higher secret key rate. We demonstrate that the improvement of the adaptation method is dependent on the prediction accuracy.

  5. Generic effective source for scalar self-force calculations

    NASA Astrophysics Data System (ADS)

    Wardell, Barry; Vega, Ian; Thornburg, Jonathan; Diener, Peter

    2012-05-01

    A leading approach to the modeling of extreme mass ratio inspirals involves the treatment of the smaller mass as a point particle and the computation of a regularized self-force acting on that particle. In turn, this computation requires knowledge of the regularized retarded field generated by the particle. A direct calculation of this regularized field may be achieved by replacing the point particle with an effective source and solving directly a wave equation for the regularized field. This has the advantage that all quantities are finite and require no further regularization. In this work, we present a method for computing an effective source which is finite and continuous everywhere, and which is valid for a scalar point particle in arbitrary geodesic motion in an arbitrary background spacetime. We explain in detail various technical and practical considerations that underlie its use in several numerical self-force calculations. We consider as examples the cases of a particle in a circular orbit about Schwarzschild and Kerr black holes, and also the case of a particle following a generic timelike geodesic about a highly spinning Kerr black hole. We provide numerical C code for computing an effective source for various orbital configurations about Schwarzschild and Kerr black holes.

  6. A New Simplified Source Model to Explain Strong Ground Motions from a Mega-Thrust Earthquake - Application to the 2011 Tohoku Earthquake (Mw9.0) -

    NASA Astrophysics Data System (ADS)

    Nozu, A.

    2013-12-01

    A new simplified source model is proposed to explain strong ground motions from a mega-thrust earthquake. The proposed model is simpler, and involves less model parameters, than the conventional characterized source model, which itself is a simplified expression of actual earthquake source. In the proposed model, the spacio-temporal distribution of slip within a subevent is not modeled. Instead, the source spectrum associated with the rupture of a subevent is modeled and it is assumed to follow the omega-square model. By multiplying the source spectrum with the path effect and the site amplification factor, the Fourier amplitude at a target site can be obtained. Then, combining it with Fourier phase characteristics of a smaller event, the time history of strong ground motions from the subevent can be calculated. Finally, by summing up contributions from the subevents, strong ground motions from the entire rupture can be obtained. The source model consists of six parameters for each subevent, namely, longitude, latitude, depth, rupture time, seismic moment and corner frequency of the subevent. Finite size of the subevent can be taken into account in the model, because the corner frequency of the subevent is included in the model, which is inversely proportional to the length of the subevent. Thus, the proposed model is referred to as the 'pseudo point-source model'. To examine the applicability of the model, a pseudo point-source model was developed for the 2011 Tohoku earthquake. The model comprises nine subevents, located off Miyagi Prefecture through Ibaraki Prefecture. The velocity waveforms (0.2-1 Hz), the velocity envelopes (0.2-10 Hz) and the Fourier spectra (0.2-10 Hz) at 15 sites calculated with the pseudo point-source model agree well with the observed ones, indicating the applicability of the model. Then the results were compared with the results of a super-asperity (SPGA) model of the same earthquake (Nozu, 2012, AGU), which can be considered as an example of characterized source models. Although the pseudo point-source model involves much less model parameters than the super-asperity model, the errors associated with the former model were comparable to those for the latter model for velocity waveforms and envelopes. Furthermore, the errors associated with the former model were much smaller than those for the latter model for Fourier spectra. These evidences indicate the usefulness of the pseudo point-source model. Comparison of the observed (black) and synthetic (red) Fourier spectra. The spectra are the composition of two horizontal components and smoothed with a Parzen window with a band width of 0.05 Hz.

  7. Indispensable finite time corrections for Fokker-Planck equations from time series data.

    PubMed

    Ragwitz, M; Kantz, H

    2001-12-17

    The reconstruction of Fokker-Planck equations from observed time series data suffers strongly from finite sampling rates. We show that previously published results are degraded considerably by such effects. We present correction terms which yield a robust estimation of the diffusion terms, together with a novel method for one-dimensional problems. We apply these methods to time series data of local surface wind velocities, where the dependence of the diffusion constant on the state variable shows a different behavior than previously suggested.

  8. Dynamics and Melting of Finite Plasma Crystals

    NASA Astrophysics Data System (ADS)

    Ludwig, Patrick; K"Ahlert, Hanno; Baumgartner, Henning; Thomsen, Hauke; Bonitz, Michael

    2009-11-01

    Interacting few-particle systems in external trapping potentials are of strong current interest since they allow to realize and control strong correlation and quantum effects [1]. Here, we present our recent results on the structural and thermodynamic properties of the crystal-like Wigner phase of complex plasma confined in a 3D harmonic potential. We discuss the linear response of the strongly correlated system to external excitations, which can be described in terms of normal modes [2]. By means of first-principle simulations the details of the melting phase transitions of these mesoscopic systems are systematically analysed with the melting temperatures being determined by a modified Lindemann parameter for the pair distance fluctuations [3]. The critical temperatures turn out to be utmost sensitive to finite size effects (i.e., the exact particle number), and form of the (screened) interaction potential.[4pt] [1] PhD Thesis, P. Ludwig, U Rostock (2008)[0pt] [2] C. Henning et al., J. Phys. A 42, 214023 (2009)[0pt] [3] B"oning et al., Phys. Rev. Lett. 100, 113401 (2008)

  9. Cost Comparison of B-1B Non-Mission-Capable Drivers Using Finite Source Queueing with Spares

    DTIC Science & Technology

    2012-09-06

    COMPARISON OF B-1B NON-MISSION-CAPABLE DRIVERS USING FINITE SOURCE QUEUEING WITH SPARES GRADUATE RESEARCH PAPER Presented to the Faculty...step into the lineup making large-number approximations unusable. Instead, a finite source queueing model including spares is incorporated...were reported as flying time accrued since last occurrence. Service time was given in both start-stop format and MX man-hours utilized. Service time was

  10. A source model of the 2014 South Napa Earthquake by the EGF broad-band strong ground motion simulation

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Kubo, H.

    2014-12-01

    The source model of the 2014 South Napa earthquake (Mw6.0) is estimated using broad band strong ground motion simulation by the empirical Green's function method (Irikura, 1986, Irikura et al., 1997). We used the CESMD strong motion data. Aftershock ground motion records of Mw3.6 which occurred at 05:33 on 24th August (PDT), are used as an empirical Green's function. We refer to the finite source model by Dreger et al. (2014) for setting the geometry of the source fault plane and the rupture velocity. We assume a single rectangular strong motion generation area (e.g. Miyake et al., 2003; Asano and Iwata, 2012). The seismic moment ratio between the target and EGF events is fixed from the moment magnitudes. As only five station data are available for the aftershock records, the size of SMGA area, rupture starting point, and the rise time on the SMGA are determined by the trial and error. Preliminary SMGA model is 6x6km2 and the rupture mainly propagates WNW and shallower directions. The SMGA size we obtained follows the empirical relationship of Mw and SMGA size for the inland crustal events (Irikura and Miyake, 2011). Waveform fittings are fairly well at the near source station NHC (Huichica creek) and 68150 (Napa Collage), where as the fitting is not good at the south-side stations, 68206 (Crockett - Carquinez Br. Geotech Array) and 68310 (Vallejo - Hwy 37/Napa River E Geo. Array). Particularly, we did not succeed in explaining the high PGA at the 68206 surface station. We will try to improve our SMGA model and will discuss the origin of the high PGA observed at that station.

  11. Stable source reconstruction from a finite number of measurements in the multi-frequency inverse source problem

    NASA Astrophysics Data System (ADS)

    Karamehmedović, Mirza; Kirkeby, Adrian; Knudsen, Kim

    2018-06-01

    We consider the multi-frequency inverse source problem for the scalar Helmholtz equation in the plane. The goal is to reconstruct the source term in the equation from measurements of the solution on a surface outside the support of the source. We study the problem in a certain finite dimensional setting: from measurements made at a finite set of frequencies we uniquely determine and reconstruct sources in a subspace spanned by finitely many Fourier–Bessel functions. Further, we obtain a constructive criterion for identifying a minimal set of measurement frequencies sufficient for reconstruction, and under an additional, mild assumption, the reconstruction method is shown to be stable. Our analysis is based on a singular value decomposition of the source-to-measurement forward operators and the distribution of positive zeros of the Bessel functions of the first kind. The reconstruction method is implemented numerically and our theoretical findings are supported by numerical experiments.

  12. The impacts of the quantum-dot confining potential on the spin-orbit effect.

    PubMed

    Li, Rui; Liu, Zhi-Hai; Wu, Yidong; Liu, C S

    2018-05-09

    For a nanowire quantum dot with the confining potential modeled by both the infinite and the finite square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit coupling regime. We find that regardless of how small the well height is, there are at least two bound states in the finite square well: one has the σ x [Formula: see text] = -1 symmetry and the other has the σ x [Formula: see text] = 1 symmetry. When the well height is slowly tuned from large to small, the position of the maximal probability density of the first excited state moves from the center to x ≠ 0, while the position of the maximal probability density of the ground state is always at the center. A strong enhancement of the spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height [Formula: see text], at which the spin-orbit effect is enhanced to maximal.

  13. OGLE-2012-bLG-0950Lb: the First Planet Mass Measurement From Only Microlens Parallax and Lens Flux

    NASA Technical Reports Server (NTRS)

    Koshimoto, N.; Udalski, A.; Beaulieu, J. P.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Fukui, A.; Bhattacharya, A.; Suzuki, D.

    2016-01-01

    We report the discovery of a microlensing planet OGLE-2012-BLG-0950Lb with a planet/host mass ratio Periapsis Approx. = 2 x10(exp. -4). A long term distortion detected in both MOA and OGLE light curve can be explained by themicrolens parallax due to the Earths orbital motion around the Sun. Although the finite source effect is not detected, we obtain the lens flux by the high resolution Keck AO observation. Combining the microlens parallax and the lens flux reveal the nature of the lens: a planet with mass of M(sub p) = 35(+17/-)M compared to Earth is orbiting around an M-dwarf with mass of M(sub host) = 0.56(+0.12/-0.16) M compared to the Sun with a planet-host projected separation of r1 = 2.7(+0.6/-0.7) au located at Luminosity Distance = 3.0(+0.8/-1.1) kpc from us. This is the first mass measurement from only microlens parallax and the lens flux without the finite source effect. In the coming space observation-era with Spitzer, K2, Euclid, and WFIRST, we expect many such events for which we will not be able to measure any finite source effect. This work demonstrates an ability of mass measurements in such events.

  14. Development of an upwind, finite-volume code with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1995-01-01

    Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.

  15. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2012-08-01

    An accurate and efficient method to predict infrasound amplitudes from large explosions in the atmosphere is required for diverse source types, including bolides, volcanic eruptions, and nuclear and chemical explosions. A finite-difference, time-domain approach is developed to solve a set of nonlinear fluid dynamic equations for total pressure, temperature, and density fields rather than acoustic perturbations. Three key features for the purpose of synthesizing nonlinear infrasound propagation in realistic media are that it includes gravitational terms, it allows for acoustic absorption, including molecular vibration losses at frequencies well below the molecular vibration frequencies, and the environmental models are constrained to have axial symmetry, allowing a three-dimensional simulation to be reduced to two dimensions. Numerical experiments are performed to assess the algorithm's accuracy and the effect of source amplitudes and atmospheric variability on infrasound waveforms and shock formation. Results show that infrasound waveforms steepen and their associated spectra are shifted to higher frequencies for nonlinear sources, leading to enhanced infrasound attenuation. Results also indicate that nonlinear infrasound amplitudes depend strongly on atmospheric temperature and pressure variations. The solution for total field variables and insertion of gravitational terms also allows for the computation of other disturbances generated by explosions, including gravity waves.

  16. Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs

    NASA Astrophysics Data System (ADS)

    Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane

    2016-12-01

    The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).

  17. Finite Size Effects in Submonolayer Catalysts Investigated by CO Electrosorption on PtsML/Pd(100).

    PubMed

    Yuan, Qiuyi; Doan, Hieu A; Grabow, Lars C; Brankovic, Stanko R

    2017-10-04

    A combination of scanning tunneling microscopy, subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS), and density functional theory (DFT) is used to quantify the local strain in 2D Pt clusters on the 100 facet of Pd and its effect on CO chemisorption. Good agreement between SNIFTIRS experiments and DFT simulations provide strong evidence that, in the absence of coherent strain between Pt and Pd, finite size effects introduce local compressive strain, which alters the chemisorption properties of the surface. Though this effect has been widely neglected in prior studies, our results suggest that accurate control over cluster sizes in submonolayer catalyst systems can be an effective approach to fine-tune their catalytic properties.

  18. Numerical simulation of one-dimensional heat transfer in composite bodies with phase change. M.S. Thesis, 1980 Final Report; [wing deicing pads

    NASA Technical Reports Server (NTRS)

    Dewitt, K. J.; Baliga, G.

    1982-01-01

    A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions.

  19. The new finite temperature Schrödinger equations with strong or weak interaction

    NASA Astrophysics Data System (ADS)

    Li, Heling; Yang, Bin; Shen, Hongjun

    2017-07-01

    Implanting the thoughtway of thermostatistics into quantum mechanics, we formulate new Schrödinger equations of multi-particle and single-particle respectively at finite temperature. To get it, the pure-state free energies and the microscopic entropy operators are introduced and meantime the pure-state free energies take the places of mechanical energies at finite temperature. The definition of microscopic entropy introduced by Wu was also revised, and the strong or weak interactions dependent on temperature are considered in multi-particle Schrödinger Equations. Based on the new Schrödinger equation at finite temperature, two simple cases were analyzed. The first one is concerning some identical harmonic oscillators in N lattice points and the other one is about N unrelated particles in three dimensional in finite potential well. From the results gotten, we conclude that the finite temperature Schrödinger equation is particularly important for mesoscopic systems.

  20. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    NASA Astrophysics Data System (ADS)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  1. A finite difference solution for the propagation of sound in near sonic flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Lester, H. C.

    1983-01-01

    An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.

  2. Atmospheric effect on classification of finite fields. [satellite-imaged agricultural areas

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1984-01-01

    The atmospheric effect on the upward radiance of sunlight scattered from the earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. In this paper, the radiances above finite fields are computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) is used to test the effect of field size, background reflectance, and optical thickness of the atmosphere on the classification accuracy. For a given atmospheric turbidity, the atmospheric effect on classification of surface features may be much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface elements to be classified and their contrasts. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, are needed.

  3. Disentangling incentives effects of insurance coverage from adverse selection in the case of drug expenditure: a finite mixture approach.

    PubMed

    Munkin, Murat K; Trivedi, Pravin K

    2010-09-01

    This paper takes a finite mixture approach to model heterogeneity in incentive and selection effects of drug coverage on total drug expenditure among the Medicare elderly US population. Evidence is found that the positive drug expenditures of the elderly population can be decomposed into two groups different in the identified selection effects and interpreted as relatively healthy with lower average expenditures and relatively unhealthy with higher average expenditures, accounting for approximately 25 and 75% of the population, respectively. Adverse selection into drug insurance appears to be strong for the higher expenditure component and weak for the lower expenditure group. Copyright (c) 2010 John Wiley & Sons, Ltd.

  4. Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Medvedev, M. V.; Loeb, A.

    2013-04-01

    Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.

  5. Mach wave properties in the presence of source and medium heterogeneity

    NASA Astrophysics Data System (ADS)

    Vyas, J. C.; Mai, P. M.; Galis, M.; Dunham, Eric M.; Imperatori, W.

    2018-06-01

    We investigate Mach wave coherence for kinematic supershear ruptures with spatially heterogeneous source parameters, embedded in 3D scattering media. We assess Mach wave coherence considering: 1) source heterogeneities in terms of variations in slip, rise time and rupture speed; 2) small-scale heterogeneities in Earth structure, parameterized from combinations of three correlation lengths and two standard deviations (assuming von Karman power spectral density with fixed Hurst exponent); and 3) joint effects of source and medium heterogeneities. Ground-motion simulations are conducted using a generalized finite-difference method, choosing a parameterization such that the highest resolved frequency is ˜5 Hz. We discover that Mach wave coherence is slightly diminished at near fault distances (< 10 km) due to spatially variable slip and rise time; beyond this distance the Mach wave coherence is more strongly reduced by wavefield scattering due to small-scale heterogeneities in Earth structure. Based on our numerical simulations and theoretical considerations we demonstrate that the standard deviation of medium heterogeneities controls the wavefield scattering, rather than the correlation length. In addition, we find that peak ground accelerations in the case of combined source and medium heterogeneities are consistent with empirical ground motion prediction equations for all distances, suggesting that in nature ground shaking amplitudes for supershear ruptures may not be elevated due to complexities in the rupture process and seismic wave-scattering.

  6. A Analysis of the Low Frequency Sound Field in Non-Rectangular Enclosures Using the Finite Element Method.

    NASA Astrophysics Data System (ADS)

    Geddes, Earl Russell

    The details of the low frequency sound field for a rectangular room can be studied by the use of an established analytic technique--separation of variables. The solution is straightforward and the results are well-known. A non -rectangular room has boundary conditions which are not separable and therefore other solution techniques must be used. This study shows that the finite element method can be adapted for use in the study of sound fields in arbitrary shaped enclosures. The finite element acoustics problem is formulated and the modification of a standard program, which is necessary for solving acoustic field problems, is examined. The solution of the semi-non-rectangular room problem (one where the floor and ceiling remain parallel) is carried out by a combined finite element/separation of variables approach. The solution results are used to construct the Green's function for the low frequency sound field in five rooms (or data cases): (1) a rectangular (Louden) room; (2) The smallest wall of the Louden room canted 20 degrees from normal; (3) The largest wall of the Louden room canted 20 degrees from normal; (4) both the largest and the smallest walls are canted 20 degrees; and (5) a five-sided room variation of Case 4. Case 1, the rectangular room was calculated using both the finite element method and the separation of variables technique. The results for the two methods are compared in order to access the accuracy of the finite element method models. The modal damping coefficient are calculated and the results examined. The statistics of the source and receiver average normalized RMS P('2) responses in the 80 Hz, 100 Hz, and 125 Hz one-third octave bands are developed. The receiver averaged pressure response is developed to determine the effect of the source locations on the response. Twelve source locations are examined and the results tabulated for comparison. The effect of a finite sized source is looked at briefly. Finally, the standard deviation of the spatial pressure response is studied. The results for this characteristic show that it not significantly different in any of the rooms. The conclusions of the study are that only the frequency variations of the pressure response are affected by a room's shape. Further, in general, the simplest modification of a rectangular room (i.e., changing the angle of only one of the smallest walls), produces the most pronounced decrease of the pressure response variations in the low frequency region.

  7. Asymmetry and anisotropy of surface effects of mining induced seismic events

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw; Orlecka-Sikora, Beata

    2013-04-01

    Long-lasting exploitation in underground mines and the complex system of goaf - unmined areas - excavation may cause the occurrence of seismic events, whose influence in the excavation and on the free surface is untypical. We present here the analysis of surface effects of a series of ten seismic events that occurred in one panel of a copper-ore mine. The analysis bases on a comparison of the observed ground motion due to the studied events with the estimates from Ground Motion Prediction Equations for peak horizontal (PHA) and vertical (PVA) acceleration of motion in the frequency band up to 10Hz, local for that mining area. The GMPE-s take into account also relative site amplification factors. The posterior probabilities that the observed PHA-s are not attained according to GMPE-s are calculated and mapped. Although all ten considered events had comparable magnitudes and were located close one to another their ground effects were very diverse. The analysis of anomalies of surface effects shows strong asymmetry of ground motion propagation and anisotropy of surface effects of the studied tremors. Based on similarities of surface effects anomalies, expressed in terms of the posterior probabilities, the events are split into distinct groups. In case of four events the actual PHA-s on most of the stations are greater than the respective estimated medians, especially in the sector N-SE. The PHA values of the second group are at short epicentral distances mostly on the same level as the predicted estimates from GMPE. The observed effects, however, become abnormally strong with the increase of epicentral distances in the sector NE-SE. The effects of events from next groups abnormally increase either in NE or NE - SE direction and the maximum anomalies appear about 3km from the epicenter. The extreme discrepancies can be attributed neither to local site effects nor to preferential propagation conditions along some wavepaths. Therefore it is concluded that the observed anomalies of ground motion result from sources properties. Integrated analysis of source mechanism of these events indicates that their untypical and diverse surface effects result from complexity of their sources expressed by tensile source mechanisms, finite sources, directivity of ruptures and nearly horizontal rupture planes. The above features seem to be implied by a superposition of coseismic alterations of stress field and stress changes due to mining. This work has been done in the framework of the research project No. NN525393539, financed by the National Science Centre of Poland for the period 2010-2013.

  8. SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-08-01

    This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. Themore » notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.« less

  9. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  10. Finite Element Analysis of Reverberation Chambers

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  11. A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach.

    PubMed

    Kumar, Dinesh; Rai, K N

    2016-12-01

    Hyperthermia is a process that uses heat from the spatial heat source to kill cancerous cells without damaging the surrounding healthy tissues. Efficacy of hyperthermia technique is related to achieve temperature at the infected cells during the treatment process. A mathematical model on heat transfer in multilayer tissues in finite domain is proposed to predict the control temperature profile at hyperthermia position. The treatment technique uses dual-phase-lag model of heat transfer in multilayer tissues with modified Gaussian distribution heat source subjected to the most generalized boundary condition and interface at the adjacent layers. The complete dual-phase-lag model of bioheat transfer is solved using finite element Legendre wavelet Galerkin approach. The present solution has been verified with exact solution in a specific case and provides a good accuracy. The effect of the variability of different parameters such as lagging times, external heat source, metabolic heat source and the most generalized boundary condition on temperature profile in multilayer tissues is analyzed and also discussed the effective approach of hyperthermia treatment. Furthermore, we studied the modified thermal damage model with regeneration of healthy tissues as well. For viewpoint of thermal damage, the least thermal damage has been observed in boundary condition of second kind. The article concludes with a discussion of better opportunities for future clinical application of hyperthermia treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Wavefront propagation simulations for a UV/soft x-ray beamline: Electron Spectro-Microscopy beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Canestrari, N.; Bisogni, V.; Walter, A.; Zhu, Y.; Dvorak, J.; Vescovo, E.; Chubar, O.

    2014-09-01

    A "source-to-sample" wavefront propagation analysis of the Electron Spectro-Microscopy (ESM) UV / soft X-ray beamline, which is under construction at the National Synchrotron Light Source II (NSLS-II) in the Brookhaven National Laboratory, has been conducted. All elements of the beamline - insertion device, mirrors, variable-line-spacing gratings and slits - are included in the simulations. Radiation intensity distributions at the sample position are displayed for representative photon energies in the UV range (20 - 100 eV) where diffraction effects are strong. The finite acceptance of the refocusing mirrors is the dominating factor limiting the spatial resolution at the sample (by ~3 μm at 20 eV). Absolute estimates of the radiation flux and energy resolution at the sample are also obtained from the electromagnetic calculations. The analysis of the propagated UV range undulator radiation at different deflection parameter values demonstrates that within the beamline angular acceptance a slightly "red-shifted" radiation provides higher flux at the sample and better energy resolution compared to the on-axis resonant radiation of the fundamental harmonic.

  13. Determination of ankle external fixation stiffness by expedited interactive finite element analysis.

    PubMed

    Nielsen, Jonathan K; Saltzman, Charles L; Brown, Thomas D

    2005-11-01

    Interactive finite element analysis holds the potential to quickly and accurately determine the mechanical stiffness of alternative external fixator frame configurations. Using as an example Ilizarov distraction of the ankle, a finite element model and graphical user interface were developed that provided rapid, construct-specific information on fixation rigidity. After input of specific construct variables, the finite element software determined the resulting tibial displacement for a given configuration in typically 15s. The formulation was employed to investigate constructs used to treat end-stage arthritis, both in a parametric series and for five specific clinical distraction cases. Parametric testing of 15 individual variables revealed that tibial half-pins were much more effective than transfixion wires in limiting axial tibial displacement. Factors most strongly contributing to stiffening the construct included placing the tibia closer to the fixator rings, and mounting the pins to the rings at the nearest circumferential location to the bone. Benchtop mechanical validation results differed inappreciably from the finite element computations.

  14. Uncertainty Analyses for Back Projection Methods

    NASA Astrophysics Data System (ADS)

    Zeng, H.; Wei, S.; Wu, W.

    2017-12-01

    So far few comprehensive error analyses for back projection methods have been conducted, although it is evident that high frequency seismic waves can be easily affected by earthquake depth, focal mechanisms and the Earth's 3D structures. Here we perform 1D and 3D synthetic tests for two back projection methods, MUltiple SIgnal Classification (MUSIC) (Meng et al., 2011) and Compressive Sensing (CS) (Yao et al., 2011). We generate synthetics for both point sources and finite rupture sources with different depths, focal mechanisms, as well as 1D and 3D structures in the source region. The 3D synthetics are generated through a hybrid scheme of Direct Solution Method and Spectral Element Method. Then we back project the synthetic data using MUSIC and CS. The synthetic tests show that the depth phases can be back projected as artificial sources both in space and time. For instance, for a source depth of 10km, back projection gives a strong signal 8km away from the true source. Such bias increases with depth, e.g., the error of horizontal location could be larger than 20km for a depth of 40km. If the array is located around the nodal direction of direct P-waves the teleseismic P-waves are dominated by the depth phases. Therefore, back projections are actually imaging the reflection points of depth phases more than the rupture front. Besides depth phases, the strong and long lasted coda waves due to 3D effects near trench can lead to additional complexities tested here. The strength contrast of different frequency contents in the rupture models also produces some variations to the back projection results. In the synthetic tests, MUSIC and CS derive consistent results. While MUSIC is more computationally efficient, CS works better for sparse arrays. In summary, our analyses indicate that the impact of various factors mentioned above should be taken into consideration when interpreting back projection images, before we can use them to infer the earthquake rupture physics.

  15. Imperfect coupling between northern and southern ionospheres: asymmetry in TEC anomalies before earthquakes

    NASA Astrophysics Data System (ADS)

    Jhuang, Hau-Kun; Ho, Yi-Ying; Lee, Lou-Chuang

    2016-04-01

    The northern ionosphere is coupled to the conjugate southern ionosphere through the highly conducting geomagenetic field lines. The coupling is very strong or "perfect" if the geomagnetic field lines are equipotential (the parallel electric field E||=0) and hence the perpendicular electric field (E⊥) at the conjugate sites of both ionospheres are equal. The coupling is "imperfect" if some of the geomagnetic field lines are non-equipotential (E||≠0). The field-aligned electric field E|| can be associated with electron inertia, pressure gradient and collisions appearing in the form of double layer, kinetic Alfvén waves and finite field-aligned conductivity σ||. We use the Global Ionospheric Maps (GIM) data to examine the conjugate effect of total electron content (TEC) for six significant earthquakes. The anomalous (ΔTEC)source in the source ionosphere and (ΔTEC)conjugate in the conjugate ionosphere are obtained for 85 events before the six earthquakes. The ΔTEC ratio β = (ΔTEC)conjugate / (ΔTEC)source is calculated for each anomaly. For a "perfect" coupling, β=1. There are 85 anomalous events before the six significant earthquakes, with 62 events occurring in the daytime (07-18 LT) and 23 events in the nighttime (19-06 LT). The average value of daytime (07-18 LT) TEC variations in the source ionosphere is |ΔTEC|source =20.13 TECu, while the average value in the nighttime (19-06 LT) ionosphere is |ΔTEC|source=14.43 TECu. The value of ΔTEC ratio β ranges from 0.05 (very weak coupling) to 0.98 (nearly perfect coupling) with an average of 0.52. There are 14 strong coupling cases with β ≥0.8, which take place from 11 LT to 19 LT. The daytime (07-18 LT) β average value is 0.57 and the nighttime (19-06 LT) β average is 0.37. The south-north ionosphere coupling is stronger (weaker) in the daytime (nighttime).

  16. Deformation of two-phase aggregates using standard numerical methods

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.

    2013-04-01

    Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.

  17. Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: A detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics: Nonlinear propagation of elastic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.

    Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less

  18. Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: A detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics: Nonlinear propagation of elastic pulse

    DOE PAGES

    Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.; ...

    2017-10-18

    Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less

  19. An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.; Smith, G. L.; Perkins, J. N.

    1972-01-01

    An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.

  20. Effects of renormalizing the chiral SU(2) quark-meson model

    NASA Astrophysics Data System (ADS)

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2018-04-01

    We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.

  1. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen

    2012-08-14

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics.more » Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. Finally, by late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.« less

  2. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa

    2015-01-01

    The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.

  3. Features of statistical dynamics in a finite system

    NASA Astrophysics Data System (ADS)

    Yan, Shiwei; Sakata, Fumihiko; Zhuo, Yizhong

    2002-03-01

    We study features of statistical dynamics in a finite Hamilton system composed of a relevant one degree of freedom coupled to an irrelevant multidegree of freedom system through a weak interaction. Special attention is paid on how the statistical dynamics changes depending on the number of degrees of freedom in the irrelevant system. It is found that the macrolevel statistical aspects are strongly related to an appearance of the microlevel chaotic motion, and a dissipation of the relevant motion is realized passing through three distinct stages: dephasing, statistical relaxation, and equilibrium regimes. It is clarified that the dynamical description and the conventional transport approach provide us with almost the same macrolevel and microlevel mechanisms only for the system with a very large number of irrelevant degrees of freedom. It is also shown that the statistical relaxation in the finite system is an anomalous diffusion and the fluctuation effects have a finite correlation time.

  4. Features of statistical dynamics in a finite system.

    PubMed

    Yan, Shiwei; Sakata, Fumihiko; Zhuo, Yizhong

    2002-03-01

    We study features of statistical dynamics in a finite Hamilton system composed of a relevant one degree of freedom coupled to an irrelevant multidegree of freedom system through a weak interaction. Special attention is paid on how the statistical dynamics changes depending on the number of degrees of freedom in the irrelevant system. It is found that the macrolevel statistical aspects are strongly related to an appearance of the microlevel chaotic motion, and a dissipation of the relevant motion is realized passing through three distinct stages: dephasing, statistical relaxation, and equilibrium regimes. It is clarified that the dynamical description and the conventional transport approach provide us with almost the same macrolevel and microlevel mechanisms only for the system with a very large number of irrelevant degrees of freedom. It is also shown that the statistical relaxation in the finite system is an anomalous diffusion and the fluctuation effects have a finite correlation time.

  5. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    NASA Astrophysics Data System (ADS)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  6. Dynamical Quasicondensation of Hard-Core Bosons at Finite Momenta: A Non-equilibrium Condensation Effect

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Vidmar, L.; Ronzheimer, J. P.; Hodgman, S.; Schreiber, M.; Braun, S.; Langer, S.; Bloch, I.; Schneider, U.

    2016-05-01

    Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant d. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta +/-(π / 2)(ℏ / d) in the momentum distribution function. Supported by the DFG via FOR 801.

  7. OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; DePoy, D. L.; Gal-Yam, A.; Gaudi, B. S.; Gould, A.; Han, C.; Lipkin, Y.; Maoz, D.; Ofek, E. O.; Park, B.-G.; Pogge, R. W.; Mu-Fun Collaboration; Udalski, A.; Soszyński, I.; Wyrzykowski, Ł.; Kubiak, M.; Szymański, M.; Pietrzyński, G.; Szewczyk, O.; Żebruń, K.; OGLE Collaboration

    2004-03-01

    We analyze OGLE-2003-BLG-262, a relatively short (tE=12.5+/-0.1 day) microlensing event generated by a point-mass lens transiting the face of a K giant source in the Galactic bulge. We use the resulting finite-source effects to measure the angular Einstein radius, θE=195+/-17 μas, and so constrain the lens mass to the FWHM interval 0.08

  8. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  9. Sensitivity analysis on the effective stiffness properties of 3-D orthotropic honeycomb cores

    NASA Astrophysics Data System (ADS)

    Karakoç, Alp

    2018-01-01

    The present study investigates the influences of representative volume element RVE mesh and material parameters, here cell wall elastic moduli, on the effective stiffness properties of three dimensional orthotropic honeycomb cores through strain driven computational homogenization in the finite element framework. For this purpose, case studies were carried out, for which hexagonal cellular RVEs were generated, meshed with eight node linear brick finite elements of varying numbers. Periodic boundary conditions were then implemented on the RVE boundaries by using one-to-one nodal match for the corresponding corners, edges and surfaces for the imposed macroscopic strains. As a novelty, orthotropic material properties were assigned for each cell wall by means of the transformation matrices following the cell wall orientations. Thereafter, simulations were conducted and volume averaged macroscopic stresses were obtained. Eventually, effective stiffness properties were obtained, through which RVE sensitivity analysis was carried out. The investigations indicate that there is a strong relation between number of finite elements and most of the effective stiffness parameters. In addition to this, cell wall elastic moduli also play critical role on the effective properties of the investigated materials.

  10. The effect of finite field size on classification and atmospheric correction

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1981-01-01

    The atmospheric effect on the upward radiance of sunlight scattered from the Earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. For a given atmospheric turbidity, the atmospheric effect on classification of surface features is much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface do not account for the nonuniformity of the surface have only a slight effect on the classification accuracy; in other cases the classification accuracy descreases. The radiances above finite fields were computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) was used to test the effect of the size of the background reflectance and the optical thickness of the atmosphere on classification accuracy. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, have to be developed to improve significantly the classification accuracy.

  11. Investigating the dominant corrections to the strong-stretching theory for dry polymeric brushes.

    PubMed

    Matsen, M W

    2004-07-22

    The accuracy of strong-stretching theory (SST) is examined against a detailed comparison to self-consistent field theory (SCFT) on dry polymeric brushes with thicknesses of up to approximately 17 times the natural chain extension. The comparison provides the strongest evidence to date that SST represents the exact thick-brush limit of SCFT. More importantly, it allows us to assess the effectiveness of proposed finite-stretching corrections to SST. Including the entropy of the free ends is shown to rectify the most severe inaccuracies in SST. The proximal layer proposed by Likhtman and Semenov provides another significant improvement, and we identify one further effect of similar importance for which there is not yet an accurate treatment. Furthermore, our study provides a valuable means of rejecting mistaken refinements to SST, and indeed one such example is revealed. A proper treatment of finite-stretching corrections is vital to a wide range of phenomena that depend on a small excess free energy, such as autophobic dewetting and the interaction between opposing brushes.

  12. Numerical Large Deviation Analysis of the Eigenstate Thermalization Hypothesis

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Iyoda, Eiki; Sagawa, Takahiro

    2018-05-01

    A plausible mechanism of thermalization in isolated quantum systems is based on the strong version of the eigenstate thermalization hypothesis (ETH), which states that all the energy eigenstates in the microcanonical energy shell have thermal properties. We numerically investigate the ETH by focusing on the large deviation property, which directly evaluates the ratio of athermal energy eigenstates in the energy shell. As a consequence, we have systematically confirmed that the strong ETH is indeed true even for near-integrable systems. Furthermore, we found that the finite-size scaling of the ratio of athermal eigenstates is a double exponential for nonintegrable systems. Our result illuminates the universal behavior of quantum chaos, and suggests that a large deviation analysis would serve as a powerful method to investigate thermalization in the presence of the large finite-size effect.

  13. Scaling laws and bulk-boundary decoupling in heat flow.

    PubMed

    del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I

    2015-03-01

    When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.

  14. Analysis of Seismic Moment Tensor and Finite-Source Scaling During EGS Resource Development at The Geysers, CA

    NASA Astrophysics Data System (ADS)

    Boyd, O. S.; Dreger, D. S.; Gritto, R.

    2015-12-01

    Enhanced Geothermal Systems (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. We investigate seismicity in the vicinity of the EGS development at The Geysers Prati-32 injection well to determine moment magnitude, focal mechanism, and kinematic finite-source models with the goal of developing a rupture area scaling relationship for the Geysers and specifically for the Prati-32 EGS injection experiment. Thus far we have analyzed moment tensors of M ≥ 2 events, and are developing the capability to analyze the large numbers of events occurring as a result of the fluid injection and to push the analysis to smaller magnitude earthquakes. We have also determined finite-source models for five events ranging in magnitude from M 3.7 to 4.5. The scaling relationship between rupture area and moment magnitude of these events resembles that of a published empirical relationship derived for events from M 4.5 to 8.3. We plan to develop a scaling relationship in which moment magnitude and corner frequency are predictor variables for source rupture area constrained by the finite-source modeling. Inclusion of corner frequency in the empirical scaling relationship is proposed to account for possible variations in stress drop. If successful, we will use this relationship to extrapolate to the large numbers of events in the EGS seismicity cloud to estimate the coseismic fracture density. We will present the moment tensor and corner frequency results for the micro earthquakes, and for select events, finite-source models. Stress drop inferred from corner frequencies and from finite-source modeling will be compared.

  15. SU(2) lattice gluon propagator: Continuum limit, finite-volume effects, and infrared mass scale m{sub IR}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornyakov, V. G.; Mitrjushkin, V. K.; Mueller-Preussker, M.

    2010-03-01

    We study the scaling behavior and finite (physical) volume effects as well as the Gribov copy dependence of the SU(2) Landau gauge gluon propagator on the lattice. Our physical lattice sizes range from (3.0 fm){sup 4} to (7.3 fm){sup 4}. Considering lattices with decreasing lattice spacing but fixed physical volume we confirm (nonperturbative) multiplicative renormalizability and the approach to the continuum limit for the renormalized gluon propagator D{sub ren}(p) at momenta |p| > or approx. 0.6 GeV. The finite-volume effects and Gribov copy influence turn out small in this region. On the contrary, in the deeper infrared we found themore » Gribov copy influence strong and finite-volume effects, which still require special attention. The gluon propagator does not seem to be consistent with a simple polelike behavior {approx}(p{sup 2}+m{sub g}{sup 2}){sup -1} for momenta |p| < or approx. 0.6 GeV. Instead, a Gaussian-type fit works very well in this region. From its width - for a physical volume (5.0 fm){sup 4} - we estimate a corresponding infrared (mass) scale to be m{sub IR{approx}}0.7 GeV.« less

  16. The acoustic monopole in motion

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Liu, C. H.

    1976-01-01

    The results of an experiment are presented in which a small monochromatic source which behaves like an acoustic monopole when stationary is moved at a constant speed over an asphalt surface past stationary microphones. An analysis of the monopole moving above a finite impedance reflecting plane is given. The theoretical and experimental results are compared for different ground to observer heights, source frequencies, and source velocities. A computation of the effects of source acceleration on the noise radiated by the monopole is also presented.

  17. Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy)

    NASA Astrophysics Data System (ADS)

    Martini, P.; Carniello, L.; Avanzi, C.

    2004-03-01

    The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy) are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.

  18. Bananas, Doughnuts and Seismic Traveltimes

    NASA Astrophysics Data System (ADS)

    Dahlen, F. A.

    2002-12-01

    Most of what we know about the 3-D seismic heterogeneity of the mantle is based upon ray-theoretical traveltime tomography. In this infinite-frequency approximation, a measured traveltime anomaly depends only upon the wavespeed along an infinitesimally thin geometrical ray between a seismic source and a seismographic station. In this lecture I shall describe a new formulation of the seismic traveltime inverse problem which accounts for the ability of a finite-frequency wave to ``feel'' 3-D structure off of the source-receiver ray. Finite-frequency diffraction effects associated with this off-ray sensitivity act to ``heal'' the corrugations that develop in a wavefront propagating through a heterogeneous medium. Ray-theoretical tomography is based upon the premise that a seismic wave ``remembers'' all of the traveltime advances or delays that it accrues along its path, whereas actual finite-frequency waves ``forget''. I shall describe a number of recent analytical and numerical investigations, which have led to an improved theoretical understanding of this phenomenon.

  19. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    PubMed Central

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  20. A semi-analytical beam model for the vibration of railway tracks

    NASA Astrophysics Data System (ADS)

    Kostovasilis, D.; Thompson, D. J.; Hussein, M. F. M.

    2017-04-01

    The high frequency dynamic behaviour of railway tracks, in both vertical and lateral directions, strongly affects the generation of rolling noise as well as other phenomena such as rail corrugation. An improved semi-analytical model of a beam on an elastic foundation is introduced that accounts for the coupling of the vertical and lateral vibration. The model includes the effects of cross-section asymmetry, shear deformation, rotational inertia and restrained warping. Consideration is given to the fact that the loads at the rail head, as well as those exerted by the railpads at the rail foot, may not act through the centroid of the section. The response is evaluated for a harmonic load and the solution is obtained in the wavenumber domain. Results are presented as dispersion curves for free and supported rails and are validated with the aid of a Finite Element (FE) and a waveguide finite element (WFE) model. Closed form expressions are derived for the forced response, and validated against the WFE model. Track mobilities and decay rates are presented to assess the potential implications for rolling noise and the influence of the various sources of vertical-lateral coupling. Comparison is also made with measured data. Overall, the model presented performs very well, especially for the lateral vibration, although it does not contain the high frequency cross-section deformation modes. The most significant effects on the response are shown to be the inclusion of torsion and foundation eccentricity, which mainly affect the lateral response.

  1. Effect of curvature squared corrections to gravitational action on viscosity-to-entropy ratio of the dual gauge theory

    NASA Astrophysics Data System (ADS)

    Petrov, Pavel

    In this thesis we study the properties of strongly-coupled large-N conformal field theories (CFT's) using AdS/CFT correspondence. Chapter 1 serves as an introduction. In Chapter 2 we study the shear viscosity of strongly-coupled large-N conformal field theories. We find that it is affected by R2 corrections to the AdS action and present an example of 4D theory in which the the conjectured universal lower bound on viscosity-to-entropy ratio η/s > 1/4π is violated by 1/N corrections. This fact proves that there is no universal lower bound of 1/4π on viscosity-to-entropy ratio and may be relevant for the studies of QCD quark-gluon plasma for which this ratio is experimentally found to be close to 1/4π. In Chapter 3 we study the formation of the electron star in 4D AdS space. We show that in a gravity theory with charged fermions a layer of charged fermion fluid may form at a finite distance from the charged black hole. We show that these “electron stars” are candidate gravity duals for strongly interacting fermion systems at finite density and finite temperature. Entropy density for such systems scales as s ˜ T2/z at low temperatures as expected from IR criticality of electron stars solutions.

  2. Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders

    NASA Astrophysics Data System (ADS)

    Wang, A.; Tadjer, M. J.; Calle, F.

    2013-05-01

    We investigated the impact of diamond heat spreading layers on the performance of AlGaN/GaN high-electron-mobility-transistors (HEMTs). A finite element method was used to simulate the thermal and electrical characteristics of the devices under dc and pulsed operation conditions. The results show that the device performance can be improved significantly by optimized heat spreading, an effect strongly dependent on the lateral thermal conductivity of the initial several micrometers of diamond deposition. Of crucial importance is the proximity of the diamond layer to the heat source, which makes this method advantageous over other thermal management procedures, especially for the device in pulsed operation. In this case, the self-heating effect can be suppressed, and it is not affected by either the substrate or its thermal boundary resistance at the GaN/substrate at wider pulses. The device with a 5 µm diamond layer can present 10.5% improvement of drain current, and the self-heating effect can be neglected for a 100 ns pulse width at 1 V gate and 20 V drain voltage.

  3. The Influence of Finite-size Sources in Acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Pavlakovic, Brian N.; Rose, Joseph L.

    1994-01-01

    This work explores the effects that the finite normal axisymmetric traction loading of an infinite isotropic plate has on wave propagation in acousto-ultrasonics (AU), in which guided waves are created using two normal incidence transducers. Although the work also addresses the effects of the transducer pressure distribution and pulse shape, this thesis concentrates on two main questions: how does the transducer's diameter control the phase velocity and frequency spectrum of the response, and how does the plate thickness relate to the plate's excitability? The mathematics of the time-harmonic solution and the physical principles and the practical considerations for AU wave generation are explained. Transient sources are modeled by the linear superposition of the time-harmonic solutions found using the Hankel transform and they are then compared to experimental data to provide insight into the relation between the size of the transducer and the preferred phase velocity.

  4. Numerical Solution of the Kzk Equation for Pulsed Finite Amplitude Sound Beams in Thermoviscous Fluids

    NASA Astrophysics Data System (ADS)

    Lee, Yang-Sub

    A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.

  5. Experimental quantum key distribution with source flaws

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Wei, Kejin; Sajeed, Shihan; Kaiser, Sarah; Sun, Shihai; Tang, Zhiyuan; Qian, Li; Makarov, Vadim; Lo, Hoi-Kwong

    2015-09-01

    Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be proven to be secure in practice. Here, we perform an experiment that shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments, and our theory can be applied to general discrete-variable QKD systems. These features constitute a step towards secure QKD with imperfect devices.

  6. Numerical Study of the Effect of Presence of Geometric Singularities on the Mechanical Behavior of Laminated Plates

    NASA Astrophysics Data System (ADS)

    Khechai, Abdelhak; Tati, Abdelouahab; Guettala, Abdelhamid

    2017-05-01

    In this paper, an effort is made to understand the effects of geometric singularities on the load bearing capacity and stress distribution in thin laminated plates. Composite plates with variously shaped cutouts are frequently used in both modern and classical aerospace, mechanical and civil engineering structures. Finite element investigation is undertaken to show the effect of geometric singularities on stress distribution. In this study, the stress concentration factors (SCFs) in cross-and-angle-ply laminated as well as in isotropic plates subjected to uniaxial loading are studied using a quadrilateral finite element of four nodes with thirty-two degrees-of-freedom per element. The varying parameters such as the cutout shape and hole sizes (a/b) are considered. The numerical results obtained by the present element are compared favorably with those obtained using the finite element software Freefem++ and the analytic findings published in literature, which demonstrates the accuracy of the present element. Freefem++ is open source software based on the finite element method, which could be helpful to study and improving the analyses of the stress distribution in composite plates with cutouts. The Freefem++ and the quadrilateral finite element formulations will be given in the beginning of this paper. Finally, to show the effect of the fiber orientation angle and anisotropic modulus ratio on the (SCF), number of figures are given for various ratio (a/b).

  7. Acoustics of finite asymmetric exotic beams: Examples of Airy and fractional Bessel beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-12-01

    The purpose of this investigation is to examine the properties of finite asymmetric exotic scalar (acoustic) beams with unusual properties using the angular spectrum decomposition in plane waves. Such beams possess intrinsic uncommon characteristics that make them attractive from the standpoint of particle manipulation, handling and rotation, and possibly other applications in particle clearing and separation. Assuming a specific apodization function at the acoustic source, the angular spectrum function is calculated and used to synthesize the radiated pressure field (i.e., excluding evanescent waves that decay away from the source) in the forward direction of wave motion (i.e., away from the source). Moreover, a generalized hybrid method combining the angular spectrum approach with the multipole expansion formalism in spherical coordinates is developed, which is applicable to any finite beam of arbitrary wavefront. The improved approach allows adequate computation of the resonance scattering, radiation force, and spin torque components on an object of arbitrary shape, located on or off the axis of the incident beam in space. Considering the illustrative example of a viscous fluid sphere submerged in a non-viscous liquid and illuminated by finite asymmetric beams such as the Airy and the Bessel vortex beam with fractional order, numerical computations for the scattering, radiation force, and torque components are performed with an emphasis on the distance from the source, the arbitrary location of the particle ,and the asymmetric nature of the incident field. Moreover, beamforming calculations are presented with supplementary animations for the pressure field distribution in space, with an emphasis on the intrinsic properties of the selected beams. The numerical predictions illustrate the scattering, radiation force, and spin torque properties depending on the beam parameters and the distance separating the sphere from the source. This study provides a generalized hybrid method to analyze quantitatively the scattering, radiation force, and spin torque by any finite asymmetric (or symmetric) acoustic beam with potential applications in various fields of applied physics (such as beam-forming, imaging, and mechanical effects of asymmetric sound beams).

  8. Modeling and analysis of CSAMT field source effect and its characteristics

    NASA Astrophysics Data System (ADS)

    Da, Lei; Xiaoping, Wu; Qingyun, Di; Gang, Wang; Xiangrong, Lv; Ruo, Wang; Jun, Yang; Mingxin, Yue

    2016-02-01

    Controlled-source audio-frequency magnetotellurics (CSAMT) has been a highly successful geophysical tool used in a variety of geological exploration studies for many years. However, due to the artificial source used in the CSAMT technique, two important factors are considered during interpretation: non-plane-wave or geometric effects and source overprint effects. Hence, in this paper we simulate the source overprint effects and analyzed the rule and characteristics of its influence on CSAMT applications. Two-dimensional modeling was carried out using an adaptive unstructured finite element method to simulate several typical models. Also, we summarized the characteristics and rule of the source overprint effects and analyzed its influence on the data taken over several mining areas. The results obtained from the study shows that the occurrence and strength of the source overprint effect is dependent on the location of the source dipole, in relation to the receiver and the subsurface geology. In order to avoid source overprint effects, three principle were suggested to determine the best location for the grounded dipole source in the field.

  9. Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta River

    NASA Astrophysics Data System (ADS)

    D'Alpaos, L.; Martini, P.; Carniello, L.

    2003-04-01

    The paper deals with numerical modelling of flood waves and suspended sediment in plain river basins. The two dimensional depth integrated momentum and continuity equations, modified to take into account of the bottom irregularities that strongly affect the hydrodynamic and the continuity in partially dry areas (for example, during the first stages of a plain flooding and in tidal flows), are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme and considering the role both of the small channel network and the regulation dispositive on the flooding wave propagation. Transport of suspended sediment and bed evolution are coupled with the flood propagation through the convection-dispersion equation and the Exner's equation. Results of a real case study are presented in which the effects of extreme flood of Brenta River (Italy) are examinated. The flooded areas (urban and rural areas) are identified and a mitigation solution based on a diversion channel flowing into Venice Lagoon is proposed. We show that this solution strongly reduces the flood risk in the downstream areas and can provide an important sediment source to the Venice Lagoon. Finally, preliminary results of the sediment dispersion in the Venice Lagoon are presented.

  10. A CFD/CSD Interaction Methodology for Aircraft Wings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Manoj K.

    1997-01-01

    With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).

  11. Experimental evaluation of the ring focus test for X-ray telescopes using AXAF's technology mirror assembly, MSFC CDDF Project No. H20

    NASA Technical Reports Server (NTRS)

    Zissa, D. E.; Korsch, D.

    1986-01-01

    A test method particularly suited for X-ray telescopes was evaluated experimentally. The method makes use of a focused ring formed by an annular aperture when using a point source at a finite distance. This would supplement measurements of the best focus image which is blurred when the test source is at a finite distance. The telescope used was the Technology Mirror Assembly of the Advanced X-ray Astrophysis Facility (AXAF) program. Observed ring image defects could be related to the azimuthal location of their sources in the telescope even though in this case the predicted sharp ring was obscured by scattering, finite source size, and residual figure errors.

  12. Large Subduction Earthquake Simulations using Finite Source Modeling and the Offshore-Onshore Ambient Seismic Field

    NASA Astrophysics Data System (ADS)

    Viens, L.; Miyake, H.; Koketsu, K.

    2016-12-01

    Large subduction earthquakes have the potential to generate strong long-period ground motions. The ambient seismic field, also called seismic noise, contains information about the elastic response of the Earth between two seismic stations that can be retrieved using seismic interferometry. The DONET1 network, which is composed of 20 offshore stations, has been deployed atop the Nankai subduction zone, Japan, to continuously monitor the seismotectonic activity in this highly seismically active region. The surrounding onshore area is covered by hundreds of seismic stations, which are operated the National Research Institute for Earth Science and Disaster Prevention (NIED) and the Japan Meteorological Agency (JMA), with a spacing of 15-20 km. We retrieve offshore-onshore Green's functions from the ambient seismic field using the deconvolution technique and use them to simulate the long-period ground motions of moderate subduction earthquakes that occurred at shallow depth. We extend the point source method, which is appropriate for moderate events, to finite source modeling to simulate the long-period ground motions of large Mw 7 class earthquake scenarios. The source models are constructed using scaling relations between moderate and large earthquakes to discretize the fault plane of the large hypothetical events into subfaults. Offshore-onshore Green's functions are spatially interpolated over the fault plane to obtain one Green's function for each subfault. The interpolated Green's functions are finally summed up considering different rupture velocities. Results show that this technique can provide additional information about earthquake ground motions that can be used with the existing physics-based simulations to improve seismic hazard assessment.

  13. Memory effects in funnel ratchet of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Hu, Cai-Tian; Wu, Jian-Chun; Ai, Bao-Quan

    2017-05-01

    The transport of self-propelled particles with memory effects is investigated in a two-dimensional periodic channel. Funnel-shaped barriers are regularly arrayed in the channel. Due to the asymmetry of the barriers, the self-propelled particles can be rectified. It is found that the memory effects of the rotational diffusion can strongly affect the rectified transport. The memory effects do not always break the rectified transport, and there exists an optimal finite value of correlation time at which the rectified efficiency takes its maximal value. We also find that the optimal values of parameters (the self-propulsion speed, the translocation diffusion coefficient, the rotational noise intensity, and the self-rotational diffusion coefficient) can facilitate the rectified transport. When introducing a finite load, particles with different self-propulsion speeds move to different directions and can be separated.

  14. Improved finite-source inversion through joint measurements of rotational and translational ground motions: a numerical study

    NASA Astrophysics Data System (ADS)

    Reinwald, Michael; Bernauer, Moritz; Igel, Heiner; Donner, Stefanie

    2016-10-01

    With the prospects of seismic equipment being able to measure rotational ground motions in a wide frequency and amplitude range in the near future, we engage in the question of how this type of ground motion observation can be used to solve the seismic source inverse problem. In this paper, we focus on the question of whether finite-source inversion can benefit from additional observations of rotational motion. Keeping the overall number of traces constant, we compare observations from a surface seismic network with 44 three-component translational sensors (classic seismometers) with those obtained with 22 six-component sensors (with additional three-component rotational motions). Synthetic seismograms are calculated for known finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content to measure how the observations constrain the seismic source properties. We minimize the influence of the source receiver geometry around the fault by statistically analyzing six-component inversions with a random distribution of receivers. Since our previous results are achieved with a regular spacing of the receivers, we try to answer the question of whether the results are dependent on the spatial distribution of the receivers. The results show that with the six-component subnetworks, kinematic source inversions for source properties (such as rupture velocity, rise time, and slip amplitudes) are not only equally successful (even that would be beneficial because of the substantially reduced logistics installing half the sensors) but also statistically inversions for some source properties are almost always improved. This can be attributed to the fact that the (in particular vertical) gradient information is contained in the additional motion components. We compare these effects for strike-slip and normal-faulting type sources and confirm that the increase in inversion quality for kinematic source parameters is even higher for the normal fault. This indicates that the inversion benefits from the additional information provided by the horizontal rotation rates, i.e., information about the vertical displacement gradient.

  15. Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem

    NASA Technical Reports Server (NTRS)

    Roy, Indranil Danda; Eversman, Walter; Meyer, H. D.

    1993-01-01

    Improvements have been made in the finite element model of the acoustic radiated field from a turbofan engine inlet in the presence of a mean flow. The problem of acoustic radiation from a turbofan engine inlet is difficult to model numerically because of the large domain and high frequencies involved. A numerical model with conventional finite elements in the near field and wave envelope elements in the far field has been constructed. By employing an irrotational mean flow assumption, both the mean flow and the acoustic perturbation problem have been posed in an axisymmetric formulation in terms of the velocity potential; thereby minimizing computer storage and time requirements. The finite element mesh has been altered in search of an improved solution. The mean flow problem has been reformulated with new boundary conditions to make it theoretically rigorous. The sound source at the fan face has been modeled as a combination of positive and negative propagating duct eigenfunctions. Therefore, a finite element duct eigenvalue problem has been solved on the fan face and the resulting modal matrix has been used to implement a source boundary condition on the fan face in the acoustic radiation problem. In the post processing of the solution, the acoustic pressure has been evaluated at Gauss points inside the elements and the nodal pressure values have been interpolated from them. This has significantly improved the results. The effect of the geometric position of the transition circle between conventional finite elements and wave envelope elements has been studied and it has been found that the transition can be made nearer to the inlet than previously assumed.

  16. The effect of a finite focal spot size on location dependent detectability in a fan beam CT system

    NASA Astrophysics Data System (ADS)

    Kim, Byeongjoon; Baek, Jongduk

    2017-03-01

    A finite focal spot size is one of the sources to degrade the resolution performance in a fan beam CT system. In this work, we investigated the effect of the finite focal spot size on signal detectability. For the evaluation, five spherical objects with diameters of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm were used. The optical focal spot size viewed at the iso-center was a 1 mm (height) × 1 mm (width) with a target angle of 7 degrees, corresponding to an 8.21 mm (i.e., 1 mm / sin (7°)) focal spot length. Simulated projection data were acquired using 8 × 8 source lets, and reconstructed by Hanning weighted filtered backprojection. For each spherical object, the detectability was calculated at (0 mm, 0 mm) and (0 mm, 200 mm) using two image quality metrics: pixel signal to noise ratio (SNR) and detection SNR. For all signal sizes, the pixel SNR is higher at the iso-center since the noise variance at the off-center is much higher than that at the iso-center due to the backprojection weightings used in direct fan beam reconstruction. In contrast, detection SNR shows similar values for different spherical objects except 1 mm and 2 mm diameter spherical objects. Overall, the results indicate the resolution loss caused by the finite focal spot size degrades the detection performance, especially for small objects with less than 2 mm diameter.

  17. Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki

    2018-04-01

    We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.

  18. Novel Infrared Dynamics of Cold Atoms on Hot Graphene

    NASA Astrophysics Data System (ADS)

    Sengupta, Sanghita; Kotov, Valeri; Clougherty, Dennis

    The low-energy dynamics of cold atoms interacting with macroscopic graphene membranes exhibits severe infrared divergences when treated perturbatively. These infrared problems are even more pronounced at finite temperature due to the (infinitely) many flexural phonons excited in graphene. We have devised a technique to take account (resummation) of such processes in the spirit of the well-known exact solution of the independent boson model. Remarkably, there is also similarity to the infrared problems and their treatment (via the Bloch-Nordsieck scheme) in finite temperature ``hot'' quantum electrodynamics and chromodynamics due to the long-range, unscreened nature of gauge interactions. The method takes into account correctly the strong damping provided by the many emitted phonons at finite temperature. In our case, the inverse membrane size plays the role of an effective low-energy scale, and, unlike the above mentioned field theories, there remains an unusual, highly nontrivial dependence on that scale due to the 2D nature of the problem. We present detailed results for the sticking (atomic damping rate) rate of cold atomic hydrogen as a function of the membrane temperature and size. We find that the rate is very strongly dependent on both quantities.

  19. Measurement of the Acoustic Nonlinearity Parameter for Biological Media.

    NASA Astrophysics Data System (ADS)

    Cobb, Wesley Nelson

    In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.

  20. Finite-temperature fluid–insulator transition of strongly interacting 1D disordered bosons

    PubMed Central

    Michal, Vincent P.; Aleiner, Igor L.; Altshuler, Boris L.; Shlyapnikov, Georgy V.

    2016-01-01

    We consider the many-body localization–delocalization transition for strongly interacting one-dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator–fluid transitions at any finite temperature when varying the interaction strength. At weak interactions, an increase in the interaction strength leads to insulator → fluid transition, and, for large interactions, there is a reentrance to the insulator regime. It is feasible to experimentally verify these predictions by tuning the interaction strength with the use of Feshbach or confinement-induced resonances, for example, in 7Li or 39K. PMID:27436894

  1. Fermi-edge exciton-polaritons in doped semiconductor microcavities with finite hole mass

    NASA Astrophysics Data System (ADS)

    Pimenov, Dimitri; von Delft, Jan; Glazman, Leonid; Goldstein, Moshe

    2017-10-01

    The coupling between a 2D semiconductor quantum well and an optical cavity gives rise to combined light-matter excitations, the exciton-polaritons. These were usually measured when the conduction band is empty, making the single polariton physics a simple single-body problem. The situation is dramatically different in the presence of a finite conduction-band population, where the creation or annihilation of a single exciton involves a many-body shakeup of the Fermi sea. Recent experiments in this regime revealed a strong modification of the exciton-polariton spectrum. Previous theoretical studies concerned with nonzero Fermi energy mostly relied on the approximation of an immobile valence-band hole with infinite mass, which is appropriate for low-mobility samples only; for high-mobility samples, one needs to consider a mobile hole with large but finite mass. To bridge this gap, we present an analytical diagrammatic approach and tackle a model with short-ranged (screened) electron-hole interaction, studying it in two complementary regimes. We find that the finite hole mass has opposite effects on the exciton-polariton spectra in the two regimes: in the first, where the Fermi energy is much smaller than the exciton binding energy, excitonic features are enhanced by the finite mass. In the second regime, where the Fermi energy is much larger than the exciton binding energy, finite mass effects cut off the excitonic features in the polariton spectra, in qualitative agreement with recent experiments.

  2. Modeling the effects of source and path heterogeneity on ground motions of great earthquakes on the Cascadia Subduction Zone Using 3D simulations

    USGS Publications Warehouse

    Delorey, Andrew; Frankel, Arthur; Liu, Pengcheng; Stephenson, William J.

    2014-01-01

    We ran finite‐difference earthquake simulations for great subduction zone earthquakes in Cascadia to model the effects of source and path heterogeneity for the purpose of improving strong‐motion predictions. We developed a rupture model for large subduction zone earthquakes based on a k−2 slip spectrum and scale‐dependent rise times by representing the slip distribution as the sum of normal modes of a vibrating membrane.Finite source and path effects were important in determining the distribution of strong motions through the locations of the hypocenter, subevents, and crustal structures like sedimentary basins. Some regions in Cascadia appear to be at greater risk than others during an event due to the geometry of the Cascadia fault zone relative to the coast and populated regions. The southern Oregon coast appears to have increased risk because it is closer to the locked zone of the Cascadia fault than other coastal areas and is also in the path of directivity amplification from any rupture propagating north to south in that part of the subduction zone, and the basins in the Puget Sound area are efficiently amplified by both north and south propagating ruptures off the coast of western Washington. We find that the median spectral accelerations at 5 s period from the simulations are similar to that of the Zhao et al. (2006) ground‐motion prediction equation, although our simulations predict higher amplitudes near the region of greatest slip and in the sedimentary basins, such as the Seattle basin.

  3. Three dimensional δf simulations of beams in the SSC

    NASA Astrophysics Data System (ADS)

    Koga, J.; Tajima, T.; Machida, S.

    1993-12-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  4. Finite-Size Effects on the Behavior of the Susceptibility in van der Waals Films Bounded by Strongly Absorbing Substrates

    NASA Technical Reports Server (NTRS)

    Dantchev, Daniel; Rudnick, Joseph; Barmatz, M.

    2007-01-01

    We study critical point finite-size effects in the case of the susceptibility of a film in which interactions are characterized by a van der Waals-type power law tail. The geometry is appropriate to a slab-like system with two bounding surfaces. Boundary conditions are consistent with surfaces that both prefer the same phase in the low temperature, or broken symmetry, state. We take into account both interactions within the system and interactions between the constituents of the system and the material surrounding it. Specific predictions are made with respect to the behavior of 3He and 4He films in the vicinity of their respective liquid-vapor critical points.

  5. The effect of beamwidth on the analysis of electron-beam-induced current line scans

    NASA Astrophysics Data System (ADS)

    Luke, Keung L.

    1995-04-01

    A real electron beam has finite width, which has been almost universally ignored in electron-beam-induced current (EBIC) theories. Obvious examples are point-source-based EBIC analyses, which neglect both the finite volume of electron-hole carriers generated by an energetic electron beam of negligible width and the beamwidth when it is no longer negligible. Gaussian source-based analyses are more realistic but the beamwidth has not been included, partly because the generation volume is much larger than the beamwidth, but this is not always the case. In this article Donolato's Gaussian source-based EBIC equation is generalized to include the beamwidth of a Gaussian beam. This generalized equation is then used to study three problems: (1) the effect of beamwidth on EBIC line scans and on effective diffusion lengths and the results are applied to the analysis of the EBIC data of Dixon, Williams, Das, and Webb; (2) unresolved questions raised by others concerning the applicability of the Watanabe-Actor-Gatos method to real EBIC data to evaluate surface recombination velocity; (3) the effect of beamwidth on the methods proposed recently by the author to determine the surface recombination velocity and to discriminate between the Everhart-Hoff and Kanaya-Okayama ranges which is the correct one to use for analyzing EBIC line scans.

  6. Meta-ecosystem dynamics and functioning on finite spatial networks

    PubMed Central

    Marleau, Justin N.; Guichard, Frédéric; Loreau, Michel

    2014-01-01

    The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient–autotrophs–herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory. PMID:24403323

  7. Statistical moments in superposition models and strongly intensive measures

    NASA Astrophysics Data System (ADS)

    Broniowski, Wojciech; Olszewski, Adam

    2017-06-01

    First, we present a concise glossary of formulas for composition of standard, cumulant, factorial, and factorial cumulant moments in superposition (compound) models, where final particles are created via independent emission from a collection of sources. Explicit mathematical formulas for the composed moments are given to all orders. We discuss the composition laws for various types of moments via the generating-function methods and list the formulas for the unfolding of the unwanted fluctuations. Second, the technique is applied to the difference of the scaled multiplicities of two particle types. This allows for a systematic derivation and a simple algebraic interpretation of the so-called strongly intensive fluctuation measures. With the help of the formalism we obtain several new strongly intensive measures involving higher-rank moments. The reviewed as well as the new results may be useful in investigations of mechanisms of particle production and event-by-event fluctuations in high-energy nuclear and hadronic collisions, and in particular in the search for signatures of the QCD phase transition at a finite baryon density.

  8. Holographic photon production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-04-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N = 4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser's phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.

  9. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less

  10. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE PAGES

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; ...

    2017-02-21

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less

  11. Can earthquake source inversion benefit from rotational ground motion observations?

    NASA Astrophysics Data System (ADS)

    Igel, H.; Donner, S.; Reinwald, M.; Bernauer, M.; Wassermann, J. M.; Fichtner, A.

    2015-12-01

    With the prospects of instruments to observe rotational ground motions in a wide frequency and amplitude range in the near future we engage in the question how this type of ground motion observation can be used to solve seismic inverse problems. Here, we focus on the question, whether point or finite source inversions can benefit from additional observations of rotational motions. In an attempt to be fair we compare observations from a surface seismic network with N 3-component translational sensors (classic seismometers) with those obtained with N/2 6-component sensors (with additional colocated 3-component rotational motions). Thus we keep the overall number of traces constant. Synthetic seismograms are calculated for known point- or finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content as a measure how the observations constrain the seismic source properties. The results show that with the 6-C subnetworks the source properties are not only equally well recovered (even that would be benefitial because of the substantially reduced logistics installing N/2 sensors) but statistically significant some source properties are almost always better resolved. We assume that this can be attributed to the fact the (in particular vertical) gradient information is contained in the additional rotational motion components. We compare these effects for strike-slip and normal-faulting type sources. Thus the answer to the question raised is a definite "yes". The challenge now is to demonstrate these effects on real data.

  12. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    PubMed

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Hazard assessment of long-period ground motions for the Nankai Trough earthquakes

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Morikawa, N.; Aoi, S.; Fujiwara, H.

    2013-12-01

    We evaluate a seismic hazard for long-period ground motions associated with the Nankai Trough earthquakes (M8~9) in southwest Japan. Large interplate earthquakes occurring around the Nankai Trough have caused serious damages due to strong ground motions and tsunami; most recent events were in 1944 and 1946. Such large interplate earthquake potentially causes damages to high-rise and large-scale structures due to long-period ground motions (e.g., 1985 Michoacan earthquake in Mexico, 2003 Tokachi-oki earthquake in Japan). The long-period ground motions are amplified particularly on basins. Because major cities along the Nankai Trough have developed on alluvial plains, it is therefore important to evaluate long-period ground motions as well as strong motions and tsunami for the anticipated Nankai Trough earthquakes. The long-period ground motions are evaluated by the finite difference method (FDM) using 'characterized source models' and the 3-D underground structure model. The 'characterized source model' refers to a source model including the source parameters necessary for reproducing the strong ground motions. The parameters are determined based on a 'recipe' for predicting strong ground motion (Earthquake Research Committee (ERC), 2009). We construct various source models (~100 scenarios) giving the various case of source parameters such as source region, asperity configuration, and hypocenter location. Each source region is determined by 'the long-term evaluation of earthquakes in the Nankai Trough' published by ERC. The asperity configuration and hypocenter location control the rupture directivity effects. These parameters are important because our preliminary simulations are strongly affected by the rupture directivity. We apply the system called GMS (Ground Motion Simulator) for simulating the seismic wave propagation based on 3-D FDM scheme using discontinuous grids (Aoi and Fujiwara, 1999) to our study. The grid spacing for the shallow region is 200 m and 100 m in horizontal and vertical, respectively. The grid spacing for the deep region is three times coarser. The total number of grid points is about three billion. The 3-D underground structure model used in the FD simulation is the Japan integrated velocity structure model (ERC, 2012). Our simulation is valid for period more than two seconds due to the lowest S-wave velocity and grid spacing. However, because the characterized source model may not sufficiently support short period components, we should be interpreted the reliable period of this simulation with caution. Therefore, we consider the period more than five seconds instead of two seconds for further analysis. We evaluate the long-period ground motions using the velocity response spectra for the period range between five and 20 second. The preliminary simulation shows a large variation of response spectra at a site. This large variation implies that the ground motion is very sensitive to different scenarios. And it requires studying the large variation to understand the seismic hazard. Our further study will obtain the hazard curves for the Nankai Trough earthquake (M 8~9) by applying the probabilistic seismic hazard analysis to the simulation results.

  14. Effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Ma, Jian-Feng

    Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.

  15. The influence of injection volume and capsular bag contraction on the refractive power of polymer refilled lenses - a finite element modelling simulation study.

    PubMed

    Martin, Heiner; Guthoff, Rudolf; Schmitz, Klaus-Peter

    2011-09-01

    Polymer injection into the capsular bag after phakoemulsification is an interesting and promising approach to lens surgery. Safe clinical application of this technique will require an appropriate estimate of the effect of implantation variables on the lens power. This article details the results of finite element investigations into the effects of the injected polymer volume and capsular bag contraction on the resultant lens power and accommodation amplitude. An axisymmetric finite element model was created from literature sources. Polymer injection and the capsular contraction were simulated, and their effect on the lens power was calculated. The simulations show that overfilling during polymer injection leads to a refractive power increase of the lens. Capsular bag contraction also results in a power increase. The calculated accommodative amplitude of the lens is minimally affected by capsular bag contraction but decreases significantly with increased capsular bag stiffness as a result of fibrosis. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  16. Near-Field Tsunami Models with Rapid Earthquake Source Inversions from Land and Ocean-Based Observations: The Potential for Forecast and Warning

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Bock, Y.; Crowell, B. W.; Haase, J. S.

    2013-12-01

    Computation of predicted tsunami wave heights and runup in the regions adjacent to large earthquakes immediately after rupture initiation remains a challenging problem. Limitations of traditional seismological instrumentation in the near field which cannot be objectively employed for real-time inversions and the non-unique source inversion results are a major concern for tsunami modelers. Employing near-field seismic, GPS and wave gauge data from the Mw 9.0 2011 Tohoku-oki earthquake, we test the capacity of static finite fault slip models obtained from newly developed algorithms to produce reliable tsunami forecasts. First we demonstrate the ability of seismogeodetic source models determined from combined land-based GPS and strong motion seismometers to forecast near-source tsunamis in ~3 minutes after earthquake origin time (OT). We show that these models, based on land-borne sensors only tend to underestimate the tsunami but are good enough to provide a realistic first warning. We then demonstrate that rapid ingestion of offshore shallow water (100 - 1000 m) wave gauge data significantly improves the model forecasts and possible warnings. We ingest data from 2 near-source ocean-bottom pressure sensors and 6 GPS buoys into the earthquake source inversion process. Tsunami Green functions (tGFs) are generated using the GeoClaw package, a benchmarked finite volume code with adaptive mesh refinement. These tGFs are used for a joint inversion with the land-based data and substantially improve the earthquake source and tsunami forecast. Model skill is assessed by detailed comparisons of the simulation output to 2000+ tsunami runup survey measurements collected after the event. We update the source model and tsunami forecast and warning at 10 min intervals. We show that by 20 min after OT the tsunami is well-predicted with a high variance reduction to the survey data and by ~30 minutes a model that can be considered final, since little changed is observed afterwards, is achieved. This is an indirect approach to tsunami warning, it relies on automatic determination of the earthquake source prior to tsunami simulation. It is more robust than ad-hoc approaches because it relies on computation of a finite-extent centroid moment tensor to objectively determine the style of faulting and the fault plane geometry on which to launch the heterogeneous static slip inversion. Operator interaction and physical assumptions are minimal. Thus, the approach can provide the initial conditions for tsunami simulation (seafloor motion) irrespective of the type of earthquake source and relies heavily on oceanic wave gauge measurements for source determination. It reliably distinguishes among strike-slip, normal and thrust faulting events, all of which have been observed recently to occur in subduction zones and pose distinct tsunami hazards.

  17. High Attenuation Rate for Shallow, Small Earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Si, Hongjun; Koketsu, Kazuki; Miyake, Hiroe

    2017-09-01

    We compared the attenuation characteristics of peak ground accelerations (PGAs) and velocities (PGVs) of strong motion from shallow, small earthquakes that occurred in Japan with those predicted by the equations of Si and Midorikawa (J Struct Constr Eng 523:63-70, 1999). The observed PGAs and PGVs at stations far from the seismic source decayed more rapidly than the predicted ones. The same tendencies have been reported for deep, moderate, and large earthquakes, but not for shallow, moderate, and large earthquakes. This indicates that the peak values of ground motion from shallow, small earthquakes attenuate more steeply than those from shallow, moderate or large earthquakes. To investigate the reason for this difference, we numerically simulated strong ground motion for point sources of M w 4 and 6 earthquakes using a 2D finite difference method. The analyses of the synthetic waveforms suggested that the above differences are caused by surface waves, which are predominant at stations far from the seismic source for shallow, moderate earthquakes but not for shallow, small earthquakes. Thus, although loss due to reflection at the boundaries of the discontinuous Earth structure occurs in all shallow earthquakes, the apparent attenuation rate for a moderate or large earthquake is essentially the same as that of body waves propagating in a homogeneous medium due to the dominance of surface waves.

  18. Rotational stability of a long field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C.

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesomemore » ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.« less

  19. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Hu, B.; Lerch, J. E.; Chavan, A. H.; Weber, J. K. R.; Tamalonis, A.; Suthar, K. J.; DiChiara, A. D.

    2017-09-01

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analyses. Our results show that this style of transducer produces a strong acoustic beam with a total divergence angle of 10°, a near-field point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.

  20. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    DOE PAGES

    Hu, B.; Lerch, J. E.; Chavan, A. H.; ...

    2017-09-04

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analysis. Our results show that this style of transducer produces a strong acoustic beam with a totalmore » divergence angle of 10 degrees, a nearfield point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.« less

  1. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, B.; Lerch, J. E.; Chavan, A. H.

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analyses. Our results show that this style of transducer produces a strong acoustic beam with a totalmore » divergence angle of 10 degree, a near-field point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments« less

  2. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, B.; Lerch, J. E.; Chavan, A. H.

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analysis. Our results show that this style of transducer produces a strong acoustic beam with a totalmore » divergence angle of 10 degrees, a nearfield point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.« less

  3. Recurrence time statistics for finite size intervals

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; da Silva, Elton C.; Caldas, Iberê L.

    2004-12-01

    We investigate the statistics of recurrences to finite size intervals for chaotic dynamical systems. We find that the typical distribution presents an exponential decay for almost all recurrence times except for a few short times affected by a kind of memory effect. We interpret this effect as being related to the unstable periodic orbits inside the interval. Although it is restricted to a few short times it changes the whole distribution of recurrences. We show that for systems with strong mixing properties the exponential decay converges to the Poissonian statistics when the width of the interval goes to zero. However, we alert that special attention to the size of the interval is required in order to guarantee that the short time memory effect is negligible when one is interested in numerically or experimentally calculated Poincaré recurrence time statistics.

  4. A model to study finite-size and magnetic effects on the phase transition of a fermion interacting system

    NASA Astrophysics Data System (ADS)

    Corrêa, Emerson B. S.; Linhares, César A.; Malbouisson, Adolfo P. C.

    2018-03-01

    We present a model to study the effects from external magnetic field, chemical potential and finite size on the phase structures of a massive four- and six-fermion interacting systems. These effects are introduced by a method of compactification of coordinates, a generalization of the standard Matsubara prescription. Through the compactification of the z-coordinate and of imaginary time, we describe a heated system with the shape of a film of thickness L, at temperature β-1 undergoing first- or second-order phase transition. We have found a strong dependence of the temperature transition on the coupling constants λ and η. Besides inverse magnetic catalysis and symmetry breaking for both kinds of transition, we have found an inverse symmetry breaking phenomenon with respect to first-order phase transition.

  5. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method

    PubMed Central

    Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2010-01-01

    The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592

  6. Studies on the Effects of High Renewable Penetrations on Driving Point Impedance and Voltage Regulator Performance: National Renewable Energy Laboratory/Sacramento Municipal Utility District Load Tap Changer Driving Point Impedance Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Coddington, Michael H.; Brown, David

    Voltage regulators perform as desired when regulating from the source to the load and when regulating from a strong source (utility) to a weak source (distributed generation). (See the glossary for definitions of a strong source and weak source.) Even when the control is provisioned for reverse operation, it has been observed that tap-changing voltage regulators do not perform as desired in reverse when attempting regulation from the weak source to the strong source. The region of performance that is not as well understood is the regulation between sources that are approaching equal strength. As part of this study, wemore » explored all three scenarios: regulator control from a strong source to a weak source (classic case), control from a weak source to a strong source (during reverse power flow), and control between equivalent sources.« less

  7. Divergence correction schemes in finite difference method for 3D tensor CSAMT in axial anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Tan, Handong; Zhang, Zhiyong; Li, Zhiqiang; Cao, Meng

    2017-05-01

    Resistivity anisotropy and full-tensor controlled-source audio-frequency magnetotellurics (CSAMT) have gradually become hot research topics. However, much of the current anisotropy research for tensor CSAMT only focuses on the one-dimensional (1D) solution. As the subsurface is rarely 1D, it is necessary to study three-dimensional (3D) model response. The staggered-grid finite difference method is an effective simulation method for 3D electromagnetic forward modelling. Previous studies have suggested using the divergence correction to constrain the iterative process when using a staggered-grid finite difference model so as to accelerate the 3D forward speed and enhance the computational accuracy. However, the traditional divergence correction method was developed assuming an isotropic medium. This paper improves the traditional isotropic divergence correction method and derivation process to meet the tensor CSAMT requirements for anisotropy using the volume integral of the divergence equation. This method is more intuitive, enabling a simple derivation of a discrete equation and then calculation of coefficients related to the anisotropic divergence correction equation. We validate the result of our 3D computational results by comparing them to the results computed using an anisotropic, controlled-source 2.5D program. The 3D resistivity anisotropy model allows us to evaluate the consequences of using the divergence correction at different frequencies and for two orthogonal finite length sources. Our results show that the divergence correction plays an important role in 3D tensor CSAMT resistivity anisotropy research and offers a solid foundation for inversion of CSAMT data collected over an anisotropic body.

  8. Prediction of Strong Earthquake Ground Motion for the M=7.4 and M=7.2 1999, Turkey Earthquakes based upon Geological Structure Modeling and Local Earthquake Recordings

    NASA Astrophysics Data System (ADS)

    Gok, R.; Hutchings, L.

    2004-05-01

    We test a means to predict strong ground motion using the Mw=7.4 and Mw=7.2 1999 Izmit and Duzce, Turkey earthquakes. We generate 100 rupture scenarios for each earthquake, constrained by a prior knowledge, and use these to synthesize strong ground motion and make the prediction. Ground motion is synthesized with the representation relation using impulsive point source Green's functions and synthetic source models. We synthesize the earthquakes from DC to 25 Hz. We demonstrate how to incorporate this approach into standard probabilistic seismic hazard analyses (PSHA). The synthesis of earthquakes is based upon analysis of over 3,000 aftershocks recorded by several seismic networks. The analysis provides source parameters of the aftershocks; records available for use as empirical Green's functions; and a three-dimensional velocity structure from tomographic inversion. The velocity model is linked to a finite difference wave propagation code (E3D, Larsen 1998) to generate synthetic Green's functions (DC < f < 0.5 Hz). We performed the simultaneous inversion for hypocenter locations and three-dimensional P-wave velocity structure of the Marmara region using SIMULPS14 along with 2,500 events. We also obtained source moment and corner frequency and individual station attenuation parameter estimates for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquake (M<4.0) recordings to obtain empirical Green's functions for the higher frequency range of ground motion (0.5 < f < 25.0 Hz). Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  9. Neutron stars velocities and magnetic fields

    NASA Astrophysics Data System (ADS)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  10. Study and modeling of finite rate chemistry effects in turbulent non-premixed flames

    NASA Technical Reports Server (NTRS)

    Vervisch, Luc

    1993-01-01

    The development of numerical models that reflect some of the most important features of turbulent reacting flows requires information about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between turbulent and chemical processes is so strong that it is extremely difficult to isolate the role played by one individual physical phenomenon. Direct numerical simulation (hereafter DNS) allows us to study in detail the turbulence-chemistry interaction in some restricted but completely defined situations. Globally, non-premixed flames are controlled by two limiting regimes: the fast chemistry case, where the turbulent flame can be pictured as a random distribution of local chemical equilibrium problems; and the slow chemistry case, where the chemistry integrates in time the turbulent fluctuations. The Damkoehler number, ratio of a mechanical time scale to chemical time scale, is used to distinguish between these regimes. Today most of the industrial computer codes are able to perform predictions in the hypothesis of local equilibrium chemistry using a presumed shape for the probability density function (pdt) of the conserved scalar. However, the finite rate chemistry situation is of great interest because industrial burners usually generate regimes in which, at some points, the flame is undergoing local extinction or at least non-equilibrium situations. Moreover, this variety of situations strongly influences the production of pollutants. To quantify finite rate chemistry effect, the interaction between a non-premixed flame and a free decaying turbulence is studied using DNS. The attention is focused on the dynamic of extinction, and an attempt is made to quantify the effect of the reaction on the small scale mixing process. The unequal diffusivity effect is also addressed. Finally, a simple turbulent combustion model based on the DNS observations and tractable in real flow configurations is proposed.

  11. Ambient Seismic Source Inversion in a Heterogeneous Earth: Theory and Application to the Earth's Hum

    NASA Astrophysics Data System (ADS)

    Ermert, Laura; Sager, Korbinian; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas

    2017-11-01

    The sources of ambient seismic noise are extensively studied both to better understand their influence on ambient noise tomography and related techniques, and to infer constraints on their excitation mechanisms. Here we develop a gradient-based inversion method to infer the space-dependent and time-varying source power spectral density of the Earth's hum from cross correlations of continuous seismic data. The precomputation of wavefields using spectral elements allows us to account for both finite-frequency sensitivity and for three-dimensional Earth structure. Although similar methods have been proposed previously, they have not yet been applied to data to the best of our knowledge. We apply this method to image the seasonally varying sources of Earth's hum during North and South Hemisphere winter. The resulting models suggest that hum sources are localized, persistent features that occur at Pacific coasts or shelves and in the North Atlantic during North Hemisphere winter, as well as South Pacific coasts and several distinct locations in the Southern Ocean in South Hemisphere winter. The contribution of pelagic sources from the central North Pacific cannot be constrained. Besides improving the accuracy of noise source locations through the incorporation of finite-frequency effects and 3-D Earth structure, this method may be used in future cross-correlation waveform inversion studies to provide initial source models and source model updates.

  12. Thermo-viscoelastic response of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Lin, Kuen; Hwang, I. H.

    1988-01-01

    The thermo-viscoelastic behavior of composite material is studied analytically using a special finite-element formulation. Numerical results on stress and deformation histories are obtained for both unnotched and notched graphite/epoxy composites subjected to mechanical and thermal spectrum loads. The results indicate that time-dependent effects are important in composites with matrix-dominated layup orientations. Such effects also strongly depend on the specific environment condition and load spectrum applied.

  13. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  14. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM

    USGS Publications Warehouse

    Boore, D.M.

    2009-01-01

    Comparisons of ground motions from two widely used point-source and finite-source ground-motion simulation programs (SMSIM and EXSIM) show that the following simple modifications in EXSIM will produce agreement in the motions from a small earthquake at a large distance for the two programs: (1) base the scaling of high frequencies on the integral of the squared Fourier acceleration spectrum; (2) do not truncate the time series from each subfault; (3) use the inverse of the subfault corner frequency for the duration of motions from each subfault; and (4) use a filter function to boost spectral amplitudes at frequencies near and less than the subfault corner frequencies. In addition, for SMSIM an effective distance is defined that accounts for geometrical spreading and anelastic attenuation from various parts of a finite fault. With these modifications, the Fourier and response spectra from SMSIM and EXSIM are similar to one another, even close to a large earthquake (M 7), when the motions are averaged over a random distribution of hypocenters. The modifications to EXSIM remove most of the differences in the Fourier spectra from simulations using pulsing and static subfaults; they also essentially eliminate any dependence of the EXSIM simulations on the number of subfaults. Simulations with the revised programs suggest that the results of Atkinson and Boore (2006), computed using an average stress parameter of 140 bars and the original version of EXSIM, are consistent with the revised EXSIM with a stress parameter near 250 bars.

  15. Medium effect on the characteristics of the coupled seismic and electromagnetic signals.

    PubMed

    Huang, Qinghua; Ren, Hengxin; Zhang, Dan; Chen, Y John

    2015-01-01

    Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals.

  16. Medium effect on the characteristics of the coupled seismic and electromagnetic signals

    PubMed Central

    HUANG, Qinghua; REN, Hengxin; ZHANG, Dan; CHEN, Y. John

    2015-01-01

    Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals. PMID:25743062

  17. Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.

    NASA Astrophysics Data System (ADS)

    Averkiou, Michalakis Andrea

    Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.

  18. A study of infrasound propagation based on high-order finite difference solutions of the Navier-Stokes equations.

    PubMed

    Marsden, O; Bogey, C; Bailly, C

    2014-03-01

    The feasibility of using numerical simulation of fluid dynamics equations for the detailed description of long-range infrasound propagation in the atmosphere is investigated. The two dimensional (2D) Navier Stokes equations are solved via high fidelity spatial finite differences and Runge-Kutta time integration, coupled with a shock-capturing filter procedure allowing large amplitudes to be studied. The accuracy of acoustic prediction over long distances with this approach is first assessed in the linear regime thanks to two test cases featuring an acoustic source placed above a reflective ground in a homogeneous and weakly inhomogeneous medium, solved for a range of grid resolutions. An atmospheric model which can account for realistic features affecting acoustic propagation is then described. A 2D study of the effect of source amplitude on signals recorded at ground level at varying distances from the source is carried out. Modifications both in terms of waveforms and arrival times are described.

  19. Filamentation instability in a quantum magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real

    2008-02-15

    The filamentation instability occurring when a nonrelativistic electron beam passes through a quantum magnetized plasma is investigated by means of a cold quantum magnetohydrodynamic model. It is proved that the instability can be completely suppressed by quantum effects if and only if a finite magnetic field is present. A dimensionless parameter is identified that measures the strength of quantum effects. Strong quantum effects allow for a much smaller magnetic field to suppress the instability than in the classical regime.

  20. Plant root proliferation in nitrogen-rich patches confers competitive advantage

    PubMed Central

    Robinson, D.; Hodge, A.; Griffiths, B. S.; Fitter, A. H.

    1999-01-01

    Plants respond strongly to environmental heterogeneity, particularly below ground, where spectacular root proliferations in nutrient-rich patches may occur. Such 'foraging' responses apparently maximize nutrient uptake and are now prominent in plant ecological theory. Proliferations in nitrogen-rich patches are difficult to explain adaptively, however. The high mobility of soil nitrate should limit the contribution of proliferation to N capture. Many experiments on isolated plants show only a weak relation between proliferation and N uptake. We show that N capture is associated strongly with proliferation during interspecific competition for finite, locally available, mixed N sources, precisely the conditions under which N becomes available to plants on generally infertile soils. This explains why N-induced root proliferation is an important resource-capture mechanism in N-limited plant communities and suggests that increasing proliferation by crop breeding or genetic manipulation will have a limited impact on N capture by well-fertilized monocultures.

  1. Electromagnetic Interaction between the Component Coils of Multi-Plex Magnets

    DOE PAGES

    Nguyen, Quyen V. M.; Torrez, Lynette; Nguyen, Doan Ngoc

    2017-12-04

    Ultra-high field pulsed magnets are usually designed as a group of nested, concentric coils driven by separated power sources to reduce the required driving voltages and to distribute the mechanical load and to reduce the driving voltages. Since the magnet operates in a fast transient mode, there will be strong and complicated electromagnetic couplings between the component coils. The high eddy currents generated in the reinforcement shells of the component coils during the pulses also strongly affect these couplings. Therefore, understanding the electromagnetic interaction between the component coils will allow safer, more optimized design and operation of our magnets. Asmore » a result, this paper will focus on our finite element modeling and experimental results for the electromagnetic interactions between the component coils of the 100-T nondestructive magnet and 80-T duplex magnet at our facility.« less

  2. Electromagnetic Interaction between the Component Coils of Multi-Plex Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Quyen V. M.; Torrez, Lynette; Nguyen, Doan Ngoc

    Ultra-high field pulsed magnets are usually designed as a group of nested, concentric coils driven by separated power sources to reduce the required driving voltages and to distribute the mechanical load and to reduce the driving voltages. Since the magnet operates in a fast transient mode, there will be strong and complicated electromagnetic couplings between the component coils. The high eddy currents generated in the reinforcement shells of the component coils during the pulses also strongly affect these couplings. Therefore, understanding the electromagnetic interaction between the component coils will allow safer, more optimized design and operation of our magnets. Asmore » a result, this paper will focus on our finite element modeling and experimental results for the electromagnetic interactions between the component coils of the 100-T nondestructive magnet and 80-T duplex magnet at our facility.« less

  3. Scalar Dispersion from Point Sources in a Realistic Urban Environment

    NASA Astrophysics Data System (ADS)

    Salesky, S.; Giometto, M. G.; Christen, A.; Parlange, M. B.

    2016-12-01

    Accurate modeling of scalar dispersion within and above urban canopies is critical to properly predict air quality and dispersion (e.g. accidental contaminant release) in urban environments. We perform large eddy simulations (LES) of scalar dispersion from point sources in a typical North American neighborhood using topography and foliage density derived from airborne LIDAR scans with 1 m resolution in Vancouver, BC, Canada. The added drag force due to trees is parameterized in the LES as a function of the leaf area density (LAD) profile. Conversely, drag from buildings is accounted for using a direct forcing approach immersed-boundary method. The scalar advection-diffusion equation is discretized in a finite-volume framework, and accurate mass conservation is enforced through a recently developed Cartesian cut cell method. Simulations are performed with trees for different values of LAD, representative of summer and winter conditions, as well as a case without trees. The effects of varying mean wind direction (derived from observed wind climatologies) on dispersion patterns are also considered. Scalar release locations in the LES are informed by spatially distributed measurements of carbon dioxide concentration; CO2 is used as a tracer for fossil fuel emissions, since source strengths are well-known and the contribution from biological processes in this setting is small (<10%). The effects of leaf area density, source height, and wind direction on scalar statistics including the growth of the mean concentration plume and the fraction that escapes the urban canopy layer will be considered. In a companion study, the presence of trees was found to strongly modify sweep and ejection patterns for the momentum flux; here we consider the related issue of how vegetation influences coherent structures responsible for scalar transport.

  4. Assessment of thermal effects in a model of the human head implanted with a wireless active microvalve for the treatment of glaucoma creating a filtering bleb.

    PubMed

    Schaumburg, F; Guarnieri, F A

    2017-05-07

    A 3D anatomical computational model is developed to assess thermal effects due to exposure to the electromagnetic field required to power a new investigational active implantable microvalve for the treatment of glaucoma. Such a device, located in the temporal superior eye quadrant, produces a filtering bleb, which is included in the geometry of the model, together with the relevant ocular structures. The electromagnetic field source-a planar coil-as well as the microvalve antenna and casing are also included. Exposure to the electromagnetic field source of an implanted and a non-implanted subject are simulated by solving a magnetic potential formulation, using the finite element method. The maximum SAR 10 is reached in the eyebrow and remains within the limits suggested by the IEEE and ICNIRP standards. The anterior chamber, filtering bleb, iris and ciliary body are the ocular structures where more absorption occurs. The temperature rise distribution is also obtained by solving the bioheat equation with the finite element method. The numerical results are compared with the in vivo measurements obtained from four rabbits implanted with the microvalve and exposed to the electromagnetic field source.

  5. Numerical simulation of aerothermal loads in hypersonic engine inlets due to shock impingement

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, R.

    1992-01-01

    The effect of shock impingement on an axial corner simulating the inlet of a hypersonic vehicle engine is modeled using a finite-difference procedure. A three-dimensional dynamic grid adaptation procedure is utilized to move the grids to regions with strong flow gradients. The adaptation procedure uses a grid relocation stencil that is valid at both the interior and boundary points of the finite-difference grid. A linear combination of spatial derivatives of specific flow variables, calculated with finite-element interpolation functions, are used as adaptation measures. This computational procedure is used to study laminar and turbulent Mach 6 flows in the axial corner. The description of flow physics and qualitative measures of heat transfer distributions on cowl and strut surfaces obtained from the analysis are compared with experimental observations. Conclusions are drawn regarding the capability of the numerical scheme for enhanced modeling of high-speed compressible flows.

  6. Response to defects in multipartite and bipartite entanglement of isotropic quantum spin networks

    NASA Astrophysics Data System (ADS)

    Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2018-05-01

    Quantum networks are an integral component in performing efficient computation and communication tasks that are not accessible using classical systems. A key aspect in designing an effective and scalable quantum network is generating entanglement between its nodes, which is robust against defects in the network. We consider an isotropic quantum network of spin-1/2 particles with a finite fraction of defects, where the corresponding wave function of the network is rotationally invariant under the action of local unitaries. By using quantum information-theoretic concepts like strong subadditivity of von Neumann entropy and approximate quantum telecloning, we prove analytically that in the presence of defects, caused by loss of a finite fraction of spins, the network, composed of a fixed numbers of lattice sites, sustains genuine multisite entanglement and at the same time may exhibit finite moderate-range bipartite entanglement, in contrast to the network with no defects.

  7. Local Stable and Unstable Manifolds and Their Control in Nonautonomous Finite-Time Flows

    NASA Astrophysics Data System (ADS)

    Balasuriya, Sanjeeva

    2016-08-01

    It is well known that stable and unstable manifolds strongly influence fluid motion in unsteady flows. These emanate from hyperbolic trajectories, with the structures moving nonautonomously in time. The local directions of emanation at each instance in time is the focus of this article. Within a nearly autonomous setting, it is shown that these time-varying directions can be characterised through the accumulated effect of velocity shear. Connections to Oseledets spaces and projection operators in exponential dichotomies are established. Availability of data for both infinite- and finite-time intervals is considered. With microfluidic flow control in mind, a methodology for manipulating these directions in any prescribed time-varying fashion by applying a local velocity shear is developed. The results are verified for both smoothly and discontinuously time-varying directions using finite-time Lyapunov exponent fields, and excellent agreement is obtained.

  8. Penalty-Based Finite Element Interface Technology for Analysis of Homogeneous and Composite Structures

    NASA Technical Reports Server (NTRS)

    Averill, Ronald C.

    2002-01-01

    An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.

  9. Relativistic radiative transfer in a moving stratus irradiated by a luminous flat source

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2015-06-01

    Relativistic radiative transfer in a geometrically thin stratus (sheet-like gaseous cloud with finite optical depth), which is moving at a relativistic speed around a luminous flat source, such as accretion disks, and is irradiated by the source, is examined under the special relativistic treatment. Incident radiation is aberrated and Doppler-shifted when it is received by the stratus, and emitted radiation is also aberrated and Doppler-shifted when it leaves the stratus. Considering these relativistic effects, we analytically obtain the emergent intensity as well as other radiative quantities in the purely scattering case for both infinite and finite strati. We mainly consider the frequency-integrated case, but also briefly show the frequency-dependent one. We also solve the relativistic radiative transfer equation numerically, and compare the results with the analytical solutions. In the infinite stratus, the mean intensity in the comoving and inertial frames decreases and becomes constant, as the stratus speed increases. The flux in the comoving frame decreases exponentially with the optical depth. The emergent intensity decreases as the speed increases, since the incident photons are redshifted at the bottom-side of the stratus. In the finite stratus, the mean intensity in the comoving and inertial frames quickly increases in the top-side region due to the aberrated photons. The flux in the comoving frame is positive in the range of 0 < β ≤ 0.4, while it becomes negative for β ≳ 0.5. The behavior of the emergent intensity is similar to that of the infinite case, although there is an irradiation effect caused by the aberrated photons.

  10. Effect of Reynolds and Grashof numbers on mixed convection inside a lid-driven square cavity filled with water-Al2O3 nanofluid

    NASA Astrophysics Data System (ADS)

    Jaman, Md. Shah; Islam, Showmic; Saha, Sumon; Hasan, Mohammad Nasim; Islam, Md. Quamrul

    2016-07-01

    A numerical analysis is carried out to study the performance of steady laminar mixed convection flow inside a square lid-driven cavity filled with water-Al2O3 nanofluid. The top wall of the cavity is moving at a constant velocity and is heated by an isothermal heat source. Two-dimensional Navier-stokes equations along with the energy equations are solved using Galerkin finite element method. Results are obtained for a range of Reynolds and Grashof numbers by considering with and without the presence of nanoparticles. The parametric studies for a wide range of governing parameters in case of pure mixed convective flow show significant features of the present problem in terms of streamline and isotherm contours, average Nusselt number and average temperature profiles. The computational results indicate that the heat transfer coeffcient is strongly influenced by the above governing parameters at the pure mixed convection regime.

  11. Fluid theory and simulations of instabilities, turbulent transport and coherent structures in partially-magnetized plasmas of \\mathbf{E}\\times \\mathbf{B} discharges

    NASA Astrophysics Data System (ADS)

    Smolyakov, A. I.; Chapurin, O.; Frias, W.; Koshkarov, O.; Romadanov, I.; Tang, T.; Umansky, M.; Raitses, Y.; Kaganovich, I. D.; Lakhin, V. P.

    2017-01-01

    Partially-magnetized plasmas with magnetized electrons and non-magnetized ions are common in Hall thrusters for electric propulsion and magnetron material processing devices. These plasmas are usually in strongly non-equilibrium state due to presence of crossed electric and magnetic fields, inhomogeneities of plasma density, temperature, magnetic field and beams of accelerated ions. Free energy from these sources make such plasmas prone to various instabilities resulting in turbulence, anomalous transport, and appearance of coherent structures as found in experiments. This paper provides an overview of instabilities that exist in such plasmas. A nonlinear fluid model has been developed for description of the Simon-Hoh, lower-hybrid and ion-sound instabilities. The model also incorporates electron gyroviscosity describing the effects of finite electron temperature. The nonlinear fluid model has been implemented in the BOUT++ framework. The results of nonlinear simulations are presented demonstrating turbulence, anomalous current and tendency toward the formation of coherent structures.

  12. Viscous wing theory development. Volume 1: Analysis, method and results

    NASA Technical Reports Server (NTRS)

    Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J.

    1986-01-01

    Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers.

  13. Rapid kinematic finite source inversion for Tsunamic Early Warning using high rate GNSS data

    NASA Astrophysics Data System (ADS)

    Chen, K.; Liu, Z.; Song, Y. T.

    2017-12-01

    Recently, Global Navigation Satellite System (GNSS) has been used for rapid earthquake source inversion towards tsunami early warning. In practice, two approaches, i.e., static finite source inversion based on permanent co-seismic offsets and kinematic finite source inversion using high-rate (>= 1 Hz) co-seismic displacement waveforms, are often employed to fulfill the task. The static inversion is relatively easy to be implemented and does not require additional constraints on rupture velocity, duration, and temporal variation. However, since most GNSS receivers are deployed onshore locating on one side of the subduction fault, there is very limited resolution on near-trench fault slip using GNSS in static finite source inversion. On the other hand, the high-rate GNSS displacement waveforms, which contain the timing information of earthquake rupture explicitly and static offsets implicitly, have the potential to improve near-trench resolution by reconciling with the depth-dependent megathrust rupture behaviors. In this contribution, we assess the performance of rapid kinematic finite source inversion using high-rate GNSS by three selected historical tsunamigenic cases: the 2010 Mentawai, 2011 Tohoku and 2015 Illapel events. With respect to the 2010 Mentawai case, it is a typical tsunami earthquake with most slip concentrating near the trench. The static inversion has little resolution there and incorrectly puts slip at greater depth (>10km). In contrast, the recorded GNSS displacement waveforms are deficit in high-frequency energy, the kinematic source inversion recovers a shallow slip patch (depth less than 6 km) and tsunami runups are predicted quite reasonably. For the other two events, slip from kinematic and static inversion show similar characteristics and comparable tsunami scenarios, which may be related to dense GNSS network and behavior of the rupture. Acknowledging the complexity of kinematic source inversion in real-time, we adopt the back-projection approach to provide constraint on rupture velocity.

  14. A Kirchhoff Approach to Seismic Modeling and Prestack Depth Migration

    DTIC Science & Technology

    1993-05-01

    continuation of sources and geophones by finite difference (S-G finite - difference migration ), are relatively slow and dip-limited. Compared to S-G... finite - difference migration , the Kirchhoff integral implements prestack migration relatively efficiently and has no dip limitation. Liu .Mlodeling and...for modeling and migration . In this paper, a finite - difference algorithm is used to calculate traveltimes and amplitudes. With the help of

  15. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    NASA Astrophysics Data System (ADS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  16. An Implicit Finite Difference Solution to the Viscous Radiating Shock Layer with Strong Blowing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1971-01-01

    An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.

  17. Anomalous thermodynamics at the microscale.

    PubMed

    Celani, Antonio; Bo, Stefano; Eichhorn, Ralf; Aurell, Erik

    2012-12-28

    Particle motion at the microscale is an incessant tug-of-war between thermal fluctuations and applied forces on one side and the strong resistance exerted by fluid viscosity on the other. Friction is so strong that completely neglecting inertia--the overdamped approximation--gives an excellent effective description of the actual particle mechanics. In sharp contrast to this result, here we show that the overdamped approximation dramatically fails when thermodynamic quantities such as the entropy production in the environment are considered, in the presence of temperature gradients. In the limit of vanishingly small, yet finite, inertia, we find that the entropy production is dominated by a contribution that is anomalous, i.e., has no counterpart in the overdamped approximation. This phenomenon, which we call an entropic anomaly, is due to a symmetry breaking that occurs when moving to the small, finite inertia limit. Anomalous entropy production is traced back to futile phase-space cyclic trajectories displaying a fast downgradient sweep followed by a slow upgradient return to the original position.

  18. Anomalous Thermodynamics at the Microscale

    NASA Astrophysics Data System (ADS)

    Celani, Antonio; Bo, Stefano; Eichhorn, Ralf; Aurell, Erik

    2012-12-01

    Particle motion at the microscale is an incessant tug-of-war between thermal fluctuations and applied forces on one side and the strong resistance exerted by fluid viscosity on the other. Friction is so strong that completely neglecting inertia—the overdamped approximation—gives an excellent effective description of the actual particle mechanics. In sharp contrast to this result, here we show that the overdamped approximation dramatically fails when thermodynamic quantities such as the entropy production in the environment are considered, in the presence of temperature gradients. In the limit of vanishingly small, yet finite, inertia, we find that the entropy production is dominated by a contribution that is anomalous, i.e., has no counterpart in the overdamped approximation. This phenomenon, which we call an entropic anomaly, is due to a symmetry breaking that occurs when moving to the small, finite inertia limit. Anomalous entropy production is traced back to futile phase-space cyclic trajectories displaying a fast downgradient sweep followed by a slow upgradient return to the original position.

  19. Site-to-Source Finite Fault Distance Probability Distribution in Probabilistic Seismic Hazard and the Relationship Between Minimum Distances

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Gutierrez, E.; Carciumaru, D. D.; Huesca-Perez, E.

    2017-12-01

    We present a method to compute the conditional and no-conditional probability density function (PDF) of the finite fault distance distribution (FFDD). Two cases are described: lines and areas. The case of lines has a simple analytical solution while, in the case of areas, the geometrical probability of a fault based on the strike, dip, and fault segment vertices is obtained using the projection of spheres in a piecewise rectangular surface. The cumulative distribution is computed by measuring the projection of a sphere of radius r in an effective area using an algorithm that estimates the area of a circle within a rectangle. In addition, we introduce the finite fault distance metrics. This distance is the distance where the maximum stress release occurs within the fault plane and generates a peak ground motion. Later, we can apply the appropriate ground motion prediction equations (GMPE) for PSHA. The conditional probability of distance given magnitude is also presented using different scaling laws. A simple model of constant distribution of the centroid at the geometrical mean is discussed, in this model hazard is reduced at the edges because the effective size is reduced. Nowadays there is a trend of using extended source distances in PSHA, however it is not possible to separate the fault geometry from the GMPE. With this new approach, it is possible to add fault rupture models separating geometrical and propagation effects.

  20. Fourier heat conduction as a strong kinetic effect in one-dimensional hard-core gases

    NASA Astrophysics Data System (ADS)

    Zhao, Hanqing; Wang, Wen-ge

    2018-01-01

    For a one-dimensional (1D) momentum conserving system, intensive studies have shown that generally its heat current autocorrelation function (HCAF) tends to decay in a power-law manner and results in the breakdown of the Fourier heat conduction law in the thermodynamic limit. This has been recognized to be a dominant hydrodynamic effect. Here we show that, instead, the kinetic effect can be dominant in some cases and leads to the Fourier law for finite-size systems. Usually the HCAF undergoes a fast decaying kinetic stage followed by a long slowly decaying hydrodynamic tail. In a finite range of the system size, we find that whether the system follows the Fourier law depends on whether the kinetic stage dominates. Our Rapid Communication is illustrated by the 1D hard-core gas models with which the HCAF is derived analytically and verified numerically by molecular dynamics simulations.

  1. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Gui, Yewei; Tang, Wei; Du, Yanxia; Liu, Lei; Xiao, Guangming; Wei, Dong

    2018-06-01

    This paper deals with the surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow. An interface condition with finite-rate thermochemistry was established to balance the three-dimensional Navier-Stokes solver and TPS thermal response solver, and a series of coupled simulations of chemical non-equilibrium aerothermodynamics and structure heat transfer with various surface catalycities were performed for hypersonic Mars entries. The analysis of surface thermochemistry reveals that the surface chemical reactions have great contribution to aerodynamic heating, and the temperature-dependence of finite-rate catalysis highly influences the evolution of the coupling aerodynamic heating in the coupling process. For fixed free stream parameters with proper catalytic excitation energy, a "leap" phenomenon of the TPS-coupled heat flux with the coupling time appears in the initial stage of the coupling process, due to the strong thermochemical effects on the TPS surface.

  2. Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method

    NASA Astrophysics Data System (ADS)

    Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.

    2015-04-01

    In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.

  3. Wetting layer effect on impurity-related electronic properties of different (In,Ga)N QD-shapes

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine; Feddi, El Mustapha; El Mouchtachi, Ahmed

    2018-05-01

    In this paper, we have investigated the electronic properties of (In,Ga)N/GaN coupled wetting layer-quantum dot system using the numerical approach. The finite element method code is used to solve the Schrödinger equation, in the presence of the impurity. In our model, parallelepiped-shape, circular and square based-pyramidal and their wetting layers embedded in GaN matrix were considered. Based on the single band parabolic and the effective mass approximations, the envelop function and its corresponding energy eigenvalue are obtained assuming a finite potential barrier. Our results reveal that: (1) the wetting layer has a great influence on the electronic properties especially for a small quantum dot and acts in the opposite sense of the geometrical confinement, (2) a wetting layer-dependent critical QD-size is obtained limiting two different behaviors and (3) its effect is strongly-dependent on the quantum dot-shape.

  4. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Finite-difference modeling of the electroseismic logging in a fluid-saturated porous formation

    NASA Astrophysics Data System (ADS)

    Guan, Wei; Hu, Hengshan

    2008-05-01

    In a fluid-saturated porous medium, an electromagnetic (EM) wavefield induces an acoustic wavefield due to the electrokinetic effect. A potential geophysical application of this effect is electroseismic (ES) logging, in which the converted acoustic wavefield is received in a fluid-filled borehole to evaluate the parameters of the porous formation around the borehole. In this paper, a finite-difference scheme is proposed to model the ES logging responses to a vertical low frequency electric dipole along the borehole axis. The EM field excited by the electric dipole is calculated separately by finite-difference first, and is considered as a distributed exciting source term in a set of extended Biot's equations for the converted acoustic wavefield in the formation. This set of equations is solved by a modified finite-difference time-domain (FDTD) algorithm that allows for the calculation of dynamic permeability so that it is not restricted to low-frequency poroelastic wave problems. The perfectly matched layer (PML) technique without splitting the fields is applied to truncate the computational region. The simulated ES logging waveforms approximately agree with those obtained by the analytical method. The FDTD algorithm applies also to acoustic logging simulation in porous formations.

  6. GPS source solution of the 2004 Parkfield earthquake.

    PubMed

    Houlié, N; Dreger, D; Kim, A

    2014-01-17

    We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95(th) percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is ~55 ± 6 cm.

  7. GPS source solution of the 2004 Parkfield earthquake

    PubMed Central

    Houlié, N.; Dreger, D.; Kim, A.

    2014-01-01

    We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95th percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is ~55 ± 6 cm. PMID:24434939

  8. Modeling and control of flexible space structures

    NASA Technical Reports Server (NTRS)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  9. FRW Solutions and Holography from Uplifted AdS/CFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xi; Horn, Bart; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2012-02-15

    Starting from concrete AdS/CFT dual pairs, one can introduce ingredients which produce cosmological solutions, including metastable de Sitter and its decay to non-accelerating FRW. We present simple FRW solutions sourced by magnetic flavor branes and analyze correlation functions and particle and brane dynamics. To obtain a holographic description, we exhibit a time-dependent warped metric on the solution and interpret the resulting redshifted region as a Lorentzian low energy effective field theory in one fewer dimension. At finite times, this theory has a finite cutoff, a propagating lower dimensional graviton and a finite covariant entropy bound, but at late times themore » lower dimensional Planck mass and entropy go off to infinity in a way that is dominated by contributions from the low energy effective theory. This opens up the possibility of a precise dual at late times. We reproduce the time-dependent growth of the number of degrees of freedom in the system via a count of available microscopic states in the corresponding magnetic brane construction.« less

  10. FRW solutions and holography from uplifted AdS/CFT systems

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Horn, Bart; Matsuura, Shunji; Silverstein, Eva; Torroba, Gonzalo

    2012-05-01

    Starting from concrete AdS/CFT dual pairs, one can introduce ingredients which produce cosmological solutions, including metastable de Sitter and its decay to nonaccelerating Friedmann-Robertson-Walker. We present simple Friedmann-Robertson-Walker solutions sourced by magnetic flavor branes and analyze correlation functions and particle and brane dynamics. To obtain a holographic description, we exhibit a time-dependent warped metric on the solution and interpret the resulting redshifted region as a Lorentzian low energy effective field theory in one fewer dimension. At finite times, this theory has a finite cutoff, a propagating lower-dimensional graviton, and a finite covariant entropy bound, but at late times the lower-dimensional Planck mass and entropy go off to infinity in a way that is dominated by contributions from the low energy effective theory. This opens up the possibility of a precise dual at late times. We reproduce the time-dependent growth of the number of degrees of freedom in the system via a count of available microscopic states in the corresponding magnetic brane construction.

  11. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Shinn, J. L.

    1986-01-01

    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the soruce terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.

  12. Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.

    2017-09-01

    We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction. We have developed a methodology for synthesizing physics-based broadband ground motion that incorporates the effects of realistic earthquake rupture along specific faults and the actual geology between the source and site.

  13. Application of Second-Moment Source Analysis to Three Problems in Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Jordan, T. H.

    2011-12-01

    Though earthquake forecasting models have often represented seismic sources as space-time points (usually hypocenters), a more complete hazard analysis requires the consideration of finite-source effects, such as rupture extent, orientation, directivity, and stress drop. The most compact source representation that includes these effects is the finite moment tensor (FMT), which approximates the degree-two polynomial moments of the stress glut by its projection onto the seismic (degree-zero) moment tensor. This projection yields a scalar space-time source function whose degree-one moments define the centroid moment tensor (CMT) and whose degree-two moments define the FMT. We apply this finite-source parameterization to three forecasting problems. The first is the question of hypocenter bias: can we reject the null hypothesis that the conditional probability of hypocenter location is uniformly distributed over the rupture area? This hypothesis is currently used to specify rupture sets in the "extended" earthquake forecasts that drive simulation-based hazard models, such as CyberShake. Following McGuire et al. (2002), we test the hypothesis using the distribution of FMT directivity ratios calculated from a global data set of source slip inversions. The second is the question of source identification: given an observed FMT (and its errors), can we identify it with an FMT in the complete rupture set that represents an extended fault-based rupture forecast? Solving this problem will facilitate operational earthquake forecasting, which requires the rapid updating of earthquake triggering and clustering models. Our proposed method uses the second-order uncertainties as a norm on the FMT parameter space to identify the closest member of the hypothetical rupture set and to test whether this closest member is an adequate representation of the observed event. Finally, we address the aftershock excitation problem: given a mainshock, what is the spatial distribution of aftershock probabilities? The FMT representation allows us to generalize the models typically used for this purpose (e.g., marked point process models, such as ETAS), which will again be necessary in operational earthquake forecasting. To quantify aftershock probabilities, we compare mainshock FMTs with the first and second spatial moments of weighted aftershock hypocenters. We will describe applications of these results to the Uniform California Earthquake Rupture Forecast, version 3, which is now under development by the Working Group on California Earthquake Probabilities.

  14. Microlensing of an extended source by a power-law mass distribution

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Osmer, S. J.

    2007-03-01

    Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.

  15. Effect of secondary flows on dispersion in finite-length channels at high Peclet numbers

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra

    2013-09-01

    We investigate the effects of secondary (transverse) flows on convection-dominated dispersion of pressure driven, open column laminar flow in a conduit with rectangular cross-section. We show that secondary flows significantly reduce dispersion (enhancing transverse diffusion) in Taylor-Aris regime [H. Zhao and H. H. Bau, "Effect of secondary flows on Taylor-Aris dispersion," Anal. Chem. 79, 7792-7798 (2007)], as well as in convection-controlled regime. In the convection-controlled dispersion regime (i.e., laminar dispersion in finite-length channel with axial flow at high Peclet numbers) the properties of the dispersion boundary layer and the values of the scaling exponents controlling the dependence of the moment hierarchy on the Peclet number m^{(n)}_out ˜ Pe_eff^{θ _n} are determined by the local near-wall behaviour of the axial velocity. The presence of transverse flows strongly modify the localization properties of the dispersion boundary layer and consequently the moment scaling exponents. Different secondary flows, electrokinetically induced and independent of the primary axial flow are considered. A complete scaling theory is presented for the nth order moment of the outlet chromatogram as a function of the axial Peclet number, the secondary flow's pattern and intensity. We show that some secondary flows (the corotating and the counter-rotating cavity flows) significantly reduce dispersion and m^{(n)}_out ˜ Pe_eff^{(n-1)/3}. No significant dispersion reduction is obtained with the cavity cross-flow m^{(n)}_out ˜ Pe_eff^{(n-1)/2}. The best result is obtained with the two full-motion counter-rotating cross-flows because m^{(n)}_out saturates towards a constant value. Theoretical results from scaling theory are strongly supported by numerical results obtained by Finite Element Method.

  16. From the volcano effect to banding: a minimal model for bacterial behavioral transitions near chemoattractant sources.

    PubMed

    Javens, Gregory; Jashnsaz, Hossein; Pressé, Steve

    2018-04-30

    Sharp chemoattractant (CA) gradient variations near food sources may give rise to dramatic behavioral changes of bacteria neighboring these sources. For instance, marine bacteria exhibiting run-reverse motility are known to form distinct bands around patches (large sources) of chemoattractant such as nutrient-soaked beads while run-and-tumble bacteria have been predicted to exhibit a 'volcano effect' (spherical shell-shaped density) around a small (point) source of food. Here we provide the first minimal model of banding for run-reverse bacteria and show that, while banding and the volcano effect may appear superficially similar, they are different physical effects manifested under different source emission rate (and thus effective source size). More specifically, while the volcano effect is known to arise around point sources from a bacterium's temporal differentiation of signal (and corresponding finite integration time), this effect alone is insufficient to account for banding around larger patches as bacteria would otherwise cluster around the patch without forming bands at some fixed radial distance. In particular, our model demonstrates that banding emerges from the interplay of run-reverse motility and saturation of the bacterium's chemoreceptors to CA molecules and our model furthermore predicts that run-reverse bacteria susceptible to banding behavior should also exhibit a volcano effect around sources with smaller emission rates.

  17. Two-dimensional Anderson-Hubbard model in the DMFT + {Sigma} approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Nekrasov, I. A.

    The density of states, the dynamic (optical) conductivity, and the phase diagram of the paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean field theory (DMFT + {Sigma} approximation). Strong correlations are accounted by the DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular 'bare' density of states (DOS). The DMFT effective single-impurity problem is solved by numerical renormalization group (NRG). The 'correlated metal,' Mott insulator, and correlated Anderson insulator phases are identified from the evolution ofmore » the density of states, optical conductivity, and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of finite size, allowing us to construct the complete zero-temperature phase diagram of the paramagnetic Anderson-Hubbard model. The localization length in our approximation is practically independent of the strength of Hubbard correlations. But the divergence of the localization length in a finite-size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.« less

  18. Drekar v.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seefeldt, Ben; Sondak, David; Hensinger, David M.

    Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less

  19. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  20. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  1. Yield Behavior of Solution Treated and Aged Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Ring, Andrew J.; Baker, Eric H.; Salem, Jonathan A.; Thesken, John C.

    2014-01-01

    Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs.

  2. Kinetic-Scale Magnetic Turbulence and Finite Larmor Radius Effects at Mercury

    NASA Technical Reports Server (NTRS)

    Uritsky, V. M.; Slavin, J. A.; Khazanov, G. V.; Donovan, E. F.; Boardsen, S. A.; Anderson, B. J.; Korth, H.

    2011-01-01

    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near-Mercury space environment, with the emphasis on key boundary regions participating in the solar wind - magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable timescale (approx.20 s) imposed by the signal nonstationariry, suggesting that turbulence at this plane I is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Constantinescu, Emil M.

    The numerical simulation of meso-, convective-, and microscale atmospheric flows requires the solution of the Euler or the Navier-Stokes equations. Nonhydrostatic weather prediction algorithms often solve the equations in terms of derived quantities such as Exner pressure and potential temperature (and are thus not conservative) and/or as perturbations to the hydrostatically balanced equilibrium state. This paper presents a well-balanced, conservative finite difference formulation for the Euler equations with a gravitational source term, where the governing equations are solved as conservation laws for mass, momentum, and energy. Preservation of the hydrostatic balance to machine precision by the discretized equations is essentialmore » because atmospheric phenomena are often small perturbations to this balance. The proposed algorithm uses the weighted essentially nonoscillatory and compact-reconstruction weighted essentially nonoscillatory schemes for spatial discretization that yields high-order accurate solutions for smooth flows and is essentially nonoscillatory across strong gradients; however, the well-balanced formulation may be used with other conservative finite difference methods. The performance of the algorithm is demonstrated on test problems as well as benchmark atmospheric flow problems, and the results are verified with those in the literature.« less

  4. Strong ground motion simulation of the 2016 Kumamoto earthquake of April 16 using multiple point sources

    NASA Astrophysics Data System (ADS)

    Nagasaka, Yosuke; Nozu, Atsushi

    2017-02-01

    The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This result indicates the necessity for improving the pseudo point-source model, by introducing azimuth-dependent corner frequency for example, so that it can incorporate the effect of rupture directivity.[Figure not available: see fulltext.

  5. Experimental study of outdoor propagation of spherically speading periodic acoustic waves of finite amplitude

    NASA Technical Reports Server (NTRS)

    Theobald, M. A.

    1977-01-01

    The outdoor propagation of spherically spreading sound waves of finite amplitude was investigated. The main purpose of the experiments was to determine the extent to which the outdoor environment, mainly random inhomogeneity of the medium, affects finite amplitude propagation. Periodic sources with fundamental frequencies in the range 6 to 8 kHz and source levels SPLlm from 140 to 149 dB were used. The sources were an array of 7 to 10 horn drivers and a siren. The propagation path was vertical and parallel to an 85 m tower, whose elevator carried the traveling microphone. The general conclusions drawn from the experimental results were as follows. The inhomogeneities caused significant fluctuations in the instantaneous acoustic signal, but with sufficient time averaging of the measured harmonic levels, the results were comparable to results expected for propagation in a quiet medium. Propagation data for the fundamental of the siren approached within 1 dB of the weak shock saturation levels. Extra attenuation on the order of 8 dB was observed. The measurements generally confirmed the predictions of several theoretical models. The maximum propagation distance was 36 m. The narrowbeam arrays were much weaker sources. Nonlinear propagation distortion was produced, but the maximum value of extra attenuation measured was 1.5 dB. The maximum propagation distance was 76 m. The behavior of the asymetric waveforms received in one experiment qualitatively suggested that beam type diffraction effects were present. The role of diffraction of high intensity sound waves in radiation from a single horn was briefly investigated.

  6. Development of a hip joint model for finite volume simulations.

    PubMed

    Cardiff, P; Karač, A; FitzPatrick, D; Ivanković, A

    2014-01-01

    This paper establishes a procedure for numerical analysis of a hip joint using the finite volume method. Patient-specific hip joint geometry is segmented directly from computed tomography and magnetic resonance imaging datasets and the resulting bone surfaces are processed into a form suitable for volume meshing. A high resolution continuum tetrahedral mesh has been generated, where a sandwich model approach is adopted; the bones are represented as a stiffer cortical shells surrounding more flexible cancellous cores. Cartilage is included as a uniform thickness extruded layer and the effect of layer thickness is investigated. To realistically position the bones, gait analysis has been performed giving the 3D positions of the bones for the full gait cycle. Three phases of the gait cycle are examined using a finite volume based custom structural contact solver implemented in open-source software OpenFOAM.

  7. Finite-amplitude, pulsed, ultrasonic beams

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François; Frøysa, Kjell-Eivind

    An analytical, approximate solution of the inviscid KZK equation for a nonlinear pulsed sound beam radiated by an acoustic source with a Gaussian velocity distribution, is obtained by means of the renormalization method. This method involves two steps. First, the transient, weakly nonlinear field is computed. However, because of cumulative nonlinear effects, that expansion is non-uniform and breaks down at some distance away from the source. So, in order to extend its validity, it is re-written in a new frame of co-ordinates, better suited to following the nonlinear distorsion of the wave profile. Basically, the nonlinear coordinate transform introduces additional terms in the expansion, which are chosen so as to counterbalance the non-uniform ones. Special care is devoted to the treatment of shock waves. Finally, comparisons with the results of a finite-difference scheme turn out favorable, and show the efficiency of the method for a rather large range of parameters.

  8. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments

    USGS Publications Warehouse

    Trescott, Peter C.; Pinder, George Francis; Larson, S.P.

    1976-01-01

    The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.

  9. Excitations in the Yang–Gaudin Bose gas

    DOE PAGES

    Robinson, Neil J.; Konik, Robert M.

    2017-06-01

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Neil J.; Konik, Robert M.

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  11. Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing

    NASA Astrophysics Data System (ADS)

    Sajeed, Shihan; Radchenko, Igor; Kaiser, Sarah; Bourgoin, Jean-Philippe; Pappa, Anna; Monat, Laurent; Legré, Matthieu; Makarov, Vadim

    2015-03-01

    The security of quantum communication using a weak coherent source requires an accurate knowledge of the source's mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acín-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD we model both a strong attack using technology possible in principle and a realistic attack bounded by today's technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantique's commercial QKD system Clavis2. We scrutinize this implementation for security problems and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed, the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.

  12. Tsunami simulation using submarine displacement calculated from simulation of ground motion due to seismic source model

    NASA Astrophysics Data System (ADS)

    Akiyama, S.; Kawaji, K.; Fujihara, S.

    2013-12-01

    Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite difference calculation based on the shallow water theory. The initial wave height for tsunami generation is estimated from the vertical displacement of ocean bottom due to the crustal movements, which is obtained from the ground motion simulation mentioned above. The results of tsunami simulations are compared with the observations of the GPS wave gauges to evaluate the validity for the tsunami prediction using the fault model based on the seismic observation records.

  13. Anomalous Nernst effect in type-II Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Saha, Subhodip; Tewari, Sumanta

    2018-01-01

    Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.

  14. Hydrodynamic Modeling of Free Surface Interactions and Implications for P and Rg Waves Recorded on the Source Physics Experiments

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Rougier, E.; Knight, E.; Yang, X.; Patton, H. J.

    2013-12-01

    A goal of the Source Physics Experiments (SPE) is to develop explosion source models expanding monitoring capabilities beyond empirical methods. The SPE project combines field experimentation with numerical modelling. The models take into account non-linear processes occurring from the first moment of the explosion as well as complex linear propagation effects of signals reaching far-field recording stations. The hydrodynamic code CASH is used for modelling high-strain rate, non-linear response occurring in the material near the source. Our development efforts focused on incorporating in-situ stress and fracture processes. CASH simulates the material response from the near-source, strong shock zone out to the small-strain and ultimately the elastic regime where a linear code can take over. We developed an interface with the Spectral Element Method code, SPECFEM3D, that is an efficient implementation on parallel computers of a high-order finite element method. SPECFEM3D allows accurate modelling of wave propagation to remote monitoring distance at low cost. We will present CASH-SPECFEM3D results for SPE1, which was a chemical detonation of about 85 kg of TNT at 55 m depth in a granitic geologic unit. Spallation was observed for SPE1. Keeping yield fixed we vary the depth of the source systematically and compute synthetic seismograms to distances where the P and Rg waves are separated, so that analysis can be performed without concern about interference effects due to overlapping energy. We study the time and frequency characteristics of P and Rg waves and analyse them in regard to the impact of free-surface interactions and rock damage resulting from those interactions. We also perform traditional CMT inversions as well as advanced CMT inversions, developed at LANL to take into account the damage. This will allow us to assess the effect of spallation on CMT solutions as well as to validate our inversion procedure. Further work will aim to validate the developed models with the data recorded on SPEs. This long-term goal requires taking into account the 3D structure and thus a comprehensive characterization of the site.

  15. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI.

    PubMed

    Zhao, Huawei; Crozier, Stuart; Liu, Feng

    2002-12-01

    Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model. Copyright 2002 Wiley-Liss, Inc.

  16. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.

  17. On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods

    NASA Astrophysics Data System (ADS)

    Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman

    2018-02-01

    Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.

  18. Full Wave Analysis of Passive Microwave Monolithic Integrated Circuit Devices Using a Generalized Finite Difference Time Domain (GFDTD) Algorithm

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1993-01-01

    This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.

  19. Prediction of ground effects on aircraft noise

    NASA Technical Reports Server (NTRS)

    Pao, S. P.; Wenzel, A. R.; Oncley, P. B.

    1978-01-01

    A unified method is recommended for predicting ground effects on noise. This method may be used in flyover noise predictions and in correcting static test-stand data to free-field conditions. The recommendation is based on a review of recent progress in the theory of ground effects and of the experimental evidence which supports this theory. It is shown that a surface wave must be included sometimes in the prediction method. Prediction equations are collected conveniently in a single section of the paper. Methods of measuring ground impedance and the resulting ground-impedance data are also reviewed because the recommended method is based on a locally reactive impedance boundary model. Current practice of estimating ground effects are reviewed and consideration is given to practical problems in applying the recommended method. These problems include finite frequency-band filters, finite source dimension, wind and temperature gradients, and signal incoherence.

  20. A Computational Approach for Automated Posturing of a Human Finite Element Model

    DTIC Science & Technology

    2016-07-01

    Std. Z39.18 July 2016 Memorandum Report A Computational Approach for Automated Posturing of a Human Finite Element Model Justin McKee and Adam...protection by influencing the path that loading will be transferred into the body and is a major source of variability. The development of a finite element ...posture, human body, finite element , leg, spine 42 Adam Sokolow 410-306-2985Unclassified Unclassified Unclassified UU ii Approved for public release

  1. Imaging Strong Lateral Heterogeneities with USArray using Body-to-Surface Wave Scattering

    NASA Astrophysics Data System (ADS)

    Yu, C.; Zhan, Z.; Hauksson, E.; Cochran, E. S.

    2017-12-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers remains challenging. In this study, we analyze broadband waveforms recorded by the USArray across the entire conterminous US. With array analysis, we observe strong scattered surface waves following the arrival of teleseismic body waves over several hundreds of kilometers. We use back-projection to locate the body-to-surface scattering sources, and detect strong scatterers both around and within the conterminous US. For the former, strong scattering is associated with pronounced bathymetric relief, such as the Patton Escarpment in the Southern California Continental Borderland. For the latter, scatterers are consistent with sharp lateral heterogeneities, such as near the Yellowstone hotspot and Southern California fault zones. We further model the body-to-surface wave scattering using finite-difference simulations. As an example, in the Southern California Continental Borderland a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling also suggests a relatively low shear wave velocity in the Continental Borderland. These observation of strong body-to-surface wave scattering and waveform modeling not only helps us image sharp heterogeneities but also are useful for assessing seismic hazard, including the calibration and refinement of seismic velocity models used to locate earthquakes and simulate strong ground motions.

  2. Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, Y.

    2016-12-01

    We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.

  3. Beam shaping of light sources using circular photonic crystal funnel

    NASA Astrophysics Data System (ADS)

    Kumar, Mrityunjay; Kumar, Mithun; Dinesh Kumar, V.

    2012-10-01

    A novel two-dimensional circular photonic crystal (CPC) structure with a sectorial opening for shaping the beam of light sources was designed and investigated. When combined with light sources, the structure acts like an antenna emitting a directional beam which could be advantageously used in several nanophotonic applications. Using the two-dimensional finite-difference time-domain (2D FDTD) method, we examined the effects of geometrical parameters of the structure on the directional and transmission properties of emitted radiation. Further, we examined the transmitting and receiving properties of a pair of identical structures as a function of distance between them.

  4. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  5. Research on the forward modeling of controlled-source audio-frequency magnetotellurics in three-dimensional axial anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Tan, Handong

    2017-11-01

    Controlled-source audio-frequency magnetotellurics (CSAMT) has developed rapidly in recent years and are widely used in the area of mineral and oil resource exploration as well as other fields. The current theory, numerical simulation, and inversion research are based on the assumption that the underground media have resistivity isotropy. However a large number of rock and mineral physical property tests show the resistivity of underground media is generally anisotropic. With the increasing application of CSAMT, the demand for probe accuracy of practical exploration to complex targets continues to increase. The question of how to evaluate the influence of anisotropic resistivity to CSAMT response is becoming important. To meet the demand for CSAMT response research of resistivity anisotropic media, this paper examines the CSAMT electric equations, derives and realizes a three-dimensional (3D) staggered-grid finite difference numerical simulation method of CSAMT resistivity axial anisotropy. Through building a two-dimensional (2D) resistivity anisotropy geoelectric model, we validate the 3D computation result by comparing it to the result of controlled-source electromagnetic method (CSEM) resistivity anisotropy 2D finite element program. Through simulating a 3D resistivity axial anisotropy geoelectric model, we compare and analyze the responses of equatorial configuration, axial configuration, two oblique sources and tensor source. The research shows that the tensor source is suitable for CSAMT to recognize the anisotropic effect of underground structure.

  6. Secondary subharmonic instability of boundary layers with pressure gradient and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1988-01-01

    Three-dimensional linear secondary instability is investigated for boundary layers with pressure gradient and suction in the presence of a finite amplitude TS wave. The focus is on principal parametric resonance responsible for a strong growth of subharmonics in a low disturbance environment. Calculations are presented for the effect of pressure gradients and suction on controlling the onset and amplification of the secondary instability.

  7. The Overshoot Phenomenon in Geodynamics Codes

    NASA Astrophysics Data System (ADS)

    Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.

    2013-12-01

    The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.

  8. Vanishing spin stiffness in the spin-1/2 Heisenberg chain for any nonzero temperature

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Prosen, T.; Campbell, D. K.

    2015-10-01

    Whether at the zero spin density m =0 and finite temperatures T >0 the spin stiffness of the spin-1 /2 X X X chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m =0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m2L in the thermodynamic limit of chain length L →∞ , for any finite, nonzero temperature, which implies the absence of ballistic transport for T >0 for m =0 . Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999), 10.1103/PhysRevLett.82.1764] leads to the exact stiffness values at finite temperature T >0 for models whose stiffness is finite at T =0 , similar to the spin stiffness of the spin-1 /2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.

  9. A Flexible Method for Producing F.E.M. Analysis of Bone Using Open-Source Software

    NASA Technical Reports Server (NTRS)

    Boppana, Abhishektha; Sefcik, Ryan; Meyers, Jerry G.; Lewandowski, Beth E.

    2016-01-01

    This project, performed in support of the NASA GRC Space Academy summer program, sought to develop an open-source workflow methodology that segmented medical image data, created a 3D model from the segmented data, and prepared the model for finite-element analysis. In an initial step, a technological survey evaluated the performance of various existing open-source software that claim to perform these tasks. However, the survey concluded that no single software exhibited the wide array of functionality required for the potential NASA application in the area of bone, muscle and bio fluidic studies. As a result, development of a series of Python scripts provided the bridging mechanism to address the shortcomings of the available open source tools. The implementation of the VTK library provided the most quick and effective means of segmenting regions of interest from the medical images; it allowed for the export of a 3D model by using the marching cubes algorithm to build a surface mesh. To facilitate the development of the model domain from this extracted information required a surface mesh to be processed in the open-source software packages Blender and Gmsh. The Preview program of the FEBio suite proved to be sufficient for volume filling the model with an unstructured mesh and preparing boundaries specifications for finite element analysis. To fully allow FEM modeling, an in house developed Python script allowed assignment of material properties on an element by element basis by performing a weighted interpolation of voxel intensity of the parent medical image correlated to published information of image intensity to material properties, such as ash density. A graphical user interface combined the Python scripts and other software into a user friendly interface. The work using Python scripts provides a potential alternative to expensive commercial software and inadequate, limited open-source freeware programs for the creation of 3D computational models. More work will be needed to validate this approach in creating finite-element models.

  10. Monte-Carlo simulation of a stochastic differential equation

    NASA Astrophysics Data System (ADS)

    Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG

    2017-12-01

    For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.

  11. Stratification of a closed region containing two buoyancy sources

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew; Linden, Paul

    2005-11-01

    Many closed systems such as lakes, ocean basins, rooms etc. have inputs of buoyancy at different levels. We address the question of how the resulting stratification depends on the location of these sources. For example a lake is heated and cooled at the surface, while for a room cool air may be applied at the ceiling but the heat source may be a person standing on the floor. We present an experimental study of convection in a finite box in which we systematically vary the vertical location of two well-separated, constant buoyancy sources. We specifically consider the case of a dense source and a light source so that there is no net buoyancy flux into the tank. We study the development of the large-time stratification in the tank, which falls between one of two limits. When the location of the dense source is significantly higher than the light source, the fluid is well mixed and the system remains largely unstratified. When the location of the light source is significantly higher than the dense source, a two- layer stratification develops. We find that the circulation pattern is dominated by counter-flowing shear layers (Wong, Griffiths & Hughes, 2001), whose number and strength are strongly influenced by the buoyancy source locations. The shear layers are the primary means of communication between the plumes and thus play a large role in the resulting stratification. We support our findings with a simple numerical model.

  12. Finite-temperature behavior of a classical spin-orbit-coupled model for YbMgGaO4 with and without bond disorder

    NASA Astrophysics Data System (ADS)

    Parker, Edward; Balents, Leon

    2018-05-01

    We present the results of finite-temperature classical Monte Carlo simulations of a strongly spin-orbit-coupled nearest-neighbor triangular-lattice model for the candidate U (1 ) quantum spin liquid YbMgGaO4 at large system sizes. We find a single continuous finite-temperature stripe-ordering transition with slowly diverging heat capacity that completely breaks the sixfold ground-state degeneracy, despite the absence of a known conformal field theory describing such a transition. We also simulate the effect of random-bond disorder in the model, and find that even weak bond disorder destroys the transition by fragmenting the system into very large domains—possibly explaining the lack of observed ordering in the real material. The Imry-Ma argument only partially explains this fragility to disorder, and we extend the argument with a physical explanation for the preservation of our system's time-reversal symmetry even under a disorder model that preserves the same symmetry.

  13. Discontinuous finite element method for vector radiative transfer

    NASA Astrophysics Data System (ADS)

    Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping

    2017-03-01

    The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.

  14. Effect of wettability on two-phase quasi-static displacement: Validation of two pore scale modeling approaches

    NASA Astrophysics Data System (ADS)

    Verma, Rahul; Icardi, Matteo; Prodanović, Maša

    2018-05-01

    Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimized for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry and dynamics, where usually many sources of errors are interplaying.

  15. Entropy Analysis in Mixed Convection MHD flow of Nanofluid over a Non-linear Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Matin, Meisam Habibi; Nobari, Mohammad Reza Heirani; Jahangiri, Pouyan

    This article deals with a numerical study of entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet taking into account the effects of viscous dissipation and variable magnetic field. The nanofluid is made of such nano particles as SiO2 with pure water as a base fluid. To analyze the problem, at first the boundary layer equations are transformed into non-linear ordinary equations using a similarity transformation. The resultant equations are then solved numerically using the Keller-Box scheme based on the implicit finite-difference method. The effects of different non-dimensional governing parameters such as magnetic parameter, nanoparticles volume fraction, Nusselt, Richardson, Eckert, Hartman, Brinkman, Reynolds and entropy generation numbers are investigated in details. The results indicate that increasing the nano particles to the base fluids causes the reduction in shear forces and a decrease in stretching sheet heat transfer coefficient. Also, decreasing the magnetic parameter and increasing the Eckert number result in improves heat transfer rate. Furthermore, the surface acts as a strong source of irreversibility due to the higher entropy generation number near the surface.

  16. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    NASA Astrophysics Data System (ADS)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases, the inverted slip model and moment rate function better match previous results incorporating field observations, geodetic and seismic data.

  17. Expansion and improvement of the FORMA system for response and load analysis. Volume 2C: Listings, finite element FORMA subroutines

    NASA Technical Reports Server (NTRS)

    Wohlen, R. L.

    1976-01-01

    A listing of the source deck of each finite element FORMA subroutine is given to remove the 'black-box' aura of the subroutines so that the analyst may better understand the detailed operations of each subroutine. The FORTRAN 4 programming language is used in all finite element FORMA subroutines.

  18. Spin polarized phases in strongly interacting matter: Interplay between axial-vector and tensor mean fields

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Nakano, Eiji; Yanase, Kota; Yoshinaga, Naotaka

    2018-06-01

    The spontaneous spin polarization of strongly interacting matter due to axial-vector- and tensor-type interactions is studied at zero temperature and high baryon-number densities. We start with the mean-field Lagrangian for the axial-vector and tensor interaction channels and find in the chiral limit that the spin polarization due to the tensor mean field (U ) takes place first as the density increases for sufficiently strong coupling constants, and then the spin polarization due to the axial-vector mean field (A ) emerges in the region of the finite tensor mean field. This can be understood as making the axial-vector mean-field finite requires a broken chiral symmetry somehow, which is achieved by the finite tensor mean field in the present case. It is also found from the symmetry argument that there appear the type I (II) Nambu-Goldstone modes with a linear (quadratic) dispersion in the spin polarized phase with U ≠0 and A =0 (U ≠0 and A ≠0 ), although these two phases exhibit the same symmetry breaking pattern.

  19. Numerical solution of fluid flow and heat tranfer problems with surface radiation

    NASA Technical Reports Server (NTRS)

    Ahuja, S.; Bhatia, K.

    1995-01-01

    This paper presents a numerical scheme, based on the finite element method, to solve strongly coupled fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The overall solution strategy is verified by comparing the available results with those obtained using this approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is clearly explained.

  20. Anomalous finite-size effects in the Battle of the Sexes

    NASA Astrophysics Data System (ADS)

    Cremer, J.; Reichenbach, T.; Frey, E.

    2008-06-01

    The Battle of the Sexes describes asymmetric conflicts in mating behavior of males and females. Males can be philanderer or faithful, while females are either fast or coy, leading to a cyclic dynamics. The adjusted replicator equation predicts stable coexistence of all four strategies. In this situation, we consider the effects of fluctuations stemming from a finite population size. We show that they unavoidably lead to extinction of two strategies in the population. However, the typical time until extinction occurs strongly prolongs with increasing system size. In the emerging time window, a quasi-stationary probability distribution forms that is anomalously flat in the vicinity of the coexistence state. This behavior originates in a vanishing linear deterministic drift near the fixed point. We provide numerical data as well as an analytical approach to the mean extinction time and the quasi-stationary probability distribution.

  1. Universality from disorder in the random-bond Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.

    2018-04-01

    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.

  2. Finite-size effect on optimal efficiency of heat engines.

    PubMed

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  3. Kosterlitz-Thouless transition and vortex-antivortex lattice melting in two-dimensional Fermi gases with p - or d -wave pairing

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang

    2017-12-01

    We present a theoretical study of the finite-temperature Kosterlitz-Thouless (KT) and vortex-antivortex lattice (VAL) melting transitions in two-dimensional Fermi gases with p - or d -wave pairing. For both pairings, when the interaction is tuned from weak to strong attractions, we observe a quantum phase transition from the Bardeen-Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein condensation (BEC) of difermions. The KT and VAL transition temperatures increase during this BCS-BEC transition and approach constant values in the deep BEC region. The BCS-BEC transition is characterized by the nonanalyticities of the chemical potential, the superfluid order parameter, and the sound velocities as functions of the interaction strength at both zero and finite temperatures; however, the temperature effect tends to weaken the nonanalyticities compared to the zero-temperature case. The effect of mismatched Fermi surfaces on the d -wave pairing is also studied.

  4. Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes

    NASA Astrophysics Data System (ADS)

    Saini, Sahil; Singh, Parampreet

    2018-03-01

    We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.

  5. Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Zhou, You-He

    2018-03-01

    As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.

  6. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.

    PubMed

    Lu, Benzhuo; Zhou, Y C; Huber, Gary A; Bond, Stephen D; Holst, Michael J; McCammon, J Andrew

    2007-10-07

    A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes. The finite element method is used because of its flexibility in modeling irregular geometries and complex boundary conditions. The boundary element method is used due to the convenience of treating the singularities in the source charge distribution and its accurate solution to electrostatic problems on molecular boundaries. Nonsteady-state diffusion can be studied using this framework, with the electric field computed using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh generation for biomolecular systems is supplied, which is an essential component for the finite element and boundary element computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical algorithm, and therefore can be solved in this framework as well. Two types of computations are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations solutions. A biological application of the first type is the ionic density distribution around a fragment of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also studied for a simple model system, and leads to an observation that the interference on electrostatic field of the substrate charges strongly affects the reaction rate coefficient. The second is a time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by acetylcholinesterase, determined by the SE and a single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are compared.

  7. CSAMT Data Processing with Source Effect and Static Corrections, Application of Occam's Inversion, and Its Application in Geothermal System

    NASA Astrophysics Data System (ADS)

    Hamdi, H.; Qausar, A. M.; Srigutomo, W.

    2016-08-01

    Controlled source audio-frequency magnetotellurics (CSAMT) is a frequency-domain electromagnetic sounding technique which uses a fixed grounded dipole as an artificial signal source. Measurement of CSAMT with finite distance between transmitter and receiver caused a complex wave. The shifted of the electric field due to the static effect caused elevated resistivity curve up or down and affects the result of measurement. The objective of this study was to obtain data that have been corrected for source and static effects as to have the same characteristic as MT data which are assumed to exhibit plane wave properties. Corrected CSAMT data were inverted to reveal subsurface resistivity model. Source effect correction method was applied to eliminate the effect of the signal source and static effect was corrected by using spatial filtering technique. Inversion method that used in this study is the Occam's 2D Inversion. The results of inversion produces smooth models with a small misfit value, it means the model can describe subsurface conditions well. Based on the result of inversion was predicted measurement area is rock that has high permeability values with rich hot fluid.

  8. Finite Difference Methods for the Solution of Unsteady Potential Flows.

    DTIC Science & Technology

    1982-06-01

    prediction of loads on helicopter rotors in forward flight. Although aeroelastic effects are important, in this case the main source of unsteadiness is in the...and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three-dimensional rotor calculations...concerning tunnel turbulence, wall and scaling effects , and sepa- ration. We now know that many of these problems are magnified by the inherent susceptibility

  9. Field emission from carbon nanotube fibers in varying anode-cathode gap with the consideration of contact resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Fairchild, S. B.; Back, T. C.; Luo, Yi

    2017-12-01

    This paper studies field emission (FE) from a single carbon nanotube (CNT) fiber with different anode-cathode (AK) gap distances. It is found that the field enhancement factor depends strongly on the finite AK gap distance, due to the combination of geometrical effects and possible fiber morphology change. The geometrical effects of AK gap distance on the field enhancement factor are confirmed using COMSOL simulations. The slope drop in the Fowler-Northeim (FN) plot of the FE data in the high voltage is related to the electrical contact resistance between the CNT fiber and the substrate. It is found that even a small series resistance to the field emitter (<30% of the emission gap impedance) can strongly modify the FE characteristics in the high voltage regime, inducing a strong deviation from the linear FN plot.

  10. Gravitational lensing of gravitational waves: a statistical perspective

    NASA Astrophysics Data System (ADS)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  11. Effect of strong elastic contrasts on the propagation of seismic wave in hard-rock environments

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Zheng, L.; Liu, Q.; Milkereit, B.

    2013-12-01

    Understanding the propagation of seismic waves in a presence of strong elastic contrasts, such as topography, tunnels and ore-bodies is still a challenge. Safety in mining is a major concern and seismic monitoring is the main tool here. For engineering purposes, amplitudes (peak particle velocity/acceleration) and travel times of seismic events (mostly blasts or microseismic events) are critical parameters that have to be determined at various locations in a mine. These parameters are useful in preparing risk maps or to better understand the process of spatial and temporal stress distributions in a mine. Simple constant velocity models used for monitoring studies in mining, cannot explain the observed complexities in scattered seismic waves. In hard-rock environments modeling of elastic seismic wavefield require detailed 3D petrophysical, infrastructure and topographical data to simulate the propagation of seismic wave with a frequencies up to few kilohertz. With the development of efficient numerical techniques, and parallel computation facilities, a solution for such a problem is achievable. In this study, the effects of strong elastic contrasts such as ore-bodies, rough topography and tunnels will be illustrated using 3D modeling method. The main tools here are finite difference code (SOFI3D)[1] that has been benchmarked for engineering studies, and spectral element code (SPECFEM) [2], which was, developed for global seismology problems. The modeling results show locally enhanced peak particle velocity due to presence of strong elastic contrast and topography in models. [1] Bohlen, T. Parallel 3-D viscoelastic finite difference seismic modeling. Computers & Geosciences 28 (2002) 887-899 [2] Komatitsch, D., and J. Tromp, Introduction to the spectral-element method for 3-D seismic wave propagation, Geophys. J. Int., 139, 806-822, 1999.

  12. Finite element methodology for integrated flow-thermal-structural analysis

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Ramakrishnan, R.; Vemaganti, G. R.

    1988-01-01

    Papers entitled, An Adaptive Finite Element Procedure for Compressible Flows and Strong Viscous-Inviscid Interactions, and An Adaptive Remeshing Method for Finite Element Thermal Analysis, were presented at the June 27 to 29, 1988, meeting of the AIAA Thermophysics, Plasma Dynamics and Lasers Conference, San Antonio, Texas. The papers describe research work supported under NASA/Langley Research Grant NsG-1321, and are submitted in fulfillment of the progress report requirement on the grant for the period ending February 29, 1988.

  13. Accurate traveltime computation in complex anisotropic media with discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, P.; Benjemaa, M.; Métivier, L.; Virieux, J.

    2017-12-01

    Travel time computation is of major interest for a large range of geophysical applications, among which source localization and characterization, phase identification, data windowing and tomography, from decametric scale up to global Earth scale.Ray-tracing tools, being essentially 1D Lagrangian integration along a path, have been used for their efficiency but present some drawbacks, such as a rather difficult control of the medium sampling. Moreover, they do not provide answers in shadow zones. Eikonal solvers, based on an Eulerian approach, have attracted attention in seismology with the pioneering work of Vidale (1988), while such approach has been proposed earlier by Riznichenko (1946). They have been used now for first-arrival travel-time tomography at various scales (Podvin & Lecomte (1991). The framework for solving this non-linear partial differential equation is now well understood and various finite-difference approaches have been proposed, essentially for smooth media. We propose a novel finite element approach which builds a precise solution for strongly heterogeneous anisotropic medium (still in the limit of Eikonal validity). The discontinuous Galerkin method we have developed allows local refinement of the mesh and local high orders of interpolation inside elements. High precision of the travel times and its spatial derivatives is obtained through this formulation. This finite element method also honors boundary conditions, such as complex topographies and absorbing boundaries for mimicking an infinite medium. Applications from travel-time tomography, slope tomography are expected, but also for migration and take-off angles estimation, thanks to the accuracy obtained when computing first-arrival times.References:Podvin, P. and Lecomte, I., 1991. Finite difference computation of traveltimes in very contrasted velocity model: a massively parallel approach and its associated tools, Geophys. J. Int., 105, 271-284.Riznichenko, Y., 1946. Geometrical seismics of layered media, Trudy Inst. Theor. Geophysics, Vol II, Moscow (in Russian).Vidale, J., 1988. Finite-difference calculation of travel times, Bull. seism. Soc. Am., 78, 2062-2076.

  14. Holography as a highly efficient renormalization group flow. I. Rephrasing gravity

    NASA Astrophysics Data System (ADS)

    Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan

    2016-07-01

    We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.

  15. Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth; Hansen, Ole

    2014-10-01

    We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance. Strong perturbations produce a nonlinear correction term that depends on the strength of the inhomogeneity. Solution of the specific case of a finite-sized circular inhomogeneity coaxial with a circular specimen suggests a first-order correction for the general case. Our results are confirmed by computer simulations on both a linear four-point probe array on a large circular disc and a van der Pauw square geometry. Furthermore, the results also agree well with Náhlík et al. published experimental results for physical holes in a circular copper foil disc.

  16. Probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Wing, Kam Liu

    1987-01-01

    In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.

  17. Topics in QCD at Nonzero Temperature and Density

    NASA Astrophysics Data System (ADS)

    Pangeni, Kamal

    Understanding the behavior of matter at ultra-high density such as neutron stars require the knowledge of ground state properties of Quantum chromodynamics (QCD) at finite chemical potential. However, this task has turned out to be very difficult because of two main reasons: 1) QCD may still be strongly coupled at those regimes making perturbative calculations unreliable and 2) QCD at finite density suffers from the sign problem that makes the use of lattice simulation problematic and it even affects phenomenological models. In the first part of this thesis, we show that the sign problem in analytical calculations of finite density models can be solved by considering the CK-symmetric, where C is charge conjugation and K is complex conjugation, complex saddle points of the effective action. We then explore the properties and consequences of such complex saddle points at non-zero temperature and density. Due to CK symmetry, the mass matrix eigenvalues in these models are not always real but can be complex, which results in damped oscillation of the density-density correlation function, a new feature of finite density models. To address the generality of such behavior, we next consider a lattice model of QCD with static quarks at strong-coupling. Computation of the mass spectrum confirms the existence of complex eigenvalues in much of temperature-chemical potential plane. This provides an independent confirmation of our results obtained using phenomenological models of QCD. The existence of regions in parameter space where density-density correlation function exhibit damped oscillation is one of the hallmarks of typical liquid-gas system. The formalism developed to tackle the sign problem in QCD models actually gives a simple understanding for the existence of such behavior in liquid-gas system. To this end, we develop a generic field theoretic model for the treatment of liquid-gas phase transition. An effective field theory at finite density derived from a fundamental four dimensional field theory turns out to be complex but CK symmetric. The existence of CK symmetry results in complex mass eigenvalues, which in turn leads to damped oscillatory behavior of the density-density correlation function. In the last part of this thesis, we study the effect of large amplitude density oscillations on the transport properties of superfluid nuclear matter. In nuclear matter at neutron-star densities and temperature, Cooper pairing leads to the formations of a gap in the nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many transport coefficients. Previous calculations have shown evidence that density oscillations of sufficiently large amplitude can overcome this suppression for flavor-changing beta processes via the mechanism of "gap-bridging". We address the simplifications made in that initial work, and show that gap bridging can counteract Boltzmann suppression of neutrino emissivity for the realistic case of modified Urca processes in matter with 3 P2 neutron pairing.

  18. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2005-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations.

  19. A two-dimensional transient analytical solution for a ponded ditch drainage system under the influence of source/sink

    NASA Astrophysics Data System (ADS)

    Sarmah, Ratan; Tiwari, Shubham

    2018-03-01

    An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.

  20. From the volcano effect to banding: a minimal model for bacterial behavioral transitions near chemoattractant sources

    NASA Astrophysics Data System (ADS)

    Javens, Gregory; Jashnsaz, Hossein; Pressé, Steve

    2018-07-01

    Sharp chemoattractant (CA) gradient variations near food sources may give rise to dramatic behavioral changes of bacteria neighboring these sources. For instance, marine bacteria exhibiting run-reverse motility are known to form distinct bands around patches (large sources) of chemoattractant such as nutrient-soaked beads while run-and-tumble bacteria have been predicted to exhibit a ‘volcano effect’ (spherical shell-shaped density) around a small (point) source of food. Here we provide the first minimal model of banding for run-reverse bacteria and show that, while banding and the volcano effect may appear superficially similar, they are different physical effects manifested under different source emission rate (and thus effective source size). More specifically, while the volcano effect is known to arise around point sources from a bacterium’s temporal differentiation of signal (and corresponding finite integration time), this effect alone is insufficient to account for banding around larger patches as bacteria would otherwise cluster around the patch without forming bands at some fixed radial distance. In particular, our model demonstrates that banding emerges from the interplay of run-reverse motility and saturation of the bacterium’s chemoreceptors to CA molecules and our model furthermore predicts that run-reverse bacteria susceptible to banding behavior should also exhibit a volcano effect around sources with smaller emission rates.

  1. Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.

    2015-03-01

    We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.

  2. The finite-size effect in thin liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Śliwa, I.

    2018-05-01

    Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.

  3. Model and Simulation of an SMA Enhanced Lip Seal

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; Gao, Xiujie; Brinson, L. Catherine

    2011-07-01

    The feasibility of using SMA wires to improve the seal effectiveness has been studied experimentally and numerically. In this article, we present only the numerical study of simulating the thermo-mechanical behavior for an SMA enhanced lip seal, leaving the test setup and results in the experimental counterpart. A pseudo 3D SMA model, considering 1D SMA behavior in the major loading direction and elastic response in other directions, was used to capture the thermo-mechanical behavior of SMA wires. The model was then implemented into ABAQUS using the user-defined material subroutine to inherit most features of the commercial finite element package. Two-way shape memory effect was also considered since the SMA material exhibits strong two-way effects. An axisymmetric finite element model was constructed to simulate a seal mounting on a shaft and the sealing pressure was calculated for both the regular seal and the SMA enhanced seal. Finally, the result was qualitatively compared with the experimental observation.

  4. Equation of State of Structured Matter at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Yasutake, N.; Tatsumi, T.

    We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.

  5. Shielding Effectiveness in a Two-Dimensional Reverberation Chamber Using Finite-Element Techniques

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.

    2006-01-01

    Reverberation chambers are attaining an increased importance in determination of electromagnetic susceptibility of avionics equipment. Given the nature of the variable boundary condition, the ability of a given source to couple energy into certain modes and the passband characteristic due the chamber Q, the fields are typically characterized by statistical means. The emphasis of this work is to apply finite-element techniques at cutoff to the analysis of a two-dimensional structure to examine the notion of shielding-effectiveness issues in a reverberating environment. Simulated mechanical stirring will be used to obtain the appropriate statistical field distribution. The shielding effectiveness (SE) in a simulated reverberating environment is compared to measurements in a reverberation chamber. A log-normal distribution for the SE is observed with implications for system designers. The work is intended to provide further refinement in the consideration of SE in a complex electromagnetic environment.

  6. Phase-space finite elements in a least-squares solution of the transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less

  7. A Parallel Fast Sweeping Method for the Eikonal Equation

    NASA Astrophysics Data System (ADS)

    Baker, B.

    2017-12-01

    Recently, there has been an exciting emergence of probabilistic methods for travel time tomography. Unlike gradient-based optimization strategies, probabilistic tomographic methods are resistant to becoming trapped in a local minimum and provide a much better quantification of parameter resolution than, say, appealing to ray density or performing checkerboard reconstruction tests. The benefits associated with random sampling methods however are only realized by successive computation of predicted travel times in, potentially, strongly heterogeneous media. To this end this abstract is concerned with expediting the solution of the Eikonal equation. While many Eikonal solvers use a fast marching method, the proposed solver will use the iterative fast sweeping method because the eight fixed sweep orderings in each iteration are natural targets for parallelization. To reduce the number of iterations and grid points required the high-accuracy finite difference stencil of Nobel et al., 2014 is implemented. A directed acyclic graph (DAG) is created with a priori knowledge of the sweep ordering and finite different stencil. By performing a topological sort of the DAG sets of independent nodes are identified as candidates for concurrent updating. Additionally, the proposed solver will also address scalability during earthquake relocation, a necessary step in local and regional earthquake tomography and a barrier to extending probabilistic methods from active source to passive source applications, by introducing an asynchronous parallel forward solve phase for all receivers in the network. Synthetic examples using the SEG over-thrust model will be presented.

  8. An accurate discontinuous Galerkin method for solving point-source Eikonal equation in 2-D heterogeneous anisotropic media

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, P.; Benjemaa, M.; Métivier, L.; Virieux, J.

    2018-03-01

    Accurate numerical computation of wave traveltimes in heterogeneous media is of major interest for a large range of applications in seismics, such as phase identification, data windowing, traveltime tomography and seismic imaging. A high level of precision is needed for traveltimes and their derivatives in applications which require quantities such as amplitude or take-off angle. Even more challenging is the anisotropic case, where the general Eikonal equation is a quartic in the derivatives of traveltimes. Despite their efficiency on Cartesian meshes, finite-difference solvers are inappropriate when dealing with unstructured meshes and irregular topographies. Moreover, reaching high orders of accuracy generally requires wide stencils and high additional computational load. To go beyond these limitations, we propose a discontinuous-finite-element-based strategy which has the following advantages: (1) the Hamiltonian formalism is general enough for handling the full anisotropic Eikonal equations; (2) the scheme is suitable for any desired high-order formulation or mixing of orders (p-adaptivity); (3) the solver is explicit whatever Hamiltonian is used (no need to find the roots of the quartic); (4) the use of unstructured meshes provides the flexibility for handling complex boundary geometries such as topographies (h-adaptivity) and radiation boundary conditions for mimicking an infinite medium. The point-source factorization principles are extended to this discontinuous Galerkin formulation. Extensive tests in smooth analytical media demonstrate the high accuracy of the method. Simulations in strongly heterogeneous media illustrate the solver robustness to realistic Earth-sciences-oriented applications.

  9. Source Mechanism and Near-field Characteristics of the 2011 Tohoku-oki Tsunami

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y.; Cheung, K.; Lay, T.

    2011-12-01

    The Tohoku-oki great earthquake ruptured the megathrust fault offshore of Miyagi and Fukushima in Northeast Honshu with moment magnitude of Mw 9.0 on March 11, 2011, and generated strong shaking across the region. The resulting tsunami devastated the northeastern Japan coasts and damaged coastal infrastructure across the Pacific. The extensive global seismic networks, dense geodetic instruments, well-positioned buoys and wave gauges, and comprehensive runup records along the northeast Japan coasts provide datasets of unprecedented quality and coverage for investigation of the tsunami source mechanism and near-field wave characteristics. Our finite-source model reconstructs detailed source rupture processes by inversion of teleseismic P waves recorded around the globe. The finite-source solution is validated through comparison with the static displacements recoded at the ARIA (JPL-GSI) GPS stations and models obtained by inversion of high-rate GPS observations. The rupture model has two primary slip regions, near the hypocenter and along the trench; the maximum slip is about 60 m near the trench. Together with the low rupture velocity, the Tohoku-oki event has characteristics in common with tsunami earthquakes, although it ruptured across the entire megathrust. Superposition of the deformation of the subfaults from the planar fault model according to their rupture initiation and rise times specifies the seafloor vertical displacement and velocity for tsunami modeling. We reconstruct the 2011 Tohoku-oki tsunami from the time histories of the seafloor deformation using the dispersive long-wave model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs). The computed results are compared with data from six GPS gauges and three wave gauges near the source at 120~200-m and 50-m water depth, as well as DART buoys positioned across the Pacific. The shock-capturing model reproduces near-shore tsunami bores and the runup data gathered by the 2011 Tohoku Earthquake Tsunami Joint Survey Group. Spectral analysis of the computed surface elevation reveals a series of resonance modes and areas prone to tsunami hazards. This case study improves our understanding of near-field tsunami waves and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.

  10. Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael F.; Brissaud, Quentin; Rolland, Lucie; Martin, Roland; Komatitsch, Dimitri; Spiga, Aymeric; Lognonné, Philippe; Banerdt, Bruce

    2017-10-01

    The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission.

  11. Using SW4 for 3D Simulations of Earthquake Strong Ground Motions: Application to Near-Field Strong Motion, Building Response, Basin Edge Generated Waves and Earthquakes in the San Francisco Bay Are

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Pitarka, A.; Petersson, N. A.; Sjogreen, B.; McCallen, D.; Miah, M.

    2016-12-01

    Simulation of earthquake ground motions is becoming more widely used due to improvements of numerical methods, development of ever more efficient computer programs (codes), and growth in and access to High-Performance Computing (HPC). We report on how SW4 can be used for accurate and efficient simulations of earthquake strong motions. SW4 is an anelastic finite difference code based on a fourth order summation-by-parts displacement formulation. It is parallelized and can run on one or many processors. SW4 has many desirable features for seismic strong motion simulation: incorporation of surface topography; automatic mesh generation; mesh refinement; attenuation and supergrid boundary conditions. It also has several ways to introduce 3D models and sources (including Standard Rupture Format for extended sources). We are using SW4 to simulate strong ground motions for several applications. We are performing parametric studies of near-fault motions from moderate earthquakes to investigate basin edge generated waves and large earthquakes to provide motions to engineers study building response. We show that 3D propagation near basin edges can generate significant amplifications relative to 1D analysis. SW4 is also being used to model earthquakes in the San Francisco Bay Area. This includes modeling moderate (M3.5-5) events to evaluate the United States Geologic Survey's 3D model of regional structure as well as strong motions from the 2014 South Napa earthquake and possible large scenario events. Recently SW4 was built on a Commodity Technology Systems-1 (CTS-1) at LLNL, new systems for capacity computing at the DOE National Labs. We find SW4 scales well and runs faster on these systems compared to the previous generation of LINUX clusters.

  12. Engineering applications of strong ground motion simulation

    NASA Astrophysics Data System (ADS)

    Somerville, Paul

    1993-02-01

    The formulation, validation and application of a procedure for simulating strong ground motions for use in engineering practice are described. The procedure uses empirical source functions (derived from near-source strong motion recordings of small earthquakes) to provide a realistic representation of effects such as source radiation that are difficult to model at high frequencies due to their partly stochastic behavior. Wave propagation effects are modeled using simplified Green's functions that are designed to transfer empirical source functions from their recording sites to those required for use in simulations at a specific site. The procedure has been validated against strong motion recordings of both crustal and subduction earthquakes. For the validation process we choose earthquakes whose source models (including a spatially heterogeneous distribution of the slip of the fault) are independently known and which have abundant strong motion recordings. A quantitative measurement of the fit between the simulated and recorded motion in this validation process is used to estimate the modeling and random uncertainty associated with the simulation procedure. This modeling and random uncertainty is one part of the overall uncertainty in estimates of ground motions of future earthquakes at a specific site derived using the simulation procedure. The other contribution to uncertainty is that due to uncertainty in the source parameters of future earthquakes that affect the site, which is estimated from a suite of simulations generated by varying the source parameters over their ranges of uncertainty. In this paper, we describe the validation of the simulation procedure for crustal earthquakes against strong motion recordings of the 1989 Loma Prieta, California, earthquake, and for subduction earthquakes against the 1985 Michoacán, Mexico, and Valparaiso, Chile, earthquakes. We then show examples of the application of the simulation procedure to the estimatation of the design response spectra for crustal earthquakes at a power plant site in California and for subduction earthquakes in the Seattle-Portland region. We also demonstrate the use of simulation methods for modeling the attenuation of strong ground motion, and show evidence of the effect of critical reflections from the lower crust in causing the observed flattening of the attenuation of strong ground motion from the 1988 Saguenay, Quebec, and 1989 Loma Prieta earthquakes.

  13. 3D Global Fluid Simulations of Turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Rogers, Barrett; Ricci, Paolo; Li, Bo

    2009-05-01

    We present 3D global fluid simulations of the UCLA upgraded Large Plasma Device (LAPD). This device confines an 18-m-long, cylindrically symmetric plasma with a uniform magnetic field. The plasma in the simulations is generated by density and temperature sources inside the computational domain, and sheath boundary conditions are applied at the ends of the plasma column. In 3D simulations of the entire plasma, we observe strong, rotating intermittent density and temperature fluctuations driven by resistive driftwave turbulence with finite parallel wavenumbers. Analogous simulations carried out in the 2D limit (that is, assuming that the motions are purely interchange-like) display much weaker mode activity driven a Kelvin-Helmholtz instability. The properties and scaling of the turbulence and transport will be discussed.

  14. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equationsmore » derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.« less

  15. Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Wald, D.J.; Ma, K.-F.

    2003-01-01

    We investigate the rupture process of the 1999 Chi-Chi, Taiwan, earthquake using extensive near-source observations, including three-component velocity waveforms at 36 strong motion stations and 119 GPS measurements. A three-plane fault geometry derived from our previous inversion using only static data [Ji et al., 2001] is applied. The slip amplitude, rake angle, rupture initiation time, and risetime function are inverted simultaneously with a recently developed finite fault inverse method that combines a wavelet transform approach with a simulated annealing algorithm [Ji et al., 2002b]. The inversion results are validated by the forward prediction of an independent data set, the teleseismic P and SH ground velocities, with notable agreement. The results show that the total seismic moment release of this earthquake is 2.7 ?? 1020 N m and that most of the slip occured in a triangular-shaped asperity involving two fault segments, which is consistent with our previous static inversion. The rupture front propagates with an average rupture velocity of ???2.0 km s-1, and the average slip duration (risetime) is 7.2 s. Several interesting observations related to the temporal evolution of the Chi-Chi earthquake are also investigated, including (1) the strong effect of the sinuous fault plane of the Chelungpu fault on spatial and temporal variations in slip history, (2) the intersection of fault 1 and fault 2 not being a strong impediment to the rupture propagation, and (3 the observation that the peak slip velocity near the surface is, in general, higher than on the deeper portion of the fault plane, as predicted by dynamic modeling.

  16. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.

    PubMed

    Wang, Chong

    2018-03-01

    In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0  is also given.

  17. Tunable properties of light propagation in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Szaniawska, K.; Nasilowski, T.; Woliński, T. R.; Thienpont, H.

    2006-12-01

    Tunable properties of light propagation in photonic crystal fibers filled with liquid crystals, called photonic liquid crystal fibers (PLCFs) are presented. The propagation properties of PLCFs strongly depend on contrast between refractive indices of the solid core (pure silica glass) and liquid crystals (LCs) filing the holes of the fiber. Due to relatively strong thermo-optical effect, we can change the refractive index of the LC by changing its temperature. Numerical analysis of light propagation in PLCF, based on two simulation methods, such as finite difference (FD) and multipole method (MM) is presented. The numerical results obtained are in good agreement with our earlier experimental results presented elsewhere [1].

  18. On the long range propagation of sound over irregular terrain

    NASA Technical Reports Server (NTRS)

    Howe, M. S.

    1984-01-01

    The theory of sound propagation over randomly irregular, nominally plane terrain of finite impedance is discussed. The analysis is an extension of the theory of coherent scatter originally proposed by Biot for an irregular rigid surface. It combines Biot's approach, wherein the surface irregularities are modeled by a homogeneous distribution of hemispherical bosses, with more conventional analyses in which the ground is modeled as a smooth plane of finite impedance. At sufficiently low frequencies the interaction of the surface irregularities with the nearfield of a ground-based source leads to the production of surface waves, which are effective in penetrating the ground shadow zone predicted for a smooth surface of the same impedance.

  19. Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Fu, Yu-Long; Yu, Si-Yuan; Xie, Xiao-Long; Tan, Li-Ying

    2018-03-01

    A new expression of the scintillation index (SI) for a Gaussian-beam wave propagating through moderate-to-strong non-Kolmogorov turbulence is derived, using a generalized effective atmospheric spectrum and the extended Rytov approximation theory. Finite inner and outer scale parameters and high wave number “bump” are considered in the spectrum with a generalized spectral power law in the range of 3–4, instead of the fixed classical Kolmogorov power law of 11/3. The obtained SI expression is then used to analyze the effects of the spectral power law and the inner scale and outer scale on SI under various non-Kolmogorov fluctuation conditions. These results will be useful in future investigations of optical wave propagation through atmospheric turbulence.

  20. Magnetic Dirac Fermions and Chern Insulator Supported on Pristine Silicon Surface

    NASA Astrophysics Data System (ADS)

    Fu, Huixia; Liu, Zheng; Sun, Jia-Tao; Meng, Sheng

    Emergence of ferromagnetism in non-magnetic semiconductors is strongly desirable, especially in topological materials thanks to the possibility to achieve quantum anomalous Hall effect. Based on first principles calculations, we propose that for Si thin film grown on metal substrate, the pristine Si(111)-r3xr3 surface with a spontaneous weak reconstruction has a strong tendency of ferromagnetism and nontrivial topological properties, characterized by spin polarized Dirac-fermion surface states. In contrast to conventional routes relying on introduction of alien charge carriers or specially patterned substrates, the spontaneous magnetic order and spin-orbit coupling on the pristine silicon surface together gives rise to quantized anomalous Hall effect with a finite Chern number C = -1. This work suggests exciting opportunities in silicon-based spintronics and quantum computing free from alien dopants or proximity effects.

  1. Numerical models of diapiric structures: comparison of the 2D finite deformation field between Rayleigh-Taylor like and down-built like diapirs

    NASA Astrophysics Data System (ADS)

    Fuchs, Lukas; Schmeling, Harro; Koyi, Hemin

    2013-04-01

    Magmatic and salt diapirs are common structures in different tectonic regimes. Salt diapirs can act as possible hydrocarbon traps and, moreover, they could be used as repositories for nuclear waste disposal. Understanding the evolution and the dynamics of diapirs as well as their driving mechanisms has fundamental and applied significance. In general, salt diapirs seem to be driven by differential loading of sediments creating an uneven load that drives the salt from high to low pressure areas, e.g. a down-built diapir. Magmatic diapirs, instead, seem to be driven by buoyancy where lighter material rises vertically through a heavier overburden, i.e. a classical Rayleigh-Taylor instability [RTI]. These different driving mechanisms and dynamics strongly govern the internal deformation of the diapirs. In this study, we use a two-dimensional finite difference code (FDCON) in combination with a marker and cell method to calculate the finite deformation within diapiric structures. Thereby, we distinguish between the two different driving mechanisms, i.e. the differential loading and the buoyancy. We calculate the different finite deformation patterns during the evolution of RTI's and down-built diapirs for different viscosity ratios m = -?buoyant- ?overburden. The deformation pattern in the buoyant layer shows similarities for both diapiric structures, like high shear deformation at the bottom, a high finite deformation within the middle of the stem, and an increasing maximum finite deformation for a decreasing m. However, the strain partitioning between the overburden and the source layer is different within down-built diapirs compared to the RTI's, even for down-built diapirs with m = 1. Thus a higher amount of the total strain induced by down-building is concentrated within the buoyant layer. Moreover, in the case of viscosity ratios of m = 0.1 or 1 the sinking overburden units create an internal rotation within the diapiric bulb. This rotation depends indirectly on the sedimentation rate as it determines the width of the sediment basin; the higher the sedimentation rate, the wider the basins and the weaker the internal rotation. In addition, the viscous drag between the sinking overburden and the rising diapir creates a stronger and wider band of finite deformation along the edges of the down-built diapir in comparison to the RTI.

  2. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    PubMed

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  3. Finite-size and asymptotic behaviors of the gyration radius of knotted cylindrical self-avoiding polygons.

    PubMed

    Shimamura, Miyuki K; Deguchi, Tetsuo

    2002-05-01

    Several nontrivial properties are shown for the mean-square radius of gyration R2(K) of ring polymers with a fixed knot type K. Through computer simulation, we discuss both finite size and asymptotic behaviors of the gyration radius under the topological constraint for self-avoiding polygons consisting of N cylindrical segments with radius r. We find that the average size of ring polymers with the knot K can be much larger than that of no topological constraint. The effective expansion due to the topological constraint depends strongly on the parameter r that is related to the excluded volume. The topological expansion is particularly significant for the small r case, where the simulation result is associated with that of random polygons with the knot K.

  4. Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals

    NASA Astrophysics Data System (ADS)

    Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael

    2009-11-01

    The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)

  5. A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive-mesh refinement

    DOE PAGES

    Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.; ...

    2015-12-20

    We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Some novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. Furthermore, these considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution ofmore » a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities.« less

  6. On the instability and energy flux of lower hybrid waves in the Venus plasma mantle

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Crawford, G. K.

    1993-01-01

    Waves generated near the lower hybrid resonance frequency by the modified two stream instability have been invoked as a possible source of energy flux into the topside ionosphere of Venus. These waves are observed above the ionopause in a region known as the plasma mantle. The plasma within the mantle appears to be a mixture of magnetosheath and ionospheric plasmas. Since the magnetosheath electrons and ions have temperatures of several tens of eV, any instability analysis of the modified two stream instability requires the inclusion of finite electron and ion temperatures. Finite temperature effects are likely to reduce the growth rate of the instability. Furthermore, the lower hybrid waves are only quasi-electrostatic, and the energy flux of the waves is mainly carried by parallel Poynting flux. The magnetic field in the mantle is draped over the ionopause. Lower hybrid waves therefore cannot transport any significant wave energy to lower altitudes, and so do not act as a source of additional heat to the topside ionosphere.

  7. Measuring the effects of Coulomb repulsion via signal decay in an atmospheric pressure laser ionization ion mobility spectrometer.

    PubMed

    Ihlenborg, Marvin; Schuster, Ann-Kathrin; Grotemeyer, Juergen; Gunzer, Frank

    2018-01-01

    Using lasers in ion mobility spectrometry offers a lot of advantages compared to standard ionization sources. Especially, the ion yield can be drastically increased. It can, however, reach levels where the Coulomb repulsion leads to unwanted side effects. Here, we investigate how the Coulomb repulsion can be detected apart from the typical signal broadening by measuring effects created already in the reaction region and comparing them with corresponding finite element method simulations.

  8. Light refocusing with up-scalable resonant waveguide gratings in confocal prolate spheroid arrangements

    NASA Astrophysics Data System (ADS)

    Quaranta, Giorgio; Basset, Guillaume; Benes, Zdenek; Martin, Olivier J. F.; Gallinet, Benjamin

    2018-01-01

    Resonant waveguide gratings (RWGs) are thin-film structures, where coupled modes interfere with the diffracted incoming wave and produce strong angular and spectral filtering. The combination of two finite-length and impedance matched RWGs allows the creation of a passive beam steering element, which is compatible with up-scalable fabrication processes. Here, we propose a design method to create large patterns of such elements able to filter, steer, and focus the light from one point source to another. The method is based on ellipsoidal mirrors to choose a system of confocal prolate spheroids where the two focal points are the source point and observation point, respectively. It allows finding the proper orientation and position of each RWG element of the pattern, such that the phase is constructively preserved at the observation point. The design techniques presented here could be implemented in a variety of systems, where large-scale patterns are needed, such as optical security, multifocal or monochromatic lenses, biosensors, and see-through optical combiners for near-eye displays.

  9. Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves

    NASA Technical Reports Server (NTRS)

    Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan

    2016-01-01

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  10. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  11. Size Dependence of Residual Thermal Stresses in Micro Multilayer Ceramic Capacitors by Using Finite Element Unit Cell Model Including Strain Gradient Effect

    NASA Astrophysics Data System (ADS)

    Jiang, W. G.; Xiong, C. A.; Wu, X. G.

    2013-11-01

    The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices

  12. Reflection and Transmission of a Focused Finite Amplitude Sound Beam Incident on a Curved Interface

    NASA Astrophysics Data System (ADS)

    Makin, Inder Raj Singh

    Reflection and transmission of a finite amplitude focused sound beam at a weakly curved interface separating two fluid-like media are investigated. The KZK parabolic wave equation, which accounts for thermoviscous absorption, diffraction, and nonlinearity, is used to describe the high intensity focused beam. The first part of the work deals with the quasilinear analysis of a weakly nonlinear beam after its reflection and transmission from a curved interface. A Green's function approach is used to define the field integrals describing the primary and the nonlinearly generated second harmonic beam. Closed-form solutions are obtained for the primary and second harmonic beams when a Gaussian amplitude distribution at the source is assumed. The second part of the research uses a numerical frequency domain solution of the KZK equation for a fully nonlinear analysis of the reflected and transmitted fields. Both piston and Gaussian sources are considered. Harmonic components generated in the medium due to propagation of the focused beam are evaluated, and formation of shocks in the reflected and transmitted beams is investigated. A finite amplitude focused beam is observed to be modified due to reflection and transmission from a curved interface in a manner distinct from that in the case of a small signal beam. Propagation curves, beam patterns, phase plots and time waveforms for various parameters defining the source and media pairs are presented, highlighting the effect of the interface curvature on the reflected and transmitted beams. Relevance of the current work to biomedical applications of ultrasound is discussed.

  13. Assessment of thermal effects in a model of the human head implanted with a wireless active microvalve for the treatment of glaucoma creating a filtering bleb

    NASA Astrophysics Data System (ADS)

    Schaumburg, F.; Guarnieri, F. A.

    2017-05-01

    A 3D anatomical computational model is developed to assess thermal effects due to exposure to the electromagnetic field required to power a new investigational active implantable microvalve for the treatment of glaucoma. Such a device, located in the temporal superior eye quadrant, produces a filtering bleb, which is included in the geometry of the model, together with the relevant ocular structures. The electromagnetic field source—a planar coil—as well as the microvalve antenna and casing are also included. Exposure to the electromagnetic field source of an implanted and a non-implanted subject are simulated by solving a magnetic potential formulation, using the finite element method. The maximum SAR10 is reached in the eyebrow and remains within the limits suggested by the IEEE and ICNIRP standards. The anterior chamber, filtering bleb, iris and ciliary body are the ocular structures where more absorption occurs. The temperature rise distribution is also obtained by solving the bioheat equation with the finite element method. The numerical results are compared with the in vivo measurements obtained from four rabbits implanted with the microvalve and exposed to the electromagnetic field source.

  14. Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer

    USGS Publications Warehouse

    Moench, Allen F.

    1997-01-01

    A Laplace transform solution is presented for the problem of flow to a partially penetrating well of finite diameter in a slightly compressible water table aquifer. The solution, which allows for evaluation of both pumped well and observation piezometer data, accounts for effects of well bore storage and skin and allows for the noninstantaneous release of water from the unsaturated zone. For instantaneous release of water from the unsaturated zone the solution approaches the line source solution derived by Neuman as the diameter of the pumped well approaches zero. Delayed piezometer response, which is significant during times of rapidly changing hydraulic head, is included in the theoretical treatment and shown to be an important factor in accurate evaluation of specific storage. By means of a hypothetical field example it is demonstrated that evaluations of specific storage (Ss) using classical line source solutions may yield values of Ss that are overestimated by a factor of 100 or more, depending upon the location of the observation piezometers and whether effects of delayed piezometer response are included in the analysis. Theoretical responses obtained with the proposed model are used to suggest methods for evaluating specific storage.

  15. Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.

    2016-12-01

    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.

  16. Phonon Confinement Effect in TiO2 Nanoparticles as Thermosensor Materials

    DTIC Science & Technology

    2018-01-24

    TiO2 or ZnO nanoparticles (NPs) have a very strong finite-size dependency in their Raman spectra or photoluminescence (PL) spectra due to the phonon...spectrometers were used to establish the particle size versus the Raman/PL peak position master curves. Systematic isothermal and temperature- dependent heat...Thermosensor Materials", Workshop on Time- Dependent Temperature Measurements in Energy Release Processes, Chicago, IL, 2012. 11 3) Ashish Kumar Mishra

  17. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  18. Source effects on the simulation of the strong groud motion of the 2011 Lorca earthquake

    NASA Astrophysics Data System (ADS)

    Saraò, Angela; Moratto, Luca; Vuan, Alessandro; Mucciarelli, Marco; Jimenez, Maria Jose; Garcia Fernandez, Mariano

    2016-04-01

    On May 11, 2011 a moderate seismic event (Mw=5.2) struck the city of Lorca (South-East Spain) causing nine casualties, a large number of injured people and damages at the civil buildings. The largest PGA value (360 cm/s2) ever recorded so far in Spain, was observed at the accelerometric station located in Lorca (LOR), and it was explained as due to the source directivity, rather than to local site effects. During the last years different source models, retrieved from the inversions of geodetic or seismological data, or a combination of the two, have been published. To investigate the variability that equivalent source models of an average earthquake can introduce in the computation of strong motion, we calculated seismograms (up to 1 Hz), using an approach based on the wavenumber integration and, as input, four different source models taken from the literature. The source models differ mainly for the slip distribution on the fault. Our results show that, as effect of the different sources, the ground motion variability, in terms of pseudo-spectral velocity (1s), can reach one order of magnitude for near source receivers or for sites influenced by the forward-directivity effect. Finally, we compute the strong motion at frequencies higher than 1 Hz using the Empirical Green Functions and the source model parameters that better reproduce the recorded shaking up to 1 Hz: the computed seismograms fit satisfactorily the signals recorded at LOR station as well as at the other stations close to the source.

  19. Estimation of ground motion for Bhuj (26 January 2001; Mw 7.6 and for future earthquakes in India

    USGS Publications Warehouse

    Singh, S.K.; Bansal, B.K.; Bhattacharya, S.N.; Pacheco, J.F.; Dattatrayam, R.S.; Ordaz, M.; Suresh, G.; ,; Hough, S.E.

    2003-01-01

    Only five moderate and large earthquakes (Mw ???5.7) in India-three in the Indian shield region and two in the Himalayan arc region-have given rise to multiple strong ground-motion recordings. Near-source data are available for only two of these events. The Bhuj earthquake (Mw 7.6), which occurred in the shield region, gave rise to useful recordings at distances exceeding 550 km. Because of the scarcity of the data, we use the stochastic method to estimate ground motions. We assume that (1) S waves dominate at R < 100 km and Lg waves at R ??? 100 km, (2) Q = 508f0.48 is valid for the Indian shield as well as the Himalayan arc region, (3) the effective duration is given by fc-1 + 0.05R, where fc is the corner frequency, and R is the hypocentral distance in kilometer, and (4) the acceleration spectra are sharply cut off beyond 35 Hz. We use two finite-source stochastic models. One is an approximate model that reduces to the ??2-source model at distances greater that about twice the source dimension. This model has the advantage that the ground motion is controlled by the familiar stress parameter, ????. In the other finite-source model, which is more reliable for near-source ground-motion estimation, the high-frequency radiation is controlled by the strength factor, sfact, a quantity that is physically related to the maximum slip rate on the fault. We estimate ???? needed to fit the observed Amax and Vmax data of each earthquake (which are mostly in the far field). The corresponding sfact is obtained by requiring that the predicted curves from the two models match each other in the far field up to a distance of about 500 km. The results show: (1) The ???? that explains Amax data for shield events may be a function of depth, increasing from ???50 bars at 10 km to ???400 bars at 36 km. The corresponding sfact values range from 1.0-2.0. The ???? values for the two Himalayan arc events are 75 and 150 bars (sfact = 1.0 and 1.4). (2) The ???? required to explain Vmax data is, roughly, half the corresponding value for Amax, while the same sfact explains both sets of data. (3) The available far-field Amax and Vmax data for the Bhuj mainshock are well explained by ???? = 200 and 100 bars, respectively, or, equivalently, by sfact = 1.4. The predicted Amax and Vmax in the epicentral region of this earthquake are 0.80 to 0.95 g and 40 to 55 cm/sec, respectively.

  20. Decomposition of the Seismic Source Using Numerical Simulations and Observations of Nuclear Explosions

    DTIC Science & Technology

    2017-05-31

    SUBJECT TERMS nonlinear finite element calculations, nuclear explosion monitoring, topography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...3D North Korea calculations........ Figure 6. The CRAM 3D finite element outer grid (left) is rectangular......................... Figure 7. Stress...Figure 6. The CRAM 3D finite element outer grid (left) is rectangular. The inner grid (center) is shaped to match the shape of the explosion shock wave

  1. Electron Dynamics in Finite Quantum Systems

    NASA Astrophysics Data System (ADS)

    McDonald, Christopher R.

    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to investigate a wide variety of problems that cannot be currently treated by any other method. Finally, the time it takes for an electron to tunnel from a bound state is investigated; a definition of the tunnel time is established and the Keldysh time is connected to the wavefunction dynamics.

  2. High order finite volume WENO schemes for the Euler equations under gravitational fields

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xing, Yulong

    2016-07-01

    Euler equations with gravitational source terms are used to model many astrophysical and atmospheric phenomena. This system admits hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term, and two commonly seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation of these equilibria is desirable as many practical problems are small perturbations of such balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes have been proposed in [22], but only for the isothermal equilibrium state. In this paper, we design high order well-balanced finite volume WENO schemes, which can preserve not only the isothermal equilibrium but also the polytropic hydrostatic balance state exactly, and maintain genuine high order accuracy for general solutions. The well-balanced property is obtained by novel source term reformulation and discretization, combined with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are performed to verify well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions.

  3. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2013-07-01

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  4. A formulation of directivity for earthquake sources using isochrone theory

    USGS Publications Warehouse

    Spudich, Paul; Chiou, Brian S.J.; Graves, Robert; Collins, Nancy; Somerville, Paul

    2004-01-01

    A functional form for directivity effects can be derived from isochrone theory, in which the measure of the directivity-induced amplification of an S body wave is c, the isochrone velocity. Ground displacement of the near-, intermediate-, and far-field terms of P and S waves is linear in isochrone velocity for a finite source in a whole space. We have developed an approximation c-tilde-prime of isochrone velocity that can easily be implemented as a predictor of directivity effects in empirical ground motion prediction relations. Typically, for a given fault surface, hypocenter, and site geometry, c-tilde-prime is a simple function of the hypocentral distance, the rupture distance, the crustal shear wave speed in the seismogenic zone, and the rupture velocity. c-tilde-prime typically ranges in the interval 0.44, for rupture away from the station, to about 4, for rupture toward the station. In this version of the theory directivity is independent of period. Additionally, we have created another functional form which is c-tilde-prime modified to include the approximate radiation pattern of a finite fault having a given rake. This functional form can be used to model the spatial variations of fault-parallel and fault-normal horizontal ground motions. The strengths of this formulation are 1) the proposed functional form is based on theory, 2) the predictor is unambiguously defined for all possible site locations and source rakes, and 3) it can easily be implemented for well-studied important previous earthquakes. We compare predictions of our functional form with synthetic ground motions calculated for finite strike-slip and dip-slip faults in the magnitude range 6.5 - 7.5. In general our functional form correlates best with computed fault-normal and fault-parallel motions in the synthetic motions calculated for events with M6.5. Correlation degrades but is still useful for larger events and for the geometric average horizontal motions. We have had limited success applying it to geometrically complicated faults.

  5. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    NASA Astrophysics Data System (ADS)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of the characteristics of land-excited large volume air-gun can help to better use of the air-gun source.

  6. Vibration study of a vehicle suspension assembly with the finite element method

    NASA Astrophysics Data System (ADS)

    Cătălin Marinescu, Gabriel; Castravete, Ştefan-Cristian; Dumitru, Nicolae

    2017-10-01

    The main steps of the present work represent a methodology of analysing various vibration effects over suspension mechanical parts of a vehicle. A McPherson type suspension from an existing vehicle was created using CAD software. Using the CAD model as input, a finite element model of the suspension assembly was developed. Abaqus finite element analysis software was used to pre-process, solve, and post-process the results. Geometric nonlinearities are included in the model. Severe sources of nonlinearities such us friction and contact are also included in the model. The McPherson spring is modelled as linear spring. The analysis include several steps: preload, modal analysis, the reduction of the model to 200 generalized coordinates, a deterministic external excitation, a random excitation that comes from different types of roads. The vibration data used as an input for the simulation were previously obtained by experimental means. Mathematical expressions used for the simulation were also presented in the paper.

  7. The Effect of Finite Thickness Extent on Estimating Depth to Basement from Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Salem, A.; Green, C. M.; Fairhead, D.; Ravat, D.

    2014-12-01

    Depth to basement estimation methods using various components of the spectral content of magnetic anomalies are in common use by geophysicists. Examples of these are the Tilt-Depth and SPI methods. These methods use simple models having the base of the magnetic body at infinity. Recent publications have shown that this 'infinite depth' assumption causes underestimation of the depth to the top of sources, especially in areas where the bottom of the magnetic layer is shallow, as would occur in high heat-flow regions. This error has been demonstrated in both model studies and using real data with seismic or well control. To overcome the limitation of infinite depth this contribution presents the mathematics for a finite depth contact body in the Tilt depth and SPI methods and applies it to the central Red Sea where the Curie isotherm and Moho are shallow. The difference in the depth estimation between the infinite and finite contacts is such a case is significant and can exceed 200%.

  8. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone

    NASA Astrophysics Data System (ADS)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis

    2015-04-01

    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the 95%-energy limit of the Husid plots. After appropriate calibration of all parameters involved in the simulations we generated separate stochastic waveforms for both P- and S-waves, and produce the final synthetics by appropriate merging of the two stochastic waveforms. This work has been partly supported by the 3D-SEGMENTS project #1337 funded by EC European Social Fund and the Operational Programme "Education and Lifelong Learning" of the ARISTEIA-I call of the Greek Secretariat of Research and Technology.

  9. Origin of nonsaturating linear magnetoresistivity

    NASA Astrophysics Data System (ADS)

    Kisslinger, Ferdinand; Ott, Christian; Weber, Heiko B.

    2017-01-01

    The observation of nonsaturating classical linear magnetoresistivity has been an enigmatic phenomenon in solid-state physics. We present a study of a two-dimensional ohmic conductor, including local Hall effect and a self-consistent consideration of the environment. An equivalent-circuit scheme delivers a simple and convincing argument why the magnetoresistivity is linear in strong magnetic field, provided that current and biasing electric field are misaligned by a nonlocal mechanism. A finite-element model of a two-dimensional conductor is suited to display the situations that create such deviating currents. Besides edge effects next to electrodes, charge carrier density fluctuations are efficiently generating this effect. However, mobility fluctuations that have frequently been related to linear magnetoresistivity are barely relevant. Despite its rare observation, linear magnetoresitivity is rather the rule than the exception in a regime of low charge carrier densities, misaligned current pathways and strong magnetic field.

  10. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  11. Glassy phase in quenched disordered crystalline membranes

    NASA Astrophysics Data System (ADS)

    Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.

    2018-03-01

    We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.

  12. Combined Uncertainty and A-Posteriori Error Bound Estimates for CFD Calculations: Theory and Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    Simulation codes often utilize finite-dimensional approximation resulting in numerical error. Some examples include, numerical methods utilizing grids and finite-dimensional basis functions, particle methods using a finite number of particles. These same simulation codes also often contain sources of uncertainty, for example, uncertain parameters and fields associated with the imposition of initial and boundary data,uncertain physical model parameters such as chemical reaction rates, mixture model parameters, material property parameters, etc.

  13. Tools for Modeling & Simulation of Molecular and Nanoelectronics Devices

    DTIC Science & Technology

    2012-06-14

    implemented a prototype DFT simulation software using two different open source Finite Element (FE) libraries: DEALII and FENICS . These two libraries have been...ATK. In the first part of this Phase I project we investigated two different candidate finite element libraries, DEAL II and FENICS . Although both...element libraries, Deal.II and FEniCS /dolfin, for use as back-ends to a finite element DFT in ATK, Quantum Insight and QuantumWise A/S, October 2011.

  14. On some nonlinear effects in ultrasonic fields

    PubMed

    Tjotta

    2000-03-01

    Nonlinear effects associated with intense sound fields in fluids are considered theoretically. Special attention is directed to the study of higher effects that cannot be described within the standard propagation models of nonlinear acoustics (the KZK and Burgers equations). The analysis is based on the fundamental equations of motion for a thermoviscous fluid, for which thermal equations of state exist. Model equations are derived and used to analyze nonlinear sources for generation of flow and heat, and other changes in the ambient state of the fluid. Fluctuations in the coefficients of viscosity and thermal conductivity caused by the sound field, are accounted for. Also considered are nonlinear effects induced in the fluid by flexural vibrations. The intensity and absorption of finite amplitude sound waves are calculated, and related to the sources for generation of higher order effects.

  15. Finite-temperature H behaviors in tungsten and molybdenum: first-principles total energy and vibration spectrum calculations

    NASA Astrophysics Data System (ADS)

    Liu, Yue-Lin; Ding, Fang; Luo, G.-N.; Chen, Chang-An

    2017-12-01

    We have carried out systematic first-principles total energy and vibration spectrum calculations to investigate the finite-temperature H dissolution behaviors in tungsten and molybdenum, which are considered promising candidates for the first wall in nuclear fusion reactors. The temperature effect is considered by the lattice expansion and phonon vibration. We demonstrate that the H Gibbs energy of formation in both tetrahedral and octahedral interstitial positions depends strongly on the temperature. The H Gibbs energy of formation under one atmosphere of pressure increases significantly with increasing temperature. The phonon vibration contribution plays a decisive role in the H Gibbs energy of formation with the increasing temperature. Using the predicted H Gibbs energy of formation, our calculated H concentrations in both metals are about one or two orders of magnitude lower than the experimental data at temperature range from 900 to 2400 K. Such a discrepancy can be reasonably explained by the defect-capturing effect.

  16. Effect of Fibonacci modulation on superconductivity

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjay; Sil, Shreekantha; Bhattacharyya, Bibhas

    2006-02-01

    We have studied finite-sized single band models with short-range pairing interactions between electrons in the presence of diagonal Fibonacci modulation in one dimension. Two models, namely the attractive Hubbard model and the Penson-Kolb model, have been investigated at half-filling at zero temperature by solving the Bogoliubov-de Gennes equations in real space within a mean-field approximation. The competition between 'disorder' and the pairing interaction leads to a suppression of superconductivity (of usual pairs with zero centre-of-mass momenta) in the strong-coupling limit while an enhancement of the pairing correlation is observed in the weak-coupling regime for both models. However, the dissimilarity of the pairing mechanisms in these two models brings about notable differences in the results. The extent to which the bond-ordered wave and the η-paired (of pairs with centre-of-mass momenta = π) phases of the Penson-Kolb model are affected by the disorder has also been studied in the present calculation. Some finite size effects are also identified.

  17. Radiated Sound Power from a Curved Honeycomb Panel

    NASA Technical Reports Server (NTRS)

    Robinson, Jay H.; Buehrle, Ralph D.; Klos, Jacob; Grosveld, Ferdinand W.

    2003-01-01

    The validation of finite element and boundary element model for the vibro-acoustic response of a curved honeycomb core composite aircraft panel is completed. The finite element and boundary element models were previously validated separately. This validation process was hampered significantly by the method in which the panel was installed in the test facility. The fixture used was made primarily of fiberboard and the panel was held in a groove in the fiberboard by a compression fitting made of plastic tubing. The validated model is intended to be used to evaluate noise reduction concepts from both an experimental and analytic basis simultaneously. An initial parametric study of the influence of core thickness on the radiated sound power from this panel, using this numerical model was subsequently conducted. This study was significantly influenced by the presence of strong boundary condition effects but indicated that the radiated sound power from this panel was insensitive to core thickness primarily due to the offsetting effects of added mass and added stiffness in the frequency range investigated.

  18. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Practical quantum coin flipping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappa, Anna; Diamanti, Eleni; Chailloux, Andre

    2011-11-15

    We show that in the unconditional security model, a single quantum strong coin flip with security guarantees that are strictly better than in any classical protocol is possible to implement with current technology. Our protocol takes into account all aspects of an experimental implementation, including losses, multiphoton pulses emitted by practical photon sources, channel noise, detector dark counts, and finite quantum efficiency. We calculate the abort probability when both players are honest, as well as the probability of one player forcing his desired outcome. For a channel length up to 21 km and commonly used parameter values, we can achievemore » honest abort and cheating probabilities that are better than in any classical protocol. Our protocol is, in principle, implementable using attenuated laser pulses, with no need for entangled photons or any other specific resources.« less

  20. FAST TRACK COMMUNICATION: Exact and simple results for the XYZ and strongly interacting fermion chains

    NASA Astrophysics Data System (ADS)

    Fendley, Paul; Hagendorf, Christian

    2010-10-01

    We conjecture exact and simple formulas for some physical quantities in two quantum chains. A classic result of this type is Onsager, Kaufman and Yang's formula for the spontaneous magnetization in the Ising model, subsequently generalized to the chiral Potts models. We conjecture that analogous results occur in the XYZ chain when the couplings obey JxJy + JyJz + JxJz = 0, and in a related fermion chain with strong interactions and supersymmetry. We find exact formulas for the magnetization and gap in the former, and the staggered density in the latter, by exploiting the fact that certain quantities are independent of finite-size effects.

  1. A conservative numerical scheme for modeling nonlinear acoustic propagation in thermoviscous homogeneous media

    NASA Astrophysics Data System (ADS)

    Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.

    2018-06-01

    A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.

  2. Repulsion Between Finite Charged Plates with Strongly Overlapped Electric Double Layers.

    PubMed

    Ghosal, Sandip; Sherwood, John D

    2016-09-20

    Screened Coulomb interactions between uniformly charged flat plates are considered at very small plate separations for which the Debye layers are strongly overlapped, in the limit of small electrical potentials. If the plates are of infinite length, the disjoining pressure between the plates decays as an inverse power of the plate separation. If the plates are of finite length, we show that screening Debye layer charges close to the edge of the plates are no longer constrained to stay between the plates, but instead spill out into the surrounding electrolyte. The resulting change in the disjoining pressure is calculated analytically: the force between the plates is reduced by this edge correction when the charge density is uniform over the surface of the plates, and is increased when the surface is at constant potential. A similar change in disjoining pressure due to loss of lateral confinement of the Debye layer charges should occur whenever the sizes of the interacting charged objects become small enough to approach the Debye scale. We investigate the effect here in the context of a two-dimensional model problem that is sufficiently simple to yield analytical results.

  3. Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation.

    PubMed

    Tanaka, Shigenori

    2016-12-07

    Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ=0, the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant r s ≤100), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ≈1), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of r s and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable agreements with earlier results including the PIMC-based fitting over the whole fluid region at finite degeneracies in the paramagnetic state. In contrast, a systematic difference between the HNC and PIMC results is observed in the ferromagnetic state, which suggests a necessity of further studies on the exchange-correlation free energies from both aspects of analytical theory and simulation.

  4. Finite Source Inversion for Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Parker, J. M.; Glaser, S. D.

    2017-12-01

    We produce finite source inversion results for laboratory earthquakes (LEQ) in PMMA confirmed by video recording of the fault contact. The LEQs are generated under highly controlled laboratory conditions and recorded by an array of absolutely calibrated acoustic emissions (AE) sensors. Following the method of Hartzell and Heaton (1983), we develop a solution using only the single-component AE sensors common in laboratory experiments. A set of calibration tests using glass capillary sources of varying size resolves the material characteristics and synthetic Green's Functions such that uncertainty in source location is reduced to 3σ<1mm; typical source radii are 1mm. Well-isolated events with corner frequencies on the order of 0.1 MHz (Mw -6) are recorded at 20 MHz and initially band-pass filtered from 0.1 to 1.0 MHz; in comparison, large earthquakes with corner frequencies around 0.1 Hz are commonly filtered from 0.1 to 1.0 Hz. We compare results of the inversion and video recording to slip distribution predicted by the Cattaneo partial slip asperity and numerical modeling. Not all asperities are large enough to resolve individually so some results must be interpreted as the smoothed effects of clusters of tiny contacts. For large asperities, partial slip is observed originating at the asperity edges and moving inward as predicted by the theory. Furthermore, expanding shear rupture fronts are observed as they reach resistive patches of asperities and halt or continue, depending on the relative energies of rupture and resistance.

  5. Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence

    NASA Astrophysics Data System (ADS)

    Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef

    2015-09-01

    Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.

  6. Application of a finite-element model to low-frequency sound insulation in dwellings.

    PubMed

    Maluski, S P; Gibbs, B M

    2000-10-01

    The sound transmission between adjacent rooms has been modeled using a finite-element method. Predicted sound-level difference gave good agreement with experimental data using a full-scale and a quarter-scale model. Results show that the sound insulation characteristics of a party wall at low frequencies strongly depend on the modal characteristics of the sound field of both rooms and of the partition. The effect of three edge conditions of the separating wall on the sound-level difference at low frequencies was examined: simply supported, clamped, and a combination of clamped and simply supported. It is demonstrated that a clamped partition provides greater sound-level difference at low frequencies than a simply supported. It also is confirmed that the sound-pressure level difference is lower in equal room than in unequal room configurations.

  7. Phase Diagram of Spin-1/2 Alternating Ferromagnetic Chain with XY-Like Anisotropy

    NASA Astrophysics Data System (ADS)

    Yoshida, Satoru; Okamoto, Kiyomi

    1989-12-01

    By the use of the numerical method we investigate the ground state phase diagram of spin-1/2 alternating ferromagnetic chain. We numerically diagonalized the Hamiltonian of finite systems (up to 20 spins) and analyzed the numerical data for various physical quantities using the finite size scaling and the extrapolation methods. The ground state is either the effective singlet (ES) state or the spin fluid (SF) state depending on the value of the alternation parameter δ and the anisotropy parameter \\varDelta{\\equiv}Jz/J\\bot(\\varDelta{=}{-}1 for the isotropic ferromagnetic case and \\varDelta{=}0 for the XY case). The phase diagram obtained in this work strongly stupports the theoretical studies of Kohmoto-den Nijs-Kadanoff and Okamoto-Sugiyama. We also discuss the critical properties near the ES-SF transition line.

  8. Thermodynamic evaluation of transonic compressor rotors using the finite volume approach

    NASA Technical Reports Server (NTRS)

    Moore, John; Nicholson, Stephen; Moore, Joan G.

    1986-01-01

    The development of a computational capability to handle viscous flow with an explicit time-marching method based on the finite volume approach is summarized. Emphasis is placed on the extensions to the computational procedure which allow the handling of shock induced separation and large regions of strong backflow. Appendices contain abstracts of papers and whole reports generated during the contract period.

  9. Measures with locally finite support and spectrum.

    PubMed

    Meyer, Yves F

    2016-03-22

    The goal of this paper is the construction of measures μ on R(n)enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ f μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.

  10. Measures with locally finite support and spectrum

    PubMed Central

    Meyer, Yves F.

    2016-01-01

    The goal of this paper is the construction of measures μ on Rn enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ^ of μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order. PMID:26929358

  11. UXO Discrimination in Cases with Overlapping Signatures

    DTIC Science & Technology

    2007-03-07

    13. APPENDIX B: HFE -BIEM ..........................................................................................................290 - 7...First principals numerical solutions developed were a Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM) body of revolution (BOR...attacks, namely the Method of Auxiliary Sources (MAS) and the Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM). These work

  12. Influence of model parameters on synthesized high-frequency strong-motion waveforms

    NASA Astrophysics Data System (ADS)

    Zadonina, Ekaterina; Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.

    2010-05-01

    Waveform modeling is an important and helpful instrument of modern seismology that may provide valuable information. However, synthesizing seismograms requires to define many parameters, which differently affect the final result. Such parameters may be: the design of the grid, the structure model, the source time functions, the source mechanism, the rupture velocity. Variations in parameters may produce significantly different seismograms. We synthesize seismograms from a hypothetical earthquake and numerically estimate the influence of some of the used parameters. Firstly, we present the results for high-frequency near-fault waveforms obtained from defined model by changing tested parameters. Secondly, we present the results of a quantitative comparison of contributions from certain parameters on synthetic waveforms by using misfit criteria. For the synthesis of waveforms we used 2D/3D elastic finite-difference wave propagation code E3D [1] based on the elastodynamic formulation of the wave equation on a staggered grid. This code gave us the opportunity to perform all needed manipulations using a computer cluster. To assess the obtained results, we use misfit criteria [2] where seismograms are compared in time-frequency and phase by applying a continuous wavelet transform to the seismic signal. [1] - Larsen, S. and C.A. Schultz (1995). ELAS3D: 2D/3D elastic finite-difference wave propagation code, Technical Report No. UCRL-MA-121792, 19 pp. [2] - Kristekova, M., Kristek, J., Moczo, P., Day, S.M., 2006. Misfit criteria for quantitative comparison of seismograms. Bul. of Seis. Soc. of Am. 96(5), 1836-1850.

  13. Comparison of the seafloor displacement from uniform and non-uniform slip models on tsunami simulation of the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Ulutas, Ergin

    2013-01-01

    The numerical simulations of recent tsunami caused by 11 March 2011 off-shore Pacific coast of Tohoku-Oki earthquake (Mw 9.0) using diverse co-seismic source models have been performed. Co-seismic source models proposed by various observational agencies and scholars are further used to elucidate the effects of uniform and non-uniform slip models on tsunami generation and propagation stages. Non-linear shallow water equations are solved with a finite difference scheme, using a computational grid with different cell sizes over GEBCO30 bathymetry data. Overall results obtained and reported by various tsunami simulation models are compared together with the available real-time kinematic global positioning system (RTK-GPS) buoys, cabled deep ocean-bottom pressure gauges (OBPG), and Deep-ocean Assessment and Reporting of Tsunami (DART) buoys. The purpose of this study is to provide a brief overview of major differences between point-source and finite-fault methodologies on generation and simulation of tsunamis. Tests of the assumptions of uniform and non-uniform slip models designate that the average uniform slip models may be used for the tsunami simulations off-shore, and far from the source region. Nevertheless, the heterogeneities of the slip distribution within the fault plane are substantial for the wave amplitude in the near field which should be investigated further.

  14. A method for measuring the nonlinear response in dielectric spectroscopy through third harmonics detection.

    PubMed

    Thibierge, C; L'Hôte, D; Ladieu, F; Tourbot, R

    2008-10-01

    We present a high sensitivity method allowing the measurement of the nonlinear dielectric susceptibility of an insulating material at finite frequency. It has been developed for the study of dynamic heterogeneities in supercooled liquids using dielectric spectroscopy at frequencies 0.05 Hz < or = f < or = 3x10(4) Hz. It relies on the measurement of the third harmonics component of the current flowing out of a capacitor. We first show that standard laboratory electronics (amplifiers and voltage sources) nonlinearities lead to limits on the third harmonics measurements that preclude reaching the level needed by our physical goal, a ratio of the third harmonics to the fundamental signal about 10(-7). We show that reaching such a sensitivity needs a method able to get rid of the nonlinear contributions both of the measuring device (lock-in amplifier) and of the excitation voltage source. A bridge using two sources fulfills only the first of these two requirements, but allows to measure the nonlinearities of the sources. Our final method is based on a bridge with two plane capacitors characterized by different dielectric layer thicknesses. It gets rid of the source and amplifier nonlinearities because in spite of a strong frequency dependence of the capacitor impedance, it is equilibrated at any frequency. We present the first measurements of the physical nonlinear response using our method. Two extensions of the method are suggested.

  15. Effect of surface-related Rayleigh and multiple waves on velocity reconstruction with time-domain elastic FWI

    NASA Astrophysics Data System (ADS)

    Fang, Jinwei; Zhou, Hui; Zhang, Qingchen; Chen, Hanming; Wang, Ning; Sun, Pengyuan; Wang, Shucheng

    2018-01-01

    It is critically important to assess the effectiveness of elastic full waveform inversion (FWI) algorithms when FWI is applied to real land seismic data including strong surface and multiple waves related to the air-earth boundary. In this paper, we review the realization of the free surface boundary condition in staggered-grid finite-difference (FD) discretization of elastic wave equation, and analyze the impact of the free surface on FWI results. To reduce inputs/outputs (I/O) operations in gradient calculation, we adopt the boundary value reconstruction method to rebuild the source wavefields during the backward propagation of the residual data. A time-domain multiscale inversion strategy is conducted by using a convolutional objective function, and a multi-GPU parallel programming technique is used to accelerate our elastic FWI further. Forward simulation and elastic FWI examples without and with considering the free surface are shown and analyzed, respectively. Numerical results indicate that no free surface incorporated elastic FWI fails to recover a good inversion result from the Rayleigh wave contaminated observed data. By contrast, when the free surface is incorporated into FWI, the inversion results become better. We also discuss the dependency of the Rayleigh waveform incorporated FWI on the accuracy of initial models, especially the accuracy of the shallow part of the initial models.

  16. Estimation of Static Coulomb Stress Change and Strong Motion Simulation for Jiuzhaigou 7.0 Earthquake Base on SENTINEL-1 Insar Data Inversion

    NASA Astrophysics Data System (ADS)

    Shen, W. H.; Luo, Y.; Jiao, Q. S.

    2018-04-01

    On August 8, 2017, an earthquake of M 7.0 occurred at Jiuzhaigou. Based on the Sentinel-1 satellite InSAR data, we obtained coseismic deformation field and inverted the source slip model. Results show that this event is dominated by strike slip, and the total released seismic moment is 8.06 × 1018 Nm, equivalent to an earthquake of Mw 6.57. We calculated static stress changes along strike and dip direction, and the static stress analysis show that the average stress drop are at low level, which may be responsible for the low level of ground motion during Jiuzhaigou earthquake. The coseismic Coulomb stress changes are calculated base on the inverted slip model, which revealed that 82.59 % of aftershocks are located in the Coulomb stress increasing area, 78.42 % of total aftershocks may be triggered by the mainshock aftershock, indicating that the mainshock has a significant triggering effect on the subsequent aftershocks. Based on stochastic finite fault model, we simulated regional peak ground acceleration (PGA), peak ground velocity (PGV) and the intensity, and results could capture basic features associated with the ground motion patterns. Moreover, the simulated results reflect the obvious rupture directivity effect.

  17. Analysis of Thermo-Diffusive Cellular Instabilities in Continuum Combustion Fronts

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Gurevich, Sebastian; Provatas, Nikolas; Department of Physics, Centre Physics of Materials Team

    We explore numerically the morphological patterns of thermo-diffusive instabilities in combustion fronts with a continuum solid fuel source, within a range of Lewis numbers, focusing on the cellular regime. Cellular and dendritic instabilities are found at low Lewis numbers. These are studied using a dynamic adaptive mesh refinement technique that allows very large computational domains, thus allowing us to reduce finite size effects that can affect or even preclude the emergence of these patterns. The distinct types of dynamics found in the vicinity of the critical Lewis number. These types of dynamics are classified as ``quasi-linear'' and characterized by low amplitude cells that may be strongly affected by the mode selection mechanism and growth prescribed by the linear theory. Below this range of Lewis number, highly non-linear effects become prominent and large amplitude, complex cellular and seaweed dendritic morphologies emerge. The cellular patterns simulated in this work are similar to those observed in experiments of flame propagation over a bed of nano-aluminum powder burning with a counter-flowing oxidizer conducted by Malchi et al. It is noteworthy that the physical dimension of our computational domain is roughly close to their experimental setup. This work was supported by a Canadian Space Agency Class Grant ''Percolating Reactive Waves in Particulate Suspensions''. We thank Compute Canada for computing resources.

  18. Evaluation of the finite element fuel rod analysis code (FRANCO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.; Feltus, M.A.

    1994-12-31

    Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less

  19. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk; Tcheverda, Vladimir

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. Inmore » this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.« less

  20. Periodic trim solutions with hp-version finite elements in time

    NASA Technical Reports Server (NTRS)

    Peters, David A.; Hou, Lin-Jun

    1990-01-01

    Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.

  1. Dynamics of a fluid-driven crack in three dimensions by the finite difference method

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard

    1986-12-01

    The finite difference method is applied to the study of the dynamics of a three-dimensional fluid-filled crack excited into resonance by the sudden failure of a small barrier of area ΔS on the crack surface. The impulse response of the crack is examined for various ratios of crack width to crack length and for several values of the crack stiffness C = (b/μ)(L/d), where b is the bulk modulus of the fluid, μ is the rigidity of the solid, and L and d are the crack length and crack thickness, respectively. The motion of the crack is characterized by distinct time scales representing the duration of brittle failure and the periods of acoustic resonance in the lateral and longitudinal dimensions of the source. The rupture has a duration proportional to the area of crack expansion and is the trigger responsible for the excitation of the crack into resonance; the resonant periods are proportional to the crack stiffness and to the width and length of the crack. The crack wave sustaining the resonance is analogous to the tube wave propagating in a fluid-filled borehole. It is dispersive, showing a phase velocity that decreases with increasing wavelength. Its wave speed is always lower than the acoustic velocity of the fluid and shows a strong dependence on the crack stiffness, decreasing as the stiffness increases. The initial motion of the crack surface is an opening, and the radiated far-field compressional wave starts with a strong but brief compression which has a duration proportional to the crack stiffness and size of the rupture area; the amplitude of this pulse increases with the area of rupture but decreases with increasing stiffness. Flow into the newly created cavity triggers a pressure drop in the fluid, which produces a partial collapse of the wall propagated over the crack surface at the speed of the crack wave. The collapse of the crack surface generates a weak long-period component of dilatation following the compressional first motion in the far-field P wave train; the dilatational component is clearer in the signal from stiffer cracks when seen in the direction of the rupture. The energy loss by radiation is stronger for high frequencies, resulting in a progressive enrichment of the crack response in lower frequencies over the duration of resonance. These source characteristics translate into a far-field signature that is marked by a high-frequency content near its onset and dominated by a longer-period component in its coda. The source duration shows a strong dependence on the fluid viscosity and associated viscous damping at the crack wall.

  2. Strong circular dichroism in a non-chiral metasurface based on an array of metallic V-shaped nanostructures

    NASA Astrophysics Data System (ADS)

    Ardakani, Abbas Ghasempour; Moradi, Khatereh

    2018-02-01

    In this paper, an extrinsic chiral metasurface based on a silver thin film containing a periodic array of V-shaped nanostructures is proposed. The proposed structure is normally and obliquely illuminated by right- and left-handed circularly polarized plane waves and the transmission through the structure is calculated using the frequency domain finite-integration technique. Our simulation results show that the designed metasurface exhibits strong circular dichroism (CD) in the transmission Δ = T_{RCP}- T_{LCP}=0.98 in the near-infrared region under oblique incidence. To our knowledge, this is one of highest CD effects that have been achieved so far in the single-layer metasurface based on metallic nanostructures. The physical mechanism for this strong CD effect is explained in terms of the current density distribution. Furthermore, the effects of change of the incident angle, the refractive index of surrounding medium and structure parameters, such as film thickness and lattice constants on CD spectrum, are investigated. In addition, the CD phenomenon in the structure is analyzed in other frequency regions.

  3. Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory

    NASA Astrophysics Data System (ADS)

    Zemen, J.; Mendive-Tapia, E.; Gercsi, Z.; Banerjee, R.; Staunton, J. B.; Sandeman, K. G.

    2017-05-01

    We model changes of magnetic ordering in Mn-based antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a noncollinear spin-polarized density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn3GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilized by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first-order transition) and a large adiabatic temperature change (due to the second-order transition).

  4. Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones

    NASA Astrophysics Data System (ADS)

    Scarella, Gilles; Clatz, Olivier; Lanteri, Stéphane; Beaume, Grégory; Oudot, Steve; Pons, Jean-Philippe; Piperno, Sergo; Joly, Patrick; Wiart, Joe

    2006-06-01

    The ever-rising diffusion of cellular phones has brought about an increased concern for the possible consequences of electromagnetic radiation on human health. Possible thermal effects have been investigated, via experimentation or simulation, by several research projects in the last decade. Concerning numerical modeling, the power absorption in a user's head is generally computed using discretized models built from clinical MRI data. The vast majority of such numerical studies have been conducted using Finite Differences Time Domain methods, although strong limitations of their accuracy are due to heterogeneity, poor definition of the detailed structures of head tissues (staircasing effects), etc. In order to propose numerical modeling using Finite Element or Discontinuous Galerkin Time Domain methods, reliable automated tools for the unstructured discretization of human heads are also needed. Results presented in this article aim at filling the gap between human head MRI images and the accurate numerical modeling of wave propagation in biological tissues and its thermal effects. To cite this article: G. Scarella et al., C. R. Physique 7 (2006).

  5. Exploring variations of earthquake moment on patches with heterogeneous strength

    NASA Astrophysics Data System (ADS)

    Lin, Y. Y.; Lapusta, N.

    2016-12-01

    Finite-fault inversions show that earthquake slip is typically non-uniform over the ruptured region, likely due to heterogeneity of the earthquake source. Observations also show that events from the same fault area can have the same source duration but different magnitude ranging from 0.0 to 2.0 (Lin et al., GJI, 2016). Strong heterogeneity in strength over a patch could provide a potential explanation of such behavior, with the event duration controlled by the size of the patch and event magnitude determined by how much of the patch area has been ruptured. To explore this possibility, we numerically simulate earthquake sequences on a rate-and-state fault, with a seismogenic patch governed by steady-state velocity-weakening friction surrounded by a steady-state velocity-strengthening region. The seismogenic patch contains strong variations in strength due to variable normal stress. Our long-term simulations of slip in this model indeed generate sequences of earthquakes of various magnitudes. In some seismic events, dynamic rupture cannot overcome areas with higher normal strength, and smaller events result. When the higher-strength areas are loaded by previous slip and rupture, larger events result, as expected. Our current work is directed towards exploring a range of such models, determining the variability in the seismic moment that they can produce, and determining the observable properties of the resulting events.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrario, Lorenzo, E-mail: lorenzo.ferrario@polimi.it; Little, Justin M., E-mail: jml@princeton.edu; Choueiri, Edgar Y., E-mail: choueiri@princeton.edu

    The plasma flow in a finite-electron-temperature magnetic nozzle, under the influence of an applied azimuthal current at the throat, is modeled analytically to assess its propulsive performance. A correction to the nozzle throat boundary conditions is derived by modifying the radial equilibrium of a magnetized infinite two-population cylindrical plasma column with the insertion of an external azimuthal body force for the electrons. Inclusion of finite-temperature effects, which leads to a modification of the radial density profile, is necessary for calculating the propulsive performance, which is represented by nozzle divergence efficiency and thrust coefficient. The solutions show that the application ofmore » the azimuthal current enhances all the calculated performance parameters through the narrowing of the radial density profile at the throat, and that investing power in this beam focusing effect is more effective than using the same power to pre-heat the electrons. The results open the possibility for the design of a focusing stage between the plasma source and the nozzle that can significantly enhance the propulsive performance of electron-driven magnetic nozzles.« less

  7. On the power output of some idealized source configurations with one or more characteristic dimensions

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1982-01-01

    The calculation of power output from a (finite) linear array of equidistant point sources is investigated with allowance for a relative phase shift and particular focus on the circumstances of small/large individual source separation. A key role is played by the estimates found for a twin parameter definite integral that involves the Fejer kernel functions, where N denotes a (positive) integer; these results also permit a quantitative accounting of energy partition between the principal and secondary lobes of the array pattern. Continuously distributed sources along a finite line segment or an open ended circular cylindrical shell are considered, and estimates for the relatively lower output in the latter configuration are made explicit when the shell radius is small compared to the wave length. A systematic reduction of diverse integrals which characterize the energy output from specific line and strip sources is investigated.

  8. Discretizing singular point sources in hyperbolic wave propagation problems

    DOE PAGES

    Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...

    2016-06-01

    Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less

  9. Application of the Quadrupole Method for Simulation of Passive Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.

    2017-01-01

    Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.

  10. Nonlocal modification and quantum optical generalization of effective-medium theory for metamaterials

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Yan, Wei; Amooghorban, Ehsan; Mortensen, N. Asger

    2013-09-01

    A well-known challenge for fabricating metamaterials is to make unit cells significantly smaller than the operating wavelength of light, so one can be sure that effective-medium theories apply. But do they apply? Here we show that nonlocal response in the metal constituents of the metamaterial leads to modified effective parameters for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite hyperbolic metamaterials we show that nonlocal response affects their operation as superlenses, and interestingly that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether the effective index is enough to describe this quantum noise effectively. We show that this is true for passive metamaterials, but not for metamaterials where loss is compensated by linear gain. For such loss-compensated metamaterials we present a quantum optical effective medium theory with an effective noise photon distribution as an additional parameter. Interestingly, we find that at the operating frequency, metamaterials with the same effective index but with different amounts of loss compensation can be told apart in quantum optics.

  11. Direct-Photon Spectra and Anisotropic Flow in Heavy Ion Collisions from Holography

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-03-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated by using holographic models for QCD in the Veneziano limit (V-QCD). These emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in the quark gluon plasma (QGP) including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N = 4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser's phenomenological model mimicking the strongly coupled QGP (sQGP) are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at intermediate and high momenta, which improve the agreements with data. Moreover, by using IP-glassma initial states, both the elliptic flow and triangular flow of direct photons are amplified at high momenta (pT > 2.5 GeV) for V-QCD, while they are suppressed at low momenta compared to wQGP. The distinct results in holography stem from the blue-shift of emission rates in strong coupling. In addition, the spectra and flow in small collision systems were evaluated for future comparisons. It is found that thermal photons from the deconfined phase are substantial to reconcile the spectra and flow at high momenta.

  12. On the role of the radiation directivity in noise reduction for STOL aircraft.

    NASA Technical Reports Server (NTRS)

    Gruschka, H. D.

    1972-01-01

    The radiation characteristics of distributed randomly fluctuating acoustic sources when shielded by finite surfaces are discussed briefly. A number of model tests using loudspeakers as artificial noise sources with a given broadband power density spectrum are used to demonstrate the effectiveness of reducing the radiated noise intensity in certain directions due to shielding. In the lateral direction of the source array noise reductions of 12 dB are observed with relatively small shields. The same shields reduce the backward radiation by approximately 20 dB. With the results obtained in these acoustic model tests the potentials of jet noise reduction of jet flap propulsion systems applicable in future STOL aircraft are discussed. The jet flap configuration as a complex aerodynamic noise source is described briefly.

  13. Effect of Micro Porous Shape on Mechanical Properties in Polypropylene Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Mae, Hiroyuki; Omiya, Masaki; Kishimoto, Kikuo

    The objective is to characterize the effect of the microstructure of the micro pores inside the matrix on the mechanical properties of the thermoplastic syntactic polypropylene (PP) foams at the intermediate and high strain rates. Tensile tests are conducted at the nominal strain rates from 3 x 10-1 to 102 s-1. In addition, the dart impact tests are conducted at the impact velocities of 0.1, 1 and 10 m/s. Then, the constitutive law with craze evolution is modified by introducing the relative density, the stress concentration coefficient and the volume fraction of cell edge, and then applied to the dart impact test mode for simulating the macroscopic load displacement history of the dart impact process. Moreover, the microstructural finite element analysis is conducted to characterize the local stress states in the microstructure. In the tensile loading, the elastic modulus is not influenced by the shape of the micro pores in the PP matrix while the yield stress and the strain energy up to failure are relatively influenced by the shape of micro pores. The microstructural finite element analysis shows that the magnitudes of the localized stresses at the edges and the ligaments of the elliptical-shape micro pores are larger than those at the spherical micro pores, leading to the early yielding and the small material ductility. In the case of the dart impact loading, the microstructure of pores has strong effect on the absorbed energy. This is because the elliptical-shape micro pores are very sensitive to the shear deformation, which is revealed by the microstructural finite element analysis. The modified constitutive law with the stress concentration coefficient and the volume fraction of the cell edges successfully predicts the load-displacement curve of the dart impact loading in the spherical micro-porous PP foam. It is concluded that the micro porous shape has strong effect on the material ductility especially in the dart impact test, leading to the possibility to control the material ductility by the shape of the micro pores in the polymeric foams.

  14. Analysis of the mechanical stresses on a squirrel cage induction motor by the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, C.H.; Nicolas, A.

    1999-05-01

    The mechanical deformations and stresses have been analyzed by the Finite Element Method (FEM) in 3 dimensions on the rotor bars of a small squirrel cage induction motor. The authors considered the magnetic forces and the centrifugal forces as sources which provoked the deformations and stresses on the rotor bars. The mechanical calculations have been performed after doing the electromagnetic Finite Element modeling on the motor in steady states with various slip conditions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Although using standard Taylor series coefficients for finite-difference operators is optimal in the sense that in the limit of infinitesimal space and time discretization, the solution approaches the correct analytic solution to the acousto-dynamic system of differential equations, other finite-difference operators may provide optimal computational run time given certain error bounds or source bandwidth constraints. This report describes the results of investigation of alternative optimal finite-difference coefficients based on several optimization/accuracy scenarios and provides recommendations for minimizing run time while retaining error within given error bounds.

  16. A Matter of Classes: Stratifying Health Care Populations to Produce Better Estimates of Inpatient Costs

    PubMed Central

    Rein, David B

    2005-01-01

    Objective To stratify traditional risk-adjustment models by health severity classes in a way that is empirically based, is accessible to policy makers, and improves predictions of inpatient costs. Data Sources Secondary data created from the administrative claims from all 829,356 children aged 21 years and under enrolled in Georgia Medicaid in 1999. Study Design A finite mixture model was used to assign child Medicaid patients to health severity classes. These class assignments were then used to stratify both portions of a traditional two-part risk-adjustment model predicting inpatient Medicaid expenditures. Traditional model results were compared with the stratified model using actuarial statistics. Principal Findings The finite mixture model identified four classes of children: a majority healthy class and three illness classes with increasing levels of severity. Stratifying the traditional two-part risk-adjustment model by health severity classes improved its R2 from 0.17 to 0.25. The majority of additional predictive power resulted from stratifying the second part of the two-part model. Further, the preference for the stratified model was unaffected by months of patient enrollment time. Conclusions Stratifying health care populations based on measures of health severity is a powerful method to achieve more accurate cost predictions. Insurers who ignore the predictive advances of sample stratification in setting risk-adjusted premiums may create strong financial incentives for adverse selection. Finite mixture models provide an empirically based, replicable methodology for stratification that should be accessible to most health care financial managers. PMID:16033501

  17. Breakdown of Hooke's law of elasticity at the Mott critical endpoint in an organic conductor.

    PubMed

    Gati, Elena; Garst, Markus; Manna, Rudra S; Tutsch, Ulrich; Wolf, Bernd; Bartosch, Lorenz; Schubert, Harald; Sasaki, Takahiko; Schlueter, John A; Lang, Michael

    2016-12-01

    The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes Δ L / L as a function of continuously controlled helium-gas pressure P for the organic conductor κ-(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of Δ L / L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke's law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition.

  18. Breakdown of Hooke’s law of elasticity at the Mott critical endpoint in an organic conductor

    PubMed Central

    Gati, Elena; Garst, Markus; Manna, Rudra S.; Tutsch, Ulrich; Wolf, Bernd; Bartosch, Lorenz; Schubert, Harald; Sasaki, Takahiko; Schlueter, John A.; Lang, Michael

    2016-01-01

    The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes ΔL/L as a function of continuously controlled helium-gas pressure P for the organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of ΔL/L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke’s law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition. PMID:27957540

  19. Optimization of air gap for two-dimensional imaging system using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, Tsutomu; Takeda, Tohoru; Yu, Quanwen; Hyodo, Kazuyuki; Yuasa, Tetsuya; Aiyoshi, Yuji; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao

    2000-11-01

    Since synchrotron radiation (SR) has several excellent properties such as high brilliance, broad continuous energy spectrum and small divergence, we can obtain x-ray images with high contrast and high spatial resolution by using of SR. In 2D imaging using SR, air gap method is very effective to reduce the scatter contamination. However, to use air gap method, the geometrical effect of finite source size of SR must be considered because spatial resolution of image is degraded by air gap. For 2D x-ray imaging with SR, x-ray mammography was chosen to examine the effect of air gap method. We theoretically discussed the optimization of air gap distance suing effective scatter point source model proposed by Muntz, and executed experiment with a newly manufactured monochromator with asymmetrical reflection and an imaging plate.

  20. Improving Predictions with Reliable Extrapolation Schemes and Better Understanding of Factorization

    NASA Astrophysics Data System (ADS)

    More, Sushant N.

    New insights into the inter-nucleon interactions, developments in many-body technology, and the surge in computational capabilities has led to phenomenal progress in low-energy nuclear physics in the past few years. Nonetheless, many calculations still lack a robust uncertainty quantification which is essential for making reliable predictions. In this work we investigate two distinct sources of uncertainty and develop ways to account for them. Harmonic oscillator basis expansions are widely used in ab-initio nuclear structure calculations. Finite computational resources usually require that the basis be truncated before observables are fully converged, necessitating reliable extrapolation schemes. It has been demonstrated recently that errors introduced from basis truncation can be taken into account by focusing on the infrared and ultraviolet cutoffs induced by a truncated basis. We show that a finite oscillator basis effectively imposes a hard-wall boundary condition in coordinate space. We accurately determine the position of the hard-wall as a function of oscillator space parameters, derive infrared extrapolation formulas for the energy and other observables, and discuss the extension of this approach to higher angular momentum and to other localized bases. We exploit the duality of the harmonic oscillator to account for the errors introduced by a finite ultraviolet cutoff. Nucleon knockout reactions have been widely used to study and understand nuclear properties. Such an analysis implicitly assumes that the effects of the probe can be separated from the physics of the target nucleus. This factorization between nuclear structure and reaction components depends on the renormalization scale and scheme, and has not been well understood. But it is potentially critical for interpreting experiments and for extracting process-independent nuclear properties. We use a class of unitary transformations called the similarity renormalization group (SRG) transformations to systematically study the scale dependence of factorization for the simplest knockout process of deuteron electrodisintegration. We find that the extent of scale dependence depends strongly on kinematics, but in a systematic way. We find a relatively weak scale dependence at the quasi-free kinematics that gets progressively stronger as one moves away from the quasi-free region. Based on examination of the relevant overlap matrix elements, we are able to qualitatively explain and even predict the nature of scale dependence based on the kinematics under consideration.

  1. Strongly first-order electroweak phase transition and classical scale invariance

    NASA Astrophysics Data System (ADS)

    Farzinnia, Arsham; Ren, Jing

    2014-10-01

    In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space. Many of these predictions lie within the reach of the next LHC run.

  2. Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Herbold, Eric B.

    New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.

  3. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    NASA Astrophysics Data System (ADS)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0.25 Hz but that the velocity model is fast at stations located very close to the fault. In this near-fault zone the model also underpredicts the amplitudes. This implies the need to include an additional low velocity zone in the fault zone to fit the data. For the finite fault modeling we use the same stations as in our previous study (Kim and Dreger 2008), and compare the results to investigate the effect of 3D Green's functions on kinematic source inversions. References: Brocher, T. M., (2005), Empirical relations between elastic wavespeeds and density in the Earth's crust, Bull. Seism. Soc. Am., 95, No. 6, 2081-2092. Eberhart-Phillips, D., and A.J. Michael, (1993), Three-dimensional velocity structure and seismicity in the Parkfield region, central California, J. Geophys. Res., 98, 15,737-15,758. Kim A., D. S. Dreger (2008), Rupture process of the 2004 Parkfield earthquake from near-fault seismic waveform and geodetic records, J. Geophys. Res., 113, B07308. Thurber, C., H. Zhang, F. Waldhauser, J. Hardebeck, A. Michaels, and D. Eberhart-Phillips (2006), Three- dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region, Bull. Seism. Soc. Am., 96, S38-S49. Larsen, S., and C. A. Schultz (1995), ELAS3D: 2D/3D elastic finite-difference wave propagation code, Technical Report No. UCRL-MA-121792, 19pp. Liu, P., and R. J. Archuleta (2004), A new nonlinear finite fault inversion with three-dimensional Green's functions: Application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res., 109, B02318.

  4. GPS measurements and finite element modeling of the earthquake cycle along the Middle America subduction zone

    NASA Astrophysics Data System (ADS)

    Correa Mora, Francisco

    We model surface deformation recorded by GPS stations along the Pacific coasts of Mexico and Central America to estimate the magnitude of and variations in frictional locking (coupling) along the subduction interface, toward a better understanding of seismic hazard in these earthquake-prone regions. The first chapter describes my primary analysis technique, namely 3-dimensional finite element modeling to simulate subduction and bounded-variable inversions that optimize the fit to the GPS velocity field. This chapter focuses on and describes interseismic coupling of the Oaxaca segment of the Mexican subduction zone and introduces an analysis of transient slip events that occur in this region. Our results indicate that coupling is strong within the rupture zone of the 1978 Ms=7.8 Oaxaca earthquake, making this region a potential source of a future large earthquake. However, we also find evidence for significant variations in coupling on the subduction interface over distances of only tens of kilometers, decreasing toward the outer edges of the 1978 rupture zone. In the second chapter, we study in more detail some of the slow slip events that have been recorded over a broad area of southern Mexico, with emphasis on their space-time behavior. Our modeling indicates that transient deformation beneath southern Mexico is focused in two distinct slip patches mostly located downdip from seismogenic areas beneath Guerrero and Oaxaca. Contrary to conclusions reached in one previous study, we find no evidence for a spatial or temporal correlation between transient slip that occurs in these two widely separated source regions. Finally, chapter three extends the modeling techniques to new GPS data in Central America, where subduction coupling is weak or zero and the upper plate deformation is much more complex than in Mexico. Cocos-Caribbean plate convergence beneath El Salvador and Nicaragua is accompanied by subduction and trench-parallel motion of the forearc. Our GPS velocity field is best fit by a model with strongly locked faults in the volcanic arc and a weakly coupled subduction interface. In this region, seismic hazards associated with subduction are therefore low, but are high for crustal faults, in agreement with records of historic seismicity.

  5. Finite-difference model for 3-D flow in bays and estuaries

    USGS Publications Warehouse

    Smith, Peter E.; Larock, Bruce E.; ,

    1993-01-01

    This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.

  6. Treatment of internal sources in the finite-volume ELLAM

    USGS Publications Warehouse

    Healy, R.W.; ,; ,; ,; ,; ,

    2000-01-01

    The finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) is a mass-conservative approach for solving the advection-dispersion equation. The method has been shown to be accurate and efficient for solving advection-dominated problems of solute transport in ground water in 1, 2, and 3 dimensions. Previous implementations of FVELLAM have had difficulty in representing internal sources because the standard assumption of lowest order Raviart-Thomas velocity field does not hold for source cells. Therefore, tracking of particles within source cells is problematic. A new approach has been developed to account for internal sources in FVELLAM. It is assumed that the source is uniformly distributed across a grid cell and that instantaneous mixing takes place within the cell, such that concentration is uniform across the cell at any time. Sub-time steps are used in the time-integration scheme to track mass outflow from the edges of the source cell. This avoids the need for tracking within the source cell. We describe the new method and compare results for a test problem with a wide range of cell Peclet numbers.

  7. Development of a wearable microwave bladder monitor for the management and treatment of urinary incontinence

    NASA Astrophysics Data System (ADS)

    Krewer, F.; Morgan, F.; Jones, E.; Glavin, M.; O'Halloran, M.

    2014-05-01

    Urinary incontinence is defined as the inability to stop the flow of urine from the bladder. In the US alone, the annual societal cost of incontinence-related care is estimated at 12.6 billion dollars. Clinicians agree that those suffering from urinary incontinence would greatly benefit from a wearable system that could continually monitor the bladder, providing continuous feedback to the patient. While existing ultrasound-based solutions are highly accurate, they are severely limited by form-factor, battery size, cost and ease of use. In this study the authors propose an alternative bladder-state sensing system, based on Ultra Wideband (UWB) Radar. As part of an initial proof-of-concept, the authors developed one of the first dielectrically and anatomically-representative Finite Difference Time Domain models of the pelvis. These models (one male and one female) are derived from Magnetic Resonance images provided by the IT'IS Foundation. These IT'IS models provide the foundation upon which an anatomically-plausible bladder growth model was constructed. The authors employed accurate multi-pole Debye models to simulate the dielectric properties of each of the pelvic tissues. Two-dimensional Finite Difference Time Domain (FDTD) simulations were completed for a range of bladder volumes. Relevant features were extracted from the FDTD-derived signals using Principle Component Analysis (PCA) and then classified using a k-Nearest-Neighbour and Support Vector Machine algorithms (incorporating the Leave-one-out cross-validation approach). Additionally the authors investigated the effects of signal fidelity, noise and antenna movement relative to the target as potential sources of error. The results of this initial study provide strong motivation for further research into this timely application, particularly in the context of an ageing population.

  8. An efficient Matlab script to calculate heterogeneous anisotropically elastic wave propagation in three dimensions

    USGS Publications Warehouse

    Boyd, O.S.

    2006-01-01

    We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Effect of absorption on nonlinear propagation of short ultrasound pulses generated by rectangular transducers

    NASA Astrophysics Data System (ADS)

    Khokhlova, Vera A.; Ponomaryov, Anatoly E.; Averkiou, Michalakis A.; Crum, Lawrence A.

    2002-11-01

    A numerical solution of the KZK-type parabolic nonlinear evolution equation is presented for finite-amplitude sound beams radiated by rectangular sources. The initial acoustic waveform is a short tone burst, similar to those used in diagnostic ultrasound. The generation of higher harmonic components and their spatial structure are investigated for media similar to tissue with various frequency dependent absorption properties. Nonlinear propagation in a thermoviscous fluid with a quadratic frequency law of absorption is compared to that in tissue with a nearly linear frequency law of absorption. The algorithm is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am. 97, 906-917 (1995)] to model circular sources. The algorithm is generalized for two-dimensional sources without axial symmetry. The diffraction integral is adapted in the time-domain for two dimensions with the implicit backward finite difference (IBFD) scheme in the nearfield and with the alternate direction implicit (ADI) method at longer distances. Arbitrary frequency dependence of absorption is included in this model and solved in the frequency-domain using the FFT technique. The results of simulation may be used to better understand the nonlinear beam structure for tissue harmonic imaging in modern medical diagnostic scanners. [Work supported by CRDF and RFBR.

  10. Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides

    NASA Astrophysics Data System (ADS)

    Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.

    2018-04-01

    Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.

  11. Strongly magnetized classical plasma models

    NASA Technical Reports Server (NTRS)

    Montgomery, D. C.

    1972-01-01

    The class of plasma processes for which the so-called Vlasov approximation is inadequate is investigated. Results from the equilibrium statistical mechanics of two-dimensional plasmas are derived. These results are independent of the presence of an external dc magnetic field. The nonequilibrium statistical mechanics of the electrostatic guiding-center plasma, a two-dimensional plasma model, is discussed. This model is then generalized to three dimensions. The guiding-center model is relaxed to include finite Larmor radius effects for a two-dimensional plasma.

  12. Nonlinear grid error effects on numerical solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1980-01-01

    Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.

  13. Nonlinear Electromagnetic Stabilization of Plasma Microturbulence

    NASA Astrophysics Data System (ADS)

    Whelan, G. G.; Pueschel, M. J.; Terry, P. W.

    2018-04-01

    The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.

  14. Rotation-induced nonlinear wavepackets in internal waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less

  15. Real-time GPS integration for prototype earthquake early warning and near-field imaging of the earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Given, D.; King, N. E.; Lisowski, M.; Langbein, J. O.; Murray-Moraleda, J. R.; Gomberg, J. S.

    2011-12-01

    Over the past several years, USGS has developed the infrastructure for integrating real-time GPS with seismic data in order to improve our ability to respond to earthquakes and volcanic activity. As part of this effort, we have tested real-time GPS processing software components , and identified the most robust and scalable options. Simultaneously, additional near-field monitoring stations have been built using a new station design that combines dual-frequency GPS with high quality strong-motion sensors and dataloggers. Several existing stations have been upgraded in this way, using USGS Multi-Hazards Demonstration Project and American Recovery and Reinvestment Act funds in southern California. In particular, existing seismic stations have been augmented by the addition of GPS and vice versa. The focus of new instrumentation as well as datalogger and telemetry upgrades to date has been along the southern San Andreas fault in hopes of 1) capturing a large and potentially damaging rupture in progress and augmenting inputs to earthquake early warning systems, and 2) recovering high quality recordings on scale of large dynamic displacement waveforms, static displacements and immediate and long-term post-seismic transient deformation. Obtaining definitive records of large ground motions close to a large San Andreas or Cascadia rupture (or volcanic activity) would be a fundamentally important contribution to understanding near-source large ground motions and the physics of earthquakes, including the rupture process and friction associated with crack propagation and healing. Soon, telemetry upgrades will be completed in Cascadia and throughout the Plate Boundary Observatory as well. By collaborating with other groups on open-source automation system development, we will be ready to process the newly available real-time GPS data streams and to fold these data in with existing strong-motion and other seismic data. Data from these same stations will also serve the very practical purpose of enabling earthquake early warning and greatly improving rapid finite-fault source modeling. Multiple uses of the effectively very broad-band data obtained by these stations, for operational and research purposes, are bound to occur especially because all data will be freely, openly and instantly available.

  16. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    NASA Astrophysics Data System (ADS)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  17. NiMnGa/Si Shape Memory Bimorph Nanoactuation

    NASA Astrophysics Data System (ADS)

    Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred

    2016-12-01

    The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.

  18. Selection for sex in finite populations.

    PubMed

    Roze, D

    2014-07-01

    Finite population size generates interference between selected loci, which has been shown to favour increased rates of recombination. In this article, I present different analytical models exploring selection acting on a 'sex modifier locus' (that affects the relative investment into asexual and sexual reproduction) in a finite population. Two forms of selective forces act on the modifier: direct selection due to intrinsic costs associated with sexual reproduction and indirect selection generated by one or two other loci affecting fitness. The results show that indirect selective forces differ from those acting on a recombination modifier even in the case of a haploid population: in particular, a single selected locus generates indirect selection for sex, while two loci are required in the case of a recombination modifier. This effect stems from the fact that modifier alleles increasing sex escape more easily from low-fitness genetic backgrounds than alleles coding for lower rates of sex. Extrapolating the results from three-locus models to a large number of loci at mutation-selection balance indicates that in the parameter range where indirect selection is strong enough to outweigh a substantial cost of sex, interactions between selected loci have a stronger effect than the sum of individual effects of each selected locus. Comparisons with multilocus simulation results show that such extrapolations may provide correct predictions for the evolutionarily stable rate of sex, unless the cost of sex is high. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  19. Density-matrix renormalization group method for the conductance of one-dimensional correlated systems using the Kubo formula

    NASA Astrophysics Data System (ADS)

    Bischoff, Jan-Moritz; Jeckelmann, Eric

    2017-11-01

    We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems. The dynamical DMRG is used to compute the linear response of a finite system to an applied ac source-drain voltage; then the low-frequency finite-system response is extrapolated to the thermodynamic limit to obtain the dc conductance of an infinite system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance in a homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double barrier.

  20. Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen

    2018-04-01

    This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.

  1. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field.

    PubMed

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-06-19

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.

  2. Evaluating sources of uncertainties in finite-fault source models: lessons from the 2009 Mw6.1 L'Aquila earthquake, Italy

    NASA Astrophysics Data System (ADS)

    Ragon, T.; Sladen, A.; Bletery, Q.; Simons, M.; Magnoni, F.; Avallone, A.; Cavalié, O.; Vergnolle, M.

    2016-12-01

    Despite the diversity of available data for the Mw 6.1 2009 earthquake in L'Aquila, Italy, published finite fault slip models are surprisingly different. For instance, the amplitude of the maximum coseismic slip patch varies from 80cm to 225cm, and its depth oscillates between 5 and 15km. Discrepancies between proposed source parameters are believed to result from three sources: observational uncertainties, epistemic uncertainties, and the inherent non-uniqueness of inverse problems. We explore the whole solution space of fault-slip models compatible with the data within the range of both observational and epistemic uncertainties by performing a fully Bayesian analysis. In this initial stage, we restrict our analysis to the static problem.In terms of observation uncertainty, we must take into account the difference in time span associated with the different data types: InSAR images provide excellent spatial coverage but usually correspond to a period of a few days to weeks after the mainshock and can thus be potentially biased by significant afterslip. Continuous GPS stations do not have the same shortcoming, but in contrast do not have the desired spatial coverage near the fault. In the case of the L'Aquila earthquake, InSAR images include a minimum of 6 days of afterslip. Here, we explicitly account for these different time windows in the inversion by jointly inverting for coseismic and post-seismic fault slip. Regarding epistemic or modeling uncertainties, we focus on the impact of uncertain fault geometry and elastic structure. Modeling errors, which result from inaccurate model predictions and are generally neglected, are estimated for both earth model and fault geometry as non-diagonal covariance matrices. The L'Aquila earthquake is particularly suited to investigation of these effects given the availability of a detailed aftershock catalog and 3D velocity models. This work aims at improving our knowledge of the L'Aquila earthquake as well as at providing a more general perspective on which uncertainties are the most critical in finite-fault source studies.

  3. The acoustic field of a point source in a uniform boundary layer over an impedance plane

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.; Willshire, W. L., Jr.

    1986-01-01

    The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.

  4. Reaction diffusion in the nickel-chromium-aluminum and cobalt-chromium-aluminum systems

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1977-01-01

    The effects of MCrAl coating-substrate interdiffusion on oxidation life and the general mutliphase, multicomponent diffusion problem were examined. Semi-infinite diffusion couples that had sources representing coatings and sinks representing gas turbine alloys were annealed at 1,000, 1,095, 1,150, or 1,205 C for as long as 500 hours. The source and sink aluminum and chromium contents and the base metal (cobalt or nickel) determined the parabolic diffusion rate constants of the couples and predicted finite coating lives. The beta source strength concept provided a method (1) for correlating beta recession rate constants with composition; (2) for determining reliable average total, diffusion, and constitutional activation energies; and (3) for calculating interdiffusion coefficients.

  5. Elasto visco-plastic flow with special attention to boundary conditions

    NASA Technical Reports Server (NTRS)

    Shimazaki, Y.; Thompson, E. G.

    1981-01-01

    A simple but nontrivial steady-state creeping elasto visco-plastic (Maxwell fluid) radial flow problem is analyzed, with special attention given to the effects of the boundary conditions. Solutions are obtained through integration of a governing equation on stress using the Runge-Kutta method for initial value problems and finite differences for boundary value problems. A more general approach through the finite element method, an approach that solves for the velocity field rather than the stress field and that is applicable to a wide range of problems, is presented and tested using the radial flow example. It is found that steady-state flows of elasto visco-plastic materials are strongly influenced by the state of stress of material as it enters the region of interest. The importance of this boundary or initial condition in analyses involving materials coming into control volumes from unusual stress environments is emphasized.

  6. Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Asadollah

    2010-06-01

    The interface behaviour between infinite extended narrow granular layer and bounding structure is numerically investigated using finite element method. The micro-polar (Cosserat) continuum approach within the framework of elasto-plasticity is employed to remove the numerical difficulties caused by strain-softening of materials in classical continuum mechanics. Mechanical properties of cohesionless granular soil are described with Lade's model enhanced with polar terms including Cosserat rotations, curvatures and couple stresses via mean grain diameter as the internal length. The main attention of paper is laid on the influence of spatial periodic fluctuation of rotation resistance of soil particles interlocked with the surface of bounding structure on evolution and location of shear band developed inside granular body. The finite element results demonstrate that the location and evolution of shear localization in granular body is strongly affected by prescribed non-uniform micro-polar kinematic boundary conditions along the interface.

  7. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    PubMed Central

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-01-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952

  8. Finite mass enhancement across bandwidth controlled Mott transition in NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Han, Garam; Kyung, W. S.; Kim, Y. K.; Cheng, C. M.; Tsuei, K. D.; Lee, K. D.; Hur, N.; Kim, H.-D.; Kim, C.

    One of the most important and still debated issues in the strongly correlated electron systems is on the metal insulator transition (MIT) mechanism. In the bandwidth controlled Mott transition (BCMT) scenario, which Mott originally proposed, MIT occurs through a mass divergence in which the effective mass of the quasi-particle (QP) diverges approaching the MIT. The interpretation is supported by dynamic mean field theory (DMFT) model calculations. However, few direct observations have been made yet due to various experimental restrictions. In this talk, I present systematic angle resolved photoemission studies on the MIT in NiS2-xSex, which is a well-known BCMT material. We observed not only the bandwidth shrinkage but also the coherent quasi-particle peak (QP) which is not of the surface origin. In addition, we experimentally showed the mass of the QP remains finite approaching the MIT. This work was supported by IBS-R009-D1.

  9. Processing and attenuation of noise in deep seismic-reflection data from the Gulf of Maine

    USGS Publications Warehouse

    Hutchinson, D.R.; Lee, M.W.

    1989-01-01

    The U.S. Geological Survey deep crustal studies reflection profile across the Gulf of Maine off southeastern New England was affected by three sources of noise: side-scattered noise, multiples, and 20-Hz whale sounds. The special processing most effective in minimizing this noise consisted of a combination of frequency-wavenumber (F-K) filtering, predictive deconvolution, and spectral whitening, each applied in the shot domain (prestack). Application of the F-K filter to remove side-scatter noise in the poststack domain resulted in a much poorer quality profile. The prestack noise suppression processing techniques resulted in a reflection profile with good signal-to-noise ratios and reliable strong reflections, especially at depths equivalent to the lower crust (24-34 km). Certain geologic features, such as a buried rift basin and a crustal fault are resolved much better within the upper crust after this processing. Finite difference migration of these data using realistic velocities produced excellent results. Migration was essential to distinguish between abundant dipping and subhorizontal reflections in the lower crust as well as to show an essentially transparent upper mantle. ?? 1989 Kluwer Academic Publishers.

  10. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    NASA Astrophysics Data System (ADS)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  11. Finite-time containment control of perturbed multi-agent systems based on sliding-mode control

    NASA Astrophysics Data System (ADS)

    Yu, Di; Ji, Xiang Yang

    2018-01-01

    Aimed at faster convergence rate, this paper investigates finite-time containment control problem for second-order multi-agent systems with norm-bounded non-linear perturbation. When topology between the followers are strongly connected, the nonsingular fast terminal sliding-mode error is defined, corresponding discontinuous control protocol is designed and the appropriate value range of control parameter is obtained by applying finite-time stability analysis, so that the followers converge to and move along the desired trajectories within the convex hull formed by the leaders in finite time. Furthermore, on the basis of the sliding-mode error defined, the corresponding distributed continuous control protocols are investigated with fast exponential reaching law and double exponential reaching law, so as to make the followers move to the small neighbourhoods of their desired locations and keep within the dynamic convex hull formed by the leaders in finite time to achieve practical finite-time containment control. Meanwhile, we develop the faster control scheme according to comparison of the convergence rate of these two different reaching laws. Simulation examples are given to verify the correctness of theoretical results.

  12. Analytical approach to an integrate-and-fire model with spike-triggered adaptation

    NASA Astrophysics Data System (ADS)

    Schwalger, Tilo; Lindner, Benjamin

    2015-12-01

    The calculation of the steady-state probability density for multidimensional stochastic systems that do not obey detailed balance is a difficult problem. Here we present the analytical derivation of the stationary joint and various marginal probability densities for a stochastic neuron model with adaptation current. Our approach assumes weak noise but is valid for arbitrary adaptation strength and time scale. The theory predicts several effects of adaptation on the statistics of the membrane potential of a tonically firing neuron: (i) a membrane potential distribution with a convex shape, (ii) a strongly increased probability of hyperpolarized membrane potentials induced by strong and fast adaptation, and (iii) a maximized variability associated with the adaptation current at a finite adaptation time scale.

  13. Onset transition to cold nuclear matter from lattice QCD with heavy quarks.

    PubMed

    Fromm, M; Langelage, J; Lottini, S; Neuman, M; Philipsen, O

    2013-03-22

    Lattice QCD at finite density suffers from a severe sign problem, which has so far prohibited simulations of the cold and dense regime. Here we study the onset of nuclear matter employing a three-dimensional effective theory derived by combined strong coupling and hopping expansions, which is valid for heavy but dynamical quarks and has a mild sign problem only. Its numerical evaluations agree between a standard Metropolis and complex Langevin algorithm, where the latter is free of the sign problem. Our continuum extrapolated data approach a first order phase transition at μ(B) ≈ m(B) as the temperature approaches zero. An excellent description of the data is achieved by an analytic solution in the strong coupling limit.

  14. ShakeMap Atlas 2.0: an improved suite of recent historical earthquake ShakeMaps for global hazard analyses and loss model calibration

    USGS Publications Warehouse

    Garcia, D.; Mah, R.T.; Johnson, K.L.; Hearne, M.G.; Marano, K.D.; Lin, K.-W.; Wald, D.J.

    2012-01-01

    We introduce the second version of the U.S. Geological Survey ShakeMap Atlas, which is an openly-available compilation of nearly 8,000 ShakeMaps of the most significant global earthquakes between 1973 and 2011. This revision of the Atlas includes: (1) a new version of the ShakeMap software that improves data usage and uncertainty estimations; (2) an updated earthquake source catalogue that includes regional locations and finite fault models; (3) a refined strategy to select prediction and conversion equations based on a new seismotectonic regionalization scheme; and (4) vastly more macroseismic intensity and ground-motion data from regional agencies All these changes make the new Atlas a self-consistent, calibrated ShakeMap catalogue that constitutes an invaluable resource for investigating near-source strong ground-motion, as well as for seismic hazard, scenario, risk, and loss-model development. To this end, the Atlas will provide a hazard base layer for PAGER loss calibration and for the Earthquake Consequences Database within the Global Earthquake Model initiative.

  15. Combining multiple earthquake models in real time for earthquake early warning

    USGS Publications Warehouse

    Minson, Sarah E.; Wu, Stephen; Beck, James L; Heaton, Thomas H.

    2017-01-01

    The ultimate goal of earthquake early warning (EEW) is to provide local shaking information to users before the strong shaking from an earthquake reaches their location. This is accomplished by operating one or more real‐time analyses that attempt to predict shaking intensity, often by estimating the earthquake’s location and magnitude and then predicting the ground motion from that point source. Other EEW algorithms use finite rupture models or may directly estimate ground motion without first solving for an earthquake source. EEW performance could be improved if the information from these diverse and independent prediction models could be combined into one unified, ground‐motion prediction. In this article, we set the forecast shaking at each location as the common ground to combine all these predictions and introduce a Bayesian approach to creating better ground‐motion predictions. We also describe how this methodology could be used to build a new generation of EEW systems that provide optimal decisions customized for each user based on the user’s individual false‐alarm tolerance and the time necessary for that user to react.

  16. Ordered phases in the Holstein-Hubbard model: Interplay of strong Coulomb interaction and electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo

    2013-09-01

    We study the Holstein-Hubbard model at half filling to explore ordered phases including superconductivity (SC), antiferromagnetism (AF), and charge order (CO) in situations where the electron-electron and electron-phonon interactions are strong (comparable to the electronic bandwidth). The model is solved in the dynamical mean-field approximation with a continuous-time quantum Monte Carlo impurity solver. We determine the superconducting transition temperature Tc and the SC order parameter and show that the phonon-induced retardation or the strong Coulomb interaction leads to a significant reduction and shift of the Tc dome against the effective electron-electron interaction Ueff given by the Hubbard U reduced by the phonon-mediated attraction in the static limit. This behavior is analyzed by comparison to an effective static model in the polaron representation with a renormalized bandwidth. In addition, we discuss the superconducting gap Δ and 2Δ/Tc to reveal the effect of the retardation and the Coulomb interaction. We also determine the finite-temperature phase diagram including AF and CO. In the moderate-coupling regime, there is a hysteretic region of AF and CO around Ueff=0, while the two phases are separated by a paramagnetic metal in the weak-coupling regime and a paramagnetic insulator in the strong-coupling regime.

  17. Infrasound Propagation Modeling for Explosive Yield Estimation

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Golden, P.; Negraru, P.

    2013-12-01

    This study focuses on developing methods of estimating the size or yield of HE surface explosions from local and regional infrasound measurements in the southwestern United States. A munitions disposal facility near Mina, Nevada provides a repeating ground-truth source for this study, with charge weights ranging from 870 - 3800 lbs. Detonation logs and GPS synchronized videos were obtained for a sample of shots representing the full range of weights. These are used to calibrate a relationship between charge weight and spectral level from seismic waveforms recorded at the Nevada Seismic Array (NVAR) at a distance of 36 km. Origin times and yields for the remaining shots are inferred from the seismic recordings at NVAR. Infrasound arrivals from the detonations have been continuously recorded on three four-element, small aperture infrasound arrays since late 2009. NVIAR is collocated with NVAR at a range of approximately 36 km to the northeast. FALN and DNIAR are located at ranges of 154 km to the north, and 293 km to the southeast respectively. Travel times and amplitudes for stratospheric arrivals at DNIAR show strong seasonal variability with the largest amplitudes and celerities occurring during the winter months when the stratospheric winds are favorable. Stratospheric celerities for FNIAR to the north are more consistent as they are not strongly affected by the predominantly meridional stratospheric winds. Tropospheric arrivals at all three arrays show considerable variability that does not appear to be a seasonal effect. Naval Research Laboratory Ground to Space (NRL-G2S) Mesoscale models are used to specify the atmosphere along the propagation path for each detonation. Ray-tracing is performed for each source/receiver pair to identify events for which the models closely match the travel-time observations. This subset of events is used to establish preliminary wind correction formulas using wind values from the G2S profile for the entire propagation path. These results are then compared with results for the entire data set to analyze the performance of the formulas. Full-wave hydrodynamic calculations are carried out to investigate the effects of finite-amplitude propagation, attenuation, and wind velocity on the amplitude and spectral content of the observed signals. Relationships are explored between the yields of the explosions and the period and wind corrected amplitudes of the signals recorded at various distances. The atmospheric specifications combined with propagation modeling techniques may allow propagation path effects to be better removed so that source characteristics can be extracted from the signals.

  18. Coherent quantum depletion of an interacting atom condensate

    PubMed Central

    Kira, M.

    2015-01-01

    Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044

  19. The effects of majority versus minority source status on persuasion: a self-validation analysis.

    PubMed

    Horcajo, Javier; Petty, Richard E; Briñol, Pablo

    2010-09-01

    The present research proposes that sources in the numerical majority (vs. minority) can affect persuasion by influencing the confidence with which people hold their thoughts in response to the persuasive message. Participants received a persuasive message composed of either strong or weak arguments that was presented by a majority or a minority source. Consistent with the self-validation hypothesis, we predicted and found that the majority (vs. minority) status of the source increased the confidence with which recipients held their thoughts. As a consequence, majority (vs. minority) sources increased argument quality effects in persuasion when source status information followed message processing (Experiment 1). In contrast, when the information regarding source status preceded (rather than followed) the persuasive message, it validated the perception of the position advocated, reducing message processing. As a consequence of having more confidence in the position advocated before receiving the message, majority (vs. minority) sources reduced argument quality effects in persuasion (Experiment 2). Finally, Experiment 3 isolated the timing of the source status manipulation, revealing that sources in the numerical majority (vs. minority) can increase or decrease persuasion to strong arguments depending on whether source status is introduced before or after processing the message. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  20. Comparison of finite source and plane wave scattering from corrugated surfaces

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1977-01-01

    The choice of a plane wave to represent incident radiation in the analysis of scatter from corrugated surfaces was examined. The physical optics solution obtained for the scattered fields due to an incident plane wave was compared with the solution obtained when the incident radiation is produced by a source of finite size and finite distance from the surface. The two solutions are equivalent if the observer is in the far field of the scatterer and the distance from observer to scatterer is large compared to the radius of curvature at the scatter points, condition not easily satisfied with extended scatterers such as rough surfaces. In general, the two solutions have essential differences such as in the location of the scatter points and the dependence of the scattered fields on the surface properties. The implication of these differences to the definition of a meaningful radar cross section was examined.

  1. Investigation of Finite Sources through Time Reversal

    NASA Astrophysics Data System (ADS)

    Kremers, S.; Brietzke, G.; Igel, H.; Larmat, C.; Fichtner, A.; Johnson, P. A.; Huang, L.

    2008-12-01

    Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the source point and other information might be inferred. In this study, the backward propagation is performed numerically using a spectral element code. We investigate the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, location of asperities, rupture velocity etc.). We use synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice- rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of relaxing the ignorance to prior source information (e.g., origin time, hypocenter, fault location, etc.) on the results of the time reversal process.

  2. Ignition in tokamaks with modulated source of auxiliary heating

    NASA Astrophysics Data System (ADS)

    Morozov, D. Kh

    2017-12-01

    It is shown that the ignition may be achieved in tokamaks with the modulated power source. The time-averaged source power may be smaller than the steady-state source power, which is sufficient for the ignition. Nevertheless, the maximal power must be large enough, because the ignition must be achieved within a finite time interval.

  3. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  4. Isotope effect of mercury diffusion in air.

    PubMed

    Koster van Groos, Paul G; Esser, Bradley K; Williams, Ross W; Hunt, James R

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature.

  5. Fluctuations in the quark-meson model for QCD with isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Kamikado, Kazuhiko; Strodthoff, Nils; von Smekal, Lorenz; Wambach, Jochen

    2013-01-01

    We study the two-flavor quark-meson (QM) model with the functional renormalization group (FRG) to describe the effects of collective mesonic fluctuations on the phase diagram of QCD at finite baryon and isospin chemical potentials, μB and μI. With only isospin chemical potential there is a precise equivalence between the competing dynamics of chiral versus pion condensation and that of collective mesonic and baryonic fluctuations in the quark-meson-diquark model for two-color QCD at finite baryon chemical potential. Here, finite μB = 3 μ introduces an additional dimension to the phase diagram as compared to two-color QCD, however. At zero temperature, the (μI, μ) plane of this phase diagram is strongly constrained by the "Silver Blaze problem." In particular, the onset of pion condensation must occur at μI =mπ / 2, independent of μ as long as μ +μI stays below the constituent quark mass of the QM model or the liquid-gas transition line of nuclear matter in QCD. In order to maintain this relation beyond mean field it is crucial to compute the pion mass from its timelike correlator with the FRG in a consistent way.

  6. Integrable subsectors from holography

    NASA Astrophysics Data System (ADS)

    de Mello Koch, Robert; Kim, Minkyoo; Van Zyl, Hendrik J. R.

    2018-05-01

    We consider operators in N=4 super Yang-Mills theory dual to closed string states propagating on a class of LLM geometries. The LLM geometries we consider are specified by a boundary condition that is a set of black rings on the LLM plane. When projected to the LLM plane, the closed strings are polygons with all corners lying on the outer edge of a single ring. The large N limit of correlators of these operators receives contributions from non-planar diagrams even for the leading large N dynamics. Our interest in these fluctuations is because a previous weak coupling analysis argues that the net effect of summing the huge set of non-planar diagrams, is a simple rescaling of the 't Hooft coupling. We carry out some nontrivial checks of this proposal. Using the su(2|2)2 symmetry we determine the two magnon S-matrix and demonstrate that it agrees, up to two loops, with a weak coupling computation performed in the CFT. We also compute the first finite size corrections to both the magnon and the dyonic magnon by constructing solutions to the Nambu-Goto action that carry finite angular momentum. These finite size computations constitute a strong coupling confirmation of the proposal.

  7. Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudip; Rajak, Atanu; Chakrabarti, Bikas K.

    2018-02-01

    We explore the behavior of the order parameter distribution of the quantum Sherrington-Kirkpatrick model in the spin glass phase using Monte Carlo technique for the effective Suzuki-Trotter Hamiltonian at finite temperatures and that at zero temperature obtained using the exact diagonalization method. Our numerical results indicate the existence of a low- but finite-temperature quantum-fluctuation-dominated ergodic region along with the classical fluctuation-dominated high-temperature nonergodic region in the spin glass phase of the model. In the ergodic region, the order parameter distribution gets narrower around the most probable value of the order parameter as the system size increases. In the other region, the Parisi order distribution function has nonvanishing value everywhere in the thermodynamic limit, indicating nonergodicity. We also show that the average annealing time for convergence (to a low-energy level of the model, within a small error range) becomes system size independent for annealing down through the (quantum-fluctuation-dominated) ergodic region. It becomes strongly system size dependent for annealing through the nonergodic region. Possible finite-size scaling-type behavior for the extent of the ergodic region is also addressed.

  8. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    PubMed

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  9. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  10. Microseismic response characteristics modeling and locating of underground water supply pipe leak

    NASA Astrophysics Data System (ADS)

    Wang, J.; Liu, J.

    2015-12-01

    In traditional methods of pipeline leak location, geophones must be located on the pipe wall. If the exact location of the pipeline is unknown, the leaks cannot be identified accurately. To solve this problem, taking into account the characteristics of the pipeline leak, we propose a continuous random seismic source model and construct geological models to investigate the proposed method for locating underground pipeline leaks. Based on two dimensional (2D) viscoacoustic equations and the staggered grid finite-difference (FD) algorithm, the microseismic wave field generated by a leaking pipe is modeled. Cross-correlation analysis and the simulated annealing (SA) algorithm were utilized to obtain the time difference and the leak location. We also analyze and discuss the effect of the number of recorded traces, the survey layout, and the offset and interval of the traces on the accuracy of the estimated location. The preliminary results of the simulation and data field experiment indicate that (1) a continuous random source can realistically represent the leak microseismic wave field in a simulation using 2D visco-acoustic equations and a staggered grid FD algorithm. (2) The cross-correlation method is effective for calculating the time difference of the direct wave relative to the reference trace. However, outside the refraction blind zone, the accuracy of the time difference is reduced by the effects of the refracted wave. (3) The acquisition method of time difference based on the microseismic theory and SA algorithm has a great potential for locating leaks from underground pipelines from an array located on the ground surface. Keywords: Viscoacoustic finite-difference simulation; continuous random source; simulated annealing algorithm; pipeline leak location

  11. A Laboratory Study of River Discharges into Shallow Seas

    NASA Astrophysics Data System (ADS)

    Crawford, T. J.; Linden, P. F.

    2016-02-01

    We present an experimental study that aims to simulate the buoyancy driven coastal currents produced by estuarine freshwater discharges into the ocean. The currents are generated inside a rotating tank filled with saltwater by the continuous release of buoyant freshwater from a source structure located at the fluid surface. The freshwater is discharged horizontally from a finite-depth source, giving rise to significant momentum-flux effects and a non-zero potential vorticity. We perform a parametric study in which we vary the rotation rate, freshwater discharge magnitude, the density difference and the source cross-sectional area. The parameter values are chosen to match the regimes appropriate to the River Rhine and River Elbe when entering the North Sea. Persistent features of an anticyclonic outflow vortex and a propagating boundary current were identified and their properties quantified. We also present a finite potential vorticity, geostrophic model that provides theoretical predictions for the current height, width and velocity as functions of the experimental parameters. The experiments and model are compared with each other in terms of a set of non-dimensional parameters identified in the theoretical analysis of the problem. Good agreement between the model and the experimental data is found. The effect of mixing in the turbulent ocean is also addressed with the addition of an oscillating grid to the experimental setup. The grid generates turbulence in the saltwater ambient that is designed to represent the mixing effects of the wind, tides and bathymetry in a shallow shelf sea. The impact of the addition of turbulence is discussed in terms of the experimental data and through modifications to the theoretical model to include mixing. Once again, good agreement is seen between the experiments and the model.

  12. High surface conductivity of Fermi-arc electrons in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Resta, Giacomo; Pi, Shu-Ting; Wan, Xiangang; Savrasov, Sergey Y.

    2018-02-01

    Weyl semimetals (WSMs), a new type of topological condensed matter, are currently attracting great interest due to their unusual electronic states and intriguing transport properties such as chiral anomaly induced negative magnetoresistance, a semiquantized anomalous Hall effect, and the debated chiral magnetic effect. These systems are close cousins of topological insulators (TIs) which are known for their disorder-tolerant surface states. Similarly, WSMs exhibit unique topologically protected Fermi-arc surface states. Here, we analyze electron-phonon scattering, a primary source of resistivity in metals at finite temperatures, as a function of the shape of the Fermi arc where we find that the impact on surface transport is significantly dependent on the arc curvature and disappears in the limit of a straight arc. Next, we discuss the effect of strong surface disorder on the resistivity by numerically simulating a tight-binding model with the presence of quenched surface vacancies using the coherent potential approximation and Kubo-Greenwood formalism. We find that the limit of a straight arc geometry is remarkably disorder tolerant, producing surface conductivity that is one to two orders of magnitude larger than a comparable setup with surface states of TI. This is primarily attributed to a significantly different hybridization strength of the surface states with the remaining electrons in two systems. Finally, a simulation of the effects of surface vacancies on TaAs is presented, illustrating the disorder tolerance of the topological surface states in a recently discovered WSM material.

  13. Numerical investigation of diffraction of acoustic waves by phononic crystals

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent

    2012-05-01

    Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.

  14. Unequal-strength source zROC slopes reflect criteria placement and not (necessarily) memory processes

    PubMed Central

    Starns, Jeffrey J.; Pazzaglia, Angela M.; Rotello, Caren M.; Hautus, Michael J.; Macmillan, Neil A.

    2014-01-01

    Source memory zROC slopes change from below 1 to above 1 depending on which source gets the strongest learning. This effect has been attributed to memory processes, either in terms of a threshold source recollection process or changes in the variability of continuous source evidence. We propose two decision mechanisms that can produce the slope effect, and we test them in three experiments. The evidence mixing account assumes that people change how they weight item versus source evidence based on which source is stronger, and the converging criteria account assumes that participants become more willing to make high confidence source responses for test probes that have higher item strength. Results failed to support the evidence mixing account, in that the slope effect emerged even when item evidence was not informative for the source judgment (that is, in tests that included strong and weak items from both sources). In contrast, results showed strong support for the converging criteria account. This account not only accommodated the unequal-strength slope effect, but also made a prediction for unstudied (new) items that was empirically confirmed: participants made more high confidence source responses for new items when they were more confident that the item was studied. The converging criteria account has an advantage over accounts based on source recollection or evidence variability, as the latter accounts do not predict the relationship between recognition and source confidence for new items. PMID:23565789

  15. The effects of core-reflected waves on finite fault inversion with teleseismic body wave data

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Ni, S.; Wei, S.

    2016-12-01

    Reliable estimation of rupture processes for a large earthquake is valuable for post-seismic rescue, tsunami alert, seismotectonic studies, as well as earthquake physics. Finite-fault inversion has been widely accepted to reconstruct the spatial-temporal distribution of rupture processes, which can be obtained by individual or jointly inversion of seismic, geodetic and tsunami data sets. Among the above observations, teleseismic (30° 90°) body waves, usually P and SH waves, have been used extensively in such inversions because their propagation are well understood and readily available for large earthquakes with good coverages of slowness and azimuth. However, finite fault inversion methods usually assume turning P and SH waves without inclusion of core-reflected waves when calculating the synthetic waveforms, which may result in systematic error in finite-fault inversions. For the core-reflected SH wave ScS, it is expected to be strong due to total reflection from Core-Mantle-Boundary. Moreover, the time interval between direct S and ScS could be smaller than the duration of large earthquakes for large epicentral distances. In order to improve the accuracy of finite fault inversion with teleseismic body waves, we develop a procedure named multitel3 to compute Greens' functions that contain both turning waves (P, pP, sP, S, sS et al.) and core-reflected phases (PcP and ScS) and apply it to finite fault inversions. This ray-based method can rapidly calculate teleseismic body wave synthetics with flexibility for path calibration of 3D mantle structure. The new Green's function is plugged into finite fault inversion package to replace the original Green's function with only turning P and SH waves. With the 2008 Mw7.9 Wenchuan earthquake as example, a series of numerical tests conducted on synthetic data are used to assess the performance of our approach. We also explore this new procedure's stability when there are discrepancies between the parameters of input model and the priori information of inverse model, such as strike, dip of finite fault and so on. With the quantified code, we apply it to study rupture process of the 2016 Mw7.8 Sumatra earthquake.

  16. Simulation of the alpha particle heating and the helium ash source in an International Thermonuclear Experimental Reactor-like tokamak with an internal transport barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lei, E-mail: lye@ipp.ac.cn; Guo, Wenfeng; Xiao, Xiaotao

    2014-12-15

    A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile canmore » be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.« less

  17. Hammering Yucca Flat, Part One: P-Wave Velocity

    NASA Astrophysics Data System (ADS)

    Tang, D. G.; Abbott, R. E.; Preston, L. A.; Hampshire, J. B., II

    2015-12-01

    Explosion-source phenomenology is best studied when competing signals (such as instrument, site, and propagation effects), are well understood. The second phase of the Source Physics Experiments (SPE), is moving from granite geology to alluvium geology at Yucca Flat, Nevada National Security Site. To improve subsurface characterization of Yucca Flat (and therefore better understand propagation and site effects), an active-source seismic survey was conducted using a novel 13,000-kg impulsive hammer source. The source points, spaced 200 m apart, covered a N-S transect spanning 18 km. Three component, 2-Hz geophones were used to record useable signals out to 10 km. We inverted for P-wave velocity by computing travel times using a finite-difference 3D eikonal solver, and then compared that to the picked travel times using a linearized iterative inversion scheme. Preliminary results from traditional reflection processing methods are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. High-resolution shallow structure revealed with ambient noise tomography on a dense array

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Luo, Y.; Matzel, E.; Team, P.

    2016-12-01

    A dense seismic array was deployed by the PoroTomo research team at Brady Hot Springs, Nevada in March 2016. The array consisted of 238 short-period three-component geophones (5-Hz corner frequency) with about 60 m spacing. Over the 15 day deployment, the array recorded over 6,000 active source signals (vibroseis sweeps) and ambient noise that was dominated by traffic noise.We adopted the one-bit method to better reduce the effect of the active source. Spectral whitening was performed between 0.5 and 2 Hz. The continuous record was chopped into 1 minute segments. The 1-minute cross-correlation functions were initially stacked linearly, and then the phase-weighted stacking method was applied to improve signal quality. More than two million noise correlation functions (NCFs) have been obtained.The Rayleigh wave group velocity was measured on the symmetric component of the NCFs with the frequency-time analysis method. The average group velocity is about 400 m/s at 4 Hz, which is consistent with preliminary active source result. To avoid mis-picking possible precursors, the arrival time was picked at the peak in a two-second time window predicted with the average group velocity of the fundamental mode. The quality of the arrival measurements is defined by the signal-to-noise ratio. We were able to pick reliable arrivals at about 35% of the station-pairs. Since the straight-ray assumption may not be valid in a strongly heterogeneous medium, the wave path was traced with a finite difference scheme and the LSQR method was utilized to invert group velocity. The heterogeneous features of the group velocity map are consistent with a local geologic map. The PoroTomo project is funded by a grant from the U.S. Department of Energy.

  19. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  20. Influence of phonon-assisted tunneling on the linear thermoelectric transport through molecular quantum dots

    NASA Astrophysics Data System (ADS)

    Khedri, A.; Meden, V.; Costi, T. A.

    2017-11-01

    We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.

  1. Diffusion and transport in locally disordered driven lattices

    NASA Astrophysics Data System (ADS)

    Wulf, Thomas; Okupnik, Alexander; Schmelcher, Peter

    2016-09-01

    We study the effect of disorder on the particle density evolution in a classical Hamiltonian driven lattice setup. If the disorder is localized within a finite sub-domain of the lattice, the emergence of strong tails in the density distribution which even increases towards larger positions is shown, thus yielding a highly non-Gaussian particle density evolution. As the key underlying mechanism, we identify the conversion between different components of the unperturbed systems mixed phase space which is induced by the disorder. Based on the introduction of individual conversion rates between chaotic and regular components, a theoretical model is developed which correctly predicts the scaling of the particle density. The effect of disorder on the transport properties is studied where a significant enhancement of the transport for cases of localized disorder is shown, thereby contrasting strongly the merely weak modification of the transport for global disorder.

  2. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  3. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.

    PubMed

    Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the existence of nonreciprocal wave interaction phenomena in the form of irreversible targeted energy transfers from L waves to NL pulses during collisions of these two types of waves. Additional nonreciprocal acoustics are found in the form of complex "cascading processes, as well as nonreciprocal interactions between L waves and stationary discrete breathers. The computational studies confirm the theoretically predicted transition of the lattice dynamics to a low-energy state of nonlinear acoustic vacum with strong nonlocality.

  4. High-Performance AC Power Source by Applying Robust Stability Control Technology for Precision Material Machining

    NASA Astrophysics Data System (ADS)

    Chang, En-Chih

    2018-02-01

    This paper presents a high-performance AC power source by applying robust stability control technology for precision material machining (PMM). The proposed technology associates the benefits of finite-time convergent sliding function (FTCSF) and firefly optimization algorithm (FOA). The FTCSF maintains the robustness of conventional sliding mode, and simultaneously speeds up the convergence speed of the system state. Unfortunately, when a highly nonlinear loading is applied, the chatter will occur. The chatter results in high total harmonic distortion (THD) output voltage of AC power source, and even deteriorates the stability of PMM. The FOA is therefore used to remove the chatter, and the FTCSF still preserves finite system-state convergence time. By combining FTCSF with FOA, the AC power source of PMM can yield good steady-state and transient performance. Experimental results are performed in support of the proposed technology.

  5. Near field Rayleigh wave on soft porous layers.

    PubMed

    Geebelen, N; Boeckx, L; Vermeir, G; Lauriks, W; Allard, J F; Dazel, O

    2008-03-01

    Simulations performed for a typical semi-infinite reticulated plastic foam saturated by air show that, at distances less than three Rayleigh wavelengths from the area of mechanical excitation by a circular source, the normal frame velocity is close to the Rayleigh pole contribution. Simulated measurements show that a good order of magnitude estimate of the phase speed and damping can be obtained at small distances from the source. Simulations are also performed for layers of finite thickness, where the phase velocity and damping depend on frequency. They indicate that the normal frame velocity at small distances from the source is always close to the Rayleigh pole contribution and that a good order of magnitude estimate of the phase speed of the Rayleigh wave can be obtained at small distances from the source. Furthermore, simulations show that precise measurements of the damping of the Rayleigh wave need larger distances. Measurements performed on a layer of finite thickness confirm these trends.

  6. Critical behavior and correlations on scale-free small-world networks: Application to network design

    NASA Astrophysics Data System (ADS)

    Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.

    2011-06-01

    We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.

  7. Nematic order on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  8. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat.

    PubMed

    Straub, Anthony P; Elimelech, Menachem

    2017-11-07

    Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.

  9. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2006-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer precipitation seesaw between eastern and western Siberia. The results of this study raise the possibility that global aerosol forcing during boreal spring may play an important role in spawning atmospheric teleconnections that affect regional and global climates.

  10. Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations.

    PubMed

    Majumder, Santanu; Roychowdhury, Amit; Pal, Subrata

    2008-09-18

    A major worldwide health problem is hip fracture due to sideways fall among the elderly population. The effects of sideways fall on the hip are required to be investigated thoroughly. The objectives of this study are to evaluate the responses to trochanteric soft tissue thickness (T) variations and hip impact velocity (V) variations during sideways fall based on a previously developed CT scan derived 3D non-linear and non-homogeneous finite element model of pelvis-femur-soft tissue complex with simplified biomechanical representation of the whole body. This study is also aimed at quantifying the effects [peak impact force (F(max)), time to F(max), acceleration and peak principal compressive strain (epsilon(max))] of these variations (T,V) on hip fracture. It was found that under constant impact energy, for 81% decrease in T (26-5mm), F(max) and epsilon(max) increased by 38% and 97%, respectively. Hence, decrease in T (as in slimmer persons) strongly correlated to risk for hip fracture (phi) and strain ratio (SR) by 0.972 and 0.988, respectively. Also under same T and body weight, for 75% decrease in V (4.79-1.2m/s), F(max) and epsilon(max) decreased by 70% and 86%, respectively. Hence, increase in V (as in taller persons) strongly correlated to phi and SR by 0.995 and 0.984, respectively. For both variations in T and V, inter-trochanteric fracture situations were well demonstrated by phi as well as by SR and strain contours, similar to clinically observed fractures. These quantifications would be helpful for effective design of person-specific hip protective devices.

  11. Two's a crowd? Crowding effect in a parasitic castrator drives differences in reproductive resource allocation in single vs double infections.

    PubMed

    Fong, Caitlin R; Moron, Nancy A; Kuris, Armand M

    2017-04-01

    The 'crowding effect' is a result of competition by parasites within a host for finite resources. Typically, the severity of this effect increases with increasing numbers of parasites within a host and manifests in reduced body size and thus fitness. Evidence for the crowding effect is mixed - while some have found negative effects, others have found a positive effect of increased parasite load on parasite fitness. Parasites are consumers with diverse trophic strategies reflected in their life history traits. These distinctions are useful to predict the effects of crowding. We studied a parasitic castrator, a parasite that usurps host reproductive energy and renders the host sterile. Parasitic castrators typically occur as single infections within hosts. With multiple parasitic castrators, we expect strong competition and evidence of crowding. We directly assess the effect of crowding on reproductive success in a barnacle population infected by a unique parasitic castrator, Hemioniscus balani, an isopod parasite that infects and blocks reproduction of barnacles. We find (1) strong evidence of crowding in double infections, (2) increased frequency of double infections in larger barnacle hosts with more resources and (3) perfect compensation in egg production, supporting strong space limitation. Our results document that the effects of crowding are particularly severe for this parasitic castrator, and may be applicable to other castrators that are also resource or space limited.

  12. Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, N.; Ohashi, Y.; Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223

    2007-03-15

    The superfluid density is a fundamental quantity describing the response to a rotation as well as in two-fluid collisional hydrodynamics. We present extensive calculations of the superfluid density {rho}{sub s} in the BCS-BEC crossover regime of a uniform superfluid Fermi gas at finite temperatures. We include strong-coupling or fluctuation effects on these quantities within a Gaussian approximation. We also incorporate the same fluctuation effects into the BCS single-particle excitations described by the superfluid order parameter {delta} and Fermi chemical potential {mu}, using the Nozieres-Schmitt-Rink approximation. This treatment is shown to be necessary for consistent treatment of {rho}{sub s} over themore » entire BCS-BEC crossover. We also calculate the condensate fraction N{sub c} as a function of the temperature, a quantity which is quite different from the superfluid density {rho}{sub s}. We show that the mean-field expression for the condensate fraction N{sub c} is a good approximation even in the strong-coupling BEC regime. Our numerical results show how {rho}{sub s} and N{sub c} depend on temperature, from the weak-coupling BCS region to the BEC region of tightly bound Cooper pair molecules. In a companion paper [Phys. Rev. A 74, 063626 (2006)], we derive an equivalent expression for {rho}{sub s} from the thermodynamic potential, which exhibits the role of the pairing fluctuations in a more explicit manner.« less

  13. Inverse identification of unknown finite-duration air pollutant release from a point source in urban environment

    NASA Astrophysics Data System (ADS)

    Kovalets, Ivan V.; Efthimiou, George C.; Andronopoulos, Spyros; Venetsanos, Alexander G.; Argyropoulos, Christos D.; Kakosimos, Konstantinos E.

    2018-05-01

    In this work, we present an inverse computational method for the identification of the location, start time, duration and quantity of emitted substance of an unknown air pollution source of finite time duration in an urban environment. We considered a problem of transient pollutant dispersion under stationary meteorological fields, which is a reasonable assumption for the assimilation of available concentration measurements within 1 h from the start of an incident. We optimized the calculation of the source-receptor function by developing a method which requires integrating as many backward adjoint equations as the available measurement stations. This resulted in high numerical efficiency of the method. The source parameters are computed by maximizing the correlation function of the simulated and observed concentrations. The method has been integrated into the CFD code ADREA-HF and it has been tested successfully by performing a series of source inversion runs using the data of 200 individual realizations of puff releases, previously generated in a wind tunnel experiment.

  14. Soft symmetry improvement of two particle irreducible effective actions

    NASA Astrophysics Data System (ADS)

    Brown, Michael J.; Whittingham, Ian B.

    2017-01-01

    Two particle irreducible effective actions (2PIEAs) are valuable nonperturbative techniques in quantum field theory; however, finite truncations of them violate the Ward identities (WIs) of theories with spontaneously broken symmetries. The symmetry improvement (SI) method of Pilaftsis and Teresi attempts to overcome this by imposing the WIs as constraints on the solution; however, the method suffers from the nonexistence of solutions in linear response theory and in certain truncations in equilibrium. Motivated by this, we introduce a new method called soft-symmetry improvement (SSI) which relaxes the constraint. Violations of WIs are allowed but punished in a least-squares implementation of the symmetry improvement idea. A new parameter ξ controls the strength of the constraint. The method interpolates between the unimproved (ξ →∞ ) and SI (ξ →0 ) cases, and the hope is that practically useful solutions can be found for finite ξ . We study the SSI 2PIEA for a scalar O (N ) model in the Hartree-Fock approximation. We find that the method is IR sensitive; the system must be formulated in finite volume V and temperature T =β-1 , and the V β →∞ limit must be taken carefully. Three distinct limits exist. Two are equivalent to the unimproved 2PIEA and SI 2PIEA respectively, and the third is a new limit where the WI is satisfied but the phase transition is strongly first order and solutions can fail to exist depending on ξ . Further, these limits are disconnected from each other; there is no smooth way to interpolate from one to another. These results suggest that any potential advantages of SSI methods, and indeed any application of (S)SI methods out of equilibrium, must occur in finite volume.

  15. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.

  16. Teleseismic P wave coda from oceanic trench and other bathymetric features

    NASA Astrophysics Data System (ADS)

    Wu, W.; Ni, S.

    2012-12-01

    Teleseismic P waves are essential for studying rupture processes of great earthquakes, either in the back projection method or in finite fault inversion method involving of quantitative waveform modeling. In these studies, P waves are assumed to be direct P waves generated by localized patches of the ruptured fault. However, for some oceanic earthquakes happening near the subductiontrenches or mid-ocean ridges, we observed strong signals between P and PP are often observed on theat telseseismic networkdistances. These P wave coda signals show strong coherence and their amplitudes are sometimes comparable with those of the direct P wave or even higher for some special frequenciesfrequency band. With array analysis, we find that the coda's slowness is very close to that of the direct P wave, suggesting that they are generated near the source region. As the earthquakes occur near the trenches or mid-ocean ridges which are both featured by rapid variation of bathymetry, the coda waves are very probably generated by the scattered surface wave or S wave at the irregular bathymetry. Then, we apply the realistic bathymetry data to calculate the 3D synthetics and the coda can be well predicted by the synthetics. So the topography/bathymetry is confirmed to be the main source of the coda. The coda waves are so strong that it may affect the imaging rupture processes of ocean earthquakes, so the topography/bathymetry effect should be taken into account. However, these strong coda waves can also be used utilized to locate the oceanic earthquakes. The 3D synthetics demonstrate that the coda waves are dependent on both the specific bathymetry and the location of the earthquake. Given the determined bathymetry, the earthquake location can be constrained by the coda, e.g. the distance between trench and the earthquake can be determine from the relative arrival between the P wave and its coda which is generated by the trench. In order to locate the earthquakes using the bathymetry, it is indispensible to get all the 3D synthetics with possible different horizontal locations and depths of the earthquakes. However, the computation will be very expensive if using the numerical simulation in the whole medium. Considering that the complicated structure is only near the source region, we apply ray theory to interface full wave field from spectral-element simulation to get the teleseismic P waves. With this approach, computation efficiency is greatly improved and the relocation of the earthquake can be completed more efficiently. As for the relocation accuracy, it can be as high as 10km for the earthquakes near the trench. So it provides us another, sometimes most favorable, method to locate the ocean earthquakes with ground-truth accuracy.

  17. A Case Study on Engineering Failure Analysis of Link Chain

    PubMed Central

    Lee, Seong-Beom; Lee, Hong-Chul

    2010-01-01

    Objectives The objective of this study was to investigate the effect of chain installation condition on stress distribution that could eventually cause disastrous failure from sudden deformation and geometric rupture. Methods Fractographic method used for the failed chain indicates that over-stress was considered as the root cause of failure. 3D modeling and finite element analysis for the chain, used in a crane hook, were performed with a three-dimensional interactive application program, CATIA, commercial finite element analysis and computational fluid dynamic software, ANSYS. Results The results showed that the state of stress was changed depending on the initial position of the chain that was installed in the hook. Especially, the magnitude of the stress was strongly affected by the bending forces, which are 2.5 times greater (under the simulation condition currently investigated) than that from the plain tensile load. Also, it was noted that the change of load state is strongly related to the failure of parts. The chain can hold an ultimate load of about 8 tons with only the tensile load acting on it. Conclusion The conclusions of this research clearly showed that a reduction of the loss from similar incidents can be achieved when an operator properly handles the installation of the chain. PMID:22953162

  18. The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault

    NASA Astrophysics Data System (ADS)

    Avouac, Jean-Philippe; Ayoub, Francois; Wei, Shengji; Ampuero, Jean-Paul; Meng, Lingsen; Leprince, Sebastien; Jolivet, Romain; Duputel, Zacharie; Helmberger, Don

    2014-04-01

    We analyse the Mw 7.7 Balochistan earthquake of 09/24/2013 based on ground surface deformation measured from sub-pixel correlation of Landsat-8 images, combined with back-projection and finite source modeling of teleseismic waveforms. The earthquake nucleated south of the Chaman strike-slip fault and propagated southwestward along the Hoshab fault at the front of the Kech Band. The rupture was mostly unilateral, propagated at 3 km/s on average and produced a 200 km surface fault trace with purely strike-slip displacement peaking to 10 m and averaging around 6 m. The finite source model shows that slip was maximum near the surface. Although the Hoshab fault is dipping by 45° to the North, in accordance with its origin as a thrust fault within the Makran accretionary prism, slip was nearly purely strike-slip during that earthquake. Large seismic slip on such a non-optimally oriented fault was enhanced possibly due to the influence of the free surface on dynamic stresses or to particular properties of the fault zone allowing for strong dynamic weakening. Strike-slip faulting on thrust fault within the eastern Makran is interpreted as due to eastward extrusion of the accretionary prism as it bulges out over the Indian plate. Portions of the Makran megathrust, some thrust faults in the Kirthar range and strike-slip faults within the Chaman fault system have been brought closer to failure by this earthquake. Aftershocks cluster within the Chaman fault system north of the epicenter, opposite to the direction of rupture propagation. By contrast, few aftershocks were detected in the area of maximum moment release. In this example, aftershocks cannot be used to infer earthquake characteristics.

  19. Heterogeneity of direct aftershock productivity of the main shock rupture

    NASA Astrophysics Data System (ADS)

    Guo, Yicun; Zhuang, Jiancang; Hirata, Naoshi; Zhou, Shiyong

    2017-07-01

    The epidemic type aftershock sequence (ETAS) model is widely used to describe and analyze the clustering behavior of seismicity. Instead of regarding large earthquakes as point sources, the finite-source ETAS model treats them as ruptures that extend in space. Each earthquake rupture consists of many patches, and each patch triggers its own aftershocks isotropically. We design an iterative algorithm to invert the unobserved fault geometry based on the stochastic reconstruction method. This model is applied to analyze the Japan Meteorological Agency (JMA) catalog during 1964-2014. We take six great earthquakes with magnitudes >7.5 after 1980 as finite sources and reconstruct the aftershock productivity patterns on each rupture surface. Comparing results from the point-source ETAS model, we find the following: (1) the finite-source model improves the data fitting; (2) direct aftershock productivity is heterogeneous on the rupture plane; (3) the triggering abilities of M5.4+ events are enhanced; (4) the background rate is higher in the off-fault region and lower in the on-fault region for the Tohoku earthquake, while high probabilities of direct aftershocks distribute all over the source region in the modified model; (5) the triggering abilities of five main shocks become 2-6 times higher after taking the rupture geometries into consideration; and (6) the trends of the cumulative background rate are similar in both models, indicating the same levels of detection ability for seismicity anomalies. Moreover, correlations between aftershock productivity and slip distributions imply that aftershocks within rupture faults are adjustments to coseismic stress changes due to slip heterogeneity.

  20. Finite numbers of sources, particle correlations and the Color Glass Condensate

    DOE PAGES

    McLerran, Larry; Skokov, Vladimir V.

    2015-12-23

    Here, we show that for a finite number of emitting sources, the Color Glass Condensate produces substantial elliptic azimuthal anisotropy, characterized by v 2, for two and four particle correlations for momentum greater than or of the order of the saturation momentum. The flow produced has the correct semi-quantitative features to describe flow seen in the LHC experiments with p–Pb and pp collisions. This flow is induced by quantum mechanical interference between the waves of produced particles, and the flow itself is coupled to fluctuations in the positions of emitting sources. We shortly discuss generalizing these results to odd vmore » n, to correlations involving larger number of particles, and to transverse momentum scales ΛQCD << p T << Q sat.« less

Top